

RELION® PRODUCT FAMILY

Grid Automation REC615 and RER615Technical Manual

Document ID: 1MRS758755

Issued: 2023-03-07

Revision: C

Product version: 2.0.3

© Copyright 2023 ABB. All rights reserved

Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.

www.abb.com/relion

Disclaimer

The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This product has been designed to be connected and communicate data and information via a network interface which should be connected to a secure network. It is the sole responsibility of the person or entity responsible for network administration to ensure a secure connection to the network and to take the necessary measures (such as, but not limited to, installation of firewalls, application of authentication measures, encryption of data, installation of anti virus programs, etc.) to protect the product and the network, its system and interface included, against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB is not liable for any such damages and/or losses.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.

Conformity

This product complies with following directive and regulations.

Directives of the European parliament and of the council:

- Electromagnetic compatibility (EMC) Directive 2014/30/EU
- Low-voltage Directive 2014/35/EU
- RoHS Directive 2011/65/EU

UK legislations:

- Electromagnetic Compatibility Regulations 2016
- Electrical Equipment (Safety) Regulations 2016
- The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

These conformities are the result of tests conducted by the third-party testing in accordance with the product standard EN / BS EN 60255-26 for the EMC directive / regulation, and with the product standards EN / BS EN 60255-1 and EN / BS EN 60255-27 for the low voltage directive / safety regulation.

The product is designed in accordance with the international standards of the IEC 60255 series.

Contents

1	Int	Introduction1			
	1.1	This m	nanual	18	
	1.2	Intend	ded audience	18	
	1.3	Produ	ct documentation	19	
		1.3.1	Product documentation set	19	
		1.3.2	Document revision history	20	
		1.3.3	Related documentation	20	
	1.4	Symbo	ols and conventions	21	
		1.4.1	Symbols	21	
		1.4.2	Document conventions	21	
		1.4.3	Functions, codes and symbols	22	
2	RE	C 615 a	and RER615 overview	28	
	2.1	Overvi	iew	28	
		2.1.1	Product series version history	28	
		2.1.2	PCM600 and IED connectivity package version	28	
	2.2	Local I	НМІ	29	
		2.2.1	Display	29	
		2.2.2	LEDs	30	
		2.2.3	Keypad	30	
	2.3	Web H	IMI	31	
	2.4	Autho	rization	32	
		2.4.1	Audit trail	33	
	2.5	Comm	nunication	35	
		2.5.1	Self-healing Ethernet ring	36	
		2.5.2	Ethernet redundancy	37	
		2.5.3	Process bus	39	
		2.5.4	Secure communication	41	
3	Bas	sic fun	nctions	42	
	3.1	Genera	al parameters	42	
		3.1.1	Analog input settings, phase currents	42	
		3.1.2	Analog input settings, residual current	43	
		3.1.3	Analog input settings, phase voltages	43	
		3.1.4	Analog input settings, residual voltage	43	
		3.1.5	Authorization settings	45	
		3.1.6	Binary input settings	46	
		3.1.7	Binary signals in card location Xnnn	46	

	3.1.8	Binary input settings in card location Xnnn	47			
	3.1.9	Ethernet front port settings	47			
	3.1.10	Ethernet rear port settings	47			
	3.1.11	General system settings	48			
	3.1.12	HMI settings	49			
	3.1.13	IEC 60870-5-101/104 settings	49			
	3.1.14	Non group settings	50			
	3.1.15	Modbus settings	52			
	3.1.16	DNP3 settings	54			
	3.1.17	COM1/2 serial communication settings	56			
3.2	Self-su	pervision	57			
	3.2.1	Internal faults	57			
	3.2.2	Warnings	60			
3.3	LED ind	dication control	62			
	3.3.1	Function block	62			
	3.3.2	Functionality	62			
3.4	Progra	mmable LEDs	63			
	3.4.1	Function block	63			
	3.4.2	Functionality	63			
	3.4.3	Signals	66			
	3.4.4	Settings	67			
	3.4.5	Monitored data	69			
3.5	Time sy	ynchronization	70			
	3.5.1	Time master supervision GNRLLTMS	70			
3.6	Parame	eter setting groups	73			
	3.6.1	Function block	74			
	3.6.2	Functionality	74			
3.7	Test m	Test mode				
	3.7.1	Function blocks	75			
	3.7.2	Functionality	76			
	3.7.3	Application configuration and Test mode	76			
	3.7.4	Control mode	76			
	3.7.5	Application configuration and Control mode	77			
	3.7.6	Authorization	77			
	3.7.7	LHMI indications	77			
	3.7.8	Signals	78			
3.8	Fault re	ecorder FLTRFRC	79			
	3.8.1	Function block	79			
	3.8.2	Functionality	79			
	3.8.3	Settings	80			
	3.8.4	Monitored data	81			
3.9	Nonvol	latile memory	89			
3.10	Sensor	nputs for currents and voltages	89			
3.11	Binary	Binary input91				

	3.11.1	Binary input filter time	91
	3.11.2	Binary input inversion	92
	3.11.3	Oscillation suppression	92
3.12	Binary	outputs	93
	3.12.1	Power output contacts	93
	3.12.2	Signal output contacts	96
3.13	RTD/m	nA inputs	99
	3.13.1	Functionality	99
	3.13.2	Operation principle	99
	3.13.3	Signals	110
	3.13.4	Settings	110
	3.13.5	Monitored data	112
3.14	SMV fu	nction blocks	113
	3.14.1	IEC 61850-9-2 LE sampled values sending SMVSENDER	113
	3.14.2	IEC 61850-9-2 LE sampled values receiving SMVRCV	115
	3.14.3	ULTVTR function block	115
	3.14.4	RESTVTR function block	117
3.15	GOOSE	E function blocks	119
	3.15.1	GOOSERCV_BIN function block	119
	3.15.2	GOOSERCV_DP function block	120
	3.15.3	GOOSERCV_MV function block	120
	3.15.4	GOOSERCV_INT8 function block	122
	3.15.5	GOOSERCV_INTL function block	122
	3.15.6	GOOSERCV_CMV function block	123
	3.15.7	GOOSERCV_ENUM function block	124
	3.15.8	GOOSERCV_INT32 function block	124
3.16	Type co	onversion function blocks	125
	3.16.1	QTY_GOOD function block	125
	3.16.2	QTY_BAD function block	125
	3.16.3	QTY_GOOSE_COMM function block	126
	3.16.4	T_HEALTH function block	127
	3.16.5	T_F32_INT8 function block	128
	3.16.6	T_DIR function block	128
	3.16.7	T_TCMD function block	129
	3.16.8	T_TCMD_BIN function block	130
	3.16.9	T_BIN_TCMD function block	131
3.17	Config	urable logic blocks	132
	3.17.1	Standard configurable logic blocks	132
	3.17.2	Minimum pulse timer	145
	3.17.3	Pulse timer PTGAPC	148
	3.17.4	Daily timer function DTMGAPC	150
	3.17.5	Time delay off (8 pcs) TOFGAPC	154
	3.17.6	Time delay on (8 pcs) TONGAPC	
	3.17.7	Set-reset (8 pcs) SRGAPC	

		3.17.8	Move (8 pcs) MVGAPC	160
		3.17.9	Integer value move MVI4GAPC	161
		3.17.10	Analog value scaling SCA4GAPC	162
		3.17.11	Local/remote control function block CONTROL	165
		3.17.12	Generic control point (16 pcs) SPCGAPC	172
		3.17.13	Remote generic control points SPCRGAPC	178
		3.17.14	Local generic control points SPCLGAPC	183
		3.17.15	Programmable buttons (4 buttons) FKEY4GGIO	187
		3.17.16	Generic up-down counter UDFCNT	188
	3.18	Factory	y settings restoration	191
	3.19	Load p	rofile record LDPRLRC	191
		3.19.1	Function block	191
		3.19.2	Functionality	191
		3.19.3	Configuration	194
		3.19.4	Signals	195
		3.19.5	Settings	196
		3.19.6	Monitored data	209
	3.20	ETHER	NET channel supervision function blocks	210
		3.20.1	Redundant Ethernet channel supervision RCHLCCH	210
		3.20.2	Ethernet channel supervision SCHLCCH	211
4	Pro	tectio	n functions	214
•	4.1		phase current protection	
		4.1.1	Three-phase non-directional overcurrent protection (F)PHxPTOC	
		4.1.2	Three-phase directional overcurrent protection (F)DPHxPDOC	
		4.1.3	Three-phase thermal protection for feeders, cables and distribution	
		1.1.5	transformers T1PTTR	266
		4.1.4	Loss of phase, undercurrent PHPTUC	
	4.2		ault protection	
		4.2.1	Non-directional earth-fault protection (F)EFxPTOC	
		4.2.2	Directional earth-fault protection (F)DEFxPDEF	
		4.2.3	Transient/intermittent earth-fault protection INTRPTEF	
		4.2.4	Admittance-based earth-fault protection EFPADM	
		4.2.5	Harmonics-based earth-fault protection HAEFPTOC	
		4.2.6	Wattmetric-based earth-fault protection WPWDE	
		4.2.7	Multifrequency admittance-based earth-fault protection MFADPSDE	
	4.3		nce protection	
	1.5	4.3.1	Negative-sequence overcurrent protection NSPTOC	
		4.3.2	Phase discontinuity protection PDNSPTOC	
	4.4		e protection	
		4.4.1	Three-phase overvoltage protection PHPTOV	
		4.4.2	Three-phase undervoltage protection PHPTUV	
		4.4.3	Residual overvoltage protection ROVPTOV	
		4.4.4	Negative-sequence overvoltage protection NSPTOV	
			Jan - Congress of the congress of the control of the constitution of the control of the cont	

		4.4.5	Positive-sequence undervoltage protection PSPTUV	444
	4.5	Freque	ency protection	448
		4.5.1	Frequency protection FRPFRQ	448
		4.5.2	Load-shedding and restoration LSHDPFRQ	456
	4.6	Power	protection	467
		4.6.1	Three-phase power directional element DPSRDIR	467
	4.7	Multip	urpose protection MAPGAPC	471
		4.7.1	Identification	471
		4.7.2	Function block	471
		4.7.3	Functionality	471
		4.7.4	Operation principle	472
		4.7.5	Application	473
		4.7.6	Signals	473
		4.7.7	Settings	474
		4.7.8	Monitored data	474
		4.7.9	Technical data	475
5	Pro	tectio	on related functions	476
	5.1		phase inrush detector INRPHAR	
		5.1.1	Identification	
		5.1.2	Function block	476
		5.1.3	Functionality	476
		5.1.4	Operation principle	476
		5.1.5	Application	477
		5.1.6	Signals	478
		5.1.7	Settings	479
		5.1.8	Monitored data	480
		5.1.9	Technical data	480
		5.1.10	Technical revision history	480
	5.2	Circuit	breaker failure protection CCBRBRF	480
		5.2.1	Identification	481
		5.2.2	Function block	481
		5.2.3	Functionality	481
		5.2.4	Operation principle	481
		5.2.5	Application	487
		5.2.6	Signals	488
		5.2.7	Settings	489
		5.2.8	Monitored data	490
		5.2.9	Technical data	490
		5.2.10	Technical revision history	490
	5.3	Master	r trip TRPPTRC	491
		5.3.1	Identification	491
		5.3.2	Function block	491
		5.3.3	Functionality	491

		5.3.4	Operation principle	491
		5.3.5	Application	493
		5.3.6	Signals	494
		5.3.7	Settings	495
		5.3.8	Monitored data	495
		5.3.9	Technical revision history	495
	5.4	Fault lo	ocator SCEFRFLO	496
		5.4.1	Identification	496
		5.4.2	Function block	496
		5.4.3	Functionality	496
		5.4.4	Operation principle	497
		5.4.5	Application	515
		5.4.6	Signals	516
		5.4.7	Settings	517
		5.4.8	Monitored data	519
		5.4.9	Technical data	522
		5.4.10	Technical revision history	522
6	Sur	orvici	ion functions	52 <i>/</i> 1
9	-			
	6.1	•	rcuit supervision TCSSCBR	
		6.1.1	Identification	
		6.1.2	Function block	
		6.1.3	Functionality	
		6.1.4	Operation principle	
		6.1.5	Application	
		6.1.6	Signals	
		6.1.7	Settings	
		6.1.8	Monitored data	
	<i>c</i> 2	6.1.9	Technical revision history	
	6.2		ailure supervision SEQSPVC	
		6.2.1	Identification	
		6.2.2 6.2.3	Function block	
			Functionality	
		6.2.4 6.2.5	Operation principle	
		6.2.6	Signals	
		6.2.7	_	
			Settings	
		6.2.8	Monitored data	
	<i>c</i> 2	6.2.9	Technical data	
	6.3		ne counter for machines and devices MDSOPT	
		6.3.1	Identification	
		6.3.2	Function block	
		6.3.3	Functionality	
		6.3.4	Operation principle	542

		6.3.5	Application	543
		6.3.6	Signals	543
		6.3.7	Settings	544
		6.3.8	Monitored data	545
		6.3.9	Technical data	545
		6.3.10	Technical revision history	545
	6.4	Voltage	e presence PHSVPR	546
		6.4.1	Identification	546
		6.4.2	Function block	546
		6.4.3	Functionality	546
		6.4.4	Operation principle	546
		6.4.5	Application	548
		6.4.6	Signals	548
		6.4.7	Settings	549
		6.4.8	Monitored data	550
		6.4.9	Technical data	550
7	Col	nditior	n monitoring functions	552
•	7.1		breaker condition monitoring SSCBR	
		7.1.1	Identification	552
		7.1.2	Function block	552
		7.1.3	Functionality	552
		7.1.4	Operation principle	552
		7.1.5	Application	561
		7.1.6	Signals	563
		7.1.7	Settings	565
		7.1.8	Monitored data	566
		7.1.9	Technical data	567
		7.1.10	Technical revision history	568
8	Me	asurer	ment functions	569
_	8.1		neasurements	
	0.1	8.1.1	Functions	
		8.1.2	Measurement functionality	
		8.1.3	Measurement function applications	
		8.1.4	Three-phase current measurement CMMXU	
		8.1.5	Three-phase voltage measurement VMMXU	
		8.1.6	Residual current measurement RESCMMXU	
		8.1.7	Residual voltage measurement RESVMMXU	
		8.1.8	Frequency measurement FMMXU	
		8.1.9	Sequence current measurement CSMSQI	
		8.1.10	Sequence voltage measurement VSMSQI	
		8.1.11	Three-phase power and energy measurement PEMMXU	
		J.1.11	to priso porter and energy measurement in mominimum	

		8.1.12	Single-phase power and energy measurement SPEMMXU	606
	8.2	Distur	bance recorder RDRE	615
		8.2.1	Identification	615
		8.2.2	Functionality	615
		8.2.3	Configuration	620
		8.2.4	Application	621
		8.2.5	Settings	622
		8.2.6	Monitored data	625
		8.2.7	Technical revision history	625
9	Cor	ntrol f	unctions	627
	9.1	Circuit	-breaker control CBXCBR and Disconnector control DCXSWI	627
		9.1.1	Identification	627
		9.1.2	Function block	627
		9.1.3	Functionality	627
		9.1.4	Operation principle	628
		9.1.5	Application	632
		9.1.6	Signals	633
		9.1.7	Settings	635
		9.1.8	Monitored data	637
		9.1.9	Technical revision history	637
	9.2	Discor	nector position indicator DCSXSWI and earthing switch indication ESSXSWI	638
		9.2.1	Identification	638
		9.2.2	Function block	638
		9.2.3	Functionality	639
		9.2.4	Operation principle	639
		9.2.5	Application	639
		9.2.6	Signals	640
		9.2.7	Settings	641
		9.2.8	Monitored data	642
		9.2.9	Technical revision history	642
	9.3	Synchr	onism and energizing check SECRSYN	642
		9.3.1	Identification	643
		9.3.2	Function block	643
		9.3.3	Functionality	643
		9.3.4	Operation principle	643
		9.3.5	Application	650
		9.3.6	Signals	652
		9.3.7	Settings	653
		9.3.8	Monitored data	654
		9.3.9	Technical data	655
	9.4	Autore	eclosing DARREC	655
		9.4.1	Identification	656
		9.4.2	Function block	656

		9.4.3	Functionality	656
		9.4.4	Operation principle	658
		9.4.5	Counters	671
		9.4.6	Application	672
		9.4.7	Signals	683
		9.4.8	Settings	684
		9.4.9	Monitored data	687
		9.4.10	Technical data	689
		9.4.11	Technical revision history	690
	9.5	Automa	atic transfer switch ATSABTC	690
		9.5.1	Identification	690
		9.5.2	Function block	690
		9.5.3	Functionality	690
		9.5.4	Operation principle	691
		9.5.5	Application	695
		9.5.6	Signals	697
		9.5.7	Settings	698
		9.5.8	Monitored data	698
		9.5.9	Technical data	699
LO	Day		ality managers and functions	700
LU		_	ality measurement functions	
	10.1		t total demand distortion CMHAI	
		10.1.1	Identification	
		10.1.2	Function block	
		10.1.3	Functionality	
		10.1.4	Operation principle	
		10.1.5	Application	
		10.1.6	Signals	
		10.1.7	Settings	
		10.1.8	Monitored data	
	10.2	•	e total harmonic distortion VMHAI	
		10.2.1	Identification	
		10.2.2	Function block	
		10.2.3	Functionality	
		10.2.4	Operation principle	704
		10.2.5	Application	
		10.2.6	Signals	705
		10.2.7	Settings	706
		10.2.8	Monitored data	706
		10.2.9	Technical revision history	707
	10.3	Voltage	e variation PHQVVR	708
		10.3.1	Identification	708
		10.5.1		
		10.3.2	Function block	

		10.3.4	Operation principle	709
		10.3.5	Recorded data	717
		10.3.6	Application	719
		10.3.7	Signals	721
		10.3.8	Settings	721
		10.3.9	Monitored data	723
		10.3.10	Technical data	727
	10.4	Voltage	e unbalance VSQVUB	728
		10.4.1	Identification	728
		10.4.2	Function block	728
		10.4.3	Functionality	728
		10.4.4	Operation principle	729
		10.4.5	Application	733
		10.4.6	Signals	734
		10.4.7	Settings	735
		10.4.8	Monitored data	736
		10.4.9	Technical data	738
11	Gen	eral f	unction block features	739
	11.1		e time characteristics	
	11.1	11.1.1	Definite time operation	
	11.2		t based inverse definite minimum time characteristics	
	11.0	11.2.1	IDMT curves for overcurrent protection	
		11.2.2	Recloser inverse-time characteristics	
		11.2.3	Reset in inverse-time modes	
		11.2.4	Inverse-timer freezing	
	11.3		e based inverse definite minimum time characteristics	
		11.3.1	IDMT curves for overvoltage protection	
		11.3.2	IDMT curves for undervoltage protection	
	11.4		ency measurement and protection	
	11.5	-	rement modes	
	11.6		ated measurements	
	_	•		004
12			nents for measurement transformers	
	12.1		t transformers	
		12.1.1	Current transformer requirements for overcurrent protection	831
13	Pro	tectio	on relay's physical connections	835
-	13.1		e slot numbering	
	13.2		tive earth connections	
	13.3		and analog connections	
		-	unication connections	

		13.4.1	Ethernet RJ-45 front connection	837
		13.4.2	Ethernet rear connections	837
		13.4.3	EIA-232 serial rear connection	837
		13.4.4	EIA-485 serial rear connection	838
		13.4.5	Optical ST serial rear connection	838
		13.4.6	Communication interfaces and protocols	838
		13.4.7	Rear communication modules	839
14	Tec	hnical	data	851
	14.1	Dimens	sions	851
	14.2		supply	
	14.3		zing inputs	
	14.4	•	zing inputs of SIM0001	
	14.5	•	zing inputs of SIM0002/SIM0904	
	14.6	_	inputs	
	14.7	Signal	output with high make and carry	853
	14.8	_	outputs and IRF output	
	14.9	Double	e-pole power outputs with TCS function X100: PO3 and PO4	854
	14.10	Single-	pole power output relays X100: PO1 and PO2	855
	14.11	Ethern	et interfaces	855
	14.12	Serial r	ear interface	856
	14.13	Fibre-o	optic communication link	856
	14.14	IRIG-B		857
	14.15	Degree	e of protection of flush-mounted protection relay	857
	14.16	Enviror	nmental conditions	858
15	Pro	tectio	on relay and functionality tests	859
	15.1	Electro	omagnetic compatibility tests	859
	15.2		ion tests	
	15.3	Mechar	nical tests	861
	15.4	Enviror	nmental tests	862
	15.5	Produc	ct safety	863
	15.6	EMC co	ompliance	863
16	App	olicabl	le standards and regulations	864
17	Glo	ssary.		865

Introduction 1MRS758755 C

1 Introduction

1.1 This manual

The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.

1.2 Intended audience

This manual addresses system engineers and installation and commissioning personnel, who use technical data during engineering, installation and commissioning, and in normal service.

The system engineer must have a thorough knowledge of protection systems, protection equipment, protection functions and the configured functional logic in the protection relays. The installation and commissioning personnel must have a basic knowledge in handling electronic equipment.

1MRS758755 C Introduction

1.3 Product documentation

1.3.1 Product documentation set

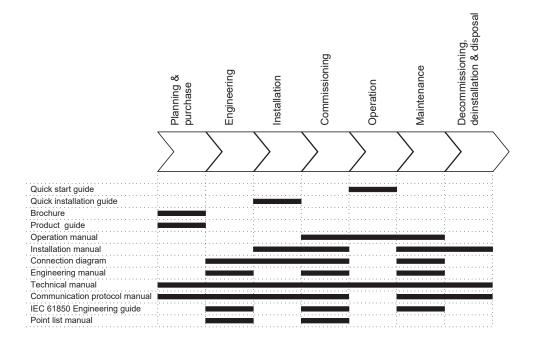


Figure 1: The intended use of documents during the product life cycle

Product series- and product-specific manuals can be downloaded from the ABB Web site http://www.abb.com/relion.

1.3.2 Document revision history

Document revision/date	Product version	History
A/2018-08-31	2.0	First release
B/2019-05-31	2.0.3	Content updated to correspond to the product series version
C/2023-03-07	2.0.3	Content updated

Download the latest documents from the ABB Web site www.abb.com/substationautomation.

1.3.3 Related documentation

Name of the document	Document ID
Modbus Communication Protocol Manual	1MRS758758
DNP3 Communication Protocol Manual	1MRS758757
IEC 60870-5-101/104 Communication Proto- col Manual	1MRS758756
IEC 61850 Engineering Guide	1MRS757809
Engineering Manual	1MRS757810
Installation Manual	1MRS757799
Operation Manual	1MRS758754

1MRS758755 C Introduction

Symbols and conventions 1.4

Symbols 1.4.1

The electrical warning icon indicates the presence of a hazard which could result in electrical shock.

The warning icon indicates the presence of a hazard which could result in personal injury.

The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

The information icon alerts the reader of important facts and conditions.

The tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death. Therefore, comply fully with all warning and caution notices.

1.4.2 **Document conventions**

A particular convention may not be used in this manual.

- · Abbreviations and acronyms are spelled out in the glossary. The glossary also contains definitions of important terms.
- The example figures illustrate the IEC display variant.
- Menu paths are presented in bold.

Select Main menu > Settings.

• LHMI messages are shown in Courier font.

To save the changes in nonvolatile memory, select Yes and press $\begin{tabular}{l} \leftarrow \end{tabular}$

- Parameter names are shown in italics.
 - The function can be enabled and disabled with the *Operation* setting.
- Parameter values are indicated with quotation marks.
 - The corresponding parameter values are "On" and "Off".
- Input/output messages and monitored data names are shown in Courier font. When the function starts, the START output is set to TRUE.

1.4.3 Functions, codes and symbols

All available functions are listed in the table. All of them may not be applicable to all products.

Table 1: Functions included in the relays

Function	IEC 61850	IEC 60617	IEC-ANSI
Protection			
Three-phase non-directional overcurrent protection, low stage, instance 1	PHLPTOC1	3I> (1)	51P-1 (1)
5.50.75	FPHLPTOC1	F3I> (1)	F51P-1 (1)
Three-phase non-directional overcurrent protection, high stage, instance 1	PHHPTOC1	3I>> (1)	51P-2 (1)
Three-phase non-directional overcurrent protection, instantaneous stage, instance 1	PHIPTOC1	3I>>> (1)	50P/51P (1)
Three-phase non-directional overcurrent protection, instantaneous stage, instance 2	PHIPTOC2	3l>>> (2)	50P/51P (2)
Three-phase directional overcurrent protection, low stage, instance 1	DPHLPDOC1	3I> -> (1)	67-1 (1)
Stante 1	FDPHLPDOC1	F3I> -> (1)	F67-1 (1)
Three-phase directional overcurrent protection, low stage, instance 2	DPHLPDOC2	3I> -> (2)	67-1 (2)
Stante 2	FDPHLPDOC2	F3I> -> (2)	F67-1 (2)
Three-phase directional overcurrent protection, low stage, instance 3	DPHLPDOC3	3I> -> (3)	67-1 (3)
Three-phase directional overcurrent protection, low stage, instance 4	DPHLPDOC4	3I> -> (4)	67-1 (4)
Three-phase directional overcurrent protection, high stage, instance 1	DPHHPDOC1	3 >> -> (1)	67-2 (1)
Three-phase directional overcurrent protection, high stage, instance 2	DPHHPDOC2	3 >> -> (2)	67-2 (2)
Three-phase directional overcurrent protection, high stage, instance 3	DPHHPDOC3	3 >> -> (3)	67-2 (3)
Three-phase directional overcurrent protection, high stage, instance 4	DPHHPDOC4	3 >> -> (4)	67-2 (4)
Non-directional earth-fault protection, low stage, instance 1	EFLPTOC1	lo> (1)	51N-1 (1)
	FEFLPTOC1	Flo> (1)	F51N-1 (1)
Non-directional earth-fault protection, high stage, instance 1	EFHPTOC1	lo>> (1)	51N-2 (1)
Non-directional earth-fault protection, instantaneous stage, instance 1	EFIPTOC1	lo>>> (1)	50N/51N (1)
Directional earth-fault protection, low stage, instance 1	DEFLPDEF1	lo> -> (1)	67N-1 (1)
	FDEFLPDEF1	Flo> -> (1)	F67N-1 (1)
Directional earth-fault protection, low stage, instance 2	DEFLPDEF2	lo> -> (2)	67N-1 (2)
	FDEFLPDEF2	Flo> -> (2)	F67N-1 (2)
Directional earth-fault protection, low stage, instance 3	DEFLPDEF3	lo> -> (3)	67N-1 (3)
Directional earth-fault protection, low stage, instance 4	DEFLPDEF4	lo> -> (4)	67N-1 (4)

Function	IEC 61850	IEC 60617	IEC-ANSI
Directional earth-fault protection, high stage, instance 1	DEFHPDEF1	10>> -> (1)	67N-2 (1)
Directional earth-fault protection, high stage, instance 2	DEFHPDEF2	10>> -> (2)	67N-2 (2)
Directional earth-fault protection, high stage, instance 3	DEFHPDEF3	lo>> -> (3)	67N-2 (3)
Directional earth-fault protection, high stage, instance 4	DEFHPDEF4	10>> -> (4)	67N-2 (4)
Transient / intermittent earth-fault protection, instance 1	INTRPTEF1	lo> -> IEF (1)	67NIEF (1)
Admittance-based earth-fault protection, instance 1	EFPADM1	Yo> -> (1)	21YN (1)
Admittance-based earth-fault protection, instance 2	EFPADM2	Yo> -> (2)	21YN (2)
Admittance-based earth-fault protection, instance 3	EFPADM3	Yo> -> (3)	21YN (3)
Wattmetric-based earth-fault protection, instance 1	WPWDE1	Po> -> (1)	32N (1)
Wattmetric-based earth-fault protection, instance 2	WPWDE2	Po> -> (2)	32N (2)
Wattmetric-based earth-fault protection, instance 3	WPWDE3	Po> -> (3)	32N (3)
Harmonics-based earth-fault protection, instance 1	HAEFPTOC1	lo>HA (1)	51NHA (1)
Multifrequency admittance-based earth-fault protection, instance 1	MFADPSDE1	lo> -> Y (1)	67YN (1)
Multifrequency admittance-based earth-fault protection, instance 2	MFADPSDE2	lo> -> Y (2)	67YN (2)
Negative-sequence overcurrent protection, instance 1	NSPTOC1	12> (1)	46 (1)
Negative-sequence overcurrent protection, instance 2	NSPTOC2	12> (2)	46 (2)
Phase discontinuity protection, instance 1	PDNSPTOC1	12/11> (1)	46PD (1)
Residual overvoltage protection, instance 1	ROVPTOV1	Uo> (1)	59G (1)
Residual overvoltage protection, instance 2	ROVPTOV2	Uo> (2)	59G (2)
Three-phase undervoltage protection, instance 1	PHPTUV1	3U< (1)	27 (1)
Three-phase undervoltage protection, instance 2	PHPTUV2	3U< (2)	27 (2)
Three-phase undervoltage protection, instance 3	PHPTUV3	3U< (3)	27 (3)
Three-phase overvoltage protection, instance 1	PHPTOV1	3U> (1)	59 (1)
Three-phase overvoltage protection, instance 2	PHPTOV2	3U> (2)	59 (2)
Three-phase overvoltage protection, instance 3	PHPTOV3	3U> (3)	59 (3)
Positive-sequence undervoltage protection, instance 1	PSPTUV1	U1< (1)	47U+ (1)
Negative-sequence overvoltage protection, instance 1	NSPTOV1	U2> (1)	470- (1)
Loss of phase (undercurrent), instance 1	PHPTUC1	3I< (1)	37 (1)
Loss of phase (undercurrent), instance 2	PHPTUC2	31< (2)	37 (2)
Frequency protection, instance 1	FRPFRQ1	f>/f<,df/dt (1)	81 (1)
Frequency protection, instance 2	FRPFRQ2	f>/f<,df/dt (2)	81 (2)
Three-phase thermal protection for feeders, cables and distribution transformers, instance 1	T1PTTR1	3lth>F (1)	49F (1)
Circuit breaker failure protection, instance 1	CCBRBRF1	3I>/Io>BF (1)	51BF/51NBF (1)
Circuit breaker failure protection, instance 2	CCBRBRF2	3I>/Io>BF (2)	51BF/51NBF (2)

Function	IEC 61850	IEC 60617	IEC-ANSI
Three-phase inrush detector, instance 1	INRPHAR1	3I2f> (1)	68 (1)
Master trip, instance 1	TRPPTRC1	Master Trip (1)	94/86 (1)
Master trip, instance 2	TRPPTRC2	Master Trip (2)	94/86 (2)
Multipurpose protection, instance 1	MAPGAPC1	MAP (1)	MAP (1)
Multipurpose protection, instance 2	MAPGAPC2	MAP (2)	MAP (2)
Multipurpose protection, instance 3	MAPGAPC3	MAP (3)	MAP (3)
Multipurpose protection, instance 4	MAPGAPC4	MAP (4)	MAP (4)
Multipurpose protection, instance 5	MAPGAPC5	MAP (5)	MAP (5)
Multipurpose protection, instance 6	MAPGAPC6	MAP (6)	MAP (6)
Load-shedding and restoration, instance 1	LSHDPFRQ1	UFLS/R (1)	81LSH (1)
Load-shedding and restoration, instance 2	LSHDPFRQ2	UFLS/R (2)	81LSH (2)
Fault locator, instance 1	SCEFRFLO1	FLOC (1)	21FL (1)
Three-phase power directional element, instance 1	DPSRDIR1	11-> (1)	32P (1)
Three-phase power directional element, instance 2	DPSRDIR2	11-> (2)	32P (2)
Power quality			
Current total demand distortion, instance 1	CMHAI1	PQM3I (1)	PQM3I (1)
Voltage total harmonic distortion, instance 1	VMHAI1	PQM3U (1)	PQM3V (1)
Voltage variation, instance 1	PHQVVR1	PQMU (1)	PQMV (1)
Voltage unbalance, instance 1	VSQVUB1	PQUUB (1)	PQVUB (1)
Control			
Circuit-breaker control, instance 1	CBXCBR1	I <-> O CB (1)	I <-> O CB (1)
Circuit-breaker control, instance 2	CBXCBR2	I <-> O CB (2)	I <-> O CB (2)
Disconnector control, instance 1	DCXSWI1	I <-> O DCC (1)	I <-> O DCC (1)
Disconnector control, instance 2	DCXSWI2	I <-> O DCC (2)	I <-> O DCC (2)
Disconnector control, instance 3	DCXSWI3	I <-> O DCC (3)	I <-> O DCC (3)
Disconnector control, instance 4	DCXSWI4	I <-> O DCC (4)	I <-> O DCC (4)
Disconnector control, instance 5	DCXSWI5	I <-> O DCC (5)	I <-> O DCC (5)
Disconnector control, instance 6	DCXSWI6	I <-> O DCC (6)	I <-> O DCC (6)
Disconnector control, instance 7	DCXSWI7	I <-> O DCC (7)	I <-> O DCC (7)
Disconnector control, instance 8	DCXSWI8	I <-> O DCC (8)	I <-> O DCC (8)
Disconnector position indication, instance 1	DCSXSWI1	I <-> O DC (1)	I <-> O DC (1)
Disconnector position indication, instance 2	DCSXSWI2	I <-> O DC (2)	I <-> O DC (2)
Earthing switch indication, instance 1	ESSXSWI1	I <-> O ES (1)	I <-> O ES (1)
Earthing switch indication, instance 2	ESSXSWI2	I <-> O ES (2)	I <-> O ES (2)
Earthing switch indication, instance 3	ESSXSWI3	I <-> O ES (3)	I <-> O ES (3)
Earthing switch indication, instance 4	ESSXSWI4	I <-> O ES (4)	I <-> O ES (4)
Table continues on the next page	1	1	1

Function	IEC 61850	IEC 60617	IEC-ANSI
Earthing switch indication, instance 5	ESSXSWI5	I <-> O ES (5)	I <-> O ES (5)
Earthing switch indication, instance 6	ESSXSWI6	I <-> O ES (6)	I <-> O ES (6)
Earthing switch indication, instance 7	ESSXSWI7	I <-> O ES (7)	I <-> O ES (7)
Earthing switch indication, instance 8	ESSXSWI8	I <-> O ES (8)	I <-> O ES (8)
Autoreclosing, instance 1	DARREC1	O -> I (1)	79 (1)
Autoreclosing, instance 2	DARREC2	O -> I (2)	79 (2)
Synchronism and energizing check, instance 1	SECRSYN1	SYNC (1)	25 (1)
Automatic transfer switch, instance 1	ATSABTC1	ATSABTC1	ATSABTC1
Condition monitoring			
Circuit-breaker condition monitoring, instance 1	SSCBR1	CBCM (1)	CBCM (1)
Circuit-breaker condition monitoring, instance 2	SSCBR2	CBCM (2)	CBCM (2)
Trip circuit supervision, instance 1	TCSSCBR1	TCS (1)	TCM (1)
Trip circuit supervision, instance 2	TCSSCBR2	TCS (2)	TCM (2)
Fuse failure supervision, instance 1	SEQSPVC1	FUSEF (1)	60 (1)
Fuse failure supervision, instance 2	SEQSPVC2	FUSEF (1)	60 (1)
Runtime counter for machines and devices, instance 1	MDSOPT1	OPTS (1)	OPTM (1)
Voltage presence, instance 1	PHSVPR1	PHSVPR(1)	PHSVPR(1)
Voltage presence, instance 2	PHSVPR2	PHSVPR(2)	PHSVPR(2)
Measurement		1	1
Three-phase current measurement, instance 1	CMMXU1	3I (1)	3I (1)
Three-phase current measurement, instance 2	CMMXU2	31 (2)	31 (2)
Sequence current measurement, instance 1	CSMSQI1	11, 12, 10 (1)	11, 12, 10 (1)
Sequence current measurement, instance 2	CSMSQI2	11, 12, 10 (2)	11, 12, 10 (2)
Residual current measurement, instance 1	RESCMMXU1	lo (1)	In (1)
Three-phase voltage measurement, instance 1	VMMXU1	3U (1)	3V (1)
Three-phase voltage measurement, instance 2	VMMXU2	3U (2)	3V (2)
Residual voltage measurement, instance 1	RESVMMXU1	Uo (1)	Vn (1)
Sequence voltage measurement, instance 1	VSMSQI1	U1, U2, U0 (1)	V1, V2, V0 (1)
Sequence voltage measurement, instance 2	VSMSQI2	U1, U2, U0 (2)	V1, V2, V0 (2)
Three-phase power and energy measurement, instance 1	PEMMXU1	P, E (1)	P, E (1)
Three-phase power and energy measurement, instance 2	PEMMXU2	P, E (2)	P, E (2)
Single-phase power and energy measurement, instance 1	SPEMMXU1	SP, SE (1)	SP, SE (1)
Single-phase power and energy measurement, instance 2	SPEMMXU2	SP, SE (2)	SP, SE (2)
Frequency measurement, instance 1	FMMXU1	f (1)	f (1)
Frequency measurement, instance 2	FMMXU2	f (2)	f (2)
Load profile record, instance 1	LDPRLRC1	LOADPROF (1)	LOADPROF (1)
Table continues on the next page			-1

Function	IEC 61850	IEC 60617	IEC-ANSI
Other			
Minimum pulse timer (2 pcs), instance 1	TPGAPC1	TP (1)	TP (1)
Minimum pulse timer (2 pcs), instance 2	TPGAPC2	TP (2)	TP (2)
Minimum pulse timer (2 pcs, second resolution), instance 1	TPSGAPC1	TPS (1)	TPS (1)
Minimum pulse timer (2 pcs, minute resolution), instance 1	TPMGAPC1	TPM (1)	TPM (1)
Pulse timer (8 pcs), instance 1	PTGAPC1	PT (1)	PT (1)
Pulse timer (8 pcs), instance 2	PTGAPC2	PT (2)	PT (2)
Time delay off (8 pcs), instance 1	TOFGAPC1	TOF (1)	TOF (1)
Time delay off (8 pcs), instance 2	TOFGAPC2	TOF (2)	TOF (2)
Time delay on (8 pcs), instance 1	TONGAPC1	TON (1)	TON (1)
Time delay on (8 pcs), instance 2	TONGAPC2	TON (2)	TON (2)
Set-reset (8 pcs), instance 1	SRGAPC1	SR (1)	SR (1)
Set-reset (8 pcs), instance 2	SRGAPC2	SR (2)	SR (2)
Move (8 pcs), instance 1	MVGAPC1	MV (1)	MV (1)
Move (8 pcs), instance 2	MVGAPC2	MV (2)	MV (2)
Move (8 pcs), instance 3	MVGAPC3	MV (3)	MV (3)
Move (8 pcs), instance 4	MVGAPC4	MV (4)	MV (4)
Move (8 pcs), instance 5	MVGAPC5	MV (5)	MV (5)
Move (8 pcs), instance 6	MVGAPC6	MV (6)	MV (6)
Move (8 pcs), instance 7	MVGAPC7	MV (7)	MV (7)
Move (8 pcs), instance 8	MVGAPC8	MV (8)	MV (8)
Generic control point (16 pcs), instance 1	SPCGAPC1	SPC (1)	SPC (1)
Generic control point (16 pcs), instance 2	SPCGAPC2	SPC (2)	SPC (2)
Remote generic control points, instance 1	SPCRGAPC1	SPCR (1)	SPCR (1)
Local generic control points, instance 1	SPCLGAPC1	SPCL (1)	SPCL (1)
Generic up-down counters, instance 1	UDFCNT1	UDCNT (1)	UDCNT (1)
Generic up-down counters, instance 2	UDFCNT2	UDCNT (2)	UDCNT (2)
Generic up-down counters, instance 3	UDFCNT3	UDCNT (3)	UDCNT (3)
Analog value scaling, instance 1	SCA4GAPC1	SCA4 (1)	SCA4 (1)
Analog value scaling, instance 2	SCA4GAPC2	SCA4 (2)	SCA4 (2)
Analog value scaling, instance 3	SCA4GAPC3	SCA4 (3)	SCA4 (3)
Analog value scaling, instance 4	SCA4GAPC4	SCA4 (4)	SCA4 (4)
Analog value scaling, instance 5	SCA4GAPC5	SCA4 (5)	SCA4 (5)
Analog value scaling, instance 6	SCA4GAPC6	SCA4 (6)	SCA4 (6)
Analog value scaling, instance 7	SCA4GAPC7	SCA4 (7)	SCA4 (7)
Analog value scaling, instance 8	SCA4GAPC8	SCA4 (8)	SCA4 (8)
			I

Function	IEC 61850	IEC 60617	IEC-ANSI
Analog value scaling, instance 9	SCA4GAPC9	SCA4 (9)	SCA4 (9)
Analog value scaling, instance 10	SCA4GAPC10	SCA4 (10)	SCA4 (10)
Analog value scaling, instance 11	SCA4GAPC11	SCA4 (11)	SCA4 (11)
Analog value scaling, instance 12	SCA4GAPC12	SCA4 (12)	SCA4 (12)
Integer value move, instance 1	MVI4GAPC1	MVI4 (1)	MVI4 (1)
Integer value move, instance 2	MVI4GAPC2	MVI4 (2)	MVI4 (2)
Daily timer function, instance 1	DTMGAPC1	DTMGAPC1	DTMGAPC1
Daily timer function, instance 2	DTMGAPC2	DTMGAPC2	DTMGAPC2
Programmable buttons (4 buttons)	FKEY4GGIO1	FKEY4GGIO1	FKEY4GGIO1
Logging functions			
Disturbance recorder	RDRE1	DR (1)	DFR (1)
Fault record	FLTRFRC1	FAULTREC (1)	FAULTREC (1)

2 REC615 and RER615 overview

2.1 Overview

REC615 and RER615 relays are designed for remote control and monitoring, protection, fault indication, power quality analysis and automation in medium-voltage secondary distribution systems. The design of the relays has been guided by the IEC 61850 standard for communication and interoperability of substation automation devices.

The relays feature a draw-out-type design with a variety of mounting methods, compact size and ease of use. Depending on the product, optional functionality is available at the time of order for both software and hardware, for example, autoreclosing and additional I/Os.

REC615 and RER615 relays support a range of communication protocols including IEC 61850 with Edition 2 support, process bus according to IEC 61850-9-2 LE, IEC 60870-5-101/104, Modbus[®] and DNP3.

2.1.1 Product series version history

Product series version	Product series history
1.0	REC615 released with configurations A, B and C RER615 released with configurations A and D
1.1	 Fault locator Transient/intermittent earth-fault protection Operation time counter Automatic transfer switch Supervision of voltage presence status
2.0	New configurations REC615: E, F and G RER615: E Multifrequency admittance-based earth-fault protection Loss of phase (undercurrent) Single-phase power and energy measurement Daily timer function Three-phase power directional element
2.0.3	New configuration • REC615: H

2.1.2 PCM600 and IED connectivity package version

- Protection and Control IED Manager PCM600 Ver.2.9 or later
- REC615 Connectivity Package Ver.2.0 or later
- RER615 Connectivity Package Ver.2.0 or later

Download connectivity packages from the ABB Web site or directly with Update Manager in PCM600.

2.2 Local HMI

The LHMI is used for setting, monitoring and controlling the protection relay. The LHMI comprises the display, buttons, LED indicators and communication port.

Figure 2: Example of the LHMI

2.2.1 Display

The LHMI includes a graphical display that supports two character sizes. The character size depends on the selected language. The amount of characters and rows fitting the view depends on the character size.

Table 2: Small display

Character size ¹	Rows in the view	Characters per row
Small, mono-spaced (6 × 12 pixels)	5	20
Large, variable width (13 × 14 pixels)	3	8 or more

Table 3: Large display

Character size ¹	Rows in the view	Characters per row
Small, mono-spaced (6 × 12 pixels)	10	20
Large, variable width (13 × 14 pixels)	7	8 or more

The display view is divided into four basic areas.

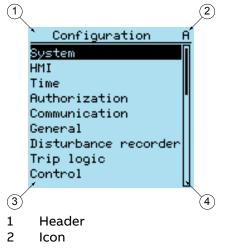
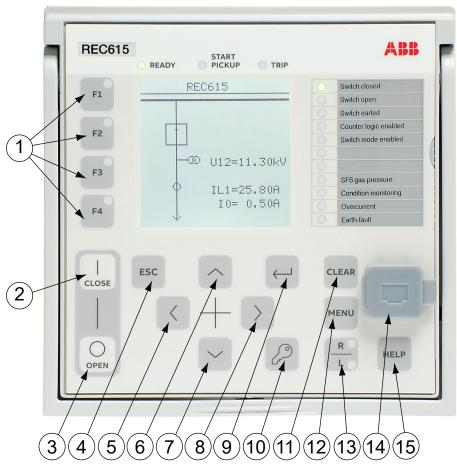


Figure 3: Display layout

- 3 Content
- 4 Scroll bar (displayed when needed)

2.2.2 LEDs


The LHMI includes three protection indicators above the display: Ready, Start and Trip.

There are 11 matrix programmable LEDs on front of the LHMI. The LEDs can be configured with PCM600 and the operation mode can be selected with the LHMI, WHMI or PCM600.

¹ Depending on the selected language

2.2.3 Keypad

The LHMI keypad contains push buttons which are used to navigate in different views or menus. Using the push buttons, open or close commands can be given to objects in the primary circuit, for example, a circuit breaker, a contactor or a disconnector. The push buttons are also used to acknowledge alarms, reset indications, provide help and switch between local and remote control mode.

- 1 Function keys
- 2 Close
- 3 Open
- 4 Escape
- 5 Left
- 6 Up
- 7 Down
- 8 Right
- Figure 4: LHMI keypad

- 9 Enter
- 10 Key
- 11 Clear
- 12 Menu
- 13 Remote/Local
- 14 Communication port
- 15 Help

2.3 Web HMI

The WHMI allows secure access to the protection relay via a Web browser. When the *Secure Communication* parameter in the protection relay is activated, the

Web server is forced to take a secured (HTTPS) connection to WHMI using TLS encryption. The WHMI is verified with Internet Explorer 8.0, 9.0, 10.0 and 11.0.

WHMI is disabled by default.

WHMI offers several functions.

- · Programmable LEDs and event lists
- · System supervision
- · Parameter settings
- Measurement display
- · Disturbance records
- · Fault records
- · Load profile record
- · Phasor diagram
- · Single-line diagram
- · Importing/Exporting parameters
- Report summary

The menu tree structure on the WHMI is almost identical to the one on the LHMI.

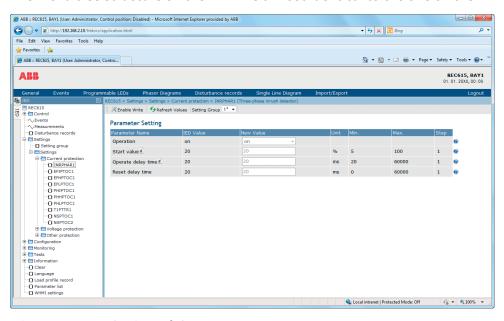


Figure 5: Example view of the WHMI

The WHMI can be accessed locally and remotely.

- Locally by connecting the laptop to the protection relay via the front communication port.
- Remotely over LAN/WAN.

2.4 Authorization

Four user categories have been predefined for the LHMI and the WHMI, each with different rights and default passwords.

The default passwords in the protection relay delivered from the factory can be changed with Administrator user rights.

User authorization is disabled by default for LHMI but WHMI always uses authorization.

Table 4: Predefined user categories

Username	User rights
VIEWER	Read only access
OPERATOR	Selecting remote or local state with (only locally) Changing setting groups Controlling Clearing indications
ENGINEER	 Changing settings Clearing event list Clearing disturbance records Changing system settings such as IP address, serial baud rate or disturbance recorder settings Setting the protection relay to test mode Selecting language
ADMINISTRATOR	All listed aboveChanging passwordFactory default activation

For user authorization for PCM600, see PCM600 documentation.

2.4.1 Audit trail

The protection relay offers a large set of event-logging functions. Critical system and protection relay security-related events are logged to a separate nonvolatile audit trail for the administrator.

Audit trail is a chronological record of system activities that allows the reconstruction and examination of the sequence of system and security-related events and changes in the protection relay. Both audit trail events and process related events can be examined and analyzed in a consistent method with the help of Event List in LHMI and WHMI and Event Viewer in PCM600.

The protection relay stores 2048 audit trail events to the nonvolatile audit trail. Additionally, 1024 process events are stored in a nonvolatile event list. Both the audit trail and event list work according to the FIFO principle. Nonvolatile memory is based on a memory type which does not need battery backup nor regular component change to maintain the memory storage.

Audit trail events related to user authorization (login, logout, violation remote and violation local) are defined according to the selected set of requirements from IEEE 1686. The logging is based on predefined user names or user categories. The user audit trail events are accessible with IEC 61850-8-1, PCM600, LHMI and WHMI.

Table 5: Audit trail events

Audit trail event	Description		
Configuration change	Configuration files changed		
Firmware change	Firmware changed		
Firmware change fail	Firmware change failed		
Attached to retrofit test case	Unit has been attached to retrofit case		
Removed from retrofit test case	Removed from retrofit test case		
Setting group remote	User changed setting group remotely		
Setting group local	User changed setting group locally		
Control remote	DPC object control remote		
Control local	DPC object control local		
Test on	Test mode on		
Test off	Test mode off		
Reset trips	Reset latched trips (TRPPTRC*)		
Setting commit	Settings have been changed		
Time change	Time changed directly by the user. Note that this is not used when the protection relay is synchronised properly by the appropriate protocol (SNTP, IRIG-B, IEEE 1588 v2).		
View audit log	Administrator accessed audit trail		
Login	Successful login from IEC 61850-8-1 (MMS), WHMI, FTP or LHMI.		
Logout	Successful logout from IEC 61850-8-1 (MMS), WHMI, FTP or LHMI.		
Password change	Password changed		
Firmware reset	Reset issued by user or tool		
Audit overflow	Too many audit events in the time period		
Violation remote	Unsuccessful login attempt from IEC 61850-8-1 (MMS), WHMI, FTP or LHMI.		
Violation local	Unsuccessful login attempt from IEC 61850-8-1 (MMS), WHMI, FTP or LHMI.		

PCM600 Event Viewer can be used to view the audit trail events and process related events. Audit trail events are visible through dedicated Security events view. Since only the administrator has the right to read audit trail, authorization must be used in PCM600. The audit trail cannot be reset, but PCM600 Event Viewer can filter data. Audit trail events can be configured to be visible also in LHMI/WHMI Event list together with process related events.

34

To expose the audit trail events through Event list, define the *Authority* logging level parameter via Configuration > Authorization > Security. This exposes audit trail events to all users.

Table 6: Comparison of authority logging levels

Audit trail event	Authority logging level						
	None	Configura- tion change	Setting group	Setting group, control	Settings edit	All	
Configuration change		•	•	•	•	•	
Firmware change		•	•	•	•	•	
Firmware change fail		•	•	•	•	•	
Attached to retrofit test case		•	•	•	•	•	
Removed from retro- fit test case		•	•	•	•	•	
Setting group remote			•	•	•	•	
Setting group local			•	•	•	•	
Control remote				•	•	•	
Control local				•	•	•	
Test on				•	•	•	
Test off				•	•	•	
Reset trips				•	•	•	
Setting commit					•	•	
Time change						•	
View audit log						•	
Login						•	
Logout						•	
Password change						•	
Firmware reset						•	
Violation local						•	
Violation remote						•	

2.5 Communication

Operational information and controls are available through these protocols. However, some communication functionality, for example, horizontal communication between the protection relays, is only enabled by the IEC 61850 communication protocol.

The IEC 61850 communication implementation supports all monitoring and control functions. Additionally, parameter settings, disturbance recordings and fault records can be accessed using the IEC 61850 protocol. Disturbance recordings are available to any Ethernet-based application in the IEC 60255-24 standard COMTRADE file format. The protection relay can send and receive binary signals from other devices (so-called horizontal communication) using the IEC 61850-8-1 GOOSE profile, where the highest performance class with a total transmission time of 3 ms is supported. Furthermore, the protection relay supports sending and receiving of analog values using GOOSE messaging. The protection relay meets

the GOOSE performance requirements for tripping applications in distribution substations, as defined by the IEC 61850 standard.

The protection relay can support five simultaneous clients. If PCM600 reserves one client connection, only four client connections are left, for example, for IEC 61850 and Modbus.

All communication connectors, except for the front port connector, are placed on integrated optional communication modules. The protection relay can be connected to Ethernet-based communication systems via the RJ-45 connector (100Base-TX) or the fiber-optic LC connector (100Base-FX).

2.5.1 Self-healing Ethernet ring

For the correct operation of self-healing loop topology, it is essential that the external switches in the network support the RSTP protocol and that it is enabled in the switches. Otherwise, connecting the loop topology can cause problems to the network. The protection relay itself does not support link-down detection or RSTP. The ring recovery process is based on the aging of the MAC addresses, and the link-up/link-down events can cause temporary breaks in communication. For a better performance of the self-healing loop, it is recommended that the external switch furthest from the protection relay loop is assigned as the root switch (bridge priority = 0) and the bridge priority increases towards the protection relay loop. The end links of the protection relay loop can be attached to the same external switch or to two adjacent external switches. A self-healing Ethernet ring requires a communication module with at least two Ethernet interfaces for all protection relays.

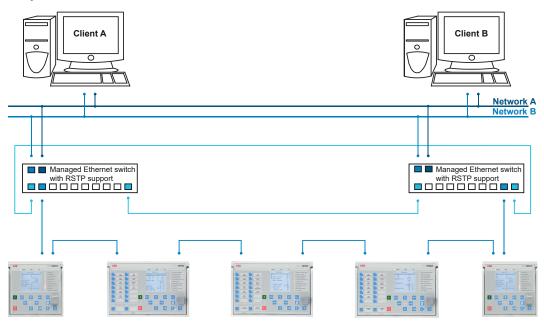


Figure 6: Self-healing Ethernet ring solution

The Ethernet ring solution supports the connection of up to 30 protection relays. If more than 30 protection relays are to be connected, it is recommended that the network is split into several rings with no more than 30 protection relays per ring. Each protection relay has a 50- μ s store-and-forward delay, and to fulfil the performance requirements for

fast horizontal communication, the ring size is limited to 30 protection relays.

2.5.2 Ethernet redundancy

IEC 61850 specifies a network redundancy scheme that improves the system availability for substation communication. It is based on two complementary protocols defined in the IEC 62439-3:2012 standard: parallel redundancy protocol PRP and high-availability seamless redundancy HSR protocol. Both protocols rely on the duplication of all transmitted information via two Ethernet ports for one logical network connection. Therefore, both are able to overcome the failure of a link or switch with a zero-switchover time, thus fulfilling the stringent real-time requirements for the substation automation horizontal communication and time synchronization.

PRP specifies that each device is connected in parallel to two local area networks. HSR applies the PRP principle to rings and to the rings of rings to achieve cost-effective redundancy. Thus, each device incorporates a switch element that forwards frames from port to port.

IEC 62439-3:2012 cancels and replaces the first edition published in 2010. These standard versions are also referred to as IEC 62439-3 Edition 1 and IEC 62439-3 Edition 2. The protection relay supports IEC 62439-3:2012 and it is not compatible with IEC 62439-3:2010.

PRP

Each PRP node, called a double attached node with PRP (DAN), is attached to two independent LANs operated in parallel. These parallel networks in PRP are called LAN A and LAN B. The networks are completely separated to ensure failure independence, and they can have different topologies. Both networks operate in parallel, thus providing zero-time recovery and continuous checking of redundancy to avoid communication failures. Non-PRP nodes, called single attached nodes (SANs), are either attached to one network only (and can therefore communicate only with DANs and SANs attached to the same network), or are attached through a redundancy box, a device that behaves like a DAN.

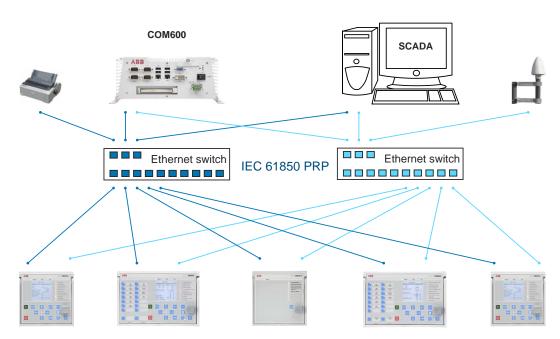


Figure 7: PRP solution

In case a laptop or a PC workstation is connected as a non-PRP node to one of the PRP networks, LAN A or LAN B, it is recommended to use a redundancy box device or an Ethernet switch with similar functionality between the PRP network and SAN to remove additional PRP information from the Ethernet frames. In some cases, default PC workstation adapters are not able to handle the maximum-length Ethernet frames with the PRP trailer.

There are different alternative ways to connect a laptop or a workstation as SAN to a PRP network.

- Via an external redundancy box (RedBox) or a switch capable of connecting to PRP and normal networks
- · By connecting the node directly to LAN A or LAN B as SAN
- By connecting the node to the protection relay's interlink port

HSR

HSR applies the PRP principle of parallel operation to a single ring, treating the two directions as two virtual LANs. For each frame sent, a node, DAN, sends two frames, one over each port. Both frames circulate in opposite directions over the ring and each node forwards the frames it receives, from one port to the other. When the originating node receives a frame sent to itself, it discards that to avoid loops; therefore, no ring protocol is needed. Individually attached nodes, SANs, such as laptops and printers, must be attached through a "redundancy box" that acts as a ring element. For example, a 615 or 620 series protection relay with HSR support can be used as a redundancy box.

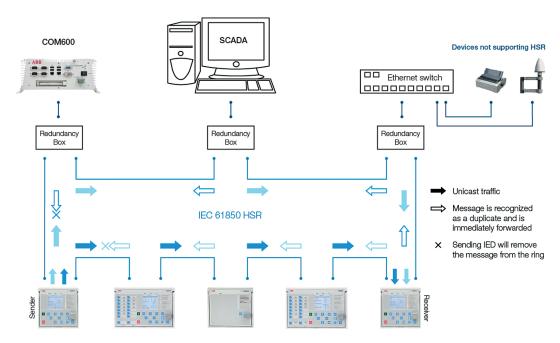


Figure 8: HSR solution

2.5.3 Process bus

Process bus IEC 61850-9-2 defines the transmission of Sampled Measured Values within the substation automation system. International Users Group created a guideline IEC 61850-9-2 LE that defines an application profile of IEC 61850-9-2 to facilitate implementation and enable interoperability. Process bus is used for distributing process data from the primary circuit to all process bus compatible devices in the local network in a real-time manner. The data can then be processed by any protection relay to perform different protection, automation and control functions

UniGear Digital switchgear concept relies on the process bus together with current and voltage sensors. The process bus enables several advantages for the UniGear Digital like simplicity with reduced wiring, flexibility with data availability to all devices, improved diagnostics and longer maintenance cycles.

With process bus the galvanic interpanel wiring for sharing busbar voltage value can be replaced with Ethernet communication. Transmitting measurement samples over process bus brings also higher error detection because the signal transmission is automatically supervised. Additional contribution to the higher availability is the possibility to use redundant Ethernet network for transmitting SMV signals.

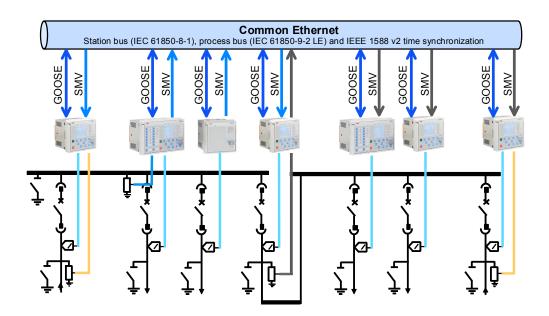


Figure 9: Process bus application of voltage sharing and synchrocheck

REC615 and RER615 support IEC 61850 process bus with sampled values of analog currents and voltages. The measured values are transferred as sampled values using the IEC 61850-9-2 LE protocol which uses the same physical Ethernet network as the IEC 61850-8-1 station bus. The intended application for sampled values is sharing the measured voltages from REC615 or RER615 protection relay to other devices with phase voltage based functions and 9-2 support.

REC615 and RER615 protection relays with process bus based applications use IEEE 1588 v2 Precision Time Protocol (PTP) according to IEEE C37.238-2011 Power Profile for high accuracy time synchronization. With IEEE 1588 v2, the cabling infrastructure requirement is reduced by allowing time synchronization information to be transported over the same Ethernet network as the data communications.

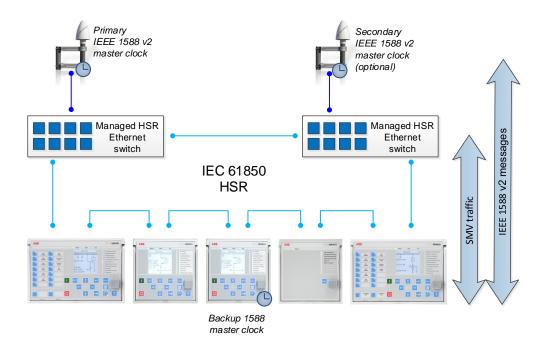


Figure 10: Example network topology with process bus, redundancy and IEEE 1588 v2 time synchronization

The process bus option is available for REC615 and RER615 protection relays equipped with phase voltage inputs. Another requirement is a communication card with IEEE 1588 v2 support (COM0031...COM0037). See the IEC 61850 engineering guide for detailed system requirements and configuration details.

2.5.4 Secure communication

The protection relay supports secure communication for WHMI and file transfer protocol. If the *Secure Communication* parameter is activated, protocols require TLS based encryption method support from the clients. In this case WHMI must be connected from a Web browser using the HTTPS protocol and in case of file transfer the client must use FTPS.

3 Basic functions

3.1 General parameters

3.1.1 Analog input settings, phase currents

Table 7: Analog input settings, phase currents

Parameter	Values (Range)	Unit	Step	Default	Description
Primary current	1.06000.0	А	0.1	100.0	Rated primary cur- rent
Secondary current	2=1A 3=5A			2=1A	Rated secondary current
Amplitude Corr A	0.9000 1.1000		0.0001	1.0000	Phase A amplitude correction factor
Amplitude Corr B	0.9000 1.1000		0.0001	1.0000	Phase B amplitude correction factor
Amplitude Corr C	0.9000 1.1000		0.0001	1.0000	Phase C amplitude correction factor
Nominal current	394000	А	1	1300	Network Nominal Current (In)
Rated secondary Val	1.000150.000	mV/Hz	0.001	3.000	Rated Secondary Value (RSV) ratio
Reverse polarity	0=False 1=True			0=False	Reverse the polarity of the phase CTs
Angle Corr A	-20.000020.0000	deg	0.0001	0.0000	Phase A angle cor- rection factor
Angle Corr B	-20.000020.0000	deg	0.0001	0.0000	Phase B angle cor- rection factor
Angle Corr C	-20.000020.0000	deg	0.0001	0.0000	Phase C angle cor- rection factor

1MRS758755 C Basic functions

3.1.2 Analog input settings, residual current

Table 8: Analog input settings, residual current

Parameter	Values (Range)	Unit	Step	Default	Description
Primary current	1.06000.0	Α	0.1	100.0	Primary current
Secondary current	1=0.2A 2=1A			2=1A	Secondary current
	3=5A				
	3-3A				
Amplitude Corr	0.90001.1000		0.0001	1.0000	Amplitude correction
Reverse polarity	0=False			0=False	Reverse the polari- ty of the residual
	1=True				CT
Angle correction	-20.000020.0000	deg	0.0001	0.0000	Angle correction factor

3.1.3 Analog input settings, phase voltages

Table 9: nalog input settings, phase voltages

Parameter	Values (Range)	Unit	Step	Default	Description
Primary voltage	0.100440.000	kV	0.001	11.547	Primary voltage
Secondary voltage	60210	V	1	100	Secondary voltage
Amplitude Corr	0.90001.1000		0.0001	1.0000	Amplitude correction
Angle correction	-20.000020.000 0	deg	0.0001	0.0000	Angle correction factor

3.1.4 Analog input settings, residual voltage

Table 10: Analog input settings, residual voltage

Parameter	Values (Range)	Unit	Step	Default	Description
Primary voltage	0.100440.000 ¹	kV	0.001	20.000	Primary rated voltage
Secondary voltage	60210	V	1	100	Secondary rated voltage
VT connection	1=Wye 2=Delta 3=U12 4=UL1			2=Delta	Voltage transducer measurement connection

¹ In 9-2 applications, Primary voltage maximum is limited to 126 kV.

Parameter	Values (Range)	Unit	Step	Default	Description
Amplitude Corr A	0.90001.1000		0.0001	1.0000	Phase A Voltage phasor magnitude correction of an external voltage transformer
Amplitude Corr B	0.90001.1000		0.0001	1.0000	Phase B Voltage phasor magnitude correction of an external voltage transformer
Amplitude Corr C	0.90001.1000		0.0001	1.0000	Phase C Voltage phasor magnitude correction of an external voltage transformer
Division ratio	100020000		1	10000	Voltage sensor division ratio
Voltage input type	1=Voltage trafo 3=CVD sensor			1=Voltage trafo	Type of the voltage input
Angle Corr A	-20.000020.0000	deg	0.0001	0.0000	Phase A Voltage phasor angle cor- rection of an external voltage trans- former
Angle Corr B	-20.000020.0000	deg	0.0001	0.0000	Phase B Voltage phasor angle cor- rection of an external voltage trans- former
Angle Corr C	-20.000020.0000	deg	0.0001	0.0000	Phase C Voltage phasor angle cor- rection of an external voltage trans- former

1MRS758755 C Basic functions

3.1.5 Authorization settings

Table 11: Authorization settings

Parameter	Values (Range)	Unit	Step	Default	Description
Remote Update	0=Disable			0=Disable	Remote update
	1=Enable				
Secure Communi-	0=False			1=True	Secure Communi-
cation	1=True				cation
Authority logging	1=None			1=None	Authority logging
	2=Configuration change				level
	3=Setting group				
	4=Setting group, control				
	5=Settings edit				
	6=AII				
Remote override	0=False ¹			1=True	Disable authority
	1=True ²				
Remote viewer				0	Set password
Remote operator				0	Set password
Remote engineer				0	Set password
Remote adminis- trator				0	Set password
Local override	0=False ³			1=True	Disable authority
	1=True ⁴				
Local viewer				0	Set password
Local operator				0	Set password
Local engineer				0	Set password
Local administrator				0	Set password

REC615 & RER615 45

 $^{^{1}}$ Authorization override is disabled, communication tools ask password to enter the protection relay.

² Authorization override is enabled, communication tools do not need password to enter the protection relay, except for WHMI which always requires it.

³ Authorization override is disabled, LHMI password must be entered.

⁴ Authorization override is enabled, LHMI password is not asked.

Basic functions 1MRS758755 C

3.1.6 Binary input settings

Table 12: Binary input settings

Parameter	Values (Range)	Unit	Step	Default	Description
Threshold voltage	16176	Vdc	2	16	Binary input threshold voltage
Input osc. level	250	events/s	1	30	Binary input oscil- lation suppression threshold
Input osc. hyst	250	events/s	1	10	Binary input oscil- lation suppression hysteresis

Adjust the binary input threshold voltage correctly. The threshold voltage should be comparable to the nominal value instead of the default minimum value. The factory default is 16 V to ensure the binary inputs' operation regardless of the auxiliary voltage used (24, 48, 60, 110, 125, 220 or 250 V DC). However, the default value is not optimal for the higher auxiliary voltages. The binary input threshold voltage should be set as high as possible to prevent any inadvertent activation of the binary inputs due to possible external disturbances. At the same time, the threshold should be set so that the correct operation is not jeopardized in case of undervoltage of the auxiliary voltage.

3.1.7 Binary signals in card location Xnnn

Table 13: Binary input signals in card location Xnnn

Name	Туре	Description
Xnnn-Input m ¹	BOOLEAN	

Table 14: Binary output signals in card location Xnnn

Name	Туре	Default	Description
Xnnn-Pmm ¹²	BOOLEAN	0=False	See the application engineering guide for terminal connections

¹ Xnnn = Slot ID, for example, X100, X110, as applicable

² Pmm = For example, PO1, PO2, SO1, SO2, as applicable

1MRS758755 C Basic functions

3.1.8 Binary input settings in card location Xnnn

Table 15: Binary input settings in card location Xnnn

Name ¹	Value	Unit	Step	Default
Input m filter time	51000	ms		5
Input m inversion	0= False 1= True			0=False

3.1.9 Ethernet front port settings

Table 16: Ethernet front port settings

Parameter	Values (Range)	Unit	Step	Default	Description
IP address				192.168.0.254	IP address for front port (fixed)
Mac address				XX-XX-XX-XX-XX	Mac address for front port

3.1.10 Ethernet rear port settings

Table 17: Ethernet rear port settings

Parameter	Values (Range)	Unit	Step	Default	Description
IP address				192.168.2.10	IP address for rear port(s)
Subnet mask				255.255.255.0	Subnet mask for rear port(s)
Default gateway				192.168.2.1	Default gateway for rear port(s)
Mac address				XX-XX-XX-XX-XX	Mac address for rear port(s)

REC615 & RER615 Technical Manual

¹ Xnnn = Slot ID, for example, X100, X110, as applicable

Basic functions

3.1.11 General system settings

Table 18: General system settings

Parameter	Values (Range)	Unit	Step	Default	Description
Rated frequency	1=50Hz 2=60Hz			1=50Hz	Rated frequency of the network
Phase rotation	1=ABC 2=ACB			1=ABC	Phase rotation or- der
Blocking mode	1=Freeze timer 2=Block all 3=Block OPERATE output			1=Freeze timer	Behaviour for func- tion BLOCK inputs
Bay name ¹				REC615 ²	Bay name in system
IDMT Sat point	1050	1/1>	1	50	Overcurrent IDMT saturation point
Frequency adaptivity	0=Disable 1=Enable			0=Disable	Enabling frequency adaptivity
SMV Max Delay	0=1.90 1.58 ms 1=3.15 2.62 ms 2=4.40 3.67 ms 3=5.65 4.71 ms 4=6.90 5.75 ms			1=3.15 2.62 ms	SMV Maximum allowed delay

Used in the protection relay's main menu header and as part of the disturbance recording identification
 Depending on the product variant

3.1.12 HMI settings

Table 19: HMI settings

Parameter	Values (Range)	Unit	Step	Default	Description
FB naming convention	1=IEC61850 2=IEC60617 3=IEC-ANSI			1=IEC61850	FB naming convention used in IED
Default view	1=Measurements 2=Main menu 3=SLD			1=Measurements	LHMI default view
Backlight timeout	160	min	1	3	LHMI backlight timeout
Web HMI mode	1=Active read only 2=Active 3=Disabled			3=Disabled	Web HMI function- ality
Web HMI timeout	160	min	1	3	Web HMI login timeout
SLD symbol format	1=IEC 2=ANSI			1=IEC	Single Line Dia- gram symbol for- mat
Autoscroll delay	030	S	1	0	Autoscroll delay for Measurements view
Setting visibility	1=Basic 2=Advanced			1=Basic	Setting visibility for HMI

3.1.13 IEC 60870-5-101/104 settings

Table 20: IEC 60870-5-101/104 settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			5=off	Selects if this protocol instance is enabled or disabled
Port	1=IEC101 - COM 1 2=IEC101 - COM 2 3=IEC104 - Ethernet			3=IEC104 - Ethernet	Port selection
ClientIP				0.0.0.0	IP address of the client
TCP Port	065535		1	2404	Server TCP port
Start Delay	020	char	1	4	Frame start delay for serial communication
End Delay	020	char	1	4	Frame end delay for serial communication
Device Address	165535		1	1	Device address
ASDU Address	165535		1	1	Common address of ASDU
Link Mode	0=Balanced 1=Unbalanced			0=Balanced	Link mode setting

Parameter	Values (Range)	Unit	Step	Default	Description
COT Length	12		1	1	Cause of transmission length
IOA Length	13		1	2	Information Object Address length
Link Address Length	12		1	1	Link Address Length
ASDU Address Length	12		1	1	ASDU Address Length
Single Char Resp	0=False 1=True			0=False	Single character response enabled/ disabled
Show Bad Time	0=False 1=True			1=True	Enable/disable bad time quality indication in events
Time Format	0=Short 24bit 1=Full 56bit			1=Full 56bit	Time stamp format 3 or 7 octet
Event Time	0=Local 1=UTC			1=UTC	Selects between UTC/Local time
Overflow Mode	0=Oldest +indication 1=Keep newest			0=Oldest +in- dication	Event buffer overflow handling mechanism
OvInd IOA	016777215		1	60000	Overflow indication address for interrogated data
OvInd NoGI IOA	016777215		1	60000	Overflow indication address for non- interrogated data
Event Order	0=Accurate time 1=Preserve chronology			0=Accurate time	Selects the event ordering principle
Selection Timeout	165	S	1	30	Selection timeout for control SBO operations
Counter Reporting	0=Read by master 1=Spontaneous			0=Read by master	Counter reporting after freeze
Freeze mode	0=Not in use t 1=Freeze only 2=Freeze and Reset			0=Not in use	Periodic freezing mode for integrated to- tals
TX window (k)	120		1	12	IEC60870-5-104 transmit window (k)
RX window (w)	120		1	8	IEC60870-5-104 receive window (w)
TX timeout (t1)	160000	ms	1	30000	IEC60870-5-104 transmit timeout (t1)
RX timeout (t2)	160000	ms	1	10000	IEC60870-5-104 receive timeout (t1)
Test interval (t3)	160000	ms	1	20000	IEC60870-5-104 link test interval (t3)
Cyclical Period	1604800		1	10	Cyclical period in seconds
IT_FRZ	0=False 1=True			0=False	Control point for freezing integrated to- tals
Inverted DIR bit	0=False 1=True			0=False	Special mode for masters that require inverted DIR bit on Balanced IEC101 line. If enabled, this protocol instance will be non-compliant with the IEC 60870-5-101 standard.

1MRS758755 C Basic functions

3.1.14 Non group settings

Table 21: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Unit mode	1=Primary ¹ 0=Nominal ² 2=Primary-Nominal ³			0=Nominal	IEC 61850-8-1 unit mode

REC615 & RER615 51

¹ MMS client expects primary values from event reporting and data attribute reads

² MMS client expects nominal values from event reporting and data attribute reads; this is the default for PCM600

³ For PCM600 use only, When Unit mode is set to "Primary", the PCM600 client can force its session to "Nominal" by selecting "Primary- Nominal" and thus parameterizing in native form. The selection is not stored and is therefore effective only for one session. This value has no effect if selected via the LHMI.

3.1.15 Modbus settings

Table 22: Modbus settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			5=off	Enable or disable this protocol in- stance
Port	1=COM 1 2=COM 2 3=Ethernet - TCP 1			3=Ethernet - TCP 1	Port selection for this protocol in- stance. Select be- tween serial and Ethernet based communication.
Mapping selection	12		1	1	Chooses which mapping scheme will be used for this protocol instance.
Address	1254		1	1	Unit address
Link mode	1=RTU 2=ASCII			1=RTU	Selects between ASCII and RTU mode. For TCP, this should always be RTU.
TCP port	165535		1	502	Defines the listening port for the Modbus TCP server. Default = 502.
Parity	0=none 1=odd 2=even			2=even	Parity for the serial connection.
Start delay	020		1	4	Start delay in character times for serial connection
End delay	020		1	4	End delay in charac- ter times for serial connections
CRC order	0=Hi-Lo 1=Lo-Hi			0=Hi-Lo	Selects between normal or swap- ped byte order for checksum for seri- al connection. De- fault: Hi-Lo.
Client IP				0.0.0.0	Sets the IP address of the client. If set to zero, connection from any client is accepted.
Write authority	0=Read only 1=Disable 0x write 2=Full access			2=Full access	Selects the control authority scheme
Time format	0=UTC 1=Local			1=Local	Selects between UTC and local time for events and timestamps.
Event ID selection	0=Address 1=UID			0=Address	Selects whether the events are reported using the MB ad- dress or the UID number.
Event buffering	0=Keep oldest 1=Keep newest			0=Keep oldest	Selects whether the oldest or newest events are kept in the case of event buffer overflow.

Parameter	Values (Range)	Unit	Step	Default	Description
Event backoff	1500		1	200	Defines how many events have to be read after event buffer overflow to allow new events to be buffered. Appli- cable in "Keep old- est" mode only.
ControlStructPWd 1				***	Password for control operations using Control Struct mechanism, which is available on 4x memory area.
ControlStructPWd 2				****	Password for control operations using Control Struct mechanism, which is available on 4x memory area.
ControlStructPWd 3				****	Password for control operations using Control Struct mechanism, which is available on 4x memory area.
ControlStructPWd 4				****	Password for control operations using Control Struct mechanism, which is available on 4x memory area.
ControlStructPWd 5				***	Password for control operations using Control Struct mechanism, which is available on 4x memory area.
ControlStructPWd 6				****	Password for control operations using Control Struct mechanism, which is available on 4x memory area.
ControlStructPWd 7				****	Password for control operations using Control Struct mechanism, which is available on 4x memory area.
ControlStructPWd 8				***	Password for control operations using Control Struct mechanism, which is available on 4x memory area.

3.1.16 DNP3 settings

Table 23: DNP3 settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			5=off	Operation Off / On
Port	1=COM 1 2=COM 2 3=Ethernet - TCP 1 4=Ethernet TCP +UDP 1			3=Ethernet - TCP 1	Communication interface selection
Unit address	165519		1	1	DNP unit address
Master address	165519		1	3	DNP master and UR address
Mapping select	12		1	1	Mapping select
ClientIP				0.0.0.0	IP address of client
TCP port	2000065535		1	20000	TCP Port used on ethernet communication
TCP write authority	0=No clients 1=Reg. clients 2=All clients			2=All clients	0=no client controls allowed; 1=Controls al- lowed by registered cli- ents; 2=Controls allowed by all clients
Link keep-alive	065535	S	1	0	Link keep-alive interval for DNP
Validate master addr	1=Disable 2=Enable			1=Disable	Validate master address on receive
Self address	1=Disable 2=Enable			2=Enable	Support self address query function
Need time interval	065535	min	1	30	Period to set IIN need time bit
Time format	0=UTC 1=Local			1=Local	UTC or local. Coordinate with master.
CROB select timeout	165535	S	1	10	Control Relay Output Block select timeout
Data link confirm	0=Never 1=Only Multiframe 2=Always			0=Never	Data link confirm mode
Data link confirm TO	10065535	ms	1	3000	Data link confirm time- out
Data link retries	065535		1	3	Data link retries count
Data link Rx to Tx de- lay	0255	ms	1	0	Turnaround transmission delay
Data link inter char delay	020	char	1	4	Inter character delay for incoming messages
Data link frame length	50292	bytes	1	292	Data link maximum frame length

Parameter	Values (Range)	Unit	Step	Default	Description
App layer confirm	1=Disable 2=Enable			1=Disable	Application layer confirm mode
App confirm TO	10065535	ms	1	5000	Application layer confirm and UR timeout
App layer fragment	502048	bytes	1	2048	Application layer frag- ment size
UR mode	1=Disable 2=Enable			1=Disable	Unsolicited responses mode
UR retries	065535		1	3	Unsolicited retries before switching to UR offline mode
UR TO	065535	ms	1	5000	Unsolicited response timeout
UR offline interval	065535	min	1	15	Unsolicited offline interval
UR Class 1 Min events	0999		1	2	Min number of class 1 events to generate UR
UR Class 1 TO	065535	ms	1	50	Max holding time for class 1 events to generate UR
UR Class 2 Min events	0999		1	2	Min number of class 2 events to generate UR
UR Class 2 TO	065535	ms	1	50	Max holding time for class 2 events to generate UR
UR Class 3 Min events	0999		1	2	Min number of class 3 events to generate UR
UR Class 3 TO	065535	ms	1	50	Max holding time for class 3 events to generate UR
Legacy master UR	1=Disable 2=Enable			1=Disable	Legacy DNP master un- solicited mode support. When enabled relay does not send initial unsolici- ted message.
Legacy master SBO	1=Disable 2=Enable			1=Disable	Legacy DNP Master SBO sequence number relax enable
Default Var Obj 01	1=1:BI 2=2:BI&status			1=1:BI	1=BI; 2=BI with status.
Default Var Obj 02	1=1:Bl event 2=2:Bl event&time			2=2:Bl event&time	1=BI event; 2=BI event with time.
Default Var Obj 03	1=1:DBI 2=2:DBI&status			1=1:DBI	1=DBI; 2=DBI with status.
Default Var Obj 04	1=1:DBI event 2=2:DBI event&time			2=2:DBI event&time	1=DBI event; 2=DBI event with time.
Default Var Obj 20	1=1:32bit Cnt 2=2:16bit Cnt 5=5:32bit Cnt noflag 6=6:16bit Cnt noflag			2=2:16bit Cnt	1=32 bit counter; 2=16 bit counter; 5=32 bit coun- ter without flag; 6=16 bit counter without flag.

Parameter	Values (Range)	Unit	Step	Default	Description
Default Var Obj 21	1=1:32bit FrzCnt 2=2:16bit FrzCnt 5=5:32bit FrzCnt&time 6=6:16bit FrzCnt&time 9=9:32bit FrzCnt noflag 10=10:16bit FrzCnt noflag			6=6:16bit FrzCnt&time	1=32 bit frz counter; 2=16 bit frz counter; 5=32 bit frz counter with time; 6=16 bit frz counter with time; 9=32 bit frz counter without flag;10=16 bit frz counter without flag.
Default Var Obj 22	1=1:32bit Cnt evt 2=2:16bit Cnt evt 5=5:32bit Cnt evt&time 6=6:16bit Cnt evt&time			6=6:16bit Cnt evt&time	1=32 bit counter event; 2=16 bit counter event; 5=32 bit counter event with time; 6=16 bit coun- ter event with time.
Default Var Obj 23	1=1:32bit FrzCnt evt 2=2:16bit FrzCnt evt 5=5:32bit FrzCnt evt&time 6=6:16bit FrzCnt evt&time			6=6:16bit FrzCnt evt&time	1=32 bit frz counter event; 2=16 bit frz coun- ter event; 5=32 bit frz counter event with time; 6=16 bit frz counter event with time.
Default Var Obj 30	1=1:32bit Al 2=2:16bit Al 3=3:32bit Al noflag 4=4:16bit Al noflag 5=5:Al float 6=6:Al double			5=5:Al float	1=32 bit Al; 2=16 bit Al; 3=32 bit Al without flag; 4=16 bit Al without flag; 5=Al float; 6=Al double.
Default Var Obj 32	1=1:32bit AI evt 2=2:16bit AI evt 3=3:32bit AI evt&time 4=4:16bit AI evt&time 5=5: float AI evt 6=6:double AI evt 7=7:float AI evt&time 8=8:double AI evt&time			7=7:float AI evt&time	1=32 bit AI event; 2=16 bit AI event; 3=32 bit AI event with time; 4=16 bit AI event with time; 5=float AI event; 6=dou- ble AI event; 7=float AI event with time; 8=dou- ble AI event with time.
Default Var Obj 40	1=1:32bit AO 2=2:16bit AO 3=3:AO float 4=4:AO double			2=2:16bit AO	1=32 bit AO; 2=16 bit AO; 3=AO float; 4=AO double.
Default Var Obj 42	1=1:32bit AO evt 2=2:16bit AO evt 3=3:32bit AO evt&time 4=4:16bit AO evt&time 5=5:float AO evt 6=6:double AO evt 7=7:float AO evt&time 8=8:double AO evt&time			4=4:16bit AO evt&time	1=32 bit AO event; 2=16 bit AO event; 3=32 bit AO event with time; 4=16 bit AO event with time; 5=float AO event; 6=dou- ble AO event; 7=float AO event with time; 8=dou- ble AO event with time.

3.1.17 COM1/2 serial communication settings

Table 24: COM1/2 serial communication settings

Parameter	Values (Range)	Unit	Step	Default	Description
Fiber mode	0=No fiber			0=No fiber	Fiber mode
	2=Fiber optic				
Serial mode	1=RS485 2Wire			1=RS485 2Wire	Serial mode
	2=RS485 4Wire				
	3=RS232 no hand- shake				
	4=RS232 with hand- shake				
CTS delay	060000	ms	1	0	CTS delay
RTS delay	060000	ms	1	0	RTS delay
Baudrate	1=300			6=9600	Baudrate
	2=600				
	3=1200				
	4=2400				
	5=4800				
	6=9600				
	7=19200				
	8=38400				
	9=57600				
	10=115200				

3.2 Self-supervision

The protection relay's extensive self-supervision system continuously supervises the software and the electronics. It handles run-time fault situation and informs the user about a fault via the LHMI and through the communication channels.

There are two types of fault indications.

- Internal faults
- · Warnings

3.2.1 Internal faults

When an internal relay fault is detected, relay protection operation is disabled, the green Ready LED begins to flash and the self-supervision output contact is activated.

Internal fault indications have the highest priority on the LHMI. None of the other LHMI indications can override the internal fault indication.

An indication about the fault is shown as a message on the LHMI. The text Internal Fault with an additional text message, a code, date and time, is shown to indicate the fault type.

Different actions are taken depending on the severity of the fault. The protection relay tries to eliminate the fault by restarting. After the fault is found to be permanent, the protection relay stays in the internal fault mode. All other output

Basic functions

contacts are released and locked for the internal fault. The protection relay continues to perform internal tests during the fault situation.

If an internal fault disappears, the green Ready LED stops flashing and the protection relay returns to the normal service state. The fault indication message remains on the display until manually cleared.

The self-supervision signal output operates on the closed-circuit principle. Under normal conditions, the protection relay is energized and the contact gaps 3-5 in slot X100 is closed. If the auxiliary power supply fails or an internal fault is detected, the contact gaps 3-5 are opened.

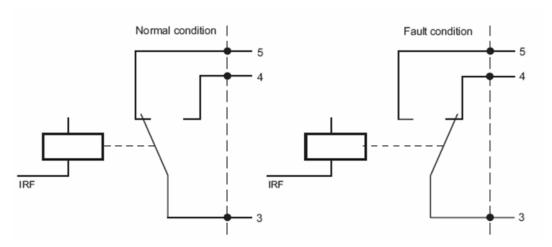


Figure 11: Output contact

The internal fault code indicates the type of internal relay fault. When a fault appears, the code must be recorded so that it can be reported to ABB customer service.

Table 25: Internal fault indications and codes

Fault indication	Fault code	Additional information
Internal Fault	2	An internal system error has occurred.
System error		
Internal Fault	7	A file system error has occurred.
File system error		
Internal Fault	8	Internal fault test activated manually by the
Test		user.
Internal Fault	10	Watchdog reset has occurred too many
SW watchdog error		times within an hour.
Internal Fault	43	Faulty Signal Output relay(s) in card located
SO-relay(s),X100		in slot X100.
Internal Fault	44	Faulty Signal Output relay(s) in card located
SO-relay(s),X110		in slot X110.

Fault indication	Fault code	Additional information
Internal Fault SO-relay(s),X120	45	Faulty Signal Output relay(s) in card located in slot X120.
Internal Fault SO-relay(s),X130	46	Faulty Signal Output relay(s) in card located in slot X130.
Internal Fault PO-relay(s),X100	53	Faulty Power Output relay(s) in card located in slot X100.
Internal Fault PO-relay(s),X110	54	Faulty Power Output relay(s) in card located in slot X110.
Internal Fault PO-relay(s),X120	55	Faulty Power Output relay(s) in card located in slot X120.
Internal Fault PO-relay(s),X130	56	Faulty Power Output relay(s) in card located in slot X130.
Internal Fault Light sensor error	57	Faulty ARC light sensor input(s).
Internal Fault Conf. error,X000	62	Card in slot X000 is wrong type, is missing, does not belong to original configuration or card firmware is faulty.
Internal Fault Conf. error,X100	63	Card in slot X100 is wrong type or does not belong to the original composition.
Internal Fault Conf. error,X110	64	Card in slot X110 is wrong type, is missing or does not belong to the original composition.
Internal Fault Conf. error,X120	65	Card in slot X120 is wrong type, is missing or does not belong to the original composition.
Internal Fault Conf.error,X130	66	Card in slot X130 is wrong type, is missing or does not belong to the original composition.
Internal Fault Card error,X000	72	Card in slot X000 is faulty.
Internal Fault Card error,X100	73	Card in slot X100 is faulty.
Internal Fault Card error,X110	74	Card in slot X110 is faulty.
Internal Fault Card error,X120	75	Card in slot X120 is faulty.

Basic functions 1MRS758755 C

Fault indication	Fault code	Additional information
Internal Fault	76	Card in slot X130 is faulty.
Card error,X130		
Internal Fault	79	LHMI module is faulty. The fault indication
LHMI module		may not be seen on the LHMI during the fault.
Internal Fault	80	Error in the RAM memory on the CPU card.
RAM error		
Internal Fault	81	Error in the ROM memory on the CPU card.
ROM error		
Internal Fault	82	Error in the EEPROM memory on the CPU
EEPROM error		card.
Internal Fault	83	Error in the FPGA on the CPU card.
FPGA error		
Internal Fault	84	Error in the RTC on the CPU card.
RTC error		
Internal Fault	96	RTD card located in slot X130 may have per-
RTD card error,X130		manent fault. Temporary error has occurred too many times within a short time.
Internal Fault	116	Error in the COM card.
COM card error		

For further information on internal fault indications, see the operation manual.

3.2.2 Warnings

In case of a warning, the protection relay continues to operate except for those protection functions possibly affected by the fault, and the green Ready LED remains lit as during normal operation.

Warnings are indicated with the text Warning additionally provided with the name of the warning, a numeric code and the date and time on the LHMI. The warning indication message can be manually cleared.

If a warning appears, record the name and code so that it can be provided to ABB customer service.

Table 26: Warning indications and codes

Warning indication	Warning code	Additional information
Warning	10	A watchdog reset has occurred.

Warning indication	Warning code	Additional information
Watchdog reset		
Warning Power down det.	11	The auxiliary supply voltage has dropped too low.
Warning IEC61850 error	20	Error when building the IEC 61850 data model.
Warning Modbus error	21	Error in the Modbus communication.
Warning DNP3 error	22	Error in the DNP3 communication.
Warning Dataset error	24	Error in the Data set(s).
Warning Report cont. error	25	Error in the Report control block(s).
Warning GOOSE contr. error	26	Error in the GOOSE control block(s).
Warning SCL config error	27	Error in the SCL configuration file or the file is missing.
Warning Logic error	28	Too many connections in the configuration.
Warning SMT logic error	29	Error in the SMT connections.
Warning GOOSE input error	30	Error in the GOOSE connections.
ACT error	31	Error in the ACT connections.
Warning GOOSE Rx. error	32	Error in the GOOSE message receiving.
Warning AFL error	33	Analog channel configuration error.
Warning SMV config error	34	Error in the SMV configuration.
Warning Comm. channel down	35	Redundant Ethernet (HSR/PRP) communication interrupted.
Warning	40	A new composition has not been acknowledged/accepted.

Warning indication	Warning code	Additional information
Unack card comp.		
Warning Protection comm.	50	Error in protection communication.
Warning ARC1 cont. light	85	A continuous light has been detected on the ARC light input 1.
Warning ARC2 cont. light	86	A continuous light has been detected on the ARC light input 2.
Warning ARC3 cont. light	87	A continuous light has been detected on the ARC light input 3.
Warning RTD card error,X130	96	Temporary error occurred in RTD card located in slot X130.
Warning RTD meas. error,X130	106	Measurement error in RTD card located in slot X130.

For further information on warning indications, see the operation manual.

3.3 LED indication control

3.3.1 Function block

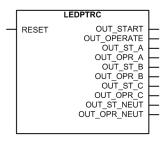


Figure 12: Function block

3.3.2 Functionality

The protection relay includes a global conditioning function LEDPTRC that is used with the protection indication LEDs.

LED indication control should never be used for tripping purposes. There is a separate trip logic function TRPPTRC available in the relay configuration.

1MRS758755 C Basic functions

LED indication control is preconfigured in a such way that all the protection function general start and operate signals are combined with this function (available as output signals <code>OUT_START</code> and <code>OUT_OPERATE</code>). These signals are always internally connected to Start and Trip LEDs. LEDPTRC collects and combines phase information from different protection functions (available as output signals <code>OUT_ST_A /_B /_C</code> and <code>OUT_OPR_A /_B /_C</code>). There is also combined earth fault information collected from all the earth-fault functions available in the relay configuration (available as output signals <code>OUT_ST_NEUT</code> and <code>OUT_OPR_NEUT</code>).

3.4 Programmable LEDs

3.4.1 Function block

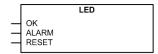


Figure 13: Function block

3.4.2 Functionality

The programmable LEDs reside on the right side of the display on the LHMI.

Basic functions 1MRS758755 C

Figure 14: Programmable LEDs on the right side of the display

All the programmable LEDs in the HMI of the protection relay have two colors, green and red. For each LED, the different colors are individually controllable.

Each LED has two control inputs, ALARM and OK. The color setting is common for all the LEDs. It is controlled with the *Alarm colour* setting, the default value being "Red". The OK input corresponds to the color that is available, with the default value being "Green".

Changing the Alarm colour setting to "Green" changes the color behavior of the OK inputs to red.

The ALARM input has a higher priority than the OK input.

Each LED is seen in the Application Configuration tool as an individual function block. Each LED has user-editable description text for event description. The state ("None", "OK", "Alarm") of each LED can also be read under a common monitored data view for programmable LEDs.

The LED status also provides a means for resetting the individual LED via communication. The LED can also be reset from configuration with the RESET input.

The resetting and clearing function for all LEDs is under the Clear menu.

1MRS758755 C Basic functions

The menu structure for the programmable LEDs is presented in *Figure 15*. The common color selection setting *Alarm colour* for all ALARM inputs is in the **General** menu, while the LED-specific settings are under the LED-specific menu nodes.

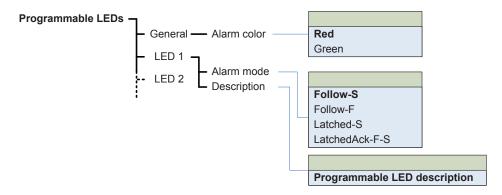


Figure 15: Menu structure

Alarm mode alternatives

The ALARM input behavior can be selected with the alarm mode settings from the alternatives "Follow-S", "Follow-F", "Latched-S" and "LatchedAck-F-S". The OK input behavior is always according to "Follow-S". The alarm input latched modes can be cleared with the reset input in the application logic.

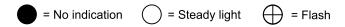


Figure 16: Symbols used in the sequence diagrams

"Follow-S": Follow Signal, ON

In this mode ALARM follows the input signal value, Non-latched.

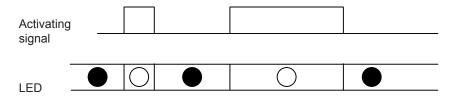


Figure 17: Operating sequence "Follow-S"

"Follow-F": Follow Signal, Flashing

Similar to "Follow-S", but instead the LED is flashing when the input is active, Non-latched.

"Latched-S": Latched, ON

This mode is a latched function. At the activation of the input signal, the alarm shows a steady light. After acknowledgement by the local operator pressing any key on the keypad, the alarm disappears.

Basic functions 1MRS758755 C

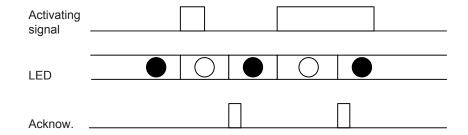


Figure 18: Operating sequence "Latched-S"

"LatchedAck-F-S": Latched, Flashing-ON

This mode is a latched function. At the activation of the input signal, the alarm starts flashing. After acknowledgement, the alarm disappears if the signal is not present and gives a steady light if the signal is present.

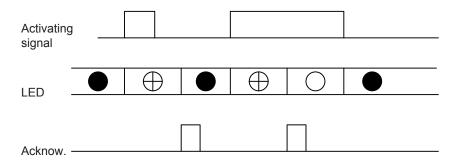


Figure 19: Operating sequence "LatchedAck-F-S"

3.4.3 Signals

3.4.3.1 Input signals

Table 27: Input signals

Name	Туре	Default	Description
ок	BOOLEAN	0=False	Ok input for LED 1
ALARM	BOOLEAN	0=False	Alarm input for LED 1
RESET	BOOLEAN	0=False	Reset input for LED 1
ок	BOOLEAN	0=False	Ok input for LED 2
ALARM	BOOLEAN	0=False	Alarm input for LED 2
RESET	BOOLEAN	0=False	Reset input for LED 2
ок	BOOLEAN	0=False	Ok input for LED 3
ALARM	BOOLEAN	0=False	Alarm input for LED 3
RESET	BOOLEAN	0=False	Reset input for LED 3

Name	Туре	Default	Description
ОК	BOOLEAN	0=False	Ok input for LED 4
ALARM	BOOLEAN	0=False	Alarm input for LED 4
RESET	BOOLEAN	0=False	Reset input for LED 4
ОК	BOOLEAN	0=False	Ok input for LED 5
ALARM	BOOLEAN	0=False	Alarm input for LED 5
RESET	BOOLEAN	0=False	Reset input for LED 5
ОК	BOOLEAN	0=False	Ok input for LED 6
ALARM	BOOLEAN	0=False	Alarm input for LED 6
RESET	BOOLEAN	0=False	Reset input for LED 6
ОК	BOOLEAN	0=False	Ok input for LED 7
ALARM	BOOLEAN	0=False	Alarm input for LED 7
RESET	BOOLEAN	0=False	Reset input for LED 7
ОК	BOOLEAN	0=False	Ok input for LED 8
ALARM	BOOLEAN	0=False	Alarm input for LED 8
RESET	BOOLEAN	0=False	Reset input for LED 8
ОК	BOOLEAN	0=False	Ok input for LED 9
ALARM	BOOLEAN	0=False	Alarm input for LED 9
RESET	BOOLEAN	0=False	Reset input for LED 9
ОК	BOOLEAN	0=False	Ok input for LED 10
ALARM	BOOLEAN	0=False	Alarm input for LED 10
RESET	BOOLEAN	0=False	Reset input for LED 10
ОК	BOOLEAN	0=False	Ok input for LED 11
ALARM	BOOLEAN	0=False	Alarm input for LED 11
RESET	BOOLEAN	0=False	Reset input for LED 11

3.4.4 Settings

3.4.4.1 Non group settings

Table 28: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Alarm colour	1=Green 2=Red			2=Red	Colour for the alarm state of the LED
Alarm mode	0=Follow-S 1=Follow-F 2=Latched-S 3=LatchedAck-F-S			0=Follow-S	Alarm mode for programmable LED 1

Parameter	Values (Range)	Unit	Step	Default	Description
Description				Programmable LEDs LED 1	Programmable LED description
Alarm mode	0=Follow-S			0=Follow-S	Alarm mode for programmable LED
	1=Follow-F				2
	2=Latched-S				
	3=LatchedAck-F-S				
Description				Programmable LEDs LED 2	Programmable LED description
Alarm mode	0=Follow-S			0=Follow-S	Alarm mode for
	1=Follow-F				programmable LED
	2=Latched-S				
	3=LatchedAck-F-S				
Description				Programmable LEDs LED 3	Programmable LED description
Alarm mode	0=Follow-S			0=Follow-S	Alarm mode for
	1=Follow-F				programmable LED 4
	2=Latched-S				
	3=LatchedAck-F-S				
Description				Programmable LEDs LED 4	Programmable LED description
Alarm mode	0=Follow-S			0=Follow-S	Alarm mode for
	1=Follow-F				programmable LED
	2=Latched-S				
	3=LatchedAck-F-S				
Description				Programmable	Programmable LED
·				LEDs LED 5	description
Alarm mode	0=Follow-S			0=Follow-S	Alarm mode for programmable LED
	1=Follow-F				6
	2=Latched-S				
	3=LatchedAck-F-S				
Description				Programmable LEDs LED 6	Programmable LED description
Alarm mode	0=Follow-S			0=Follow-S	Alarm mode for programmable LED
	1=Follow-F				7
	2=Latched-S				
	3=LatchedAck-F-S				
Description				Programmable LEDs LED 7	Programmable LED description
Alarm mode	0=Follow-S			0=Follow-S	Alarm mode for programmable LED
	1=Follow-F				8
	2=Latched-S				
	3=LatchedAck-F-S				
Description				Programmable LEDs LED 8	Programmable LED description
Alarm mode	0=Follow-S			0=Follow-S	Alarm mode for
	1=Follow-F				programmable LED
	2=Latched-S				
	3=LatchedAck-F-S				
Description				Programmable	Programmable LED
•				LEDs LED 9	description

Parameter	Values (Range)	Unit	Step	Default	Description
Alarm mode	0=Follow-S			0=Follow-S	Alarm mode for
	1=Follow-F				programmable LED 10
	2=Latched-S				
	3=LatchedAck-F-S				
Description				Programmable LEDs LED 10	Programmable LED description
Alarm mode	0=Follow-S			0=Follow-S	Alarm mode for
	1=Follow-F				programmable LED 11
	2=Latched-S				
	3=LatchedAck-F-S				
Description				Programmable LEDs LED 11	Programmable LED description

3.4.5 Monitored data

3.4.5.1 Monitored data

Table 29: Monitored data

Name	Туре	Values (Range)	Unit	Description
Programmable LED 1	Enum	0=None 1=Ok 3=Alarm		Status of programma- ble LED 1
Programmable LED 2	Enum	0=None 1=Ok 3=Alarm		Status of programma- ble LED 2
Programmable LED 3	Enum	0=None 1=Ok 3=Alarm		Status of programma- ble LED 3
Programmable LED 4	Enum	0=None 1=Ok 3=Alarm		Status of programma- ble LED 4
Programmable LED 5	Enum	0=None 1=Ok 3=Alarm		Status of programma- ble LED 5
Programmable LED 6	Enum	0=None 1=Ok 3=Alarm		Status of programma- ble LED 6
Programmable LED 7	Enum	0=None 1=Ok 3=Alarm		Status of programma- ble LED 7
Programmable LED 8	Enum	0=None 1=Ok 3=Alarm		Status of programma- ble LED 8

Name	Туре	Values (Range)	Unit	Description
Programmable LED 9	Enum	0=None		Status of programma- ble LED 9
		1=Ok		DIE LLD 9
		3=Alarm		
Programmable LED 10	Enum	0=None		Status of programma- ble LED 10
		1=Ok		DIE LLD 10
		3=Alarm		
Programmable LED 11	Enum	0=None		Status of programma- ble LED 11
		1=Ok		DIE LED II
		3=Alarm		

3.5 Time synchronization

3.5.1 Time master supervision GNRLLTMS

3.5.1.1 Function block

Figure 20: Function block

3.5.1.2 Functionality

The protection relay has an internal real-time clock which can be either free-running or synchronized from an external source. The real-time clock is used for time stamping events, recorded data and disturbance recordings.

The protection relay is provided with a 48 hour capacitor backup that enables the real-time clock to keep time in case of an auxiliary power failure.

The setting *Synch source* determines the method to synchronize the real-time clock. If it is set to "None", the clock is free-running and the settings *Date* and *Time* can be used to set the time manually. Other setting values activate a communication protocol that provides the time synchronization. Only one synchronization method can be active at a time. IEEE 1588 v2 and SNTP provide time master redundancy.

The protection relay supports SNTP, IRIG-B, IEEE 1588 v2, DNP3 and Modbus to update the real-time clock. IEEE 1588 v2 with GPS grandmaster clock provides the best accuracy $\pm 1~\mu s$. The accuracy using IRIG-B and SNTP is $\pm 1~ms$.

The protection relay's 1588 time synchronization complies with the IEEE C37.238-2011 Power Profile, interoperable with IEEE 1588 v2. According to the power profile, the frame format used is IEEE 802.3 Ethernet frames with 88F7 Ethertype as communication service and the delay mechanism is P2P. *PTP announce mode* determines the format of PTP announce frames sent by the protection relay when acting as 1588 master, with options "Basic IEEE1588" and "Power Profile". In the

"Power Profile" mode, the TLVs required by the IEEE C37.238-2011 Power Profile are included in announce frames.

IEEE 1588 v2 time synchronization requires a communication card with redundancy support (COM0031...COM0037).

When Modbus TCP or DNP3 over TCP/IP is used, SNTP or IRIG-B time synchronization should be used for better synchronization accuracy.

With the legacy protocols, the synchronization message must be received within four minutes from the previous synchronization. Otherwise bad synchronization status is raised for the protection relay. With SNTP, it is required that the SNTP server responds to a request within 12 ms, otherwise the response is considered invalid.

The relay can use one of two SNTP servers, the primary or the secondary server. The primary server is mainly in use, whereas the secondary server is used if the primary server cannot be reached. While using the secondary SNTP server, the relay tries to switch back to the primary server on every third SNTP request attempt. If both the SNTP servers are offline, event time stamps have the time invalid status. The time is requested from the SNTP server every 60 seconds. Supported SNTP versions are 3 and 4.

IRIG-B time synchronization requires the IRIG-B format B004/B005 according to the 200-04 IRIG-B standard. Older IRIG-B standards refer to these as B000/B001 with IEEE-1344 extensions. The synchronization time can be either UTC time or local time. As no reboot is necessary, the time synchronization starts immediately after the IRIG-B sync source is selected and the IRIG-B signal source is connected.

IRIG-B time synchronization requires a COM card with an IRIG-B input.

3.5.1.3 Signals

3.5.1.4 Settings

Table 30: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Time format	1=24H:MM:SS:MS			1=24H:MM:SS:M S	Time format
	2=12H:MM:SS:MS				
Date format	1=DD.MM.YYYY			1=DD.MM.YYYY	Date format
	2=DD/MM/YYYY				
	3=DD-MM-YYYY				
	4=MM.DD.YYYY				
	5=MM/DD/YYYY				
	6=YYYY-MM-DD				
	7=YYYY-DD-MM				
	8=YYYY/DD/MM				

Table 31: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Synch source	0=None			1=SNTP	Time synchronization
	1=SNTP				source
	2=Modbus				
	3=IEEE 1588				
	5=IRIG-B				
	9=DNP				
	17=IEC60870-5-10-3				
PTP domain ID	0255		1	0	The domain is identified by an integer, the domainNumber, in the range of 0 to 255.
PTP priority 1	0255		1	128	PTP priority 1, in the range of 0 to 255.
PTP priority 2	0255		1	128	PTP priority 2, in the range of 0 to 255.
PTP announce mode	1=Basic IEEE1588 2=Power Profile			1=Basic IEEE1588	PTP announce frame mode

Table 32: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Date				0	Date
Time				0	Time
Local time offset	-840840	min	1	0	Local time offset in minutes

Table 33: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
IP SNTP primary				10.58.125.165	IP address for SNTP primary server
IP SNTP secondary				192.168.2.165	IP address for SNTP secondary server

Table 34: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
DST in use	0=False 1=True			1=True	DST in use setting
DST on time (hours)	023	h		2	Daylight saving time on, time (hh)
DST on time (minutes)	059	min		0	Daylight saving time on, time (mm)
DST on date (day)	131			1	Daylight saving time on, date (dd:mm)
DST on date (month)	1=January 2=February 3=March			5=May	Daylight saving time on, date (dd:mm)

Parameter	Values (Range)	Unit	Step	Default	Description
	4=April 5=May 6=June 7=July 8=August 9=September 10=October 11=November 12=December				
DST on day (week-day)	0=reserved 1=Monday 2=Tuesday 3=Wednesday 4=Thursday 5=Friday 6=Saturday 7=Sunday			0=reserved	Daylight saving time on, day of week
DST off time (hours)	023	h		2	Daylight saving time off, time (hh)
DST off time (minutes)	059	min		0	Daylight saving time off, time (mm)
DST off date (day)	131			25	Daylight saving time off, date (dd:mm)
DST off date (month)	1=January 2=February 3=March 4=April 5=May 6=June 7=July 8=August 9=September 10=October 11=November 12=December			9=September	Daylight saving time off, date (dd:mm)
DST off day (week-day)	0=reserved 1=Monday 2=Tuesday 3=Wednesday 4=Thursday 5=Friday 6=Saturday 7=Sunday			0=reserved	Daylight saving time off, day of week
DST offset	-720720	min	1	60	Daylight saving time offset

3.6 Parameter setting groups

3.6.1 Function block

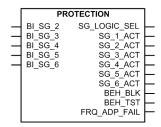


Figure 21: Function block

3.6.2 Functionality

The protection relay supports six setting groups. Each setting group contains parameters categorized as group settings inside application functions. The customer can change the active setting group at run time.

The active setting group can be changed by a parameter or via binary inputs depending on the mode selected with the **Configuration** > **Setting Group** > **SG operation mode** setting.

The default value of all inputs is FALSE, which makes it possible to use only the required number of inputs and leave the rest disconnected. The setting group selection is not dependent on the SG $\, \times \,$ ACT outputs.

Table 35: Optional operation modes for setting group selection

SG operation mode	Description
Operator (Default)	Setting group can be changed with the setting Settings > Setting group > Active group.
	Value of the SG_LOGIC_SEL output is FALSE.
Logic mode 1	Setting group can be changed with binary inputs (BI_SG_2BI_SG_6). The highest TRUE binary input defines the active setting group.
	Value of the SG_LOGIC_SEL output is TRUE.
Logic mode 2	Setting group can be changed with binary inputs where ${\tt BI_SG_4}$ is used for selecting setting groups 1-3 or 4-6.
	When binary input BI_SG_4 is FALSE, setting groups 1-3 are selected with binary inputs BI_SG_2 and BI_SG_3. When binary input BI_SG_4 is TRUE, setting groups 4-6 are selected with binary inputs BI_SG_5 and BI_SG_6.
	Value of the SG_LOGIC_SEL output is TRUE.

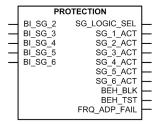
The setting group (SG) is changed whenever switching the *SG operation mode* setting from "Operator" to either "Logic mode 1" or "Logic mode 2." Thus, it is recommended to select the preferred operation mode at the

time of installation and commissioning and not change it throughout the protection relay's service. Changing the *SG operation mode* setting from "Logic mode 1" to "Logic mode 2" or from "Logic mode 2" to "Logic mode 1" does not affect the setting group (SG).

For example, six setting groups can be controlled with three binary inputs. The SG operation mode is set to "Logic mode 2" and inputs BI_SG_2 and BI_SG_5 are connected together the same way as inputs BI_SG_3 and BI_SG_6 .

Table 36: SG operation mode = "Logic mode 1"

Input					
BI_SG_2	BI_SG_3	BI_SG_4	BI_SG_5	BI_SG_6	Active group
FALSE	FALSE	FALSE	FALSE	FALSE	1
TRUE	FALSE	FALSE	FALSE	FALSE	2
any	TRUE	FALSE	FALSE	FALSE	3
any	any	TRUE	FALSE	FALSE	4
any	any	any	TRUE	FALSE	5
any	any	any	any	TRUE	6


Table 37: SG operation mode = "Logic mode 2"

Input					
BI_SG_2	BI_SG_3	BI_SG_4	BI_SG_5	BI_SG_6	Active group
FALSE	FALSE	FALSE	any	any	1
TRUE	FALSE	FALSE	any	any	2
any	TRUE	FALSE	any	any	3
any	any	TRUE	FALSE	FALSE	4
any	any	TRUE	TRUE	FALSE	5
any	any	TRUE	any	TRUE	6

The setting group 1 can be copied to any other or all groups from HMI (Copy group 1).

3.7 Test mode

3.7.1 Function blocks

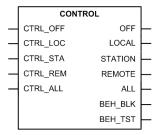


Figure 22: Function blocks

3.7.2 Functionality

The mode of all the logical nodes in the relay's IEC 61850 data model can be set with *Test mode*. *Test mode* is selected through one common parameter via the WHMI path **Tests** > **IED test**. By default, *Test mode* can only be set locally through LHMI. *Test mode* is also available via IEC 61850 communication (LD0.LLN0.Mod).

Table 38: Test mode

Test mode	Description	Protection BEH_BLK
Normal mode	Normal operation	FALSE
IED blocked	Protection working as in "Normal mode" but ACT configuration can be used to block physical outputs to process. Control function commands blocked.	TRUE
IED test	Protection working as in "Normal mode" but protection functions are working in parallel with test parameters.	FALSE
IED test and blocked	Protection working as in "Normal mode" but protection functions are working in parallel with test parameters. ACT configuration can be used to block physical outputs to process. Control function commands blocked.	TRUE

Behavior data objects in all logical nodes follow LD0.LLN0.Mod value. If "Normal mode" is selected, behaviour data objects follow mode (.Mod) data object of the corresponding logical device.

Vertical and horizontal communication is not blocked by the "IED blocked" or "IED test and blocked" modes.

3.7.3 Application configuration and Test mode

The physical outputs from control commands to process are blocked with "IED blocked" and "IED test and blocked" modes. If physical outputs need to be blocked from the protection, the application configuration must be used to block these signals. Blocking scheme needs to use ${\tt BEH_BLK}$ output of PROTECTION function block.

3.7.4 Control mode

The mode of all logical nodes located under CTRL logical device can be set with *Control mode*. The *Control mode* parameter is available via the HMI or PCM600 path **Configuration** > **Control** > **General**. By default, *Control mode* can only be set locally through LHMI. *Control mode* inherits its value from *Test mode* but *Control mode* "On", "Blocked" and "Off" can also be set independently. *Control mode* is also available via IEC 61850 communication (CTRL.LLN0.Mod).

Table 39: Control mode

Control mode	Description	Control BEH_BLK
On	Normal operation	FALSE
Blocked	Control function commands blocked	TRUE
Off	Control functions disabled	FALSE

The behavior data objects under CTRL logical device follow CTRL.LLNO.Mod value. If "On" is selected, behavior data objects follow the mode of the corresponding logical device.

3.7.5 Application configuration and Control mode

The physical outputs from commands to process are blocked with "Blocked" mode. If physical outputs need to be blocked totally, meaning also commands from the binary inputs, the application configuration must be used to block these signals. Blocking scheme uses BEH BLK output of CONTROL function block.

3.7.6 Authorization

By default, *Test mode* and *Control mode* can only be changed from LHMI. It is possible to write test mode by remote client, if it is needed in configuration. This is done via LHMI only by setting the *Remote test mode* parameter via **Tests** > **IED test** > **Test mode**. Remote operation is possible only when control position of the relay is in remote position. Local and remote control can be selected with R/L button or via Control function block in application configuration.

When using the Signal Monitoring tool to force online values, the following conditions need to be met.

- Remote force is set to "All levels"
- Test mode is enabled
- Control position of the relay is in remote position

Table 40: Remote test mode

Remote test mode	61850-8-1-MMS	WHMI/PCM600
Off	No access	No access
Maintenance	Command originator category maintenance	No access
All levels	All originator categories	Yes

3.7.7 LHMI indications

The yellow Start LED flashes when the relay is in "IED blocked" or "IED test and blocked" mode. The green Ready LED flashes to indicate that the "IED test and blocked" mode or "IED test" mode is activated.

3.7.8 Signals

3.7.8.1 PROTECTION input signals

Table 41: PROTECTION input signals

Name	Туре	Default	Description
BI_SG_2	BOOLEAN	0	Setting group 2 is active
BI_SG_3	BOOLEAN	0	Setting group 3 is active
BI_SG_4	BOOLEAN	0	Setting group 4 is active
BI_SG_5	BOOLEAN	0	Setting group 5 is active
BI_SG_6	BOOLEAN	0	Setting group 6 is active

3.7.8.2 CONTROL input signals

Table 42: CONTROL input signals

Name	Туре	Default	Description
CTRL_OFF	BOOLEAN	0	Control OFF
CTRL_LOC	BOOLEAN	0	Control local
CTRL_STA	BOOLEAN	0	Control station
CTRL_REM	BOOLEAN	0	Control remote
CTRL_ALL	BOOLEAN	0	Control all

3.7.8.3 PROTECTION output signals

Table 43: PROTECTION output signals

Name	Туре	Description
SG_LOGIC_SEL	BOOLEAN	Logic selection for setting group
SG_1_ACT	BOOLEAN	Setting group 1 is active
SG_2_ACT	BOOLEAN	Setting group 2 is active
SG_3_ACT	BOOLEAN	Setting group 3 is active

Name	Туре	Description
SG_4_ACT	BOOLEAN	Setting group 4 is active
SG_5_ACT	BOOLEAN	Setting group 5 is active
SG_6_ACT	BOOLEAN	Setting group 6 is active
BEH_BLK	BOOLEAN	Logical device LD0 block status
BEH_TST	BOOLEAN	Logical device LD0 test status
FRQ_ADP_FAIL	BOOLEAN	Frequency adaptivity status fail

3.7.8.4 CONTROL output signals

Table 44: CONTROL output signals

Name	Туре	Description
OFF	BOOLEAN	Control OFF
LOCAL	BOOLEAN	Control local
STATION	BOOLEAN	Control station
REMOTE	BOOLEAN	Control remote
ALL	BOOLEAN	Control all
BEH_BLK	BOOLEAN	Logical device LD0 block status
BEH_TST	BOOLEAN	Logical device LD0 test status

3.8 Fault recorder FLTRFRC

3.8.1 Function block

Figure 23: Function block

3.8.2 Functionality

The protection relay has the capacity to store the records of 128 latest fault events. Fault records include fundamental or RMS current values. The records enable the user to analyze recent power system events. Each fault record (FLTRFRC) is marked with an up-counting fault number and a time stamp that is taken from the beginning of the fault.

> The fault recording period begins from the start event of any protection function and ends if any protection function trips or the start is restored before the operate event. If a start is restored without an operate event, the start duration shows the protection function that has started first.

Start duration that has the value of 100% indicates that a protection function has operated during the fault and if none of the protection functions has been operated. Start duration shows always values less than 100%.

The Fault recorded data Protection and Start duration is from the same protection function. The Fault recorded data operate time shows the time of the actual fault period. This value is the time difference between the activation of the internal start and operate signals. The actual operate time also includes the starting time and the delay of the output relay. The Fault recorded data Breaker clear time is the time difference between internal operate signal and activation of CB CLRD input.

If some functions in relay application are sensitive to start frequently it might be advisable to set the setting parameter *Trig mode* to "From operate". Then only faults that cause an operate event trigger a new fault recordina.

The fault-related current, voltage, frequency, angle values, shot pointer and the active setting group number are taken from the moment of the operate event, or from the beginning of the fault if only a start event occurs during the fault. The maximum current value collects the maximum fault currents during the fault. In case frequency cannot be measured, nominal frequency is used for frequency and zero for Frequency gradient and validity is set accordingly.

Measuring mode for phase current and residual current values can be selected with the *Measurement mode* setting parameter.

3.8.3 Settings

3.8.3.1 **FLTRFRC Non group settings**

Table 45: FLTRFRC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				
Trig mode	0=From all faults			0=From all faults	Triggering mode
	1=From operate				
	2=From only start				

Table 46: FLTRFRC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
A measurement mode	1=RMS			2=DFT	Selects used meas- urement mode
mode	2=DFT				phase currents and
	3=Peak-to-Peak				residual current

80 **REC615 & RER615**

3.8.4 Monitored data

3.8.4.1 FLTRFRC Monitored data

Table 47: FLTRFRC Monitored data

Name	Туре	Values (Range)	Unit	Description
Fault number	INT32	0999999		Fault record number
Time and date	Timestamp			Fault record time stamp
Protection	Enum	0=Unknown		Protection function
		1=PHLPTOC1		
		2=PHLPTOC2		
		6=PHHPTOC1		
		7=PHHPTOC2		
		8=РННРТОСЗ		
		9=РННРТОС4		
		12=PHIPTOC1		
		13=PHIPTOC2		
		17=EFLPTOC1		
		18=EFLPTOC2		
		19=EFLPTOC3		
		21=DEFHPDEF4		
		22=EFHPTOC1		
		23=EFHPTOC2		
		24=EFHPTOC3		
		25=EFHPTOC4		
		30=EFIPTOC1		
		31=EFIPTOC2		
		32=EFIPTOC3		
		33=DPHHPDOC4		
		34=DPHLPDOC4		
		35=NSPTOC1		
		36=NSPTOC2		
		-7=INTRPTEF1		
		-5=STTPMSU1		
		-3=JAMPTOC1		
		41=PDNSPTOC 1		
		44=T1PTTR1		
		46=T2PTTR1		
		47=DEFLPDEF4		
		48=MPTTR1		
		50=DEFLPDEF1		
		51=DEFLPDEF2		
		53=DEFHPDEF1		
		56=EFPADM1		
		57=EFPADM2		
		58=EFPADM3		
		59=FRPFRQ1		

Name	Туре	Values (Range)	Unit	Description
		60=FRPFRQ2		
		61=FRPFRQ3		
		62=FRPFRQ4		
		63=FRPFRQ5		
		64=FRPFRQ6		
		65=LSHDPFRQ1		
		66=LSHDPFRQ2		
		67=LSHDPFRQ3		
		68=LSHDPFRQ4		
		69=LSHDPFRQ5		
		71=DPHLPDOC1		
		72=DPHLPDOC2		
		74=DPHHPDOC1		
		77=MAPGAPC1		
		78=MAPGAPC2		
		79=MAPGAPC3		
		85=MNSPTOC1		
		86=MNSPTOC2		
		88=LOFLPTUC1		
		90=TR2PTDF1		
		91=LNPLDF1		
		92=LREFPNDF1		
		94=MPDIF1		
		96=HREFPDIF1		
		100=ROVPTOV1		
		101=ROVPTOV2		
		102=ROVPTOV3		
		104=PHPTOV1		
		105=PHPTOV2		
		106=PHPTOV3		
		108=PHPTUV1		
		109=PHPTUV2		
		110=PHPTUV3		
		112=NSPTOV1		
		113=NSPTOV2		
		116=PSPTUV1		
		118=ARCSARC1		
		119=ARCSARC2		
		120=ARCSARC3		
		-96=SPHIPTOC1		
		-93=SPHLPTOC2		
		-92=SPHLPTOC1		
		-89=SPHHPTOC2		
		-88=SPHHPTOC1		
		-87=SPHPTUV4		
		-86=SPHPTUV3		
		-85=SPHPTUV2		
		-84=SPHPTUV1		
		-83=SPHPTOV4		
		-82=SPHPTOV3		

Name	Туре	Values (Range)	Unit	Description
		-81=SPHPTOV2		
		-80=SPHPTOV1		
		-25=OEPVPH4		
		-24=OEPVPH3		
		-23=OEPVPH2		
		-22=OEPVPH1		
		-19=PSPTOV2		
		-18=PSPTOV1		
		-15=PREVPTOC1		
		-12=PHPTUC2		
		-11=PHPTUC1		
		-9=PHIZ1		
		5=PHLTPTOC1		
		20=EFLPTOC4		
		26=EFHPTOC5		
		27=EFHPTOC6		
		37=NSPTOC3		
		38=NSPTOC4		
		45=T1PTTR2		
		54=DEFHPDEF2		
		75=DPHHPDOC2		
		89=LOFLPTUC2		
		103=ROVPTOV4		
		117=PSPTUV2		
		-13=PHPTUC3		
		3=PHLPTOC3		
		10=РННРТОС5		
		11=PHHPTOC6		
		28=EFHPTOC7		
		29=EFHPTOC8		
		107=PHPTOV4		
		111=PHPTUV4		
		114=NSPTOV3		
		115=NSPTOV4		
		-30=PHDSTPDIS1		
		-29=TR3PTDF1		
		-28=HICPDIF1		
		-27=HIBPDIF1		
		-26=HIAPDIF1		
		-32=LSHDPFRQ8		
		-31=LSHDPFRQ7		
		70=LSHDPFRQ6		
		80=MAPGAPC4		
		81=MAPGAPC5		
		82=MAPGAPC6		
		83=MAPGAPC7		
		-102=MAPGAPC12		
		-101=MAPGAPC11		
		-100=MAPGAPC10		
		-99=MAPGAPC9		
Table continues on the n			<u> </u>	l .

Name	Туре	Values (Range)	Unit	Description
		-98=RESCPSCH1		
		-57=FDEFLPDEF2		
		-56=FDEFLPDEF1		
		-54=FEFLPTOC1		
		-53=FDPHLPDOC2		
		-52=FDPHLPDOC1		
		-50=FPHLPTOC1		
		-47=MAP12GAPC8		
		-46=MAP12GAPC7		
		-45=MAP12GAPC6		
		-44=MAP12GAPC5		
		-43=MAP12GAPC4		
		-42=MAP12GAPC3		
		-41=MAP12GAPC2		
		-40=MAP12GAPC1		
		-37=HAEFPTOC1		
		-35=WPWDE3		
		-34=WPWDE2		
		-33=WPWDE1		
		52=DEFLPDEF3		
		84=MAPGAPC8		
		93=LREFPNDF2		
		97=HREFPDIF2		
		-117=XDEFLPDEF2		
		-116=XDEFLPDEF1		
		-115=SDPHLPDOC2		
		-114=SDPHLPDOC1		
		-113=XNSPTOC 2		
		-112=XNSPTOC1		
		-111=XEFIPTOC2		
		-110=XEFHPTOC4		
		-109=XEFHPTOC3		
		-108=XEFLPTOC3		
		-107=XEFLPTOC2		
		-66=DQPTUV1		
		-65=VVSPPAM1		
		-64=PHPVOC1		
		-63=H3EFPSEF1		
		-60=HCUBPTOC1		
		-59=CUBPTOC1		
		-72=DOPPDPR1		
		-69=DUPPDPR1		
		-61=COLPTOC1		
		-106=MAPGAPC16		
		-105=MAPGAPC15		
		-104=MAPGAPC14		
		-103=MAPGAPC13		
		-76=MAPGAPC18		
		-75=MAPGAPC17		
		-62=SRCPTOC1		

Name	Туре	Values (Range)	Unit	Description
		-74=DOPPDPR3		
		-73=DOPPDPR2		
		-70=DUPPDPR2		
		-58=UZPDIS1		
		-36=UEXPDIS1		
		14=MFADPSDE 1		
		-10=LVRTPTUV 1		
		-8=LVRTPTUV2		
		-6=LVRTPTUV3		
		-122=DPH3LPDOC1		
		-121=DPH3HPDOC2		
		-120=DPH3HPDOC1		
		-119=PH3LPTOC2		
		-118=PH3LPTOC1		
		-79=PH3HPTOC2		
		-78=PH3HPTOC1		
		-77=PH3IPTOC1		
		-127=PHAPTUV1		
		-124=PHAPTOV 1		
		-123=DPH3LPD OC2		
		-68=PHPVOC2		
		-67=DQPTUV2		
		-39=UEXPDIS2		
		98=MHZPDIF1		
		-4=MREFPTOC1		
		15=MFADPSDE2		
		55=DEFHPDEF3		
		73=DPHLPDOC3		
		76=DPHHPDOC3 -126=PHCPTOV1		
		-125=PHBPTOV1		
		-17=MPUPF2		
		-16=MPUPF1		
		-14=00SRPSB1		
		-2=PHCPTUV1		
		-1=PHBPTUV1		
Start duration	FLOAT32	0.00100.00	%	Maximum start duration
				of all stages during the fault
Operate time	FLOAT32	0.000999999.9 99	s	Operate time
Breaker clear time	FLOAT32	0.0003.000	S	Breaker clear time
Fault distance	FLOAT32	0.003000.00	pu	Distance to fault meas- ured in pu
Fault resistance	FLOAT32	0.001000000.0 0	ohm	Fault resistance
Fault reactance	FLOAT32	0.01000000.0	ohm	Fault reactance
Fault loop Ris	FLOAT32	-1000.001000. 00	ohm	Resistance of fault loop, PHDSTPDIS1

Name	Туре	Values (Range)	Unit	Description
Fault loop React	FLOAT32	-1000.001000. 00	ohm	Reactance of fault loop, PHDSTPDIS1
Active group	INT32	16		Active setting group
Shot pointer	INT32	17		Autoreclosing shot pointer value
Max diff current IL1	FLOAT32	0.00080.000	pu	Maximum phase A dif- ferential current
Max diff current IL2	FLOAT32	0.00080.000	pu	Maximum phase B dif- ferential current
Max diff current IL3	FLOAT32	0.00080.000	pu	Maximum phase C dif- ferential current
Diff current IL1	FLOAT32	0.00080.000	pu	Differential current phase A
Diff current IL2	FLOAT32	0.00080.000	pu	Differential current phase B
Diff current IL3	FLOAT32	0.00080.000	pu	Differential current phase C
Max bias current IL1	FLOAT32	0.00050.000	pu	Maximum phase A bias current
Max bias current IL2	FLOAT32	0.00050.000	pu	Maximum phase B bias current
Max bias current IL3	FLOAT32	0.00050.000	pu	Maximum phase C bias current
Bias current IL1	FLOAT32	0.00050.000	pu	Bias current phase A
Bias current IL2	FLOAT32	0.00050.000	pu	Bias current phase B
Bias current IL3	FLOAT32	0.00050.000	pu	Bias current phase C
Diff current lo	FLOAT32	0.00080.000	pu	Differential current residual
Bias current Io	FLOAT32	0.00050.000	pu	Bias current residual
Max current IL1	FLOAT32	0.00050.000	xIn	Maximum phase A cur- rent
Max current IL2	FLOAT32	0.00050.000	xIn	Maximum phase B current
Max current IL3	FLOAT32	0.00050.000	xIn	Maximum phase C current
Max current lo	FLOAT32	0.00050.000	xIn	Maximum residual cur- rent
Current IL1	FLOAT32	0.00050.000	xIn	Phase A current
Current IL2	FLOAT32	0.00050.000	xIn	Phase B current
Current IL3	FLOAT32	0.00050.000	xIn	Phase C current
Current lo	FLOAT32	0.00050.000	xIn	Residual current
Current Io-Calc	FLOAT32	0.00050.000	xIn	Calculated residual current
Current Ps-Seq	FLOAT32	0.00050.000	xIn	Positive sequence current

Name	Туре	Values (Range)	Unit	Description
Current Ng-Seq	FLOAT32	0.00050.000	xln	Negative sequence cur- rent
Max current IL1B	FLOAT32	0.00050.000	xIn	Maximum phase A cur- rent (b)
Max current IL2B	FLOAT32	0.00050.000	xIn	Maximum phase B cur- rent (b)
Max current IL3B	FLOAT32	0.00050.000	xIn	Maximum phase C cur- rent (b)
Max current IoB	FLOAT32	0.00050.000	xIn	Maximum residual cur- rent (b)
Current IL1B	FLOAT32	0.00050.000	xIn	Phase A current (b)
Current IL2B	FLOAT32	0.00050.000	xIn	Phase B current (b)
Current IL3B	FLOAT32	0.00050.000	xIn	Phase C current (b)
Current IoB	FLOAT32	0.00050.000	xIn	Residual current (b)
Current Io-CalcB	FLOAT32	0.00050.000	xIn	Calculated residual current (b)
Current Ps-SeqB	FLOAT32	0.00050.000	xIn	Positive sequence current (b)
Current Ng-SeqB	FLOAT32	0.00050.000	xIn	Negative sequence cur- rent (b)
Max current IL1C	FLOAT32	0.00050.000	xIn	Maximum phase A cur- rent (c)
Max current IL2C	FLOAT32	0.00050.000	xIn	Maximum phase B current (c)
Max current IL3C	FLOAT32	0.00050.000	xIn	Maximum phase C current (c)
Max current IoC	FLOAT32	0.00050.000	xIn	Maximum residual cur- rent (c)
Current IL1C	FLOAT32	0.00050.000	xIn	Phase A current (c)
Current IL2C	FLOAT32	0.00050.000	xIn	Phase B current (c)
Current IL3C	FLOAT32	0.00050.000	xIn	Phase C current (c)
Current IoC	FLOAT32	0.00050.000	xIn	Residual current (c)
Current Io-CalcC	FLOAT32	0.00050.000	xIn	Calculated residual current (c)
Current Ps-SeqC	FLOAT32	0.00050.000	xIn	Positive sequence current (c)
Current Ng-SeqC	FLOAT32	0.00050.000	xIn	Negative sequence cur- rent (c)
Voltage UL1	FLOAT32	0.0004.000	xUn	Phase A voltage
Voltage UL2	FLOAT32	0.0004.000	xUn	Phase B voltage
Voltage UL3	FLOAT32	0.0004.000	xUn	Phase C voltage
Voltage U12	FLOAT32	0.0004.000	xUn	Phase A to phase B voltage
Voltage U23	FLOAT32	0.0004.000	xUn	Phase B to phase C voltage

Name	Туре	Values (Range)	Unit	Description
Voltage U31	FLOAT32	0.0004.000	xUn	Phase C to phase A voltage
Voltage Uo	FLOAT32	0.0004.000	xUn	Residual voltage
Voltage Zro-Seq	FLOAT32	0.0004.000	xUn	Zero sequence voltage
Voltage Ps-Seq	FLOAT32	0.0004.000	xUn	Positive sequence voltage
Voltage Ng-Seq	FLOAT32	0.0004.000	xUn	Negative sequence voltage
Voltage UL1B	FLOAT32	0.0004.000	xUn	Phase A voltage (b)
Voltage UL2B	FLOAT32	0.0004.000	xUn	Phase B voltage (b)
Voltage UL3B	FLOAT32	0.0004.000	xUn	Phase B voltage (b)
Voltage U12B	FLOAT32	0.0004.000	xUn	Phase A to phase B voltage (b)
Voltage U23B	FLOAT32	0.0004.000	xUn	Phase B to phase C voltage (b)
Voltage U31B	FLOAT32	0.0004.000	xUn	Phase C to phase A voltage (b)
Voltage UoB	FLOAT32	0.0004.000	xUn	Residual voltage (b)
Voltage Zro-SeqB	FLOAT32	0.0004.000	xUn	Zero sequence voltage (b)
Voltage Ps-SeqB	FLOAT32	0.0004.000	xUn	Positive sequence voltage (b)
Voltage Ng-SeqB	FLOAT32	0.0004.000	xUn	Negative sequence voltage (b)
PTTR thermal level	FLOAT32	0.0099.99		PTTR calculated tem- perature of the protec- ted object relative to the operate level
PDNSPTOC1 rat. I2/I1	FLOAT32	0.00999.99	%	PDNSPTOC1 ratio I2/I1
Frequency	FLOAT32	30.0080.00	Hz	Frequency
Frequency gradient	FLOAT32	-10.0010.00	Hz/s	Frequency gradient
Conductance Yo	FLOAT32	-1000.001000.00	mS	Conductance Yo
Susceptance Yo	FLOAT32	-1000.001000.00	mS	Susceptance Yo
Angle Uo - Io	FLOAT32	-180.00180.00	deg	Angle residual voltage - residual current
Angle U23 - IL1	FLOAT32	-180.00180.00	deg	Angle phase B to phase C voltage - phase A cur- rent
Angle U31 - IL2	FLOAT32	-180.00180.00	deg	Angle phase C to phase A voltage - phase B cur- rent
Angle U12 - IL3	FLOAT32	-180.00180.00	deg	Angle phase A to phase B voltage - phase C cur- rent
Angle UoB - IoB	FLOAT32	-180.00180.00	deg	Angle residual voltage - residual current (b)

Name	Туре	Values (Range)	Unit	Description
Angle U23B - IL1B	FLOAT32	-180.00180.00	deg	Angle phase B to phase C voltage - phase A cur- rent (b)
Angle U31B - IL2B	FLOAT32	-180.00180.00	deg	Angle phase C to phase A voltage - phase B cur- rent (b)
Angle U12B - IL3B	FLOAT32	-180.00180.00	deg	Angle phase A to phase B voltage - phase C cur- rent (b)

3.9 Nonvolatile memory

The relay does not include any battery backup power. If the auxiliary power is lost, critical information such as relay configuration and settings, events, disturbance recordings and other critical data are saved to the relay's nonvolatile memory. The relay's real-time clock keeps running via a 48-hour capacitor backup.

- Up to 1024 events are stored. The stored events are visible in LHMI, WHMI and Event viewer tool in PCM600.
- · Recorded data
 - Fault records (up to 128)
 - Maximum demands
- · Circuit breaker condition monitoring
- · Latched alarm and trip LEDs' statuses
- Trip circuit lockout
- Counter values

3.10 Sensor inputs for currents and voltages

This chapter gives short examples on how to define the correct parameters for sensors.

Sensors have corrections factors, measured and verified by the sensor manufacturer, to increase the measurement accuracy of primary values. Correction factors are recommended to be set. Two types of correction factors are available for voltage and rogowski sensors. The Amplitude correction factor is named *Amplitude corr.* A(B/C) and Angle correction factor is named *Angle corr* A(B/C). These correction factors can be found on the Sensor's rating plate. If the correction factors are not available, contact the sensor manufacturer for more information.

Rogowski sensor setting example

In this example, an 80 A/0.150 V at 50 Hz sensor is used and the application has a 150 A nominal current (In). As the Rogowski sensor is linear and does not saturate, the 80 A/0.150 V at 50 Hz sensor also works as a 150 A/0.28125 V at 50 Hz sensor. When defining another primary value for the sensor, also the nominal voltage has to be redefined to maintain the same transformation ratio. However, the setting in the protection relay (Rated

Secondary Value) is not in V but in mV/Hz, which makes the same setting value valid for both 50 and 60 Hz nominal frequency.

$$RSV = \frac{\frac{I_n}{I_{pr}} \times K_r}{f_n}$$

(Equation 1)

RSV Rated Secondary Value in mV/Hz

I n Application nominal current

I pr Sensor-rated primary current

f n Network nominal frequency

K r Sensor-rated voltage at the rated current in mV

In this example, the value is as calculated using the equation.

$$\frac{\frac{150A}{80A} \times 150mV}{50Hz} = 5.625 \frac{mV}{Hz}$$

(Equation 2)

With this information, the protection relay's Rogowski sensor settings can be set.

Table 48: Example setting values for rogowski sensor

Setting	Value
Primary current	150 A
Rated secondary value	5.625 mV/Hz
Nominal current	150 A

Unless otherwise specified, the *Nominal Current* setting should always be the same as the *Primary Current* setting.

If the ratio of the application nominal current I_n and sensor-rated primary current I_{pr} becomes higher, and the rated secondary value needs to be set higher than 46.875 mV/Hz, the highest value that the relay is able to measure before the current sensor input is saturated is smaller than the maximum setting value of the current protection.

Table 49: Maximum current protection setting values

Application nominal current (I _n)	Rated secondary value with 80A / 0.150 V at 50 Hz	Current protection maximum setting value not to be exceeded
1250	A 1.00046.875 mV/Hz	40 × I _n (Also the maximum of the start value setting range)
12502500	A 46.87593.750 mV/Hz	20 × I _n
25004000	A 93.750150.000 mV/Hz	12.5 × I _n

Voltage sensor setting example

The voltage sensor is based on the resistive divider or capacitive divider principle. Therefore, the voltage is linear throughout the whole measuring range. The output signal is a voltage, directly proportional to the primary voltage. For the voltage sensor all parameters are readable directly from its rating plate and conversions are not needed.

In this example the system phase-to-phase voltage rating is 10 kV. Thus, the *Primary voltage* parameter is set to 10 kV. For protection relays with sensor measurement support the *Voltage input type* is always set to "CVD sensor" and it cannot be changed. The same applies for the *VT connection parameter* which is always set to "WYE" type. The division ratio for ABB voltage sensors is most often 10000:1. Thus, the *Division ratio parameter* is usually set to "10000". The primary voltage is proportionally divided by this division ratio.

Table 50: Example setting values for voltage sensor

Setting	Value
Primary voltage	10 kV
VT connection	Wye
Voltage input type	3=CVD sensor
Division ratio	10000

3.11 Binary input

3.11.1 Binary input filter time

The filter time eliminates debounces and short disturbances on a binary input. The filter time is set for each binary input of the protection relay.

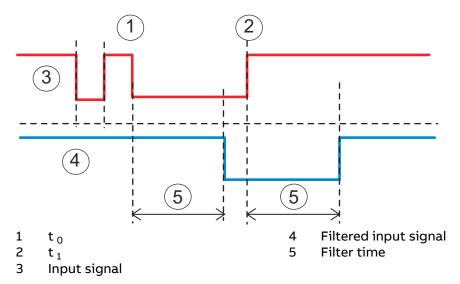


Figure 24: Binary input filtering

At the beginning, the input signal is at the high state, the short low state is filtered and no input state change is detected. The low state starting from the time t $_0$ exceeds the filter time, which means that the change in the input state is detected and the time tag attached to the input change is t $_0$. The high state starting from t $_1$ is detected and the time tag t $_1$ is attached.

Each binary input has a filter time parameter "Input # filter", where # is the number of the binary input of the module in question (for example "Input 1 filter").

Table 51: Input filter parameter values

Parameter	Values	Default	
Input # filter time	51000 ms	5 ms	

3.11.2 Binary input inversion

The parameter *Input # invert* is used to invert a binary input.

Table 52: Binary input states

Control voltage	Input # invert	State of binary input
No	0	FALSE (0)
Yes	0	TRUE (1)
No	1	TRUE (1)
Yes	1	FALSE (0)

When a binary input is inverted, the state of the input is TRUE (1) when no control voltage is applied to its terminals. Accordingly, the input state is FALSE (0) when a control voltage is applied to the terminals of the binary input.

3.11.3 Oscillation suppression

Oscillation suppression is used to reduce the load from the system when a binary input starts oscillating. A binary input is regarded as oscillating if the number of valid state changes (= number of events after filtering) during one second is equal to or greater than the set oscillation level value. During oscillation, the binary input is blocked (the status is invalid) and an event is generated. The state of the input will not change when it is blocked, that is, its state depends on the condition before blocking.

The binary input is regarded as non-oscillating if the number of valid state changes during one second is less than the set oscillation level value minus the set oscillation hysteresis value. Note that the oscillation hysteresis must be set lower than the oscillation level to enable the input to be restored from oscillation. When the input returns to a non-oscillating state, the binary input is deblocked (the status is valid) and an event is generated.

Table 53: Oscillation parameters

Parameter	Value Default	
Input osc. level	250 events/s	30 events/s
Input osc. hyst	250 events/s	10 events/s

3.12 Binary outputs

The protection relay provides a number of binary outputs used for tripping, executing local or remote control actions of a breaker or a disconnector, and for connecting the protection relay to external annunciation equipment for indicating, signalling and recording.

Power output contacts are used when the current rating requirements of the contacts are high, for example, for controlling a breaker, such as energizing the breaker trip and closing coils.

The contacts used for external signalling, recording and indicating, the signal outputs, need to adjust to smaller currents, but they can require a minimum current (burden) to ensure a guaranteed operation.

The protection relay provides both power output and signal output contacts. To guarantee proper operation, the type of the contacts used are chosen based on the operating and reset time, continuous current rating, make and carry for short time, breaking rate and minimum connected burden. A combination of series or parallel contacts can also be used for special applications. When appropriate, a signal output can also be used to energize an external trip relay, which in turn can be confiugred to energize the breaker trip or close coils.

Using an external trip relay can require an external trip circuit supervision relay. It can also require wiring a separate trip relay contact back to the protection relay for breaker failure protection function.

All contacts are freely programmable, except the internal fault output IRF.

3.12.1 Power output contacts

Power output contacts are normally used for energizing the breaker closing coil and trip coil, external high burden lockout or trip relays.

3.12.1.1 Dual single-pole power outputs PO1 and PO2

Dual (series-connected) single-pole (normally open/form A) power output contacts PO1 and PO2 are rated for continuous current of 8 A. The contacts are normally used for closing circuit breakers and energizing high burden trip relays. They can be arranged to trip the circuit breakers when the trip circuit supervision is not available or when external trip circuit supervision relay is provided.

The power outputs are included in slot X100 of the power supply module.

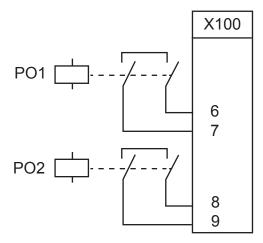


Figure 25: Dual single-pole power output contacts PO1 and PO2

3.12.1.2 Double-pole power outputs PO3 and PO4 with trip circuit supervision

The power outputs PO3 and PO4 are double-pole normally open/form A power outputs with trip circuit supervision.

When the two poles of the contacts are connected in series, they have the same technical specification as PO1 for breaking duty. The trip circuit supervision hardware and associated functionality which can supervise the breaker coil both during closing and opening condition are also provided. Contacts PO3 and PO4 are almost always used for energizing the breaker trip coils.

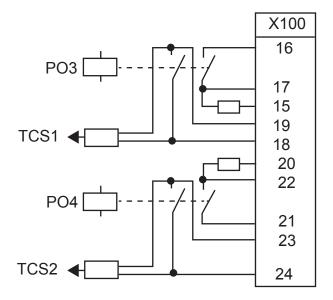


Figure 26: Double-pole power outputs PO3 and PO4 with trip circuit supervision

Power outputs PO3 and PO4 are included in the power supply module located in slot X100 of the protection relay.

3.12.1.3 Dual single-pole high-speed power outputs HSO1, HSO2 and HSO3

HSO1, HSO2 and HSO3 are dual parallel connected, single-pole, normally open/form A high-speed power outputs. The high-speed power output is a hybrid discrete and electromechanical output that is rated as a power output.

The outputs are normally used in applications that require fast relay output contact activation time to achieve fast opening of a breaker, such as, arc-protection or breaker failure protection, where fast operation is required either to minimize fault effects to the equipment or to avoid a fault to expand to a larger area. With the high-speed outputs, the total time from the application to the relay output contact activation is 5...6 ms shorter than when using output contacts with conventional mechanical output relays. The high-speed power outputs have a continuous rating of 6 A.

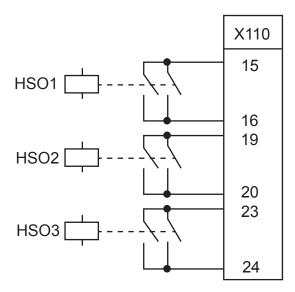


Figure 27: High-speed power outputs HSO1, HSO2 and HSO3

The reset time of the high-speed output contacts is longer than that of the conventional output contacts.

High-speed power contacts are part of the card BIO0007 with eight binary inputs and three HSOs. They are optional alternatives to conventional BIO cards of the protection relay.

3.12.2 Signal output contacts

Signal output contacts are single-pole, single (normally open/form A or change-over/form C) signal output contacts (SO1, SO2,...) or parallel connected dual contacts.

The signal output contacts are used for energizing, for example, external low burden trip relays, auxiliary relays, annunciators and LEDs.

A single signal contact is rated for a continuous current of 5 A. It has a make and carry for 0.5 seconds at 15 A.

When two contacts are connected in parallel, the relay is of a different design. It has the make and carry rating of 30 A for 0.5 seconds. This can be applied for energizing breaker close coil and tripping coil. Due to the limited breaking capacity, a breaker auxiliary contact can be required to break the circuit.

3.12.2.1 Internal fault signal output IRF

The internal fault signal output (change-over/form C) IRF is a single contact included in the power supply module of the protection relay.

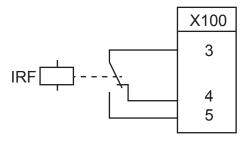


Figure 28: Internal fault signal output IRF

3.12.2.2 Signal outputs SO1 and SO2 in power supply module

Signal outputs (normally open/form A or change-over/form C) SO1 (dual parallel form C) and SO2 (single contact/form A) are part of the power supply module of the protection relay.

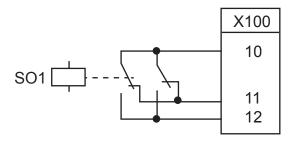


Figure 29: Signal outputs SO1 and SO2 in power supply module

3.12.2.3 Signal outputs SO1, SO2, SO3 and SO4 in BIO0005

The optional card BIO0005 provides the signal outputs SO1, SO2 SO3 and SO4. Signal outputs SO1 and SO2 are dual, parallel form C contacts; SO3 is a single form C contact, and SO4 is a single form A contact.

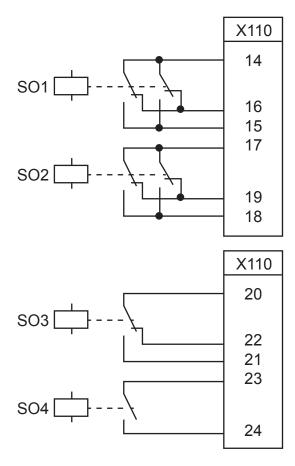


Figure 30: Signal output in BIO0005

3.12.2.4 Signal outputs SO1, SO2 and SO3 in BIO0006

The optional card BIO0006 provides the signal outputs SO1, SO2 and SO3. Signal outputs SO1 and SO2 are dual, parallel form C contacts; SO3 is a single form C contact.

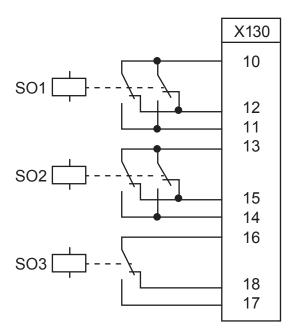


Figure 31: Signal output in BIO0006

3.13 RTD/mA inputs

3.13.1 Functionality

The RTD and mA analog input module is used for monitoring and metering current (mA), temperature (°C) and resistance (Ω). Each input can be linearly scaled for various applications, for example, transformer's tap changer position indication. Each input has independent limit value supervision and deadband supervision functions, including warning and alarm signals.

3.13.2 Operation principle

All the inputs of the module are independent RTD and mA channels with individual protection, reference and optical isolation for each input, making them galvanically isolated from each other and from the rest of the module. However, the RTD inputs share a common ground.

3.13.2.1 Selection of input signal type

The function module inputs accept current or resistance type signals. The inputs are configured for a particular type of input type by the channel-specific *Input mode* setting. The default value for all inputs is "Not in use", which means that the channel is not sampled at all, and the output value quality is set accordingly.

Table 54: Limits for the RTD/mA inputs

Input mode	Description
Not in use	Default selection. Used when the corresponding input is not used.
020 mA	Selection for analog DC milliampere current inputs in the input range of 020 mA.
Resistance	Selection for RTD inputs in the input range of 02000 Ω .
Pt100	Selection for RTD inputs, when temperature sensor is used. All the selectable sensor types have their resistance vs. temperature characteristics
Pt250	stored in the module; default measuring range is -40200°C.
Ni100	
Ni120	
Ni250	
Cu10	

3.13.2.2 Selection of output value format

Each input has independent Value unit settings that are used to select the unit for the channel output. The default value for the Value unit setting is "Dimensionless". Input minimum and Input maximum, and Value maximum and Value minimum settings have to be adjusted according to the input channel. The default values for these settings are set to their maximum and minimum setting values.

When the channel is used for temperature sensor type, set the Value unit setting to "Degrees celsius". When Value unit is set to "Degrees celsius", the linear scaling is not possible, but the default range (-40...200 °C) can be set smaller with the Value maximum and Value minimum settings.

When the channel is used for DC milliampere signal and the application requires a linear scaling of the input range, the Value unit setting value has to be "Dimensionless", where the input range can be linearly scaled with settings Input minimum and Input maximum to Value minimum and Value maximum. When milliampere is used as an output unit, Value unit has to be "Ampere". When Value unit is set to "Ampere", the linear scaling is not possible, but the default range (0... 20 mA) can be set smaller with the Value maximum and Value minimum settings.

When the channel is used for resistance type signals and the application requires a linear scaling of the input range, the Value unit setting value has to be "Dimensionless", where the input range can be linearly scaled with the setting Input minimum and Input maximum to Value minimum and Value maximum. When resistance is used as an output unit, Value unit has to be "Ohm". When Value unit is set to "Ohm", the linear scaling is not possible, but the default range $(0...2000 \Omega)$ can be set smaller with the Value maximum and Value minimum settings.

3.13.2.3 Input linear scaling

Each RTD/mA input can be scaled linearly by the construction of a linear output function in respect to the input. The curve consists of two points, where the y-axis (Input minimum and Input maximum) defines the input range and the x-axis (Value minimum and Value maximum) is the range of the scaled value of the input.

The input scaling can be bypassed by selecting *Value unit* = "Ohm" when *Input mode* = "Resistance" is used and by selecting *Value unit* = "Ampere" when *Input mode* = "0...20 mA" is used.

Example for linear scaling

Milliampere input is used as tap changer position information. The sensor information is from 4 mA to 20 mA that is equivalent to the tap changer position from -36 to 36, respectively.

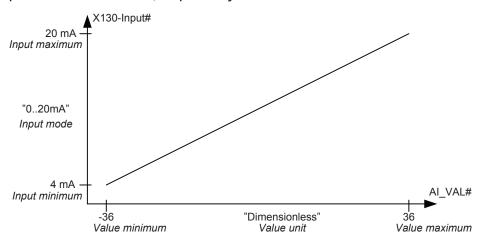


Figure 32: Milliampere input scaled to tap changer position information

3.13.2.4 Measurement chain supervision

Each input contains a functionality to monitor the input measurement chain. The circuitry monitors the RTD channels continuously and reports a circuitry break of any enabled input channel. If the measured input value is outside the limits, minimum/maximum value is shown in the corresponding output. The quality of the corresponding output is set accordingly to indicate misbehavior in the RTD/mA input.

Table 55: Function i	dentification,	limits for t	he RTD/	mA inputs
----------------------	----------------	--------------	---------	-----------

Input	Limit value
RTD temperature, high	> 200 °C
RTD temperature, low	< -40 °C
mA current, high	> 23 mA
Resistance, high	> 2000 Ω

3.13.2.5 Self-supervision

Each input sample is validated before it is fed into the filter algorithm. The samples are validated by measuring an internally set reference current immediately after the inputs are sampled. Each RTD sensor type has expected current based on the sensor type. If the measured offset current deviates from the reference current more than 20%, the sample is discarded and the output is set to invalid. The invalid measure status deactivates as soon as the measured input signal is within the measurement offset.

3.13.2.6 Calibration

RTD and mA inputs are calibrated at the factory. The calibration circuitry monitors the RTD channels continuously and reports a circuitry break of any channel.

3.13.2.7 Limit value supervision

The limit value supervision function indicates whether the measured value of AI_INST# exceeds or falls below the set limits. All the measuring channels have an individual limit value supervision function. The measured value contains the corresponding range information AI_RANGE# and has a value in the range of 0 to 4:

- 0: "normal"
- 1: "high"
- 2: "low"
- 3: "high-high"
- 4: "low-low"

The range information changes and the new values are reported.

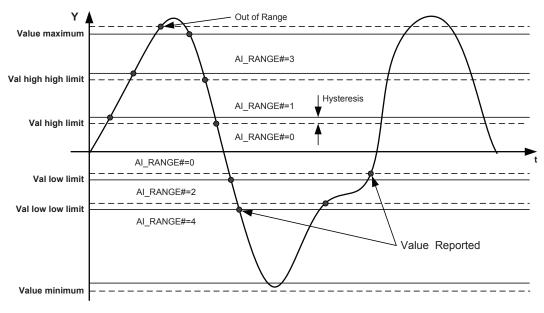


Figure 33: Limit value supervision for RTD (X130)

The range information of "High-high limit" and "Low-low limit" is combined from all measurement channels to the Boolean ALARM output. The range information of "High limit" and "Low limit" is combined from all measurement channels to the Boolean WARNING output.

Table 56: Settings for X130 (RTD) analog input limit value supervision

Function	Settings for limit value supervision		
X130 (RTD) analog input	Out of range	Value maximum	
	High-high limit	Val high high limit	
	High limit	Val high limit	

Function	Settings for limit value supervision		
	Low limit	Val low limit	
	Low-low limit	Val low low limit	
	Out of range	Value minimum	

When the measured value exceeds either the *Value maximum* setting or the *Value minimum* setting, the corresponding quality is set to out of range and a maximum or minimum value is shown when the measured value exceeds the added hysteresis, respectively. The hysteresis is added to the extreme value of the range limit to allow the measurement slightly to exceed the limit value before it is considered out of range.

3.13.2.8 Deadband supervision

Each input has an independent deadband supervision. The deadband supervision function reports the measured value according to integrated changes over a time period.

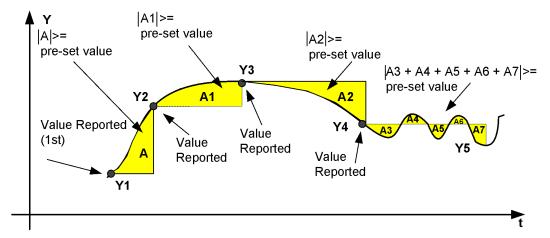


Figure 34: Integral deadband supervision

The deadband value used in the integral calculation is configured with the *Value deadband* setting. The value represents the percentage of the difference between the maximum and minimum limits in the units of 0.001 percent * seconds. The reporting delay of the integral algorithms in seconds is calculated with the formula:

$$t(s) = \frac{(Value\ maximum - Value\ minimum) \cdot \frac{deadband}{100000}s}{\Delta Y}$$

(Equation 3)

Temperature sensor Pt100 is used in the temperature range of 15...180 °C. *Value unit* "Degrees Celsius" is used and the set values *Value minimum* and *Value maximum* are set to 15 and 180, respectively.

Value deadband = 7500 (7.5% of the total measuring range 165)

$$AI_VAL# = AI_DB# = 85$$

If AI_VAL# changes to 90, the reporting delay is:

$$t(s) = \frac{(180^{\circ}C - 15^{\circ}C) \cdot \frac{7500 \%s}{100000} s}{90^{\circ}C - 85^{\circ}C} \approx 2.5s$$

(Equation 4)

Table 57: Settings for X130 (RTD) analog input deadband supervision

Function	Setting	Maximum/minimum (=range)
X130 (RTD) analog input	Value deadband	Value maximum / Value minimum (=20000)

Since the function can be utilized in various measurement modes, the default values are set to the extremes; thus, it is very important to set correct limit values to suit the application before the deadband supervision works properly.

3.13.2.9 RTD temperature vs. resistance

Table 58: Temperature vs. resistance

Temp °C	Platinum TCR 0.00385		Nickel TCR 0.00618			Copper TCR 0.00427
	Pt 100	Pt 250	Ni 100	Ni 120	Ni 250	Cu 10
-40	84.27	210.675	79.1	94.92	197.75	7.49
-30	88.22	220.55	84.1	100.92	210.25	-
-20	92.16	230.4	89.3	107.16	223.25	8.263
-10	96.09	240.225	94.6	113.52	236.5	-
0	100	250	100	120	250	9.035
10	103.9	259.75	105.6	126.72	264	-
20	107.79	269.475	111.2	133.44	278	9.807
30	111.67	279.175	117.1	140.52	292.75	-
40	115.54	288.85	123	147.6	307.5	10.58
50	119.4	298.5	129.1	154.92	322.75	-
60	123.24	308.1	135.3	162.36	338.25	11.352
70	127.07	317.675	141.7	170.04	354.25	-
80	130.89	327.225	148.3	177.96	370.75	12.124
90	134.7	336.75	154.9	185.88	387.25	-
100	138.5	346.25	161.8	194.16	404.5	12.897
120	146.06	365.15	176	211.2	440	13.669
140	153.58	383.95	190.9	229.08	477.25	14.442

Temp °C	Platinum TCR 0.00385		Nickel TCR 0.00618			Copper TCR 0.00427
	Pt 100	Pt 250	Ni 100	Ni 120	Ni 250	Cu 10
150	-	-	198.6	238.32	496.5	-
160	161.04	402.6	206.6	247.92	516.5	15.217
180	168.46	421.15	223.2	267.84	558	-
200	175.84	439.6	240.7	288.84	601.75	-

3.13.2.10 RTD/mA input connection

RTD inputs can be used with a 2-wire or 3-wire connection with common ground. When using the 3-wire connection, it is important that all three wires connecting the sensor are symmetrical, that is, the wires are of the same type and length. Thus the wire resistance is automatically compensated.

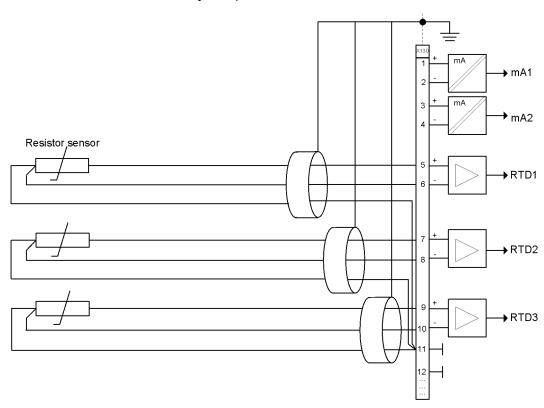


Figure 35: Three RTD/resistance sensors connected according to the 3-wire connection

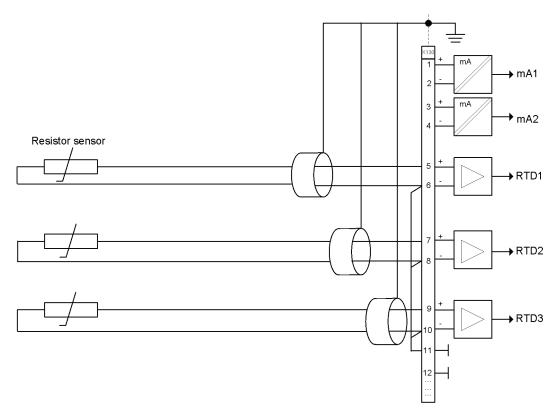


Figure 36: Three RTD/resistance sensors connected according to the 2-wire connection

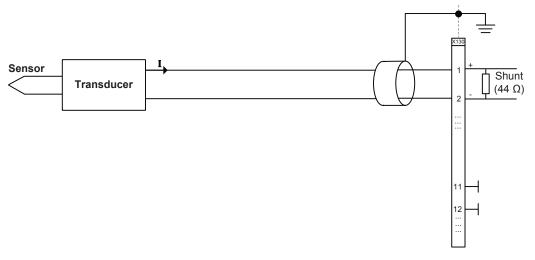


Figure 37: mA wiring connection

3.13.2.11 RTD/mA card variants

The available variants of RTD cards are 6RTD/2mA and 2RTD/1mA. The features are similar in both cards.

6RTD/2mA card

This card accepts two milliampere inputs and six inputs from the RTD sensors. The inputs 1 and 2 are used for current measurement, whereas inputs from 3 to 8 are used for resistance type of measurements.

RTD/mA input connection

Resistance and temperature sensors can be connected to the 6RTD/2mA board with 3-wire and 2-wire connections.

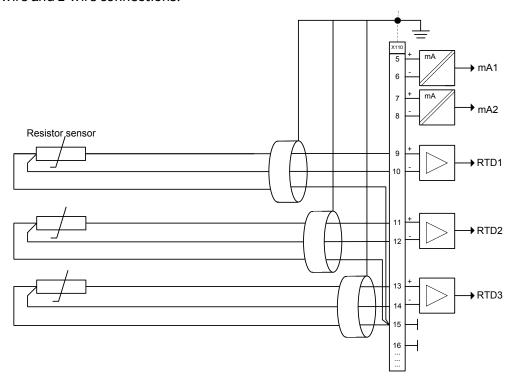


Figure 38: Three RTD sensors and two resistance sensors connected according to the 3-wire connection for 6RTD/2mA card

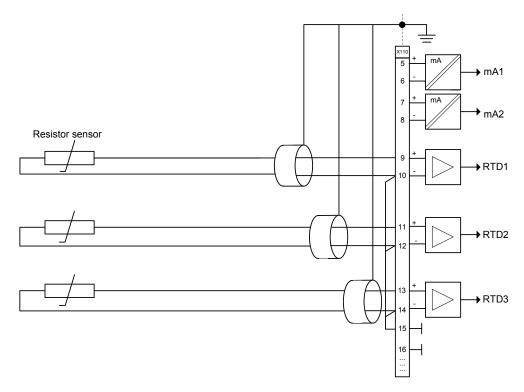


Figure 39: Three RTD sensors and two resistance sensors connected according to the 2-wire connection for 6RTD/2mA card

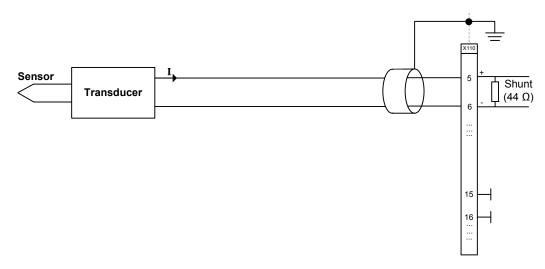


Figure 40: mA wiring connection for 6RTD/2mA card

2RTD/1mA card

108

This type of card accepts one milliampere input, two inputs from RTD sensors and five inputs from VTs. The Input 1 is assigned for current measurements, inputs 2 and 3 are for RTD sensors and inputs 4 to 8 are used for measuring input data from VT.

RTD/mA input connections

The examples of 3-wire and 2-wire connections of resistance and temperature sensors to the 2RTD/1mA board are as shown:

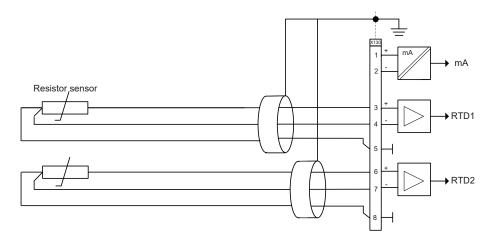


Figure 41: Two RTD and resistance sensors connected according to the 3-wire connection for RTD/mA card

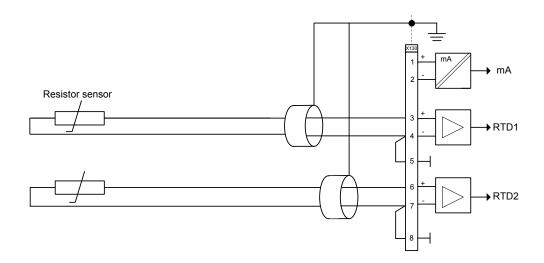


Figure 42: Two RTD and resistance sensors connected according to the 2-wire connection for RTD/mA card

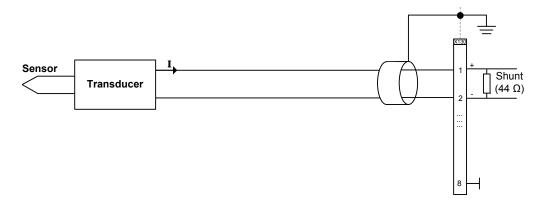


Figure 43: mA wiring connection for RTD/mA card

3.13.3 Signals

Table 59: Output signals

Name	Туре	Description
ALARM	BOOLEAN	General alarm
WARNING	BOOLEAN	General warning
AI_VAL1	FLOAT32	mA input, Connectors 1-2, instantaneous value
AI_VAL2	FLOAT32	mA input, Connectors 3-4, instantaneous value
AI_VAL3	FLOAT32	RTD input, Connectors 5-6-11c, instantaneous value
AI_VAL4	FLOAT32	RTD input, Connectors 7-8-11c, instantaneous value
AI_VAL5	FLOAT32	RTD input, Connectors 9-10-11c, instantaneous value
AI_VAL6	FLOAT32	RTD input, Connectors 13-14-12c, instantaneous value
AI_VAL7	FLOAT32	RTD input, Connectors 15-16-12c, instantaneous value
AI_VAL8	FLOAT32	RTD input, Connectors 17-18-12c, instantaneous value

3.13.4 Settings

Table 60: Non group settings

Values (Range)	Unit	Step	Default	Description
1=Not in use			1=Not in use	Analogue input mode
2=Resistance				
10=Pt100				
11=Pt250				
	1=Not in use 2=Resistance 10=Pt100	1=Not in use 2=Resistance 10=Pt100	1=Not in use 2=Resistance 10=Pt100	1=Not in use 2=Resistance 10=Pt100

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
	20=Ni100				
	21=Ni120				
	22=Ni250				
	30=Cu10				
Input maximum	02000	Ω	1	2000	Maximum analogue input value for mA or resistance scaling
Input minimum	02000	Ω	1	0	Minimum analogue input value for mA or resistance scaling
Value unit	1=Dimension- less			1=Dimension- less	Selected unit for output value format
	5=Ampere				
	23=Degrees cel- sius				
	30=Ohm				
Value maximum	-10000.010000 .0		1	10000.0	Maximum output value for scaling and supervision
Value minimum	-10000.010000 .0		1	-10000.0	Minimum output value for scaling and supervision
Val high high limit	-10000.010000 .0		1	10000.0	Output value high alarm limit for supervision
Value high limit	-10000.010000 .0		1	10000.0	Output value high warning limit for supervision
Value low limit	-10000.010000 .0		1	-10000.0	Output value low warning limit for supervision
Value low low limit	-10000.010000 .0		1	-10000.0	Output value low alarm limit for supervision
Value deadband	100100000		1	1000	Deadband configuration value for integral calculation. (percentage of difference between min and max as 0,001 % s)

Table 61: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Input mode	1=Not in use 5=020mA			1=Not in use	Analogue input mode
Input maximum	020	mA	1	20	Maximum analogue input value for mA or resistance scal- ing
Input minimum	020	mA	1	0	Minimum analogue input value for mA or resistance scal- ing
Value unit	1=Dimensionless 5=Ampere 23=Degrees celsius 30=Ohm			1=Dimensionless	Selected unit for output value for- mat
Value maximum	-10000.010000.0		1	10000	Maximum output value for scaling and supervision
Value minimum	-10000.010000.0		1	-10000	Minimum output value for scaling and supervision

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
Val high high limit	-10000.010000.0		1	10000	Output value high alarm limit for su- pervision
Value high limit	-10000.010000.0		1	10000	Output value high warning limit for supervision
Value low limit	-10000.010000.0		1	-10000	Output value low warning limit for supervision
Value low low limit	-10000.010000.0		1	-10000	Output value low alarm limit for su- pervision
Value deadband	100100000		1	1000	Deadband configuration value for integral calculation. (percentage of difference between min and max as 0,001 % s)

3.13.5 Monitored data

Table 62: Monitored data

Name	Туре	Values (Range)	Unit	Description
AI_DB1	FLOAT32	-10000.010000 .0		mA input, Connectors 1-2, reported value
AI_RANGE1	Enum	0=normal		mA input, Connectors 1-2, range
		1=high		
		2=low		
		3=high-high		
		4=low-low		
AI_DB2	FLOAT32	-10000.010000 .0		mA input, Connectors 3-4, reported value
AI_RANGE2	Enum	0=normal		mA input, Connectors 3-4, range
		1=high		
		2=low		
		3=high-high		
		4=low-low		
AI_DB3	FLOAT32	-10000.010000 .0		RTD input, Connectors 5-6-11c, reported value
AI_RANGE3	Enum	0=normal		RTD input, Connectors 5-6-11c, range
		1=high		
		2=low		
		3=high-high		
		4=low-low		
AI_DB4	FLOAT32	-10000.010000 .0		RTD input, Connectors 7-8-11c, reported value
AI_RANGE4	Enum	0=normal		RTD input, Connectors 7-8-11c, range
		1=high		
		2=low		
		3=high-high		
		4=low-low		

Table continues on the next page

Name	Туре	Values (Range)	Unit	Description
AI_DB5	FLOAT32	-10000.010000 .0		RTD input, Connectors 9-10-11c, reported value
AI_RANGE5	Enum	0=normal		RTD input, Connectors 9-10-11c, range
		1=high		
		2=low		
		3=high-high		
		4=low-low		
AI_DB6	FLOAT32	-10000.010000 .0		RTD input, Connectors 13-14-12c, reported value
AI_RANGE6	Enum	0=normal		RTD input, Connectors 13-14-12c, range
		1=high		
		2=low		
		3=high-high		
		4=low-low		
AI_DB7	FLOAT32	-10000.010000 .0		RTD input, Connectors 15-16-12c, reported value
AI_RANGE7	Enum	0=normal		RTD input, Connectors 15-16-12c, range
		1=high		
		2=low		
		3=high-high		
		4=low-low		
AI_DB8	FLOAT32	-10000.010000 .0		RTD input, Connectors 17-18-12c, reported value
AI_RANGE8	Enum	0=normal		RTD input, Connectors 17-18-12c, range
		1=high		
		2=low		
		3=high-high		
		4=low-low		

3.14 SMV function blocks

SMV function blocks are used in the process bus applications with the sending of the sampled values of analog currents and voltages and with the receiving of the sampled values of voltages.

3.14.1 IEC 61850-9-2 LE sampled values sending SMVSENDER

3.14.1.1 Functionality

The SMVSENDER function block is used for activating the SMV sending functionality. It adds/removes the sampled value control block and the related data set into/from the sending device's configuration. It has no input or output signals.

SMVSENDER can be disabled with the *Operation* setting value "off". If the SMVSENDER is disabled from the LHMI, it can only be enabled from the LHMI. When disabled, the sending of the samples values is disabled.

3.14.1.2 Settings

Table 63: SMVSENDER Settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation
	5=off				

3.14.2 IEC 61850-9-2 LE sampled values receiving SMVRCV

3.14.2.1 Function block

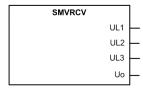


Figure 44: Function block

3.14.2.2 Functionality

The SMVRCV function block is used for activating the SMV receiving functionality.

3.14.2.3 Signals

Table 64: SMVRCV Output signals

Name	Туре	Description
UL1	INT32-UL1	IEC61850-9-2 phase 1 voltage
UL2	INT32-UL2	IEC61850-9-2 phase 2 voltage
UL3	INT32-UL3	IEC61850-9-2 phase 3 voltage
U0	INT32-Uo	IEC61850-9-2 residual voltage

3.14.3 ULTVTR function block

3.14.3.1 Function block

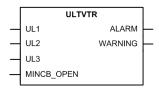


Figure 45: Function block

3.14.3.2 Functionality

The ULTVTR function is used in the receiver application to perform the supervision for the sampled values and to connect the received analog phase voltage inputs to the application. Synchronization accuracy, sampled value frame transfer delays and missing frames are being supervised.

The typical additional operate time increase is +2 ms for all the receiver application functions (using either local or remote samples) when SMV is used.

3.14.3.3 **Operation principle**

The ALARM in the receiver is activated if the synchronization accuracy of the sender or the receiver is either unknown or worse than 100 ms. The output is held on for 10 seconds after the synchronization accuracy returns within limits.

ALARM is activated when two or more consecutive SMV frames are lost or late. A single loss of frame is corrected with a zero-order hold scheme. In this case the effect on protection is considered negligible and the WARNING or ALARM outputs are not activated. The output is held on for 10 seconds after the conditions return to normal.

The SMV Max Delay parameter defines how long the receiver waits for the SMV frames before activating the ALARM output. This parameter can be accessed via Configuration/System/Common. Waiting of the SMV frames also delays the local measurements of the receiver to keep them correctly time aligned. The SMV Max Delay values include sampling, processing and network delay.

The MINCB OPEN input signal is supposed to be connected through a protection relay's binary input to the NC auxiliary contact of the miniature circuit breaker protecting the VT secondary circuit. The MINCB OPEN signal sets the FUSEF U output signal to block all the voltage-related functions when MCB is in the open state.

The WARNING output in the receiver is activated if the synchronization accuracy of the sender or the receiver is worse than 4 μ s. The output is held on for 10 seconds after the synchronization accuracy returns within limits. If the protection relay supports frequency adaptivity and it is enabled, the WARNING output is also activated when the adaptivity is not ready.

The WARNING output is always internally active whenever the ALARM output is active.

The receiver activates the WARNING and ALARM outputs if any of the quality bits, except for the derived bit, is activated. When the receiver is in the test mode, it accepts SMV frames with test bit without activating the WARNING and ALARM outputs.

3.14.3.4 **Signals**

Table 65: ULTVTR Input signals

Name	Туре	Default Description	
UL1	INT32-UL1	0 IEC61850-9-2 phase 1 voltag	
UL2	INT32-UL2	0 IEC61850-9-2 phase 2 voltage	
UL3	INT32-UL3	0 IEC61850-9-2 phase 3 voltag	
MINCB_OPEN	BOOLEAN	0=False	Active when external MCB opens protected voltage circuit

Table 66: ULTVTR Output signals

Name	Туре	Description
ALARM	BOOLEAN	Alarm
WARNING	BOOLEAN	Warning

3.14.3.5 Settings

Table 67: ULTVTR Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Primary voltage	0.100440.000	kV	0.001	20.000	Primary rated voltage
Secondary voltage	60210	V	1	100	Secondary rated voltage
VT connection	1=Wye 2=Delta 3=U12			2=Delta	Voltage transducer measure- ment connection
	4=UL1				
Amplitude Corr A	0.9000 1.1000		0.0001	1.0000	Phase A Voltage phasor magnitude correction of an external voltage transformer
Amplitude Corr B	0.9000 1.1000		0.0001	1.0000	Phase B Voltage phasor magni- tude correction of an external voltage transformer
Amplitude Corr C	0.9000 1.1000		0.0001	1.0000	Phase C Voltage phasor magni- tude correction of an external voltage transformer
Division ratio	1000 20000		1	10000	Voltage sensor division ratio
Voltage input type	1=Voltage trafo 3=CVD sensor			1=Voltage trafo	Type of the voltage input
Angle Corr A	-20.000020.0000	deg	0.0001	0.0000	Phase A Voltage phasor angle correction of an external voltage transformer
Angle Corr B	-20.000020.0000	deg	0.0001	0.0000	Phase B Voltage phasor angle correction of an external voltage transformer
Angle Corr C	-20.000020.0000	deg	0.0001	0.0000	Phase C Voltage phasor angle correction of an external voltage transformer

3.14.3.6 Monitored data

Monitored data is available in three locations.

- Monitoring > I/O status > Analog inputs
- Monitoring > IED status > SMV traffic
- Monitoring > IED status > SMV accuracy

3.14.4 RESTVTR function block

3.14.4.1 Function block

Figure 46: Function block

3.14.4.2 Functionality

The RESTVTR function is used in the receiver application to perform the supervision for the sampled values of analog residual voltage and to connect the received analog residual voltage input to the application. Synchronization accuracy, sampled value frame transfer delays and missing frames are being supervised.

The typical additional operate time increase is +2 ms for all the receiver application functions (using either local or remote samples) when SMV is used.

3.14.4.3 Operation principle

The ALARM in the receiver is activated if the synchronization accuracy of the sender or the receiver is either unknown or worse than 100 ms. The output is held on for 10 seconds after the synchronization accuracy returns within limits.

ALARM is activated when two or more consecutive SMV frames are lost or late. A single loss of frame is corrected with a zero-order hold scheme. In this case, the effect on protection is considered negligible and the WARNING or ALARM outputs are not activated. The output is held on for 10 seconds after the conditions return to normal.

The SMV Max Delay parameter defines how long the receiver waits for the SMV frames before activating the ALARM output. This parameter can be accessed via Configuration/System/Common. Waiting of the SMV frames also delays the local measurements of the receiver to keep them correctly time aligned. The SMV Max Delay values include sampling, processing and network delay.

The WARNING output in the receiver is activated if the synchronization accuracy of the sender or the receiver is worse than 4 μ s. The output is held on for 10 seconds after the synchronization accuracy returns within limits.

The WARNING output is always internally active whenever the ALARM output is active.

3.14.4.4 Signals

Table 68: RESTVTR Input signals

Name	Туре	Default	Description
Uo	INT32-UL0	0	IEC61850-9-2 residual
			voltage

Table 69: RESTVTR Output signals

Name	Туре	Description
ALARM	BOOLEAN	Alarm
WARNING	BOOLEAN	Warning

3.14.4.5 **Settings**

Table 70: RESTVTR Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Primary voltage	0.100440.000	kV	0.001	11.547	Primary voltage
Secondary voltage	60210	V	1	100	Secondary voltage
Amplitude Corr	0.90001.1000		0.0001	1.0000	Amplitude correction
Angle correction	-20.000020.0000	deg	0.0001	0.0000	Angle correction factor

3.14.4.6 Monitored data

Monitored data is available in three locations.

- Monitoring > I/O status > Analog inputs
- Monitoring > IED status > SMV traffic
- Monitoring > IED status > SMV accuracy

3.15 GOOSE function blocks

GOOSE function blocks are used for connecting incoming GOOSE data to application. They support BOOLEAN, Dbpos, Enum, FLOAT32, INT8 and INT32 data types.

Common signals

The VALID output indicates the validity of received GOOSE data, which means in case of valid, that the GOOSE communication is working and received data quality bits (if configured) indicate good process data. Invalid status is caused either by bad data quality bits or GOOSE communication failure. See IEC 61850 engineering guide for details.

The OUT output passes the received GOOSE value for the application. Default value (0) is used if VALID output indicates invalid status. The IN input is defined in the GOOSE configuration and can always be seen in SMT sheet.

Settings

3.15.1 GOOSERCV_BIN function block

3.15.1.1 Function block

Figure 47: Function block

3.15.1.2 Functionality

The GOOSERCV_BIN function is used to connect the GOOSE binary inputs to the application.

3.15.1.3 Signals

Table 71: GOOSERCV_BIN Output signals

Name	Туре	Description
OUT	BOOLEAN	Output signal
VALID	BOOLEAN	Output signal

3.15.2 GOOSERCV_DP function block

3.15.2.1 Function block

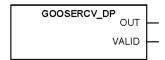


Figure 48: Function block

3.15.2.2 Functionality

The GOOSERCV_DP function is used to connect the GOOSE double binary inputs to the application.

3.15.2.3 Signals

Table 72: GOOSERCV_DP Output signals

Name	Туре	Description
OUT	Dbpos	Output signal
VALID	BOOLEAN	Output signal

3.15.3 GOOSERCV_MV function block

3.15.3.1 Function block

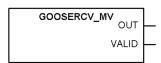


Figure 49: Function block

3.15.3.2 Functionality

The GOOSERCV_MV function is used to connect the GOOSE measured value inputs to the application.

3.15.3.3 Signals

Table 73: GOOSERCV_MV Output signals

Name	Туре	Description
OUT	FLOAT32	Output signal
VALID	BOOLEAN	Output signal

3.15.4 GOOSERCV_INT8 function block

3.15.4.1 Function block

Figure 50: Function block

3.15.4.2 Functionality

The GOOSERCV_INT8 function is used to connect the GOOSE 8 bit integer inputs to the application.

3.15.4.3 Signals

Table 74: GOOSERCV_INT8 Output signals

Name	Туре	Description
OUT	INT8	Output signal
VALID	BOOLEAN	Output signal

3.15.5 GOOSERCV_INTL function block

3.15.5.1 Function block

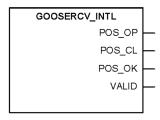


Figure 51: Function block

3.15.5.2 Functionality

The GOOSERCV_INTL function is used to connect the GOOSE double binary input to the application and extracting single binary position signals from the double binary position signal.

The \mbox{OP} output signal indicates that the position is open. Default value (0) is used if \mbox{VALID} output indicates invalid status.

The CL output signal indicates that the position is closed. Default value (0) is used if VALID output indicates invalid status.

The OK output signal indicates that the position is neither in faulty or intermediate state. The default value (0) is used if VALID output indicates invalid status.

3.15.5.3 Signals

Table 75: GOOSERCV_INTL Output signals

Name	Туре	Description
POS_OP	BOOLEAN	Position open output signal
POS_CL	BOOLEAN	Position closed output signal
POS_OK	BOOLEAN	Position OK output signal
VALID	BOOLEAN	Output signal

3.15.6 GOOSERCV_CMV function block

3.15.6.1 Function block

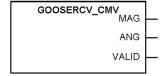


Figure 52: Function block

3.15.6.2 Functionality

The GOOSERCV_CMV function is used to connect GOOSE measured value inputs to the application. The MAG_IN (amplitude) and ANG_IN (angle) inputs are defined in the GOOSE configuration (PCM600).

The MAG output passes the received GOOSE (amplitude) value for the application. Default value (0) is used if VALID output indicates invalid status.

The ANG output passes the received GOOSE (angle) value for the application. Default value (0) is used if VALID output indicates invalid status.

3.15.6.3 Signals

Table 76: GOOSERCV_CMV Output signals

Name	Туре	Description
MAG	FLOAT32	Output signal (amplitude)
ANG	FLOAT32	Output signal (angle)
VALID	BOOLEAN	Output signal

3.15.7 GOOSERCV_ENUM function block

3.15.7.1 Function block

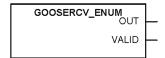


Figure 53: Function block

3.15.7.2 Functionality

The GOOSERCV_ENUM function block is used to connect GOOSE enumerator inputs to the application.

3.15.7.3 Signals

Table 77: GOOSERCV_ENUM Output signals

Name	Туре	Description
OUT	Enum	Output signal
VALID	BOOLEAN	Output signal

3.15.8 GOOSERCV_INT32 function block

3.15.8.1 Function block

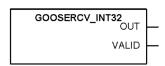


Figure 54: Function block

3.15.8.2 Functionality

The GOOSERCV_INT32 function block is used to connect GOOSE 32 bit integer inputs to the application.

3.15.8.3 Signals

Table 78: GOOSERCV INT32 Output signals

Name	Туре	Description
OUT	INT32	Output signal
VALID	BOOLEAN	Output signal

3.16 Type conversion function blocks

3.16.1 QTY_GOOD function block

3.16.1.1 Function block

Figure 55: Function block

3.16.1.2 Functionality

The QTY_GOOD function block evaluates the quality bits of the input signal and passes it as a Boolean signal for the application.

The ${\tt IN}$ input can be connected to any logic application signal (logic function output, binary input, application function output or received GOOSE signal). Due to application logic quality bit propagation, each (simple and even combined) signal has quality which can be evaluated.

The OUT output indicates quality good of the input signal. Input signals that have no quality bits set or only test bit is set, will indicate quality good status.

3.16.1.3 Signals

Table 79: QTY_GOOD Input signals

Name	Туре	Default	Description
IN	Any	0	Input signal

Table 80: QTY_GOOD Output signals

Name	Туре	Description
OUT	BOOLEAN	Output signal

3.16.2 QTY_BAD function block

3.16.2.1 Function block

Figure 56: Function block

3.16.2.2 Functionality

The QTY_BAD function block evaluates the quality bits of the input signal and passes it as a Boolean signal for the application.

The ${\tt IN}$ input can be connected to any logic application signal (logic function output, binary input, application function output or received GOOSE signal). Due to application logic quality bit propagation, each (simple and even combined) signal has quality which can be evaluated.

The OUT output indicates quality bad of the input signal. Input signals that have any other than test bit set, will indicate quality bad status.

3.16.2.3 Signals

Table 81: QTY_BAD Input signals

Name	Туре	Default	Description
IN	Any	0	Input signal

Table 82: QTY_BAD Output signals

Name	Туре	Description
OUT	BOOLEAN	Output signal

3.16.3 QTY_GOOSE_COMM function block

3.16.3.1 Function block

Figure 57: Function block

3.16.3.2 Functionality

The QTY_GOOSE_COMM function block evaluates the peer device communication status from the quality bits of the input signal and passes it as a Boolean signal to the application.

The ${\tt IN}$ input can be connected to any GOOSE application logic output signal, for example, GOOSERCV_BIN.

The OUT output indicates the communication status of the GOOSE function block. When the output is in the true (1) state, the GOOSE communication is active. The value false (0) indicates communication timeout.

3.16.3.3 Signals

Table 83: QTY_GOOSE_COMM Input signals

Name	Туре	Default	Description
IN	Any	0	Input signal

Table 84: QTY_GOOSE_COMM Output signals

Name	Туре	Description
COMMVALID	BOOLEAN	Output signal

3.16.4 T_HEALTH function block

3.16.4.1 Function block

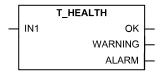


Figure 58: Function block

3.16.4.2 Functionality

The T_HEALTH function evaluates enumerated data of "Health" data attribute. This function block can only be used with GOOSE.

The ${\tt IN}$ input can be connected to GOOSERCV_ENUM function block, which is receiving the LD0.LLN0.Health.stVal data attribute sent by another device.

The outputs OK, WARNING and ALARM are extracted from the enumerated input value. Only one of the outputs can be active at a time. In case the GOOSERCV_ENUM function block does not receive the value from the sending device or it is invalid, the default value (0) is used and the ALARM is activated in the T_{HEALTH} function block.

3.16.4.3 Signals

Table 85: T_HEALTH Input signals

Name	Туре	Default	Description
IN1	Any	0	Input signal

Table 86: T_HEALTH Output signals

Name	Туре	Description
ОК	BOOLEAN	Output signal
WARNING	BOOLEAN	Output signal
ALARM	BOOLEAN	Output signal

3.16.5 T_F32_INT8 function block

3.16.5.1 Function block

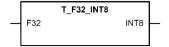


Figure 59: Function block

3.16.5.2 Functionality

The T_F32_INT8 function is used to convert 32-bit floating type values to 8-bit integer type. The rounding operation is included. Output value saturates if the input value is below the minimum or above the maximum value.

3.16.5.3 Signals

Table 87: T_F32_INT8 Input signals

Name	Туре	Default	Description
F32	FLOAT32	0.0	Input signal

Table 88: T_F32_INT8 Output signal

Name	Туре	Description
INT8	INT8	Output signal

3.16.6 T_DIR function block

3.16.6.1 Function block

Figure 60: Function block

3.16.6.2 Functionality

The T_DIR function evaluates enumerated data of the FAULT_DIR data attribute of the directional functions. T_DIR can only be used with GOOSE. The DIR input can be connected to the GOOSERCV_ENUM function block, which is receiving the LDO.<function>.Str.dirGeneral or LDO.<function>.Dir.dirGeneral data attribute sent by another device.

In case the GOOSERCV_ENUM function block does not receive the value from the sending device or it is invalid, the default value (0) is used in function outputs.

The outputs FWD and REV are extracted from the enumerated input value.

3.16.6.3 Signals

Table 89: T_DIR Input signals

Name	Туре	Default	Description
DIR	Enum	0	Input signal

Table 90: T_DIR Output signals

Name	Туре	Default	Description
FWD	BOOLEAN	0	Direction forward
REV	BOOLEAN	0	Direction backward

3.16.7 T_TCMD function block

3.16.7.1 Function block

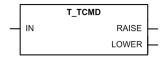


Figure 61: Function block

3.16.7.2 Functionality

The T_TCMD function is used to convert enumerated input signal to Boolean output signals.

Table 91: Conversion from enumerated to Boolean

IN	RAISE	LOWER
0	FALSE	FALSE
1	FALSE	TRUE
2	TRUE	FALSE
х	FALSE	FALSE

3.16.7.3 Signals

Table 92: T_TCMD input signals

Name	Туре	Default	Description
IN	Enum	0	Input signal

Table 93: T_TCMD output signals

Name	Туре	Description
RAISE	BOOLEAN	Raise command
LOWER	BOOLEAN	Lower command

3.16.8 T_TCMD_BIN function block

3.16.8.1 Function block

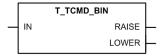


Figure 62: Function block

3.16.8.2 Functionality

The T_TCMD_BIN function is used to convert 32 bit integer input signal to Boolean output signals.

Table 94: Conversion from integer to Boolean

IN	RAISE	LOWER
0	FALSE	FALSE
1	FALSE	TRUE
2	TRUE	FALSE
х	FALSE	FALSE

3.16.8.3 Signals

Table 95: T_TCMD_BIN input signals

Name	Туре	Default	Description
IN	INT32	0	Input signal

Table 96: T_TCMD_BIN output signals

Name	Туре	Description
RAISE	BOOLEAN	Raise command
LOWER	BOOLEAN	Lower command

3.16.9 T_BIN_TCMD function block

3.16.9.1 Function block

Figure 63: Function block

3.16.9.2 Functionality

The T_BIN_TCMD function is used to convert Boolean input signals to 32 bit integer output signals.

Table 97: Conversion from Boolean to integer

RAISE	LOWER	OUT
FALSE	FALSE	0
FALSE	TRUE	1
TRUE	FALSE	2

3.16.9.3 Signals

Table 98: T_BIN_TCMD input signals

Name	Туре	Default	Description
RAISE	BOOLEAN	0	Raise command
LOWER	BOOLEAN	0	Lower command

Table 99: T_BIN_TCMD output signals

Name	Туре	Description
OUT	INT32	Output signal

3.17 Configurable logic blocks

3.17.1 Standard configurable logic blocks

3.17.1.1 OR function block

Function block

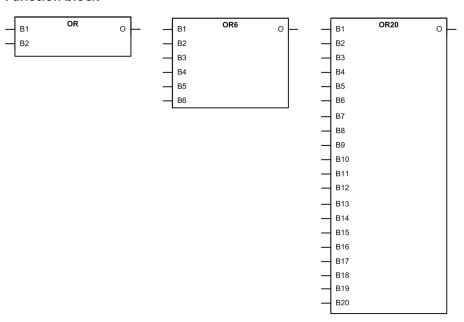


Figure 64: Function blocks

Functionality

OR, OR6 and OR20 are used to form general combinatory expressions with Boolean variables

The \circ output is activated when at least one input has the value TRUE. The default value of all inputs is FALSE, which makes it possible to use only the required number of inputs and leave the rest disconnected.

OR has two inputs, OR6 six and OR20 twenty inputs.

Signals

Table 100: OR Input signals

Name	Туре	Default	Description
B1	BOOLEAN	0	Input signal 1
B2	BOOLEAN	0	Input signal 2

Table 101: OR6 Input signals

Name	Туре	Default	Description
B1	BOOLEAN	0	Input signal 1
B2	BOOLEAN	0	Input signal 2
В3	BOOLEAN	0	Input signal 3
B4	BOOLEAN	0	Input signal 4
B5	BOOLEAN	0	Input signal 5
В6	BOOLEAN	0	Input signal 6

Table 102: OR20 Input signals

Name	Туре	Default	Description
B1	BOOLEAN	0	Input signal 1
B2	BOOLEAN	0	Input signal 2
В3	BOOLEAN	0	Input signal 3
B4	BOOLEAN	0	Input signal 4
B5	BOOLEAN	0	Input signal 5
В6	BOOLEAN	0	Input signal 6
B7	BOOLEAN	0	Input signal 7
B8	BOOLEAN	0	Input signal 8
В9	BOOLEAN	0	Input signal 9
B10	BOOLEAN	0	Input signal 10
B11	BOOLEAN	0	Input signal 11
B12	BOOLEAN	0	Input signal 12
B13	BOOLEAN	0	Input signal 13
B14	BOOLEAN	0	Input signal 14
B15	BOOLEAN	0	Input signal 15
B16	BOOLEAN	0	Input signal 16
B17	BOOLEAN	0	Input signal 17
B18	BOOLEAN	0	Input signal 18
B19	BOOLEAN	0	Input signal 19
B20	BOOLEAN	0	Input signal 20

Table 103: OR Output signal

Name	Туре	Description
0	BOOLEAN	Output signal

Table 104: OR6 Output signal

Name	Туре	Description
0	BOOLEAN	Output signal

Table 105: OR20 Output signal

Name	Туре	Description
0	BOOLEAN	Output signal

Settings

The function does not have any parameters available in LHMI or PCM600.

3.17.1.2 AND Function block

AND Function block

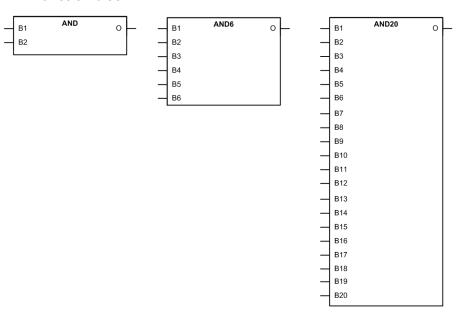


Figure 65: Function blocks

Functionality

AND, AND6 and AND20 are used to form general combinatory expressions with Boolean variables.

The default value in all inputs is logical true, which makes it possible to use only the required number of inputs and leave the rest disconnected.

AND has two inputs, AND6 six inputs and AND20 twenty inputs.

Signals

Table 106: AND Input signals

Name	Туре	Default	Description
B1	BOOLEAN	1	Input signal 1
B2	BOOLEAN	1	Input signal 2

Table 107: AND6 Input signals

Name	Туре	Default	Description
B1	BOOLEAN	1	Input signal 1
B2	BOOLEAN	1	Input signal 2
В3	BOOLEAN	1	Input signal 3
B4	BOOLEAN	1	Input signal 4
B5	BOOLEAN	1	Input signal 5
В6	BOOLEAN	1	Input signal 6

Table 108: AND20 Input signals

Name	Туре	Default	Description
B1	BOOLEAN	1	Input signal 1
B2	BOOLEAN	1	Input signal 2
В3	BOOLEAN	1	Input signal 3
B4	BOOLEAN	1	Input signal 4
B5	BOOLEAN	1	Input signal 5
В6	BOOLEAN	1	Input signal 6
B7	BOOLEAN	1	Input signal 7
B8	BOOLEAN	1	Input signal 8
В9	BOOLEAN	1	Input signal 9
B10	BOOLEAN	1	Input signal 10
B11	BOOLEAN	1	Input signal 11
B12	BOOLEAN	1	Input signal 12
B13	BOOLEAN	1	Input signal 13
B14	BOOLEAN	1	Input signal 14
B15	BOOLEAN	1	Input signal 15
B16	BOOLEAN	1	Input signal 16
B17	BOOLEAN	1	Input signal 17
B18	BOOLEAN	1	Input signal 18
B19	BOOLEAN	1	Input signal 19
B20	BOOLEAN	1	Input signal 20

Table 109: AND Output signal

Name	Туре	Description
0	BOOLEAN	Output signal

Table 110: AND6 Output signal

Name	Туре	Description
0	BOOLEAN	Output signal

Table 111: AND20 Output signal

Name	Туре	Description
0	BOOLEAN	Output signal

Settings

The function does not have any parameters available in LHMI or PCM600.

3.17.1.3 XOR function block

Function block

Figure 66: Function block

Functionality

The exclusive OR function XOR is used to generate combinatory expressions with Boolean variables.

The output signal is TRUE if the input signals are different and FALSE if they are equal.

Signals

Table 112: XOR Input signals

Name	Туре	Default	Description
B1	BOOLEAN	0	Input signal 1
B2	BOOLEAN	0	Input signal 2

Table 113: XOR Output signal

Name	Туре	Description
0	BOOLEAN	Output signal

Settings

The function does not have any parameters available in LHMI or PCM600.

3.17.1.4 NOT function block

Function block

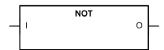


Figure 67: Function block

Functionality

NOT is used to generate combinatory expressions with Boolean variables.

NOT inverts the input signal.

Signal

Table 114: NOT Input signal

Name	Туре	Default	Description
I	BOOLEAN	0	Input signal

Table 115: NOT Output signal

Name	Туре	Description
0	BOOLEAN	Output signal

Settings

The function does not have any parameters available in LHMI or PCM600.

3.17.1.5 MAX3 function block

Function block

Figure 68: Function block

Functionality

The maximum function MAX3 selects the maximum value from three analog values. Disconnected inputs and inputs whose quality is bad are ignored. If all inputs are disconnected or the quality is bad, MAX3 output value is set to -2^21.

Signals

Table 116: MAX3 Input signals

Name	Туре	Default	Description
IN1	FLOAT32	0	Input signal 1
IN2	FLOAT32	0	Input signal 2
IN3	FLOAT32	0	Input signal 3

Table 117: MAX3 Output signal

Name	Туре	Description
OUT	FLOAT32	Output signal

Settings

The function does not have any parameters available in LHMI or PCM600.

3.17.1.6 MIN3 function block

Function block

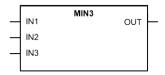


Figure 69: Function block

Functionality

The minimum function MIN3 selects the minimum value from three analog values. Disconnected inputs and inputs whose quality is bad are ignored. If all inputs are disconnected or the quality is bad, MIN3 output value is set to 2^21.

Table 118: MIN3 Input signals

Name	Туре	Default	Description
IN1	FLOAT32	0	Input signal 1
IN2	FLOAT32	0	Input signal 2
IN3	FLOAT32	0	Input signal 3

Table 119: MIN3 Output signal

Name	Туре	Description
OUT	FLOAT32	Output signal

Settings

The function does not have any parameters available in LHMI or PCM600.

3.17.1.7 R_TRIG function block

Function block

Figure 70: Function block

Functionality

R_TRIG is used as a rising edge detector.

R_TRIG detects the transition from FALSE to TRUE at the \mathtt{CLK} input. When the rising edge is detected, the element assigns the output to TRUE. At the next execution round, the output is returned to FALSE despite the state of the input.

Signals

Table 120: R_TRIG Input signals

Name	Туре	Default	Description
CLK	BOOLEAN	0	Input signal

Table 121: R_TRIG Output signal

Name	Туре	Description
Q	BOOLEAN	Output signal

Settings

The function does not have any parameters available in LHMI or PCM600.

3.17.1.8 F_TRIG function block

Function block

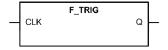


Figure 71: Function block

Functionality

F_TRIG is used as a falling edge detector.

The function detects the transition from TRUE to FALSE at the CLK input. When the falling edge is detected, the element assigns the $\mathbb Q$ output to TRUE. At the next execution round, the output is returned to FALSE despite the state of the input.

Signals

Table 122: F_TRIG Input signals

Name	Туре	Default	Description
CLK	BOOLEAN	0	Input signal

Table 123: F_TRIG Output signal

Name	Туре	Description
Q	BOOLEAN	Output signal

Settings

The function does not have any parameters available in LHMI or PCM600.

3.17.1.9 T_POS_XX function blocks

Function block

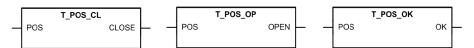


Figure 72: Function blocks

Functionality

The circuit breaker position information can be communicated with the IEC 61850 GOOSE messages. The position information is a double binary data type which is fed to the POS input.

T_POS_CL and T_POS_OP are used for extracting the circuit breaker status information. Respectively, T_POS_OK is used to validate the intermediate or faulty breaker position.

Table 124: Cross reference between circuit breaker position and the output of the function block

Circuit breaker	Output of the function block		
position	T_POS_CL	T_POS_OP	T_POS_OK
Intermediate '00'	FALSE	FALSE	FALSE
Close '01'	TRUE	FALSE	TRUE
Open '10'	FALSE	TRUE	TRUE
Faulty '11'	TRUE	TRUE	FALSE

Signals

Table 125: T_POS_CL Input signals

Name	Туре	Default	Description
POS	Double binary	0	Input signal

Table 126: T_POS_OP Input signals

Name	Туре	Default	Description
POS	Double binary	0	Input signal

Table 127: T_POS_OK Input signals

Name	Туре	Default	Description
POS	Double binary	0	Input signal

Table 128: T_POS_CL Output signal

Name	Туре	Description
CLOSE	BOOLEAN	Output signal

Table 129: T_POS_OP Output signal

Name	Туре	Description
OPEN	BOOLEAN	Output signal

Table 130: T_POS_OK Output signal

Name	Туре	Description
ОК	BOOLEAN	Output signal

Settings

The function does not have any parameters available in LHMI or PCM600.

3.17.1.10 SWITCHR function block

Function block

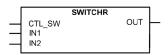


Figure 73: Function block

Functionality

SWITCHR switching block for REAL data type is operated by the $\mathtt{CTL}_\mathtt{SW}$ input, selects the output value \mathtt{OUT} between the $\mathtt{IN1}$ and $\mathtt{IN2}$ inputs.

CTL_SW	оит
FALSE	IN2
TRUE	IN1

Signals

Table 131: SWITCHR Input signals

Name	Туре	Default	Description
CTL_SW	BOOLEAN	1	Control Switch
IN1	REAL	0.0	Real input 1
IN2	REAL	0.0	Real input 2

Table 132: SWITCHR Output signals

Name	Туре	Description
OUT	REAL	Real switch output

3.17.1.11 SWITCHI32 function block

Function block

Figure 74: Function block

Functionality

SWITCHI32 switching block for 32-bit integer data type is operated by the $\mathtt{CTL}_\mathtt{SW}$ input, which selects the output value \mathtt{OUT} between the $\mathtt{IN1}$ and $\mathtt{IN2}$ inputs.

Table 133: SWITCHI32

CTL_SW	ОИТ
FALSE	IN2
TRUE	IN1

Table 134: SWITCHI32 input signals

Name	Туре	Default	Description
CTL_SW	BOOLEAN	1	Control Switch
IN1	INT32	0	Input signal 1
IN2	INT32	0	Input signal 2

Table 135: SWITCHI32 output signals

Name	Туре	Description
OUT	INT32	Output signal

3.17.1.12 SR function block

Function block

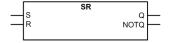


Figure 75: Function block

Functionality

The SR flip-flop output $\mathbb Q$ can be set or reset from the $\mathbb S$ or $\mathbb R$ inputs. $\mathbb S$ input has a higher priority over the $\mathbb R$ input. Output $\mathbb N \mathbb O \mathbb T \mathbb Q$ is the negation of output $\mathbb Q$.

The statuses of outputs ${\tt Q}$ and ${\tt NOTQ}$ are not retained in the nonvolatile memory.

Table 136: Truth table for SR flip-flop

S	R	Q
0	0	01
0	1	0
1	0	1
1	1	1

Table 137: SR Input signals

Name	Туре	Default	Description
S	BOOLEAN	0=False	Set Q output when set
R	BOOLEAN	0=False	Resets Q output when set

Table 138: SR Output signals

Name	Туре	Description
Q	BOOLEAN	Q status
NOTQ	BOOLEAN	NOTQ status

¹ Keep state/no change

3.17.1.13 RS function block

Function block

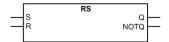


Figure 76: Function block

Functionality

The RS flip-flop output $\mathbb Q$ can be set or reset from the $\mathbb S$ or $\mathbb R$ inputs. R input has a higher priority over the $\mathbb S$ input. Output $\mathbb N \mathbb O \mathbb T \mathbb Q$ is the negation of output $\mathbb Q$.

The statuses of outputs ${\tt Q}$ and ${\tt NOTQ}$ are not retained in the nonvolatile memory.

Table 139: Truth table for RS flip-flop

S	R	Q
0	0	01
0	1	0
1	0	1
1	1	0

Table 140: RS Input signals

Name	Туре	Default	Description
S	BOOLEAN	0=False	Set Q output when set
R	BOOLEAN	0=False	Resets Q output when set

Table 141: RS Output signals

Name	Туре	Description
Q	BOOLEAN	Q status
NOTQ	BOOLEAN	NOTQ status

¹ Keep state/no change

Technical revision history

Table 142: RS Technical revision history

Technical revision	Change	
	The name of the function has been changed from SR to RS.	

3.17.2 Minimum pulse timer

3.17.2.1 Minimum pulse timer TPGAPC

Function block

Figure 77: Function block

Functionality

The Minimum pulse timer function TPGAPC contains two independent timers. The function has a settable pulse length (in milliseconds). The timers are used for setting the minimum pulse length for example, the signal outputs. Once the input is activated, the output is set for a specific duration using the *Pulse time* setting. Both timers use the same setting parameter.

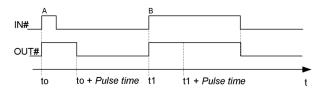


Figure 78: A = Trip pulse is shorter than Pulse time setting, B = Trip pulse is longer than Pulse time setting

Signals

Table 143: TPGAPC Input signals

Name	Туре	Default	Description
IN1	BOOLEAN	0=False	Input 1
IN2	BOOLEAN	0=False	Input 2

Table 144: TPGAPC Output signals

Name	Туре	Description
OUT1	BOOLEAN	Output 1 status
OUT2	BOOLEAN	Output 2 status

Settings

TPGAPC Non group settings (Basic)

Table 145: TPGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Pulse time	060000	ms	1	150	Minimum pulse time

Technical revision history

Table 146: TPGAPC Technical revision history

Technical revision	Change	
В	Outputs now visible in menu	
С	Internal improvement	

3.17.2.2 Minimum pulse timer TPSGAPC

Function block

Figure 79: Function block

Functionality

The Minimum second pulse timer function TPSGAPC contains two independent timers. The function has a settable pulse length (in seconds). The timers are used for setting the minimum pulse length for example, the signal outputs. Once the input is activated, the output is set for a specific duration using the *Pulse time* setting. Both timers use the same setting parameter.

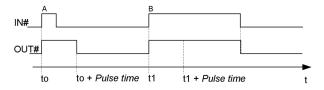


Figure 80: A = Trip pulse is shorter than Pulse time setting, B = Trip pulse is longer than Pulse time setting

Signals

Table 147: TPSGAPC Input signals

Name	Туре	Default	Description
IN1	BOOLEAN	0=False	Input 1
IN2	BOOLEAN	0=False	Input 2

Table 148: TPSGAPC Output signals

Name	Type Description	
OUT1	BOOLEAN	Output 1 status
OUT2	BOOLEAN	Output 2 status

Settings

TPSGAPC Non group settings (Basic)

Table 149: TPSGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Pulse time	0300	S	1	0	Minimum pulse time

Technical revision history

Table 150: TPSGAPC Technical revision history

Technical revision	Change
В	Outputs now visible in menu
С	Internal improvement

3.17.2.3 Minimum pulse timer TPMGAPC

Function block

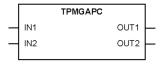


Figure 81: Function block

Functionality

The Minimum minute pulse timer function TPMGAPC contains two independent timers. The function has a settable pulse length (in minutes). The timers are used for setting the minimum pulse length for example, the signal outputs. Once the input is activated, the output is set for a specific duration using the *Pulse time* setting. Both timers use the same setting parameter.

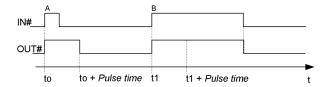


Figure 82: A = Trip pulse is shorter than Pulse time setting, B = Trip pulse is longer than Pulse time setting

Signals

Table 151: TPMGAPC Input signals

Name	Туре	Default	Description
IN1	BOOLEAN	0=False	Input 1
IN2	BOOLEAN	0=False	Input 2

Table 152: TPMGAPC Output signals

Name	Туре	Description
OUT1	BOOLEAN	Output 1 status
OUT2	BOOLEAN	Output 2 status

Settings

TPMGAPC Non group settings (Basic)

Table 153: TPMGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Pulse time	0300	min	1	0	Minimum pulse time

3.17.3 Pulse timer PTGAPC

3.17.3.1 Function block

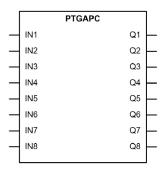


Figure 83: Function block

3.17.3.2 Functionality

The pulse timer function PTGAPC contains eight independent timers. The function has a settable pulse length. Once the input is activated, the output is set for a specific duration using the *Pulse delay time* setting.

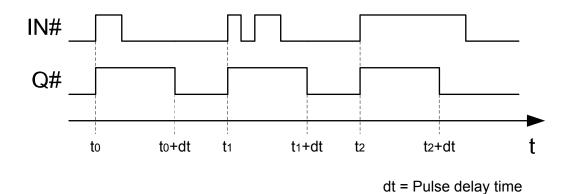


Figure 84: Timer operation

3.17.3.3 Signals

Table 154: PTGAPC Input signals

Name	Туре	Default	Description
IN1	BOOLEAN	0=False	Input 1 status
IN2	BOOLEAN	0=False	Input 2 status
IN3	BOOLEAN	0=False	Input 3 status
IN4	BOOLEAN	0=False	Input 4 status
IN5	BOOLEAN	0=False	Input 5 status
IN6	BOOLEAN	0=False	Input 6 status
IN7	BOOLEAN	0=False	Input 7 status
IN8	BOOLEAN	0=False	Input 8 status

Table 155: PTGAPC Output signals

Name	Туре	Description
Q1	BOOLEAN	Output 1 status
Q2	BOOLEAN	Output 2 status
Q3	BOOLEAN	Output 3 status
Q4	BOOLEAN	Output 4 status
Q5	BOOLEAN	Output 5 status
Q6	BOOLEAN	Output 6 status
Q7	BOOLEAN	Output 7 status
Q8	BOOLEAN	Output 8 status

3.17.3.4 Settings

PTGAPC Non group settings (Basic)

Table 156: PTGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Pulse time 1	03600000	ms	10	0	Pulse time
Pulse time 2	03600000	ms	10	0	Pulse time
Pulse time 3	03600000	ms	10	0	Pulse time
Pulse time 4	03600000	ms	10	0	Pulse time
Pulse time 5	03600000	ms	10	0	Pulse time
Pulse time 6	03600000	ms	10	0	Pulse time
Pulse time 7	03600000	ms	10	0	Pulse time
Pulse time 8	03600000	ms	10	0	Pulse time

Technical data 3.17.3.5

Table 157: PTGAPC Technical data

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

3.17.4 **Daily timer function DTMGAPC**

3.17.4.1 Identification

Function description	IEC 61850	IEC 60617	ANSI/IEEE C37.2
	identification	identification	device number
Daily timer function	DTMGAPC	DTMGAPC	DTMGAPC

3.17.4.2 **Function block**

Figure 85: Function block

3.17.4.3 **Functionality**

The Daily timer function DTMGAPC is used to activate or deactivate the output at the set time of the day. It is possible to set different activation or deactivation times separately for each day of the week.

150 **REC615 & RER615**

3.17.4.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of DTMGAPC can be described with a module diagram. All the modules in the diagram are explained in the next sections.

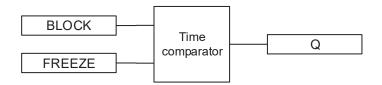


Figure 86: Functional module diagram

Time comparator

This module compares the current day and time with the respective day activation hour *xxx Act hour* and activation minute *xxx Act Min* settings. When the time of the day reaches the set activation time, output *Q* is activated. It remains activate for the duration defined by the setting *xxx Act Dur*.

The output remains active until the next day if the setting for xxx Act Dur is set such that it results into rollover of the day.

Different activation and deactivation times can be set for all days of the week. The activation and deactivation can also be disabled for a specific day, for example, if the activation or deactivation is not needed on Sundays, the *Sunday Act enable* can be set "False".

Activation of the BLOCK input deactivates the function output whereas the activation of FREEZE input freezes the output. The BLOCK input has always a higher priority than the FREEZE input.

3.17.4.5 Application

The daily timer function is useful in applications that require signal activation and deactivation at a specific time of the day. Different activation times and duration can be set for different days of the week. For example, if the signal should be active on Mondays between 7.15 a.m. and 4 p.m., the *Monday Act enable* setting should be "1=True", *Mon Act hour* and *Mon Act Mn* as "07" for hours and "15" for minutes respectively and *Mon Act Dur* should be "525" minutes. The behavior of output *Q* is illustrated in *Figure 87*.

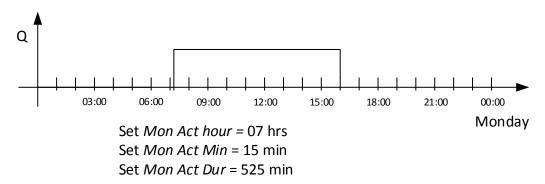


Figure 87: Example setting values for Output Q activation

3.17.4.6 Signals

Table 158: DTMGAPC Input signals

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Block signal for bina- ry output
FREEZE	BOOLEAN	0=False	Freeze signal for bina- ry output

Table 159: DTMGAPC Output signals

Name	Туре	Description
Q	BOOLEAN	Output status

3.17.4.7 Settings

Table 160: DTMGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Monday Act enable	0=False 1=True			false	Activation / deactivation need on Monday
Monday Act hour	023	h		8	Activation hour time for Monday
Monday Act Mn	059	min		0	Activation minute time for Monday
Monday off delay	11440	min	1	60	Activation duration for Monday
Tuesday Act enable	0=False 1=True			false	Activation / deactivation need on Tuesday
Tuesday Act hour	023	h		8	Activation hour time for Tuesday

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
Tuesday Act Mn	059	min		0	Activation minute time for Tuesday
Tuesday off delay	11440	min	1	60	Activation duration for Tuesday
Wednesday Act enable	0=False 1=True			false	Activation / deactivation need on Wednesday
Wednesday Act hour	023	h		8	Activation hour time for Wednesday
Wednesday Act Mn	059	min		0	Activation minute time for Wednesday
Wednesday off delay	11440	min	1	60	Activation duration for Wednesday
Thursday Act enable	0=False 1=True			false	Activation / deactivation need on Thursday
Thursday Act hour	023	h		8	Activation hour time for Thursday
Thursday Act Mn	059	min		0	Activation minute time for Thursday
Thursday off delay	11440	min	1	60	Activation duration for Thursday
Friday Act enable	0=False 1=True			false	Activation / deactivation need on Friday
Friday Act hour	023	h		8	Activation hour time for Friday
Friday Act Mn	059	min		0	Activation minute time for Friday
Friday off delay	11440	min	1	60	Activation duration for Friday
Saturday Act enable	0=False 1=True			false	Activation / deactivation need on Saturday
Saturday Act hour	023	h		8	Activation hour time for Saturday
Saturday Act Mn	059	min		0	Activation minute time for Saturday
Saturday off delay	11440	min	1	60	Activation duration for Saturday
Sunday Act enable	0=False 1=True			false	Activation / deactivation need on Sunday
Sunday Act hour	023	h		8	Activation hour time for Sunday
Sunday Act Mn	059	min		0	Activation minute time for Sunday
Sunday off delay	11440	min	1	60	Activation duration for Sunday

3.17.4.8 Monitored data

Table 161: DTMGAPC Monitored data

Name	Туре	Values (Range)	Unit	Description
DTMGAPC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

3.17.5 Time delay off (8 pcs) TOFGAPC

3.17.5.1 Function block

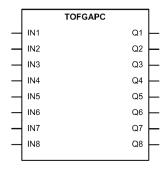


Figure 88: Function block

3.17.5.2 Functionality

The time delay off (8 pcs) function TOFGAPC can be used, for example, for a dropoff-delayed output related to the input signal. The function contains eight independent timers. There is a settable delay in the timer. Once the input is activated, the output is set immediately. When the input is cleared, the output stays on until the time set with the *Off delay time* setting has elapsed.

Figure 89: Timer operation

3.17.5.3 Signals

Table 162: TOFGAPC Input signals

Name	Туре	Default	Description
IN1	BOOLEAN	0=False	Input 1 status
IN2	BOOLEAN	0=False	Input 2 status
IN3	BOOLEAN	0=False	Input 3 status
IN4	BOOLEAN	0=False	Input 4 status
IN5	BOOLEAN	0=False	Input 5 status
IN6	BOOLEAN	0=False	Input 6 status
IN7	BOOLEAN	0=False	Input 7 status
IN8	BOOLEAN	0=False	Input 8 status

Table 163: TOFGAPC Output signals

Name	Туре	Description
Q1	BOOLEAN	Output 1 status
Q2	BOOLEAN	Output 2 status
Q3	BOOLEAN	Output 3 status
Q4	BOOLEAN	Output 4 status
Q5	BOOLEAN	Output 5 status
Q6	BOOLEAN	Output 6 status
Q7	BOOLEAN	Output 7 status
Q8	BOOLEAN	Output 8 status

3.17.5.4 Settings

Table 164: TOFGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Off delay time 1	03600000	ms	10	0	Off delay time
Off delay time 2	03600000	ms	10	0	Off delay time
Off delay time 3	03600000	ms	10	0	Off delay time
Off delay time 4	03600000	ms	10	0	Off delay time
Off delay time 5	03600000	ms	10	0	Off delay time
Off delay time 6	03600000	ms	10	0	Off delay time
Off delay time 7	03600000	ms	10	0	Off delay time
Off delay time 8	03600000	ms	10	0	Off delay time

3.17.5.5 Technical data

Table 165: TOFGAPC Technical data

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

3.17.6 Time delay on (8 pcs) TONGAPC

3.17.6.1 Function block

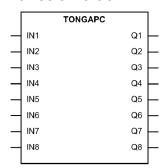


Figure 90: Function block

3.17.6.2 Functionality

The time delay on (8 pcs) function TONGAPC can be used, for example, for time-delaying the output related to the input signal. TONGAPC contains eight independent timers. The timer has a settable time delay. Once the input is activated, the output is set after the time set by the *On delay time* setting has elapsed.

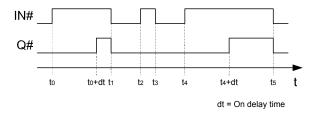


Figure 91: Timer operation

3.17.6.3 Signals

Table 166: TONGAPC Input signals

Name	Туре	Default	Description
IN1	BOOLEAN	0=False	Input 1
IN2	BOOLEAN	0=False	Input 2
IN3	BOOLEAN	0=False	Input 3
IN4	BOOLEAN	0=False	Input 4
IN5	BOOLEAN	0=False	Input 5
IN6	BOOLEAN	0=False	Input 6
IN7	BOOLEAN	0=False	Input 7
IN8	BOOLEAN	0=False	Input 8

Table 167: TONGAPC Output signals

Name	Туре	Description
Q1	BOOLEAN	Output 1
Q2	BOOLEAN	Output 2
Q3	BOOLEAN	Output 3
Q4	BOOLEAN	Output 4
Q5	BOOLEAN	Output 5
Q6	BOOLEAN	Output 6
Q7	BOOLEAN	Output 7
Q8	BOOLEAN	Output 8

3.17.6.4 Settings

Table 168: TONGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
On delay time 1	03600000	ms	10	0	On delay time
On delay time 2	03600000	ms	10	0	On delay time
On delay time 3	03600000	ms	10	0	On delay time
On delay time 4	03600000	ms	10	0	On delay time
On delay time 5	03600000	ms	10	0	On delay time
On delay time 6	03600000	ms	10	0	On delay time
On delay time 7	03600000	ms	10	0	On delay time
On delay time 8	03600000	ms	10	0	On delay time

3.17.6.5 Technical data

Table 169: TONGAPC Technical data

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

3.17.7 Set-reset (8 pcs) SRGAPC

3.17.7.1 Function block

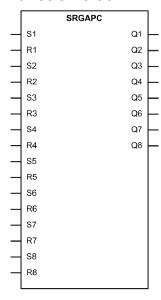


Figure 92: Function block

3.17.7.2 Functionality

The set-reset (8 pcs) function SRGAPC is a simple SR flip-flop with a memory that can be set or that can reset an output from the S# or R# inputs, respectively. The function contains eight independent set-reset flip-flop latches where the SET input has the higher priority over the RESET input. The status of each Q# output is retained in the nonvolatile memory. The individual reset for each Q# output is available on the LHMI or through tool via communication.

Table 170: Truth table for SRGAPC

S#	R#	Q#
0	0	01
0	1	0
1	0	1
1	1	1

3.17.7.3 Signals

Table 171: SRGAPC Input signals

Name	Туре	Default	Description
S1	BOOLEAN	0=False	Set Q1 output when set
R1	BOOLEAN	0=False	Resets Q1 output when set

Table continues on the next page

¹ Keep state/no change

Name	Туре	Default	Description
S2	BOOLEAN	0=False	Set Q2 output when set
R2	BOOLEAN	0=False	Resets Q2 output when set
S3	BOOLEAN	0=False	Set Q3 output when set
R3	BOOLEAN	0=False	Resets Q3 output when set
S4	BOOLEAN	0=False	Set Q4 output when set
R4	BOOLEAN	0=False	Resets Q4 output when set
S 5	BOOLEAN	0=False	Set Q5 output when set
R5	BOOLEAN	0=False	Resets Q5 output when set
S6	BOOLEAN	0=False	Set Q6 output when set
R6	BOOLEAN	0=False	Resets Q6 output when set
S7	BOOLEAN	0=False	Set Q7 output when set
R7	BOOLEAN	0=False	Resets Q7 output when set
S8	BOOLEAN	0=False	Set Q8 output when set
R8	BOOLEAN	0=False	Resets Q8 output when set

Table 172: SRGAPC Output signals

Name	Туре	Description
Q1	BOOLEAN	Q1 status
Q2	BOOLEAN	Q2 status
Q3	BOOLEAN	Q3 status
Q4	BOOLEAN	Q4 status
Q5	BOOLEAN	Q5 status
Q6	BOOLEAN	Q6 status
Q7	BOOLEAN	Q7 status
Q8	BOOLEAN	Q8 status

3.17.7.4 Settings

Table 175: SKGAPC Non-group settings (basic	Table 173: SRGAPC Non group	settings	(Basic
---	------------------------------------	----------	--------

Parameter	Values (Range)	Unit	Step	Default	Description
Reset Q1	0=Cancel 1=Reset			0=Cancel	Resets Q1 output when set
Reset Q2	0=Cancel 1=Reset			0=Cancel	Resets Q2 output when set
Reset Q3	0=Cancel 1=Reset			0=Cancel	Resets Q3 output when set
Reset Q4	0=Cancel 1=Reset			0=Cancel	Resets Q4 output when set
Reset Q5	0=Cancel 1=Reset			0=Cancel	Resets Q5 output when set
Reset Q6	0=Cancel 1=Reset			0=Cancel	Resets Q6 output when set
Reset Q7	0=Cancel 1=Reset			0=Cancel	Resets Q7 output when set
Reset Q8	0=Cancel 1=Reset			0=Cancel	Resets Q8 output when set

3.17.8 Move (8 pcs) MVGAPC

3.17.8.1 **Function block**

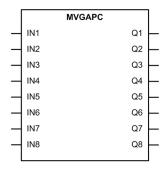


Figure 93: Function block

3.17.8.2 **Functionality**

The move (8 pcs) function MVGAPC is used for user logic bits. Each input state is directly copied to the output state. This allows the creating of events from advanced logic combinations.

3.17.8.3 Signals

Table 174: MVGAPC Input signals

Name	Туре	Default	Description
IN1	BOOLEAN 0=False		IN1 status
IN2	BOOLEAN	0=False	IN2 status
IN3	BOOLEAN	0=False	IN3 status
IN4	BOOLEAN	0=False	IN4 status
IN5	BOOLEAN	0=False	IN5 status
IN6	BOOLEAN	0=False	IN6 status
IN7	BOOLEAN	0=False	IN7 status
IN8	BOOLEAN	0=False	IN8 status

Table 175: MVGAPC Output signals

Name	Туре	Description
Q1	BOOLEAN	Q1 status
Q2	BOOLEAN	Q2 status
Q3	BOOLEAN	Q3 status
Q4	BOOLEAN	Q4 status
Q5	BOOLEAN	Q5 status
Q6	BOOLEAN	Q6 status
Q7	BOOLEAN	Q7 status
Q8	BOOLEAN	Q8 status

3.17.8.4 Settings

Table 176: MVGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Description				MVGAPC1 Q1	Output description
Description				MVGAPC1 Q2	Output description
Description				MVGAPC1 Q3	Output description
Description				MVGAPC1 Q4	Output description
Description				MVGAPC1 Q5	Output description
Description				MVGAPC1 Q6	Output description
Description				MVGAPC1 Q7	Output description
Description				MVGAPC1 Q8	Output description

3.17.9 Integer value move MVI4GAPC

3.17.9.1 Function block

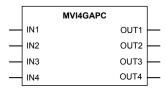


Figure 94: Function block

3.17.9.2 Functionality

The integer value move function MVI4GAPC is used for creation of the events from the integer values. The integer input value is received via $\mathtt{IN1...4}$ input. The integer output value is available on $\mathtt{OUT1...4}$ output.

The integer input range is from -2147483648 to 2147483647.

3.17.9.3 Signals

Table 177: MVI4GAPC Input signals

Name	Туре	Default	Description
IN1	INT32	0	Integer input value 1
IN2	INT32	0	Integer input value 2
IN3	INT32	0	Integer input value 3
IN4	INT32	0	Integer input value 4

Table 178: MVI4GAPC Output signals

Name	Туре	Description
OUT1	INT32	Integer output value 1
OUT2	INT32	Integer output value 2
OUT3	INT32	Integer output value 3
OUT4	INT32	Integer output value 4

3.17.10 Analog value scaling SCA4GAPC

3.17.10.1 Function block

	SCA4GAPC				
_	AI1_VALUE	AO1_VALUE	_		
_	AI2_VALUE	AO2_VALUE	_		
_	AI3_VALUE	AO3_VALUE	_		
_	AI4_VALUE	AO4_VALUE	_		

Figure 95: Function block

3.17.10.2 Functionality

The analog value scaling function SCA4GAPC is used for scaling the analog value. It allows creating events from analog values.

The analog value received via the AIn_VALUE input is scaled with the *Scale ratio n* setting. The scaled value is available on the AOn_VALUE output.

Analog input range is from -10000.0 to 10000.0.

Analog output range is from -2000000.0 to 2000000.0.

If the value of the ${\tt AIn_VALUE}$ input exceeds the analog input range, ${\tt AOn\ VALUE}$ is set to 0.0.

If the result of AIn_VALUE multiplied by the Scale ratio n setting exceeds the analog output range, AOn_VALUE shows the minimum or maximum value, according to analog value range.

3.17.10.3 Signals

Table 179: SCA4GAPC Input signals

Name	Туре	Default	Description
AI1_VALUE	FLOAT32	0.0	Analog input value of channel 1
AI2_VALUE	FLOAT32	0.0	Analog input value of channel 2
AI3_VALUE	FLOAT32	0.0	Analog input value of channel 3
AI4_VALUE	FLOAT32	0.0	Analog input value of channel 4

Table 180: SCA4GAPC Output signals

Name	Туре	Description
AO1_VALUE	FLOAT32	Analog value 1 after scaling
AO2_VALUE	FLOAT32	Analog value 2 after scaling
AO3_VALUE	FLOAT32	Analog value 3 after scaling
AO4_VALUE	FLOAT32	Analog value 4 after scaling

3.17.10.4 Settings

Table 181: SCA4GAPC settings

Parameter	Values (Range)	Unit	Step	Default	Description
Scale ratio 1	0.0011000.000		0.001	1.000	Scale ratio for analog value 1
Scale ratio 2	0.0011000.000		0.001	1.000	Scale ratio for analog value 2
Scale ratio 3	0.0011000.000		0.001	1.000	Scale ratio for analog value 3
Scale ratio 4	0.0011000.000		0.001	1.000	Scale ratio for analog value 4

3.17.11 Local/remote control function block CONTROL

3.17.11.1 Function block

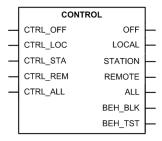


Figure 96: Function block

3.17.11.2 Functionality

Local/Remote control is by default realized through the R/L button on the front panel. The control via binary input can be enabled by setting the value of the *LR control* setting to "Binary input". The binary input control requires that the CONTROL function is instantiated in the product configuration.

Local/Remote control supports multilevel access for control operations in substations according to the IEC 61850 standard. Multilevel control access with separate station control access level is not supported by other protocols than IEC 61850.

The actual Local/Remote control state is evaluated by the priority scheme on the function block inputs. If more than one input is active, the input with the highest priority is selected. The priority order is "off", "local", "station", "remote", "all".

The actual state is reflected on the CONTROL function outputs. Only one output is active at a time.

Table 182: Truth table for CONTROL

Input		Output			
CTRL_OFF	CTRL_LOC	CTRL_STA	CTRL_REM	CTRL_ALL	
TRUE	N/A	N/A	N/A	N/A	OFF = TRUE
FALSE	TRUE	N/A	N/A	N/A	LOCAL = TRUE
FALSE	FALSE	TRUE	N/A	N/A	STATION = TRUE
FALSE	FALSE	FALSE	TRUE	TRUE	REMOTE = TRUE
FALSE	FALSE	FALSE	FALSE	TRUE	ALL = TRUE
FALSE	FALSE	FALSE	FALSE	FALSE	OFF = TRUE

3.17.11.3 L/R control access

Four different Local/Remote control access scenarios are possible depending on the selected station authority level: "L,R", "L,R,L+R", "L,S,R" and "L, S, S+R, L+S, L+S+R". If control commands need to be allowed from multiple levels, multilevel access can be used. Multilevel access is possible only by using the station authority levels "L,R,L+R" and "L, S, S+R, L+S, L+S+R". Multilevel access status is available from IEC 61850 data object CTRL.LLNO.MltLev.

Control access selection is made with R/L button or CONTROL function block and IEC 61850 data object CTRL.LLNO.LocSta. When writing CTRL.LLNO.LocSta IEC 61850 data object, IEC 61850 command originator category station must be used by the client, and remote IEC 61850 control access must be allowed by the relay station authority. CTRL.LLN0.LocSta data object value is retained in the nonvolatile memory. The present control status can be monitored in the HMI or PCM600 via Monitoring > **Control command** with the *LR state* parameter or from the IEC 61850 data object CTRL.LLNO. LocKeyHMI.

IEC 61850 command originator category is always set by the IEC 61850 client. The relay supports station and remote IEC 61850 command originator categories, depending on the selected station authority level.

3.17.11.4 Station authority level "L,R"

Relay's default station authority level is "L,R". In this scenario only local or remote control access is allowed. Control access with IEC 61850 command originator category station is interpreted as remote access. There is no multilevel access.

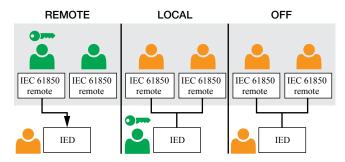


Figure 97: Station authority is "L,R"

When station authority level "L,R" is used, control access can be selected using R/L button or CONTROL function block. IEC 61850 data object CTRL.LLNO.LocSta and CONTROL function block inputs CTRL STA and CTRL ALL are not applicable for this station authority level.

Table 183: Station authority level "L,R" using R/L button

L/R control		L/R control status		Control access	
R/L button	CTRL.LLN0.LocSta	CTRL.LLN0.MitLev L/R state CTRL.LLN0.LocKey HMI		Local user	IEC 61850 client ¹
Local	N/A	FALSE	1	х	
Remote	N/A	FALSE	2		х
Off	N/A	FALSE	0		

¹ Client IEC 61850 command originator category check is not performed.

166 **REC615 & RER615** Technical Manual

L/R control		L/R control status		Control access	
Control FB input	CTRL.LLNO.LocSta	CTRL.LLNO.MitLev	L/R state CTRL.LLN0.LocKey HMI	Local user	IEC 61850 client ¹
CTRL_OFF	N/A	FALSE	0		
CTRL_LOC	N/A	FALSE	1	х	
CTRL_STA	N/A	FALSE	0		
CTRL_REM	N/A	FALSE	2		х
CTRL_ALL	N/A	FALSE	0		

3.17.11.5 Station authority level "L,R,L+R"

Station authority level "L,R, L+R" adds multilevel access support. Control access can also be simultaneously permitted from local or remote location. Simultaneous local or remote control operation is not allowed as one client and location at time can access controllable objects and they remain reserved until the previously started control operation is first completed by the client. Control access with IEC 61850 originator category station is interpreted as remote access.

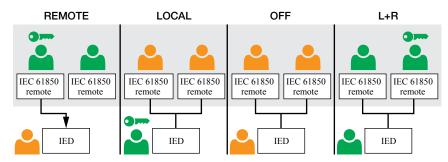


Figure 98: Station authority is "L,R,L+R"

When station authority level "L,R, L+R" is used, the control access can be selected using R/L button or CONTROL function block. IEC 61850 data object CTRL.LLNO.LocSta and CONTROL function block input CTRL_STA are not applicable for this station authority level.

Table 185: Station authority level "L,R,L+R" using R/L button

L/R Control		L/R Control status		Control access	
R/L button	CTRL.LLN0.LocSta	CTRL.LLNO.MitLev L/R state CTRL.LLNO.LocKey HMI		Local user	IEC 61850 client ¹
Local	N/A	FALSE	1	х	
Remote	N/A	FALSE	2		х
Local + Remote	N/A	TRUE	4	х	х
Off	N/A	FALSE	0		

¹ Client IEC 61850 command originator category check is not performed.

L/R Control		L/R Control status		Control access	
Control FB input	CTRL.LLN0.LocSta	CTRL.LLN0.MltLev	L/R state CTRL.LLNO.LocKey HMI	Local user	IEC 61850 client ¹
CTRL_OFF	N/A	FALSE	0		
CTRL_LOC	N/A	FALSE	1	х	
CTRL_STA	N/A	FALSE	0		
CTRL_REM	N/A	FALSE	2		х
CTRL_ALL	N/A	TRUE	4	x	х

3.17.11.6 Station authority level "L,S,R"

Station authority level "L,S,R" adds station control access. In this level IEC 61850 command originator category validation is performed to distinguish control commands with IEC 61850 command originator category set to "Remote" or "Station". There is no multilevel access.

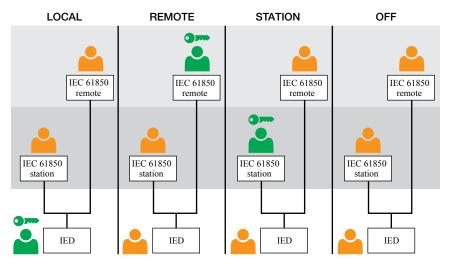


Figure 99: Station authority is "L,S,R"

When the station authority level "L,S,R" is used, the control access can be selected using R/L button or CONTROL function block. IEC 61850 data object CTRL.LLNO.LocSta and CONTROL function block input CTRL_STA are applicable for this station authority level.

Station control access can be reserved by using R/L button or CONTROL function block together with IEC 61850 data object CTRL.LLNO.LocSta.

Table 187: Station authority level "L,S,R" using R/L button

L/R Control		L/R Control status		Control access		
R/L button	CTRL.LLN0.LocS	CTRL.LLNO.MitL ev	L/R state CTRL.LLNO.Loc KeyHMI	Local user	IEC 61850 client	IEC 61850 client ³
Local	FALSE	FALSE	1	х		
Remote	FALSE	FALSE	2		х	
Remote	TRUE	FALSE	3			х
Off	FALSE	FALSE	0			

Table 188: Station authority level "L,S,R" using CONTROL function block

L/R Control		L/R Control status		Control access		
R/L button	CTRL.LLNO.Lo cSta ¹	CTRL.LLNO.MitL ev	L/R state CTRL.LLNO.Loc KeyHMI	Local user	IEC 61850 client	IEC 61850 client ³
CTRL_OFF	FALSE	FALSE	0			
CTRL_LOC	FALSE	FALSE	1	х		
CTRL_STA	TRUE	FALSE	3			х
CTRL_REM ⁴	TRUE	FALSE	3			х
CTRL_REM	FALSE	FALSE	2		х	
CTRL_ALL	FALSE	FALSE	0			

3.17.11.7 Station authority level "L,S,S+R,L+S,L+S+R"

Station authority level "L,S,S+R,L+S,L+S+R" adds station control access together with several different multilevel access scenarios. Control access can also be simultaneously permitted from local, station or remote location. Simultaneous local, station or remote control operation is not allowed as one client and location at time can access controllable objects and they remain reserved until the previously started control operation is first completed by the client.

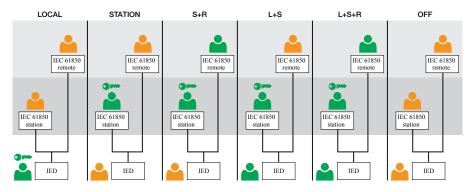


Figure 100: Station authority is "L,S,S+R,L+S,L+S+R"

When station authority level "L,S,S+R,L+S,L+S+R" is used, control access can be selected using R/L button or CONTROL function block. IEC 61850 data object

REC615 & RER615 169

¹ Station client reserves the control operating by writing controllable point LocSta.

² Client IEC 61850 command originator category is remote.

³ Client IEC 61850 command originator category is station.

⁴ CTRL_STA unconnected in application configuration. Station client reserves the control operating by writing controllable point LocSta

CTRL.LLNO.LocSta and CONTROL function block input $CTRL_STA$ are applicable for this station authority level.

"Station" and "Local + Station" control access can be reserved by using R/L button or CONTROL function block in combination with IEC 61850 data object CTRL.LLNO.LocSta.

Table 189: Station authority level "L,S,S+R,L+S,L+S+R" using R/L button

L/R Control		L/R Control status		Control access		
R/L button	CTRL.LLNO.LocS ta ¹	CTRL.LLN0.MltL ev	L/R state CTRL.LLNO.Loc KeyHMI	Local user	IEC 61850 client	IEC 61850 client ³
Local	FALSE	FALSE	1	х		
Remote	FALSE	TRUE	7		х	х
Remote	TRUE	FALSE	3			х
Local + Remote	FALSE	TRUE	6	х	х	х
Local + Remote	TRUE	TRUE	5	х		х
Off	FALSE	FALSE	0			

Table 190: Station authority level "L,S,S+R,L+S,L+S+R" using CONTROL function block

L/R Control		L/R Control status		Control access		
R/L button	CTRL.LLNO.LocS	CTRL.LLNO.MItL ev	L/R state CTRL.LLNO.Loc KeyHMI	Local user	IEC 61850 client	IEC 61850 client ³
CTRL_OFF	FALSE	FALSE	0			
CTRL_LOC	FALSE	FALSE	1	х		
CTRL_STA	FALSE	FALSE	3			х
CTRL_REM ⁴	TRUE	TRUE	3			х
CTRL_REM	FALSE	TRUE	7		х	х
CTRL_ALL	FALSE	TRUE	6	х	х	х
CTRL_ALL ⁴	TRUE	TRUE	5	х		х

3.17.11.8 Signals

Table 191: CONTROL input signals

Name	Туре	Default	Description
CTRL_OFF	BOOLEAN	0	Control input OFF
CTRL_LOC	BOOLEAN	0	Control input Local
CTRL_STA	BOOLEAN	0	Control input Station
CTRL_REM	BOOLEAN	0	Control input Remote
CTRL_ALL	BOOLEAN	0	Control input All

REC615 & RER615 Technical Manual

¹ Station client reserves the control operating by writing controllable point LocSta.

² Client IEC 61850 command originator category is remote.

³ Client IEC 61850 command originator category is station.

⁴ CTRL_STA unconnected in application configuration. Station client reserves the control operating by writing controllable point LocSta.

Table 192: CONTROL output signals

Name	Туре	Description
OFF	BOOLEAN	Control output OFF
LOCAL	BOOLEAN	Control output Local
STATION	BOOLEAN	Control output Station
REMOTE	BOOLEAN	Control output Remote
ALL	BOOLEAN	Control output All
BEH_BLK	BOOLEAN	Logical device CTRL block status
BEH_TST	BOOLEAN	Logical device CTRL test status

3.17.11.9 Settings

Table 193: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
LR control	1=LR key			1=LR key	LR control through LR key or binary input
	2=Binary input				
Station authority	1=L,R			1=L,R	Control command originator category usage
	2=L,S,R				gory usage
	3=L,R,L+R				
	4=L,S,S+R,L+S,L +S+R				
Control mode	1=On			1=On	Enabling and disabling control
	2=Blocked				
	5=Off				

3.17.11.10 Monitored data

Table 194: Monitored data

Name	Туре	Values (Range)	Unit	Description
Command	Enum	0=No commands		Latest command re-
response		1=Select open		sponse
		2=Select close		
		3=Operate open		
		4=Operate close		
		5=Direct open		
		6=Direct close		
		7=Cancel		
		8=Position reached		
		9=Position timeout		

Table continues on the next page

Туре	Values (Range)	Unit	Description
	10=Object status only		
	11=Object direct		
	12=Object select		
	13=RL local allowed		
	14=RL remote allowed		
	15=RL off		
	16=Function off		
	17=Function blocked		
	18=Command progress		
	19=Select timeout		
	20=Missing authority		
	21=Close not enabled		
	22=Open not enabled		
	23=Internal fault		
	24=Already close		
	25=Wrong client		
	26=RL station allowed		
	27=RL change		
	28=Abortion by trip		
Enum	0=Off		LR state monitoring
	1=Local		
	2=Remote		
	3=Station		
	4=L+R		
	5=L+S		
	6=L+S+R		
	7=S+R		
		10=Object status only 11=Object direct 12=Object select 13=RL local allowed 14=RL remote allowed 15=RL off 16=Function off 17=Function blocked 18=Command progress 19=Select timeout 20=Missing authority 21=Close not enabled 22=Open not enabled 23=Internal fault 24=Already close 25=Wrong client 26=RL station allowed 27=RL change 28=Abortion by trip Enum 0=Off 1=Local 2=Remote 3=Station 4=L+R 5=L+S 6=L+S+R	10=Object status only 11=Object direct 12=Object select 13=RL local allowed 14=RL remote allowed 15=RL off 16=Function off 17=Function blocked 18=Command progress 19=Select timeout 20=Missing authority 21=Close not enabled 22=Open not enabled 23=Internal fault 24=Already close 25=Wrong client 26=RL station allowed 27=RL change 28=Abortion by trip Enum 0=Off 1=Local 2=Remote 3=Station 4=L+R 5=L+S 6=L+S+R

3.17.12 Generic control point (16 pcs) SPCGAPC

3.17.12.1 Function block

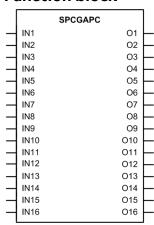


Figure 101: Function block

3.17.12.2 Functionality

The generic control points function SPCGAPC contains 16 independent control points. SPCGAPC offers the capability to activate its outputs through a local or remote control. The local control request can be issued through the buttons in the single-line diagram or via inputs and the remote control request through communication. The rising edge of the input signal is interpreted as a control request, and the output operation is triggered. When remote control requests are used the control points behaves as persistent.

The Loc Rem restriction setting is used for enabling or disabling the restriction for SPCGAPC to follow the R/L button state. If Loc Rem restriction is "True", as it is by default, the local or remote control operations are accepted according to the R/L button state.

Each of the 16 generic control point outputs has the *Operation mode*, *Pulse length* and *Description* setting. If *Operation mode* is "Toggle", the output state is toggled for every control request received. If Operation mode is "Pulsed", the output pulse of a preset duration (the *Pulse length* setting) is generated for every control request received. The *Description* setting can be used for storing information on the actual use of the control point in application, for instance.

For example, if the *Operation mode* is "Toggle", the output O# is initially "False". The rising edge in IN# sets O# to "True". The falling edge of IN# has no effect. Next rising edge of IN# sets O# to "False".

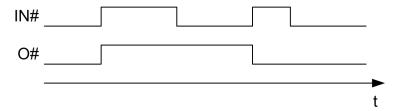


Figure 102: Operation in "Toggle" mode

The BLOCK input can be used for blocking the functionality of the outputs. The operation of the BLOCK input depends on the Operation mode setting. If Operation

mode is "Toggle", the output state freezes and cannot be changed while the ${\tt BLOCK}$ input is active. If *Operation mode* is "Pulsed", the activation of the ${\tt BLOCK}$ input resets the outputs to the "False" state and further control requests are ignored while the ${\tt BLOCK}$ input is active.

From the remote communication point of view SPCGAPC toggled operation mode is always working as persistent mode. The output O# follows the value written to the input IN#.

3.17.12.3 Signals

Table 195: SPCGAPC Input signals

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
IN1	BOOLEAN	0=False	Input of control point 1
IN2	BOOLEAN	0=False	Input of control point 2
IN3	BOOLEAN	0=False	Input of control point 3
IN4	BOOLEAN	0=False	Input of control point 4
IN5	BOOLEAN	0=False	Input of control point 5
IN6	BOOLEAN	0=False	Input of control point 6
IN7	BOOLEAN	0=False	Input of control point 7
IN8	BOOLEAN	0=False	Input of control point 8
IN9	BOOLEAN	0=False	Input of control point 9
IN10	BOOLEAN	0=False	Input of control point 10
IN11	BOOLEAN	0=False	Input of control point 11
IN12	BOOLEAN	0=False	Input of control point 12
IN13	BOOLEAN	0=False	Input of control point 13
IN14	BOOLEAN	0=False	Input of control point 14

Table continues on the next page

Name	Туре	Default	Description
IN15	BOOLEAN	0=False	Input of control point 15
IN16	BOOLEAN	0=False	Input of control point 16

Table 196: SPCGAPC Output signals

Name	Туре	Description
01	BOOLEAN	Output 1 status
02	BOOLEAN	Output 2 status
О3	BOOLEAN	Output 3 status
O4	BOOLEAN	Output 4 status
O5	BOOLEAN	Output 5 status
06	BOOLEAN	Output 6 status
07	BOOLEAN	Output 7 status
08	BOOLEAN	Output 8 status
09	BOOLEAN	Output 9 status
O10	BOOLEAN	Output 10 status
O11	BOOLEAN	Output 11 status
O12	BOOLEAN	Output 12 status
013	BOOLEAN	Output 13 status
O14	BOOLEAN	Output 14 status
015	BOOLEAN	Output 15 status
016	BOOLEAN	Output 16 status

3.17.12.4 Settings

SPCGAPC Non group settings (Basic)

Table 197: SPCGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Loc Rem restriction	0=False 1=True			1=True	Local remote switch restriction
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 1	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 2	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 4	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 5	Generic control point description
Operation mode	0=Pulsed			-1=Off	Operation mode for generic control point

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
	1=Toggle/Persistent -1=Off				
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 6	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 8	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 10	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 11	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 12	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent			-1=Off	Operation mode for generic control point
	-1=Off				
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 13	Generic control point description
Operation mode	0=Pulsed			-1=Off	Operation mode for generic control
	1=Toggle/Persis- tent				point
	-1=Off				
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 14	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 15	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persis- tent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCGAPC1 Output 16	Generic control point description

3.17.13 Remote generic control points SPCRGAPC

3.17.13.1 Function block

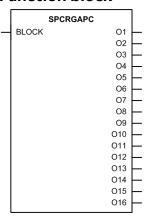


Figure 103: Function block

3.17.13.2 Functionality

The remote generic control points function SPCRGAPC is dedicated only for remote controlling, that is, SPCRGAPC cannot be controlled locally. The remote control is provided through communications.

3.17.13.3 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

SPCRGAPC has the *Operation mode*, *Pulse length* and *Description* settings available to control all 16 outputs. By default, the *Operation mode* setting is set to "Off". This disables the controllable signal output. SPCRGAPC also has a general setting *Loc Rem restriction*, which enables or disables the local or remote state functionality.

When the *Operation mode* is set to "Toggle", the corresponding output toggles between "True" and "False" for every input pulse received. The state of the output is stored in a nonvolatile memory and restored if the protection relay is restarted.

When the *Operation mode* is set to "Pulsed", the corresponding output can be used to produce the predefined length of pulses. Once activated, the output remains active for the duration of the set pulse length. When activated, the additional activation command does not extend the length of pulse. Thus, the pulse needs to be ended before the new activation can occur.

The *Description* setting can be used for storing signal names for each output.

Each control point or SPCRGAPC can only be accessed remotely through communication. SPCRGAPC follows the local or remote (L/R) state if the setting *Loc Rem restriction* is "true". If the *Loc Rem restriction* setting is "false", local or remote (L/R) state is ignored, that is, all controls are allowed regardless of the local or remote state.

The <code>BLOCK</code> input can be used for blocking the output functionality. The <code>BLOCK</code> input operation depends on the *Operation mode* setting. If the *Operation mode* setting is set to "Toggle", the output state cannot be changed when the input <code>BLOCK</code> is TRUE. If the *Operation mode* setting is set to "Pulsed", the activation of the <code>BLOCK</code> input resets the output to the <code>FALSE</code> state.

3.17.13.4 Signals

Table 198: SPCRGAPC Input signals

Name	Туре	Default	Description
BLOCK	BOOLEAN	II	Block signal for activating the blocking mode

Table 199: SPCRGAPC Output signals

Name	Туре	Description
01	BOOLEAN	Output 1 status
02	BOOLEAN	Output 2 status
О3	BOOLEAN	Output 3 status
04	BOOLEAN	Output 4 status
O5	BOOLEAN	Output 5 status
06	BOOLEAN	Output 6 status
07	BOOLEAN	Output 7 status
08	BOOLEAN	Output 8 status
09	BOOLEAN	Output 9 status
O10	BOOLEAN	Output 10 status
O11	BOOLEAN	Output 11 status
012	BOOLEAN	Output 12 status
O13	BOOLEAN	Output 13 status
O14	BOOLEAN	Output 14 status
015	BOOLEAN	Output 15 status
O16	BOOLEAN	Output 16 status

3.17.13.5 Settings

Table 200: SPCRGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Loc Rem restriction	0=False			1=True	Local remote switch restriction
	1=True				
Operation mode	0=Pulsed			-1=Off	Operation mode for generic con-
	1=Toggle/Persistent				trol point
	-1=Off				
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 1	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 2	· ·
Operation mode	0=Pulsed			-1=Off	Operation mode for generic control point
	1=Toggle/Persistent -1=Off				
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 3	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 4	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 5	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 6	1
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 7	Generic control point description
Operation mode	0=Pulsed			-1=Off	Operation mode for generic control point

Parameter	Values (Range)	Unit	Step	Default	Description
	1=Toggle/Persistent -1=Off				
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 8	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 9	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 10	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 12	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 13	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 14	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode

Parameter	Values (Range)	Unit	Step	Default	Description
Description				SPCRGAPC1 Output 15	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCRGAPC1 Output 16	Generic control point description

3.17.14 Local generic control points SPCLGAPC

3.17.14.1 Function block

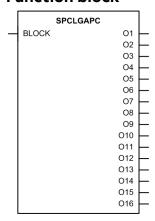


Figure 104: Function block

3.17.14.2 Functionality

The local generic control points function SPCLGAPC is dedicated only for local controlling, that is, SPCLGAPC cannot be controlled remotely. The local control is done through the buttons in the front panel.

3.17.14.3 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

SPCLGAPC has the *Operation mode*, *Pulse length* and *Description* settings available to control all 16 outputs. By default, the *Operation mode* setting is set to "Off". This disables the controllable signal output. SPCLGAPC also has a general setting *Loc Rem restriction*, which enables or disables the local or remote state functionality.

When the *Operation mode* is set to "Toggle", the corresponding output toggles between "True" and "False" for every input pulse received. The state of the output is stored in a nonvolatile memory and restored if the protection relay is restarted.

When the *Operation mode* is set to "Pulsed", the corresponding output can be used to produce the predefined length of pulses. Once activated, the output remains

Basic functions 1MRS758755 C

> active for the duration of the set pulse length. When activated, the additional activation command does not extend the length of pulse. Thus, the pulse needs to be ended before the new activation can occur.

The *Description* setting can be used for storing signal names for each output.

Each control point or SPCLGAPC can only be accessed through the LHMI control. SPCLGAPC follows the local or remote (L/R) state if the Loc Rem restriction setting is "true". If the Loc Rem restriction setting is "false", local or remote (L/R) state is ignored, that is, all controls are allowed regardless of the local or remote state.

The BLOCK input can be used for blocking the output functionality. The BLOCK input operation depends on the Operation mode setting. If the Operation mode setting is set to "Toggle", the output state cannot be changed when the input BLOCK is TRUE. If the Operation mode setting is set to "Pulsed", the activation of the BLOCK input resets the output to the FALSE state.

3.17.14.4 **Signals**

Table 201: SPCLGAPC Input signals

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 202: SPCLGAPC Output signals

Name	Туре	Description
01	BOOLEAN	Output 1 status
02	BOOLEAN	Output 2 status
O3	BOOLEAN	Output 3 status
04	BOOLEAN	Output 4 status
O5	BOOLEAN	Output 5 status
06	BOOLEAN	Output 6 status
07	BOOLEAN	Output 7 status
08	BOOLEAN	Output 8 status
09	BOOLEAN	Output 9 status
O10	BOOLEAN	Output 10 status
O11	BOOLEAN	Output 11 status
012	BOOLEAN	Output 12 status
013	BOOLEAN	Output 13 status
014	BOOLEAN	Output 14 status
O15	BOOLEAN	Output 15 status
O16	BOOLEAN	Output 16 status

3.17.14.5 Settings

Table 203: SPCLGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Loc Rem restriction	0=False 1=True			1=True	Local remote switch restriction
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 1	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 2	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 3	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 4	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 5	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 6	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 7	Generic control point description
Operation mode	0=Pulsed			-1=Off	Operation mode for generic control point

Parameter	Values (Range)	Unit	Step	Default	Description
	1=Toggle/Persistent -1=Off				
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 8	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 9	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 10	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 12	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 13	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 14	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode

Parameter	Values (Range)	Unit	Step	Default	Description
Description				SPCLGAPC1 Output 15	Generic control point description
Operation mode	0=Pulsed 1=Toggle/Persistent -1=Off			-1=Off	Operation mode for generic control point
Pulse length	103600000	ms	10	1000	Pulse length for pulsed operation mode
Description				SPCLGAPC1 Output 16	Generic control point description

3.17.15 Programmable buttons (4 buttons) FKEY4GGIO

3.17.15.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Programmable but- tons (4 buttons)	FKEY4GGIO	FKEY4GGIO	FKEY4GGIO

3.17.15.2 Function block

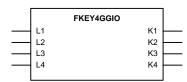


Figure 105: Function block

3.17.15.3 Functionality

The Programmable buttons function FKEY4GGIO is a simple interface between the panel and the application. The user input from the buttons available on the front panel is transferred to the assigned functionality and the corresponding LED is turned ON or OFF for indication. The behavior of each function key in the specific application is configured by connection with other application functions. This gives maximum flexibility.

3.17.15.4 Operation principle

Inputs L1...L4 represent the LEDs on the relay's LHMI. When an input is set to TRUE, the corresponding LED is lit. When a function key on the LHMI is pressed, the corresponding output K1...K4 is set to TRUE.

Each function key has settable text descriptions for the on and off states. The visibility of function key text descriptions on the LHMI can be selected with setting parameter *Function key text visibility*.

3.17.15.5 Signals

Table 204: FKEY4GGIO Input signals

Name	Туре	Default	Description
L1	BOOLEAN	0=False	LED 1
L2	BOOLEAN	0=False	LED 2
L3	BOOLEAN	0=False	LED 3
L4	BOOLEAN	0=False	LED 4

Table 205: FKEY4GGIO Output signals

Name	Туре	Description
K1	BOOLEAN	KEY 1
K2	BOOLEAN	KEY 2
КЗ	BOOLEAN	KEY 3
K4	BOOLEAN	KEY 4

3.17.15.6 Settings

Table 206: FKEY4GGIO Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Function key text visibility	0=False 1=True			1=True	Visibility of function key text on display
On description				Function key 1 on	On description for function key 1
Off description				Function key 1 off	Off description for function key 1
On description				Function key 2 on	On description for function key 2
Off description				Function key 2 off	Off description for function key 2
On description				Function key 3 on	On description for function key 3
Off description				Function key 3 off	Off description for function key 3
On description				Function key 4 on	On description for function key 4
Off description				Function key 4 off	Off description for function key 4

1MRS758755 C Basic functions

3.17.16 Generic up-down counter UDFCNT

3.17.16.1 Function block

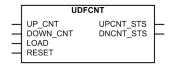


Figure 106: Function block

3.17.16.2 Functionality

The multipurpose generic up-down counter function UDFCNT counts up or down for each positive edge of the corresponding inputs. The counter value output can be reset to zero or preset to some other value if required.

The function provides up-count and down-count status outputs, which specify the relation of the counter value to a loaded preset value and to zero respectively.

3.17.16.3 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of UDFCNT can be described with a module diagram. All the modules in the diagram are explained in the next sections.

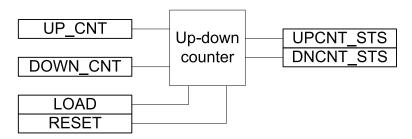


Figure 107: Functional module diagram

Up-down counter

Each rising edge of the <code>UP_CNT</code> input increments the counter value <code>CNT_VAL</code> by one and each rising edge of the <code>DOWN_CNT</code> input decrements the <code>CNT_VAL</code> by one. If there is a rising edge at both the inputs <code>UP_CNT</code> and <code>DOWN_CNT</code>, the counter value <code>CNT_VAL</code> is unchanged. The <code>CNT_VAL</code> is available in the monitored data view.

The counter value CNT_VAL is stored in a nonvolatile memory. The range of the counter is 0...+2147483647. The count of CNT_VAL saturates at the final value of 2147483647, that is, no further increment is possible.

The value of the setting *Counter load value* is loaded into counter value CNT_VAL either when the LOAD input is set to "True" or when the *Load Counter* is set to "Load" in the LHMI. Until the LOAD input is "True", it prevents all further counting.

Basic functions 1MRS758755 C

> The function also provides status outputs ${\tt UPCNT_STS}$ and ${\tt DNCNT_STS}.$ The UPCNT STS is set to "True" when the CNT VAL is greater than or equal to the setting Counter load value. DNCNT STS is set to "True" when the CNT VAL is zero.

The \mathtt{RESET} input is used for resetting the function. When this input is set to "True" or when *Reset counter* is set to "reset", the CNT VAL is forced to zero.

3.17.16.4 **Signals**

Table 207: UDFCNT Input signals

Name	Туре	Default	Description
UP_CNT	BOOLEAN	0=False	Input for up counting
DOWN_CNT	BOOLEAN	0=False	Input for down counting
RESET	BOOLEAN	0=False	Reset input for counter
LOAD	BOOLEAN	0=False	Load input for counter

Table 208: UDFCNT Output signals

Name	Туре	Description
UPCNT_STS	BOOLEAN	Status of the up counting
DNCNT_STS	BOOLEAN	Status of the down counting

3.17.16.5 **Settings**

Table 209: UDFCNT Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Counter load value	02147483647		1	10000	Preset counter value
Reset counter	0=Cancel 1=Reset			0=Cancel	Resets counter value
Load counter	0=Cancel 1=Load			0=Cancel	Loads the counter to preset value

3.17.16.6 **Monitored data**

Table 210: UDFCNT Monitored data

Name	Туре	Values (Range)	Unit	Description
CNT_VAL	INT64	02147483647		Output counter value

1MRS758755 C Basic functions

3.18 Factory settings restoration

In case of configuration data loss or any other file system error that prevents the protection relay from working properly, the whole file system can be restored to the original factory state. All default settings and configuration files stored in the factory are restored. For further information on restoring factory settings, see the operation manual.

3.19 Load profile record LDPRLRC

3.19.1 Function block



Figure 108: Function block

3.19.2 Functionality

The protection relay is provided with a load profile recorder. The load profile feature stores the historical load data captured at a periodical time interval (demand interval). Up to 12 load quantities can be selected for recording and storing in a nonvolatile memory. The value range for the recorded load quantities is about eight times the nominal value, and values larger than that saturate. The recording time depends on a settable demand interval parameter and the amount of quantities selected. The record output is in the COMTRADE format.

3.19.2.1 Quantities

Selectable quantities are product-dependent.

Table 211: Quantity Description

Disabled	Quantity not selected
IL1	Phase 1 current
IL2	Phase 2 current
IL3	Phase 3 current
lo	Neutral/earth/residual current
U12	Phase-to-phase 12 voltage

Disabled	Quantity not selected
U23	Phase-to-phase 23 voltage
U31	Phase-to-phase 31 voltage
UL1	Phase-to-earth 1 voltage
UL2	Phase-to-earth 2 voltage
UL3	Phase-to-earth 3 voltage
U12B	Phase-to-phase 12 voltage, B side
U23B	Phase-to-phase 23 voltage, B side
U31B	Phase-to-phase 31 voltage, B side
UL1B	Phase-to-earth 1 voltage, B side
UL2B	Phase-to-earth 2 voltage, B side
UL3B	Phase-to-earth 3 voltage, B side
S	Apparent power
Р	Real power
Q	Reactive power
PF	Power factor

If the data source for the selected quantity is removed, for example, with Application Configuration in PCM600, the load profile recorder stops recording it and the previously collected data are cleared.

3.19.2.2 Length of record

The recording capability is about 7.4 years when one quantity is recorded and the demand interval is set to 180 minutes. The recording time scales down proportionally when a shorter demand time is selected or more quantities are recorded. The recording lengths in days with different settings used are presented in *Table 212*. When the recording buffer is fully occupied, the oldest data are overwritten by the newest data.

Table 212: Recording capability in days with different settings

	Demand interval							
1	5	10	15	30	60	180		

	Demand interval						
	minute	minutes	minutes	minutes	minutes	minutes	minutes
Amount of quantities			Recordi	ng capabili	ty in days		
1	15.2	75.8	151.6	227.4	454.9	909.7	2729.2
2	11.4	56.9	113.7	170.6	341.1	682.3	2046.9
3	9.1	45.5	91.0	136.5	272.9	545.8	1637.5
4	7.6	37.9	75.8	113.7	227.4	454.9	1364.6
5	6.5	32.5	65.0	97.5	194.9	389.9	1169.6
6	5.7	28.4	56.9	85.3	170.6	341.1	1023.4
7	5.1	25.3	50.5	75.8	151.6	303.2	909.7
8	4.5	22.7	45.5	68.2	136.5	272.9	818.8
9	4.1	20.7	41.4	62.0	124.1	248.1	744.3
10	3.8	19.0	37.9	56.9	113.7	227.4	682.3
11	3.5	17.5	35.0	52.5	105.0	209.9	629.8
12	3.2	16.2	32.5	48.7	97.5	194.9	584.8

3.19.2.3 Uploading of record

The protection relay stores the load profile COMTRADE files to the C:\LDP\COMTRADE folder. The files can be uploaded with the PCM600 tool or any appropriate computer software that can access the C:\LDP\COMTRADE folder.

The load profile record consists of two COMTRADE file types: the configuration file (.CFG) and the data file (.DAT). The file name is same for both file types.

To ensure that both the uploaded file types are generated from the same data content, the files need to be uploaded successively. Once either of the files is uploaded, the recording buffer is halted to give time to upload the other file.

Data content of the load profile record is sequentially updated. Therefore, the size attribute for both COMTRADE files is "0".

Basic functions 1MRS758755 C

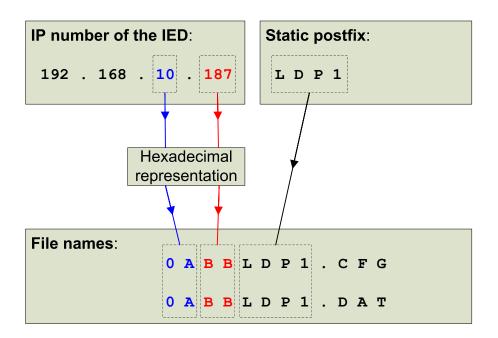


Figure 109: Load profile record file naming

3.19.2.4 Clearing of record

The load profile record can be cleared with *Reset load profile rec* via HMI, communication or the ACT input in PCM600. Clearing of the record is allowed only on the engineer and administrator authorization levels.

The load profile record is automatically cleared if the quantity selection parameters are changed or any other parameter which affects the content of the COMTRADE configuration file is changed. Also, if data source for selected quantity is removed, for example, with ACT, the load profile recorder stops recording and previously collected data are cleared.

3.19.3 Configuration

The load profile record can be configured with the PCM600 tool or any tool supporting the IEC 61850 standard.

The load profile record can be enabled or disabled with the *Operation* setting under the **Configuration/Load Profile Record** menu.

Each protection relay can be mapped to each of the quantity channels of the load profile record. The mapping is done with the *Quantity selection* setting of the corresponding quantity channel.

The IP number of the protection relay and the content of the *Bay name* setting are both included in the COMTRADE configuration file for identification purposes.

The memory consumption of load profile record is supervised, and indicated with two signals MEM_WARN and MEM_ALARM, which could be used to notify the customer that recording should be backlogged by reading the recorded data from

1MRS758755 C Basic functions

the protection relay. The levels for MEM_WARN and MEM_ALARM are set by two parameters *Mem.warn level* and *Mem. Alarm level*.

3.19.4 Signals

Table 213: LDPRLRC Output signals

Name	Туре	Description
MEM_WARN	BOOLEAN	Recording memory warning status
MEM_ALARM	BOOLEAN	Recording memory alarm status

3.19.5 Settings

3.19.5.1 LDPRLRC Non group settings (Basic)

Table 214: LDPRLRC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				
Quantity Sel 1	0=Disabled			0=Disabled	Select quantity to
	1=IL1				Select quantity to be recorded
	2=IL2				
	3=IL3				
	4=lo				
	5=IL1B				
	6=IL2B				
	7=IL3B				
	8=IoB				
	9=U12				
	10=U23				
	11=U31				
	12=UL1				
	13=UL2				
	14=UL3				
	15=U12B				
	16=U23B				
	17=U31B				
	18=UL1B				
	19=UL2B				
	20=UL3B				
	21=S				
	22=P				
	23=Q				
	24=PF				
	25=SB				
	26=PB				
	27=QB				
	28=PFB				
	29=SL1				
	30=SL2				
	31=SL3				
	32=PL1				
	33=PL2				
	34=PL3				
	35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1				
	39=PFL2				

40=PFL3 41=SL1B 42=SL2B 43=SL3B 44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2 14=UL3	
41=SLIB 42=SL2B 43=SL3B 44=PLIB 45=PL2B 46=PL3B 47=QLIB 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 O=Disabled 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
42=SL2B 43=SL3B 44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=ILIC 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=lo 5=IL1B 6=IL2B 7=IL3B 8=loB 9=U12 10=U23 11=U31 12=UL1 13=UL2	41-3L1D
43=SL3B 44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=ILIC 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
44=PL1B 45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=loB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
45=PL2B 46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
46=PL3B 47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=I0 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
47=QL1B 48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=I0 5=IL1B 6=IL2B 7=IL3B 8=IOB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
48=QL2B 49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
49=QL3B 50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=lo 5=IL1B 6=IL2B 7=IL3B 8=loB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
50=PFL1B 51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
51=PFL2B 52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
52=PFL3B 53=IL1C 54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
53=IL1C 54=IL2C 55=IL3C O=Disabled 1=IL1 2=IL2 3=IL3 4=I0 5=IL1B 6=IL2B 7=IL3B 8=IOB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
54=IL2C 55=IL3C Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
Select quantity Sel 2	
Quantity Sel 2 0=Disabled 1=IL1 2=IL2 3=IL3 4=I0 5=IL1B 6=IL2B 7=IL3B 8=IOB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
1=IL1 2=IL2 3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	el 2 0=Disabled
3=IL3 4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	
4=Io 5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	2=IL2
5=IL1B 6=IL2B 7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	3=IL3
6=IL2B 7=IL3B 8=IOB 9=U12 10=U23 11=U31 12=UL1 13=UL2	4=Io
7=IL3B 8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	5=IL1B
8=IoB 9=U12 10=U23 11=U31 12=UL1 13=UL2	6=IL2B
9=U12 10=U23 11=U31 12=UL1 13=UL2	7=IL3B
10=U23 11=U31 12=UL1 13=UL2	8=IoB
11=U31 12=UL1 13=UL2	9=U12
11=U31 12=UL1 13=UL2	10=U23
12=UL1 13=UL2	
13=UL2	
15=U12B	
16=U23B	
17=U31B	
18=UL1B	
19=UL2B	
20=UL3B	
21=S	
22=P	
23=Q	
23=Q 24=PF	
24=PF 25=SB	
26=PB	
27=QB	12/=UB
	28=PFB
	28=PFB 29=SL1
	28=PFB 29=SL1 30=SL2
32=PL1	28=PFB 29=SL1 30=SL2 31=SL3

Parameter	Values (Range)	Unit	Step	Default	Description
	33=PL2				
	34=PL3				
	35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1				
	39=PFL2				
	40=PFL3				
	41=SL1B				
	42=SL2B				
	43=SL3B				
	44=PL1B				
	45=PL2B				
	46=PL3B				
	47=QL1B				
	48=QL2B				
	49=QL3B				
	50=PFL1B				
	51=PFL2B				
	52=PFL3B				
	53=IL1C				
	54=IL2C				
	55=IL3C				
Quantity Sel 3	0=Disabled			0=Disabled	Select quantity to be recorded
	1=IL1				be recorded
	2=IL2				
	3=IL3				
	4=lo				
	5=IL1B				
	6=IL2B				
	7=IL3B				
	8=IoB				
	9=U12				
	10=U23				
	11=U31				
	12=UL1				
	13=UL2				
	14=UL3				
	15=U12B				
	16=U23B				
	17=U31B				
	18=UL1B				
	19=UL2B				
	20=UL3B				
	21=S				
	22=P				
	23=Q				
	24=PF				
	25=SB				
Table continues on to					

Parameter	Values (Range)	Unit	Step	Default	Description
	26=PB				
	27=QB				
	28=PFB				
	29=SL1				
	30=SL2				
	31=SL3				
	32=PL1				
	33=PL2				
	34=PL3				
	35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1				
	39=PFL2				
	40=PFL3				
	41=SL1B				
	42=SL2B				
	43=SL3B				
	44=PL1B				
	45=PL2B				
	46=PL3B				
	47=QL1B				
	48=QL2B				
	49=QL3B				
	50=PFL1B				
	51=PFL2B				
	52=PFL3B				
	53=IL1C				
	54=IL2C				
	55=IL3C				
Quantity Sel 4	0=Disabled			0=Disabled	Select quantity to
1	1=IL1				Select quantity to be recorded
	2=IL2				
	3=IL3				
	4=lo				
	5=IL1B				
	6=IL2B				
	7=IL3B				
	8=IoB				
	9=U12				
	10=U23				
	11=U31				
	12=UL1				
	13=UL2				
	14=UL3				
	15=U12B				
	16=U23B				
	17=U31B				
	18=UL1B				
Table continues on t					

Parameter	Values (Range)	Unit	Step	Default	Description
	19=UL2B				
	20=UL3B				
	21=S				
	22=P				
	23=Q				
	24=PF				
	25=SB				
	26=PB				
	27=QB				
	28=PFB				
	29=SL1				
	30=SL2				
	31=SL3				
	32=PL1				
	33=PL2				
	34=PL3				
	35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1				
	39=PFL2				
	40=PFL3				
	41=SL1B				
	42=SL2B				
	43=SL3B				
	44=PL1B				
	45=PL2B				
	46=PL3B				
	47=QL1B				
	48=QL2B				
	49=QL3B				
	50=PFL1B				
	51=PFL2B				
	52=PFL3B				
	53=IL1C				
	54=IL2C				
	55=IL3C				
Quantity Sel 5				0=Disabled	Select quantity to
quarterey sers	0=Disabled			5 Disabled	Select quantity to be recorded
	1=IL1				
	2=IL2				
	3=IL3				
	4=lo				
	5=IL1B				
	6=IL2B				
	7=IL3B				
	8=IoB				
	9=U12				
	10=U23				
Table continues on t	11=U31				

Parameter	Values (Range)	Unit	Step	Default	Description
	12=UL1				
	13=UL2				
	14=UL3				
	15=U12B				
	16=U23B				
	17=U31B				
	18=UL1B				
	19=UL2B				
	20=UL3B				
	21=S				
	22=P				
	23=Q				
	24=PF				
	25=SB				
	26=PB				
	27=QB				
	28=PFB				
	29=SL1				
	30=SL2				
	31=SL3				
	32=PL1				
	33=PL2				
	34=PL3				
	35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1				
	39=PFL2				
	40=PFL3				
	41=SL1B				
	42=SL2B				
	43=SL3B				
	44=PL1B				
	45=PL2B				
	46=PL3B				
	47=QL1B				
	48=QL2B				
	49=QL3B				
	50=PFL1B				
	51=PFL2B				
	52=PFL3B				
	53=IL1C				
	54=IL2C				
	55=IL3C				
Quantity Sel 6	0=Disabled			0=Disabled	Select quantity to be recorded
_	1=IL1				be recorded
	2=IL2				
	3=IL3				
	4=lo				
Table continues on t	- -10				

Parameter	Values (Range)	Unit	Step	Default	Description
	5=IL1B				
	6=IL2B				
	7=IL3B				
	8=IoB				
	9=U12				
	10=U23				
	11=U31				
	12=UL1				
	13=UL2				
	14=UL3				
	15=U12B				
	16=U23B				
	17=U31B				
	18=UL1B				
	19=UL2B				
	20=UL3B				
	21=S				
	22=P				
	23=Q				
	24=PF				
	25=SB				
	26=PB				
	27=QB				
	28=PFB				
	29=SL1				
	30=SL2				
	31=SL3				
	32=PL1				
	33=PL2				
	34=PL3				
	35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1				
	39=PFL2				
	40=PFL3				
	41=SL1B				
	41-3L1B 42=SL2B				
	43=SL3B				
	44=PL1B				
	45=PL2B				
	46=PL3B				
	47=QL1B				
	47-QLIB 48=QL2B				
	49=QL3B				
	50=PFL1B				
	51=PFL2B				
	52=PFL3B				
	53=IL1C				
	54=IL2C				
Table continues on t					

Parameter	Values (Range)	Unit	Step	Default	Description
	55=IL3C				
Quantity Sel 7	0=Disabled			0=Disabled	Select quantity to be recorded
	1=IL1				pe recorded
	2=IL2				
	3=IL3				
	4=lo				
	5=IL1B				
	6=IL2B				
	7=IL3B				
	8=IoB				
	9=U12				
	10=U23				
	11=U31				
	12=UL1				
	13=UL2				
	14=UL3				
	15=U12B				
	16=U23B				
	17=U31B				
	18=UL1B				
	19=UL2B				
	20=UL3B				
	21=S				
	22=P				
	23=Q				
	24=PF				
	25=SB				
	26=PB				
	27=QB				
	28=PFB				
	29=SL1				
	30=SL2				
	31=SL3 32=PL1				
	32=PL1 33=PL2				
	33=PL2 34=PL3				
	34=PL3 35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1 39=PFL2				
	39=PFL2 40=PFL3				
	40=PFL3 41=SL1B				
	42=SL2B				
	43=SL3B				
	44=PL1B				
	45=PL2B				
	46=PL3B				
	47=QL1B				

Parameter	Values (Range)	Unit	Step	Default	Description
	48=QL2B				
	49=QL3B				
	50=PFL1B				
	51=PFL2B				
	52=PFL3B				
	53=IL1C				
	54=IL2C				
	55=IL3C				
0				0-0:	
Quantity Sel 8	0=Disabled			0=Disabled	Select quantity to be recorded
	1=IL1				
	2=IL2				
	3=IL3				
	4=Io				
	5=IL1B				
	6=IL2B				
	7=IL3B				
	8=IoB				
	9=U12				
	10=U23				
	11=U31				
	12=UL1				
	13=UL2				
	14=UL3				
	15=U12B				
	16=U23B				
	17=U31B				
	18=UL1B				
	19=UL2B				
	20=UL3B				
	21=S				
	22=P				
	23=Q				
	24=PF				
	24=PF 25=SB				
	26=PB				
	27=QB				
	28=PFB				
	29=SL1				
	30=SL2				
	31=SL3				
	32=PL1				
	33=PL2				
	34=PL3				
	35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1				
	39=PFL2				
	40=PFL3				
Table continues on t	L	<u> </u>	<u> </u>		

Parameter	Values (Range)	Unit	Step	Default	Description
	41=SL1B				
	42=SL2B				
	43=SL3B				
	44=PL1B				
	45=PL2B				
	46=PL3B				
	47=QL1B				
	48=QL2B				
	49=QL3B				
	50=PFL1B				
	51=PFL2B				
	52=PFL3B				
	53=IL1C				
	54=IL2C				
	55=IL3C				
Quantity Sel 9	0=Disabled			0=Disabled	Select quantity to be recorded
	1=IL1				be recorded
	2=IL2				
	3=IL3				
	4=Io				
	5=IL1B				
	6=IL2B				
	7=IL3B				
	8=IoB				
	9=U12				
	10=U23				
	11=U31				
	12=UL1				
	13=UL2				
	14=UL3				
	15=U12B				
	16=U23B				
	17=U31B				
	18=UL1B				
	19=UL2B				
	20=UL3B				
	20-0L3B 21=S				
	21=5 22=P				
	23=Q				
	24=PF				
	25=SB				
	26=PB				
	27=QB				
	28=PFB				
	29=SL1				
	30=SL2				
	31=SL3				
	32=PL1				
	33=PL2				
	L	I .	I .	I	

Parameter	Values (Range)	Unit	Step	Default	Description
	34=PL3				
	35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1				
	39=PFL2				
	40=PFL3				
	41=SL1B				
	42=SL2B				
	43=SL3B				
	44=PL1B				
	45=PL2B				
	46=PL3B				
	47=QL1B				
	48=QL2B				
	49=QL3B				
	50=PFL1B				
	51=PFL2B				
	52=PFL3B				
	53=IL1C				
	54=IL2C				
	55=IL3C				
Quantity Sel 10				0=Disabled	Coloct quantity to
Quantity Sel 10	0=Disabled			0-Disabled	Select quantity to be recorded
	1=IL1				
	2=IL2				
	3=IL3				
	4=Io				
	5=IL1B				
	6=IL2B				
	7=IL3B				
	8=IoB				
	9=U12				
	10=U23				
	11=U31				
	12=UL1				
	13=UL2				
	14=UL3				
	15=U12B				
	16=U23B				
	17=U31B				
	18=UL1B				
	19=UL2B				
	20=UL3B				
	21=S				
	22=P				
	23=Q				
	24=PF				
	25=SB				
	26=PB				

Parameter	Values (Range)	Unit	Step	Default	Description
	27=QB				
	28=PFB				
	29=SL1				
	30=SL2				
	31=SL3				
	32=PL1				
	33=PL2				
	34=PL3				
	35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1				
	39=PFL2				
	40=PFL3				
	41=SL1B				
	42=SL2B				
	43=SL3B				
	44=PL1B				
	45=PL2B				
	46=PL3B				
	47=QL1B				
	48=QL2B				
	49=QL3B				
	50=PFL1B				
	51=PFL2B				
	52=PFL3B				
	53=IL1C				
	54=IL2C				
	55=IL3C				
Quantity Sel 11				0=Disabled	Select quantity to
Quantity Set 11	0=Disabled			0-Disablea	Select quantity to be recorded
	1=IL1				
	2=IL2				
	3=IL3				
	4=lo				
	5=IL1B 6=IL2B				
	7=IL3B				
	8=IoB 9=U12				
	10=U23				
	11=U31				
	12=UL1				
	13=UL2 14=UL3				
	14=UL3 15=U12B				
	16=U23B				
	17=U31B 18=UL1B				
	19=UL2B				
Table continues on t					

Parameter	Values (Range)	Unit	Step	Default	Description
	20=UL3B				
	21=S				
	22=P				
	23=Q				
	24=PF				
	25=SB				
	26=PB				
	27=QB				
	28=PFB				
	29=SL1				
	30=SL2				
	31=SL3				
	32=PL1				
	33=PL2				
	34=PL3				
	35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1				
	39=PFL2				
	40=PFL3				
	41=SL1B				
	42=SL2B				
	43=SL3B				
	44=PL1B				
	45=PL2B				
	46=PL3B				
	47=QL1B				
	48=QL2B				
	49=QL3B				
	50=PFL1B				
	51=PFL2B				
	52=PFL3B				
	53=IL1C				
	54=IL2C				
	55=IL3C				
Quantity Sel 12				0=Disabled	Select quantity to
Quantity Ser 12	0=Disabled			U-DISADIEU	Select quantity to be recorded
	1=IL1				
	2=IL2				
	3=IL3				
	4=Io				
	5=IL1B				
	6=IL2B				
	7=IL3B				
	8=IoB				
	9=U12				
	10=U23				
	11=U31				
	12=UL1				
Table continues on t	the next page				

Parameter	Values (Range)	Unit	Step	Default	Description
	13=UL2				
	14=UL3				
	15=U12B				
	16=U23B				
	17=U31B				
	18=UL1B				
	19=UL2B				
	20=UL3B				
	21=S				
	22=P				
	23=Q				
	24=PF				
	25=SB				
	26=PB				
	27=QB				
	28=PFB				
	29=SL1				
	30=SL2				
	31=SL3				
	32=PL1				
	33=PL2				
	34=PL3				
	35=QL1				
	36=QL2				
	37=QL3				
	38=PFL1				
	39=PFL2				
	40=PFL3				
	41=SL1B				
	42=SL2B				
	43=SL3B				
	44=PL1B				
	45=PL2B				
	46=PL3B				
	47=QL1B				
	48=QL2B				
	49=QL3B				
	50=PFL1B				
	51=PFL2B				
	52=PFL3B				
	53=IL1C				
	54=IL2C				
	55=IL3C				
Mem. warning level	0100	%	1	0	Set memory warn- ing level
Mem. alarm level	0100	%	1	0	Set memory alarm level

Basic functions 1MRS758755 C

3.19.6 Monitored data

3.19.6.1 LDPRLRC Monitored data

Table 215: LDPRLRC Monitored data

Name	Туре	Values (Range)	Unit	Description
Rec. memory used	INT32	0100		How much re- cording memory is currently used

3.20 ETHERNET channel supervision function blocks

3.20.1 Redundant Ethernet channel supervision RCHLCCH

3.20.1.1 Function block

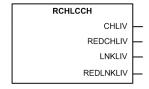


Figure 110: Function block

3.20.1.2 Functionality

Redundant Ethernet channel supervision RCHLCCH represents LAN A and LAN B redundant Ethernet channels.

3.20.1.3 Signals

Table 216: RCHLCCH output signals

Parameter	Values (Range)	Unit	Step	Defaul t	Description
CHLIV	True False				Status of redundant Ethernet chan- nel LAN A. Otherwise value is "False".
REDCHLIV	True False				Status of redundant Ethernet chan- nel LAN B. Otherwise value is "False".

1MRS758755 C Basic functions

Parameter	Values (Range)	Unit	Step	Defaul t	Description
LNKLIV	Up Down				Link status of redundant port LAN A. Valid only when <i>Redundant mode</i> is set to "HSR" or "PRP".
REDLNKLIV	Up Down				Link status of redundant port LAN B. Valid only when <i>Redundant mode</i> is set to "HSR" or "PRP".

3.20.1.4 Settings

Redundancy settings

Table 217: Redundancy settings

Parameter	Values (Range)	Unit	Step	Defaul t	Description
Redundant mode	None PRP HSR			None	Mode selection for Ethernet switch on redundant communication mod- ules. The "None" mode is used with normal and Self-healing Ethernet topologies.

3.20.1.5 Monitored data

Monitored data is available in four locations.

- Monitoring > Communication > Ethernet > Activity > CHLIV_A
- Monitoring > Communication/ > Ethernet > Activity > REDCHLIV_B
- Monitoring > Communication > Ethernet > Link statuses > LNKLIV_A
- Monitoring > Communication > Ethernet > Link statuses > REDLNKLIV_B

3.20.2 Ethernet channel supervision SCHLCCH

3.20.2.1 Function block

Figure 111: Function block

3.20.2.2 Functionality

Ethernet channel supervision SCHLCCH represents X1/LAN, X2/LAN and X3/LAN Ethernet channels.

An unused Ethernet port can be set "Off" with the setting **Configuration** > **Communication** > **Ethernet** > **Rear port(s)** > **Port x Mode**. This setting closes the

port from software, disabling the Ethernet communication in that port. Closing an unused Ethernet port enhances the cyber security of the relay.

3.20.2.3 Signals

Table 218: SCHLCCH1 output signals

Parameter	Values (Range)	Unit	Step	Defaul t	Description
CH1LIV	True False				Status of Ethernet channel X1/LAN. Value is "True" if the port is receiving Ethernet frames. Valid only when <i>Redundant mode</i> is set to "None" or port is not one of the redundant ports (LAN A or LAN B).
LNK1LIV	Up Down				Link status of Ethernet port X1/LAN.

Table 219: SCHLCCH2 output signals

Parameter	Values (Range)	Unit	Step	Defaul t	Description
CH2LIV	True False				Status of Ethernet channel X2/LAN. Value is "True" if the port is receiving Ethernet frames. Valid only when <i>Redundant mode</i> is set to "None" or port is not one of the redundant ports (LAN A or LAN B).
LNK2LIV	Up Down				Link status of Ethernet port X2/LAN.

Table 220: SCHLCCH3 output signals

Parameter	Values (Range)	Unit	Step	Defaul t	Description
CH3LIV	True False				Status of Ethernet channel X3/LAN. Value is "True" if the port is receiving Ethernet frames. Valid only when <i>Redundant mode</i> is set to "None" or port is not one of the redundant ports (LAN A or LAN B).
LNK3LIV	Up Down				Link status of Ethernet port X3/LAN.

3.20.2.4 Settings

Port mode settings

1MRS758755 C Basic functions

Table 221: Port mode settings

Parameter	Values (Range)	Unit	Step	Default	Description
Port 1 Mode	Off On			On	Mode selection for rear port(s). If port is not used, it can be set to "Off".
Port 2 Mode	Off On			On	Mode selection for rear port(s). If port is not used, it can be set to "Off". Port cannot be set to "Off" when <i>Redundant mode</i> is "HSR" or "PRP" and port is one of the redundant ports (LAN A or LAN B).
Port 3 Mode	Off On			On	Mode selection for rear port(s). If port is not used, it can be set to "Off". Port cannot be set to "Off" when <i>Redundant mode</i> is "HSR" or "PRP" and port is one of the redundant ports (LAN A or LAN B).

3.20.2.5 Monitored data

Monitored data is available in six locations.

- Monitoring > Communication > Ethernet > Activity > CH1LIV
- Monitoring > Communication > Ethernet > Activity > CH2LIV
- Monitoring/ > Communication > Ethernet > Activity > CH3LIV
- Monitoring/ > Communication > Ethernet > Link statuses > LNK1LIV
- Monitoring > Communication > Ethernet > Link statuses > LNK2LIV
- Monitoring > Communication > Ethernet > Link statuses > LNK3LIV

Protection functions 1MRS758755 C

4 Protection functions

4.1 Three-phase current protection

4.1.1 Three-phase non-directional overcurrent protection (F)PHxPTOC

4.1.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase non-directional over- current protection, low stage	(F)PHLPTOC	3I>	51P-1
Three-phase non-directional over- current protection, high stage	РННРТОС	3I>>	51P-2
Three-phase non-directional over- current protection, instantaneous stage	PHIPTOC	3I>>>	50P/51P

4.1.1.2 Function block

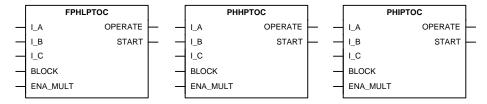


Figure 112: Function block

4.1.1.3 Functionality

The three-phase non-directional overcurrent protection function (F)PHxPTOC is used as one-phase, two-phase or three-phase non-directional overcurrent and short-circuit protection.

The function starts when the current exceeds the set limit. The operate time characteristics for low stage (F)PHLPTOC and high stage PHHPTOC can be selected to be either definite time (DT) or inverse definite minimum time (IDMT). The instantaneous stage PHIPTOC always operates with the DT characteristic.

1MRS758755 C Protection functions

In the DT mode, the function operates after a predefined operate time and resets when the fault current disappears. The IDMT mode provides current-dependent timer characteristics.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.1.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of (F)PHxPTOC can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

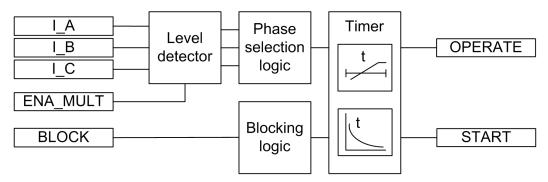


Figure 113: Functional module diagram

Level detector

The measured phase currents are compared phasewise to the set *Start value*. If the measured value exceeds the set *Start value*, the level detector reports the exceeding of the value to the phase selection logic. If the ENA_MULT input is active, the *Start value* setting is multiplied by the *Start value Mult* setting.

The protection relay does not accept the *Start value* or *Start value Mult* setting if the product of these settings exceeds the *Start value* setting range.

The start value multiplication is normally done when the inrush detection function (INRPHAR) is connected to the ${\tt ENA}$ ${\tt MULT}$ input.

Protection functions 1MRS758755 C

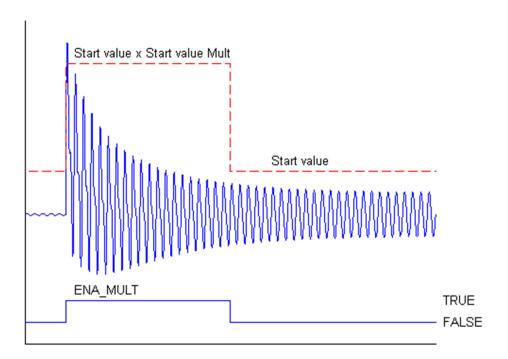


Figure 114: Start value behavior with ENA MULT input activated

Phase selection logic

If the fault criteria are fulfilled in the level detector, the phase selection logic detects the phase or phases in which the measured current exceeds the setting. If the phase information matches the *Num of start phases* setting, the phase selection logic activates the timer module.

Timer

Once activated, the timer activates the START output. Depending on the value of the Operating curve type setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of Operate delay time in the DT mode or the maximum value defined by the inverse time curve, the OPERATE output is activated.

When the user-programmable IDMT curve is selected, the operation time characteristics are defined by the parameters Curve parameter A, Curve parameter B, Curve parameter C, Curve parameter D and Curve parameter E.

If a drop-off situation happens, that is, a fault suddenly disappears before the operate delay is exceeded, the timer reset state is activated. The functionality of the timer in the reset state depends on the combination of the *Operating curve* type, Type of reset curve and Reset delay time settings. When the DT characteristic is selected, the reset timer runs until the set Reset delay time value is exceeded. When the IDMT curves are selected, the Type of reset curve setting can be set to "Immediate", "Def time reset" or "Inverse reset". The reset curve type "Immediate" causes an immediate reset. With the reset curve type "Def time reset", the reset time depends on the Reset delay time setting. With the reset curve type "Inverse

reset", the reset time depends on the current during the drop-off situation. The START output is deactivated when the reset timer has elapsed.

The "Inverse reset" selection is only supported with ANSI or user programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.

The setting *Time multiplier* is used for scaling the IDMT operate and reset times.

The setting parameter *Minimum operate time* defines the minimum desired operate time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum operate time* setting should be used with great care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see *Chapter 11.2.1 IDMT curves for overcurrent protection* in this manual.

The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operating time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting <code>Blocking mode</code>.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.1.1.5 Measurement modes

The function operates on four alternative measurement modes: "RMS", "DFT", "Peakto-Peak" and "P-to-P + backup". Additionally, there is "Wide P-to-P" measurement mode in some products variants. The measurement mode is selected with the setting *Measurement mode*.

Table 222: Measurement modes supported by (F)PHxPTOC stages

Measurement mode	(F)PHLPTOC	РННРТОС	PHIPTOC
RMS	х	х	
DFT	х	х	
Peak-to-Peak	х	х	
P-to-P + backup			х
Wide P-to-P	x ¹		

¹ Available only in REG615 standard configurations C and D

For a detailed description of the measurement modes, see *Chapter 11.5 Measurement modes* in this manual.

4.1.1.6 Timer characteristics

(F)PHxPTOC supports both DT and IDMT characteristics. The user can select the timer characteristics with the *Operating curve type* and *Type of reset curve* settings. When the DT characteristic is selected, it is only affected by the *Operate delay time* and *Reset delay time* settings.

The protection relay provides 55 IDMT characteristics curves, of which seven comply with the IEEE C37.112 and six with the IEC 60255-3 standard. Two curves follow the special characteristics of ABB praxis and are referred to as RI and RD. One user programmable curve can be used if none of the standard curves are applicable. In addition to this, there are 39 curves for recloser applications. The DT characteristics can be chosen by selecting the *Operating curve type* values "ANSI Def. Time" or "IEC Def. Time". The functionality is identical in both cases.

The timer characteristics supported by different stages comply with the list in the IEC 61850-7-4 specification, indicate the characteristics supported by different stages:

Table 223: Timer characteristics supported by different stages

Operating curve type	(F)PHLPTOC	РННРТОС
(1) ANSI Extremely Inverse	x	х
(2) ANSI Very Inverse	х	
(3) ANSI Normal Inverse	x	х
(4) ANSI Moderately Inverse	x	
(5) ANSI Definite Time	x	х
(6) Long Time Extremely Inverse	x	
(7) Long Time Very Inverse	х	
(8) Long Time Inverse	x	
(9) IEC Normal Inverse	x	х
(10) IEC Very Inverse	x	х
(11) IEC Inverse	x	
(12) IEC Extremely Inverse	x	x
(13) IEC Short Time Inverse	х	

Table continues on the next page

Operating curve type	(F)PHLPTOC	РННРТОС
(14) IEC Long Time Inverse	х	
(15) IEC Definite Time	х	х
(17) User programmable	х	х
(18) RI type	х	
(19) RD type	x	
(-1)=Recloser 1(102)	x	
(-2)=Recloser 2 (135)	х	
(-3)=Recloser 3 (140)	х	
(-4)=Recloser 4 (106)	х	
(-5)=Recloser 5 (114)	x	
(-6)=Recloser 6 (136)	x	
(-7)=Recloser 7 (152)	х	
(-8)=Recloser 8 (113)	х	
(-9)=Recloser 8+ (111)	х	
(-10)=Recloser 8*	х	
(-11)=Recloser 9 (131)	x	
(-12)=Recloser 11 (141)	х	
(-13)=Recloser 13 (142)	x	
(-14)=Recloser 14 (119)	х	
(-15)=Recloser 15 (112)	х	
(-16)=Recloser 16 (139)	х	
(-17)=Recloser 17 (103)	х	
(-18)=Recloser 18(151)	х	
(-19)=Recloser A (101)	х	
(-20)=Recloser B (117)	х	
(-21)=Recloser C (133)	х	
(-22)=Recloser D (116)	х	

Table continues on the next page

Operating curve type	(F)PHLPTOC	РННРТОС
(-23)=Recloser E (132)	x	
(-24)=Recloser F (163)	x	
(-25)=Recloser G (121)	x	
(-26)=Recloser H (122)	x	
(-27)=Recloser J (164)	x	
(-28)=Recloser Kg (165)	х	
(-29)=Recloser Kp (162)	x	
(-30)=Recloser L (107)	x	
(-31)=Recloser M (118)	х	
(-32)=Recloser N (104)	x	
(-33)=Recloser P (115)	x	
(-34)=Recloser R (105)	х	
(-35)=Recloser T (161)	x	
(-36)=Recloser V (137)	x	
(-37)=Recloser W (138)	x	
(-38)=Recloser Y (120)	х	
(-39)=Recloser Z (134)	х	

PHIPTOC supports only definite time characteristic.

For a detailed description of timers, see *Chapter 11 General function block features* in this manual.

Table 224: Reset time characteristics supported by different stages

Reset curve type	(F)PHLPTOC	РННРТОС	Note
(1) Immediate	х	х	Available for all operate time curves
(2) Def time reset	х	х	Available for all operate time curves
(3) Inverse reset	х	х	Available only for ANSI and user programmable curves

The *Type of reset curve* setting does not apply to PHIPTOC or when the DT operation is selected. The reset is purely defined by the *Reset delay time* setting.

4.1.1.7 Application

(F)PHxPTOC is used in several applications in the power system. The applications include but are not limited to:

- Selective overcurrent and short-circuit protection of feeders in distribution and subtransmission systems
- Backup overcurrent and short-circuit protection of power transformers and generators
- Overcurrent and short-circuit protection of various devices connected to the power system, for example shunt capacitor banks, shunt reactors and motors
- · General backup protection

(F)PHxPTOC is used for single-phase, two-phase and three-phase non-directional overcurrent and short-circuit protection. Typically, overcurrent protection is used for clearing two and three-phase short circuits. Therefore, the user can choose how many phases, at minimum, must have currents above the start level for the function to operate. When the number of start-phase settings is set to "1 out of 3", the operation of (F)PHxPTOC is enabled with the presence of high current in one-phase.

When the setting is "2 out of 3" or "3 out of 3", single-phase faults are not detected. The setting "3 out of 3" requires the fault to be present in all three phases.

Many applications require several steps using different current start levels and time delays. (F)PHxPTOC consists of three protection stages.

- Low (F)PHLPTOC
- High PHHPTOC
- Instantaneous PHIPTOC

(F)PHLPTOC is used for overcurrent protection. The function contains several types of time-delay characteristics. PHHPTOC and PHIPTOC are used for fast clearance of very high overcurrent situations.

Transformer overcurrent protection

The purpose of transformer overcurrent protection is to operate as main protection, when differential protection is not used. It can also be used as coarse back-up protection for differential protection in faults inside the zone of protection, that is, faults occurring in incoming or outgoing feeders, in the region of transformer terminals and tank cover. This means that the magnitude range of the fault current can be very wide. The range varies from $6xl_n$ to several hundred times l_n , depending on the impedance of the transformer and the source impedance of the feeding network. From this point of view, it is clear that the operation must be both very fast and selective, which is usually achieved by using coarse current settings.

The purpose is also to protect the transformer from short circuits occurring outside the protection zone, that is through-faults. Transformer overcurrent protection also provides protection for the LV-side busbars. In this case the magnitude of the fault current is typically lower than 12xI $_{\rm n}$ depending on the fault location and transformer impedance. Consequently, the protection must operate as fast as possible taking

into account the selectivity requirements, switching-in currents, and the thermal and mechanical withstand of the transformer and outgoing feeders.

Traditionally, overcurrent protection of the transformer has been arranged as shown in *Figure 115*. The low-set stage (F)PHLPTOC operates time-selectively both in transformer and LV-side busbar faults. The high-set stage PHHPTOC operates instantaneously making use of current selectivity only in transformer HV-side faults. If there is a possibility, that the fault current can also be fed from the LV-side up to the HV-side, the transformer must also be equipped with LV-side overcurrent protection. Inrush current detectors are used in start-up situations to multiply the current start value setting in each particular protection relay where the inrush current can occur. The overcurrent and contact based circuit breaker failure protection CCBRBRF is used to confirm the protection scheme in case of circuit breaker malfunction.

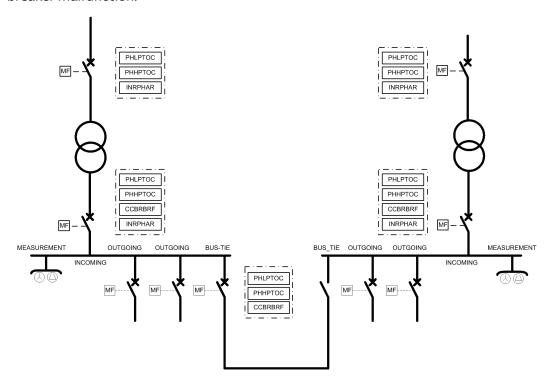


Figure 115: Example of traditional time selective transformer overcurrent protection

The operating times of the main and backup overcurrent protection of the above scheme become quite long, this applies especially in the busbar faults and also in the transformer LV-terminal faults. In order to improve the performance of the above scheme, a multiple-stage overcurrent protection with reverse blocking is proposed. *Figure 116* shows this arrangement.

Transformer and busbar overcurrent protection with reverse blocking principle

By implementing a full set of overcurrent protection stages and blocking channels between the protection stages of the incoming feeders, bus-tie and outgoing feeders, it is possible to speed up the operation of overcurrent protection in the busbar and transformer LV-side faults without impairing the selectivity. Also, the security degree of busbar protection is increased, because there is now a dedicated, selective and fast busbar protection functionality which is based on the blockable overcurrent protection principle. The additional time selective stages

on the transformer HV and LV-sides provide increased security degree of backup protection for the transformer, busbar and also for the outgoing feeders.

Depending on the overcurrent stage in question, the selectivity of the scheme in *Figure 116* is based on the operating current, operating time or blockings between successive overcurrent stages. With blocking channels, the operating time of the protection can be drastically shortened if compared to the simple time selective protection. In addition to the busbar protection, this blocking principle is applicable for the protection of transformer LV terminals and short lines. The functionality and performance of the proposed overcurrent protections can be summarized as seen in the table.

Table 225: Proposed functionality of numerical transformer and busbar overcurrent protection. DT = definite time, IDMT = inverse definite minimum time

O/C-stage	Operating char.	Selectivity mode	Operation speed	Sensitivity
HV/3I>	DT/IDMT	time selective	low	very high
HV/3I>>	DT	blockable/time selective	high/low	high
HV/3I>>>	DT	current selective	very high	low
LV/3I>	DT/IDMT	time selective	low	very high
LV/3I>>	DT	time selective	low	high
LV/3I>>>	DT	blockable	high	high

In case the bus-tie breaker is open, the operating time of the blockable overcurrent protection is approximately 100 ms (relaying time). When the bus-tie breaker is closed, that is, the fault current flows to the faulted section of the busbar from two directions, the operation time becomes as follows: first the bus-tie relay unit trips the tie breaker in the above 100 ms, which reduces the fault current to a half. After this the incoming feeder relay unit of the faulted bus section trips the breaker in approximately 250 ms (relaying time), which becomes the total fault clearing time in this case.

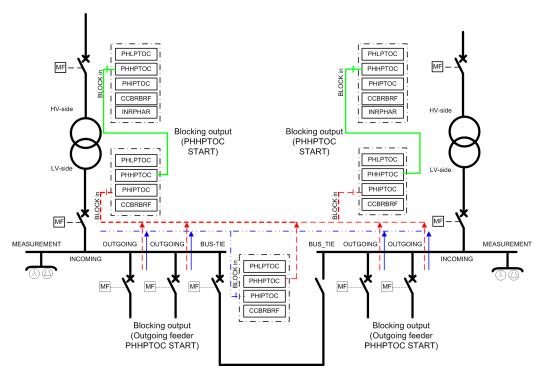


Figure 116: Numerical overcurrent protection functionality for a typical subtransmission/distribution substation (feeder protection not shown). Blocking output = digital output signal from the start of a protection stage, Blocking in = digital input signal to block the operation of a protection stage

The operating times of the time selective stages are very short, because the grading margins between successive protection stages can be kept short. This is mainly due to the advanced measuring principle allowing a certain degree of CT saturation, good operating accuracy and short retardation times of the numerical units. So, for example, a grading margin of 150 ms in the DT mode of operation can be used, provided that the circuit breaker interrupting time is shorter than 60 ms.

The sensitivity and speed of the current-selective stages become as good as possible due to the fact that the transient overreach is very low. Also, the effects of switching inrush currents on the setting values can be reduced by using the protection relay's logic, which recognizes the transformer energizing inrush current and blocks the operation or multiplies the current start value setting of the selected overcurrent stage with a predefined multiplier setting.

Finally, a dependable trip of the overcurrent protection is secured by both a proper selection of the settings and an adequate ability of the measuring transformers to reproduce the fault current. This is important in order to maintain selectivity and also for the protection to operate without additional time delays. For additional information about available measuring modes and current transformer requirements, see *Chapter 11.5 Measurement modes* in this manual.

Radial outgoing feeder overcurrent protection

The basic requirements for feeder overcurrent protection are adequate sensitivity and operation speed taking into account the minimum and maximum fault current levels along the protected line, selectivity requirements, inrush currents and the thermal and mechanical withstand of the lines to be protected.

In many cases the above requirements can be best fulfilled by using multiple-stage overcurrent units. *Figure 117* shows an example of this. A brief coordination study has been carried out between the incoming and outgoing feeders.

The protection scheme is implemented with three-stage numerical overcurrent protection, where the low-set stage (F)PHLPTOC operates in IDMT-mode and the two higher stages PHHPTOC and PHIPTOC in DT-mode. Also the thermal withstand of the line types along the feeder and maximum expected inrush currents of the feeders are shown. Faults occurring near the station where the fault current levels are the highest are cleared rapidly by the instantaneous stage in order to minimize the effects of severe short circuit faults. The influence of the inrush current is taken into consideration by connecting the inrush current detector to the start value multiplying input of the instantaneous stage. In this way the start value is multiplied with a predefined setting during the inrush situation and nuisance tripping can be avoided.



Figure 117: Functionality of numerical multiple-stage overcurrent protection

The coordination plan is an effective tool to study the operation of time selective operation characteristics. All the points mentioned earlier, required to define the overcurrent protection parameters, can be expressed simultaneously in a coordination plan. In *Figure 118*, the coordination plan shows an example of operation characteristics in the LV-side incoming feeder and radial outgoing feeder.

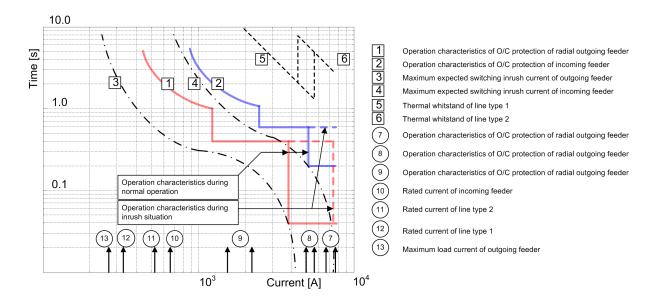


Figure 118: Example coordination of numerical multiple-stage overcurrent protection

4.1.1.8 Signals

Table 226: FPHLPTOC Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for cur- rent multiplier

Table 227: PHLPTOC Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for cur- rent multiplier

Table 228: PHHPTOC Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for cur- rent multiplier

Table 229: PHIPTOC Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for cur- rent multiplier

Table 230: FPHLPTOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

Table 231: PHLPTOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

Table 232: PHHPTOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

Table 233: PHIPTOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.1.1.9 Settings

Table 234: FPHLPTOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.055.00	xIn	0.01	0.05	Start value
Start value Mult	0.810.0		0.1	1	Multiplier for scaling the start value
Time multiplier	0.0515.00		0.01	1	Time multiplier in IEC/ANSI IDMT curves
Operate delay time	40200000	ms	10	40	Operate delay time
Operating curve type	1=ANSI Ext. inv. 2=ANSI Very inv. 3=ANSI Norm. inv. 4=ANSI Mod. inv. 5=ANSI Def. Time 6=L.T.E. inv. 7=L.T.V. inv. 8=L.T. inv. 9=IEC Norm. inv. 10=IEC Very inv. 11=IEC inv. 12=IEC Ext. inv. 13=IEC S.T. inv. 14=IEC L.T. inv. 15=IEC Def. Time 17=Programmable 18=RI type 19=RD type -1=Recloser 1 -2=Recloser 2 -3=Recloser 3 -4=Recloser 4 -5=Recloser 5 -6=Recloser 6 -7=Recloser 8 -9=Recloser 8 -10=Recloser 8 -10=Recloser 11 -13=Recloser 13 -14=Recloser 13 -14=Recloser 14 -15=Recloser 15 -16=Recloser 16 -17=Recloser 17 -18=Recloser 18 -19=Recloser 18 -19=Recloser A -20=Recloser B			15=IEC Def. Time	Selection of time delay curve type

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
	-21=Recloser C				
	-22=Recloser D				
	-23=Recloser E				
	-24=Recloser F				
	-25=Recloser G				
	-26=Recloser H				
	-27=Recloser J				
	-28=Recloser Kg				
	-29=Recloser Kp				
	-30=Recloser L				
	-31=Recloser M				
	-32=Recloser N				
	-33=Recloser P				
	-34=Recloser R				
	-35=Recloser T				
	-36=Recloser V				
	-37=Recloser W				
	-38=Recloser Y				
	-39=Recloser Z				
Type of reset curve	1=Immediate			1=Immediate	Selection of reset curve
	2=Def time reset				type
	3=Inverse reset				

Table 235: FPHLPTOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Num of start phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for operate activation
Minimum operate time	2060000	ms	1	20	Minimum operate time for IDMT curves
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used meas- urement mode
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer program- mable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer program- mable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer program- mable curve

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer program- mable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer program- mable curve

Table 236: FPHLPTOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time

Table 237: PHLPTOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.055.00	xIn	0.01	0.05	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operate delay time	40200000	ms	10	40	Operate delay time
Operating curve type	1=ANSI Ext. inv. 2=ANSI Very inv. 3=ANSI Norm. inv. 4=ANSI Mod. inv. 5=ANSI Def. Time . 6=L.T.E. inv. 7=L.T.V. inv. 8=L.T. inv. 9=IEC Norm. inv. 10=IEC Very inv. 11=IEC inv. 12=IEC Ext. inv. 13=IEC S.T. inv. 14=IEC L.T. inv. 15=IEC Def. Time 17=Programmable 18=RI type 19=RD type			15=IEC Def. Time	Selection of time delay curve type

Table 238: PHLPTOC Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type

Table 239: PHLPTOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Num of start phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for operate activation
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer program- mable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer program- mable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer program- mable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer program- mable curve

Table 240: PHLPTOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Minimum operate time	2060000	ms	1	20	Minimum operate time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak 5=Wide P-to-P			2=DFT	Selects used measurement mode

Table 241: PHHPTOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.1040.00	xIn	0.01	0.10	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operate delay time	40200000	ms	10	40	Operate delay time
Operating curve type	1=ANSI Ext. inv. 3=ANSI Norm. inv. 5=ANSI Def. Time 9=IEC Norm. inv. 10=IEC Very inv. 12=IEC Ext. inv. 15=IEC Def. Time			15=IEC Def. Time	Selection of time delay curve type

Parameter	Values (Range)	Unit	Step	Default	Description
	17=Programmable				

Table 242: PHHPTOC Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset			1=Immediate	Selection of reset curve type
	3=Inverse reset				

Table 243: PHHPTOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Num of start phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for operate activation
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer program- mable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer program- mable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer program- mable curve

Table 244: PHHPTOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Minimum operate time	2060000	ms	1	20	Minimum operate time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used meas- urement mode

Table 245: PHIPTOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	1.0040.00	xIn	0.01	1.00	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Operate delay time	20200000	ms	10	20	Operate delay time

Table 246: PHIPTOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Num of start phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for operate activation

Table 247: PHIPTOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time

4.1.1.10 Monitored data

Table 248: FPHLPTOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
FPHLPTOC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

Table 249: PHLPTOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
PHLPTOC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

Table 250: PHHPTOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
РННРТОС	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

Table 251: PHIPTOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
PHIPTOC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.1.1.11 Technical data

Table 252: (F)PHxPTOC Technical data

Characteristic		Value				
Operation accuracy		Depending on the frequency of the measured current: f n ±2 Hz				
·	(F)PHLPTOC	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$				
	РННРТОС	$\pm 1.5\%$ of set value or $\pm 0.002 \times I_n$				
	and	(at currents in the range of $0.110 \times I_n$)				
	PHIPTOC	±5.0% of the set value				
		(at currents in the range of $1040 \times I_n$)				
Start time 12		Minimum	Typical	Maximum		
	PHIPTOC:	16 ms	19 ms	23 ms		
	I _{Fault} = 2 × set <i>Start val-ue</i>	11 ms	12 ms	14 ms		

Table continues on the next page

 $^{^1}$ Measurement mode = default (depends on stage), current before fault = 0.0 × I_n, f_n = 50 Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

² Includes the delay of the signal output contact

Characteristic		Value		
	I _{Fault} = 10 × set <i>Start</i> value			
	PHHPTOC and (F)PHLPTOC:	23 ms	26 ms	29 ms
	I _{Fault} = 2 × set <i>Start value</i>			
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<30 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³ ±5.0% of the theoretical value or ±40 ms ³ ⁴		
Suppression of harmonics		RMS: No suppression		
		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,		
		Peak-to-Peak: No suppression		
		P-to-P+backup: No suppression		

4.1.1.12 **Technical revision history**

Table 253: PHIPTOC Technical revision history

Technical revision	Change
В	Minimum and default values changed to 40 ms for the <i>Operate delay</i> time setting
С	Minimum and default values changed to 20 ms for the <i>Operate delay</i> time setting
	Minimum value changed to 1.00 x I _n for the Start value setting
D	Internal improvement
Е	Internal improvement

Table 254: PHHPTOC Technical revision history

Technical revision	Change
С	Measurement mode "P-to-P + backup" replaced with "Peak-to-Peak"
D	Step value changed from 0.05 to 0.01 for the <i>Time multiplier</i> setting

Table continues on the next page

Maximum Start value = 2.5 × I_n, Start value multiples in range of 1.5...20
 Valid for FPHLPTOC

Technical revision	Change
E	Internal improvement
F	Internal improvement

Table 255: (F)PHLPTOC Technical revision history

Technical revision	Change
В	Minimum and default values changed to 40 ms for the <i>Operate delay time</i> setting
С	Step value changed from 0.05 to 0.01 for the <i>Time multiplier</i> setting
D	Internal improvement
Е	Internal improvement

4.1.2 Three-phase directional overcurrent protection (F)DPHxPDOC

4.1.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase directional overcurrent protection, low stage	(F)DPHLPDOC	3I> ->	67-1
Three-phase directional overcur- rent protection, high stage	DPHHPDOC	3 >> ->	67-2

4.1.2.2 Function block

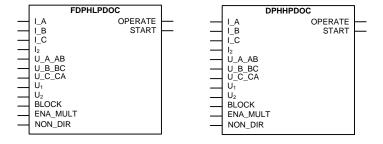


Figure 119: Function block

4.1.2.3 Functionality

The three-phase overcurrent protection function (F)DPHxPDOC is used as one-phase, two-phase or three-phase directional overcurrent and short-circuit protection for feeders.

(F)DPHxPDOC starts up when the value of the current exceeds the set limit and directional criterion is fulfilled. The operate time characteristics for low stage FDPHLPDOC and high stage DPHHPDOC can be selected to be either definite time (DT) or inverse definite minimum time (IDMT).

In the DT mode, the function operates after a predefined operate time and resets when the fault current disappears. The IDMT mode provides current-dependent timer characteristics.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.1.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of (F)DPHxPDOC can be described using a module diagram. All the modules in the diagram are explained in the next sections.

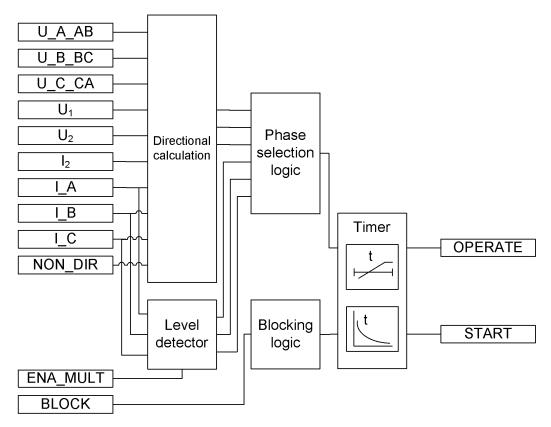


Figure 120: Functional module diagram

Directional calculation

The directional calculation compares the current phasors to the polarizing phasor. A suitable polarization quantity can be selected from the different polarization quantities, which are the positive sequence voltage, negative sequence voltage, self-polarizing (faulted) voltage and cross-polarizing voltages (healthy voltages). The polarizing method is defined with the *Pol quantity* setting.

Table 256: Polarizing quantities

Polarizing quantity	Description
Pos. seq. volt	Positive sequence voltage
Neg. seq. volt	Negative sequence voltage
Self pol	Self polarization
Cross pol	Cross polarization

The directional operation can be selected with the *Directional mode* setting. The user can select either "Non-directional", "Forward" or "Reverse" operation. By setting the value of *Allow Non Dir* to "True", the non-directional operation is allowed when the directional information is invalid.

The *Characteristic angle* setting is used to turn the directional characteristic. The value of *Characteristic angle* should be chosen in such a way that all the faults in the operating direction are seen in the operating zone and all the faults in the opposite direction are seen in the non-operating zone. The value of *Characteristic angle* depends on the network configuration.

Reliable operation requires both the operating and polarizing quantities to exceed certain minimum amplitude levels. The minimum amplitude level for the operating quantity (current) is set with the *Min operate current* setting. The minimum amplitude level for the polarizing quantity (voltage) is set with the *Min operate voltage* setting. If the amplitude level of the operating quantity or polarizing quantity is below the set level, the direction information of the corresponding phase is set to "Unknown".

The polarizing quantity validity can remain valid even if the amplitude of the polarizing quantity falls below the value of the *Min operate voltage* setting. In this case, the directional information is provided by a special memory function for a time defined with the *Voltage Mem time* setting.

(F)DPHxPDOC is provided with a memory function to secure a reliable and correct directional protection relay operation in case of a close short circuit or an earth fault characterized by an extremely low voltage. At sudden loss of the polarization quantity, the angle difference is calculated on the basis of a fictive voltage. The fictive voltage is calculated using the positive phase sequence voltage measured before the fault occurred, assuming that the voltage is not affected by the fault. The memory function enables the function to operate up to a maximum of three seconds after a total loss of voltage. This time can be set with the *Voltage Mem time* setting. The voltage memory cannot be used for the "Negative sequence voltage" polarization because it is not possible to substitute the positive sequence voltage for negative sequence voltage without knowing the network unsymmetry level. This is the reason why the fictive voltage angle and corresponding direction information are frozen immediately for this polarization mode when the need for a voltage memory arises and these are kept frozen until the time set with *Voltage Mem time* elapses.

The value for the *Min operate voltage* setting should be carefully selected since the accuracy in low signal levels is strongly affected by the measuring device accuracy.

When the voltage falls below *Min operate voltage* at a close fault, the fictive voltage is used to determine the phase angle. The measured voltage is applied again as soon as the voltage rises above *Min operate voltage* and hysteresis. The fictive voltage is also discarded if the measured voltage stays below *Min operate voltage* and hysteresis for longer than *Voltage Mem time* or if the fault current disappears while the fictive voltage is in use. When the voltage is below *Min operate voltage* and hysteresis and the fictive voltage is unusable, the fault direction cannot be determined. The fictive voltage can be unusable for two reasons:

- · The fictive voltage is discarded after Voltage Mem time
- The phase angle cannot be reliably measured before the fault situation.

(F)DPHxPDOC can be forced to the non-directional operation with the NON_DIR input. When the NON_DIR input is active, FDPHLPDOC and DPHHPDOC operate as a non-directional overcurrent protection, regardless of the *Directional mode* setting.

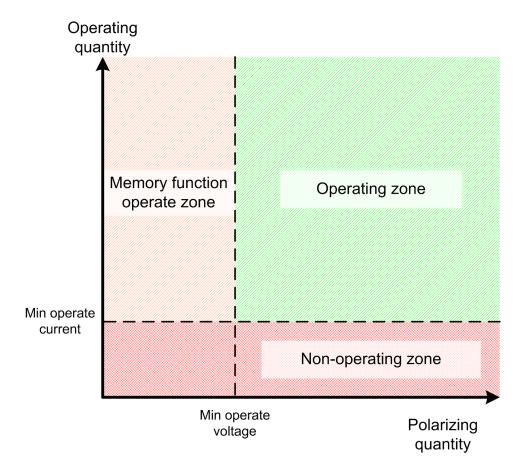


Figure 121: Operating zones at minimum magnitude levels

Level detector

The measured phase currents are compared phasewise to the set *Start value*. If the measured value exceeds the set *Start value*, the level detector reports the exceeding

> of the value to the phase selection logic. If the ENA $\,$ MULT input is active, the $\,$ value setting is multiplied by the Start value Mult setting.

The protection relay does not accept the Start value or Start value Mult setting if the product of these settings exceeds the Start value setting range.

The start value multiplication is normally done when the inrush detection function (INRPHAR) is connected to the ENA MULT input.

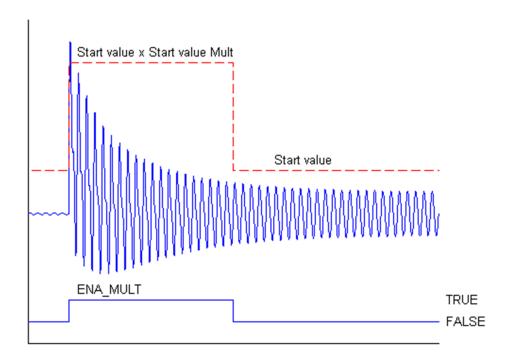


Figure 122: Start value behavior with ENA_MULT input activated

Phase selection logic

If the fault criteria are fulfilled in the level detector and the directional calculation, the phase selection logic detects the phase or phases in which the measured current exceeds the setting. If the phase information matches the Num of start phases setting, the phase selection logic activates the timer module.

Timer

Once activated, the timer activates the START output. Depending on the value of the Operating curve type setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of Operate delay time in the DT mode or the maximum value defined by the inverse time curve, the OPERATE output is activated.

When the user-programmable IDMT curve is selected, the operation time characteristics are defined by the parameters Curve parameter A, Curve parameter B, Curve parameter C, Curve parameter D and Curve parameter E.

If a drop-off situation happens, that is, a fault suddenly disappears before the operate delay is exceeded, the timer reset state is activated. The functionality of the timer in the reset state depends on the combination of the *Operating curve type, Type of reset curve* and *Reset delay time* settings. When the DT characteristic is selected, the reset timer runs until the set *Reset delay time* value is exceeded. When the IDMT curves are selected, the *Type of reset curve* setting can be set to "Immediate", "Def time reset" or "Inverse reset". The reset curve type "Immediate" causes an immediate reset. With the reset curve type "Def time reset", the reset time depends on the *Reset delay time* setting. With the reset curve type "Inverse reset", the reset time depends on the current during the drop-off situation. The START output is deactivated when the reset timer has elapsed.

The "Inverse reset" selection is only supported with ANSI or user programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.

The setting *Time multiplier* is used for scaling the IDMT operate and reset times.

The setting parameter *Minimum operate time* defines the minimum desired operate time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum operate time* setting should be used with great care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see *Chapter 11.2.1 IDMT curves for overcurrent protection* in this manual.

The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operating time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting <code>Blocking mode</code>.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.1.2.5 Measurement modes

The function operates on three alternative measurement modes: "RMS", "DFT" and "Peak-to-Peak". The measurement mode is selected with the *Measurement mode* setting.

Table 257: Measurement modes supported by (F)DPHxPDOC stages

Measurement mode	(F)DPHLPDOC	DPHHPDOC
RMS	x	x
DFT	x	x
Peak-to-Peak	х	х

4.1.2.6 Directional overcurrent characteristics

The forward and reverse sectors are defined separately. The forward operation area is limited with the *Min forward angle* and *Max forward angle* settings. The reverse operation area is limited with the *Min reverse angle* and *Max reverse angle* settings.

The sector limits are always given as positive degree values.

In the forward operation area, the *Max forward angle* setting gives the counterclockwise sector and the *Min forward angle* setting gives the corresponding clockwise sector, measured from the *Characteristic angle* setting.

In the backward operation area, the *Max reverse angle* setting gives the counterclockwise sector and the *Min reverse angle* setting gives the corresponding clockwise sector, a measurement from the *Characteristic angle* setting that has been rotated 180 degrees.

Relay characteristic angle (RCA) is set positive if the operating current lags the polarizing quantity and negative if the operating current leads the polarizing quantity.

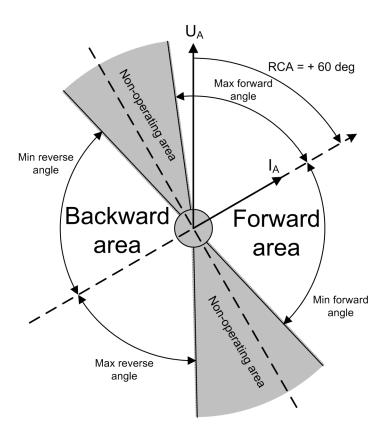


Figure 123: Configurable operating sectors

Table 258: Momentary per phase direction value for monitored data view

Criterion for per phase direction information	The value for DIR_A/_B/_C
The ANGLE_X is not in any of the defined sectors, or the direction cannot be defined due too low amplitude	0 = unknown
The ANGLE_X is in the forward sector	1 = forward
The ANGLE_X is in the reverse sector	2 = backward
(The ANGLE_X is in both forward and reverse sectors, that is, when the sectors are overlapping)	3 = both

Table 259: Momentary phase combined direction value for monitored data view

Criterion for phase combined direction information	The value for DIRECTION
The direction information (DIR_X) for all phases is unknown	0 = unknown
The direction information (DIR_X) for at least one phase is forward, none being in reverse	1 = forward
The direction information (DIR_X) for at least one phase is reverse, none being in forward	2 = backward
The direction information (DIR_X) for some phase is forward and for some phase is reverse	3 = both

FAULT_DIR gives the detected direction of the fault during fault situations, that is, when the START output is active.

Self-polarizing as polarizing method

Table 260: Equations for calculating angle difference for self-polarizing method

Faulted phases		Used polarizing voltage	Angle difference
А	<u>I</u> A	<u>U</u> A	$ANGLE_A = \varphi(\underline{U}_A) - \varphi(\underline{I}_A) - \varphi_{RCA}$
В	Iв	<u>U</u> в	$ANGLE_B = \varphi(\underline{U}_B) - \varphi(\underline{I}_B) - \varphi_{RCA}$
С	<u>l</u> c	Uc	$ANGLE_C = \varphi(\underline{U}_C) - \varphi(\underline{I}_C) - \varphi_{RCA}$
A - B	<u>I</u> _A - <u>I</u> _B	<u>U</u> ав	$ANGLE_A = \varphi(\underline{U}_{AB}) - \varphi(\underline{I}_A - \underline{I}_B) - \varphi_{RCA}$
B - C	<u>I</u> _B - <u>I</u> C	<u>U</u> вс	$ANGLE_B = \varphi(\underline{U}_{BC}) - \varphi(\underline{I}_B - \underline{I}_C) - \varphi_{RCA}$
C - A	<u>I</u> c - <u>I</u> A	<u>U</u> ca	$ANGLE_C = \varphi(\underline{U}_{CA}) - \varphi(\underline{I}_C - \underline{I}_A) - \varphi_{RCA}$

In an example case of the phasors in a single-phase earth fault where the faulted phase is phase A, the angle difference between the polarizing quantity U $_{\rm A}$ and operating quantity I $_{\rm A}$ is marked as ϕ . In the self-polarization method, there is no need to rotate the polarizing quantity.

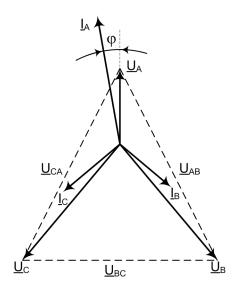


Figure 124: Single-phase earth fault, phase A

In an example case of a two-phase short-circuit failure where the fault is between phases B and C, the angle difference is measured between the polarizing quantity U $_{\rm BC}$ and operating quantity $\underline{\rm I}_{\rm B}$ - $\underline{\rm I}_{\rm C}$ in the self-polarizing method.

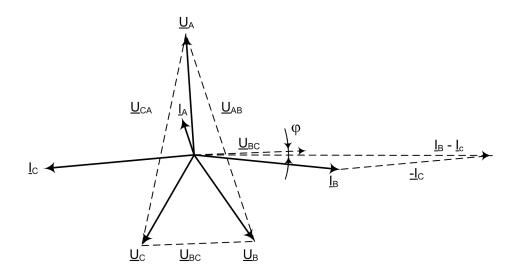


Figure 125: Two-phase short circuit, short circuit is between phases B and C

Cross-polarizing as polarizing quantity

Table 261: Equations for calculating angle difference for cross-polarizing method

Faulted phases	Used fault current	Used polarizing voltage	Angle difference
А	I A	<u>U</u> вс	$ANGLE_A = \varphi(\underline{U}_{BC}) - \varphi(\underline{I}_A) - \varphi_{RCA} + 90^o$
В	Iв	<u>U</u> CA	$ANGLE_B = \varphi(\underline{U}_{CA}) - \varphi(\underline{I}_B) - \varphi_{RCA} + 90^o$
С	lс	<u>U</u> АВ	$ANGLE_C = \varphi(\underline{U}_{AB}) - \varphi(\underline{I}_C) - \varphi_{RCA} + 90^o$
A - B	<u>I</u> _A - <u>I</u> _B	<u>U</u> _{BC} - <u>U</u> _{CA}	$ANGLE_A = \varphi(\underline{U}_{BC} - \underline{U}_{CA}) - \varphi(\underline{I}_A - \underline{I}_B) - \varphi_{RCA} + 90^\circ$
B - C	<u>I</u> _B - <u>I</u> C	<u>U</u> _{CA} - <u>U</u> _{AB}	$ANGLE_B = \varphi(\underline{U}_{CA} - \underline{U}_{AB}) - \varphi(\underline{I}_B - \underline{I}_C) - \varphi_{RCA} + 90^\circ$
C - A	<u>I</u> c - <u>I</u> A	<u>U</u> _{AB} - <u>U</u> _{BC}	$ANGLE_C = \varphi(\underline{U}_{AB} - \underline{U}_{BC}) - \varphi(\underline{I}_C - \underline{I}_A) - \varphi_{RCA} + 90^{\circ}$

The angle difference between the polarizing quantity U $_{BC}$ and operating quantity I $_{A}$ is marked as φ in an example of the phasors in a single-phase earth fault where the faulted phase is phase A. The polarizing quantity is rotated with 90 degrees. The characteristic angle is assumed to be \sim 0 degrees.

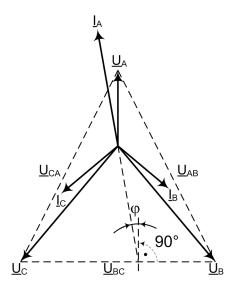


Figure 126: Single-phase earth fault, phase A

In an example of the phasors in a two-phase short-circuit failure where the fault is between the phases B and C, the angle difference is measured between the polarizing quantity \underline{U}_{AB} and operating quantity \underline{I}_{B} - \underline{I}_{C} marked as $\varphi.$

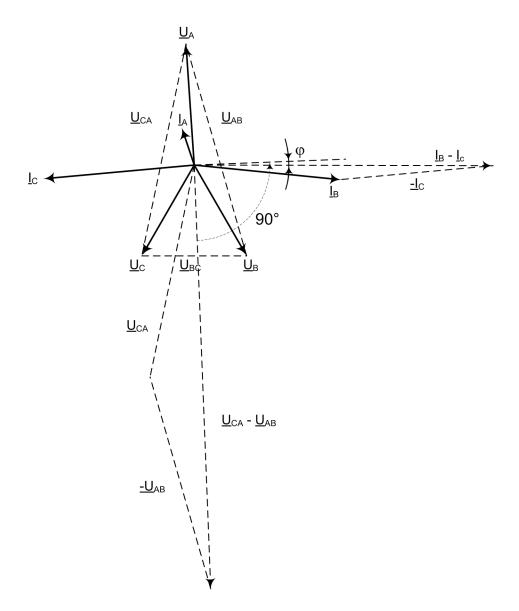


Figure 127: Two-phase short circuit, short circuit is between phases B and C

The equations are valid when network rotating direction is counter-clockwise, that is, ABC. If the network rotating direction is reversed, 180 degrees is added to the calculated angle difference. This is done automatically with a system parameter *Phase rotation*.

Negative sequence voltage as polarizing quantity

When the negative voltage is used as the polarizing quantity, the angle difference between the operating and polarizing quantity is calculated with the same formula for all fault types:

$$ANGLE_X = \varphi(-\underline{U}_2) - \varphi(\underline{I}_2) - \varphi_{RCA}$$

(Equation 5)

This means that the actuating polarizing quantity is - \underline{U}_2 .

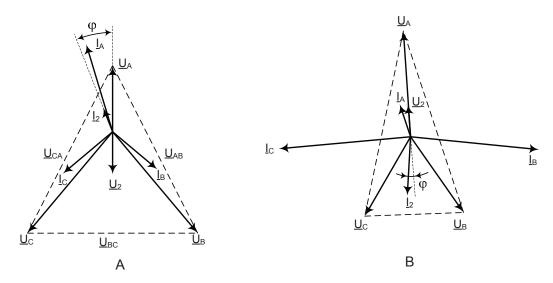


Figure 128: Phasors in a single-phase earth fault, phases A-N, and two-phase short circuit, phases B and C, when the actuating polarizing quantity is the negative-sequence voltage -U2

Positive sequence voltage as polarizing quantity

Table 262: Equations for calculating angle difference for positive-sequence quantity polarizing method

Faulted phases	Used fault current	Used polarizing voltage	Angle difference
А	<u>I</u> A	<u>U</u> 1	$ANGLE_A = \varphi(\underline{U}_1) - \varphi(\underline{I}_A) - \varphi_{RCA}$
В	ĪВ	<u>U</u> 1	$ANGLE_B = \varphi(\underline{U}_1) - \varphi(\underline{I}_B) - \varphi_{RCA} - 120^{\circ}$
С	<u>l</u> c	<u>U</u> 1	$ANGLE_C = \varphi(\underline{U}_1) - \varphi(\underline{I}_C) - \varphi_{RCA} + 120^{\circ}$
A - B	<u>I</u> _A - <u>I</u> _B	<u>U</u> 1	$ANGLE_A = \varphi(\underline{U}_1) - \varphi(\underline{I}_A - \underline{I}_B) - \varphi_{RCA} + 30^{\circ}$
B - C	<u>I</u> _B - <u>I</u> C	<u>U</u> 1	$ANGLE_B = \varphi(\underline{U}_1) - \varphi(\underline{I}_B - \underline{I}_C) - \varphi_{RCA} - 90^{\circ}$
C - A	<u>I</u> c - <u>I</u> A	<u>U</u> 1	$ANGLE_C = \varphi(\underline{U}_1) - \varphi(\underline{I}_C - \underline{I}_A) - \varphi_{RCA} + 150^{\circ}$

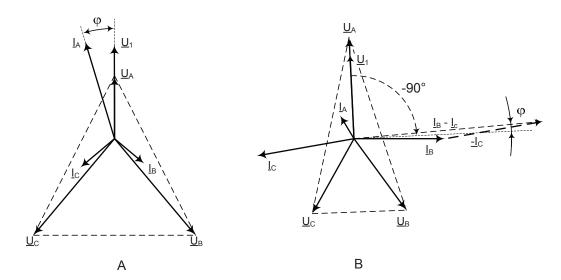


Figure 129: Phasors in a single-phase earth fault, phase A to ground, and a two-phase short circuit, phases B-C, are short-circuited when the polarizing quantity is the positive-sequence voltage U 1

Network rotation direction

Typically, the network rotating direction is counter-clockwise and defined as "ABC". If the network rotating direction is reversed, meaning clockwise, that is, "ACB", the equations for calculating the angle difference needs to be changed. The network rotating direction is defined with a system parameter *Phase rotation*. The change in the network rotating direction affects the phase-to-phase voltages polarization method where the calculated angle difference needs to be rotated 180 degrees. Also, when the sequence components are used, which are, the positive sequence voltage or negative sequence voltage components, the calculation of the components are affected but the angle difference calculation remains the same. When the phase-to-ground voltages are used as the polarizing method, the network rotating direction change has no effect on the direction calculation.

The network rotating direction is set in the protection relay using the parameter in the HMI menu **Configuration** > **System** > **Phase rotation**. The default parameter value is "ABC".

NETWORK ROTATION ABC

NETWORK ROTATION ACB

<u>U</u>CA

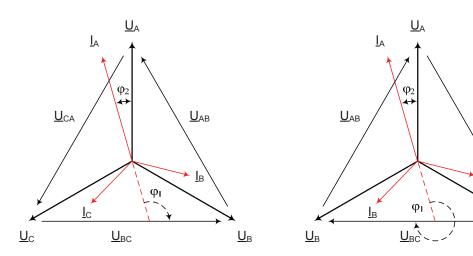


Figure 130: Examples of network rotating direction

4.1.2.7 Application

(F)DPHxPDOC is used as short-circuit protection in three-phase distribution or sub transmission networks operating at 50 or 60 Hz.

In radial networks, phase overcurrent protection relays are often sufficient for the short circuit protection of lines, transformers and other equipment. The current-time characteristic should be chosen according to the common practice in the network. It is recommended to use the same current-time characteristic for all overcurrent protection relays in the network. This includes the overcurrent protection of transformers and other equipment.

The phase overcurrent protection can also be used in closed ring systems as short circuit protection. Because the setting of a phase overcurrent protection system in closed ring networks can be complicated, a large number of fault current calculations are needed. There are situations with no possibility to have the selectivity with a protection system based on overcurrent protection relays in a closed ring system.

In some applications, the possibility of obtaining the selectivity can be improved significantly if (F)DPHxPDOC is used. This can also be done in the closed ring networks and radial networks with the generation connected to the remote in the system thus giving fault current infeed in reverse direction. Directional overcurrent protection relays are also used to have a selective protection scheme, for example in case of parallel distribution lines or power transformers fed by the same single source. In ring connected supply feeders between substations or feeders with two feeding sources, (F)DPHxPDOC is also used.

Parallel lines or transformers

When the lines are connected in parallel and if a fault occurs in one of the lines, it is practical to have (F)DPHxPDOC to detect the direction of the fault. Otherwise, there is a risk that the fault situation in one part of the feeding system can de-energize the whole system connected to the LV side.

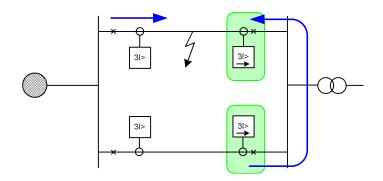


Figure 131: Overcurrent protection of parallel lines using directional protection relays

(F)DPHxPDOC can be used for parallel operating transformer applications. In these applications, there is a possibility that the fault current can also be fed from the LV-side up to the HV-side. Therefore, the transformer is also equipped with directional overcurrent protection.

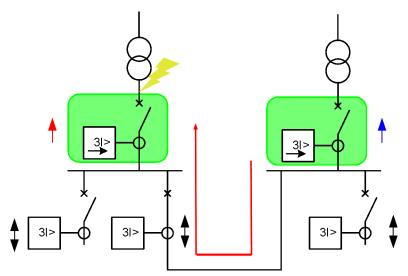


Figure 132: Overcurrent protection of parallel operating transformers

Closed ring network topology

The closed ring network topology is used in applications where electricity distribution for the consumers is secured during network fault situations. The power is fed at least from two directions which means that the current direction can be varied. The time grading between the network level stages is challenging without unnecessary delays in the time settings. In this case, it is practical to use the directional overcurrent protection relays to achieve a selective protection scheme. Directional overcurrent functions can be used in closed ring applications. The arrows define the operating direction of the directional functionality. The double arrows define the non-directional functionality where faults can be detected in both directions.

Protection functions

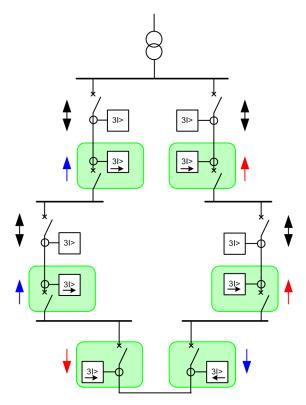


Figure 133: Closed ring network topology where feeding lines are protected with directional overcurrent protection relays

4.1.2.8 Signals

Table 263: FDPHLPDOC Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
12	SIGNAL	0	Negative phase sequence current
U_A_AB	SIGNAL	0	Phase-to-earth volt- age A or phase-to- phase voltage AB
U_B_BC	SIGNAL	0	Phase-to-earth volt- age B or phase-to- phase voltage BC
U_C_CA	SIGNAL	0	Phase-to-earth volt- age C or phase-to- phase voltage CA
U ₁	SIGNAL	0	Positive phase sequence voltage

Table continues on the next page

Name	Туре	Default	Description
U ₂	SIGNAL	0	Negative phase sequence voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enabling signal for current multiplier
NON_DIR	BOOLEAN	0=False	Forces protection to non-directional

Table 264: DPHLPDOC Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
12	SIGNAL	0	Negative phase sequence current
U_A_AB	SIGNAL	0	Phase to earth voltage A or phase to phase voltage AB
U_B_BC	SIGNAL	0	Phase to earth voltage B or phase to phase voltage BC
U_C_CA	SIGNAL	0	Phase to earth voltage C or phase to phase voltage CA
U ₁	SIGNAL	0	Positive phase sequence voltage
U ₂	SIGNAL	0	Negative phase sequence voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enabling signal for current multiplier
NON_DIR	BOOLEAN	0=False	Forces protection to non-directional

Table 265: DPHHPDOC Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current

Name	Туре	Default	Description
12	SIGNAL	0	Negative phase sequence current
U_A_AB	SIGNAL	0	Phase to earth voltage A or phase to phase voltage AB
U_B_BC	SIGNAL	0	Phase to earth voltage B or phase to phase voltage BC
U_C_CA	SIGNAL	0	Phase to earth voltage C or phase to phase voltage CA
U ₁	SIGNAL	0	Positive phase sequence voltage
U ₂	SIGNAL	0	Negative phase sequence voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enabling signal for current multiplier
NON_DIR	BOOLEAN	0=False	Forces protection to non-directional

Table 266: FDPHLPDOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

Table 267: DPHLPDOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

Table 268: DPHHPDOC Output signals

Name	Туре	Description
START	BOOLEAN	Start
OPERATE	BOOLEAN	Operate

4.1.2.9 Settings

Table 269: FDPHLPDOC Group settings (Basic)

	Values (Range)	Unit	Step	Default	Description
Start value (0.055.00	xln	0.01	0.05	Start value
Operate delay time	40200000	ms	10	40	Operate delay time
Operate delay time 4 Operating curve type 2 6 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.055.00	xIn	0.01	0.05	Start value

Parameter	Values (Range)	Unit	Step	Default	Description
	-27=Recloser J				
	-28=Recloser Kg				
	-29=Recloser Kp				
	-30=Recloser L				
	-31=Recloser M				
	-32=Recloser N				
	-33=Recloser P				
	-34=Recloser R				
	-35=Recloser T				
	-36=Recloser V				
	-37=Recloser W				
	-38=Recloser Y				
	-39=Recloser Z				
Voltage Mem time	03000	ms	1	40	Voltage memory time
Directional mode	1=Non-directional			2=Forward	Directional mode
	2=Forward				
	3=Reverse				
Characteristic angle	-179180	deg	1	60	Characteristic angle
Pol quantity	1=Self pol			5=Cross pol	Reference quantity used to determine fault direction
	4=Neg. seq. volt.				determine fault direction
	5=Cross pol				
	7=Pos. seq. volt.				
	1	1	1	1	

Table 270: FDPHLPDOC Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type
Max forward angle	090	deg	1	80	Maximum phase angle in forward direction
Max reverse angle	090	deg	1	80	Maximum phase angle in reverse direction
Min forward angle	090	deg	1	80	Minimum phase angle in forward direction
Min reverse angle	090	deg	1	80	Minimum phase angle in reverse direction

Table 271: FDPHLPDOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On

Parameter	Values (Range)	Unit	Step	Default	Description
	5=off				
Num of start phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for operate activation
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer programmable curve
Allow Non Dir	0=False 1=True			0=False	Allows prot activation as non- dir when dir info is invalid

Table 272: FDPHLPDOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Minimum operate time	4060000	ms	1	40	Minimum operate time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measurement mode
Min operate cur- rent	0.011.00	xIn	0.01	0.01	Minimum operating current
Min operate voltage	0.011.00	xUn	0.01	0.01	Minimum operating voltage

Table 273: DPHLPDOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.055.00	xIn	0.01	0.05	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operate delay time	40200000	ms	10	40	Operate delay time
Operating curve type	1=ANSI Ext. inv. 2=ANSI Very inv. 3=ANSI Norm. inv. 4=ANSI Mod. inv. 5=ANSI Def. Time 6=L.T.E. inv. 7=L.T.V. inv.			15=IEC Def. Time	Selection of time delay curve type

Parameter	Values (Range)	Unit	Step	Default	Description
	8=L.T. inv.				
	9=IEC Norm. inv.				
	10=IEC Very inv.				
	11=IEC inv.				
	12=IEC Ext. inv.				
	13=IEC S.T. inv.				
	14=IEC L.T. inv.				
	15=IEC Def. Time				
	17=Programmable				
	18=RI type				
	19=RD type				
Directional mode	1=Non-directional			2=Forward	Directional mode
	2=Forward				
	3=Reverse				
Characteristic angle	-179180	deg	1	60	Characteristic angle
Max forward angle	090	deg	1	80	Maximum phase angle in forward direction
Max reverse angle	090	deg	1	80	Maximum phase angle in reverse direction
Min forward angle	090	deg	1	80	Minimum phase angle in forward direction
Min reverse angle	090	deg	1	80	Minimum phase angle in reverse direction

Table 274: DPHLPDOC Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type
Voltage Mem time	03000	ms	1	40	Voltage memory time
Pol quantity	1=Self pol 4=Neg. seq. volt. 5=Cross pol . 7=Pos. seq. volt.			5=Cross pol	Reference quantity used to determine fault direction

Table 275: DPHLPDOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Num of start pha- ses	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for oper- ate activation
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer programmable curve

Parameter	Values (Range)	Unit	Step	Default	Description
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer programmable curve

Table 276: DPHLPDOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Minimum operate time	2060000	ms	1	20	Minimum operate time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used meas- urement mode
Allow Non Dir	0=False 1=True			0=False	Allows prot activa- tion as non-dir when dir info is in- valid
Min operate current	0.011.00	xIn	0.01	0.01	Minimum operating current
Min operate voltage	0.011.00	xUn	0.01	0.01	Minimum operating voltage

Table 277: DPHHPDOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.1040.00	xIn	0.01	0.10	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Directional mode	1=Non-directional 2=Forward 3=Reverse			2=Forward	Directional mode
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/AN- SI IDMT curves
Operating curve type	1=ANSI Ext. inv. 3=ANSI Norm. inv. 5=ANSI Def. Time 9=IEC Norm. inv. 10=IEC Very inv. 12=IEC Ext. inv. 15=IEC Def. Time 17=Programmable			15=IEC Def. Time	Selection of time delay curve type
Operate delay time	40200000	ms	10	40	Operate delay time
Characteristic angle	-179180	deg	1	60	Characteristic angle

Parameter	Values (Range)	Unit	Step	Default	Description
Max forward angle	090	deg	1	80	Maximum phase angle in forward direction
Max reverse angle	090	deg	1	80	Maximum phase angle in reverse direction
Min forward angle	090	deg	1	80	Minimum phase angle in forward direction
Min reverse angle	090	deg	1	80	Minimum phase angle in reverse direction

Table 278: DPHHPDOC Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type
Voltage Mem time	03000	ms	1	40	Voltage memory time
Pol quantity	1=Self pol 4=Neg. seq. volt. 5=Cross pol 7=Pos. seq. volt.			5=Cross pol	Reference quantity used to determine fault direc- tion

Table 279: DPHHPDOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer programmable curve
Num of start pha- ses	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for operate activation

Table 280: DPHHPDOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time
Minimum operate time	2060000	ms	1	20	Minimum operate time for IDMT curves

Parameter	Values (Range)	Unit	Step	Default	Description
Allow Non Dir	0=False 1=True			0=False	Allows prot activation as non-dir when dir info is invalid
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measure- ment mode
Min operate cur- rent	0.011.00	xIn	0.01	0.01	Minimum operating current
Min operate voltage	0.011.00	xUn	0.01	0.01	Minimum operating voltage

4.1.2.10 Monitored data

Table 281: FDPHLPDOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
FAULT_DIR	Enum	0=unknown 1=forward 2=backward 3=both		Detected fault direction
DIRECTION	Enum	0=unknown 1=forward 2=backward 3=both		Direction infor- mation
DIR_A	Enum	0=unknown 1=forward 2=backward -1=both		Direction phase A
DIR_B	Enum	0=unknown 1=forward 2=backward -1=both		Direction phase B
DIR_C	Enum	0=unknown 1=forward 2=backward -1=both		Direction phase C

Name	Туре	Values (Range)	Unit	Description
ANGLE_A	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase A
ANGLE_B	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase B
ANGLE_C	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase C
VMEM_USED	BOOLEAN	0=False 1=True		Voltage memory in use status
FDPHLPDOC	Enum	1=on 2=blocked 3=test 4=test/blocked 5=off		Status

Table 282: DPHLPDOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
FAULT_DIR	Enum	0=unknown 1=forward 2=backward 3=both		Detected fault direction
DIRECTION	Enum	0=unknown 1=forward 2=backward 3=both		Direction information
DIR_A	Enum	0=unknown 1=forward 2=backward -1=both		Direction phase A
DIR_B	Enum	0=unknown 1=forward 2=backward		Direction phase B

Name	Туре	Values (Range)	Unit	Description
		-1=both		
DIR_C	Enum	0=unknown		Direction phase C
		1=forward		
		2=backward		
		-1=both		
ANGLE_A	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase A
ANGLE_B	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase B
ANGLE_C	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase C
VMEM_USED	BOOLEAN	0=False		Voltage memory
		1=True		in use status
DPHLPDOC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

Table 283: DPHHPDOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
FAULT_DIR	Enum	0=unknown 1=forward 2=backward 3=both		Detected fault direction
DIRECTION	Enum	0=unknown 1=forward 2=backward 3=both		Direction infor- mation

Name	Туре	Values (Range)	Unit	Description
DIR_A	Enum	0=unknown		Direction phase
		1=forward		A
		2=backward		
		-1=both		
DIR_B	Enum	0=unknown		Direction phase
		1=forward		В
		2=backward		
		-1=both		
DIR_C	Enum	0=unknown		Direction phase
		1=forward		С
		2=backward		
		-1=both		
ANGLE_A	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase A
ANGLE_B	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase B
ANGLE_C	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase C
VMEM_USED	BOOLEAN	0=False 1=True		Voltage memory in use status
DPHHPDOC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.1.2.11 Technical data

Table 284: (F)DPHxPDOC Technical data

Characteristic		Value
Operation accuracy	(F)DPHLPDOC	Depending on the frequency of the current/voltage measured: $f_n \pm 2 Hz$
		Current:

Characteristic		Value		
		$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$ Phase angle: $\pm 2^\circ$		
	DPHHPDOC	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$) $\pm 5.0\%$ of the set value (at currents in the range of $1040 \times I_n$) Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$ Phase angle: $\pm 2^\circ$		
		Minimum	Typical	Maximum
Start time ¹²	I _{Fault} = 2.0 × set <i>Start</i> value	39 ms	43 ms	47 ms
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³ ±5.0% of the theoretical value or ±40 ms ³ ⁴		
Suppression of harmoni	cs	DFT: -50 dB at $f = n \times f_n$,	where n = 2, 3, 4, 5,	

4.1.2.12 Technical revision history

Table 285: DPHHPDOC Technical revision history

Technical revision	Change
В	Added a new input NON_DIR
С	Step value changed from 0.05 to 0.01 for the <i>Time multiplier</i> setting.
D	Monitored data VMEM_USED indicating voltage memory use.
E	Internal improvement.

REC615 & RER615 265

¹ Measurement mode and Pol quantity = default, current before fault = $0.0 \times I_n$, voltage before fault = $1.0 \times Un$, f_n = 50 Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

² Includes the delay of the signal output contact

³ Maximum Start value = $2.5 \times I_n$, Start value multiples in range of 1.5...20

⁴ Valid for (F)DPHLPDOC

Protection functions 1MRS758755 C

Table 286:	(F)DPH	LPDOC Technic	al revision history
-------------------	--------	---------------	---------------------

Technical revision	Change
В	Added a new input NON_DIR
С	Step value changed from 0.05 to 0.01 for the <i>Time multiplier</i> setting.
D	Monitored data VMEM_USED indicating voltage memory use.
Е	Internal improvement.

Three-phase thermal protection for feeders, cables and 4.1.3 distribution transformers T1PTTR

4.1.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase thermal protection for feeders, cables and distribution transformers	T1PTTR	3lth>F	49F

4.1.3.2 **Function block**

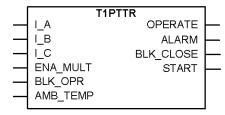


Figure 134: Function block

4.1.3.3 **Functionality**

The increased utilization of power systems closer to the thermal limits has generated a need for a thermal overload function for power lines as well.

A thermal overload is in some cases not detected by other protection functions, and the introduction of the three-phase thermal protection for feeders, cables and distribution transformers function T1PTTR allows the protected circuit to operate closer to the thermal limits.

An alarm level gives an early warning to allow operators to take action before the line trips. The early warning is based on the three-phase current measuring function using a thermal model with first order thermal loss with the settable time constant. If the temperature rise continues the function operates based on the thermal model of the line.

Re-energizing of the line after the thermal overload operation can be inhibited during the time the cooling of the line is in progress. The cooling of the line is estimated by the thermal model.

4.1.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of T1PTTR can be described using a module diagram. All the modules in the diagram are explained in the next sections.

The function uses ambient temperature which can be measured locally or remotely. Local measurement is done by the protection relay. Remote measurement uses analog GOOSE to connect AMB TEMP input.

If the quality of remotely measured temperature is invalid or communication channel fails the function uses ambient temperature set in *Env temperature Set*.

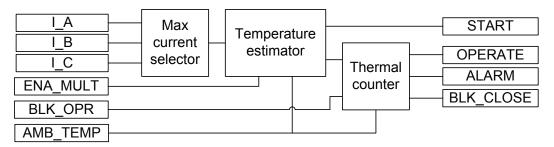


Figure 135: Functional module diagram

Max current selector

The max current selector of the function continuously checks the highest measured TRMS phase current value. The selector reports the highest value to the temperature estimator.

Temperature estimator

The final temperature rise is calculated from the highest of the three-phase currents according to the expression:

$$\Theta_{final} = \left(\frac{I}{I_{ref}}\right)^2 \cdot T_{ref}$$

(Equation 6)

I the largest phase current
I ref set Current reference
T ref set Temperature rise

The ambient temperature is added to the calculated final temperature rise estimation, and the ambient temperature value used in the calculation is also available in the monitored data as TEMP AMB in degrees. If the final temperature

Protection functions 1MRS758755 C

estimation is larger than the set *Maximum temperature*, the START output is activated.

Current reference and Temperature rise setting values are used in the final temperature estimation together with the ambient temperature. It is suggested to set these values to the maximum steady state current allowed for the line or cable under emergency operation for a few hours per years. Current values with the corresponding conductor temperatures are given in cable manuals. These values are given for conditions such as ground temperatures, ambient air temperature, the way of cable laying and ground thermal resistivity.

Thermal counter

The actual temperature at the actual execution cycle is calculated as:

$$\Theta_n = \Theta_{n-1} + \left(\Theta_{final} - \Theta_{n-1}\right) \cdot \left(1 - e^{-\frac{\Delta t}{\tau}}\right)$$

(Equation 7)

Θ_n calculated present temperature

 $\Theta_{\text{ n-1}}$ calculated temperature at previous time step $\Theta_{\text{ final}}$ calculated final temperature with actual current Δt time step between calculation of actual temperature

t thermal time constant for the protected device (line or cable), set *Time constant*

The actual temperature of the protected component (line or cable) is calculated by adding the ambient temperature to the calculated temperature, as shown above. The ambient temperature can be given a constant value or it can be measured. The calculated component temperature can be monitored as it is exported from the function as a real figure.

When the component temperature reaches the set alarm level $Alarm\ value$, the output signal ALARM is set. When the component temperature reaches the set trip level $Maximum\ temperature$, the <code>OPERATE</code> output is activated. The <code>OPERATE</code> signal pulse length is fixed to 100 ms.

There is also a calculation of the present time to operation with the present current. This calculation is only performed if the final temperature is calculated to be above the operation temperature:

$$t_{operate} = -\tau \cdot \ln \left(\frac{\Theta_{final} - \Theta_{operate}}{\Theta_{final} - \Theta_{n}} \right)$$

(Equation 8)

Caused by the thermal overload protection function, there can be a lockout to reconnect the tripped circuit after operating. The lockout output <code>BLK_CLOSE</code> is activated at the same time when the <code>OPERATE</code> output is activated and is not reset until the device temperature has cooled down below the set value of the *Reclose temperature* setting. The *Maximum temperature* value must be set at least two degrees above the set value of *Reclose temperature*.

268 REC615 & RER615

The time to lockout release is calculated, that is, the calculation of the cooling time to a set value. The calculated temperature can be reset to its initial value (the *Initial temperature* setting) via a control parameter that is located under the clear menu. This is useful during testing when secondary injected current has given a calculated false temperature level.

$$t_{lockout_release} = -\tau \cdot \ln \left(\frac{\Theta_{final} - \Theta_{lockout_release}}{\Theta_{final} - \Theta_{n}} \right)$$

(Equation 9)

Here the final temperature is equal to the set or measured ambient temperature.

In some applications, the measured current can involve a number of parallel lines. This is often used for cable lines where one bay connects several parallel cables. By setting the *Current multiplier* parameter to the number of parallel lines (cables), the actual current on one line is used in the protection algorithm. To activate this option, the $\tt ENAMULT$ input must be activated.

The ambient temperature can be measured with the RTD measurement. The measured temperature value is then connected, for example, from the ${\tt AI_VAL3}$ output of the X130 (RTD) function to the ${\tt AMB_TEMP}$ input of T1PTTR.

The *Env temperature Set* setting is used to define the ambient temperature if the ambient temperature measurement value is not connected to the AMB_TEMP input. The *Env temperature Set* setting is also used when the ambient temperature measurement connected to T1PTTR is set to "Not in use" in the X130 (RTD) function.

The temperature calculation is initiated from the value defined with the *Initial temperature* setting parameter. This is done in case the protection relay is powered up, the function is turned "Off" and back "On" or reset through the Clear menu. The temperature is also stored in the nonvolatile memory and restored in case the protection relay is restarted.

The thermal time constant of the protected circuit is given in seconds with the *Time constant* setting. Please see cable manufacturers manuals for further details.

T1PTTR thermal model complies with the IEC 60255-149 standard.

4.1.3.5 Application

The lines and cables in the power system are constructed for a certain maximum load current level. If the current exceeds this level, the losses will be higher than expected. As a consequence, the temperature of the conductors will increase. If the temperature of the lines and cables reaches too high values, it can cause a risk of damages by, for example, the following ways:

- The sag of overhead lines can reach an unacceptable value.
- If the temperature of conductors, for example aluminium conductors, becomes too high, the material will be destroyed.
- Overheating can damage the insulation on cables which in turn increases the risk of phase-to-phase or phase-to-earth faults.

Protection functions 1MRS758755 C

In stressed situations in the power system, the lines and cables may be required to be overloaded for a limited time. This should be done without any risk for the above-mentioned risks.

The thermal overload protection provides information that makes temporary overloading of cables and lines possible. The thermal overload protection estimates the conductor temperature continuously. This estimation is made by using a thermal model of the line/cable that is based on the current measurement.

If the temperature of the protected object reaches a set warning level, a signal is given to the operator. This enables actions in the power system to be done before dangerous temperatures are reached. If the temperature continues to increase to the maximum allowed temperature value, the protection initiates a trip of the protected line.

4.1.3.6 Signals

Table 287: T1PTTR Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
ENA_MULT	BOOLEAN	0=False	Enable Current multi- plier
BLK_OPR	BOOLEAN	0=False	Block signal for operate outputs
AMB_TEMP	FLOAT32	0	The ambient temperature used in the calculation

Table 288: T1PTTR Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start
ALARM	BOOLEAN	Thermal Alarm
BLK_CLOSE	BOOLEAN	Thermal overload indicator. To inhibite reclose.

4.1.3.7 Settings

Table 289: T1PTTR Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Env temperature Set	-50100	°C	1	40	Ambient tempera- ture used when no external temper-

Parameter	Values (Range)	Unit	Step	Default	Description
					ature measurement available
Current reference	0.054.00	xin	0.01	1.00	The load current leading to Temper- ature raise temper- ature
Temperature rise	0.0200.0	°C	0.1	75.0	End temperature rise above ambient
Time constant	6060000	S	1	2700	Time constant of the line in seconds.
Maximum tempera- ture	20.0200.0	°C	0.1	90.0	Temperature level for operate
Alarm value	20.0150.0	°C	0.1	80.0	Temperature level for start (alarm)
Reclose tempera- ture	20.0150.0	°C	0.1	70.0	Temperature for reset of block reclose after operate

Table 290: T1PTTR Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Current multiplier	15		1	1	Current multiplier when function is used for parallel lines

Table 291: T1PTTR Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				

Table 292: T1PTTR Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Initial temperature	-50.0100.0	°C	0.1	0.0	Temperature raise above ambient temperature at startup

4.1.3.8 Monitored data

Table 293: T1PTTR Monitored data

Name	Туре	Values (Range)	Unit	Description
ТЕМР	FLOAT32	-100.09999.9	°C	The calculated temperature of the protected object
TEMP_RL	FLOAT32	0.0099.99		The calculated temperature of the protected object relative to the operate level
T_OPERATE	INT32	060000	S	Estimated time to operate

Name	Туре	Values (Range)	Unit	Description
T_ENA_CLOSE	INT32	060000	S	Estimated time to deactivate BLK_CLOSE
TEMP_AMB	FLOAT32	-99999	°C	The ambient temperature used in the calcu- lation
T1PTTR	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.1.3.9 Technical data

Table 294: T1PTTR Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: f _n ±2 Hz
	Current measurement: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of $0.014.00 \times I_n$)
Operate time accuracy ¹	±2.0% of the theoretical value or ±0.50 s

4.1.3.10 Technical revision history

Table 295: T1PTTR Technical revision history

Technical revision	Change
С	Removed the Sensor available setting parameter
D	Added the AMB_TEMP input
Е	Internal improvement.
F	Internal improvement.

4.1.4 Loss of phase, undercurrent PHPTUC

¹ Overload current > 1.2 × Operate level temperature

4.1.4.1 Identification

Function description	IEC 61850	IEC 60617	ANSI/IEEE C37.2
	identification	identification	device number
Loss of phase, under- current	PHPTUC	31<	37

4.1.4.2 Function block

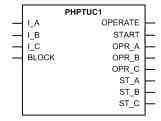


Figure 136: Function block

4.1.4.3 Functionality

The loss of phase, undercurrent, protection function PHPTUC is used to detect an undercurrent that is considered as a fault condition.

PHPTUC starts when the current is less than the set limit. Operation time characteristics are according to definite time (DT).

The function contains a blocking functionality. It is possible to block function outputs and reset the definite timer if desired.

4.1.4.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of PHPTUC can be described with a module diagram. All the modules in the diagram are explained in the next sections.

Protection functions 1MRS758755 C

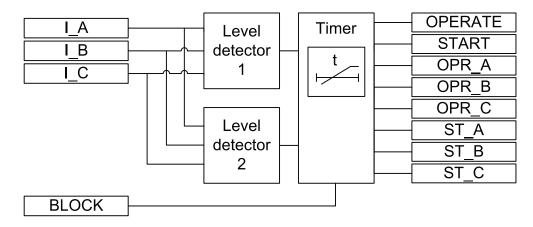


Figure 137: Functional module diagram

Level detector 1

This module compares the phase currents (RMS value) to the *Start value* setting. The *Operation mode* setting can be used to select the "Three Phase" or "Single Phase" mode.

If in the "Three Phase" mode all the phase current values are less than the value of the *Start value* setting, the condition is detected and an enable signal is sent to the timer. This signal is disabled after one or several phase currents have exceeded the set *Start value* value of the element.

If in the "Single Phase" mode any of the phase current values are less than the value of the *Start value* setting, the condition is detected and an enable signal is sent to the timer. This signal is disabled after all the phase currents have exceeded the set *Start value* value of the element.

The protection relay does not accept the *Start value* to be smaller than *Current block value*.

Level detector 2

This is a low-current detection module that monitors the de-energized condition of the protected object. The module compares the phase currents (RMS value) to the *Start value low* setting. If all the phase current values are less than the *Start value low* setting, a signal is sent to block the operation of the timer.

Timer

Once activated, the timer activates the START output and the phase-specific ST_X output. The time characteristic is according to DT. When the operation timer has reached the value set by *Operate delay time*, the OPERATE output and the phase-specific OPR_X output are activated. If the fault disappears before the module operates, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the operate timer resets and the START output is deactivated.

The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operating time. The value is available through the monitored data view.

The BLOCK signal blocks the operation of the function and resets the timer.

4.1.4.5 Application

In some cases, smaller distribution power transformers are used where the high-side protection involves only power fuses. When one of the high-side fuses blows in a single-phase condition, knowledge of it on the secondary side is lacking. The resulting negative-sequence current leads to a premature failure due to excessive heating and breakdown of the transformer insulation. Knowledge of this condition when it occurs allows for a quick fuse replacement and saves the asset.

The *Current block value* setting can be set to zero to not block PHPTUC with a low three-phase current. However, this results in an unnecessary event sending when the transformer or protected object is disconnected.

Phase-specific start and operate can give a better picture about the evolving faults when one phase has started first and another follows.

PHPTUC is meant to be a general protection function, so that it could be used in other cases too.

In case of undercurrent-based motor protection, see the Loss of load protection.

4.1.4.6 Signals

Table 296: PHPTUC Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block all binary out- puts by resetting timers

Table 297: PHPTUC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
OPR_A	BOOLEAN	Operate phase A
OPR_B	BOOLEAN	Operate phase B
OPR_C	BOOLEAN	Operate phase C
START	BOOLEAN	Start
ST_A	BOOLEAN	Start phase A

Name	Туре	Description
ST_B	BOOLEAN	Start phase B
ST_C	BOOLEAN	Start phase C

4.1.4.7 Settings

Table 298: PHPTUC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Current block value	0.000.50	xln	0.01	0.10	Low current setting to block internally
Start value	0.011.00	xln	0.01	0.50	Current setting to start
Operate delay time	50200000	ms	10	2000	Operate delay time

Table 299: PHPTUC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Operation mode	1=Three Phase 2=Single Phase			1=Three Phase	Number of phases needed to start

Table 300: PHPTUC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time

4.1.4.8 Monitored data

Table 301: PHPTUC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
PHPTUC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.1.4.9 Technical data

Table 302: PHPTUC Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the current measured: f _n ±2 Hz
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
Start time	Typically <55 ms
Reset time	<40 ms
Reset ratio	Typically 1.04
Retardation time	<35 ms
Operate time accuracy in definite time mode	mode ±1.0% of the set value or ±20 ms

4.2 Earth-fault protection

4.2.1 Non-directional earth-fault protection (F)EFxPTOC

4.2.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Non-directional earth-fault protection, low stage	(F)EFLPTOC	lo>	51N-1
Non-directional earth-fault protection, high stage	EFHPTOC	lo>>	51N-2
Non-directional earth-fault protection, instantaneous stage	EFIPTOC	10>>>	50N/51N

4.2.1.2 Function block

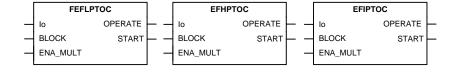


Figure 138: Function block

Protection functions 1MRS758755 C

4.2.1.3 Functionality

The earth-fault function (F)EFxPTOC is used as non-directional earth-fault protection for feeders.

The function starts and operates when the residual current exceeds the set limit. The operate time characteristic for low stage (F)EFLPTOC and high stage EFHPTOC can be selected to be either definite time (DT) or inverse definite minimum time (IDMT). The instantaneous stage EFIPTOC always operates with the DT characteristic.

In the DT mode, the function operates after a predefined operate time and resets when the fault current disappears. The IDMT mode provides current-dependent timer characteristics.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.2.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of (F)EFxPTOC can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

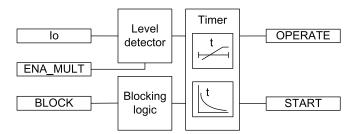


Figure 139: Functional module diagram

Level detector

The operating quantity can be selected with the setting *lo signal Sel*. The selectable options are "Measured Io" and "Calculated Io". The operating quantity is compared to the set *Start value*. If the measured value exceeds the set *Start value*, the level detector sends an enable-signal to the timer module. If the ENA_MULT input is active, the *Start value* setting is multiplied by the *Start value Mult* setting.

The protection relay does not accept the *Start value* or *Start value Mult* setting if the product of these settings exceeds the *Start value* setting range.

The start value multiplication is normally done when the inrush detection function (INRPHAR) is connected to the ${\tt ENA}$ ${\tt MULT}$ input.

Timer

Once activated, the timer activates the START output. Depending on the value of the *Operating curve type* setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of *Operate delay time* in the DT

mode or the maximum value defined by the inverse time curve, the <code>OPERATE</code> output is activated.

When the user-programmable IDMT curve is selected, the operation time characteristics are defined by the parameters *Curve parameter A, Curve parameter B, Curve parameter D* and *Curve parameter E*.

If a drop-off situation happens, that is, a fault suddenly disappears before the operate delay is exceeded, the timer reset state is activated. The functionality of the timer in the reset state depends on the combination of the *Operating curve type, Type of reset curve* and *Reset delay time* settings. When the DT characteristic is selected, the reset timer runs until the set *Reset delay time* value is exceeded. When the IDMT curves are selected, the *Type of reset curve* setting can be set to "Immediate", "Def time reset" or "Inverse reset". The reset curve type "Immediate" causes an immediate reset. With the reset curve type "Def time reset", the reset time depends on the *Reset delay time* setting. With the reset curve type "Inverse reset", the reset time depends on the current during the drop-off situation. The START output is deactivated when the reset timer has elapsed.

The "Inverse reset" selection is only supported with ANSI or user programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.

The setting *Time multiplier* is used for scaling the IDMT operate and reset times.

The setting parameter *Minimum operate time* defines the minimum desired operate time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum operate time* setting should be used with great care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see *Chapter 11.2.1 IDMT curves for overcurrent protection* in this manual.

The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operating time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.2.1.5 Measurement modes

The function operates on three alternative measurement modes: "RMS", "DFT" and "Peak-to-Peak". The measurement mode is selected with the *Measurement mode* setting.

Protection functions 1MRS758755 C

Table 303: Measurement modes supported by (F)EFxPTOC stages

Measurement mode	FEFLPTOC	EFHPTOC	EFIPTOC
RMS	х	x	
DFT	х	x	
Peak-to-Peak	х	х	х

For a detailed description of the measurement modes, see *Chapter 11.5 Measurement modes* in this manual.

4.2.1.6 Timer characteristics

(F)EFxPTOC supports both DT and IDMT characteristics. The user can select the timer characteristics with the *Operating curve type* and *Type of reset curve* settings. When the DT characteristic is selected, it is only affected by the *Operate delay time* and *Reset delay time* settings.

The protection relay provides 55 IDMT characteristics curves, of which seven comply with the IEEE C37.112 and six with the IEC 60255-3 standard. Two curves follow the special characteristics of ABB praxis and are referred to as RI and RD. One user programmable curve can be used if none of the standard curves are applicable. In addition to this, there are 39 curves for recloser applications. The user can choose the DT characteristic by selecting the *Operating curve type* values "ANSI Def. Time" or "IEC Def. Time". The functionality is identical in both cases.

The following characteristics, which comply with the list in the IEC 61850-7-4 specification, indicate the characteristics supported by different stages:

Table 304: Timer characteristics supported by different stages

Operating curve type	(F)EFLPTOC	ЕГНРТОС
(1) ANSI Extremely Inverse	x	x
(2) ANSI Very Inverse	x	
(3) ANSI Normal Inverse	х	х
(4) ANSI Moderately Inverse	х	
(5) ANSI Definite Time	х	х
(6) Long Time Extremely Inverse	x	
(7) Long Time Very Inverse	х	
(8) Long Time Inverse	х	
(9) IEC Normal Inverse	х	х
(10) IEC Very Inverse	x	x

Operating curve type	(F)EFLPTOC	ЕГНРТОС
(11) IEC Inverse	х	
(12) IEC Extremely Inverse	x	x
(13) IEC Short Time Inverse	x	
(14) IEC Long Time Inverse	х	
(15) IEC Definite Time	x	x
(17) User programmable	x	х
(18) RI type	x	
(19) RD type	x	
(-1)=Recloser 1(102)	x	
(-2)=Recloser 2 (135)	x	
(-3)=Recloser 3 (140)	x	
(-4)=Recloser 4 (106)	x	
(-5)=Recloser 5 (114)	x	
(-6)=Recloser 6 (136)	x	
(-7)=Recloser 7 (152)	x	
(-8)=Recloser 8 (113)	x	
(-9)=Recloser 8+ (111)	x	
(-10)=Recloser 8*	x	
(-11)=Recloser 9 (131)	x	
(-12)=Recloser 11 (141)	х	
(-13)=Recloser 13 (142)	х	
(-14)=Recloser 14 (119)	х	
(-15)=Recloser 15 (112)	x	
(-16)=Recloser 16 (139)	х	
(-17)=Recloser 17 (103)	x	
(-18)=Recloser 18(151)	x	
(-19)=Recloser A (101)	x	

Operating curve type	(F)EFLPTOC	ЕГНРТОС
(-20)=Recloser B (117)	x	
(-21)=Recloser C (133)	х	
(-22)=Recloser D (116)	х	
(-23)=Recloser E (132)	х	
(-24)=Recloser F (163)	х	
(-25)=Recloser G (121)	х	
(-26)=Recloser H (122)	х	
(-27)=Recloser J (164)	х	
(-28)=Recloser Kg (165)	х	
(-29)=Recloser Kp (162)	х	
(-30)=Recloser L (107)	х	
(-31)=Recloser M (118)	х	
(-32)=Recloser N (104)	х	
(-33)=Recloser P (115)	х	
(-34)=Recloser R (105)	х	
(-35)=Recloser T (161)	х	
(-36)=Recloser V (137)	х	
(-37)=Recloser W (138)	х	
(-38)=Recloser Y (120)	х	
(-39)=Recloser Z (134)	x	

 ${\bf EFIPTOC\ supports\ only\ definite\ time\ characteristics.}$

For a detailed description of timers, see *Chapter 11 General function block features* in this manual.

Table 305: Reset time characteristics supported by different stages

Reset curve type	(F)EFLPTOC	EFHPTOC	Note
(1) Immediate	х	х	Available for all operate time curves
(2) Def time reset	х	х	Available for all operate time curves
(3) Inverse reset	х	х	Available only for ANSI and user programmable curves

The *Type of reset curve* setting does not apply to EFIPTOC or when the DT operation is selected. The reset is purely defined by the *Reset delay time* setting.

4.2.1.7 Application

(F)EFxPTOC is designed for protection and clearance of earth faults in distribution and sub-transmission networks where the neutral point is isolated or earthed via a resonance coil or through low resistance. It also applies to solidly earthed networks and earth-fault protection of different equipment connected to the power systems, such as shunt capacitor bank or shunt reactors and for backup earth-fault protection of power transformers.

Many applications require several steps using different current start levels and time delays. (F)EFxPTOC consists of three different protection stages.

- Low (F)EFLPTOC
- High EFHPTOC
- Instantaneous EFIPTOC

(F)EFLPTOC contains several types of time-delay characteristics. EFHPTOC and EFIPTOC are used for fast clearance of serious earth faults.

4.2.1.8 Signals

Table 306: FEFLPTOC Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for cur- rent multiplier

Table 307: EFLPTOC Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for cur- rent multiplier

Table 308: EFHPTOC Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for cur- rent multiplier

Table 309: EFIPTOC Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for cur- rent multiplier

Table 310: FEFLPTOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

Table 311: EFLPTOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

Table 312: EFHPTOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

Table 313: EFIPTOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.2.1.9 Settings

Table 314: FEFLPTOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.0105.000	xIn	0.005	0.010	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operate delay time	40200000	ms	10	40	Operate delay time
Operating curve type	1=ANSI Ext. inv. 2=ANSI Very inv. 3=ANSI Norm. inv. 4=ANSI Mod. inv. 5=ANSI Def. Time 6=L.T.E. inv. 7=L.T.V. inv. 8=L.T. inv. 9=IEC Norm. inv. 10=IEC Very inv. 11=IEC inv. 12=IEC Ext. inv. 13=IEC S.T. inv. 14=IEC L.T. inv. 15=IEC Def. Time 17=Programmable 18=RI type 19=RD type -1=Recloser 1 (102) -2=Recloser 2 (135) -3=Recloser 3 (140) -4=Recloser 4 (106) -5=Recloser 5 (114) -6=Recloser 6 (136) -7=Recloser 7			15=IEC Def. Time	Selection of time delay curve type

Parameter	Values (Range)	Unit	Step	Default	Description
	(152)				
	-8=Recloser 8				
	(113)				
	-9=Recloser 8+ (111)				
	-10=Recloser 8*				
	-11=Recloser 9				
	(131)				
	-12=Recloser 11				
	(141)				
	-13=Recloser 13				
	(142)				
	-14=Recloser 14				
	(119)				
	-15=Recloser 15				
	(112)				
	-16=Recloser 16				
	(139)				
	-17=Recloser 17				
	(103)				
	-18=Recloser 18				
	(151) -19=Recloser A (101)				
	-19-Recloser A (101) -20=Recloser B (117)				
	-21=Recloser C				
	(133) -22=Recloser D				
	(116) -23=Recloser E				
	(132) -24=Recloser F				
	(163) -25=Recloser G				
	(121) -26=Recloser H				
	(122)				
	-27=Recloser J (164) -28=Recloser Kg (165)				
	-29=Recloser Kp (162)				
	-30=Recloser L (107)				
	-31=Recloser M (118)				
	-32=Recloser N (104)				
	-33=Recloser P (115)				
	-34=Recloser R (105)				
	-35=Recloser T (161)				
	-36=Recloser V (137)				
	-37=Recloser W (138)				

Parameter	Values (Range)	Unit	Step	Default	Description
	-38=Recloser Y (120)				
	-39=Recloser Z (134)				

Table 315: FEFLPTOC Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type

Table 316: FEFLPTOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer program- mable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer program- mable curve
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer program- mable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer program- mable curve

Table 317: FEFLPTOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Minimum operate time	2060000	ms	1	20	Minimum operate time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used meas- urement mode
lo signal Sel	1=Measured Io 2=Calculated Io			1=Measured Io	Selection for used lo signal

Table 318: EFLPTOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.0105.000	xIn	0.005	0.010	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operate delay time	40200000	ms	10	40	Operate delay time
Operating curve type	1=ANSI Ext. inv. 2=ANSI Very inv. 3=ANSI Norm. inv. 4=ANSI Mod. inv. 5=ANSI Def. Time . 6=L.T.E. inv. 7=L.T.V. inv. 8=L.T. inv. 9=IEC Norm. inv 10=IEC Very inv. 11=IEC inv. 12=IEC Ext. inv. 13=IEC S.T. inv. 14=IEC L.T. inv. 15=IEC Def. Time 17=Programmable 18=RI type 19=RD type			15=IEC Def. Time	Selection of time delay curve type

Table 319: EFLPTOC Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type

Table 320: EFLPTOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer program- mable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer program- mable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer program- mable curve

Parameter	Values (Range)	Unit	Step	Default	Description
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer program- mable curve

Table 321: EFLPTOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Minimum operate time	2060000	ms	1	20	Minimum operate time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used meas- urement mode
Io signal Sel	1=Measured Io 2=Calculated Io			1=Measured Io	Selection for used lo signal

Table 322: EFHPTOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.1040.00	xIn	0.01	0.10	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operate delay time	40200000	ms	10	40	Operate delay time
Operating curve type	1=ANSI Ext. inv. 3=ANSI Norm. inv. 5=ANSI Def. Time 9=IEC Norm. inv. 10=IEC Very inv. 12=IEC Ext. inv. 15=IEC Def. Time 17=Programmable			15=IEC Def. Time	Selection of time delay curve type

Table 323: EFHPTOC Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type

Table 324: EFHPTOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer program- mable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer program- mable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer program- mable curve
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer program- mable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer program- mable curve

Table 325: EFHPTOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Minimum operate time	2060000	ms	1	20	Minimum operate time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used meas- urement mode
Io signal Sel	1=Measured Io 2=Calculated Io			1=Measured Io	Selection for used lo signal

Table 326: EFIPTOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	1.0040.00	xIn	0.01	1.00	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Operate delay time	20200000	ms	10	20	Operate delay time

Table 327: EFIPTOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On

Table 328: EFIPTOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time
lo signal Sel	1=Measured Io 2=Calculated Io			1=Measured Io	Selection for used lo signal

4.2.1.10 Monitored data

Table 329: FEFLPTOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
FEFLPTOC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

Table 330: EFLPTOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
EFLPTOC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

Table 331: EFHPTOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
ЕГНРТОС	Enum	1=on 2=blocked 3=test		Status

Name	Туре	Values (Range)	Unit	Description
		4=test/blocked		
		5=off		

Table 332: EFIPTOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
EFIPTOC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.2.1.11 Technical data

Table 333: (F)EFxPTOC Technical data

Characteristic		Value			
Operation accuracy		Depending on the frequency of the measured current: f n ±2 Hz			
	(F)EFLPTOC	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$			
	EFHPTOC	±1.5% of set value or ±0.002 × I n			
	and	(at currents in the range of $0.110 \times I_n$)			
	EFIPTOC	±5.0% of the set value			
(6		(at currents in the range	(at currents in the range of $1040 \times I_n$)		
Start time ¹²		Minimum	Typical	Maximum	
	EFIPTOC:	16 ms	19 ms	23 ms	
	I _{Fault} = 2 × set <i>Start val-ue</i>	11 ms	12 ms	14 ms	
	I _{Fault} = 10 × set <i>Start</i> value				
	EFHPTOC and (F)EFLP- TOC:	23 ms	26 ms	29 ms	
	I _{Fault} = 2 × set <i>Start val-ue</i>				
Reset time		Typically 40 ms			

 $^{^{1}}$ Measurement mode = default (depends on stage), current before fault = 0.0 × I_n, f_n = 50 Hz, earth-fault current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

² Includes the delay of the signal output contact

Characteristic	Value
Reset ratio	Typically 0.96
Retardation time	<30 ms
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Operate time accuracy in inverse time mode	$\pm 5.0\%$ of the theoretical value or ± 20 ms 3 $\pm 5.0\%$ of the theoretical value or ± 40 ms 3 4
Suppression of harmonics	RMS: No suppression DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ Peak-to-Peak: No suppression

Technical revision history 4.2.1.12

Table 334: EFIPTOC Technical revision history

Technical revision	Change
В	The minimum and default values changed to 40 ms for the <i>Operate delay time</i> setting
С	Minimum and default values changed to 20 ms for the <i>Operate delay time</i> setting
	Minimum value changed to 1.00 x I _n for the Start value setting
D	Added a setting parameter for the "Measured Io" or "Calculated Io" selection
Е	Internal improvement
F	Internal improvement

Table 335: EFHPTOC Technical revision history

Technical revision	Change
В	Minimum and default values changed to 40 ms for the <i>Operate delay time</i> setting
С	Added a setting parameter for the "Measured Io" or "Calculated Io" selection
D	Step value changed from 0.05 to 0.01 for the Time multiplier setting
E	Internal improvement
F	Internal improvement

REC615 & RER615 293

Maximum Start value = 2.5 × I_n, Start value multiples in range of 1.5...20
 Valid for FEFLPTOC

Table 336: (F)EFLPTOC Technical revision history

Technical revision	Change
В	The minimum and default values changed to 40 ms for the <i>Operate delay time</i> setting
С	Start value step changed to 0.005
D	Added a setting parameter for the "Measured Io" or "Calculated Io" selection
E	Step value changed from 0.05 to 0.01 for the <i>Time multiplier</i> setting
F	Internal improvement
G	Internal improvement

4.2.2 Directional earth-fault protection (F)DEFxPDEF

4.2.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Directional earth-fault protection, low stage	(F)DEFLPDEF	lo> ->	67N-1
Directional earth-fault protection, high stage	DEFHPDEF	10>> ->	67N-2

4.2.2.2 Function block

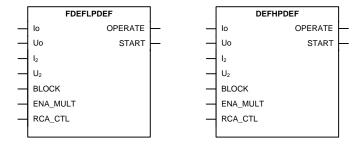


Figure 140: Function block

4.2.2.3 Functionality

The earth-fault function (F)DEFxPDEF is used as directional earth-fault protection for feeders.

The function starts and operates when the operating quantity (current) and polarizing quantity (voltage) exceed the set limits and the angle between them is inside the set operating sector. The operate time characteristic for low stage (F)DEFLPDEF and high stage DEFHPDEF can be selected to be either definite time (DT) or inverse definite minimum time (IDMT).

In the DT mode, the function operates after a predefined operate time and resets when the fault current disappears. The IDMT mode provides current-dependent timer characteristics.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.2.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of (F)DEFxPDEF can be described using a module diagram. All the modules in the diagram are explained in the next sections.

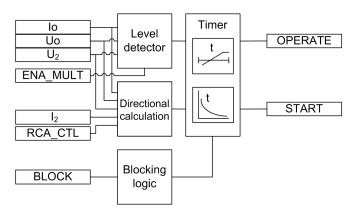


Figure 141: Functional module diagram

Level detector

The magnitude of the operating quantity is compared to the set $Start\ value$ and the magnitude of the polarizing quantity is compared to the set $Start\ value$. If both the limits are exceeded, the level detector sends an enabling signal to the timer module. When the $Start\ value$ has no effect and the level detection is purely based on the operating quantity. If the $Start\ value$ has no effect and the $Start\ value$ setting is multiplied by the $Start\ value\ Mult\ Setting$.

The operating quantity (residual current) can be selected with the setting *Io signal Sel*. The options are "Measured Io" and "Calculated Io". If "Measured Io" is selected, the current ratio for Io-channel is given in **Configuration** > **Analog inputs** > **Current (Io,CT)**. If "Calculated Io" is selected, the current ratio is obtained from the phase-current channels given in **Configuration** > **Analog inputs** > **Current (3I,CT)**.

The operating quantity (residual voltage) can be selected with the setting *Uo signal Sel*. The options are "Measured Uo" and "Calculated Uo". If "Measured Uo" is selected, the voltage ratio for Uo-channel is given in **Configuration** > **Analog inputs** > **Voltage (Uo,VT)**. If "Calculated Uo" is selected, the voltage ratio is obtained from the phase-voltage channels given in **Configuration** > **Analog inputs** > **Voltage (3U,VT)**.

Example 1: lo is measured with cable core CT (100/1 A) and Uo is measured from open-delta connected VTs (20/sqrt(3) kV : 100/sqrt(3) V : 100/3 V). In this case, "Measured Io" and "Measured Uo" are selected. The nominal values for residual current and residual voltage are obtained from CT and VT ratios entered in Residual

current lo: Configuration > Analog inputs > Current (lo,CT): 100 A: 1 A. The Residual voltage Uo: Configuration > Analog inputs > Voltage (Uo,VT): 11.547 kV: 100 V. The Start value of $1.0 \times 100 \times 100$

Example 2: Both Io and Uo are calculated from the phase quantities. Phase CT-ratio is 100 : 1 A and phase VT-ratio is 20/sqrt(3) kV : 100/sqrt(3) V. In this case, "Calculated Io" and "Calculated Uo" are selected. The nominal values for residual current and residual voltage are obtained from CT and VT ratios entered in Residual current Io: **Configuration > Analog inputs > Current (3I,CT)**: 100 A : 1 A. The residual voltage Uo: **Configuration > Analog inputs > Voltage (3U,VT)**: 20.000 kV : 100 V. The *Start value* of 1.0 × In corresponds to 1.0 * 100 A = 100 A in the primary. The *Voltage start value* of 1.0 × Un corresponds to 1.0 * 20.000 kV = 20.000 kV in the primary.

If "Calculated Uo" is selected, the residual voltage nominal value is always phase-to-phase voltage. Thus, the valid maximum setting for residual Voltage start value is 0.577 x Un. The calculated Uo requires that all the three phase-to-earth voltages are connected to the protection relay. Uo cannot be calculated from the phase-to-phase voltages.

If the *Enable voltage limit* setting is set to "True", the magnitude of the polarizing quantity is checked even if the *Directional mode* was set to "Non-directional" or *Allow Non Dir* to "True". The protection relay does not accept the *Start value* or *Start value Mult* setting if the product of these settings exceeds the *Start value* setting range.

Typically, the ENA_MULT input is connected to the inrush detection function INRHPAR. In case of inrush, INRPHAR activates the ENA_MULT input, which multiplies *Start value* by the *Start value Mult* setting.

Directional calculation

The directional calculation module monitors the angle between the polarizing quantity and operating quantity. Depending on the *Pol quantity* setting, the polarizing quantity can be the residual voltage (measured or calculated) or the negative sequence voltage. When the angle is in the operation sector, the module sends the enabling signal to the timer module.

The minimum signal level which allows the directional operation can be set with the *Min operate current* and *Min operate voltage* settings.

If *Pol quantity* is set to "Zero. seq. volt", the residual current and residual voltage are used for directional calculation.

If *Pol quantity* is set to "Neg. seq. volt", the negative sequence current and negative sequence voltage are used for directional calculation.

In the phasor diagrams representing the operation of (F)DEFxPDEF, the polarity of the polarizing quantity (Uo or U2) is reversed, that is, the polarizing quantity in the phasor diagrams is either -Uo or -U2. Reversing is done by switching the polarity of the residual current measuring channel. Similarly the polarity of the calculated lo and I_2 is also switched.

For defining the operation sector, there are five modes available through the *Operation mode* setting.

296 REC615 & RER615

Table 337: Operation modes

Operation mode	Description
Phase angle	The operating sectors for forward and reverse are defined with the settings <i>Min forward angle</i> , <i>Max forward angle</i> , <i>Min reverse angle</i> and <i>Max reverse angle</i> .
IoSin	The operating sectors are defined as "forward" when Io x sin (ANGLE) has a positive value and "reverse" when the value is negative. ANGLE is the angle difference between -Uo and Io.
IoCos	As "IoSin" mode. Only cosine is used for calculating the operation current.
Phase angle 80	The sector maximum values are frozen to 80 degrees respectively. Only <i>Min forward angle</i> and <i>Min reverse angle</i> are settable.
Phase angle 88	The sector maximum values are frozen to 88 degrees. Otherwise as "Phase angle 80" mode.

Polarizing quantity selection "Neg. seq. volt." is available only in the "Phase angle" operation mode.

The directional operation can be selected with the *Directional mode* setting. The alternatives are "Non-directional", "Forward" and "Reverse" operation. The operation criterion is selected with the *Operation mode* setting. By setting *Allow Non Dir* to "True", non-directional operation is allowed when the directional information is invalid, that is, when the magnitude of the polarizing quantity is less than the value of the *Min operate voltage* setting.

Typically, the network rotating direction is counter-clockwise and defined as "ABC". If the network rotating direction is reversed, meaning clockwise, that is, "ACB", the equation for calculating the negative sequence voltage component need to be changed. The network rotating direction is defined with a system parameter *Phase rotation*. The calculation of the component is affected but the angle difference calculation remains the same. When the residual voltage is used as the polarizing method, the network rotating direction change has no effect on the direction calculation.

The network rotating direction is set in the protection relay using the parameter in the HMI menu: **Configuration** > **System** > **Phase rotation**.

The default parameter value is "ABC".

If the *Enable voltage limit* setting is set to "True", the magnitude of the polarizing quantity is checked even if *Directional mode* is set to "Non-directional" or *Allow Non Dir* to "True".

The *Characteristic angle* setting is used in the "Phase angle" mode to adjust the operation according to the method of neutral point earthing so that in an isolated network the *Characteristic angle* (ϕ_{RCA}) = -90° and in a compensated network ϕ_{RCA} = 0°. In addition, the characteristic angle can be changed via the control signal RCA_CTL. RCA_CTL affects the *Characteristic angle* setting.

The *Correction angle* setting can be used to improve selectivity due the inaccuracies in the measurement transformers. The setting decreases the operation sector. The correction can only be used with the "loCos" or "loSin" modes.

> The polarity of the polarizing quantity can be reversed by setting the *Pol reversal* to "True", which turns the polarizing quantity by 180 degrees.

For definitions of different directional earth-fault characteristics, see Chapter 4.2.2.8 Directional earth-fault characteristics in this manual.

For definitions of different directional earth-fault characteristics, refer to general function block features information.

The directional calculation module calculates several values which are presented in the monitored data.

Table 338: Monitored data values

Monitored data values	Description
FAULT_DIR	The detected direction of fault during fault situations, that is, when START output is active.
DIRECTION	The momentary operating direction indication output.
ANGLE	Also called operating angle, shows the angle difference between the polarizing quantity (Uo, U ₂) and operating quantity (Io, I ₂).
ANGLE_RCA	The angle difference between the operating angle and Characteristic angle, that is, AN-GLE_RCA = ANGLE – Characteristic angle.
I_OPER	The current that is used for fault detection. If the Operation mode setting is "Phase angle", "Phase angle 80" or "Phase angle 88", I_OP-ER is the measured or calculated residual current. If the Operation mode setting is "IoSin", I_OPER is calculated as follows I_OPER = Io x sin(ANGLE). If the Operation mode setting is "IoCos", I_OPER is calculated as follows I_OP-ER = Io x cos(ANGLE).

Monitored data values are accessible on the LHMI or through tools via communications.

Timer

Once activated, the timer activates the START output. Depending on the value of the Operating curve type setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of Operate delay time in the DT mode or the maximum value defined by the inverse time curve, the OPERATE output is activated.

When the user-programmable IDMT curve is selected, the operation time characteristics are defined by the parameters Curve parameter A, Curve parameter B, Curve parameter C, Curve parameter D and Curve parameter E.

If a drop-off situation happens, that is, a fault suddenly disappears before the operate delay is exceeded, the timer reset state is activated. The functionality of the timer in the reset state depends on the combination of the *Operating curve*

type, Type of reset curve and Reset delay time settings. When the DT characteristic is selected, the reset timer runs until the set Reset delay time value is exceeded. When the IDMT curves are selected, the Type of reset curve setting can be set to "Immediate", "Def time reset" or "Inverse reset". The reset curve type "Immediate" causes an immediate reset. With the reset curve type "Def time reset", the reset time depends on the Reset delay time setting. With the reset curve type "Inverse reset", the reset time depends on the current during the drop-off situation. The START output is deactivated when the reset timer has elapsed.

The "Inverse reset" selection is only supported with ANSI or user programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.

The setting *Time multiplier* is used for scaling the IDMT operate and reset times.

The setting parameter *Minimum operate time* defines the minimum desired operate time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum operate time* setting should be used with great care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see the *Chapter 11.2.1 IDMT curves for overcurrent protection* section in this manual.

The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operating time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.2.2.5 Directional earth-fault principles

In many cases it is difficult to achieve selective earth-fault protection based on the magnitude of residual current only. To obtain a selective earth-fault protection scheme, it is necessary to take the phase angle of Io into account. This is done by comparing the phase angle of the operating and polarizing quantity.

Relay characteristic angle

The *Characteristic angle* setting, also known as Relay Characteristic Angle (RCA), Relay Base Angle or Maximum Torque Angle (MTA), is used in the "Phase angle" mode to turn the directional characteristic if the expected fault current angle does not coincide with the polarizing quantity to produce the maximum torque. That is, RCA is the angle between the maximum torque line and polarizing quantity. If the

> polarizing quantity is in phase with the maximum torque line, RCA is 0 degrees. The angle is positive if the operating current lags the polarizing quantity and negative if it leads the polarizing quantity.

Example 1

The "Phase angle" mode is selected, compensated network (φRCA = 0 deg)

=> Characteristic angle = 0 deg

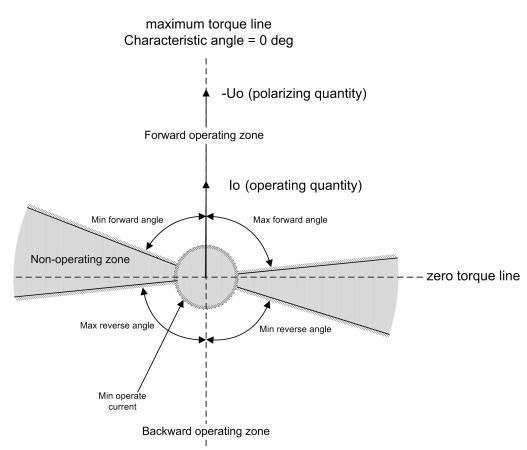


Figure 142: Definition of the relay characteristic angle, RCA=0 degrees in a compensated network

Example 2

The "Phase angle" mode is selected, solidly earthed network (φRCA = +60 deg)

=> Characteristic angle = +60 deg

300 **REC615 & RER615**

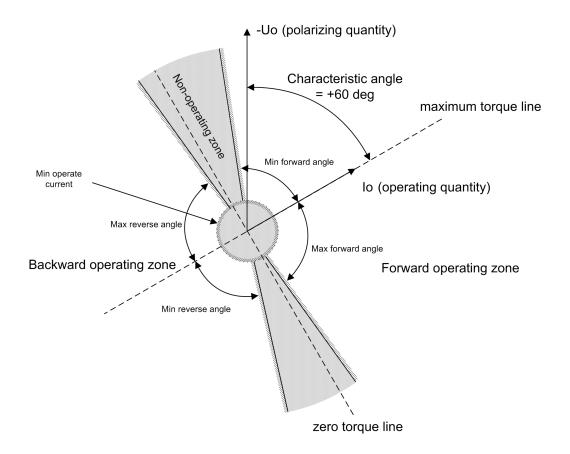


Figure 143: Definition of the relay characteristic angle, RCA=+60 degrees in a solidly earthed network

Example 3

The "Phase angle" mode is selected, isolated network (φRCA = -90 deg)

=> Characteristic angle = -90 deg

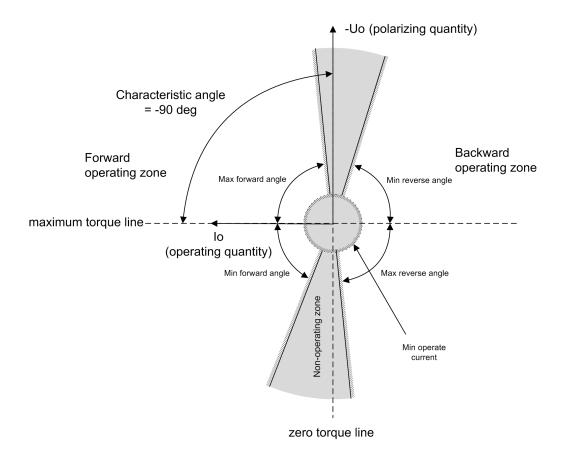


Figure 144: Definition of the relay characteristic angle, RCA=-90 degrees in an isolated network

Directional earth-fault protection in an isolated neutral network

In isolated networks, there is no intentional connection between the system neutral point and earth. The only connection is through the phase-to-earth capacitances (C $_0$) of phases and leakage resistances (R $_0$). This means that the residual current is mainly capacitive and has a phase shift of -90 degrees compared to the polarizing voltage. Consequently, the relay characteristic angle (RCA) should be set to -90 degrees and the operation criteria to "IoSin" or "Phase angle". The width of the operating sector in the phase angle criteria can be selected with the settings *Min forward angle, Max forward angle, Min reverse angle* or *Max reverse angle. Figure 145* illustrates a simplified equivalent circuit for an unearthed network with an earth fault in phase C.

For definitions of different directional earth-fault characteristics, see *Chapter 4.2.2.8 Directional earth-fault characteristics* .

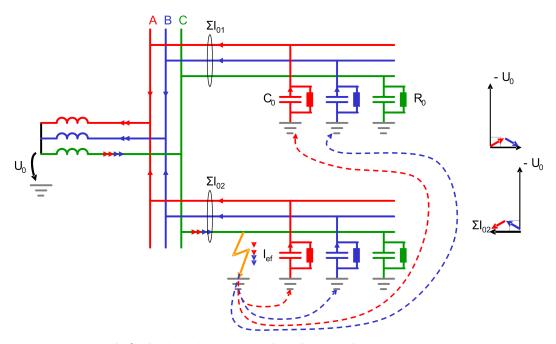


Figure 145: Earth-fault situation in an isolated network

Directional earth-fault protection in a compensated network

In compensated networks, the capacitive fault current and the inductive resonance coil current compensate each other. The protection cannot be based on the reactive current measurement, since the current of the compensation coil would disturb the operation of the protection relays. In this case, the selectivity is based on the measurement of the active current component. The magnitude of this component is often small and must be increased by means of a parallel resistor in the compensation equipment. When measuring the resistive part of the residual current, the relay characteristic angle (RCA) should be set to 0 degrees and the operation criteria to "loCos" or "Phase angle". *Figure 146* illustrates a simplified equivalent circuit for a compensated network with an earth fault in phase C.

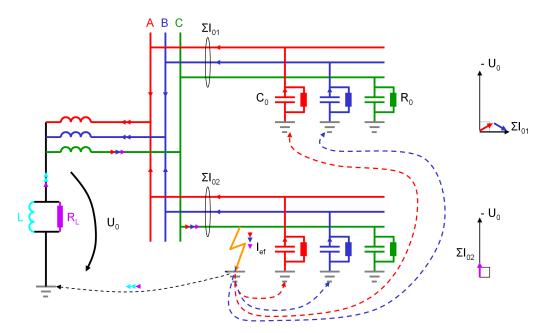


Figure 146: Earth-fault situation in a compensated network

The Petersen coil or the earthing resistor may be temporarily out of operation. To keep the protection scheme selective, it is necessary to update the *Characteristic* angle setting accordingly. This can be done with an auxiliary input in the protection relay which receives a signal from an auxiliary switch of the disconnector of the Petersen coil in compensated networks. As a result the characteristic angle is set automatically to suit the earthing method used. The RCA CTL input can be used to change the operation criteria as described in Table 339 and Table 340.

Table 339: Relay characteristic angle control in $Iosin(\Phi)$ and $Iocos(\Phi)$ operation criteria

Operation mode setting:	RCA_CTL = FALSE	RCA_CTL = TRUE
Iosin	Actual operation mode: Iosin	Actual operation mode: locos
locos	Actual operation mode: locos	Actual operation mode: Iosin

Table 340: Characteristic angle control in phase angle operation mode

Characteristic angle setting	RCA_CTL = FALSE	RCA_CTL = TRUE
-90°	φ _{RCA} = -90°	φ _{RCA} = 0°
0°	φ _{RCA} = 0°	φ _{RCA} = -90°

Use of the extended phase angle characteristic

The traditional method of adapting the directional earth-fault protection function to the prevailing neutral earthing conditions is done with the *Characteristic angle* setting. In an unearthed network, Characteristic angle is set to -90 degrees and in a compensated network Characteristic angle is set to 0 degrees. In case the earthing method of the network is temporarily changed from compensated to unearthed due to the disconnection of the arc suppression coil, the *Characteristic angle* setting should be modified correspondingly. This can be done using the setting

groups or the RCA_CTL input. Alternatively, the operating sector of the directional earth-fault protection function can be extended to cover the operating sectors of both neutral earthing principles. Such characteristic is valid for both unearthed and compensated network and does not require any modification in case the neutral earthing changes temporarily from the unearthed to compensated network or vice versa.

The extended phase angle characteristic is created by entering a value of over 90 degrees for the *Min forward angle* setting; a typical value is 170 degrees (*Min reverse angle* in case *Directional mode* is set to "Reverse"). The *Max forward angle* setting should be set to cover the possible measurement inaccuracies of current and voltage transformers; a typical value is 80 degrees (*Max reverse angle* in case *Directional mode* is set to "Reverse").

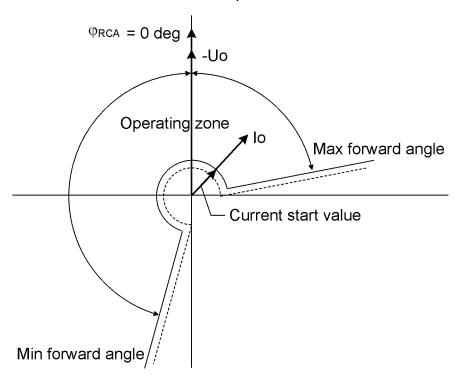


Figure 147: Extended operation area in directional earth-fault protection

4.2.2.6 Measurement modes

The function operates on three alternative measurement modes: "RMS", "DFT" and "Peak-to-Peak". The measurement mode is selected with the *Measurement mode* setting.

Table 341: Measurement modes supported by (F)DEFxPDEF stages

Measurement mode	(F)DEFLPDEF	DEFHPDEF
RMS	Х	x
DFT	x	х
Peak-to-Peak	x	х

For a detailed description of the measurement modes, see *Chapter 11.5 Measurement modes* in this manual.

4.2.2.7 Timer characteristics

(F)DEFxPDEF supports both DT and IDMT characteristics. The user can select the timer characteristics with the *Operating curve type* setting.

The protection relay provides 55 IDMT characteristics curves, of which seven comply with the IEEE C37.112 and six with the IEC 60255-3 standard. Two curves follow the special characteristics of ABB praxis and are referred to as RI and RD. One user programmable curve can be used if none of the standard curves are applicable. In addition to this, there are 39 curves for recloser applications. The user can choose the DT characteristic by selecting the *Operating curve type* values "ANSI Def. Time" or "IEC Def. Time". The functionality is identical in both cases.

The following characteristics, which comply with the list in the IEC 61850-7-4 specification, indicate the characteristics supported by different stages.

Table 342: Timer characteristics supported by different stages

Operating curve type	(F)DEFLPDEF	DEFHPDEF
(1) ANSI Extremely Inverse	x	x
(2) ANSI Very Inverse	x	
(3) ANSI Normal Inverse	x	x
(4) ANSI Moderately Inverse	x	
(5) ANSI Definite Time	x	x
(6) Long Time Extremely Inverse	x	
(7) Long Time Very Inverse	x	
(8) Long Time Inverse	x	
(9) IEC Normal Inverse	x	
(10) IEC Very Inverse	x	
(11) IEC Inverse	х	
(12) IEC Extremely Inverse	х	
(13) IEC Short Time Inverse	x	
(14) IEC Long Time Inverse	x	
(15) IEC Definite Time	x	x

Operating curve type	(F)DEFLPDEF	DEFHPDEF
(17) User programmable	х	х
(18) RI type	x	
(19) RD type	x	
(-1)=Recloser 1(102)	x	
(-2)=Recloser 2 (135)	x	
(-3)=Recloser 3 (140)	x	
(-4)=Recloser 4 (106)	х	
(-5)=Recloser 5 (114)	x	
(-6)=Recloser 6 (136)	x	
(-7)=Recloser 7 (152)	x	
(-8)=Recloser 8 (113)	x	
(-9)=Recloser 8+ (111)	x	
(-10)=Recloser 8*	x	
(-11)=Recloser 9 (131)	x	
(-12)=Recloser 11 (141)	x	
(-13)=Recloser 13 (142)	x	
(-14)=Recloser 14 (119)	x	
(-15)=Recloser 15 (112)	x	
(-16)=Recloser 16 (139)	x	
(-17)=Recloser 17 (103)	х	
(-18)=Recloser 18(151)	x	
(-19)=Recloser A (101)	x	
(-20)=Recloser B (117)	x	
(-21)=Recloser C (133)	x	
(-22)=Recloser D (116)	x	
(-23)=Recloser E (132)	x	
(-24)=Recloser F (163)	x	

Operating curve type	(F)DEFLPDEF	DEFHPDEF
(-25)=Recloser G (121)	x	
(-26)=Recloser H (122)	x	
(-27)=Recloser J (164)	x	
(-28)=Recloser Kg (165)	x	
(-29)=Recloser Kp (162)	x	
(-30)=Recloser L (107)	x	
(-31)=Recloser M (118)	x	
(-32)=Recloser N (104)	x	
(-33)=Recloser P (115)	x	
(-34)=Recloser R (105)	x	
(-35)=Recloser T (161)	x	
(-36)=Recloser V (137)	x	
(-37)=Recloser W (138)	x	
(-38)=Recloser Y (120)	x	
(-39)=Recloser Z (134)	x	

For a detailed description of the timers, see *Chapter 11 General function block features* in this manual.

Table 343: Reset time characteristics supported by different stages

Reset curve type	(F)DEFLPDEF	DEFHPDEF	Note
(1) Immediate	х	х	Available for all operate time curves
(2) Def time reset	х	x	Available for all operate time curves
(3) Inverse reset	х	х	Available only for ANSI and user programmable curves

4.2.2.8 Directional earth-fault characteristics

Phase angle characteristic

The operation criterion phase angle is selected with the *Operation mode* setting using the value "Phase angle".

When the phase angle criterion is used, the function indicates with the DIRECTION output whether the operating quantity is within the forward or reverse operation sector or within the non-directional sector.

The forward and reverse sectors are defined separately. The forward operation area is limited with the *Min forward angle* and *Max forward angle* settings. The reverse operation area is limited with the *Min reverse angle* and *Max reverse angle* settings.

The sector limits are always given as positive degree values.

In the forward operation area, the *Max forward angle* setting gives the clockwise sector and the *Min forward angle* setting correspondingly the counterclockwise sector, measured from the *Characteristic angle* setting.

In the reverse operation area, the *Max reverse angle* setting gives the clockwise sector and the *Min reverse angle* setting correspondingly the counterclockwise sector, measured from the complement of the *Characteristic angle* setting (180 degrees phase shift) .

The relay characteristic angle (RCA) is set to positive if the operating current lags the polarizing quantity. It is set to negative if it leads the polarizing quantity.

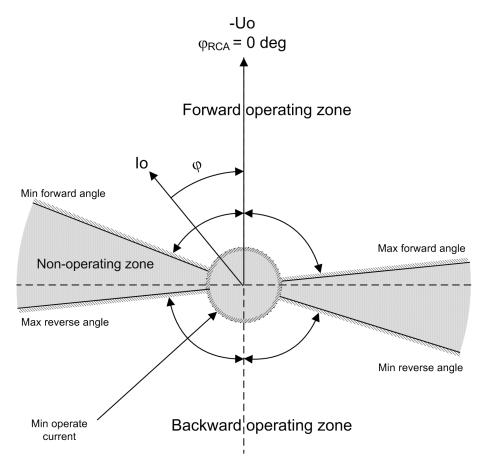


Figure 148: Configurable operating sectors in phase angle characteristic

Table 344: Momentary operating direction

Fault direction	The value for DIRECTION
Angle between the polarizing and operating quantity is not in any of the defined sectors.	0 = unknown
Angle between the polarizing and operating quantity is in the forward sector.	1= forward
Angle between the polarizing and operating quantity is in the reverse sector.	2 = backward
Angle between the polarizing and operating quantity is in both the forward and the reverse sectors, that is, the sectors are overlapping.	3 = both

If the *Allow Non Dir* setting is "False", the directional operation (forward, reverse) is not allowed when the measured polarizing or operating quantities are invalid, that is, their magnitude is below the set minimum values. The minimum values can be defined with the settings *Min operate current* and *Min operate voltage*. In case of low magnitudes, the FAULT_DIR and DIRECTION outputs are set to 0 = unknown, except when the *Allow non dir* setting is "True". In that case, the function is allowed to operate in the directional mode as non-directional, since the directional information is invalid.

Iosin(φ) and Iocos(φ) criteria

A more modern approach to directional protection is the active or reactive current measurement. The operating characteristic of the directional operation depends on the earthing principle of the network. The losin(φ) characteristics is used in an isolated network, measuring the reactive component of the fault current caused by the earth capacitance. The locos(φ) characteristics is used in a compensated network, measuring the active component of the fault current.

The operation criteria $losin(\phi)$ and $locos(\phi)$ are selected with the *Operation mode* setting using the values "loSin" or "loCos" respectively.

The angle correction setting can be used to improve selectivity. The setting decreases the operation sector. The correction can only be used with the $losin(\phi)$ or $locos(\phi)$ criterion. The RCA CTL input is used to change the lo characteristic:

Table 345: Relay characteristic angle control in the IoSin and IoCos operation criteria

Operation mode:	RCA_CTL = "False"	RCA_CTL = "True"
IoSin	Actual operation criterion: Iosin(φ)	Actual operation criterion: locos(φ)
loCos	Actual operation criterion: Io-cos(φ)	Actual operation criterion: Iosin(φ)

When the $Iosin(\phi)$ or $Iocos(\phi)$ criterion is used, the component indicates a forward-or reverse-type fault through the <code>FAULT_DIR</code> and <code>DIRECTION</code> outputs, in which 1 equals a forward fault and 2 equals a reverse fault. Directional operation is not allowed (the *Allow non dir* setting is "False") when the measured polarizing or operating quantities are not valid, that is, when their magnitude is below the set minimum values. The minimum values can be defined with the *Min operate current*

and $\emph{Min operate voltage}$ settings. In case of low magnitude, the <code>FAULT_DIR</code> and <code>DIRECTION</code> outputs are set to 0 = unknown, except when the $\emph{Allow non dir}$ setting is "True". In that case, the function is allowed to operate in the directional mode as non-directional, since the directional information is invalid.

The calculated $Iosin(\phi)$ or $Iocos(\phi)$ current used in direction determination can be read through the I_OPER monitored data. The value can be passed directly to a decisive element, which provides the final start and operate signals.

The I_OPER monitored data gives an absolute value of the calculated current.

The following examples show the characteristics of the different operation criteria:

Example 1.

losin(φ) criterion selected, forward-type fault

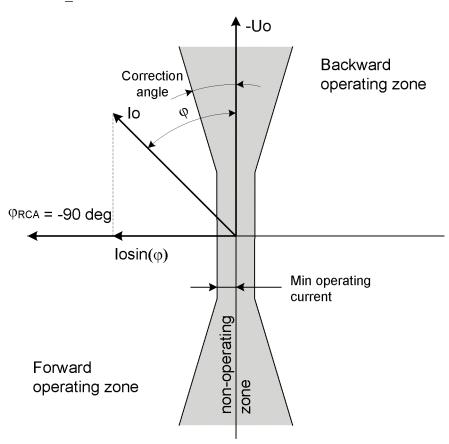


Figure 149: Operating characteristic $losin(\phi)$ in forward fault

The operating sector is limited by angle correction, that is, the operating sector is 180 degrees - 2*(angle correction).

Example 2.

 $losin(\phi)$ criterion selected, reverse-type fault

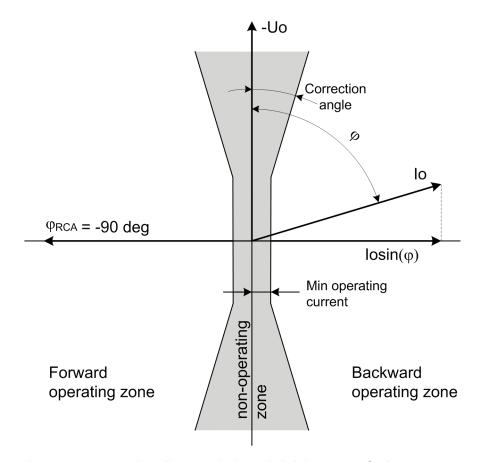


Figure 150: Operating characteristic $losin(\phi)$ in reverse fault

Example 3.

 $locos(\phi)$ criterion selected, forward-type fault

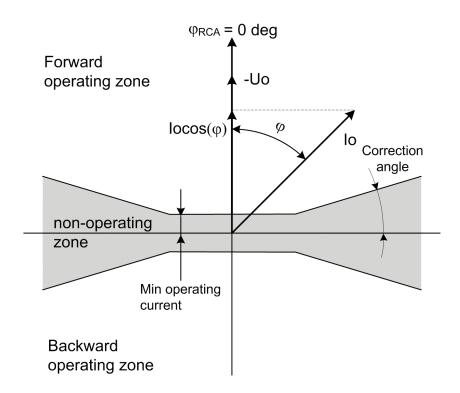


Figure 151: Operating characteristic locos(ϕ) in forward fault

Example 4.

 $locos(\phi)$ criterion selected, reverse-type fault

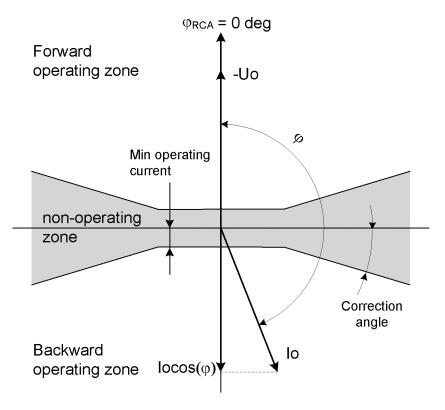


Figure 152: Operating characteristic locos(φ) in reverse fault

Phase angle 80

The operation criterion phase angle 80 is selected with the *Operation mode* setting by using the value "Phase angle 80".

Phase angle 80 implements the same functionality as the phase angle but with the following differences:

- The *Max forward angle* and *Max reverse angle* settings cannot be set but they have a fixed value of 80 degrees
- The sector limits of the fixed sectors are rounded.

The sector rounding is used for cancelling the CT measurement errors at low current amplitudes. When the current amplitude falls below three percent of the nominal current, the sector is reduced to 70 degrees at the fixed sector side. This makes the protection more selective, which means that the phase angle measurement errors do not cause faulty operation.

There is no sector rounding on the other side of the sector.

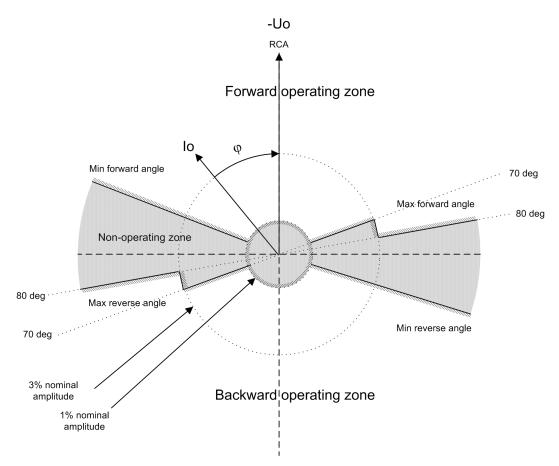


Figure 153: Operating characteristic for phase angle 80

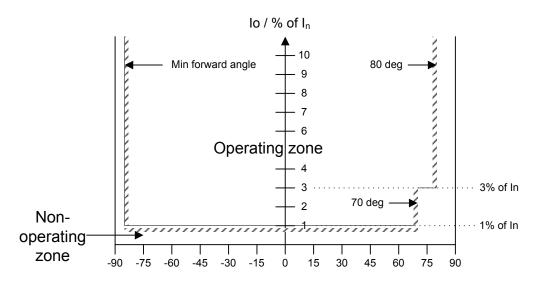


Figure 154: Phase angle 80 amplitude (Directional mode = Forward)

Phase angle 88

The operation criterion phase angle 88 is selected with the *Operation mode* setting using the value "Phase angle 88".

Phase angle 88 implements the same functionality as the phase angle but with the following differences:

- The *Max forward angle* and *Max reverse angle* settings cannot be set but they have a fixed value of 88 degrees
- · The sector limits of the fixed sectors are rounded.

Sector rounding in the phase angle 88 consists of three parts:

- If the current amplitude is between 1...20 percent of the nominal current, the sector limit increases linearly from 73 degrees to 85 degrees
- If the current amplitude is between 20...100 percent of the nominal current, the sector limit increases linearly from 85 degrees to 88 degrees
- If the current amplitude is more than 100 percent of the nominal current, the sector limit is 88 degrees.

There is no sector rounding on the other side of the sector.

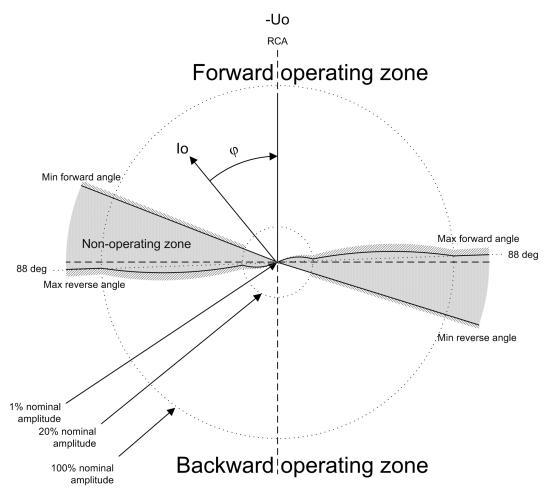


Figure 155: Operating characteristic for phase angle 88

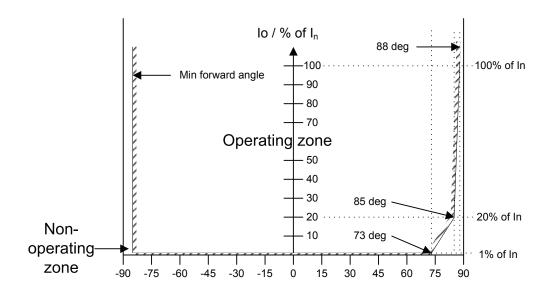


Figure 156: Phase angle 88 amplitude (Directional mode = Forward)

4.2.2.9 Application

The directional earth-fault protection (F)DEFxPDEF is designed for protection and clearance of earth faults and for earth-fault protection of different equipment connected to the power systems, such as shunt capacitor banks or shunt reactors, and for backup earth-fault protection of power transformers.

Many applications require several steps using different current start levels and time delays. (F)DEFxPDEF consists of two different stages.

- Low (F)DEFLPDEF
- High DEFHPDEF

(F)DEFLPDEF contains several types of time delay characteristics. DEFHPDEF is used for fast clearance of serious earth faults.

The protection can be based on the phase angle criterion with extended operating sector. It can also be based on measuring either the reactive part $losin(\varphi)$ or the active part $losos(\varphi)$ of the residual current. In isolated networks or in networks with high impedance earthing, the phase-to-earth fault current is significantly smaller than the short-circuit currents. In addition, the magnitude of the fault current is almost independent of the fault location in the network.

The function uses the residual current components $locos(\phi)$ or $losin(\phi)$ according to the earthing method, where ϕ is the angle between the residual current and the reference residual voltage (-Uo). In compensated networks, the phase angle criterion with extended operating sector can also be used. When the relay characteristic angle RCA is 0 degrees, the negative quadrant of the operation sector can be extended with the *Min forward angle* setting. The operation sector can be set between 0 and -180 degrees, so that the total operation sector is from +90 to -180 degrees. In other words, the sector can be up to 270 degrees wide. This allows the protection settings to stay the same when the resonance coil is disconnected from between the neutral point and earth.

System neutral earthing is meant to protect personnel and equipment and to reduce interference for example in telecommunication systems. The neutral earthing sets challenges for protection systems, especially for earth-fault protection.

In isolated networks, there is no intentional connection between the system neutral point and earth. The only connection is through the line-to-earth capacitances (C $_0$) of phases and leakage resistances (R $_0$). This means that the residual current is mainly capacitive and has -90 degrees phase shift compared to the residual voltage (-Uo). The characteristic angle is -90 degrees.

In resonance-earthed networks, the capacitive fault current and the inductive resonance coil current compensate each other. The protection cannot be based on the reactive current measurement, since the current of the compensation coil would disturb the operation of the relays. In this case, the selectivity is based on the measurement of the active current component. This means that the residual current is mainly resistive and has zero phase shift compared to the residual voltage (-Uo) and the characteristic angle is 0 degrees. Often the magnitude of this component is small, and must be increased by means of a parallel resistor in the compensation equipment.

In networks where the neutral point is earthed through low resistance, the characteristic angle is also 0 degrees (for phase angle). Alternatively, $locos(\phi)$ operation can be used.

In solidly earthed networks, the *Characteristic angle* is typically set to +60 degrees for the phase angle. Alternatively, $losin(\varphi)$ operation can be used with a reversal polarizing quantity. The polarizing quantity can be rotated 180 degrees by setting the *Pol reversal* parameter to "True" or by switching the polarity of the residual voltage measurement wires. Although the $losin(\varphi)$ operation can be used in solidly earthed networks, the phase angle is recommended.

Connection of measuring transformers in directional earth fault applications

The residual current lo can be measured with a core balance current transformer or the residual connection of the phase current signals. If the neutral of the network is either isolated or earthed with high impedance, a core balance current transformer is recommended to be used in earth-fault protection. To ensure sufficient accuracy of residual current measurements and consequently the selectivity of the scheme, the core balance current transformers should have a transformation ratio of at least 70:1. Lower transformation ratios such as 50:1 or 50:5 are not recommended.

Attention should be paid to make sure the measuring transformers are connected correctly so that DEFxPDEF is able to detect the fault current direction without failure. As directional earth fault uses residual current and residual voltage (-Uo), the poles of the measuring transformers must match each other and also the fault current direction. Also the earthing of the cable sheath must be taken into notice when using core balance current transformers. The following figure describes how measuring transformers can be connected to the protection relay.

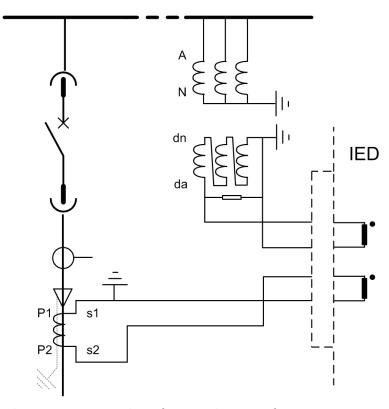


Figure 157: Connection of measuring transformers

4.2.2.10 Signals

Table 346: DEFLPDEF Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
Uo	SIGNAL	0	Residual voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for cur- rent multiplier
RCA_CTL	BOOLEAN	0=False	Relay characteristic angle control

Table 347: FDEFLPDEF Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
Uo	SIGNAL	0	Residual voltage

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for cur- rent multiplier
RCA_CTL	BOOLEAN	0=False	Relay characteristic angle control

Table 348: DEFHPDEF Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
Uo	SIGNAL	0	Residual voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for cur- rent multiplier
RCA_CTL	BOOLEAN	0=False	Relay characteristic angle control

Table 349: DEFLPDEF Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

Table 350: FDEFLPDEF Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

Table 351: DEFHPDEF Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.2.2.11 Settings

Table 352: DEFLPDEF Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.0105.000	xln	0.005	0.010	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scal- ing the start value
Directional mode	1=Non-directional 2=Forward 3=Reverse			2=Forward	Directional mode
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operating curve type	1=ANSI Ext. inv. 2=ANSI Very inv. 3=ANSI Norm. inv. 4=ANSI Mod. inv. 5=ANSI Def. Time 6=L.T.E. inv. 7=L.T.V. inv. 8=L.T. inv. 10=IEC Norm. inv. 11=IEC inv. 12=IEC Ext. inv. 13=IEC S.T. inv. 14=IEC L.T. inv. 15=IEC Def. Time 17=Programmable 18=RI type 19=RD type			15=IEC Def. Time	Selection of time delay curve type
Operate delay time	50200000	ms	10	50	Operate delay time
Characteristic angle	-179180	deg	1	-90	Characteristic angle
Max forward angle	0180	deg	1	80	Maximum phase angle in forward di- rection
Max reverse angle	0180	deg	1	80	Maximum phase angle in reverse di- rection
Min forward angle	0180	deg	1	80	Minimum phase angle in forward direction
Min reverse angle	0180	deg	1	80	Minimum phase angle in reverse direction
Voltage start value	0.0101.000	xUn	0.001	0.010	Voltage start value

Table 353: DEFLPDEF Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset			1=Immediate	Selection of reset curve type

Parameter	Values (Range)	Unit	Step	Default	Description
	3=Inverse reset				
Operation mode	1=Phase angle 2=IoSin 3=IoCos 4=Phase angle 80 5=Phase angle 88			1=Phase angle	Operation criteria
Enable voltage limit	0=False 1=True			1=True	Enable voltage limit

Table 354: DEFLPDEF Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer program- mable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer program- mable curve
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer program- mable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer programmable curve

Table 355: DEFLPDEF Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time
Minimum operate time	5060000	ms	1	50	Minimum operate time for IDMT curves
Allow Non Dir	0=False 1=True			0=False	Allows prot activa- tion as non-dir when dir info is in- valid
Measurement mode	1=RMS			2=DFT	Selects used meas-
mode	2=DFT				urement mode
	3=Peak-to-Peak				
Min operate current	0.0051.000	xIn	0.001	0.005	Minimum operating current
Min operate voltage	0.011.00	xUn	0.01	0.01	Minimum operating voltage
Correction angle	0.010.0	deg	0.1	0.0	Angle correction
Pol reversal	0=False			0=False	Rotate polarizing quantity
	1=True				quantity
Io signal Sel	1=Measured Io			1=Measured Io	Selection for used
	2=Calculated Io				Io signal

Parameter	Values (Range)	Unit	Step	Default	Description
Uo signal Sel	1=Measured Uo 2=Calculated Uo			1=Measured Uo	Selection for used Uo signal
Pol quantity	3=Zero seq. volt. 4=Neg. seq. volt.			3=Zero seq. volt.	Reference quantity used to determine fault direction

Table 356: FDEFLPDEF Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.0105.000	xIn	0.005	0.010	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Directional mode	1=Non-directional 2=Forward 3=Reverse			2=Forward	Directional mode
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operating curve type	1=ANSI Ext. inv. 2=ANSI Very inv. 3=ANSI Norm. inv. 4=ANSI Mod. inv. 5=ANSI Def. Time 6=L.T.E. inv. 7=L.T.V. inv. 8=L.T. inv. 9=IEC Norm. inv. 10=IEC Very inv. 11=IEC inv. 12=IEC Ext. inv. 13=IEC S.T. inv. 14=IEC L.T. inv. 15=IEC Def. Time 17=Programmable 18=RI type 19=RD type -1=Recloser 1 (102) -2=Recloser 2 (135) -3=Recloser 3 (140) -4=Recloser 4 (106) -5=Recloser 5 (114) -6=Recloser 6 (136) -7=Recloser 7 (152)			15=IEC Def. Time	Selection of time delay curve type

Parameter	Values (Range)	Unit	Step	Default	Description
	-8=Recloser 8				
	(113)				
	-9=Recloser 8+ (111)				
	-10=Recloser 8*				
	-11=Recloser 9				
	(131)				
	-12=Recloser 11				
	(141)				
	-13=Recloser 13				
	(142)				
	-14=Recloser 14				
	(119)				
	-15=Recloser 15				
	(112)				
	-16=Recloser 16				
	(139)				
	-17=Recloser 17				
	(103)				
	-18=Recloser 18				
	(151)				
	-19=Recloser A (101)				
	-20=Recloser B (117)				
	-21=Recloser C (133)				
	-22=Recloser D (116)				
	-23=Recloser E (132)				
	-24=Recloser F (163)				
	-25=Recloser G (121)				
	-26=Recloser H (122)				
	-27=Recloser J (164)				
	-28=Recloser Kg (165)				
	-29=Recloser Kp (162)				
	-30=Recloser L (107)				
	-31=Recloser M (118)				
	-32=Recloser N (104)				
	-33=Recloser P (115)				
	-34=Recloser R (105)				
	-35=Recloser T (161)				
	-36=Recloser V (137)				
	-37=Recloser W (138)				
	-38=Recloser Y (120)				
Table continues on a	.,				

Parameter	Values (Range)	Unit	Step	Default	Description
	-39=Recloser Z (134)				
Operate delay time	50200000	ms	10	50	Operate delay time
Characteristic angle	-179180	deg	1	-90	Characteristic angle
Max forward angle	0180	deg	1	80	Maximum phase angle in forward di- rection
Max reverse angle	0180	deg	1	80	Maximum phase angle in reverse di- rection
Min forward angle	0180	deg	1	80	Minimum phase an- gle in forward di- rection
Min reverse angle	0180	deg	1	80	Minimum phase angle in reverse direction
Voltage start value	0.0101.000	xUn	0.001	0.010	Voltage start value

Table 357: FDEFLPDEF Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type
Operation mode	1=Phase angle 2=loSin 3=loCos 4=Phase angle 80 5=Phase angle 88			1=Phase angle	Operation criteria
Enable voltage limit	0=False 1=True			1=True	Enable voltage limit

Table 358: FDEFLPDEF Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer program- mable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer program- mable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer programmable curve

Parameter	Values (Range)	Unit	Step	Default	Description
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer program- mable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer program- mable curve

Table 359: FDEFLPDEF Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time
Minimum operate time	5060000	ms	1	50	Minimum operate time for IDMT curves
Allow Non Dir	0=False 1=True			0=False	Allows prot activa- tion as non-dir when dir info is in- valid
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used meas- urement mode
Min operate current	0.0051.000	xIn	0.001	0.005	Minimum operating current
Min operate voltage	0.011.00	xUn	0.01	0.01	Minimum operating voltage
Correction angle	0.010.0	deg	0.1	0.0	Angle correction
Pol reversal	0=False 1=True			0=False	Rotate polarizing quantity
Io signal Sel	1=Measured Io 2=Calculated Uo			1=Measured Io	Selection for used lo signal
Uo signal Sel	1=Measured Uo 2=Calculated Uo			1=Measured Uo	Selection for used Uo signal
Pol quantity	3=Zero seq. volt. 4=Neg. seq. volt.			3=Zero seq. volt.	Reference quantity used to determine fault direction

Table 360: DEFHPDEF Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.1040.00	xIn	0.01	0.10	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scaling the start value
Directional mode	1=Non-directional 2=Forward 3=Reverse			2=Forward	Directional mode
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves

Parameter	Values (Range)	Unit	Step	Default	Description
Operating curve type	1=ANSI Ext. inv. 3=ANSI Norm. inv. 5=ANSI Def. Time 15=IEC Def. Time 17=Programmable			15=IEC Def. Time	Selection of time delay curve type
Operate delay time	40200000	ms	10	40	Operate delay time
Characteristic angle	-179180	deg	1	-90	Characteristic angle
Max forward angle	0180	deg	1	80	Maximum phase angle in forward di- rection
Max reverse angle	0180	deg	1	80	Maximum phase angle in reverse di- rection
Min forward angle	0180	deg	1	80	Minimum phase angle in forward direction
Min reverse angle	0180	deg	1	80	Minimum phase angle in reverse direction
Voltage start value	0.0101.000	xUn	0.001	0.010	Voltage start value

Table 361: DEFHPDEF Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type
Operation mode	1=Phase angle 2=IoSin 3=IoCos 4=Phase angle 80 5=Phase angle 88			1=Phase angle	Operation criteria
Enable voltage limit	0=False 1=True			1=True	Enable voltage limit

Table 362: DEFHPDEF Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer program- mable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer program- mable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer programmable curve

Parameter	Values (Range)	Unit	Step	Default	Description
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer program- mable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer program- mable curve

Table 363: DEFHPDEF Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time
Minimum operate time	4060000	ms	1	40	Minimum operate time for IDMT curves
Allow Non Dir	0=False 1=True			0=False	Allows prot activa- tion as non-dir when dir info is in- valid
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used meas- urement mode
Min operate current	0.0051.000	xIn	0.001	0.005	Minimum operating current
Min operate voltage	0.011.00	xUn	0.01	0.01	Minimum operating voltage
Correction angle	0.010.0	deg	0.1	0.0	Angle correction
Pol reversal	0=False 1=True			0=False	Rotate polarizing quantity
lo signal Sel	1=Measured Io 2=Calculated Io			1=Measured Io	Selection for used lo signal
Uo signal Sel	1=Measured Uo 2=Calculated Uo			1=Measured Uo	Selection for used Uo signal
Pol quantity	3=Zero seq. volt. 4=Neg. seq. volt.			3=Zero seq. volt.	Reference quantity used to determine fault direction

4.2.2.12 Monitored data

Table 364: DEFLPDEF Monitored data

Name	Туре	Values (Range)	Unit	Description
FAULT_DIR	Enum	0=unknown		Detected fault direction
		1=forward 2=backward		

Name	Туре	Values (Range)	Unit	Description
		3=both		
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
DIRECTION	Enum	0=unknown		Direction infor- mation
		1=forward		mation
		2=backward		
		3=both		
ANGLE_RCA	FLOAT32	-180.00180.00	deg	Angle between operating angle and characteristic angle
ANGLE	FLOAT32	-180.00180.00	deg	Angle between polarizing and operating quantity
I_OPER	FLOAT32	0.0040.00	xIn	Calculated operating current
DEFLPDEF	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

Table 365: FDEFLPDEF Monitored data

Name	Туре	Values (Range)	Unit	Description
FAULT_DIR	Enum	0=unknown 1=forward 2=backward 3=both		Detected fault direction
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
DIRECTION	Enum	0=unknown 1=forward 2=backward 3=both		Direction infor- mation

Name	Туре	Values (Range)	Unit	Description
ANGLE_RCA	FLOAT32	-180.00180.00	deg	Angle between operating angle and characteristic angle
ANGLE	FLOAT32	-180.00180.00	deg	Angle between polarizing and operating quantity
I_OPER	FLOAT32	0.0040.00	xln	Calculated operating current
FDEFLPDEF	Enum	1=on 2=blocked 3=test 4=test/blocked 5=off		Status

Table 366: DEFHPDEF Monitored data

Name	Туре	Values (Range)	Unit	Description
FAULT_DIR	Enum	0=unknown		Detected fault
		1=forward		direction
		2=backward		
		3=both		
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
DIRECTION	Enum	0=unknown		Direction infor-
		1=forward		mation
		2=backward		
		3=both		
ANGLE_RCA	FLOAT32	-180.00180.00	deg	Angle between operating angle and characteristic angle
ANGLE	FLOAT32	-180.00180.00	deg	Angle between polarizing and operating quantity
I_OPER	FLOAT32	0.0040.00	xIn	Calculated operating current
DEFHPDEF	Enum	1=on		Status

Name	Туре	Values (Range)	Unit	Description
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.2.2.13 Technical data

Table 367: (F)DEFxPDEF Technical data

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured current: f n ±2 Hz		
	(F)DEFLPDEF	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ Voltage $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$ Phase angle: $\pm 2^\circ$		
	DEFHPDEF	Current: ±1.5% of the set value or ±0.002 × I _n (at currents in the range of 0.110 × I _n) ±5.0% of the set value (at currents in the range of 1040 × I _n) Voltage: ±1.5% of the set value or ±0.002 × U _n Phase angle: ±2°		
Start time ¹²		Minimum	Typical	Maximum
	DEFHPDEF I Fault = 2 × set Start value	42 ms	46 ms	49 ms
	(F)DEFLPDEF I Fault = 2 × set Start value	58 ms	62 ms	66 ms
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<30 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Operate time accuracy i	n inverse time mode	±5.0% of the theoretical value or ±20 ms ³		

Table continues on the next page

REC615 & RER615 331

 $^{^1}$ Measurement mode = default (depends on stage), current before fault = $0.0 \times I_n$, $f_n = 50$ Hz, earth-fault current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

² Includes the delay of the signal output contact

³ Maximum Start value = $2.5 \times I_n$, Start value multiples in range of 1.5...20

Characteristic	Value
	$\pm 5.0\%$ of the theoretical value or ± 40 ms 3 4
Suppression of harmonics	RMS: No suppression
	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,
	Peak-to-Peak: No suppression

4.2.2.14 Technical revision history

Table 368: DEFHPDEF Technical revision history

Technical revision	Change
В	Maximum value changed to 180 deg for the Max forward angle setting
С	Added a setting parameter for the "Measured Io" or "Calculated Io" selection and setting parameter for the "Measured Uo", "Calculated Uo" or "Neg. seq. volt." selection for polarization. <i>Operate delay time</i> and <i>Minimum operate time</i> changed from 60 ms to 40 ms. The sector default setting values are changed from 88 degrees to 80 degrees.
D	Step value changed from 0.05 to 0.01 for the <i>Time multiplier</i> setting.
Е	Unit added to calculated operating current output (I_OPER).
F	Added setting <i>Pol quantity</i> .

Table 369: (F)DEFLPDEF Technical revision history

Technical revision	Change
В	Maximum value changed to 180 deg for the Max forward angle setting.
	Start value step changed to 0.005
С	Added a setting parameter for the "Measured Io" or "Calculated Io" selection and setting parameter for the "Measured Uo", "Calculated Uo" or "Neg. seq. volt." selection for polarization. The sector default setting values are changed from 88 degrees to 80 degrees.
D	Step value changed from 0.05 to 0.01 for the <i>Time multiplier</i> setting.
E	Unit added to calculated operating current output (I_OPER).
F	Added setting <i>Pol quantity</i> . Minimum value for <i>Operate delay time</i> and <i>Minimum operate time</i> changed from "60 ms" to "50 ms". Default value for <i>Operate delay time</i> and <i>Minimum operate time</i> changed from "60 ms" to "50 ms".

⁴ Valid for FDEFLPDEF

4.2.3 Transient/intermittent earth-fault protection INTRPTEF

4.2.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Transient/intermittent earth-fault protection	INTRPTEF	lo> -> IEF	67NIEF

4.2.3.2 Function block

Figure 158: Function block

4.2.3.3 Functionality

The transient/intermittent earth-fault protection function INTRPTEF is a function designed for the protection and clearance of permanent and intermittent earth faults in distribution and sub-transmission networks. Fault detection is done from the residual current and residual voltage signals by monitoring the transients.

The operating time characteristics are according to definite time (DT).

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.2.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of INTRPTEF can be described with a module diagram. All the modules in the diagram are explained in the next sections.

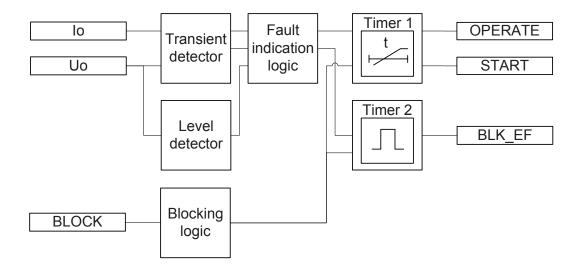


Figure 159: Functional module diagram

Level detector

The residual voltage can be selected from the *Uo signal Sel* setting. The options are "Measured Uo" and "Calculated Uo". If "Measured Uo" is selected, the voltage ratio for Uo-channel is given in the global setting **Configuration** > **Analog inputs** > **Voltage (Uo,VT)**. If "Calculated Uo" is selected, the voltage ratio is obtained from phase-voltage channels given in the global setting **Configuration** > **Analog inputs** > **Voltage (3U,VT)**.

Example 1: Uo is measured from open-delta connected VTs (20/sqrt(3) kV : 100/sqrt(3) V : 100/3 V). In this case, "Measured Uo" is selected. The nominal values for residual voltage is obtained from VT ratios entered in Residual voltage Uo: **Configuration > Analog inputs > Voltage (Uo,VT)**: 11.547 kV :100 V. The residual voltage start value of 1.0 × Un corresponds to 1.0 × 11.547 kV = 11.547 kV in the primary.

Example 2: Uo is calculated from phase quantities. The phase VT-ratio is 20/sqrt(3) kV: 100/sqrt(3) V. In this case, "Calculated Uo" is selected. The nominal values for residual current and residual voltage are obtained from VT ratios entered in Residual voltage Uo: **Configuration** > **Analog inputs** > **Voltage (3U,VT)**: 20.000 kV: 100 V. The residual voltage start value of $1.0 \times \text{Un}$ corresponds to $1.0 \times 20.000 \text{ kV} = 20.000 \text{ kV}$ in the primary.

If "Calculated Uo" is selected, the residual voltage nominal value is always phase-to-phase voltage. Thus, the valid maximum setting for residual voltage start value is 0.577 × Un. Calculated Uo requires that all three phase-to-earth voltages are connected to the protection relay. Uo cannot be calculated from the phase-to-phase voltages.

Transient detector

The Transient detector module is used for detecting transients in the residual current and residual voltage signals.

The transient detection is supervised with a settable current threshold. With a special filtering technique, the setting *Min operate current* is based on the fundamental frequency current. This setting should be set based on the value of

the parallel resistor of the coil, with security margin. For example, if the resistive current of the parallel resistor is 10 A, then a value of 0.7×10 A = 7 A could be used. The same setting is also applicable in case the coil is disconnected and the network becomes unearthed. Generally, a smaller value should be used and it must never exceed the value of the parallel resistor in order to allow operation of the faulted feeder.

Fault indication logic

Depending on the set *Operation mode*, INTRPTEF has two independent modes for detecting earth faults. The "Transient EF" mode is intended to detect all kinds of earth faults. The "Intermittent EF" mode is dedicated for detecting intermittent earth faults in cable networks.

To satisfy the sensitivity requirements, basic earth-fault protection (based on fundamental frequency phasors) should always be used in parallel with the INTRPTEF function.

The Fault indication logic module determines the direction of the fault. The fault direction determination is secured by multi-frequency neutral admittance measurement and special filtering techniques. This enables fault direction determination which is not sensitive to disturbances in measured Io and Uo signals, for example, switching transients.

When *Directional mode* setting "Forward" is used, the protection operates when the fault is in the protected feeder. When *Directional mode* setting "Reverse" is used, the protection operates when the fault is outside the protected feeder (in the background network). If the direction has no importance, the value "Non-directional" can be selected. The detected fault direction (FAULT_DIR) is available in the monitored data view.

In the "Transient EF" mode, when the start transient of the fault is detected and the Uo level exceeds the set "Voltage start value", Timer 1 is activated. Timer 1 is kept activated until the Uo level exceeds the set value or in case of a drop-off, the drop-off duration is shorter than the set Reset delay time.

In the "Intermittent EF" mode, when the start transient of the fault is detected and the Uo level exceeds the set *Voltage start value*, the Timer 1 is activated. When a required number of intermittent earth-fault transients set with the *Peak counter limit* setting are detected without the function being reset (depends on the drop-off time set with the *Reset delay time* setting), the START output is activated. The Timer 1 is kept activated as long as transients are occurring during the drop-off time defined by setting *Reset delay time*.

Timer 1

The time characteristic is according to DT.

In the "Transient EF" mode, the OPERATE output is activated after *Operate delay time* if the residual voltage exceeds the set "Voltage start value". The Reset delay time starts to elapse when residual voltage falls below Voltage start value. If there is no OPERATE activation, for example, the fault disappears momentarily, START stays activated until the the Reset delay time elapses. After OPERATE activation, START and OPERATE signals are reset as soon as Uo falls below Voltage start value.

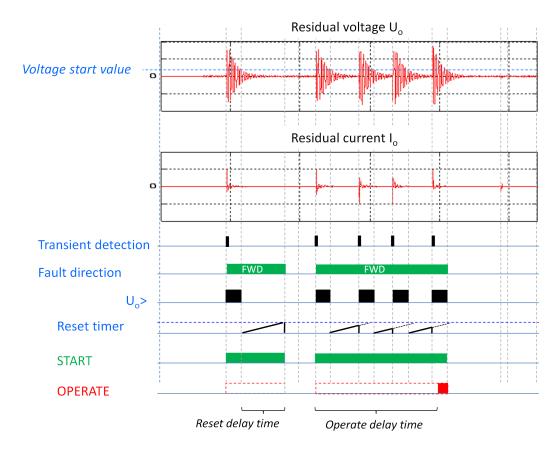


Figure 160: Example of INTRPTEF operation in "Transient EF" mode in the faulty feeder

In the "Intermittent EF" mode the $\mbox{\tt OPERATE}$ output is activated when the following conditions are fulfilled:

- the number of transients that have been detected exceeds the *Peak counter limit* setting
- the timer has reached the time set with the *Operate delay time*
- and one additional transient is detected during the drop-off cycle

The *Reset delay time* starts to elapse from each detected transient (peak). In case there is no <code>OPERATE</code> activation, for example, the fault disappears momentarily <code>START</code> stays activated until the *Reset delay time* elapses, that is, reset takes place if time between transients is more than *Reset delay time*. After <code>OPERATE</code> activation, a fixed pulse length of 100 ms for <code>OPERATE</code> is given, whereas <code>START</code> is reset after <code>Reset delay time</code> elapses

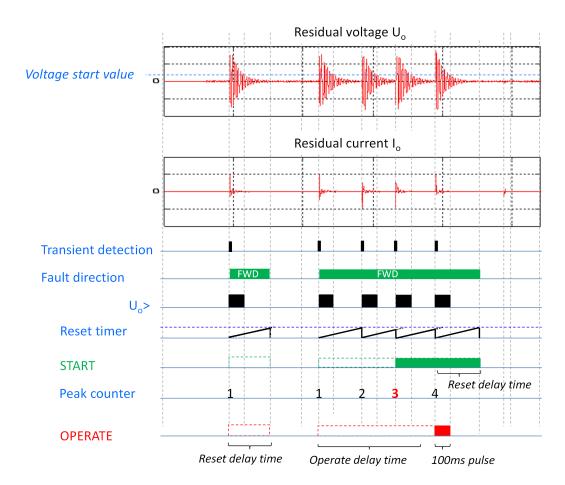


Figure 161: Example of INTRPTEF operation in "Intermittent EF" mode in the faulty feeder, Peak counter limit=3

The timer calculates the start duration value START_DUR which indicates the percentage ratio of the start situation and the set operating time. The value is available in the monitored data view.

Timer 2

If the function is used in the directional mode and an opposite direction transient is detected, the $\texttt{BLK}_\texttt{EF}$ output is activated for the fixed delay time of 25 ms. If the START output is activated when the $\texttt{BLK}_\texttt{EF}$ output is active, the $\texttt{BLK}_\texttt{EF}$ output is deactivated.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting **Configuration > System > Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE

output" mode, the function operates normally but the OPERATE output is not activated.

4.2.3.5 Application

INTRPTEF is an earth-fault function dedicated to operate in intermittent and permanent earth faults occurring in distribution and sub-transmission networks. Fault detection is done from the residual current and residual voltage signals by monitoring the transients with predefined criteria. As the function has a dedicated purpose for the fault types, fast detection and clearance of the faults can be achieved.

Intermittent earth fault

Intermittent earth fault is a special type of fault that is encountered especially in compensated networks with underground cables. A typical reason for this type of fault is the deterioration of cable insulation either due to mechanical stress or due to insulation material aging process where water or moisture gradually penetrates the cable insulation. This eventually reduces the voltage withstand of the insulation, leading to a series of cable insulation breakdowns. The fault is initiated as the phase-to-earth voltage exceeds the reduced insulation level of the fault point and mostly extinguishes itself as the fault current drops to zero for the first time, as shown in *Figure 162*. As a result, very short transients, that is, rapid changes in the form of spikes in residual current (Io) and in residual voltage (Uo), can be repeatedly measured. Typically, the fault resistance in case of an intermittent earth fault is only a few ohms.

COMP. COIL Healthy eeder) 0.1 Residual Current (kA) Residual Voltage x 10² (kV) FEEDER MEAS FEEDER INCOMER. 0 Uo -0.1 Pulse width 400 - 800 μs -0.2 Pulse interval 5 - 300 ms (Faultv Feeder) -0.3 Peak value ~0.1 ... 5 kA

Residual current lo and residual voltage Uo

Figure 162: Typical intermittent earth-fault characteristics

Earth-fault transients

In general, earth faults generate transients in currents and voltages. There are several factors that affect the magnitude and frequency of these transients, such as the fault moment on the voltage wave, fault location, fault resistance and the parameters of the feeders and the supplying transformers. In the fault initiation,

the voltage of the faulty phase decreases and the corresponding capacitance is discharged to earth (\rightarrow discharge transients). At the same time, the voltages of the healthy phases increase and the related capacitances are charged (\rightarrow charge transient).

If the fault is permanent (non-transient) in nature, only the initial fault transient in current and voltage can be measured, whereas the intermittent fault creates repetitive transients.

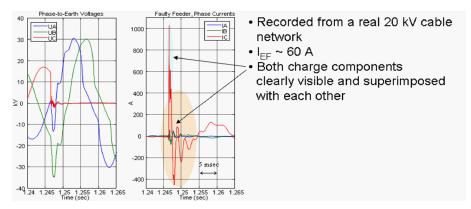


Figure 163: Example of earth-fault transients, including discharge and charge transient components, when a permanent fault occurs in a 20 kV network in phase C

4.2.3.6 Signals

Table 370: INTRPTEF Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
Uo	SIGNAL	0	Residual voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 371: INTRPTEF Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start
BLK_EF	BOOLEAN	Block signal for EF to indicate opposite direction peaks

4.2.3.7 Settings

INTRPTEF Group settings

Table 372: INTRPTEF Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Directional mode	1=Non-directional			2=Forward	Directional mode
	2=Forward				
	3=Reverse				
Operate delay time	401200000	ms	10	500	Operate delay time
Voltage start value	0.050.50	xUn	0.01	0.20	Voltage start value

Table 373: INTRPTEF Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Operation mode	1=Intermittent EF 2=Transient EF			1=Intermittent EF	Operation criteria
Uo signal Sel	1=Measured Uo 2=Calculated Uo			1=Measured Uo	Selection for used Uo signal

Table 374: INTRPTEF Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	4060000	ms	1	500	Reset delay time
Peak counter limit	220		1	2	Min requirement for peak counter before start in IEF mode
Min operate current	0.011.00	xIn	0.01	0.01	Minimum operating current for transient detector

4.2.3.8 Monitored data

INTRPTEF Monitored data

Table 375: INTRPTEF Monitored data

Name	Туре	Values (Range)	Unit	Description
FAULT_DIR	Enum	0=unknown		Detected fault
		1=forward		direction
		2=backward		
		3=both		
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
INTRPTEF	Enum	1=on		Status
		2=blocked		
		3=test		

Name	Туре	Values (Range)	Unit	Description
		4=test/blocked		
		5=off		

4.2.3.9 Technical data

Table 376: INTRPTEF Technical data

Characteristic	Value
Operation accuracy (Uo criteria with transient protection)	Depending on the frequency of the measured current: $f_n \pm 2 Hz$
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_0$
Operate time accuracy	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = $n \times f_n$, where $n = 2, 3, 4, 5$

4.2.3.10 Technical revision history

Table 377: INTRPTEF Technical revision history

Technical revision	Change
В	Minimum and default values changed to 40 ms for the <i>Operate delay time</i> setting
С	The <i>Minimum operate current</i> setting is added. Correction in IEC 61850 mapping: DO BlkEF renamed to InhEF. Minimum value changed from 0.01 to 0.10 (default changed from 0.01 to 0.20) for the <i>Voltage start value</i> setting. Minimum value changed from 0 ms to 40 ms for the <i>Reset delay time</i> setting.
D	Voltage start value description changed from "Voltage start value for transient EF" to "Voltage start value" since the start value is effective in both operation modes. Added support for calculated Uo. Uo source (measured/calculated) can be selected with "Uo signal Sel". <i>Voltage start value</i> setting minimum changed from 0.10 to 0.05.
Е	Min operate current setting scaling corrected to RMS level from peak level.

4.2.4 Admittance-based earth-fault protection EFPADM

4.2.4.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Admittance-based earth-fault protection	EFPADM	Yo> ->	21YN

4.2.4.2 Function block

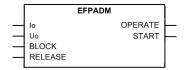


Figure 164: Function block

4.2.4.3 Functionality

The admittance-based earth-fault protection function EFPADM provides a selective earth-fault protection function for high-resistance earthed, unearthed and compensated networks. It can be applied for the protection of overhead lines as well as with underground cables. It can be used as an alternative solution to traditional residual current-based earth-fault protection functions, such as the IoCos mode in DEFxPDEF. Main advantages of EFPADM include a versatile applicability, good sensitivity and easy setting principles.

EFPADM is based on evaluating the neutral admittance of the network, that is, the quotient:

$$Yo = Io / -Uo$$

(Equation 10)

The measured admittance is compared to the admittance characteristic boundaries in the admittance plane. The supported characteristics include overadmittance, oversusceptance, overconductance or any combination of the three. The directionality of the oversusceptance and overconductance criteria can be defined as forward, reverse or non-directional, and the boundary lines can be tilted if required by the application. This allows the optimization of the shape of the admittance characteristics for any given application.

The function supports two calculation algorithms for admittance. The admittance calculation can be set to include or exclude the prefault zero-sequence values of Io and Uo. Furthermore, the calculated admittance is recorded at the time of the trip and it can be monitored for post-fault analysis purposes.

To ensure the security of the protection, the admittance calculation is supervised by a residual overvoltage condition which releases the admittance protection during a fault condition. Alternatively, the release signal can be provided by an external binary signal.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.2.4.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of EFPADM can be described using a module diagram. All the modules in the diagram are explained in the next sections.

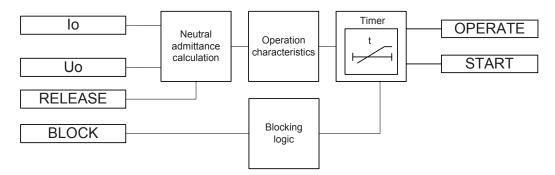


Figure 165: Functional module diagram

Neutral admittance calculation

The residual current can be selected from the *Io signal Sel* setting. The setting options are "Measured Io" and "Calculated Io". If "Measured Io" is selected, the current ratio for Io-channel is given in **Configuration > Analog inputs > Current (Io,CT)**. If "Calculated Io" is selected, the current ratio is obtained from phase-current channels given in **Configuration > Analog inputs > Current (3I,CT)**.

Respectively, the residual voltage can be selected from the *Uo signal Sel* setting. The setting options are "Measured Uo" and "Calculated Uo". If "Measured Uo" is selected, the voltage ratio for Uo-channel is given in **Configuration** > **Analog inputs** > **Voltage (Uo,VT)**. If "Calculated Uo" is selected, the voltage ratio is obtained from phase-voltage channels given in **Configuration** > **Analog inputs** > **Voltage (3U,VT)**.

Example 1: Uo is measured from open-delta connected VTs (20/sqrt(3) kV : 100/sqrt(3) V:100/3 V). In this case, "Measured Uo" is selected. The nominal values for residual voltage is obtained from the VT ratios entered in Residual voltage Uo : Configuration > Analog inputs > Voltage (Uo,VT): 11.547 kV : 100 V. The residual voltage start value of $1.0 \times \text{Un}$ corresponds to $1.0 \times 11.547 \text{ kV} = 11.547 \text{ kV}$ in the primary.

Example 2: Uo is calculated from phase quantities. The phase VT-ratio is 20/sqrt(3) kV : 100/sqrt(3) V. In this case, "Calculated Uo" is selected. The nominal value for residual voltage is obtained from the VT ratios entered in Residual voltage Uo : **Configuration > Analog inputs > Voltage (3U,VT)** : $20.000 \, \text{kV}$: $100 \, \text{V}$. The residual voltage start value of $1.0 \, \text{v}$ Un corresponds to $1.0 \, \text{v}$ $20.000 \, \text{kV}$ = $20.000 \, \text{kV}$ in the primary.

In case, if "Calculated Uo" is selected, the residual voltage nominal value is always phase-to-phase voltage. Thus, the valid maximum setting for residual voltage start value is 0.577 × Un. The calculated Uo requires that all three phase-to-earth voltages are connected to the protection relay. Uo cannot be calculated from the phase-to-phase voltages.

When the residual voltage exceeds the set threshold *Voltage start value*, an earth fault is detected and the neutral admittance calculation is released.

To ensure a sufficient accuracy for the Io and Uo measurements, it is required that the residual voltage exceeds the value set by *Min operate voltage*. If the admittance calculation mode is "Delta", the minimum change in the residual voltage due to a fault must be 0.01 × Un to enable the operation. Similarly, the residual current must exceed the value set by *Min operate current*.

The polarity of the polarizing quantity Uo can be changed, that is, rotated by 180 degrees, by setting the *Pol reversal* parameter to "True" or by switching the polarity of the residual voltage measurement wires.

As an alternative for the internal residual overvoltage-based start condition, the neutral admittance protection can also be externally released by utilizing the RELEASE input.

When *Admittance Clc mode* is set to "Delta", the external logic used must be able to give RELEASE in less than 0.1 s from fault initiation. Otherwise the collected pre-fault values are overwritten with fault time values. If it is slower, *Admittance Clc mode* must be set to "Normal".

Neutral admittance is calculated as the quotient between the residual current and residual voltage (polarity reversed) fundamental frequency phasors. The *Admittance Clc mode* setting defines the calculation mode.

Admittance Clc mode = "Normal"

$$\underline{Y}o = \frac{\underline{I}o_{fault}}{-\underline{U}o_{fault}}$$

(Equation 11)

Admittance Clc mode = "Delta"

$$\underline{Y}o = \frac{\underline{I}o_{fault} - \underline{I}o_{prefault}}{-(\underline{U}o_{fault} - \underline{U}o_{prefault})} = \frac{\Delta\underline{I}o}{-\Delta\underline{U}o}$$

(Equation 12)

Yo Calculated neutral admittance [Siemens]

lo fault Residual current during the fault [Amperes]

lo fault Residual voltage during the fault [Volts]

lo prefault Prefault residual current [Amperes]

lo prefault Prefault residual voltage [Volts]

 Δ <u>lo</u> Change in the residual current due to fault [Amperes] Δ <u>Uo</u> Change in the residual voltage due to fault [Volts]

Traditionally, admittance calculation is done with the calculation mode "Normal", that is, with the current and voltage values directly measured during the fault. As an alternative, by selecting the calculation mode "Delta", the prefault zero-sequence asymmetry of the network can be removed from the admittance calculation. Theoretically, this makes the admittance calculation totally immune to fault resistance, that is, the estimated admittance value is not affected by fault resistance. Utilization of the change in Uo and Io due to a fault in the admittance calculation also mitigates the effects of the VT and CT measurement errors, thus improving the measuring accuracy, the sensitivity and the selectivity of the protection.

344 REC615 & RER615
Technical Manual

Calculation mode "Delta" is recommended in case a high sensitivity of the protection is required, if the network has a high degree of asymmetry during the healthy state or if the residual current measurement is based on sum connection, that is, the Holmgren connection.

Neutral admittance calculation produces certain values during forward and reverse faults.

Fault in reverse direction, that is, outside the protected feeder.

$$\underline{Y}o = -\underline{Y}_{Fdtot}$$

(Equation 13)

$$\approx -j \cdot \frac{I_{eFd}}{U_{ph}}$$

(Equation 14)

 \underline{Y}_{Fdtot} Sum of the phase-to-earth admittances (\underline{Y}_{FdA} , \underline{Y}_{FdB} , \underline{Y}_{FdC}) of the protected

feeder

I _{eFd} Magnitude of the earth-fault current of the protected feeder when the fault

resistance is zero ohm

U ph Magnitude of the nominal phase-to-earth voltage of the system

Equation 13 shows that in case of outside faults, the measured admittance equals the admittance of the protected feeder with a negative sign. The measured admittance is dominantly reactive; the small resistive part of the measured admittance is due to the leakage losses of the feeder. Theoretically, the measured admittance is located in the third quadrant in the admittance plane close to the im(Yo) axis, see Figure 166.

The result of *Equation 13* is valid regardless of the neutral earthing method. In compensated networks the compensation degree does not affect the result. This enables a straightforward setting principle for the neutral admittance protection: admittance characteristic is set to cover the value $\underline{Y}_0 = -\underline{Y}_{Fdtot}$ with a suitable margin.

Due to inaccuracies in voltage and current measurement, the small real part of the calculated neutral admittance may appear as positive, which brings the measured admittance in the fourth quadrant in the admittance plane. This should be considered when setting the admittance characteristic.

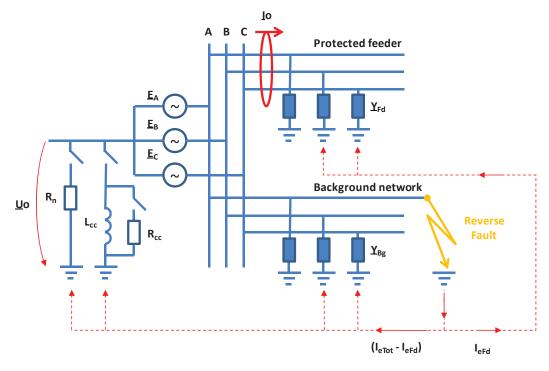


Figure 166: Admittance calculation during a reverse fault

R _{CC}	Resistance of the parallel resistor
L _{CC}	Inductance of the compensation coil
R _n	Resistance of the neutral earthing resistor
\underline{Y}_{Fd}	Phase-to-earth admittance of the protected feeder
Y Bg	Phase-to-earth admittance of the background network

For example, in a 15 kV compensated network with the magnitude of the earth-fault current in the protected feeder being 10 A (Rf = 0 Ω), the theoretical value for the measured admittance during an earth fault in the reverse direction, that is, outside the protected feeder, can be calculated.

$$\underline{Y}o \approx -j \cdot \frac{I_{eFd}}{U_{ph}} = -j \cdot \frac{10A}{15/\sqrt{3}kV} = -j \cdot 1.15$$
 milliSiemens

(Equation 15)

The result is valid regardless of the neutral earthing method.

In this case, the resistive part of the measured admittance is due to leakage losses of the protected feeder. As they are typically very small, the resistive part is close to zero. Due to inaccuracies in the voltage and current measurement, the small real part of the apparent neutral admittance may appear positive. This should be considered in the setting of the admittance characteristic.

Fault in the forward direction, that is, inside the protected feeder.

Unearthed network:

$$\underline{Y}o = \underline{Y}_{Bgtot}$$

(Equation 16)

$$\approx j \cdot \left(\frac{I_{eTot} - I_{eFd}}{U_{ph}} \right)$$

(Equation 17)

Compensated network:

$$\underline{Y}o = \underline{Y}_{Bgtot} + \underline{Y}_{CC}$$

(Equation 18)

$$\approx \frac{I_{Rcc} + j \cdot \left(I_{eTot} \cdot \left(1 - K\right) - I_{eFd}\right)}{U_{ph}}$$

(Equation 19)

High-resistance earthed network:

$$\underline{Y}o = \underline{Y}_{Bgtot} + \underline{Y}_{Rn}$$

(Equation 20)

$$\approx \frac{I_{Rn} + j \cdot \left(I_{eTot} - I_{eFd}\right)}{U_{ph}}$$

(Equation 21)

Y Bgtot	Sum of the phase-to-earth admittances ($\underline{Y}_{BgA},\underline{Y}_{BgB},\underline{Y}_{BgC}$) of the background network

$$\underline{Y}_{CC}$$
 Admittance of the earthing arrangement (compensation coil and parallel resistor)

I Race Rated current of the parallel resistor

I _{eFd} Magnitude of the earth-fault current of the protected feeder when the fault resistance is zero ohm

I $_{
m eTot}$ Magnitude of the uncompensated earth-fault current of the network when Rf is zero ohm

K Compensation degree, K = 1 full resonance, K<1 undercompensated, K>1 overcompensated

I Rn Rated current of the neutral earthing resistor

> Equation 16 shows that in case of a fault inside the protected feeder in unearthed networks, the measured admittance equals the admittance of the background network. The admittance is dominantly reactive; the small resistive part of the measured admittance is due to the leakage losses of the background network. Theoretically, the measured admittance is located in the first quadrant in the admittance plane, close to the im(Yo) axis, see Figure 167.

> Equation 18 shows that in case of a fault inside the protected feeder in compensated networks, the measured admittance equals the admittance of the background network and the coil including the parallel resistor. Basically, the compensation degree determines the imaginary part of the measured admittance and the resistive part is due to the parallel resistor of the coil and the leakage losses of the background network and the losses of the coil. Theoretically, the measured admittance is located in the first or fourth quadrant in the admittance plane, depending on the compensation degree, see *Figure 167*.

Before the parallel resistor is connected, the resistive part of the measured admittance is due to the leakage losses of the background network and the losses of the coil. As they are typically small, the resistive part may not be sufficiently large to secure the discrimination of the fault and its direction based on the measured conductance. This and the rating and the operation logic of the parallel resistor should be considered when setting the admittance characteristic in compensated networks.

Equation 20 shows that in case of a fault inside the protected feeder in highresistance earthed systems, the measured admittance equals the admittance of the background network and the neutral earthing resistor. Basically, the imaginary part of the measured admittance is due to the phase-to-earth capacitances of the background network, and the resistive part is due to the neutral earthing resistor and the leakage losses of the background network. Theoretically, the measured admittance is located in the first quadrant in the admittance plane, see Figure 167.

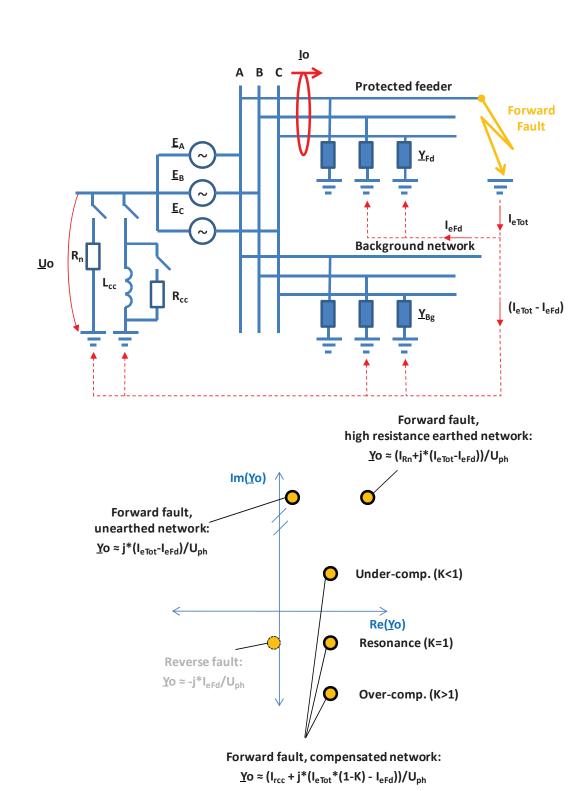


Figure 167: Admittance calculation during a forward fault

When the network is fully compensated in compensated networks, theoretically during a forward fault, the imaginary part of the measured admittance equals the susceptance of the protected feeder with a negative sign. The discrimination between a forward and reverse fault

> must therefore be based on the real part of the measured admittance, that is, conductance. Thus, the best selectivity is achieved when the compensated network is operated either in the undercompensated or overcompensated mode.

For example, in a 15 kV compensated network, the magnitude of the earth-fault current of the protected feeder is 10 A (Rf = 0 Ω) and the magnitude of the network is 100 A (Rf = 0Ω). During an earth fault, a 15 A resistor is connected in parallel to the coil after a 1.0 second delay. Compensation degree is overcompensated, K = 1.1.

During an earth fault in the forward direction, that is, inside the protected feeder, the theoretical value for the measured admittance after the connection of the parallel resistor can be calculated.

$$\begin{split} &\underline{Yo} \approx \frac{I_{Rcc} + j \cdot \left(I_{eTot} \cdot (1 - K) - I_{eFd}\right)}{U_{ph}} \\ &= \frac{15A + j \cdot \left(100A \cdot (1 - 1.1) - 10A\right)}{15kV/\sqrt{3}} \approx \left(1.73 - j \cdot 2.31\right) \text{ milliSiemens} \end{split}$$

(Equation 22)

Before the parallel resistor is connected, the resistive part of the measured admittance is due to the leakage losses of the background network and the losses of the coil. As they are typically small, the resistive part may not be sufficiently large to secure the discrimination of the fault and its direction based on the measured conductance. This and the rating and the operation logic of the parallel resistor should be considered when setting the admittance characteristic.

When a high sensitivity of the protection is required, the residual current should be measured with a cable/ring core CT, that is, the Ferranti CT. Also the use of the sensitive Io input should be considered. The residual voltage measurement should be done with an open delta connection of the three single pole-insulated voltage transformers.

The sign of the admittance characteristic settings should be considered based on the location of characteristic boundary in the admittance plane. All forward-settings are given with positive sign and reverse-settings with negative sign.

Operation characteristic

After the admittance calculation is released, the calculated neutral admittance is compared to the admittance characteristic boundaries in the admittance plane. If the calculated neutral admittance Yo moves outside the characteristic, the enabling signal is sent to the timer.

EFPADM supports a wide range of different characteristics to achieve the maximum flexibility and sensitivity in different applications. The basic characteristic shape is selected with the Operation mode and Directional mode settings. Operation mode defines which operation criterion or criteria are enabled and Directional mode defines if the forward, reverse or non-directional boundary lines for that particular operation mode are activated.

350 **REC615 & RER615**

Table 378: Operation criteria

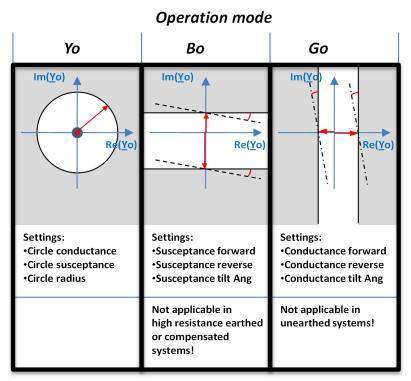
Operation mode	Description
Yo	Admittance criterion
Во	Susceptance criterion
Go	Conductance criterion
Yo, Go	Admittance criterion combined with the conductance criterion
Yo, Bo	Admittance criterion combined with the susceptance criterion
Go, Bo	Conductance criterion combined with the susceptance criterion
Yo, Go, Bo	Admittance criterion combined with the conductance and susceptance criterion

The options for the *Directional mode* setting are "Non-directional", "Forward" and "Reverse".

Figure 168, Figure 169 and Figure 170 illustrate the admittance characteristics supported by EFPADM and the settings relevant to that particular characteristic. The most typical characteristics are highlighted and explained in details in Chapter 4.2.4.5 Neutral admittance characteristics. Operation is achieved when the calculated neutral admittance Yo moves outside the characteristic (the operation area is marked with gray).

The settings defining the admittance characteristics are given in primary milliSiemens (mS). The conversion equation for the admittance from secondary to primary is:

$$Y_{pri} = Y_{sec} \cdot \frac{ni_{CT}}{nu_{VT}}$$


(Equation 23)

ni _{CT} CT ratio for the residual current Io nu _{VT} VT ratio for the residual voltage Uo

Example: Admittance setting in the secondary is 5.00 milliSiemens. The CT ratio is 100/1 A and the VT ratio is 11547/100 V. The admittance setting in the primary can be calculated.

$$Y_{pri} = 5.00 \; milli Siemens \cdot \frac{100/1A}{11547/100V} = 4.33 \; milli Siemens$$

(Equation 24)

Operation mode

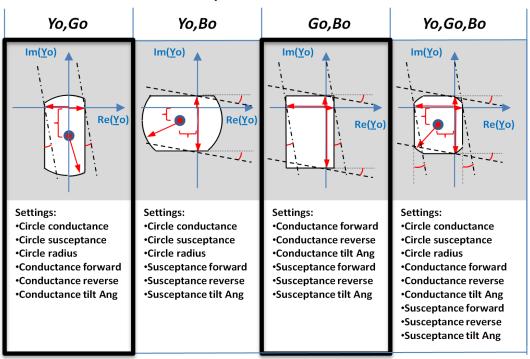
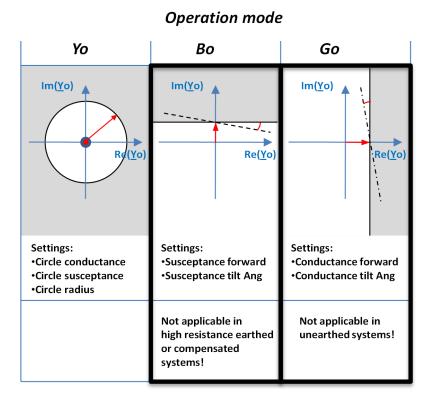



Figure 168: Admittance characteristic with different operation modes when Directional mode = "Non-directional"

Operation mode

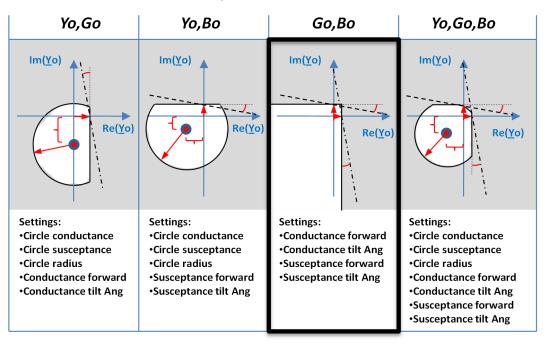
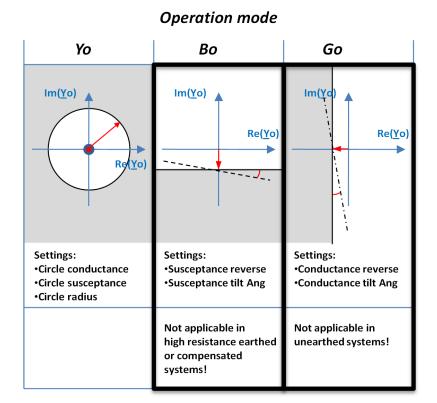



Figure 169: Admittance characteristic with different operation modes when Directional mode = "Forward"

Operation mode

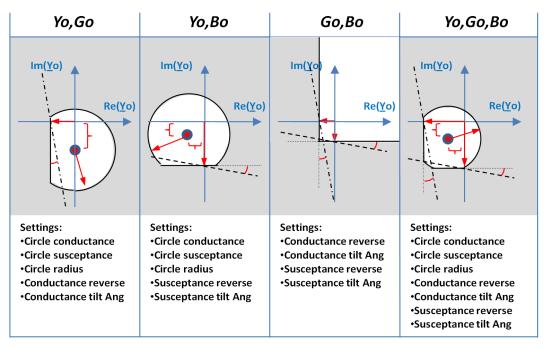


Figure 170: Admittance characteristic with different operation modes when Directional mode = "Reverse"

Timer

Once activated, the timer activates the START output. The time characteristic is according to DT. When the operation timer has reached the value set with the *Operate delay time* setting, the OPERATE output is activated. If the fault disappears before the module operates, the reset timer is activated. If the reset timer reaches the value set with the *Reset delay time* setting, the operation timer resets and the START output is deactivated. The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operation time. The value is available in the monitored data view.

Blocking logic

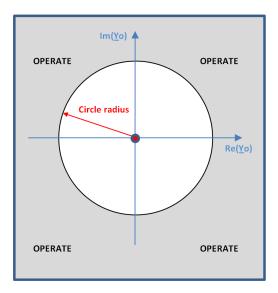
There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operate timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.2.4.5 Neutral admittance characteristics

The applied characteristic should always be set to cover the total admittance of the protected feeder with a suitable margin. However, more detailed setting value selection principles depend on the characteristic in question.

The settings defining the admittance characteristics are given in primary milliSiemens.


The forward and reverse boundary settings should be set so that the forward setting is always larger than the reverse setting and that there is space between them.

Overadmittance characteristic

The overadmittance criterion is enabled with the setting *Operation mode* set to "Yo". The characteristic is a circle with the radius defined with the *Circle radius* setting. For the sake of application flexibility, the midpoint of the circle can be moved away from the origin with the *Circle conductance* and *Circle susceptance* settings. Default values for *Circle conductance* and *Circle susceptance* are 0.0 mS, that is, the characteristic is an origin-centered circle.

Operation is achieved when the measured admittance moves outside the circle.

The overadmittance criterion is typically applied in unearthed networks, but it can also be used in compensated networks, especially if the circle is set off from the origin.

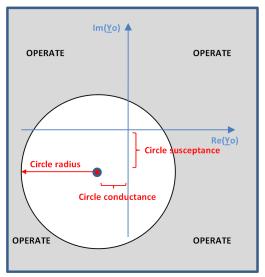
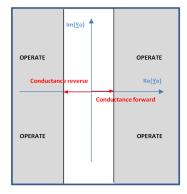
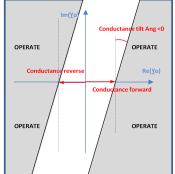


Figure 171: Overadmittance characteristic. Left figure: classical origin-centered admittance circle. Right figure: admittance circle is set off from the origin.

Non-directional overconductance characteristic


The non-directional overconductance criterion is enabled with the *Operation mode* setting set to "Go" and *Directional mode* to "Non-directional". The characteristic is defined with two overconductance boundary lines with the *Conductance forward* and *Conductance reverse* settings. For the sake of application flexibility, the boundary lines can be tilted by the angle defined with the *Conductance tilt Ang* setting. By default, the tilt angle is zero degrees, that is, the boundary line is a vertical line in the admittance plane. A positive tilt value rotates the boundary line counterclockwise from the vertical axis.


In case of non-directional conductance criterion, the *Conductance reverse* setting must be set to a smaller value than *Conductance forward*.

Operation is achieved when the measured admittance moves over either of the boundary lines.

The non-directional overconductance criterion is applicable in high-resistance earthed and compensated networks. It must not be applied in unearthed networks.

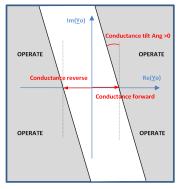
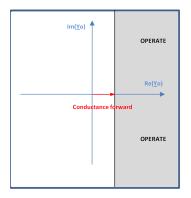
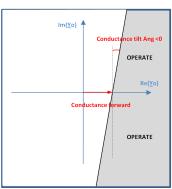


Figure 172: Non-directional overconductance characteristic. Left figure: classical non-directional overconductance criterion. Middle figure: characteristic is tilted with negative tilt angle. Right figure: characteristic is tilted with positive tilt angle.


Forward directional overconductance characteristic


The forward directional overconductance criterion is enabled with the *Operation mode* setting set to "Go" and *Directional mode* set to "Forward". The characteristic is defined by one overconductance boundary line with the *Conductance forward* setting. For the sake of application flexibility, the boundary line can be tilted with the angle defined with the *Conductance tilt Ang* setting. By default, the tilt angle is zero degrees, that is, the boundary line is a vertical line in the admittance plane. A positive tilt value rotates the boundary line counterclockwise from the vertical axis.

Operation is achieved when the measured admittance moves over the boundary line.

The forward directional overconductance criterion is applicable in high-resistance earthed and compensated networks. It must not be applied in unearthed networks.

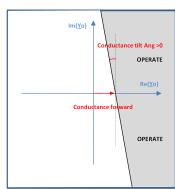


Figure 173: Forward directional overconductance characteristic. Left figure: classical forward directional overconductance criterion. Middle figure: characteristic is tilted with negative tilt angle. Right figure: characteristic is tilted with positive tilt angle.

Forward directional oversusceptance characteristic

The forward directional oversusceptance criterion is enabled with the *Operation mode* setting set to "Bo" and *Directional mode* to "Forward". The characteristic is defined by one oversusceptance boundary line with the *Susceptance forward* setting. For the sake of application flexibility, the boundary line can be tilted by the angle defined with the *Susceptance tilt Ang* setting. By default, the tilt angle is zero degrees, that is, the boundary line is a horizontal line in the admittance plane. A positive tilt value rotates the boundary line counterclockwise from the horizontal axis.

Operation is achieved when the measured admittance moves over the boundary line.

The forward directional oversusceptance criterion is applicable in unearthed networks. It must not be applied to compensated networks.

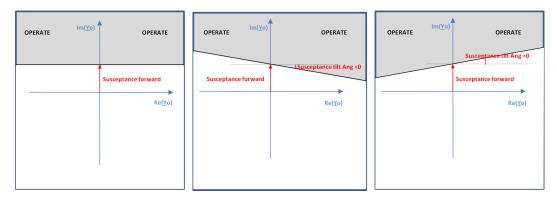
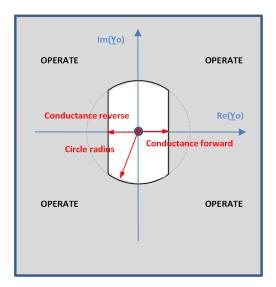


Figure 174: Forward directional oversusceptance characteristic. Left figure: classical forward directional oversusceptance criterion. Middle figure: characteristic is tilted with negative tilt angle. Right figure: characteristic is tilted with positive tilt angle.

Combined overadmittance and overconductance characteristic


The combined overadmittance and overconductance criterion is enabled with the Operation mode setting set to "Yo, Go" and Directional mode to "Non-directional". The characteristic is a combination of a circle with the radius defined with the Circle radius setting and two overconductance boundary lines with the settings Conductance forward and Conductance reverse. For the sake of application flexibility, the midpoint of the circle can be moved from the origin with the Circle conductance and Circle susceptance settings. Also the boundary lines can be tilted by the angle defined with the Conductance tilt Ang setting. By default, the Circle conductance and Circle susceptance are 0.0 mS and Conductance tilt Ang equals zero degrees, that is, the characteristic is a combination of an origin-centered circle with two vertical overconductance boundary lines. A positive tilt value for the Conductance tilt Ang setting rotates boundary lines counterclockwise from the vertical axis.

In case of the non-directional conductance criterion, the *Conductance reverse* setting must be set to a smaller value than *Conductance forward*.

Operation is achieved when the measured admittance moves outside the characteristic.

The combined overadmittance and overconductance criterion is applicable in unearthed, high-resistance earthed and compensated networks or in systems where the system earthing may temporarily change during normal operation from compensated network to unearthed system.

Compared to the overadmittance criterion, the combined characteristic improves sensitivity in high-resistance earthed and compensated networks. Compared to the non-directional overconductance criterion, the combined characteristic enables the protection to be applied also in unearthed systems.

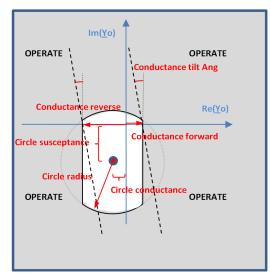
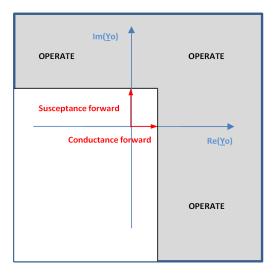


Figure 175: Combined overadmittance and overconductance characteristic. Left figure: classical origin-centered admittance circle combined with two overconductance boundary lines. Right figure: admittance circle is set off from the origin.

Combined overconductance and oversusceptance characteristic

The combined overconductance and oversusceptance criterion is enabled with the *Operation mode* setting set to "Go, Bo".

By setting *Directional mode* to "Forward", the characteristic is a combination of two boundary lines with the settings *Conductance forward* and *Susceptance forward*. See *Figure 176*.


By setting *Directional mode* to "Non-directional", the characteristic is a combination of four boundary lines with the settings *Conductance forward*, *Conductance reverse*, *Susceptance forward* and *Susceptance reverse*. See *Figure 177*.

For the sake of application flexibility, the boundary lines can be tilted by the angle defined with the *Conductance tilt Ang* and *Susceptance tilt Ang* settings. By default, the tilt angles are zero degrees, that is, the boundary lines are straight lines in the admittance plane. A positive *Conductance tilt Ang* value rotates the overconductance boundary line counterclockwise from the vertical axis. A positive *Susceptance tilt Ang* value rotates the oversusceptance boundary line counterclockwise from the horizontal axis.

In case of the non-directional conductance and susceptance criteria, the *Conductance reverse* setting must be set to a smaller value than *Conductance forward* and the *Susceptance reverse* setting must be set to a smaller value than *Susceptance forward*.

Operation is achieved when the measured admittance moves outside the characteristic.

The combined overconductance and oversusceptance criterion is applicable in high-resistance earthed, unearthed and compensated networks or in the systems where the system earthing may temporarily change during normal operation from compensated to unearthed system.

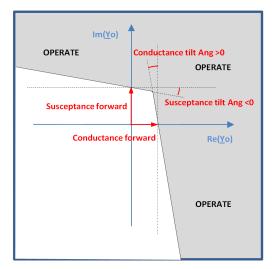


Figure 176: Combined forward directional overconductance and forward directional oversusceptance characteristic. Left figure: the Conductance tilt Ang and Susceptance tilt Ang settings equal zero degrees. Right figure: the setting Conductance tilt Ang > 0 degrees and the setting Susceptance tilt Ang < 0 degrees.

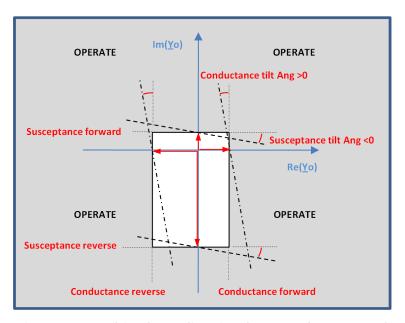


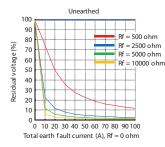
Figure 177: Combined non-directional overconductance and non-directional oversusceptance characteristic

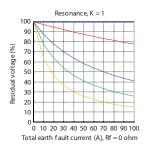
The non-directional overconductance and non-directional oversusceptance characteristic provides a good sensitivity and selectivity when the characteristic is set to cover the total admittance of the protected feeder with a proper margin.

The sign of the admittance characteristic settings should be considered based on the location of characteristic boundary in the admittance plane. All forward-settings are given with positive sign and reverse-settings with negative sign.

4.2.4.6 Application

Admittance-based earth-fault protection provides a selective earth-fault protection for high-resistance earthed, unearthed and compensated networks. It can be applied for the protection of overhead lines as well as with underground cables. It can be used as an alternative solution to traditional residual current-based earth-fault protection functions, for example the IoCos mode in DEFxPDEF. Main advantages of EFPADM include versatile applicability, good sensitivity and easy setting principles.


Residual overvoltage condition is used as a start condition for the admittance-based earth-fault protection. When the residual voltage exceeds the set threshold *Voltage start value*, an earth fault is detected and the neutral admittance calculation is released. In order to guarantee a high security of protection, that is, avoid false starts, the *Voltage start value* setting must be set above the highest possible value of Uo during normal operation with a proper margin. It should consider all possible operation conditions and configuration changes in the network. In unearthed systems, the healthy-state Uo is typically less than 1%×Uph (Uph = nominal phase-to-earth voltage). In compensated networks, the healthy-state Uo may reach values even up to 30%×Uph if the network includes large parts of overheadlines without a phase transposition. Generally, the highest Uo is achieved when the compensation coil is tuned to the full resonance and when the parallel resistor of the coil is not connected.


The residual overvoltage-based start condition for the admittance protection enables a multistage protection principle. For example, one instance of EFPADM could be used for alarming to detect faults with a high fault resistance using a relatively low value for the *Voltage start value* setting. Another instance of EFPADM could then be set to trip with a lower sensitivity by selecting a higher value of the *Voltage start value* setting than in the alarming instance (stage).

To apply the admittance-based earth-fault protection, at least the following network data are required:

- · System earthing method
- Maximum value for Uo during the healthy state
- Maximum earth-fault current of the protected feeder when the fault resistance Rf is zero ohm
- Maximum uncompensated earth-fault current of the system (Rf = 0 Ω)
- Rated current of the parallel resistor of the coil (active current forcing scheme) in the case of a compensated neutral network
- Rated current of the neutral earthing resistor in the case of a high-resistance earthed system
- Knowledge of the magnitude of Uo as a function of the fault resistance to verify the sensitivity of the protection in terms of fault resistance

Figure 178 shows the influence of fault resistance on the residual voltage magnitude in unearthed and compensated networks. Such information should be available to verify the correct *Voltage start value* setting, which helps fulfill the requirements for the sensitivity of the protection in terms of fault resistance.

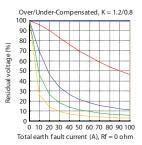
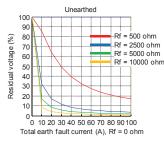
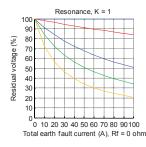




Figure 178: Influence of fault resistance on the residual voltage magnitude in 10 kV unearthed and compensated networks. The leakage resistance is assumed to be 30 times larger than the absolute value of the capacitive reactance of the network. Parallel resistor of the compensation coil is assumed to be disconnected.

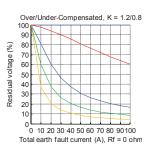
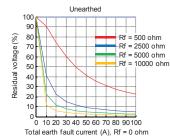
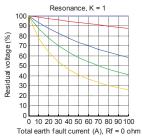




Figure 179: Influence of fault resistance on the residual voltage magnitude in 15 kV unearthed and compensated networks. The leakage resistance is assumed to be 30 times larger than the absolute value of the capacitive reactance of the network. Parallel resistor of the compensation coil is assumed to be disconnected.

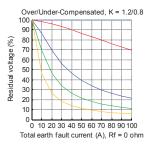


Figure 180: Influence of fault resistance on the residual voltage magnitude in 20 kV unearthed and compensated networks. The leakage resistance is assumed to be 30 times larger than the absolute value of the capacitive reactance of the network. Parallel resistor of the compensation coil is assumed to be disconnected.

Example

In a 15 kV, 50 Hz compensated network, the maximum value for Uo during the healthy state is 10%×Uph. Maximum earth-fault current of the system is 100 A. The maximum earth-fault current of the protected feeder is 10 A (Rf = 0 Ω). The applied active current forcing scheme uses a 15 A resistor (at 15 kV), which is connected in parallel to the coil during the fault after a 1.0 second delay.

Solution: As a start condition for the admittance-based earth-fault protection, the internal residual overvoltage condition of EFPADM is used. The *Voltage start value* setting must be set above the maximum healthy-state Uo of 10%×Uph with a suitable margin.

Voltage start value = 0.15 × Un

According to *Figure 179*, this selection ensures at least a sensitivity corresponding to a 2000 ohm fault resistance when the compensation degree varies between 80% and 120%. The greatest sensitivity is achieved when the compensation degree is close to full resonance.

An earth-fault current of 10 A can be converted into admittance.

$$\underline{Y}_{Fdtot} = \frac{10A}{15kV/\sqrt{3}} \approx j \cdot 1.15 \text{ mS}$$

(Equation 25)

A parallel resistor current of 15 A can be converted into admittance.

$$G_{cc} = \frac{15A}{15kV/\sqrt{3}} \approx 1.73 \text{ mS}$$

(Equation 26)

According to *Equation 13*, during an outside fault EFPADM measures the following admittance:

$$\underline{Y}o = -\underline{Y}_{Fdtot} \approx -j \cdot 1.15 \text{ mS}$$

(Equation 27)

According to *Equation 16*, during an inside fault EFPADM measures the admittance after the connection of the parallel resistor:

$$\underline{Y}o = \underline{Y}_{Bgtot} + \underline{Y}_{CC} \approx (1.73 + j \cdot B) \text{ mS}$$

(Equation 28)

Where the imaginary part of the admittance, B, depends on the tuning of the coil (compensation degree).

The admittance characteristic is selected to be the combined overconductance and oversusceptance characteristic ("Box"-characteristics) with four boundary lines:

Operation mode = "Go, Bo"

Directional mode = "Non-directional"

The admittance characteristic is set to cover the total admittance of the protected feeder with a proper margin, see *Figure 181*. Different setting groups can be used to allow adaptation of protection settings to different feeder and network configurations.

Conductance forward

This setting should be set based on the parallel resistor value of the coil. It must be set to a lower value than the conductance of the parallel resistor, in order to enable dependable operation. The selected value should move the boundary line

> from origin to include some margin for the admittance operation point due to CT/VT-errors, when fault is located outside the feeder.

Conductance forward: 15 A/(15 kV/sqrt(3)) * 0.2 = +0.35 mS corresponding to 3.0 A (at 15 kV). The selected value provides margin considering also the effect of CT/VT-errors in case of outside faults.

In case of smaller rated value of the parallel resistor, for example, 5 A (at 15 kV), the recommended security margin should be larger, for example 0.7, so that sufficient margin for CT/VT-errors can be achieved.

Susceptance forward

By default, this setting should be based on the minimum operate current of 1 A. Susceptance forward: 1 A/(15 kV/sqrt(3)) = +0.1 mS

Susceptance reverse

This setting should be set based on the value of the maximum earth-fault current produced by the feeder (considering possible feeder topology changes) with a security margin. This ensures that the admittance operating point stays inside the "Box"-characteristics during outside fault. The recommended security margin should not be lower than 1.5.

Susceptance reverse: - (10 A * 1.5)/ (15 kV/sqrt(3)) = -1.73 mS

Conductance reverse

This setting is used to complete the non-directional characteristics by closing the "Box"-characteristic. In order to keep the shape of the characteristic reasonable and to allow sufficient margin for the admittance operating point during outside fault, it is recommended to use the same value as for setting Susceptance reverse.

Conductance reverse = -1.73 mS

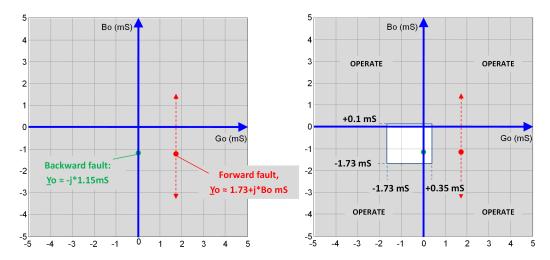


Figure 181: Admittances of the example

4.2.4.7 Signals

Table 379: EFPADM Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
Uo	SIGNAL	0	Residual voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
RELEASE	BOOLEAN	0=False	External trigger to re- lease neutral admit- tance protection

Table 380: EFPADM Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.2.4.8 Settings

Table 381: EFPADM Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Voltage start value	0.012.00	xUn	0.01	0.15	Voltage start value
Directional mode	1=Non-directional			2=Forward	Directional mode
	2=Forward				
	3=Reverse				
Operation mode	1=Yo			1=Yo	Operation criteria
	2=Go				
	3=Bo				
	4=Yo, Go				
	5=Yo, Bo				
	6=Go, Bo				
	7=Yo, Go, Bo				
Operate delay time	60200000	ms	10	60	Operate delay time
Circle radius	0.05500.00	mS	0.01	1.00	Admittance circle radius
Circle conductance	-500.00500.00	mS	0.01	0.00	Admittance circle midpoint, conductance
Circle susceptance	-500.00500.00	mS	0.01	0.00	Admittance circle midpoint, susceptance
Conductance forward	-500.00500.00	mS	0.01	1.00	Conductance threshold in for- ward direction

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
Conductance reverse	-500.00500.00	mS	0.01	-1.00	Conductance threshold in reverse direction
Susceptance for- ward	-500.00500.00	mS	0.01	1.00	Susceptance threshold in for- ward direction
Susceptance reverse	-500.00500.00	mS	0.01	-1.00	Susceptance threshold in reverse direction

Table 382: EFPADM Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Conductance tilt Ang	-3030	deg	1	0	Tilt angle of con- ductance boundary line
Susceptance tilt Ang	-3030	deg	1	0	Tilt angle of sus- ceptance boundary line

Table 383: EFPADM Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				

Table 384: EFPADM Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Admittance Clc mode	1=Normal			1=Normal	Admittance calcula- tion mode
mode	2=Delta				tion mode
Reset delay time	060000	ms	1	20	Reset delay time
Pol reversal	0=False			0=False	Rotate polarizing
	1=True				quantity
Min operate current	0.011.00	xIn	0.01	0.01	Minimum operating current
Min operate voltage	0.011.00	xUn	0.01	0.01	Minimum operating voltage
Io signal Sel	1=Measured Io			1=Measured Io	Selection for used lo signal
	2=Calculated Io				10 Signal
Uo signal Sel	1=Measured Uo			1=Measured Uo	Selection for used Uo signal
	2=Calculated Uo				oo sigilal

4.2.4.9 Monitored data

EFPADM Monitored data

Table 385: EFPADM Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
FAULT_DIR	Enum	0=unknown 1=forward 2=backward 3=both		Detected fault direction
COND_RES	FLOAT32	-1000.001000.0 0	mS	Real part of cal- culated neutral admittance
SUS_RES	FLOAT32	-1000.001000.0 0	mS	Imaginary part of calculated neutral admit- tance
EFPADM	Enum	1=on 2=blocked 3=test 4=test/blocked 5=off		Status

4.2.4.10 Technical data

Table 386: EFPADM Technical data

Characteristic	Value	Value		
Operation accuracy ¹	At the frequenc	At the frequency f = f _n ±1.0% or ±0.01 mS		
	±1.0% or ±0.01 r			
	(In range of 0.5.	(In range of 0.5100 mS)		
Start time ²	Minimum	Minimum Typical Maximum		
	56 ms 60 ms		64 ms	
Reset time	40 ms	40 ms		
Operate time accuracy	±1.0% of the se	±1.0% of the set value of ±20 ms		
Suppression of harmonics	-50 dB at f = n ×	f _n , where n = 2, 3, 4	1, 5,	

4.2.5 Harmonics-based earth-fault protection HAEFPTOC

REC615 & RER615 367

¹ Uo = 1.0 × Un

² Includes the delay of the signal output contact, results based on statistical distribution of 1000 measurements

Identification 4.2.5.1

Description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Harmonics-based earth-fault protection	НАЕГРТОС	Io>HA	51NHA

4.2.5.2 **Function block**

Figure 182: Function block

4.2.5.3 **Functionality**

The harmonics-based earth-fault protection function HAEFPTOC is used instead of a traditional earth-fault protection in networks where a fundamental frequency component of the earth-fault current is low due to compensation.

By default, HAEFPTOC is used as a standalone mode. Substation-wide application can be achieved using horizontal communication where the detection of a faulty feeder is done by comparing the harmonics earth-fault current measurements.

The function starts when the harmonics content of the earth-fault current exceeds the set limit. The operation time characteristic is either definite time (DT) or inverse definite minimum time (IDMT). If the horizontal communication is used for the exchange of current values between the protection relays, the function operates according to the DT characteristic.

The function contains a blocking functionality. It is possible to block function outputs, timer or the function itself, if desired.

4.2.5.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of HAEFPTOC can be described using a module diagram. All the modules in the diagram are explained in the next sections.

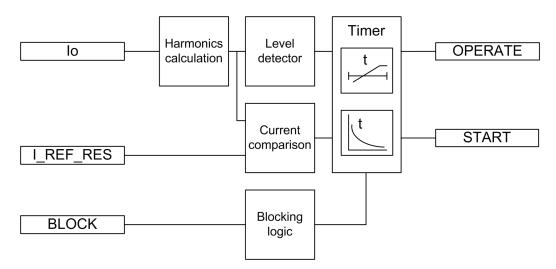


Figure 183: Functional module diagram

Harmonics calculation

This module feeds the measured residual current to the high-pass filter, where the frequency range is limited to start from two times the fundamental frequency of the network (for example, in a 50 Hz network the cutoff frequency is 100 Hz), that is, summing the harmonic components of the network from the second harmonic. The output of the filter, later referred to as the harmonics current, is fed to the Level detector and Current comparison modules.

The harmonics current I_HARM_RES is available in the monitored data view. The value is also sent over horizontal communication to the other protection relays on the parallel feeders configured in the protection scheme.

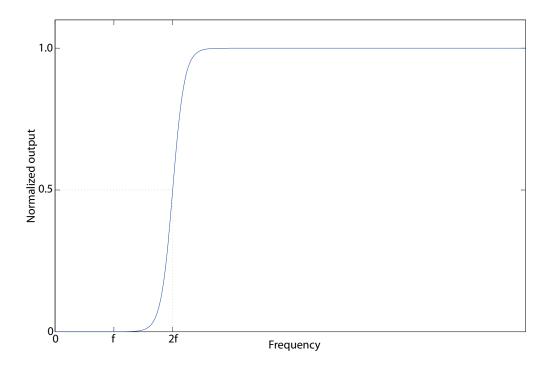


Figure 184: High-pass filter

Level detector

The harmonics current is compared to the *Start value* setting. If the value exceeds the value of the *Start value* setting, Level detector sends an enabling signal to the Timer module.

Current comparison

The maximum of the harmonics currents reported by other parallel feeders in the substation, that is, in the same busbar, is fed to the function through the I_REF_RES input. If the locally measured harmonics current is higher than I_REF_RES , the enabling signal is sent to Timer.

If the locally measured harmonics current is lower than I_REF_RES , the fault is not in that feeder. The detected situation blocks Timer internally, and simultaneously also the $BLKD_I_REF$ output is activated.

The module also supervises the communication channel validity which is reported to the Timer.

Timer

The START output is activated when Level detector sends the enabling signal. Functionality and the time characteristics depend on the selected value of the *Enable reference use* setting.

Table 387: Values of the Enable reference use setting

Enable reference use		Functionality
Standalone		In the standalone mode, depending on the value of the <i>Operating curve type</i> setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of the <i>Operate delay time</i> setting in the DT mode or the value defined by the inverse time curve, the OPERATE output is activated.
Reference use	Communication valid	When using the horizontal communication, the function is forced to use the DT characteristics. When the operation timer has reached the value of the <i>Minimum operate time</i> setting and simultaneously the enabling signal from the Current comparison module is active, the OPERATE signal is activated.
	Communication invalid	Function operates as in the standalone mode.

The *Enable reference use* setting forces the function to use the DT characteristics where the operating time is set with the *Minimum operate time* setting.

If the communication for some reason fails, the function switches to use the *Operation curve type* setting, and if DT is selected, *Operate delay time* is used. If the IDMT curve is selected, the time characteristics are according to the selected curve and the *Minimum operate time* setting is used for restricting too fast an operation time.

In case of a communication failure, the start duration may change substantially depending on the user settings.

When the programmable IDMT curve is selected, the operation time characteristics are defined with the *Curve parameter A*, *Curve parameter B*, *Curve parameter C*, *Curve parameter D* and *Curve parameter E* parameters.

If a drop-off situation happens, that is, a fault suddenly disappears before the operation delay is exceeded, the Timer reset state is activated. The functionality of Timer in the reset state depends on the combination of the *Operating curve type, Type of reset curve* and *Reset delay time* settings. When the DT characteristic is selected, the reset timer runs until the value of the *Reset delay time* setting is exceeded. When the IDMT curves are selected, the *Type of reset curve* setting can be set to "Immediate", "Def time reset" or "Inverse reset". The reset curve type "Immediate" causes an immediate reset. With the reset curve type "Def time reset", the reset time depends on the *Reset delay time* setting. With the reset curve type "Inverse reset", the reset time depends on the current during the drop-off situation. If the drop-off situation continues, the reset timer is reset and the START output is deactivated.

The "Inverse reset" selection is only supported with ANSI or the programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.

The setting *Time multiplier* is used for scaling the IDMT operation and reset times.

The setting parameter *Minimum operate time* defines the minimum desired operation time for IDMT. The setting is applicable only when the IDMT curves are used

The *Minimum operate time* setting should be used with great care because the operation time is according to the IDMT curve but always at least the value of the *Minimum operate time* setting. More information can be found in *Chapter 11.2.1 IDMT curves for overcurrent protection*.

Timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation, and the set operating time, which can be either according to DT or IDMT. The value is available in the monitored data view.

More information can be found in *Chapter 11 General function block features*.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.2.5.5 Application

During an earth fault, HAEFPTOC calculates the maximum current for the current feeder. The value is sent over an analog GOOSE to other protection relays of the busbar in the substation. At the configuration level, all the values received over the analog GOOSE are compared through the MAX function to find the maximum value. The maximum value is sent back to HAEFPTOC as the I_REF_RES input. The operation of HAEFPTOC is allowed in case I_REF_RES is lower than the locally measured harmonics current. If I_REF_RES exceeds the locally measured harmonics current, the operation of HAEFPTOC is blocked.

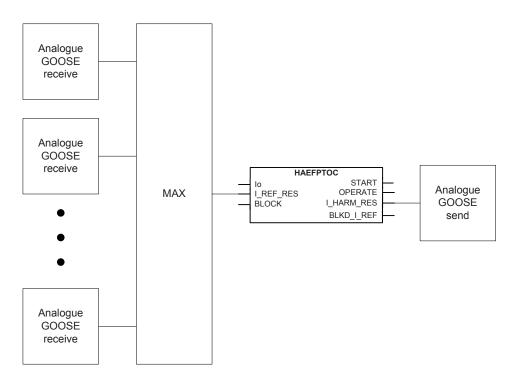


Figure 185: Protection scheme based on the analog GOOSE communication with three analog GOOSE receivers

4.2.5.6 Signals

Table 388: HAEFPTOC Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
I_REF_RES	FLOAT32	0.0	Reference current

Table 389: HAEFPTOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.2.5.7 Settings

HAEFPTOC Group settings

Table 390: HAEFPTOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.055.00	xln	0.01	0.10	Start value
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operate delay time	100200000	ms	10	600	Operate delay time
Operating curve type	1=ANSI Ext. inv.			15=IEC Def. Time	Selection of time delay curve type
type	2=ANSI Very inv.				delay cui ve type
	3=ANSI Norm. inv.				
	4=ANSI Mod. inv.				
	5=ANSI Def. Time				
	6=L.T.E. inv.				
	7=L.T.V. inv.				
	8=L.T. inv.				
	9=IEC Norm. inv.				
	10=IEC Very inv.				
	11=IEC inv.				
	12=IEC Ext. inv.				
	13=IEC S.T. inv.				
	14=IEC L.T. inv.				
	15=IEC Def. Time				
	17=Programmable				
	18=RI type				
	19=RD type				

Table 391: HAEFPTOC Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Minimum operate time	100200000	ms	10	500	Minimum operate time for IDMT curves
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type
Enable reference use	0=False 1=True			0=False	Enable using cur- rent reference from other IEDs instead of stand-alone

Table 392: HAEFPTOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer program- mable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer program- mable curve

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
Curve parameter C	0.022.00		1	2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer programmable curve

Table 393: HAEFPTOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	10	20	Reset delay time

4.2.5.8 Monitored data

HAEFPTOC Monitored data

Table 394: HAEFPTOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
I_HARM_RES	FLOAT32	0.030000.0	А	Calculated har- monics current
BLKD_I_REF	BOOLEAN	0=False 1=True		Current comparison status indicator
HAEFPTOC	Enum	1=on 2=blocked 3=test 4=test/blocked 5=off		Status

4.2.5.9 Technical data

Table 395: HAEFPTOC Technical data

Characteristic	Value
Operation accuracy Depending on the frequency of the measured cur	
	±5% of the set value or ±0.004 × I _n
Start time 12	Typically 77 ms
Reset time	Typically 40 ms

Table continues on the next page

Fundamental frequency current = $1.0 \times I_n$, harmonics current before fault = $0.0 \times I_n$, harmonics fault current 2.0 × *Start value*, results based on statistical distribution of 1000 measurements

² Includes the delay of the signal output contact

Characteristic	Value
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Operate time accuracy in IDMT mode .3	±5.0% of the set value or ±20 ms
Suppression of harmonics	-50 dB at f = f _n
	-3 dB at f = 13 × f _n

4.2.6 Wattmetric-based earth-fault protection WPWDE

4.2.6.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Wattmetric-based earth-fault pro- tection	WPWDE	Po> ->	32N

4.2.6.2 Function block

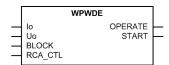


Figure 186: Function block

4.2.6.3 Functionality

The wattmetric-based earth-fault protection function WPWDE can be used to detect earth faults in unearthed networks, compensated networks (Petersen coil-earthed networks) or networks with a high-impedance earthing. It can be used as an alternative solution to the traditional residual current-based earth-fault protection functions, for example, the IoCos mode in the directional earth-fault protection function DEFxPDEF.

WPWDE measures the earth-fault power $3UoloCos\varphi$ and gives an operating signal when the residual current Io, residual voltage Uo and the earth-fault power exceed the set limits and the angle (φ) between the residual current and the residual voltage is inside the set operating sector, that is, forward or backward sector. The operating time characteristic can be selected to be either definite time (DT) or a special wattmetric-type inverse definite minimum type (wattmetric type IDMT).

The wattmetric-based earth-fault protection is very sensitive to current transformer errors and it is recommended that a core balance CT is used for measuring the residual current.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

REC615 & RER615 Technical Manual

 $^{^3}$ Maximum Start value = 2.5 × I $_n$, Start value multiples in range of 2...20

4.2.6.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

For WPWDE, certain notations and definitions are used.

Residual voltage Uo = $(UA+UB+UC)/3 = U_0$, where U₀ = zero-sequence voltage

Residual current Io = -(IA+IB+IC) = $3\times$ - I $_0$, where I $_0$ = zero-sequence current

The minus sign (-) is needed to match the polarity of calculated and measured residual currents.

The operation of WPWDE can be described with a module diagram. All the modules in the diagram are explained in the next sections.

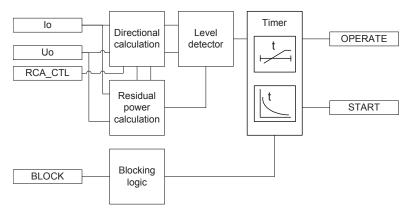


Figure 187: Function module diagram

Directional calculation

The Directional calculation module monitors the angle between the operating quantity (residual current Io) and polarizing quantity (residual voltage Uo). The operating quantity can be selected with the setting *Io signal Sel*. The selectable options are "Measured Io" and "Calculated Io". The polarizing quantity can be selected with the setting *Pol signal Sel*. The selectable options are "Measured Uo" and "Calculated Uo". When the angle between operating quantity and polarizing quantity after considering the *Characteristic angle* setting is in the operation sector, the module sends an enabling signal to Level detector. The directional operation is selected with the *Directional mode* setting. Either the "Forward" or "Reverse" operation mode can be selected. The direction of fault is calculated based on the phase angle difference between the operating quantity Io and polarizing quantity Uo, and the value (ANGLE) is available in the monitored data view.

In the phasor diagrams representing the operation of WPWDE, the polarity of the polarizing quantity (residual voltage Uo) is reversed. Reversing is done by switching the polarity of the residual current measuring channel (See the connection diagram in the application manual).

If the angle difference lies between -90° to 0° or 0° to +90°, a forward-direction fault is considered. If the phase angle difference lies within -90° to -180° or +90° to +180°, a reverse-direction fault is detected. Thus, the normal width of a sector is 180°.

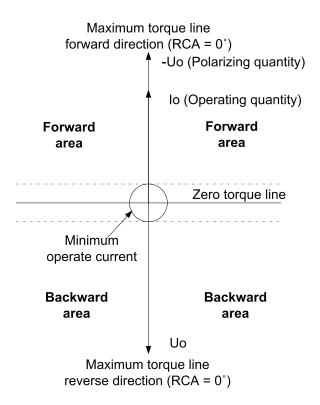


Figure 188: Definition of the relay characteristic angle

The phase angle difference is calculated based on the Characteristic angle setting (also known as Relay Characteristic Angle (RCA) or Relay Base Angle or Maximum Torque Angle (MTA)). The Characteristic angle setting is done based on the method of earthing employed in the network. For example, in case of an unearthed network, the Characteristic angle setting is set to -90°, and in case of a compensated network, the Characteristic angle setting is set to 0°. In general, Characteristic angle is selected so that it is close to the expected fault angle value, which results in maximum sensitivity. Characteristic angle can be set anywhere between -179° to +180°. Thus, the effective phase angle (φ) for calculating the residual power considering characteristic angle is according to the equation.

$$\phi = (\angle(-Uo) - \angle Io - Characteristic \ angle)$$

(Equation 29)

In addition, the characteristic angle can be changed via the control signal RCA CTL. The RCA CTL input is used in the compensated networks where the compensation coil sometimes is temporarily disconnected. When the coil is disconnected, the compensated network becomes isolated and the Characteristic angle setting must be changed. This can be done automatically with the RCA CTL input, which results in the addition of -90° in the Characteristic angle setting.

The value (ANGLE_RCA) is available in the monitored data view.

378 **REC615 & RER615** Technical Manual

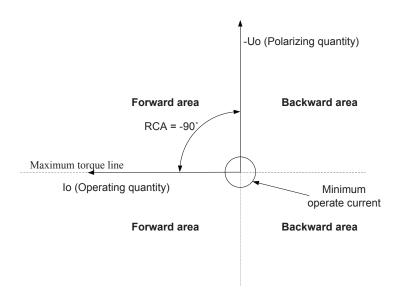


Figure 189: Definition of relay characteristic angle, RCA = -90° in an isolated network

Characteristic angle should be set to a positive value if the operating signal lags the polarizing signal and to a negative value if the operating signal leads the polarizing signal.

Type of network	Recommended characteristic angle
Compensated network	0°
Unearthed network	-90°

In unearthed networks, when the characteristic angle is -90°, the measured residual power is reactive (varmetric power).

The fault direction is also indicated FAULT_DIR (available in the monitored data view), which indicates 0 if a fault is not detected, 1 for faults in the forward direction and 2 for faults in the backward direction.

The direction of the fault is detected only when the correct angle calculation can be made. If the magnitude of the operating quantity or polarizing quantity is not high enough, the direction calculation is not reliable. Hence, the magnitude of the operating quantity is compared to the *Min operate current* setting and the magnitude of the polarizing quantity is compared to *Min operate voltage*, and if both the operating quantity and polarizing quantity are higher than their respective limit, a valid angle is calculated and the residual power calculation module is enabled.

The *Correction angle* setting can be used to improve the selectivity when there are inaccuracies due to the measurement transformer. The setting decreases the operation sector. The *Correction angle* setting should be done carefully as the phase angle error of the measurement transformer varies with the connected burden as well as with the magnitude of the actual primary current that is being measured. An example of how *Correction angle* alters the operating region is as shown:

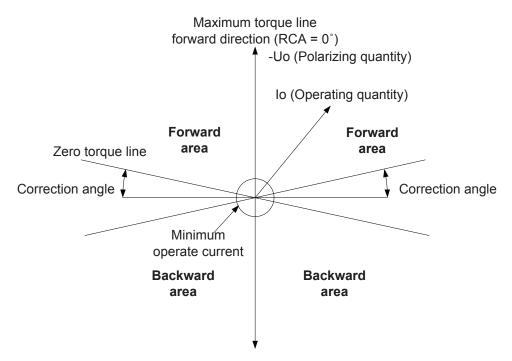


Figure 190: Definition of correction angle

The polarity of the polarizing quantity can be changed (rotated by 180°) by setting *Pol reversal* to "True" or by switching the polarity of the residual voltage measurement wires.

Residual power calculation

The Residual power calculation module calculates the magnitude of residual power $3\text{UoloCos}\varphi$. Angle φ is the angle between the operating quantity and polarizing quantity, compensated with a characteristic angle. The angle value is received from the Directional calculation module. The Directional calculation module enables the residual power calculation only if the minimum signal levels for both operating quantity and polarizing quantity are exceeded. However, if the angle calculation is not valid, the calculated residual power is zero. Residual power (RES_POWER) is calculated continuously and it is available in the monitored data view. The power is given in relation to nominal power calculated as Pn = Un × In, where Un and In are obtained from the entered voltage transformer and current transformer ratios entered, and depend on the *Io signal Sel* and *Uo signal Sel* settings.

Level detector

Level detector compares the magnitudes of the measured operating quantity (residual current Io), polarizing quantity (residual voltage Uo) and calculated residual power to the set *Current start value* (×In), *Voltage start value* (×Un) and *Power start value* (×Pn) respectively. When all three quantities exceed the limits, Level detector enables the Timer module.

When calculating the setting values for Level detector, it must be considered that the nominal values for current, voltage and power depend on whether the residual quantities are measured from a dedicated measurement channel or calculated from phase quantities, as defined in the *Io signal Sel* and *Uo signal Sel* settings.

For residual current Io, if "Measured Io" is selected, the nominal values for primary and secondary are obtained from the current transformer ratio entered for residual

current channel **Configuration** > **Analog inputs** > **Current (Io, CT)**. If "Calculated Io" is selected, the nominal values for primary and secondary are obtained from the current transformer ratio entered for phase current channels **Configuration** > **Analog inputs** > **Current (3I, CT)**.

For residual voltage Uo, if "Measured Uo" is selected, the nominal values for primary and secondary are obtained from the voltage transformer ratio entered for residual voltage channel **Configuration** > **Analog inputs** > **Voltage (Uo, VT)**. If "Calculated Uo" is selected, the nominal values for primary and secondary are obtained from the voltage transformer ratio entered for phase voltage channels **Configuration** > **Analog inputs** > **Voltage (3U, VT)**.

Calculated Uo requires that all three phase-to-earth voltages are connected to the protection relay. Uo cannot be calculated from the phase-to-phase voltages.

As nominal power is the result of the multiplication of the nominal current and the nominal voltage $Pn = Un \times In$, the calculation of the setting value for *Power start value* (×Pn) depends on whether Io and Uo are measured or calculated from the phase quantities.

Table 396: Measured and calculated Io and Uo

	Measured Io	Calculated Io
Measured Uo	Pn = (Uo, VT) × (Io, CT)	Pn = (Uo, VT) × (3I, CT)
Calculated Uo	Pn = (3U, VT) × (Io, CT)	Pn = (3U, VT) × (3I, CT)

Example 1. Io is measured with cable core CT (100/1A) and Uo is measured from open delta-connected VTs (20/sqrt(3) kV:100/sqrt(3) V:100/3 V). In this case, "Measured Io" and "Measured Uo" are selected. The nominal values for residual current and residual voltage are obtained from CT and VT ratios.

Residual current Io: Configuration > Analog inputs > Current (Io, CT): 100 A:1 A

Residual voltage Uo: Configuration > Analog inputs > Current (Uo, VT): 11.547 kV:100 V

Residual Current start value of 1.0 \times In corresponds then 1.0 \times 100 A = 100 A in primary

Residual Voltage start value of $1.0 \times Un$ corresponds then 1.0×11.547 kV in primary

Residual Power start value of $1.0 \times Pn$ corresponds then $1.0 \times 11.547 \text{ kV} \times 100 \text{ A} = 1154.7 \text{kW}$ in primary

Example 2. Both Io and Uo are calculated from phase quantities. Phase CT-ratio is 100:1 A and Phase VT-ratio 20/sqrt(3) kV:100/sqrt(3) V. In this case "Calculated Io" and "Calculated Uo" are selected. The nominal values for residual current and residual voltage are obtained from CT and VT ratios entered in:

Residual current Io: Configuration > Analog inputs > Current (3I, CT): 100 A:1 A

Residual voltage Uo: Configuration > Analog inputs > Current (3U, VT): 20.000 kV:100 V

Residual Current start value of 1.0 \times In corresponds then 1.0 \times 100 A = 100 A in primary

Residual Voltage start value of 1.0 \times Un corresponds then 1.0 \times 20.000 kV in primary

Residual Power start value of 1.0 × Pn corresponds then 1.0 × 20.000 kV × 100 A = 2000kW in primary

If "Calculated Uo" is selected for the *Uo signal Sel* setting, the nominal value for residual voltage Un is always phase-to-phase voltage. Thus, the valid maximum setting for residual *Voltage start value* is 0.577 × Un, which corresponds to full phase-to-earth voltage in primary.

Timer

Once activated, Timer activates the START output. Depending on the value of the *Operating curve type* setting, the time characteristics are according to DT or wattmetric IDMT. When the operation timer has reached the value of *Operate delay time* in the DT mode or the maximum value defined by the inverse time curve, the OPERATE output is activated. If a drop-off situation happens, that is, a fault suddenly disappears before the operating delay is exceeded, the timer reset state is activated. The reset time is identical for both DT or wattmeter IDMT. The reset time depends on the *Reset delay time* setting.

Timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operation time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.2.6.5 Timer characteristics

In the wattmetric IDMT mode, the <code>OPERATE</code> output is activated based on the timer characteristics:

$$t[s] = \frac{k * P_{ref}}{P_{cal}}$$

(Equation 30)

t[s] operation time in seconds
k set value of *Time multiplier*P ref set value of *Reference power*P cal calculated residual power

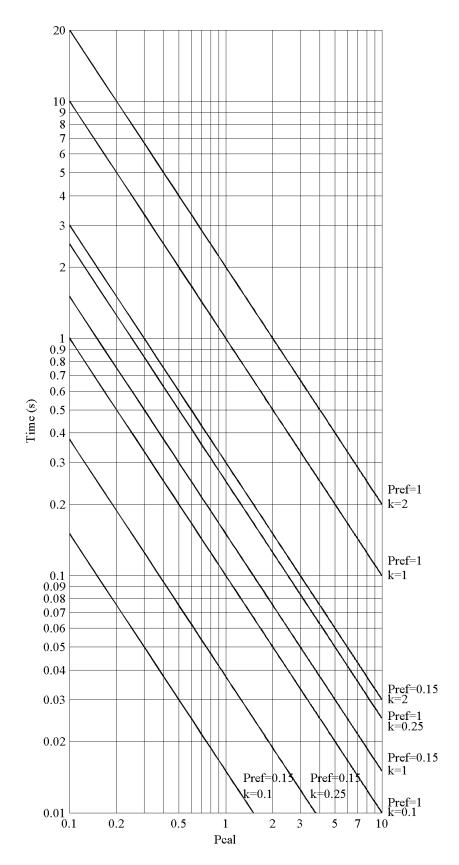


Figure 191: Operation time curves for wattmetric IDMT for S ref set at 0.15 xPn

4.2.6.6 Measurement modes

The function operates on three alternative measurement modes: "RMS", "DFT" and "Peak-to-Peak". The measurement mode is selected with the Measurement mode settina.

4.2.6.7 **Application**

The wattmetric method is one of the commonly used directional methods for detecting the earth faults especially in compensated networks. The protection uses the residual power component 3UoloCosφ (φ is the angle between the polarizing quantity and operating quantity compensated with a relay characteristic angle).

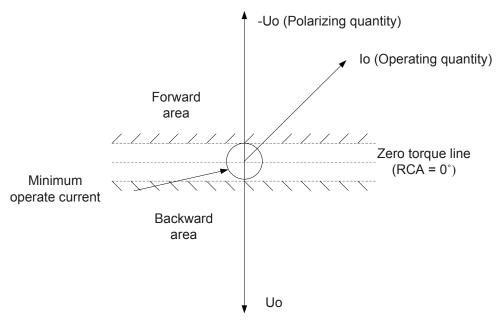


Figure 192: Characteristics of wattmetric protection

In a fully compensated radial network with two outgoing feeders, the earth-fault currents depend mostly on the system earth capacitances (C 0) of the lines and the compensation coil (L). If the coil is tuned exactly to the system capacitance, the fault current has only a resistive component. This is due to the resistances of the coil and distribution lines together with the system leakage resistances (R₀). Often a resistor (R₁) in parallel with the coil is used for increasing the fault current.

When a single phase-to-earth fault occurs, the capacitance of the faulty phase is bypassed and the system becomes unsymmetrical. The fault current is composed of the currents flowing through the earth capacitances of two healthy phases. The protection relay in the healthy feeder tracks only the capacitive current flowing through its earth capacitances. The capacitive current of the complete network (sum of all feeders) is compensated with the coil.

A typical network with the wattmetric protection is an undercompensated network where the coil current I $_L$ = I $_{Ctot}$ - I $_{Cfd}$ (I $_{Ctot}$ is the total earth-fault current of the network and I Cfd is the earth-fault current of the healthy feeder).

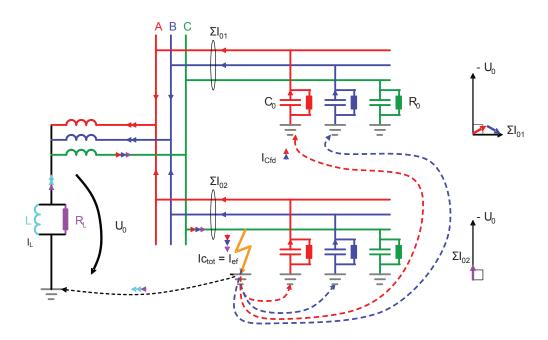


Figure 193: Typical radial compensated network employed with wattmetric protection

The wattmetric function is activated when the residual active power component exceeds the set limit. However, to ensure a selective operation, it is also required that the residual current and residual voltage also exceed the set limit.

It is highly recommended that core balance current transformers are used for measuring lo when using the wattmetric method. When a low transformation ratio is used, the current transformer can suffer accuracy problems and even a distorted secondary current waveform with some core balance current transformers. Therefore, to ensure a sufficient accuracy of the residual current measurement and consequently a better selectivity of the scheme, the core balance current transformer should preferably have a transformation ratio of at least 70:1. Lower transformation ratios such as 50:1 or 50:5 are not recommended, unless the phase displacement errors and current transformer amplitude are checked first.

It is not recommended to use the directional wattmetric protection in case of a ring or meshed system as the wattmetric requires a radial power flow to operate.

The relay characteristic angle needs to be set based on the system earthing. In an unearthed network, that is, when the network is only coupled to earth via the capacitances between the phase conductors and earth, the characteristic angle is chosen as -90°.

In compensated networks, the capacitive fault current and inductive resonance coil current compensate each other, meaning that the fault current is mainly resistive and has zero phase shift compared to the residual voltage. In such networks, the characteristic angle is chosen as 0°. Often the magnitude of an active component is small and must be increased by means of a parallel resistor in a compensation coil. In networks where the neutral point is earthed through a low resistance, the characteristic angle is always 0°.

As the amplitude of the residual current is independent of the fault location, the selectivity of the earth-fault protection is achieved with time coordination.

The use of wattmetric protection gives a possibility to use the dedicated inverse definite minimum time characteristics. This is applicable in large high-impedance earthed networks with a large capacitive earth-fault current.

In a network employing a low-impedance earthed system, a medium-size neutral point resistor is used. Such a resistor gives a resistive earth-fault current component of about 200...400 A for an excessive earth fault. In such a system, the directional residual power protection gives better possibilities for selectivity enabled by the inverse time power characteristics.

4.2.6.8 Signals

Table 397: WPWDE Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
Uo	SIGNAL	0	Residual voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
RCA_CTL	BOOLEAN	0=False	Relay characteristic angle control

Table 398: WPWDE Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.2.6.9 Settings

WPWDE Group settings

Table 399: WPWDE Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Directional mode	2=Forward			2=Forward	Directional mode
	3=Reverse				
Current start value	0.0105.000	xin	0.001	0.010	Minimum operate residual current for deciding fault di- rection
Voltage start value	0.0101.000	xUn	0.001	0.010	Start value for residual voltage
Power start value	0.0031.000	xPn	0.001	0.003	Start value for residual active power
Reference power	0.0501.000	xPn	0.001	0.150	Reference value of residual power for Wattmetric IDMT curves
Characteristic angle	-179180	deg	1	-90	Characteristic angle

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
Time multiplier	0.052.00		0.01	1.00	Time multiplier for Wattmetric IDMT curves
Operating curve type	5=ANSI Def. Time 15=IEC Def. Time 20=Wattmetric IDMT			15=IEC Def. Time	Selection of time delay curve type
Operate delay time	60200000	ms	10	60	Operate delay time for definite time

Table 400: WPWDE Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				

Table 401: WPWDE Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Measurement mode	1=RMS			2=DFT	Selects used cur- rent measurement
mode	2=DFT				mode
	3=Peak-to-Peak				
Correction angle	0.010.0	deg	0.1	2.0	Angle correction
Min operate current	0.0101.000	xIn	0.001	0.010	Minimum operating current
Min operate voltage	0.011.00	xUn	0.01	0.01	Minimum operating voltage
Reset delay time	060000	ms	1	20	Reset delay time
Pol reversal	0=False			0=False	Rotate polarizing
	1=True				quantity
Io signal Sel	1=Measured Io			1=Measured Io	Selection for used
	2=Calculated Io				lo signal
Uo signal Sel	1=Measured Uo			1=Measured Uo	Selection for used
	2=Calculated Uo				polarization signal

4.2.6.10 Monitored data

WPWDE Monitored data

Table 402: WPWDE Monitored data

Name	Туре	Values (Range)	Unit	Description
FAULT_DIR	Enum	0=unknown		Detected fault direction
		1=forward		direction
		2=backward		

Table continues on the next page

Name	Туре	Values (Range)	Unit	Description
		3=both		
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
DIRECTION	Enum	0=unknown		Direction infor- mation
		1=forward		mation
		2=backward		
		3=both		
ANGLE	FLOAT32	-180.00180.00	deg	Angle between polarizing and operating quantity
ANGLE_RCA	FLOAT32	-180.00180.00	deg	Angle between operating angle and characteristic angle
RES_POWER	FLOAT32	-160.000160.00 0	xPn	Calculated resid- ual active power
WPWDE	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.2.6.11 **Technical data**

Table 403: WPWDE Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f_n \pm 2 \text{ Hz}$
	Current and voltage:
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
	Power:
	$\pm 3\%$ of the set value or $\pm 0.002 \times P_n$
Start time ¹ , ²	Typically 63 ms
Reset time	Typically 40 ms
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Operate time accuracy in IDMT mode	±5.0% of the set value or ±20 ms
Suppression of harmonics	-50 dB at f = n × f _n , where n = 2,3,4,5,

 $^{^1}$ lo varied during the test, Uo = 1.0 × U_n = phase-to-earth voltage during earth fault in compensated or unearthed network, the residual power value before fault = 0.0 pu, f_n = 50 Hz, results based on statistical distribution of 1000 measurements.

Includes the delay of the signal output contact.

4.2.7 Multifrequency admittance-based earth-fault protection MFADPSDE

4.2.7.1 Identification

Description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Multifrequency admittance-based earth-fault protection	MFADPSDE	lo> ->Y	67YN

4.2.7.2 Function block

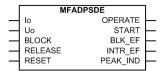


Figure 194: Function block

4.2.7.3 Functionality

The multifrequency admittance-based earth-fault protection function MFADPSDE provides selective directional earth-fault protection for high-impedance earthed networks, that is, for compensated, unearthed and high resistance earthed systems. It can be applied for the earth-fault protection of overhead lines and underground cables.

The operation of MFADPSDE is based on multifrequency neutral admittance measurement, utilizing cumulative phasor summing technique. This concept provides extremely secure, dependable and selective earth-fault protection also in cases where the residual quantities are highly distorted and contain non-fundamental frequency components.

The sensitivity that can be achieved is comparable with traditional fundamental frequency based methods such as IoCos/IoSin (DEFxPDEF), Watt/Varmetric (WPWDE) and neutral admittance (EFPADM).

MFADPSDE is capable of detecting faults with dominantly fundamental frequency content as well as transient, intermittent and restriking earth faults. MFADPSDE can be used as an alternative solution to transient or intermittent function INTRPTEF.

MFADPSDE supports fault direction indication both in operate and non-operate direction, which may be utilized during fault location process. The inbuilt transient detector can be used to identify restriking or intermittent earth faults, and discriminate them from permanent or continuous earth faults.

The operation characteristic is defined by a tilted operation sector, which is universally valid for unearthed and compensated networks.

The operating time characteristic is according to the definite time (DT).

The function contains a blocking functionality to block function outputs, timers or the function itself.

4.2.7.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of MFADPSDE can be described using a module diagram. All the modules in the diagram are explained in the following sections.

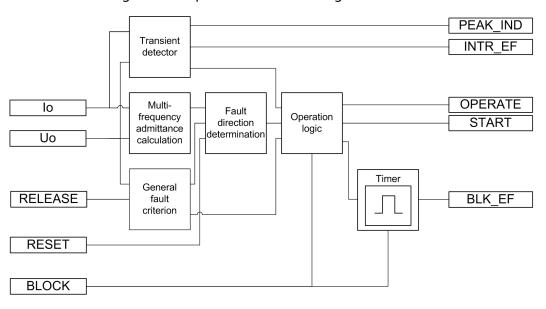


Figure 195: Functional module diagram

General fault criterion

The General fault criterion (GFC) module monitors the presence of earth fault in the network and it is based on the value of the fundamental frequency zero-sequence voltage defined as the vector sum of fundamental frequency phase voltage phasors divided by three.

$$\overline{U_0^1} = \left(\overline{U_A^1} + \overline{U_B^1} + \overline{U_C^1}\right) / 3$$

(Equation 31)

When the magnitude of $\underline{U}^{^{1}}_{^{o}}$ exceeds setting *Voltage start value*, an earth fault is detected. The GFC module reports the exceeded value to the Fault direction determination module and Operation logic. The reporting is referenced as General Fault Criterion release.

The setting Voltage start value defines the basic sensitivity of the MFADPSDE function. To avoid unselective start or operation, Voltage start value must always be set to a value which exceeds the maximum healthy-state zero-sequence voltage value, taking into consideration of possible network topology changes, compensation coil and parallel resistor switching status and compensation degree variations.

As an alternative for internal residual zero-sequence overvoltage based startcondition, MFADPSDE function can also be externally released by utilizing the

390 **REC615 & RER615**

RELEASE input. In this case, the external release signal overrides the *Voltage start value* setting and sets the internal limit to minimum value.

Multi-frequency admittance calculation

Multi-frequency admittance calculation module calculates neutral admittances utilizing fundamental frequency and the 2nd, 3rd, 5th, 7th and 9th harmonic components of residual current and zero-sequence voltage. The following admittances are calculated, if the magnitude of a particular harmonic in residual current and zero-sequence voltage are measurable by the protection relay.

Fundamental frequency admittance (conductance and susceptance)

$$\overline{Y_0^1} = \frac{3 \cdot \overline{I_0^1}}{-\overline{U_0^1}} = G_o^1 + j \cdot B_o^1$$

(Equation 32)

 $\overline{Y_0^1}$ The fundamental frequency neutral admittance phasor.

 $\overline{I_0^1} \qquad \qquad \text{The fundamental frequency zero-sequence current phasor} \\ (= (\overline{I_A^1} + \overline{I_B^1} + \overline{I_C^1}) \, / \, 3)$

 $\overline{U_0^1}$ The fundamental frequency zero-sequence voltage phasor $(=(\overline{U_A^1}+\overline{U_R^1}+\overline{U_C^1})/3)$

 G_o^1 The fundamental frequency conductance, $\operatorname{Re}\!\left(\overline{Y_0^1}
ight)$

 B_o^1 Im $\left(\overline{Y_0^1}
ight)$

Harmonic susceptance

$$\operatorname{Im}\left[\overline{Y_0^n}\right] = \operatorname{Im}\left[\frac{3 \cdot \overline{I_0^n}}{-\overline{U_0^n}}\right] = j \cdot B_o^n$$

(Equation 33)

where n = 2, 3, 5, 7 and 9

 $\overline{Y_0^n}$ The nth harmonic frequency neutral admittance phasor.

 $\overline{I^n}$ The nth harmonic frequency zero-sequence current phasor.

 $\overline{U_{\scriptscriptstyle 0}^{\scriptscriptstyle n}}$ The nth harmonic frequency zero-sequence voltage phasor.

 B_o^n The nth harmonic frequency susceptance,

For fault direction determination, the fundamental frequency admittance and harmonic susceptances are summed together in phasor format. The result is the sum admittance phasor defined as below.

$$\overline{Y}_{osum} = \text{Re}\left[\overline{Y_0^1}\right] + j \cdot \text{Im}\left[\overline{Y_0^1} + \sum_{n=2}^9 \overline{Y_0^n}\right] = G_o^1 + j \cdot B_{osum}$$

(Equation 34)

The polarity of the polarizing quantity (residual voltage) can be changed (rotated by 180 degrees) by setting the *Pol reversal* parameter to "True" or by switching the polarity of the residual voltage measurement wires.

Fault direction determination

If an earth fault is detected by the GFC module, the fault direction is evaluated

based on the calculated sum admittance phasor \overline{Y}_{osum} obtained from the Multi-frequency admittance calculation module. To obtain dependable and secure fault direction determination regardless of the fault type (transient, intermittent, restriking, permanent, high or low ohmic), the fault direction is calculated using a special filtering algorithm, Cumulative Phasor Summing (CPS) technique. This filtering method is advantageous during transient, intermittent and restriking earth faults with dominantly non-sinusoidal or transient content. It is equally valid during continuous (stable) earth faults.

The concept of CPS is illustrated in *Figure 196*. It is the result of adding values of the measured sum admittance phasors together in phasor format in chronological

order during the fault. Using the discrete sum admittance phasors \overline{Y}_{osum} in different time instants (t ₁...t ₅), the corresponding accumulated sum admittance phasor

 $Y_{\it osum_CPS}$ is calculated. This phasor is used as directional phasor in determining the direction of the fault.

$$\overline{Y}_{osum_CPS}(t_1) = \overline{Y}_{osum}(t_1)$$

(Equation 35)

$$\overline{Y}_{osum_CPS}(t_2) = \overline{Y}_{osum}(t_1) + \overline{Y}_{osum}(t_2)$$

(Equation 36)

$$\overline{Y}_{osum_CPS}(t_3) = \overline{Y}_{osum}(t_1) + \overline{Y}_{osum}(t_2) + \overline{Y}_{osum}(t_3)$$

(Equation 37)

$$\overline{Y}_{osum_CPS}(t_4) = \overline{Y}_{osum}(t_1) + \overline{Y}_{osum}(t_2) + \overline{Y}_{osum}(t_3) + \overline{Y}_{osum}(t_4)$$

(Equation 38)

$$\overline{Y}_{osum_CPS}(t_5) = \overline{Y}_{osum}(t_1) + \overline{Y}_{osum}(t_2) + \overline{Y}_{osum}(t_3) + \overline{Y}_{osum}(t_4) + \overline{Y}_{osum}(t_5)$$

(Equation 39)

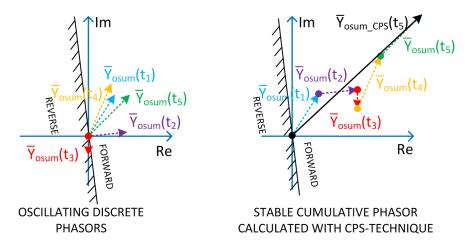


Figure 196: Principle of Cumulative Phasor Summing (CPS)

The CPS technique provides a stable directional phasor quantity despite individual phasors varying in magnitude and phase angle in time due to a non-stable fault type such as restriking or intermittent earth fault. This is also true for harmonic components included in the sum admittance phasor. Harmonics have typically a highly fluctuating character.

Harmonic components provide a more distinctive directional determination in compensated networks than the fundamental frequency component. The higher the frequencies, the compensation coil appears as very high impedance and the harmonics are not affected by compensation coil and degree of compensation. When harmonics are present, they cause the sum admittance phasor to behave as in case of an unearthed network, where directional phasors point in fully opposite directions in the faulty and healthy feeder.

The direction of the MFADPSDE function is defined with setting *Directional mode* as "Forward" or "Reverse". The operation characteristic is defined by tilted operation sector as illustrated in *Figure 197*. The characteristic provides universal applicability, that is, it is valid both in compensated and unearthed networks, also if the compensation coil is temporarily switched off. The tilt of the operation sector is defined with setting *Tilt angle* to compensate the measurement errors of residual current and voltage transformers. The typical setting value of 5 degrees is recommended, but it should always reflect the actual maximum expected measurement errors.

In case of unearthed network operation, adequate tilt angle must be allowed to ensure dependable operation of MFADPSDE.

In *Figure 198*, phasors 1...4 demonstrate the behavior of the directional phasor in different network fault conditions.

• Phasor 1 depicts the direction of accumulated sum admittance phasor in case of earth fault outside the protected feeder (assuming that the admittance of the protected feeder is dominantly capacitive). The result is valid regardless of the fault type (low ohmic, high(er) ohmic, permanent, intermittent or restriking). In

case harmonic components are present in the fault quantities, they would turn the phasor align to the negative ${\,{\rm Im}(Yo)\,}$ axis.

- Phasor 2 depicts the direction of accumulated sum admittance phasor in case of earth fault inside the protected feeder when the network is unearthed. The result is also valid in compensated networks when there are harmonic components present in the fault quantities (typically low ohmic permanent or intermittent or restriking fault). In this case, the result is valid regardless of network's actual compensation degree. Harmonics would turn the phasor align to the positive $\operatorname{Im}(\overline{Y}o)$ axis.
- Phasors 3 and 4 depict the direction of accumulated sum admittance phasor in case of higher-ohmic earth fault in the protected feeder without harmonics in the fault quantities when the network is compensated. As no harmonic components are present, the phase angle of the accumulated phasor is determined by the compensation degree of the network. With high degree

of overcompensation, the phasor turns towards the negative $\overline{\mathrm{Im}(\overline{Y}o)}$ axis (as phasor 4).

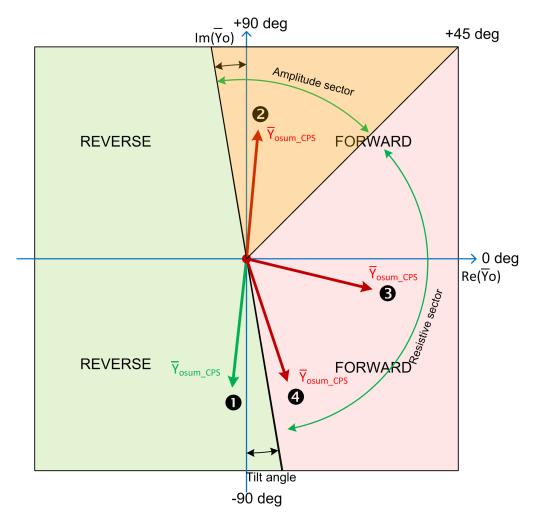


Figure 197: Directional characteristic of MFADPSDE

The residual current is recommended to be measured with accurate core balance current transformer to minimize the measurement errors, especially phase displacement. This is especially important, when high sensitivity of protection is targeted.

The characteristic *Tilt angle* should reflect the measurement errors, that is, the larger the measurement errors, the larger the *Tilt angle* setting should be. Typical setting value of 5 degrees is recommended.

The detected fault direction is available in the Monitored data view as parameter *DIRECTION*.

To adapt the fault direction determination to possible fault direction change during the fault, for example, during manual fault location process, a cyclic accumulation of sum admittance phasors is conducted. The duration of this directional evaluation cycle is 1.2 · Reset delay time (minimum of 600 ms). If the fault direction based on the cyclic phasor accumulation is opposite to the function direction output for Reset delay time or 500 ms (minimum of 500 ms), the function is reset and fault direction calculation of MFADPSDE is restarted.

In case the earth-fault protection is alarming, the MFADPSDE includes also a RESET input, which can be utilized to externally re-trigger the fault direction determination, if re-evaluation of fault direction during a persistent earth fault is required. It is also recommended to connect the start signal of non-directional earth-fault protection (EFxPTOC), set to operate in case of a cross-country fault, to RESET input of MFADPSDE to reset phasor accumulation during a cross-country fault. MFADPSDE is then able to adapt to possible fault direction change more rapidly, if single phase earth fault still persists in the system after the other faulty feeder has been tripped (cross-country fault has been transformed back to a single phase earth fault).

The direction of the MFADPSDE function is supervised by a settable current magnitude threshold. The operate current used in the magnitude supervision is measured with a special filtering method, which provides very stable residual current estimate regardless of the fault type. This stabilized current estimate is the result from fundamental frequency admittance calculation utilizing the CPS technique. The stabilized current value is obtained (after conversion) from the corresponding admittance value by multiplying it with the system nominal phase-to-earth voltage value, which is entered as a base value for the residual voltage (U baseres). The equations for calculating the stabilized values of the fundamental frequency admittance and the corresponding current are given below.

$$\overline{Y_{o \ stab}^{1}} = \frac{3 \cdot \overline{I_{0 \ CPS}^{1}}}{-\overline{U_{0 \ CPS}^{1}}} = \text{Re}\left[\overline{Y_{o \ stab}^{1}}\right] + j \cdot \text{Im}\left[\overline{Y_{o \ stab}^{1}}\right] = G_{ostab}^{1} + j \cdot B_{ostab}^{1}$$

(Equation 40)

 $\overline{Y}_{o\ stab}^{1}$ The stabilized fundamental frequency admittance estimate, which is result from fundamental frequency admittance calculation utilizing the Cumulative Phasor Summing (CPS) technique.

 $\overline{I_{0\ CPS}^1}$ The fundamental frequency zero-sequence current phasor calculated utilizing the Cumulative Phasor Summing (CPS) technique.

 $\overline{U^{\scriptscriptstyle 1}_{\scriptscriptstyle 0\,CPS}}$ The fundamental frequency zero-sequence voltage phasor calculated utilizing the Cumulative Phasor Summing (CPS) technique.

Table continues on the next page

 G^{1}_{ostab} The real-part of stabilized fundamental frequency conductance estimate.

 $B^{1}_{\it ostab}$ The imaginary part of stabilized fundamental frequency susceptance estimate.

$$\overline{I_{o \; stab}^{1}} = (G_{ostab}^{1} + j \cdot B_{ostab}^{1}) \cdot U_{baseres} = I_{oCosstab}^{1} + j \cdot I_{oSinstab}^{1}$$

(Equation 41)

 $\overline{I}^1_{o\ stab}$ The stabilized fundamental frequency residual current estimate, which is obtained (after conversion) from the corresponding admittance value by multiplying it with the system nominal phase-to-earth voltage value.

 $\overline{I^1}$ The real-part of stabilized fundamental frequency residual current estimate.

 $\overline{I_{o~Sinstab}^1}$ The imaginary-part of stabilized fundamental frequency residual current estimate.

The main advantage of the filtering method is that due to the admittance calculation, the resulting current value does not depend on the value of fault resistance, that is, the estimated current magnitude equals the value that would be measured during a solid earth fault (R $_{\rm f}$ = 0 $\Omega). Another advantage of the method is that it is capable of estimating correct current magnitude also during intermittent or restriking faults.$

The setting *Min operate current* defines the minimum operate current.

Setting *Operating quantity* defines whether the current magnitude supervision is based on either the "Adaptive" or "Amplitude" methods.

When "Adaptive" is selected, the method adapts the principle of magnitude supervision automatically to the system earthing condition. In case the phase angle of accumulated sum admittance phasor is greater than 45 degrees, the

set minimum operate current threshold is compared to the amplitude of $I_{o \, stab}^{1}$ (see *Figure 198*). In case the phase angle of accumulated sum admittance phasor is below 45 degrees, the set minimum operate current threshold is

compared to the resistive component of $I^1_{o\ stab}$. This automatic adaptation of the magnitude supervision enables secure and dependable directional determination in compensated networks, and it is also valid when the network is unearthed (compensation coil is switched off).

In case operation direction is set to reverse, the resistive and amplitude sectors are mirrored in the operation characteristics.

When "Amplitude" is selected, the set minimum operate current threshold is

compared to the amplitude of $I^1_{o\; stab}$. This selection can be used in unearthed networks.

In compensated networks, setting *Operating quantity* should be set to "Adaptive". This enables secure and dependable directional determination on compensated networks and it is also valid when compensation coil is switched off and network becomes unearthed.

396 REC615 & RER615
Technical Manual

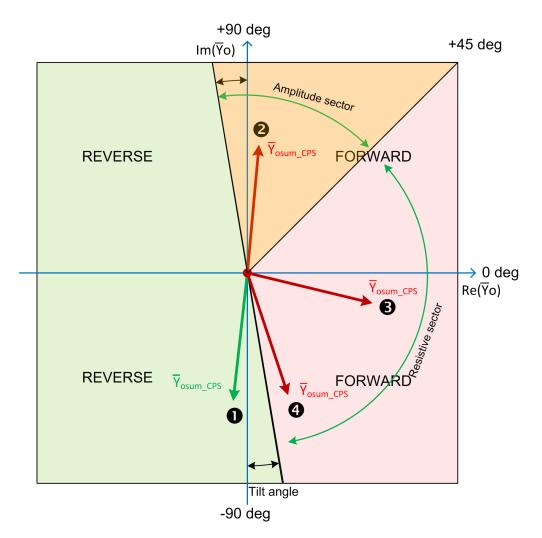


Figure 198: Illustration of amplitude and resistive current sectors if Operating quantity is set "Adaptive" and Directional mode is set "Forward"

The setting rules for current thresholds are given below.

In case the "Adaptive" operating quantity is selected, the setting *Min operate current* should be set to value:

$$[pu]$$

(Equation 42)

IRtot

The total resistive earth-fault current of the network corresponding to the resistive current of the parallel resistor of the coil and the natural losses of the system (typically in order of 1...5 % of the total capacitive earth-fault current of the network).

p security factor = 0.5...0.7

This setting should be set based on the total resistive earth-fault current of the network including the parallel resistor of the coil and the network losses. It must be set to a value which is lower than total resistive earth-fault current in order to enable dependable operation.

> For example, if the resistive current of the parallel resistor is 10 A (at primary voltage level), then a value of $0.5 \cdot 10 \text{ A} = 5 \text{ A}$ could be used. The same setting is also applicable in case the coil is disconnected and the network becomes unearthed (as

> in this case this setting is compared to the amplitude of $I^1_{o\ stab}$). The selected setting value must never exceed the ampere value of the parallel resistor in order to allow operation in the faulty feeder. In case of smaller ampere value of the parallel resistor, for example 5 A, the recommended security factor should be larger, for example 0.7, so that sufficient margin for CT and VT errors can be achieved.

In case the "Amplitude" operating quantity is selected, the setting should be selected based on the capacitive earth-fault current values produced by the background network in case of a solid earth fault with a security margin.

The main task of the current magnitude supervision module is to secure the correct directional determination of an earth fault, so that only the faulty feeder is disconnected or alarmed. Therefore, the threshold values should be selected carefully and not set too high as this can inhibit the disconnection of the faulty feeder.

The residual current should be measured with accurate core balance current transformer to minimize the measurement errors, especially phase displacement.

Transient detector

The Transient detector module is used for detecting transients in the residual current and zero-sequence voltage signals. Whenever transient is detected, this is indicated with the PEAK IND output. When the number of detected transients equals or exceeds the Peak counter limit setting (without the function being reset, depending on the drop-off time set with the Reset delay time setting), INTR EF output is activated. This indicates detection of restriking or intermittent earth fault in the network. Transient detector affects the operation of MFADPSDE (START and OPERATE outputs) when operation mode is "Intermittent EF". For other operation modes, ("General EF", "Alarming EF"), PEAK IND and INTR EF outputs can be used for monitoring purposes. The operation of the Transient detector is illustrated in Figure 199.

Several factors affect the magnitude and frequency of fault transients, such as the fault inception angle on the voltage wave, fault location, fault resistance and the parameters of the feeders and the supplying transformers. If the fault is permanent (non-transient) in nature. the initial fault transient in current and voltage can be measured. whereas the intermittent fault creates repetitive transients. The practical sensitivity of transient detection is limited to approximately few hundreds of ohms of fault resistance. Therefore the application of transient detection is limited to low ohmic earth faults.

398 **REC615 & RER615** Technical Manual

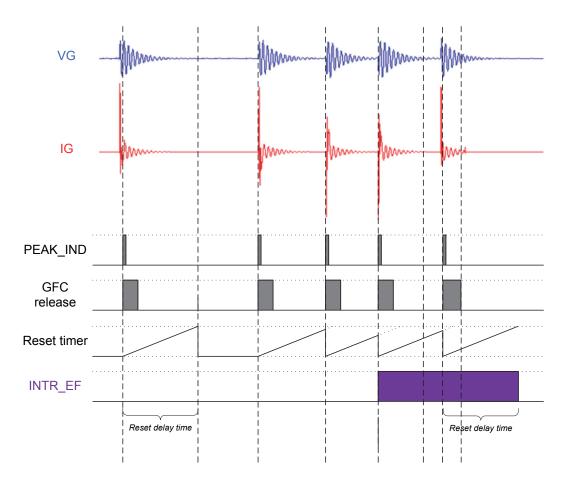


Figure 199: Example of operation of Transient detector: indication of detected transient by PEAK_IND output and detection of restriking or intermittent earth fault by INTR_EF output (setting Peak counter limit = 3)

Operation logic

MFADPSDE supports three operation modes selected with setting Operation mode: "General EF", "Alarming EF" and "Intermittent EF".

Operation mode "General EF" is applicable in all kinds of earth faults in unearthed and compensated networks. It is intended to detect all kinds of earth faults regardless of their type (transient, intermittent or restriking, permanent, high or low ohmic). The setting *Voltage start value* defines the basic sensitivity of the MFADPSDE function.

In "General EF" mode, the operate timer is started in the following conditions.

- Earth fault is detected by the General Fault Criterion (GFC)
- Fault direction equals *Directional mode* setting
- Estimated stabilized fundamental frequency residual current exceeds the set Min operate current level

The START output is activated once *Start delay time* has elapsed. OPERATE output is activated once *Operate delay time* has elapsed and the above three conditions are valid. Reset timer is started if any of the above three conditions is not valid. In case fault is transient and self-extinguishes, START output stays activated until the elapse of reset timer (setting Reset delay time). After OPERATE output activation, START and OPERATE outputs are reset immediately, if any of the above

three conditions is not valid. The start duration value START_DUR, available in the Monitored data view, indicates the percentage ratio of the start situation and the set operating time.

In case detection of temporary earth faults is not desired, the activation of START output can be delayed with setting *Start delay time*. The same setting can be also used to avoid restarting of the function during long lasting post-fault oscillations, if time constant of post-fault oscillations is very long (network losses and damping is low).

To keep the operate timer activated between current spikes during intermittent or restriking earth fault, the *Reset delay time* should be set to a value exceeding the maximum expected time interval between fault spikes (obtained at full resonance condition). Recommended value is at least 300 ms.

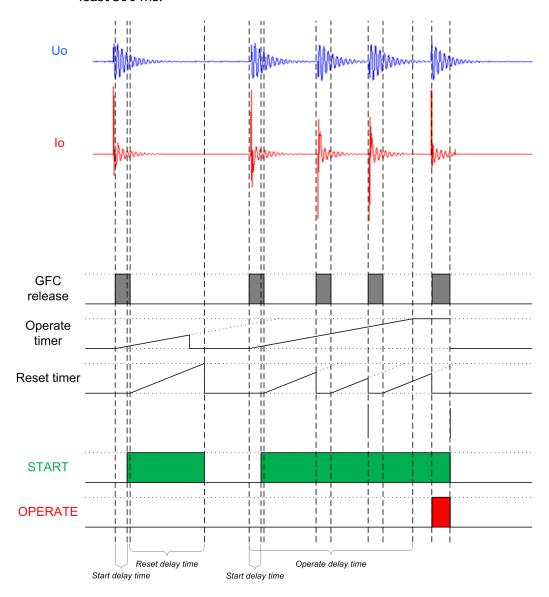


Figure 200: Operation in "General EF" mode

Operation mode "Alarming EF" is applicable in all kinds of earth faults in unearthed and compensated networks, where fault detection is only alarming. It is intended

to detect earth faults regardless of their type (transient, intermittent or restriking, permanent, high or low ohmic). The setting *Voltage start value* defines the basic sensitivity of the MFADPSDE function. In "Alarming EF" mode, the operate timer is started during the following conditions.

- · Earth fault is detected by the GFC
- Fault direction equals Directional mode setting
- Estimated stabilized fundamental frequency residual current exceeds the set Min operate current level

The START output is activated once *Start delay time* has elapsed. OPERATE output is not valid in the "Alarming EF" mode. Reset timer is started if any of the above three conditions are not valid. In case the fault is transient and self-extinguishes, START output stays activated until the elapse of reset timer (setting *Reset delay time*).

In case detection of temporary earth faults is not desired, the activation of START output can be delayed with setting *Start delay time*.

To keep the operate timer activated between current spikes during intermittent or restriking earth fault, the *Reset delay time* should be set to a value exceeding the maximum expected time interval between fault spikes (obtained at full resonance condition). The recommended value is at least 300 ms.

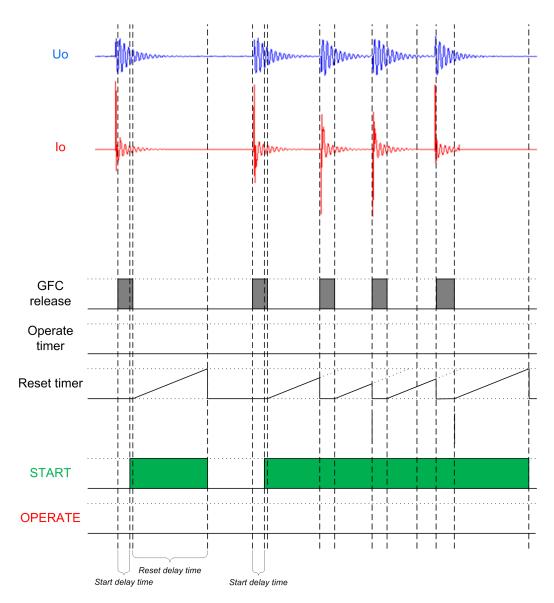


Figure 201: Operation in "Alarming EF" mode

Operation mode "Intermittent EF" is dedicated for detecting restriking or intermittent earth faults. A required number of intermittent earth fault transients set with the *Peak counter limit* setting must be detected for operation. Therefore, transient faults or permanent faults with only initial fault ignition transient are not detected in "Intermittent EF" mode. The application of "Intermittent EF" mode is limited to low ohmic intermittent or restriking earth faults.

In the "Intermittent EF" mode, the operate timer is started when the following conditions are met.

- Transient is detected by the Transient detector (indicated with PEAK_IND output)
- Earth fault is detected by the GFC at time of transient
- Fault direction equals Directional mode setting
- Estimated stabilized fundamental frequency residual current exceeds the set Min operate current level

When a required number of intermittent earth-fault transients set with the *Peak counter limit* setting are detected without the function being reset (depends on the drop-off time set with the *Reset delay time* setting), the START output is activated. The INTR_EF output is activated to indicate the fault type is intermittent or restriking earth fault. The operate timer is kept activated as long as transients occur during the drop-off time defined by setting *Reset delay time*.

The OPERATE output is activated when *Operate delay time* has elapsed, required number of transients has been detected, earth fault is detected by the GFC, fault direction matches the *Directional mode* setting and estimated stabilized fundamental frequency residual current exceeds set *Minimum operate current* setting.

The *Reset delay time* starts to elapse from each detected transient. Function is reset if time between current peaks is more that *Reset delay time* or if the General Fault Criterion release is reset. After OPERATE output activation, START and OPERATE outputs are reset immediately at the falling edge of General Fault Criterion release, that is, when zero-sequence voltage falls below *Voltage start value*. This should be considered if "Intermittent EF" mode is applied in case earth faults are only alarmed to avoid repetitive start and operate events.

To keep the operate timer activated between current spikes during intermittent or restriking earth fault, *Reset delay time* should be set to a value exceeding the maximum expected time interval between (obtained at full resonance condition). The recommended value is at least 300 ms.

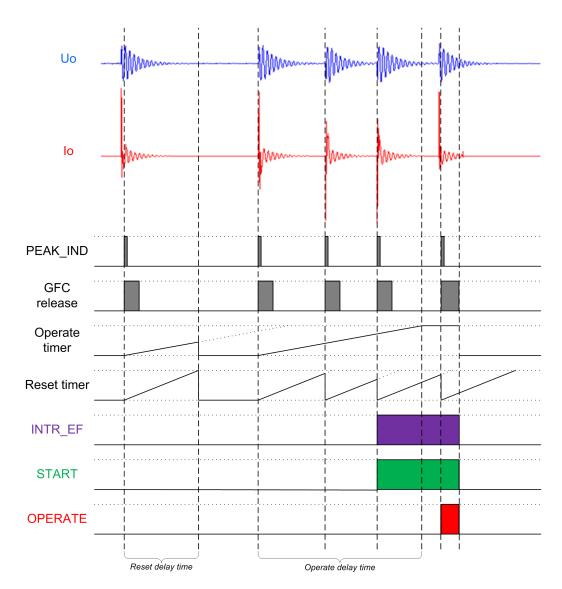


Figure 202: Operation in "Intermittent EF" mode, Peak counter limit = 3

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the <code>BLOCK</code> input and the global setting **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

Timer

If the detected fault direction is opposite to the set directional mode and GFC release is active, $\texttt{BLK}_\texttt{EF}$ output is activated once *Start delay time* has elapsed. Reset timer is activated at the falling edge of General Fault Criterion release, that is, when zero-sequence voltage falls below *Voltage start value*. BLK_EF is reset once the reset delay time elapses. Activation of the BLOCK input deactivates the $\texttt{BLK}_\texttt{EF}$ output and resets Timer.

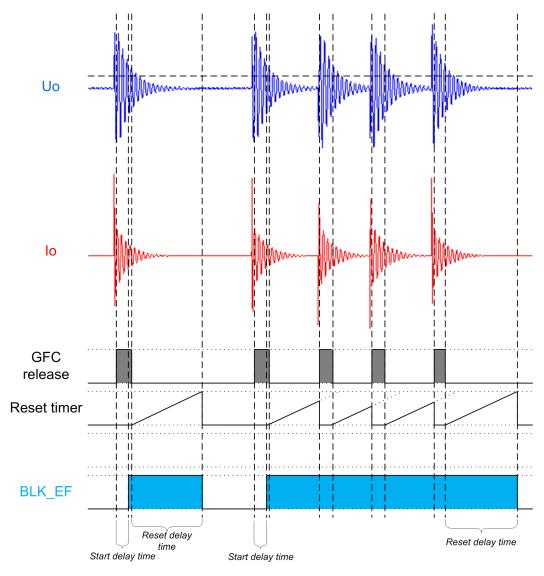


Figure 203: Activation of BLK_EF output (indication that fault is located opposite to the set operate direction)

4.2.7.5 Application

MFADPSDE provides selective directional earth-fault protection for high-impedance earthed networks, that is, for compensated, unearthed and high resistance earthed systems. It can be applied for the earth-fault protection of overhead lines and underground cables.

> The operation of MFADPSDE is based on multi-frequency neutral admittance measurement utilizing cumulative phasor summing technique. This concept provides extremely secure, dependable and selective earth-fault protection also in cases where the residual quantities are highly distorted and contain nonfundamental frequency components. MFADPSDE is well-suited for compensated networks where measurement signals may have such characteristics, for example, during intermittent earth faults.

MFADPSDE is capable of operating with both low ohmic and higher ohmic earth faults, where the sensitivity limit is defined with residual overvoltage condition. This allows earth faults with several kilohms of fault resistance to be detected in a symmetrical system. The sensitivity that can be achieved is comparable with traditional fundamental frequency based methods such as the IoCos/IoSin (DEFxPDEF), Watt/Varmetric (32N) and neutral admittance (21YN).

MFADPSDE is capable of detecting faults with dominantly fundamental frequency content as well as transient, intermittent or restriking earth faults. MFADPSDE can be used as an alternative solution to transient or intermittent function INTRPTEF.

MFADPSDE supports Fault direction indication in operate and non-operate direction which may be utilized during fault location process. The inbuilt transient detector can be used to identify restriking or intermittent earth faults, and discriminate them from permanent or continuous earth faults.

The direction of MFADPSDE can be set as forward or reverse. The operation characteristic is defined by a tilted operation sector, which is universally valid both in unearthed and compensated networks. The tilt of the operation sector should be selected based on the measurement errors of the applied residual current and voltage measurement transformers.

The operating time characteristic is according to the definite time (DT).

The function contains a blocking functionality to block function outputs, timers or the function itself.

MFADPSDE supports both tripping and alarming mode of operation. For alarming earth-fault protection application, the function contains a dedicated operation

MFADPSDE provides reliability and sensitivity of protection with a single function. This enables simpler implementation of protection schemes as separate fault type dedicated earth-fault functions and coordination between them are not necessarily required. Other advantages of MFADPSDE includes versatile applicability, good selectivity, good sensitivity and easy setting principles.

One instance (stage) of MFADPSDE function is available.

4.2.7.6 Signals

Table 404: MFADPSDE Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
Uo	SIGNAL	0	Residual voltage

Table continues on the next page

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
RELEASE	BOOLEAN	0=False	External trigger to re- lease neutral admit- tance protection
RESET	BOOLEAN	0=False	External trigger to reset direction calculation

Table 405: MFADPSDE Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start
BLK_EF	BOOLEAN	Block signal for EF to indicate opposite direction peaks
INTR_EF	BOOLEAN	Intermittent earth-fault indication
PEAK_IND	BOOLEAN	Current transient detection indication

4.2.7.7 Settings

MFADPSDE Group settings

Table 406: MFADPSDE Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Directional mode	2=Forward 3=Reverse			2=Forward	Directional mode
Voltage start value	0.011.00	xUn	0.01	0.10	Voltage start value
Operate delay time	601200000	ms	10	500	Operate delay time

Table 407: MFADPSDE Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Operating quantity	1=Adaptive 2=Amplitude 3=Resistive			1=Adaptive	Operating quantity selection
Min operate current	0.0055.000	xIn	0.001	0.010	Minimum operate current
Tilt angle	2.020.0	deg	0.1	5.0	Characteristic tilt angle

Protection functions

Table 408: MFADPSDE Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Operation mode	1=Intermittent EF 3=General EF 4=Alarming EF			3=General EF	Operation criteria

Table 409: MFADPSDE Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
lo signal Sel	1=Measured Io 2=Calculated Io			1=Measured Io	Selection for used lo signal
Uo signal Sel	1=Measured Uo 2=Calculated Uo			1=Measured Uo	Selection for used Uo signal
Peak counter limit	220		1	2	Peak counter limit for restriking EF
Start delay time	3060000	ms	1	30	Start delay time
Reset delay time	060000	ms	1	500	Reset delay time
Pol reversal	0=False 1=True			0=False	Rotate polarizing quantity

4.2.7.8 Monitored data

MFADPSDE Monitored data

Table 410: MFADPSDE Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
FAULT_DIR	Enum	0=unknown 1=forward 2=backward 3=both		Detected fault direction
DIRECTION	Enum	0=unknown 1=forward 2=backward 3=both		Direction infor- mation
ANGLE	FLOAT32	-180.00180.00	deg	Angle between polarizing and

Table continues on the next page

Name	Туре	Values (Range)	Unit	Description
				operating quan- tity
MFADPSDE	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.2.7.9 Technical data

Table 411: MFADPSDE Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured voltage:
f _n ±2 Hz	
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times$ U _n
Start time ¹	Typically 35 ms
Reset time	Typically 40 ms
Operate time accuracy	±1.0% of the set value or ±20 ms

4.3 Unbalance protection

4.3.1 Negative-sequence overcurrent protection NSPTOC

4.3.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Negative-sequence overcurrent protection	NSPTOC	12>	46

REC615 & RER615 409

¹ Includes the delay of the signal output contact, results based on statistical distribution of 1000 measurements

4.3.1.2 **Function block**

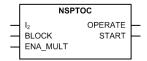


Figure 204: Function block

4.3.1.3 **Functionality**

The negative-sequence overcurrent protection function NSPTOC is used for increasing sensitivity to detect single-phase and phase-to-phase faults or unbalanced loads due to, for example, broken conductors or unsymmetrical feeder voltages.

NSPTOC can also be used for detecting broken conductors.

The function is based on the measurement of the negative sequence current. In a fault situation, the function starts when the negative sequence current exceeds the set limit. The operate time characteristics can be selected to be either definite time (DT) or inverse definite minimum time (IDMT). In the DT mode, the function operates after a predefined operate time and resets when the fault current disappears. The IDMT mode provides current-dependent timer characteristics.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.3.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of NSPTOC can be described using a module diagram. All the modules in the diagram are explained in the next sections.

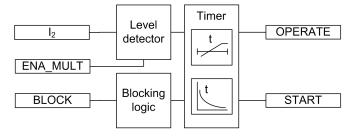


Figure 205: Functional module diagram

Level detector

The measured negative-sequence current is compared to the set Start value. If the measured value exceeds the set Start value, the level detector activates the timer

module. If the ENA_MULT input is active, the set *Start value* is multiplied by the set *Start value Mult*.

The protection relay does not accept the *Start value* or *Start value Mult* setting if the product of the settings exceeds the *Start value* setting range.

Timer

Once activated, the timer activates the START output. Depending on the value of the *Operating curve type* setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of *Operate delay time* in the DT mode or the maximum value defined by the inverse time curve, the OPERATE output is activated.

When the user-programmable IDMT curve is selected, the operation time characteristics are defined by the parameters *Curve parameter A, Curve parameter B, Curve parameter D* and *Curve parameter E*.

If a drop-off situation happens, that is, a fault suddenly disappears before the operate delay is exceeded, the timer reset state is activated. The functionality of the timer in the reset state depends on the combination of the *Operating curve type, Type of reset curve* and *Reset delay time* settings. When the DT characteristic is selected, the reset timer runs until the set *Reset delay time* value is exceeded. When the IDMT curves are selected, the *Type of reset curve* setting can be set to "Immediate", "Def time reset" or "Inverse reset". The reset curve type "Immediate" causes an immediate reset. With the reset curve type "Def time reset", the reset time depends on the *Reset delay time* setting. With the reset curve type "Inverse reset", the reset time depends on the current during the drop-off situation. The START output is deactivated when the reset timer has elapsed.

The "Inverse reset" selection is only supported with ANSI or user programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.

The setting *Time multiplier* is used for scaling the IDMT operate and reset times.

The setting parameter *Minimum operate time* defines the minimum desired operate time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum operate time* setting should be used with great care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see *Chapter 11.2.1 IDMT curves for overcurrent protection* in this manual.

The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operating time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting *Blocking mode*.

> The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode. the function operates normally but the OPERATE output is not activated.

4.3.1.5 **Application**

Since the negative sequence current quantities are not present during normal, balanced load conditions, the negative sequence overcurrent protection elements can be set for faster and more sensitive operation than the normal phaseovercurrent protection for fault conditions occurring between two phases. The negative sequence overcurrent protection also provides a back-up protection functionality for the feeder earth-fault protection in solid and low resistance earthed networks.

The negative sequence overcurrent protection provides the back-up earth-fault protection on the high voltage side of a delta-wye connected power transformer for earth faults taking place on the wye-connected low voltage side. If an earth fault occurs on the wye-connected side of the power transformer, negative sequence current quantities appear on the delta-connected side of the power transformer.

The most common application for the negative sequence overcurrent protection is probably rotating machines, where negative sequence current quantities indicate unbalanced loading conditions (unsymmetrical voltages). Unbalanced loading normally causes extensive heating of the machine and can result in severe damages even over a relatively short time period.

Multiple time curves and time multiplier settings are also available for coordinating with other devices in the system.

4.3.1.6 **Signals**

Table 412: NSPTOC Input signals

Name	Туре	Default	Description
12	SIGNAL	0	Negative phase sequence current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for current multiplier

Table 413: NSPTOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.3.1.7 Settings

NSPTOC Group settings

Table 414: NSPTOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.015.00	xIn	0.01	0.30	Start value
Start value Mult	0.810.0		0.1	1.0	Multiplier for scal- ing the start value
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operate delay time	40200000	ms	10	40	Operate delay time
Operating curve	1=ANSI Ext. inv.			15=IEC Def. Time	Selection of time
type	2=ANSI Very inv.				delay curve type
	3=ANSI Norm. inv.				
	4=ANSI Mod. inv.				
	5=ANSI Def. Time				
	6=L.T.E. inv.				
	7=L.T.V. inv.				
	8=L.T. inv.				
	9=IEC Norm. inv.				
	10=IEC Very inv.				
	11=IEC inv.				
	12=IEC Ext. inv.				
	13=IEC S.T. inv.				
	14=IEC L.T. inv.				
	15=IEC Def. Time				
	17=Programmable				
	18=RI type				
	19=RD type				

Table 415: NSPTOC Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type

Table 416: NSPTOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Curve parameter A	0.0086120.0000		1	28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120		1	0.1217	Parameter B for customer program- mable curve
Curve parameter C	0.022.00		1	2.00	Parameter C for customer programmable curve

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
Curve parameter D	0.4630.00		1	29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0		1	1.0	Parameter E for customer programmable curve

Table 417: NSPTOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Minimum operate time	2060000	ms	1	20	Minimum operate time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time

Monitored data 4.3.1.8

NSPTOC Monitored data

Table 418: NSPTOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
NSPTOC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.3.1.9 **Technical data**

Table 419: NSPTOC Technical data

Characteristic		Value			
Operation accuracy		Depending on t	Depending on the frequency of the measured current: f n		
		±1.5% of the se	t value or ±0.002 × I	n	
Start time 12	ime ¹²		Typical	Maximum	
	I Fault = 2 × set Start value	23 ms	26 ms	28 ms	
	I _{Fault} = 10 × set <i>Start value</i>	15 ms	18 ms	20 ms	
Reset time	-	Typically 40 ms			
Reset ratio		Typically 0.96			
Retardation time		<35 ms			
Operate time accuracy	in definite time mode	±1.0% of the set value or ±20 ms			

Table continues on the next page

Negative sequence current before fault = 0.0, f_n = 50 Hz, results based on statistical distribution of 1000 measurements
 Includes the delay of the signal output contact

Characteristic	Value
Operate time accuracy in inverse time mode	±5.0% of the theoretical value or ±20 ms ³
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

4.3.1.10 Technical revision history

Table 420: NSPTOC Technical revision history

Technical revision	Change
В	Minimum and default values changed to 40 ms for the <i>Operate delay time</i> setting
С	Step value changed from 0.05 to 0.01 for the Time multiplier setting
D	Internal improvement
E	Internal Improvements

4.3.2 Phase discontinuity protection PDNSPTOC

4.3.2.1 Identification

Function description	IEC 61850 identification		ANSI/IEEE C37.2 device number
Phase discontinuity protection	PDNSPTOC	12/11>	46PD

4.3.2.2 Function block

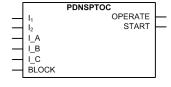


Figure 206: Function block

4.3.2.3 Functionality

The phase discontinuity protection function PDNSPTOC is used for detecting unbalance situations caused by broken conductors.

The function starts and operates when the unbalance current I $_2$ /I $_1$ exceeds the set limit. To prevent faulty operation at least one phase current needs to be above the minimum level. PDNSPTOC operates with DT characteristic.

The function contains a blocking functionality. It is possible to block the function output, timer or the function itself, if desired.

REC615 & RER615 415

³ Maximum *Start value* = 2.5 × I_n, *Start value* multiples in range of 1.5...20

4.3.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of PDNSPTOC can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

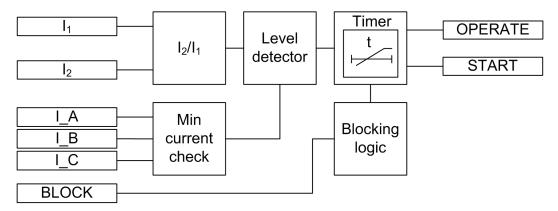


Figure 207: Functional module diagram

I_2/I_1

The I $_2$ /I $_1$ module calculates the ratio of the negative and positive sequence current. It reports the calculated value to the level detector.

Level detector

The level detector compares the calculated ratio of the negative and positive-sequence currents to the set *Start value*. If the calculated value exceeds the set *Start value* and the min current check module has exceeded the value of *Min phase current*, the level detector reports the exceeding of the value to the timer.

Min current check

The min current check module checks whether the measured phase currents are above the set *Min phase current*. At least one of the phase currents needs to be above the set limit to enable the level detector module.

Timer

Once activated, the timer activates the START output. The time characteristic is according to DT. When the operation timer has reached the value set by *Operate delay time*, the OPERATE output is activated. If the fault disappears before the module operates, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the operate timer resets and the START output is deactivated.

The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operation time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration > System > Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.3.2.5 Application

In three-phase distribution and subtransmission network applications the phase discontinuity in one phase can cause an increase of zero-sequence voltage and short overvoltage peaks and also oscillation in the corresponding phase.

PDNSPTOC is a three-phase protection with DT characteristic, designed for detecting broken conductors in distribution and subtransmission networks. The function is applicable for both overhead lines and underground cables.

The operation of PDNSPTOC is based on the ratio of the positive-sequence and negative-sequence currents. This gives a better sensitivity and stability compared to plain negative-sequence current protection since the calculated ratio of positive-sequence and negative-sequence currents is relatively constant during load variations.

The unbalance of the network is detected by monitoring the negative-sequence and positive-sequence current ratio, where the negative-sequence current value is I $_2$ and I $_1$ is the positive-sequence current value. The unbalance is calculated with the equation.

$$Iratio = \frac{I_2}{I_1}$$

(Equation 43)

Broken conductor fault situation can occur in phase A in a feeder.

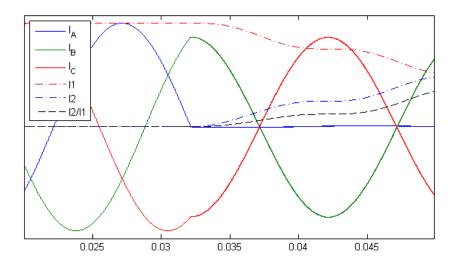


Figure 208: Three-phase current quantities during the broken conductor fault in phase A with the ratio of negative-sequence and positive-sequence currents

4.3.2.6 Signals

Table 421: PDNSPTOC Input signals

Name	Туре	Default	Description
I ₁	SIGNAL	0	Positive sequence current
I ₂	SIGNAL	0	Negative sequence current
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 422: PDNSPTOC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.3.2.7 Settings

PDNSPTOC Group settings

Table 423: PDNSPTOC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	10100	%	1	10	Start value
Operate delay time	10030000	ms	1	100	Operate delay time

Table 424: PDNSPTOC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				

Table 425: PDNSPTOC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time
Min phase current	0.050.30	xln	0.01	0.10	Minimum phase current

4.3.2.8 Monitored data

PDNSPTOC Monitored data

Table 426: PDNSPTOC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
RATIO_I2_I1	FLOAT32	0.00999.99	%	Measured cur- rent ratio I2 / I1
PDNSPTOC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.3.2.9 Technical data

Table 427: PDNSPTOC Technical data

Characteristic	Value
Depending on the frequency of the measured cur Hz	
	±2% of the set value
Start time	<70 ms
Reset time	Typically 40 ms
Reset ratio	Typically 0.96

Table continues on the next page

Characteristic	Value
Retardation time	<35 ms
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

4.3.2.10 Technical revision history

Table 428: PDNSPTOC Technical revision history

Technical revision	Change
В	Internal improvement
С	Internal improvement
D	Internal improvement

4.4 Voltage protection

4.4.1 Three-phase overvoltage protection PHPTOV

4.4.1.1 Identification

Function description			ANSI/IEEE C37.2 device number
Three-phase overvoltage protection	PHPTOV	3U>	59

4.4.1.2 Function block

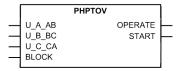


Figure 209: Function block

4.4.1.3 Functionality

The three-phase overvoltage protection function PHPTOV is applied on power system elements, such as generators, transformers, motors and power lines, to protect the system from excessive voltages that could damage the insulation and cause insulation breakdown. The three-phase overvoltage function includes a settable value for the detection of overvoltage either in a single phase, two phases or three phases.

PHPTOV includes both definite time (DT) and inverse definite minimum time (IDMT) characteristics for the delay of the trip.

The function contains a blocking functionality. It is possible to block function outputs, timer or the function itself, if desired.

4.4.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of PHPTOV can be described using a module diagram. All the modules in the diagram are explained in the next sections.

Figure 210: Functional module diagram

Level detector

The fundamental frequency component of the measured three-phase voltages are compared phase-wise to the set value of the *Start value* setting. If the measured value is higher than the set value of the *Start value* setting, the level detector enables the phase selection logic module. The *Relative hysteresis* setting can be used for preventing unnecessary oscillations if the input signal slightly differs from the *Start value* setting. After leaving the hysteresis area, the start condition has to be fulfilled again and it is not sufficient for the signal to only return to the hysteresis area.

The *Voltage selection* setting is used for selecting phase-to-earth or phase-to-phase voltages for protection.

For the voltage IDMT operation mode, the used IDMT curve equations contain discontinuity characteristics. The *Curve Sat relative* setting is used for preventing undesired operation.

For a more detailed description of the IDMT curves and the use of the *Curve Sat Relative* setting, see *Chapter 11.3.1.3 IDMT curve saturation of overvoltage protection* in this manual.

Phase selection logic

If the fault criteria are fulfilled in the level detector, the phase selection logic detects the phase or phases in which the fault level is detected. If the number of faulty phases match with the set *Num of start phases*, the phase selection logic activates the Timer.

Timer

Once activated, the Timer activates the START output. Depending on the value of the set Operating curve type, the time characteristics are selected according to DT

For a detailed description of the voltage IDMT curves, see Chapter 11.3.1 IDMT curves for overvoltage protection in this manual.

When the operation timer has reached the value set by Operate delay time in the DT mode or the maximum value defined by the IDMT, the OPERATE output is activated.

When the user-programmable IDMT curve is selected, the operate time characteristics are defined by the parameters Curve parameter A, Curve parameter B, Curve parameter C, Curve parameter D and Curve parameter E.

If a drop-off situation occurs, that is, a fault suddenly disappears before the operate delay is exceeded, the reset state is activated. The behavior in the drop-off situation depends on the selected operate time characteristics. If the DT characteristics are selected, the reset timer runs until the set Reset delay time value is exceeded. If the drop-off situation exceeds the set Reset delay time, the Timer is reset and the START output is deactivated.

When the IDMT operate time curve is selected, the functionality of the Timer in the drop-off state depends on the combination of the Type of reset curve, Type of time reset and Reset delay time settings.

Table 429: Reset time functionality when IDMT operation time curve selected

Reset functionali	ty	Setting Type of reset curve	Setting Type of time reset	Setting Reset delay time
Instantaneous reset	Operation timer is "Reset instan- taneously" when drop-off occurs	"Immediate"	Setting has no effect	Setting has no effect
Frozen timer	Operation timer is frozen during drop-off	"Def time reset"	"Freeze Op timer"	Operate timer is reset after the set <i>Reset delay time</i> has elapsed
Linear decrease	Operation timer value linearly de- creases during the drop-off sit- uation	"Def time reset"	"Decrease Op timer"	Operate timer is reset after the set <i>Reset delay time</i> has elapsed

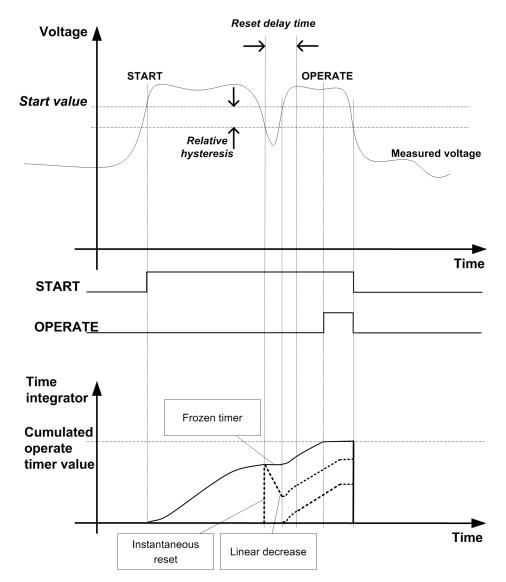


Figure 211: Behavior of different IDMT reset modes. Operate signal is based on settings Type of reset curve = "Def time reset" and Type of time reset = "Freeze Op timer". The effect of other reset modes is also presented

The *Time multiplier* setting is used for scaling the IDMT operate times.

The *Minimum operate time* setting parameter defines the minimum desired operate time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum operate time* setting should be used with care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see *Chapter 11.3.1 IDMT curves for overvoltage protection* in this manual.

The Timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operation time. The value is available in the Monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration > System > Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> input signal activation is preselected with the global *Blocking mode* setting.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the Timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

The "Freeze timers" mode of blocking has no effect during the inverse reset mode.

4.4.1.5 Timer characteristics

The operating curve types supported by PHPTOV are:

Table 430: Timer characteristics supported by IDMT operate curve types

Operating curve type
(5) ANSI Def. Time
(15) IEC Def. Time
(17) Inv. Curve A
(18) Inv. Curve B
(19) Inv. Curve C
(20) Programmable

4.4.1.6 Application

Overvoltage in a network occurs either due to the transient surges on the network or due to prolonged power frequency overvoltages. Surge arresters are used to protect the network against the transient overvoltages, but the relay's protection function is used to protect against power frequency overvoltages.

The power frequency overvoltage may occur in the network due to contingencies such as:

- The defective operation of the automatic voltage regulator when the generator is in isolated operation.
- Operation under manual control with the voltage regulator out of service. A
 sudden variation of load, in particular the reactive power component, gives
 rise to a substantial change in voltage because of the inherent large voltage
 regulation of a typical alternator.
- Sudden loss of load due to the tripping of outgoing feeders, leaving the generator isolated or feeding a very small load. This causes a sudden rise in the terminal voltage due to the trapped field flux and overspeed.

If a load sensitive to overvoltage remains connected, it leads to equipment damage.

It is essential to provide power frequency overvoltage protection, in the form of time delayed element, either IDMT or DT to prevent equipment damage.

4.4.1.7 Signals

Table 431: PHPTOV Input signals

Name	Туре	Default	Description
U_A_AB	SIGNAL	0	Phase to earth voltage A or phase to phase voltage AB
U_B_BC	SIGNAL	0	Phase to earth voltage B or phase to phase voltage BC
U_C_CA	SIGNAL	0	Phase to earth voltage C or phase to phase voltage CA
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 432: PHPTOV Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.4.1.8 Settings

PHPTOV Group settings

Table 433: PHPTOV Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.051.60	xUn	0.01	1.10	Start value
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operate delay time	40300000	ms	10	40	Operate delay time
Operating curve type	5=ANSI Def. Time 15=IEC Def. Time			15=IEC Def. Time	Selection of time delay curve type
	17=Inv. Curve A				
	18=Inv. Curve B				
	19=Inv. Curve C				
	20=Programmable				

Table 434: PHPTOV Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset			1=Immediate	Selection of reset curve type
Type of time reset	1=Freeze Op timer 2=Decrease Op timer			1=Freeze Op timer	Selection of time reset

Table 435: PHPTOV Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Num of start pha- ses	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for oper- ate activation
Curve parameter A	0.005200.000		1	1.000	Parameter A for customer program- mable curve
Curve parameter B	0.50100.00		1	1.00	Parameter B for customer program- mable curve
Curve parameter C	0.01.0		1	0.0	Parameter C for customer program- mable curve
Curve parameter D	0.00060.000		1	0.000	Parameter D for customer program- mable curve
Curve parameter E	0.0003.000		1	1.000	Parameter E for customer program- mable curve
Voltage selection	1=phase-to-earth 2=phase-to-phase			2=phase-to-phase	Parameter to select phase or phase-to- phase voltages

Table 436: PHPTOV Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Minimum operate time	4060000	ms	1	40	Minimum operate time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Curve Sat Relative	0.010.0		0.1	0.0	Tuning parameter to avoid curve discontinuities
Relative hysteresis	1.05.0	%	0.1	4.0	Relative hysteresis for operation

4.4.1.9 Monitored data

PHPTOV Monitored data

Table 437: PHPTOV Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
PHPTOV	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.4.1.10 **Technical data**

Table 438: PHPTOV Technical data

Characteristic		Value			
Operation accuracy		Depending on the	Depending on the frequency of the measured voltage: $f_n \pm 2 Hz$		
		±1.5% of the set v	value or ±0.002 × U _n		
Start time 12	- Fault		Typical	Maximum	
	value	23 ms	27 ms	31 ms	
Reset time		Typically 40 ms			
Reset ratio		Depends on the set <i>Relative hysteresis</i>			
Retardation time		<35 ms			
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms			
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³			
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,			

4.4.1.11 **Technical revision history**

Table 439: PHPTOV Technical revision history

Technical revision	Change
В	Step value changed from 0.05 to 0.01 for the <i>Time multiplier</i> setting.
С	Curve Sat relative max range widened from 3.0 to 10.0 % and default value changed from 2.0 to 0.0 %.
D	Added setting <i>Type of time reset</i> .

 $^{^{1}}$ Start value = 1.0 × U $_{\rm n}$, Voltage before fault = 0.9 × U $_{\rm n}$, f $_{\rm n}$ = 50 Hz, overvoltage in one phase-to-phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

REC615 & RER615 427

Includes the delay of the signal output contact
 Maximum Start value = 1.20 × U_n, Start value multiples in range of 1.10...2.00

4.4.2 Three-phase undervoltage protection PHPTUV

4.4.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase undervoltage protection	PHPTUV	3U<	27

4.4.2.2 Function block



Figure 212: Function block

4.4.2.3 Functionality

The three-phase undervoltage protection function PHPTUV is used to disconnect from the network devices, for example electric motors, which are damaged when subjected to service under low voltage conditions. PHPTUV includes a settable value for the detection of undervoltage either in a single phase, two phases or three phases.

The function contains a blocking functionality. It is possible to block function outputs, timer or the function itself, if desired.

4.4.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of PHPTUV can be described using a module diagram. All the modules in the diagram are explained in the next sections.

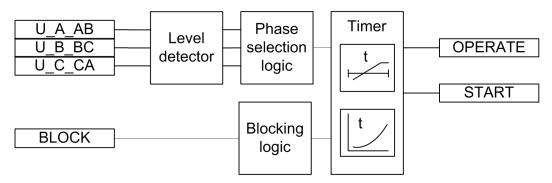


Figure 213: Functional module diagram

Level detector

The fundamental frequency component of the measured three phase voltages are compared phase-wise to the set *Start value*. If the measured value is lower than the set value of the *Start value* setting, the level detector enables the phase selection logic module. The *Relative hysteresis* setting can be used for preventing unnecessary oscillations if the input signal slightly varies above or below the *Start value* setting. After leaving the hysteresis area, the start condition has to be fulfilled again and it is not sufficient for the signal to only return back to the hysteresis area.

The *Voltage selection* setting is used for selecting the phase-to-earth or phase-to-phase voltages for protection.

For the voltage IDMT mode of operation, the used IDMT curve equations contain discontinuity characteristics. The *Curve Sat relative* setting is used for preventing unwanted operation.

For more detailed description on IDMT curves and usage of *Curve Sat Relative* setting, see *Chapter 11.3.2 IDMT curves for undervoltage protection* in this manual.

The level detector contains a low-level blocking functionality for cases where one of the measured voltages is below the desired level. This feature is useful when unnecessary starts and operates are wanted to avoid during, for example, an autoreclose sequence. The low-level blocking is activated by default (*Enable block value* is set to "True") and the blocking level can be set with the *Voltage block value* setting.

Phase selection logic

If the fault criteria are fulfilled in the level detector, the phase selection logic detects the phase or phases in which the fault level is detected. If the number of faulty phases match with the set *Num of start phases*, the phase selection logic activates the Timer.

Timer

Once activated, the Timer activates the START output. Depending on the value of the set *Operating curve type*, the time characteristics are selected according to DT or IDMT.

For a detailed description of the voltage IDMT curves, see *Chapter 11.3.2 IDMT curves for undervoltage protection* in this manual.

When the operation timer has reached the value set by *Operate delay time* in the DT mode or the maximum value defined by the IDMT, the OPERATE output is activated.

When the user-programmable IDMT curve is selected, the operate time characteristics are defined by the parameters *Curve parameter A, Curve parameter B, Curve parameter D* and *Curve parameter E*.

If a drop-off situation occurs, that is, a fault suddenly disappears before the operate delay is exceeded, the reset state is activated. The behavior in the drop-off situation depends on the selected operate time characteristics. If the DT characteristics are selected, the reset timer runs until the set *Reset delay time* value is exceeded. If the drop-off situation exceeds the set *Reset delay time*, the Timer is reset and the START output is deactivated.

When the IDMT operate time curve is selected, the functionality of the Timer in the drop-off state depends on the combination of the *Type of reset curve, Type of time reset* and *Reset delay time* settings.

Table 440: Reset time functionality when IDMT operation time curve selected

Reset functionali	ty	Setting Type of reset curve	Setting Type of time reset	Setting Reset delay time
Instantaneous reset	Operation timer is "Reset instan- taneously" when drop-off occurs	"Immediate"	Setting has no effect	Setting has no effect
Frozen timer	Operation timer is frozen during drop-off	"Def time reset"	"Freeze Op tim- er"	Operate timer is reset after the set <i>Reset delay time</i> has elapsed
Linear decrease	Operation timer value linearly decreases during the drop-off situation	"Def time reset"	"Decrease Op timer"	Operate timer is reset after the set <i>Reset delay time</i> has elapsed

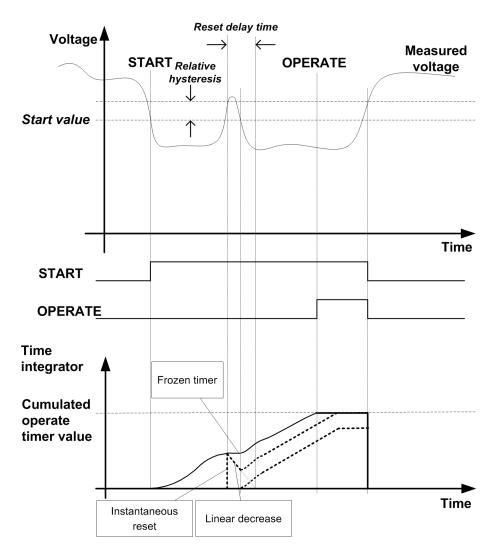


Figure 214: Behavior of different IDMT reset modes. Operate signal is based on settings Type of reset curve = "Def time reset" and Type of time reset = "Freeze Op timer". The effect of other reset modes is also presented

The *Time multiplier* setting is used for scaling the IDMT operate times.

The *Minimum operate time* setting parameter defines the minimum desired operate time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum operate time* setting should be used with care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see *Chapter 11.2.1 IDMT curves for overcurrent protection* in this manual.

The Timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operation time. The value is available in the Monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the BLOCK input and the global setting in **Configuration > System > Blocking mode** which selects the blocking mode. The BLOCK input can be controlled

> by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the BLOCK input signal activation is preselected with the global *Blocking mode* setting.

The Blocking mode setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the Timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

The "Freeze timers" mode of blocking has no effect during the "Inverse reset" mode.

Timer characteristics 4.4.2.5

The operating curve types supported by PHPTUV are:

Table 441: Supported IDMT operate curve types

Operating curve type
(5) ANSI Def. Time
(15) IEC Def. Time
(21) Inv. Curve A
(22) Inv. Curve B
(23) Programmable

4.4.2.6 **Application**

PHPTUV is applied to power system elements, such as generators, transformers, motors and power lines, to detect low voltage conditions. Low voltage conditions are caused by abnormal operation or a fault in the power system. PHPTUV can be used in combination with overcurrent protections. Other applications are the detection of a no-voltage condition, for example before the energization of a high voltage line, or an automatic breaker trip in case of a blackout. PHPTUV is also used to initiate voltage correction measures, such as insertion of shunt capacitor banks, to compensate for a reactive load and thereby to increase the voltage.

PHPTUV can be used to disconnect from the network devices, such as electric motors, which are damaged when subjected to service under low voltage conditions. PHPTUV deals with low voltage conditions at power system frequency. Low voltage conditions can be caused by:

- Malfunctioning of a voltage regulator or incorrect settings under manual control (symmetrical voltage decrease)
- Overload (symmetrical voltage decrease)
- Short circuits, often as phase-to-earth faults (unsymmetrical voltage increase).

PHPTUV prevents sensitive equipment from running under conditions that could cause overheating and thus shorten their life time expectancy. In many cases, PHPTUV is a useful function in circuits for local or remote automation processes in the power system.

4.4.2.7 Signals

Table 442: PHPTUV Input signals

Name	Туре	Default	Description
U_A_AB	SIGNAL	0	Phase to earth voltage A or phase to phase voltage AB
U_B_BC	SIGNAL	0	Phase to earth voltage B or phase to phase voltage BC
U_C_CA	SIGNAL	0	Phase to earth voltage C or phase to phase voltage CA
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 443: PHPTUV Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.4.2.8 Settings

PHPTUV Group settings

Table 444: PHPTUV Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.051.20	xUn	0.01	0.90	Start value
Time multiplier	0.0515.00		0.01	1.00	Time multiplier in IEC/ANSI IDMT curves
Operate delay time	60300000	ms	10	60	Operate delay time
Operating curve type	5=ANSI Def. Time 15=IEC Def. Time 21=Inv. Curve A 22=Inv. Curve B 23=Programmable			15=IEC Def. Time	Selection of time delay curve type

Table 445: PHPTUV Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset			1=Immediate	Selection of reset curve type
Type of time reset	1=Freeze Op timer 2=Decrease Op timer er			1=Freeze Op timer	Selection of time reset

Table 446: PHPTUV Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Num of start phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for operate activation
Curve parameter A	0.005200.000		1	1.000	Parameter A for customer programmable curve
Curve parameter B	0.50100.00		1	1.00	Parameter B for customer program- mable curve
Curve parameter C	0.01.0		1	0.0	Parameter C for customer programmable curve
Curve parameter D	0.00060.000		1	0.000	Parameter D for customer program- mable curve
Curve parameter E	0.0003.000		1	1.000	Parameter E for customer program- mable curve
Voltage selection	1=phase-to-earth 2=phase-to-phase			2=phase-to-phase	Parameter to select phase or phase-to- phase voltages

Table 447: PHPTUV Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Minimum operate time	6060000	ms	1	60	Minimum operate time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Curve Sat Relative	0.010.0		0.1	0.0	Tuning parameter to avoid curve discontinuities
Voltage block value	0.051.00	xUn	0.01	0.20	Low level blocking for undervoltage mode
Enable block value	0=False 1=True			1=True	Enable internal blocking
Relative hysteresis	1.05.0	%	0.1	4.0	Relative hysteresis for operation

4.4.2.9 Monitored data

PHPTUV Monitored data

Table 448: PHPTUV Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
PHPTUV	Enum	1=on		Status

Name	Туре	Values (Range)	Unit	Description
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.4.2.10 Technical data

Table 449: PHPTUV Technical data

Characteristic		Value				
Operation accuracy		Depending on the	Depending on the frequency of the voltage measured: $f_n \pm 2 Hz$			
		±1.5% of the set v	alue or ±0.002 × U _n			
Start time 12	U _{Fault} = 0.9 × set <i>Start</i>	Minimum	Typical	Maximum		
	value	62 ms	66 ms	70 ms		
Reset time	Reset time		Typically 40 ms			
Reset ratio		Depends on the set <i>Relative hysteresis</i>				
Retardation time		<35 ms				
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms				
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³				
Suppression of harmo	onics	DFT: -50 dB at f =	$n \times f_n$, where $n = 2, 3, 4, 1$	5,		

4.4.2.11 Technical revision history

Table 450: PHPTUV Technical revision history

Technical revision	Change
В	Step value changed from 0.05 to 0.01 for the <i>Time multiplier</i> setting.
С	Curve Sat relative max range widened from 3.0 to 10.0 % and default value changed from 2.0 to 0.0 %.
D	Added setting <i>Type of time reset</i> .

4.4.3 Residual overvoltage protection ROVPTOV

REC615 & RER615 435

 $^{^1}$ Start value = 1.0 × U $_{\rm n}$, Voltage before fault = 1.1 × U $_{\rm n}$, f $_{\rm n}$ = 50 Hz, undervoltage in one phase-to-phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

² Includes the delay of the signal output contact

³ Minimum *Start value* = 0.50, *Start value* multiples in range of 0.90...0.20

4.4.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Residual overvoltage protection	ROVPTOV	Uo>	59G

4.4.3.2 Function block

Figure 215: Function block

4.4.3.3 Functionality

The residual overvoltage protection function ROVPTOV is used in distribution networks where the residual overvoltage can reach non-acceptable levels in, for example, high impedance earthing.

The function starts when the residual voltage exceeds the set limit. ROVPTOV operates with the definite time (DT) characteristic.

The function contains a blocking functionality. It is possible to block function outputs, the definite timer or the function itself, if desired.

4.4.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of ROVPTOV can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

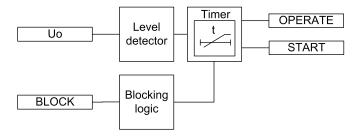


Figure 216: Functional module diagram

Level detector

The residual voltage is compared to the set *Start value*. If the value exceeds the set *Start value*, the level detector sends an enable signal to the timer. The residual voltage can be selected with the *Uo signal Sel* setting. The options are "Measured Uo" and "Calculated Uo". If "Measured Uo" is selected, the voltage ratio for Uo-channel is given in the global setting **Configuration** > **Analog inputs** > **Voltage (Uo,VT)**. If "Calculated Uo" is selected, the voltage ratio is obtained from

phase-voltage channels given in the global setting **Configuration > Analog inputs > Voltage (3U,VT)**.

Example 1: Uo is measured from the open-delta connected VTs (20/sqrt(3) kV : 100/sqrt(3) V : 100/3 V). In this case, "Measured Uo" is selected. The nominal values for residual voltage is obtained from the VT ratios entered in Residual voltage Uo: **Configuration > Analog inputs > Voltage (Uo,VT)**: 11.547 kV:100 V. The residual voltage start value of $1.0 \times Un$ corresponds to 1.0×11.547 kV = 11.547 kV in the primary.

Example 2: Uo is calculated from the phase quantities. The phase VT-ratio is 20/sqrt(3) kV: 100/sqrt(3) V. In this case, "Calculated Uo" is selected. The nominal value for residual voltage is obtained from the VT ratios entered in Residual voltage Uo: **Configuration > Analog inputs > Voltage (3U,VT)**: 20.000kV: 100V. The residual voltage start value of 1.0 × Un corresponds to 1.0 × 20.000 kV = 20.000 kV in the primary.

If "Calculated Uo" is selected, the nominal value of residual voltage is always phase-to-phase voltage. Thus, the valid maximum setting for residual voltage *Start value* is 0.577 × Un. The calculated Uo requires that all three phase-to-earth voltages are connected to the protection relay. Uo cannot be calculated from the phase-to-phase voltages.

Timer

Once activated, the timer activates the START output. The time characteristic is according to DT. When the operation timer has reached the value set by *Operate delay time*, the OPERATE output is activated. If the fault disappears before the module operates, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the operate timer resets and the START output is deactivated.

The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operation time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.4.3.5 Application

ROVPTOV is designed to be used for earth-fault protection in isolated neutral, resistance earthed or reactance earthed systems. In compensated networks, starting of the function can be used to control the switching device of the neutral resistor. The function can also be used for the back-up protection of feeders for busbar protection when a more dedicated busbar protection would not be justified.

In compensated and isolated neutral systems, the system neutral voltage, that is, the residual voltage, increases in case of any fault connected to earth. Depending on the type of the fault and the fault resistance, the residual voltage reaches different values. The highest residual voltage, equal to the phase-to-earth voltage, is achieved for a single-phase earth fault. The residual voltage increases approximately the same amount in the whole system and does not provide any guidance in finding the faulty component. Therefore, this function is often used as a backup protection or as a release signal for the feeder earth-fault protection.

The protection can also be used for the earth-fault protection of generators and motors and for the unbalance protection of capacitor banks.

The residual voltage can be calculated internally based on the measurement of the three-phase voltage. This voltage can also be measured by a single-phase voltage transformer, located between a transformer star point and earth, or by using an open-delta connection of three single-phase voltage transformers.

4.4.3.6 Signals

Table 451: ROVPTOV Input signals

Name	Туре	Default	Description
Uo	SIGNAL	0	Residual voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 452: ROVPTOV Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.4.3.7 Settings

ROVPTOV Group settings

Table 453: ROVPTOV Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.0101.000	xUn	0.001	0.030	Residual overvoltage start value
Operate delay time	40300000	ms	1	40	Operate delay time

Table 454: ROVPTOV Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Uo signal Sel	1=Measured Uo 2=Calculated Uo			1=Measured Uo	Selection for used Uo signal

Table 455: ROVPTOV Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time

Monitored data 4.4.3.8

ROVPTOV Monitored data

Table 456: ROVPTOV Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
ROVPTOV	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.4.3.9 **Technical data**

Table 457: ROVPTOV Technical data

Characteristic		Value			
Operation accuracy		Depending on the	Depending on the frequency of the measured voltage: $f_n \pm 2 Hz$		
		±1.5% of the set v	/alue or ±0.002 × U _n		
Start time 12	U _{Fault} = 2 × set <i>Start</i>	Minimum	Typical	Maximum	
	value	48 ms	51 ms	54 ms	
Reset time	·	Typically 40 ms			
Reset ratio		Typically 0.96			
Retardation time		<35 ms			
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms			
Suppression of har	monics	DFT: -50 dB at f =	$n \times f_n$, where $n = 2, 3, 4$,	5,	

REC615 & RER615 439

¹ Residual voltage before fault = $0.0 \times U_n$, f_n = 50 Hz, residual voltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements ² Includes the delay of the signal output contact

4.4.3.10 Technical revision history

Table 458: ROVPTOV Technical revision history

Technical revision	Change
В	Added a setting parameter for the "Measured Uo" or "Calculated Uo" selection
С	Internal improvement
D	Internal improvement

4.4.4 Negative-sequence overvoltage protection NSPTOV

4.4.4.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Negative-sequence overvoltage protection	NSPTOV	U2>	470-

4.4.4.2 Function block

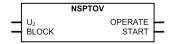


Figure 217: Function block

4.4.4.3 Functionality

The negative-sequence overvoltage protection function NSPTOV is used to detect negative sequence overvoltage conditions. NSPTOV is used for the protection of machines.

The function starts when the negative sequence voltage exceeds the set limit. NSPTOV operates with the definite time (DT) characteristics.

The function contains a blocking functionality. It is possible to block function outputs, the definite timer or the function itself, if desired.

4.4.4.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of NSPTOV can be described using a module diagram. All the modules in the diagram are explained in the next sections.

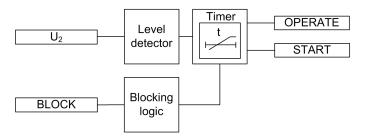


Figure 218: Functional module diagram

Level detector

The calculated negative-sequence voltage is compared to the set *Start value* setting. If the value exceeds the set *Start value*, the level detector enables the timer.

Timer

Once activated, the timer activates the START output. The time characteristic is according to DT. When the operation timer has reached the value set by *Operate delay time*, the OPERATE output is activated if the overvoltage condition persists. If the negative-sequence voltage normalizes before the module operates, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the operate timer resets and the START output is deactivated.

The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operation time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting <code>Blocking mode</code>.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.4.4.5 Application

A continuous or temporary voltage unbalance can appear in the network for various reasons. The voltage unbalance mainly occurs due to broken conductors or asymmetrical loads and is characterized by the appearance of a negative-sequence component of the voltage. In rotating machines, the voltage unbalance results in a current unbalance, which heats the rotors of the machines. The rotating machines, therefore, do not tolerate a continuous negative-sequence voltage higher than typically 1-2 percent x U $_{\rm n}$.

> The negative-sequence component current I₂, drawn by an asynchronous or a synchronous machine, is linearly proportional to the negative-sequence component voltage U₂. When U₂ is P% of U_n, I₂ is typically about 5 x P% x I_n.

The negative-sequence overcurrent NSPTOC blocks are used to accomplish a selective protection against the voltage and current unbalance for each machine separately. Alternatively, the protection can be implemented with the NSPTOV function, monitoring the voltage unbalance of the busbar.

If the machines have an unbalance protection of their own, the NSPTOV operation can be applied as a backup protection or it can be used as an alarm. The latter can be applied when it is not required to trip loads tolerating voltage unbalance better than the rotating machines.

If there is a considerable degree of voltage unbalance in the network, the rotating machines should not be connected to the network at all. This logic can be implemented by inhibiting the closure of the circuit breaker if the NSPTOV operation has started. This scheme also prevents connecting the machine to the network if the phase sequence of the network is not correct.

An appropriate value for the setting parameter Voltage start value is approximately 3 percent of U_n. A suitable value for the setting parameter *Operate delay time* depends on the application. If the NSPTOV operation is used as backup protection, the operate time should be set in accordance with the operate time of NSPTOC used as main protection. If the NSPTOV operation is used as main protection, the operate time should be approximately one second.

4.4.4.6 **Signals**

Table 459: NSPTOV Input signals

Name	Туре	Default	Description
U ₂	SIGNAL	0	Negative phase sequence voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 460: NSPTOV Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.4.4.7 Settings

NSPTOV Group settings

Table 461: NSPTOV Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.0101.000	xUn	0.001	0.030	Start value
Operate delay time	40120000	ms	1	40	Operate delay time

Table 462: NSPTOV Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				

Table 463: NSPTOV Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time

4.4.4.8 Monitored data

NSPTOV Monitored data

Table 464: NSPTOV Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
NSPTOV	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.4.4.9 Technical data

Table 465: NSPTOV Technical data

Characteristic		Value				
Operation accuracy		Depending on the	Depending on the frequency of the voltage measured: f n			
		±1.5% of the set v	alue or ±0.002 × U _n			
Start time 12	U _{Fault} = 1.1 × set <i>Start</i>	Minimum	Typical	Maximum		
	value	33 ms	35 ms	37 ms		
U _{Fault} = 2.0 × set <i>Start</i> value		24 ms	26 ms	28 ms		
Reset time		Typically 40 ms				
Reset ratio		Typically 0.96				
Retardation time		<35 ms				
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms				
Suppression of harmo	nics	DFT: -50 dB at f =	$n \times f_n$, where $n = 2, 3, 4$,	5,		

 $^{^{1}}$ Negative-sequence voltage before fault = 0.0 × U $_{\rm n}$, f $_{\rm n}$ = 50 Hz, negative-sequence overvoltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

REC615 & RER615 443

² Includes the delay of the signal output contact

4.4.4.10 Technical revision history

Table 466: NSPTOV Technical revision history

Technical revision	Change
В	Internal change
С	Internal improvement.
D	Internal improvement.

4.4.5 Positive-sequence undervoltage protection PSPTUV

4.4.5.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Positive-sequence undervoltage protection	PSPTUV	U1<	47U+

4.4.5.2 Function block

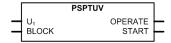


Figure 219: Function block

4.4.5.3 Functionality

The positive-sequence undervoltage protection function PSPTUV is used to detect positive-sequence undervoltage conditions. PSPTUV is used for the protection of small power generation plants. The function helps in isolating an embedded plant from a fault line when the fault current fed by the plant is too low to start an overcurrent function but high enough to maintain the arc. Fast isolation of all the fault current sources is necessary for a successful autoreclosure from the networkend circuit breaker.

The function starts when the positive-sequence voltage drops below the set limit. PSPTUV operates with the definite time (DT) characteristics.

The function contains a blocking functionality. It is possible to block function outputs, the definite timer or the function itself, if desired.

4.4.5.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of PSPTUV can be described using a module diagram. All the modules in the diagram are explained in the next sections.

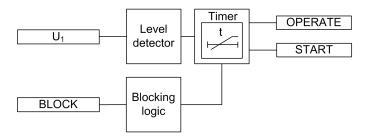


Figure 220: Functional module diagram. U1 is used for representing positive phase sequence voltage.

Level detector

The calculated positive-sequence voltage is compared to the set *Start value* setting. If the value drops below the set *Start value*, the level detector enables the timer. The *Relative hysteresis* setting can be used for preventing unnecessary oscillations if the input signal slightly varies from the *Start value* setting. After leaving the hysteresis area, the start condition has to be fulfilled again and it is not sufficient for the signal to only return to the hysteresis area.

Timer

Once activated, the timer activates the START output. The time characteristic is according to DT. When the operation timer has reached the value set by *Operate delay time*, the OPERATE output is activated if the undervoltage condition persists. If the positive-sequence voltage normalizes before the module operates, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the operate timer resets and the START output is deactivated.

The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operation time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the <code>BLOCK</code> input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The <code>BLOCK</code> input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the <code>BLOCK</code> signal activation is preselected with the global setting <code>Blocking mode</code>.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.4.5.5 Application

PSPTUV can be applied for protecting a power station used for embedded generation when network faults like short circuits or phase-to-earth faults in a transmission or a distribution line cause a potentially dangerous situations for the power station. A network fault can be dangerous for the power station for various

reasons. The operation of the protection can cause an islanding condition, also called a loss-of-mains condition, in which a part of the network, that is, an island fed by the power station, is isolated from the rest of the network. There is then a risk of an autoreclosure taking place when the voltages of different parts of the network do not synchronize, which is a straining incident for the power station. Another risk is that the generator can lose synchronism during the network fault. A sufficiently fast trip of the utility circuit breaker of the power station can avoid these risks.

The lower the three-phase symmetrical voltage of the network is, the higher is the probability that the generator loses the synchronism. The positive-sequence voltage is also available during asymmetrical faults. It is a more appropriate criterion for detecting the risk of loss of synchronism than, for example, the lowest phase-to-phase voltage.

Analyzing the loss of synchronism of a generator is rather complicated and requires a model of the generator with its prime mover and controllers. The generator can be able to operate synchronously even if the voltage drops by a few tens of percent for some hundreds of milliseconds. The setting of PSPTUV is thus determined by the need to protect the power station from the risks of the islanding conditions since that requires a higher setting value.

The loss of synchronism of a generator means that the generator is unable to operate as a generator with the network frequency but enters into an unstable condition in which it operates by turns as a generator and a motor. Such a condition stresses the generator thermally and mechanically. This kind of loss of synchronism should not be mixed with the one between an island and the utility network. In the islanding situation, the condition of the generator itself is normal but the phase angle and the frequency of the phase-to-phase voltage can be different from the corresponding voltage in the rest of the network. The island can have a frequency of its own relatively fast when fed by a small power station with a low inertia.

PSPTUV complements other loss-of-grid protection principles based on the frequency and voltage operation.

Motor stalling and failure to start can lead to a continuous undervoltage. The positive-sequence undervoltage is used as a backup protection against the motor stall condition.

4.4.5.6 Signals

Table 467: PSPTUV Input signals

Name	Туре	Default	Description
U ₁	SIGNAL	0	Positive phase sequence voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 468: PSPTUV Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.4.5.7 Settings

PSPTUV Group settings

Table 469: PSPTUV Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	0.0101.200	xUn	0.001	0.500	Start value
Operate delay time	40120000	ms	10	40	Operate delay time

Table 470: PSPTUV Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Voltage block value	0.011.00	xUn	0.01	0.20	Internal blocking level
Enable block value	0=False 1=True			1=True	Enable Internal Blocking

Table 471: PSPTUV Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				

Table 472: PSPTUV Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time
Relative hysteresis	1.05.0	%	0.1	4.0	Relative hysteresis for operation

4.4.5.8 Monitored data

PSPTUV Monitored data

Table 473: PSPTUV Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
PSPTUV	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.4.5.9 Technical data

Table 474: PSPTUV Technical data

Characteristic		Value				
Operation accuracy		Depending on the frequency of the measured voltage: $f_n \pm 2 Hz$				
			±1.5% of the set value or ±0.002 × U _n			
Start time 12	U Fault = 0.99 × set Start	Minimum	Typical	Maximum		
	value	52 ms	55 ms	58 ms		
	U _{Fault} = 0.9 × set <i>Start</i> value	44 ms	47 ms	50 ms		
Reset time		Typically 40 ms				
Reset ratio		Depends on the set <i>Relative hysteresis</i>				
Retardation time		<35 ms				
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms				
Suppression of harmor	nics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,				

4.4.5.10 Technical revision history

Table 475: PSPTUV Technical revision history

Technical revision	Change	
В	-	
С	Internal improvement	
D	Internal improvement	

4.5 Frequency protection

4.5.1 Frequency protection FRPFRQ

4.5.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Frequency protection	FRPFRQ	f>/f<,df/dt	81

 $^{^1}$ Start value = 1.0 × U $_{\rm n}$, positive-sequence voltage before fault = 1.1 × U $_{\rm n}$, f $_{\rm n}$ = 50 Hz, positive sequence undervoltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

² Includes the delay of the signal output contact

4.5.1.2 Function block

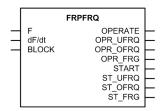


Figure 221: Function block

4.5.1.3 Functionality

The frequency protection function FRPFRQ is used to protect network components against abnormal frequency conditions.

The function provides basic overfrequency, underfrequency and frequency rate-ofchange protection. Additionally, it is possible to use combined criteria to achieve even more sophisticated protection schemes for the system.

The function contains a blocking functionality. It is possible to block function outputs, timer or the function itself, if desired.

4.5.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of FRPFRQ can be described using a module diagram. All the modules in the diagram are explained in the next sections.

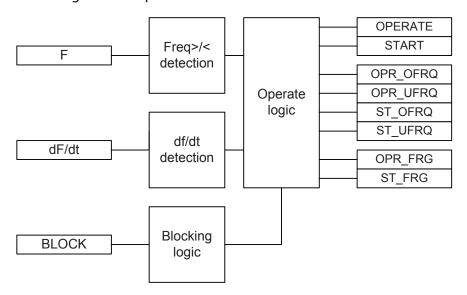


Figure 222: Functional module diagram

Freq>/< detection

The frequency detection module includes an overfrequency or underfrequency detection based on the *Operation mode* setting.

In the "Freq>" mode, the measured frequency is compared to the set *Start value Freq>*. If the measured value exceeds the set value of the *Start value Freq>* setting, the module reports the exceeding of the value to the operate logic module.

In the "Freq<" mode, the measured frequency is compared to the set *Start value Freq*<. If the measured value is lower than the set value of the *Start value Freq*< setting, the module reports the value to the operate logic module.

df/dt detection

The frequency gradient detection module includes a detection for a positive or negative rate-of-change (gradient) of frequency based on the set *Start value df/dt* value. The negative rate-of-change protection is selected when the set value is negative. The positive rate-of-change protection is selected when the set value is positive. When the frequency gradient protection is selected and the gradient exceeds the set *Start value df/dt* value, the module reports the exceeding of the value to the operate logic module.

The protection relay does not accept the set value "0.00" for the *Start value df/dt* setting.

Operate logic

This module is used for combining different protection criteria based on the frequency and the frequency gradient measurement to achieve a more sophisticated behavior of the function. The criteria are selected with the *Operation mode* setting.

Table 476: Operation modes for operation logic

Operation mode	Description
Freq<	The function operates independently as the underfrequency ("Freq<") protection function. When the measured frequency is below the set value of the <i>Start value Freq</i> < setting, the module activates the START and STR_UFRQ outputs. The time characteristic is according to DT. When the operation timer has reached the value set by the <i>Operate Tm Freq</i> setting, the OPERATE and OPR_UFRQ outputs are activated. If the frequency restores before the module operates, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm Freq</i> setting, the operate timer resets and the START and STR_UFRQ outputs are deactivated.
Freq>	The function operates independently as the overfrequency ("Freq>") protection function. When the measured frequency exceeds the set value of the <i>Start value Freq></i> setting, the module activates the START and STR_OFRQ outputs. The time characteristic is according to DT. When the operation timer has reached the value set by the <i>Operate Tm Freq</i> setting, the OPERATE and OPR_OFRQ outputs are activated. If the frequency restores before the module operates, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm Freq</i> setting, the operate timer resets and the START and STR_OFRQ outputs are deactivated.

Table continues on the next page

Operation mode	Description
df/dt	The function operates independently as the frequency gradient ("df/dt"), rate-of-change, protection function. When the frequency gradient exceeds the set value of the <i>Start value df/dt</i> setting, the module activates the START and STR_FRG outputs. The time characteristic is according to DT. When the operation timer has reached the value set by the <i>Operate Tm df/dt</i> setting, the OPERATE and OPR_FRG outputs are activated. If the frequency gradient restores before the module operates, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm df/dt</i> setting, the operate timer resets and the START and STR_FRG outputs are deactivated.
Freq< + df/dt	A consecutive operation is enabled between the protection methods. When the measured frequency is below the set value of the <i>Start value Freq</i> < setting, the frequency gradient protection is enabled. After the frequency has dropped below the set value, the frequency gradient is compared to the set value of the <i>Start value df/dt</i> setting. When the frequency gradient exceeds the set value, the module activates the START and STR_FRG outputs. The time characteristic is according to DT. When the operation timer has reached the value set by the <i>Operate Tm df/dt</i> setting, the OPERATE and OPR_FRG outputs are activated. If the frequency gradient restores before the module operates, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm df/dt</i> setting, the operate timer resets and the START and STR_FRG outputs are deactivated. The OPR_UFRQ output is not active when this operation mode is used.
Freq> + df/dt	A consecutive operation is enabled between the protection methods. When the measured frequency exceeds the set value of the <i>Start value Freq></i> setting, the frequency gradient protection is enabled. After the frequency exceeds the set value, the frequency gradient is compared to the set value of the <i>Start value df/dt</i> setting. When the frequency gradient exceeds the set value, the module activates the START and STR_FRG outputs. The time characteristic is according to DT. When the operation timer has reached the value set by the <i>Operate Tm df/dt</i> setting, the OPERATE and OPR_FRG outputs are activated. If the frequency gradient restores before the module operates, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm df/dt</i> setting, the operate timer resets and the START and STR_FRG outputs are deactivated. The OPR_OFRQ output is not active when this operation mode is used.
Freq< OR df/dt	A parallel operation between the protection methods is enabled. The START output is activated when either of the measured values of the protection module exceeds its set value. Detailed information about the active module is available at the STR_UFRQ and STR_FRG outputs. The shortest operate delay time from the set <i>Operate Tm Freq</i> or <i>Oper-</i>

Table continues on the next page

Operation mode	Description
	ate Tm df/dt is dominant regarding the OPERATE output. The time characteristic is according to DT. The characteristic that activates the OPERATE output can be seen from the OPR_UFRQ or OPR_FRG output. If the frequency gradient restores before the module operates, the reset timer is activated. If the timer reaches the value set by the Reset delay Tm df/dt setting, the operate timer resets and the STR_FRG output is deactivated. If the frequency restores before the module operates, the reset timer is activated. If the timer reaches the value set by the Reset delay Tm Freq setting, the operate timer resets and the STR_UFRQ output is deactivated.
Freq> OR df/dt	A parallel operation between the protection methods is enabled. The START output is activated when either of the measured values of the protection module exceeds its set value. A detailed information from the active module is available at the STR_OFRQ and STR_FRG outputs. The shortest operate delay time from the set <i>Operate Tm Freq</i> or <i>Operate Tm df/dt</i> is dominant regarding the OPERATE output. The time characteristic is according to DT. The characteristic that activates the OPERATE output can be seen from the OPR_OFRQ or OPR_FRG output. If the frequency gradient restores before the module operates, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm df/dt</i> setting, the operate timer resets and the STR_FRG output is deactivated. If the frequency restores before the module operates, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm Freq</i> setting, the operate timer resets and the STR_UFRQ output is deactivated.

The module calculates the start duration value which indicates the percentage ratio of the start situation and set operate time (DT). The start duration is available according to the selected value of the *Operation mode* setting.

Table 477: Start duration value

Operation mode in use	Available start duration value
Freq<	ST_DUR_UFRQ
Freq>	ST_DUR_OFRQ
df/dt	ST_DUR_FRG

The combined start duration START_DUR indicates the maximum percentage ratio of the active protection modes. The values are available via the Monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the BLOCK input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal

signal of the protection relay's program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.5.1.5 Application

The frequency protection function uses the positive phase-sequence voltage to measure the frequency reliably and accurately.

The system frequency stability is one of the main principles in the distribution and transmission network maintenance. To protect all frequency-sensitive electrical apparatus in the network, the departure from the allowed band for a safe operation should be inhibited.

The overfrequency protection is applicable in all situations where high levels of the fundamental frequency of a power system voltage must be reliably detected. The high fundamental frequency in a power system indicates an unbalance between production and consumption. In this case, the available generation is too large compared to the power demanded by the load connected to the power grid. This can occur due to a sudden loss of a significant amount of load or due to failures in the turbine governor system. If the situation continues and escalates, the power system loses its stability.

The underfrequency is applicable in all situations where a reliable detection of a low fundamental power system voltage frequency is needed. The low fundamental frequency in a power system indicates that the generated power is too low to meet the demands of the load connected to the power grid.

The underfrequency can occur as a result of the overload of generators operating in an isolated system. It can also occur as a result of a serious fault in the power system due to the deficit of generation when compared to the load. This can happen due to a fault in the grid system on the transmission lines that link two parts of the system. As a result, the system splits into two with one part having the excess load and the other part the corresponding deficit.

The frequency gradient is applicable in all the situations where the change of the fundamental power system voltage frequency should be detected reliably. The frequency gradient can be used for both increasing and decreasing the frequencies. This function provides an output signal suitable for load shedding, generator shedding, generator boosting, set point change in sub-transmission DC systems and gas turbine startup. The frequency gradient is often used in combination with a low frequency signal, especially in smaller power systems where the loss of a large generator requires quick remedial actions to secure the power system integrity. In such situations, the load shedding actions are required at a rather high frequency level. However, in combination with a large negative frequency gradient, the underfrequency protection can be used at a high setting.

4.5.1.6 Signals

Table 478: FRPFRQ Input signals

Name	Туре	Default	Description
F	SIGNAL	0	Measured frequency
dF/dt	SIGNAL	0	Rate of change of frequency
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 479: FRPFRQ Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
OPR_OFRQ	BOOLEAN	Operate signal for overfrequency
OPR_UFRQ	BOOLEAN	Operate signal for underfrequency
OPR_FRG	BOOLEAN	Operate signal for frequency gradient
START	BOOLEAN	Start
ST_OFRQ	BOOLEAN	Start signal for overfrequency
ST_UFRQ	BOOLEAN	Start signal for underfrequency
ST_FRG	BOOLEAN	Start signal for frequency gradient

4.5.1.7 Settings

FRPFRQ Group settings

Table 480: FRPFRQ Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation mode	1=Freq<			1=Freq<	Frequency protection operation
	2=Freq>				mode selection
	3=df/dt				
	4=Freq< + df/dt				
	5=Freq> + df/dt				
	6=Freq< OR df/dt				
	7=Freq> OR df/dt				
Start value Freq>	0.90001.2000	xFn	0.0001	1.0500	Frequency start val- ue overfrequency
Start value Freq<	0.80001.1000	xFn	0.0001	0.9500	Frequency start val- ue underfrequency
Start value df/dt	-0.20000.2000	xFn /s	0.0001	0.0100	Frequency start val- ue rate of change

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
Operate Tm Freq	80200000	ms	10	200	Operate delay time for frequency
Operate Tm df/dt	120200000	ms	10	400	Operate delay time for frequency rate of change

Table 481: FRPFRQ Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				

Table 482: FRPFRQ Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay Tm Freq	060000	ms	1	0	Reset delay time for frequency
Reset delay Tm df/dt	060000	ms	1	0	Reset delay time for rate of change

4.5.1.8 Monitored data

Table 483: FRPFRQ Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Start duration
ST_DUR_OFRQ	FLOAT32	0.00100.00	%	Start duration
ST_DUR_UFRQ	FLOAT32	0.00100.00	%	Start duration
ST_DUR_FRG	FLOAT32	0.00100.00	%	Start duration
FRPFRQ	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.5.1.9 Technical data

Table 484: FRPFRQ Technical data

Characteristic		Value	
Operation accuracy f>/f<		±5 mHz	
	df/dt	±50 mHz/s (in range df/dt <5 Hz/s) ±2.0% of the set value (in range 5 Hz/s < df/dt < 15 Hz/s)	
Start time	f>/f<	<80 ms	
	df/dt	<120 ms	

Table continues on the next page

Characteristic	Value
Reset time	<150 ms
Operate time accuracy	±1.0% of the set value or ±30 ms

4.5.1.10 Technical revision history

Table 485: FRPFRQ Technical revision history

Technical revision	Change
В	Step value changed from 0.001 to 0.0001 for the <i>Start value Freq></i> and <i>Start value Freq<</i> settings.
С	df/dt setting step changed from 0.005 ×Fn /s to 0.0025 ×Fn /s.
D	Internal improvement.

4.5.2 Load-shedding and restoration LSHDPFRQ

4.5.2.1 Identification

Function description	IEC 61850 identification		ANSI/IEEE C37.2 device number
Load-shedding and restoration	LSHDPFRQ	UFLS/R	81LSH

4.5.2.2 Function block

Figure 223: Function block

4.5.2.3 Functionality

The load-shedding and restoration function LSHDPFRQ is capable of performing load-shedding based on underfrequency and the rate of change of the frequency. The load that is shed during the frequency disturbance can be restored once the frequency has stabilized to the normal level.

The measured system frequency is compared to the set value to detect the underfrequency condition. The measured rate of change of frequency (df/dt) is compared to the set value to detect a high frequency reduction rate. The combination of the detected underfrequency and the high df/dt is used for the activation of the load-shedding. There is a definite time delay between the detection of the underfrequency and high df/dt and the activation of LSHDPFRQ.

This time delay can be set and it is used to prevent unwanted load-shedding actions when the system frequency recovers to the normal level.

Throughout this document, "high df/dt" is used to mean "a high rate of change of the frequency in negative direction."

Once the frequency has stabilized, LSHDPFRQ can restore the load that is shed during the frequency disturbance. The restoration is possible manually or automatically.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.5.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of LSHDPFRQ can be described using a module diagram. All the modules are explained in the next sections.

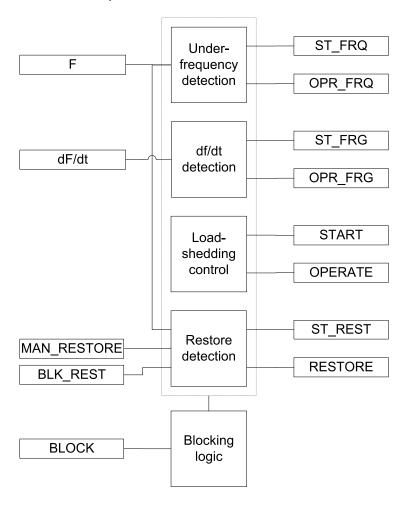


Figure 224: Functional module diagram

Underfrequency detection

The underfrequency detection measures the input frequency calculated from the voltage signal. An underfrequency is detected when the measured frequency drops below the set value of the Start Value Freq setting.

The underfrequency detection module includes a timer with the definite time (DT) characteristics. Upon detection of underfrequency, operation timer activates the ST FRQ output. When the underfrequency timer has reached the value set by Operate Tm Freq, the OPR FRQ output is activated if the underfrequency condition still persists. If the frequency becomes normal before the module operates, the reset timer is activated. If the reset timer reaches the value set by Reset delay time, the timer resets and the ST FRQ output is deactivated.

df/dt detection

The df/dt detection measures the input frequency calculated from the voltage signal and calculates its gradient. A high df/dt condition is detected by comparing the gradient to the Start value df/dt setting. The df/dt detection is activated when the frequency gradient decreases at a faster rate than the set value of Start value df/dt.

The df/dt detection module includes a timer with the DT characteristics. Upon detection of df/dt, operation timer activates the ST FRG output. When the timer has reached the value set by Operate Tm df/dt, the OPR FRG output is activated if the df/dt condition still persists. If df/dt becomes normal before the module operates, the reset timer is activated. If the reset timer reaches the value of the Reset delay time setting, the timer resets and the ST FRG output is deactivated.

Load-shedding control

The way of load-shedding, that is, whether to operate based on underfrequency or high df/dt or both, is defined with the Load shed mode user setting. The valid operation modes for the Load shed mode settings are "Freq<", "Freq< AND df/dt" and "Freq< OR df/dt".

Once the selected operation mode conditions are satisfied, the START and OPERATE output signals are activated.

When the START output is active, the percentage of the elapsed delay time can be monitored through START DUR which is available as monitored data.

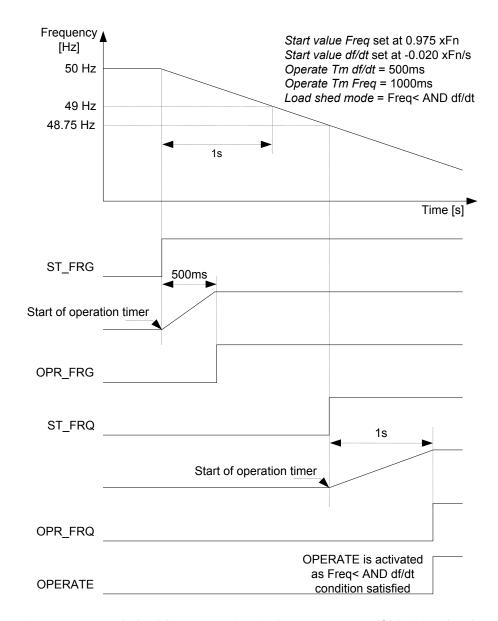


Figure 225: Load-shedding operation in the "Freq < AND df/dt >" mode when both Freq < and df/dt conditions are satisfied (Rated frequency=50 Hz)

Protection functions

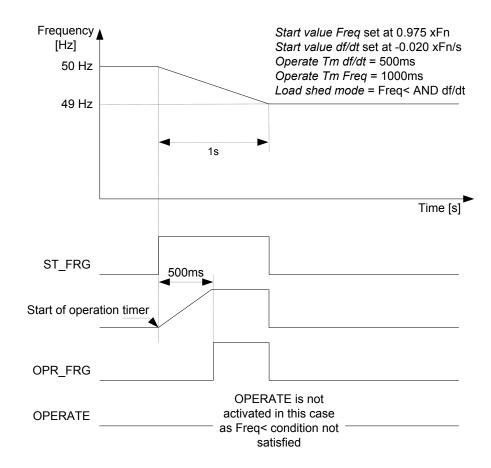


Figure 226: Load-shedding operation in the "Freq< AND df/dt>" mode when only the df/dt condition is satisfied (Rated frequency=50 Hz)

Restore detection

If after the activation of the OPERATE input the frequency recovers to a level above the *Restore start Val* setting, the RESTORE signal output is activated. The RESTORE output remains active for a 100 ms. The *Restore mode* setting is used to select the restoring mode to be "Disabled", "Auto" or "Manual".

Restoring mode	Description
Disabled	Load restoration is disabled.
Auto	In the "Auto" mode, input frequency is continuously compared to the <i>Restore start Val</i> setting. The restore detection module includes a timer with the DT characteristics. Upon detection of restoring, the operation timer activates the ST_REST output. When the timer has reached the value of the <i>Restore delay time</i> setting, the RESTORE output is activated if the restoring condition still persists. If the frequency drops below the <i>Restore start Val</i> before the RESTORE output is activated, the reset timer is activated. If the reset timer reaches the value of the <i>Reset delay time</i> setting, the timer resets and the ST_REST start output is deactivated.
Manual	In the "Manual" mode, a manual restoration is possible through the MAN_RESTORE input or via communication. The ST_REST output is activated if the MAN_RESTORE command is available and the frequen-

Restoring mode	Description
	cy has exceeded the <i>Restore start Val</i> setting. The manual restoration includes a timer with the DT characteristics. When the timer has reached the set value of the <i>Restore delay time</i> setting, the RESTORE output is activated if the restoring condition still persists. If the frequency drops below the <i>Restore start Val</i> setting before the RESTORE output is activated, the reset timer is activated. If the reset timer reaches the value of the <i>Reset delay time</i> setting, the timer resets and the ST_REST start output is deactivated.

A condition can arise where the restoring operation needs to be canceled. Activating the $\texttt{BLK}_\texttt{REST}$ input for the "Auto" or "Manual" modes cancels the restoring operation. In the "Manual" restoring mode, the cancellation happens even if MAN RESTORE is present.

Once the RESTORE output command is cancelled, the reactivation of RESTORE is possible only after the reactivation of the <code>OPERATE</code> output, that is, when the next load-shedding operation is detected.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the BLOCK input and the global setting in **Configuration > System > Blocking mode** that selects the blocking mode. The BLOCK input can be controlled with a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the BLOCK input signal activation is preselected with the *Blocking mode* global setting.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operate timer is frozen to the prevailing value, but the <code>OPERATE</code> output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the <code>OPERATE</code>, <code>OPR_FRQ</code> and <code>OPR_FRG</code> outputs are not activated.

4.5.2.5 Application

An AC power system operates at a defined rated frequency. The nominal frequency in most systems in the world is 50 Hz or 60 Hz. The system operation is such that the operating frequency remains approximately at the nominal frequency value by a small margin. The safe margin of operation is usually less than ± 0.5 Hz. The system frequency stability is one of the main concerns in the transmission and distribution network operation and control. To protect the frequency-sensitive electrical equipment in the network, departure from the allowed band for safe operation should be inhibited.

Any increase in the connected load requires an increase in the real power generation to maintain the system frequency. Frequency variations form whenever there are system conditions that result in an unbalance between the generation and load. The rate of change of the frequency represents the magnitude of the difference between the load and generation. A reduction in frequency and a negative rate of change of the frequency are observed when the load is greater than the generation, and an increase in the frequency along with a positive rate of change of the frequency are observed if the generation is greater than the load. The rate of change of the frequency is used for a faster decision of load-shedding. In an

> underfrequency situation, the load-shedding trips out the unimportant loads to stabilize the network. Thus, loads are normally prioritized so that the less important loads are shed before the important loads.

During the operation of some of the protective schemes or other system emergencies, the power system is divided into small islands. There is always a load - generation imbalance in such islands that leads to a deviation in the operating frequency from the nominal frequency. This off-nominal frequency operation is harmful to power system components like turbines and motors. Therefore, such situation must be prevented from continuing. The frequency-based load-shedding scheme should be applied to restore the operation of the system to normal frequency. This is achieved by quickly creating the load - generation balance by disconnecting the load.

As the formation of the system islands is not always predefined, several loadshedding relays are required to be deployed at various places near the load centers. A quick shedding of a large amount of load from one place can cause a significant disturbance in the system. The load-shedding scheme can be made most effective if the shedding of load feeders is distributed and discrete, that is, the loads are shed at various locations and in distinct steps until the system frequency reaches the acceptable limits.

Due to the action of load-shedding schemes, the system recovers from the disturbance and the operating frequency value recovers towards the nominal frequency. The load that was shed during the disturbance can be restored. The load-restoring operation should be done stepwise in such a way that it does not lead the system back to the emergency condition. This is done through an operator intervention or in case of remote location through an automatic load restoration function. The load restoration function also detects the system frequency and restores the load if the system frequency remains above the value of the set restoration frequency for a predefined duration.

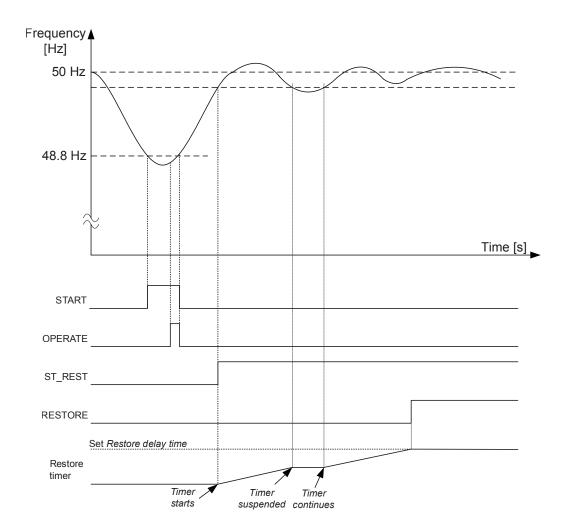


Figure 227: Operation of the load-shedding function

Power system protection by load-shedding

The decision on the amount of load that is required to be shed is taken through the measurement of frequency and the rate of change of frequency (df/dt). At a single location, many steps of load-shedding can be defined based on different criteria of the frequency and df/dt. Typically, the load-shedding is performed in six or four steps with each shedding increasing the portion of load from five to twenty-five percent of full load within a few seconds. After every shedding, the system frequency is read back and further shedding actions are taken only if necessary. In order to take the effect of any transient, a sufficient time delay should be set.

The value of the setting has to be well below the lowest occurring normal frequency and well above the lowest acceptable frequency of the system. The setting level, the number of steps and the distance between two steps (in time or in frequency) depend on the characteristics of the power system under consideration. The size of the largest loss of generation compared to the size of the power system is a critical parameter. In large systems, the load-shedding can be set at a high frequency level and the time delay is normally not critical. In small systems, the frequency start level has to be set at a low value and the time delay must be short.

If a moderate system operates at 50 Hz, an underfrequency should be set for different steps from 49.2 Hz to 47.5 Hz in steps of 0.3 - 0.4 Hz. The operating time

> for the underfrequency can be set from a few seconds to a few fractions of a second stepwise from a higher frequency value to a lower frequency value.

Table 486: Setting for a five-step underfrequency operation

Load-shedding steps	Start value Freq setting	Operate Tm Freq setting	
1	0.984 · Fn (49.2 Hz)	45000 ms	
2	0.978 · Fn (49.2 Hz)	30000 ms	
3	0.968 · Fn (49.2 Hz)	15000 ms	
4	0.958 · Fn (49.2 Hz)	5000ms	
5	0.950 · Fn (49.2 Hz)	500 ms	

The rate of change of frequency function is not instantaneous since the function needs time to supply a stable value. It is recommended to have a time delay long enough to take care of the signal noise.

Small industrial systems can experience the rate of change of frequency as large as 5 Hz/s due to a single event. Even large power systems can form small islands with a large imbalance between the load and generation when severe faults or combinations of faults are cleared. Up to 3 Hz/s has been experienced when a small island becomes isolated from a large system. For normal severe disturbances in large power systems, the rate of change of the frequency is much less, often just a fraction of 1.0 Hz/s.

Similarly, the setting for df/dt can be from 0.1 Hz/s to 1.2 Hz/s in steps of 0.1 Hz/s to 0.3 Hz/s for large distributed power networks, with the operating time varying from a few seconds to a few fractions of a second. Here, the operating time should be kept in minimum for the higher df/dt setting.

Table 487: Setting for a five-step df/dt< operation

Load-shedding steps	Start value df/dt setting	Operate Tm df/dt setting
1	-0.005 · Fn /s (-0.25 Hz/s)	8000 ms
2	-0.010 · Fn /s (-0.25 Hz/s)	2000 ms
3	-0.015 · Fn /s (-0.25 Hz/s)	1000 ms
4	-0.020 · Fn /s (-0.25 Hz/s)	500 ms
5	-0.025 · Fn /s (-0.25 Hz/s)	250 ms

Once the frequency has stabilized, the shed load can be restored. The restoring operation should be done stepwise, taking care that it does not lead the system back to the emergency condition.

Table 488: Setting for a five-step restoring operation

Load-shedding steps	Restoring start Val setting	Restore delay time setting
1	0.990 · Fn (49.5 Hz)	200000 ms
2	0.990 · Fn (49.5 Hz)	160000 ms
3	0.990 · Fn (49.5 Hz)	100000 ms
4	0.990 · Fn (49.5 Hz)	50000 ms
5	0.990 · Fn (49.5 Hz)	10000 ms

4.5.2.6 Signals

Table 489: LSHDPFRQ Input signals

Name	Туре	Default	Description
F	SIGNAL	0	Measured frequency
dF/dt	SIGNAL	0	Rate of change of frequency
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
BLK_REST	BOOLEAN	0=False	Block restore
MAN_RESTORE	BOOLEAN	0=False	Manual restore signal

Table 490: LSHDPFRQ Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operation of load shedding
OPR_FRQ	BOOLEAN	Operate signal for under frequency
OPR_FRG	BOOLEAN	Operate signal for high df/dt
START	BOOLEAN	Start
ST_FRQ	BOOLEAN	Pick-Up signal for under frequency detection
ST_FRG	BOOLEAN	Pick-Up signal for high df/dt detection
RESTORE	BOOLEAN	Restore signal for load restoring purposes
ST_REST	BOOLEAN	Restore frequency attained and restore timer started

4.5.2.7 Settings

LSHDPFRQ Group settings

Table 491: LSHDPFRQ Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Load shed mode	1=Freq< 6=Freq< OR df/dt 8=Freq< AND df/dt			1=Freq<	Set the operation mode for load shedding function
Restore mode	1=Disabled 2=Auto 3=Manual			1=Disabled	Mode of operation of restore functionality
Start value Freq	0.8001.200	xFn	0.001	0.975	Frequency set- ting/start value

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
Start value df/dt	-0.2000.005	xFn /s	0.005	-0.010	Setting of frequen- cy gradient for df/dt detection
Operate Tm Freq	80200000	ms	10	200	Time delay to op- erate for under fre- quency stage
Operate Tm df/dt	120200000	ms	10	200	Time delay to oper- ate for df/dt stage
Restore start Val	0.8001.200	xFn	0.001	0.998	Restore frequency setting value
Restore delay time	80200000	ms	10	300	Time delay to restore

Table 492: LSHDPFRQ Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				

Table 493: LSHDPFRQ Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	50	Time delay after which the definite timers will reset

4.5.2.8 Monitored data

LSHDPFRQ Monitored data

Table 494: LSHDPFRQ Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Start duration
LSHDPFRQ	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.5.2.9 Technical data

Table 495: LSHDPFRQ Technical data

Characteristic Value		Value	
Operation accuracy f<		±5 mHz	
	df/dt	±100 mHz/s (in range df/dt < 5 Hz/s) ± 2.0% of the set value (in range 5 Hz/s < df/dt < 15 Hz/s)	
Start time	f<	<80 ms	

Table continues on the next page

Characteristic		Value
	df/dt	<120 ms
Reset time		<150 ms
Operate time accuracy		±1.0% of the set value or ±30 ms

4.6 Power protection

4.6.1 Three-phase power directional element DPSRDIR

4.6.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase power directional element	DPSRDIR	11->	32P

4.6.1.2 Function block

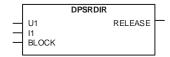


Figure 228: Function block

4.6.1.3 Functionality

The three-phase power directional element DPSRDIR is used to detect positive-sequence power direction. The output of the function is used for blocking or releasing other functions in protection scheme.

The directional positive-sequence power protection contains a blocking functionality which blocks function output and resets Timer.

4.6.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of DPSRDIR can be described with a module diagram. All the modules in the diagram are explained in the next sections.

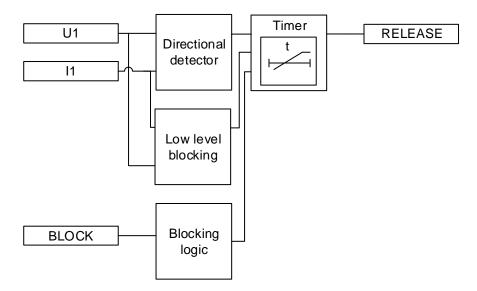


Figure 229: Functional module diagram

Directional detector

The Directional detector module compares the angle of the positive-sequence current I1 to the angle of the positive-sequence voltage V1. Using the positive-sequence voltage angle as reference, the positive-sequence current angle is compared to the *Characteristic angle* setting. If the angular difference is within the operating sector selected with the *Directional mode* setting, the On signal is sent to Timer.

The operating sector is defined by the setting *Min forward angle, Max forward angle, Min reverse angle* and *Max reverse angle*. The options that can be selected for the Directional mode setting are "Forward" and "Reverse".

The sector limits are always given as positive degree values.

The *Characteristic angle* setting is also known as Relay Characteristic Angle (RCA), Relay Base Angle or Maximum Torque Line.

1MRS758755 C Protection functions

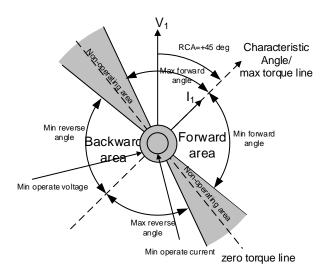


Figure 230: Configurable directional settings

Low-level blocking

For a reliable operation, signal levels should be greater than the minimum level. If they are not greater than the minimum level, Timer is blocked. If the amplitude of the positive-sequence current is greater than the *Min operate current* value and the positive-sequence voltage amplitude is greater than the *Min operate voltage* value, the On signal is sent to Timer.

Timer

Once activated, the internal operating timer is started. The Timer characteristic is according to definite time DT. When Timer has reached the value of *Release delay time*, the RELEASE output is activated. If a drop-off situation happens, that is, if the operating current moves outside the operating sector or signal amplitudes drop below the minimum level before *Release delay time* is exceeded, the Timer reset state is activated. If the drop-off continues for more than *Reset delay time*, Timer is deactivated.

Blocking logic

The binary input BLOCK can be used to block the function. The activation of the BLOCK input deactivates the RELEASE output and resets Timer.

4.6.1.5 Application

The three-phase power directional element DPSRDIR improves the possibility to obtain a selective function of the overcurrent protection in meshed networks. The function is used to block or release other overcurrent protection functions.

Protection functions 1MRS758755 C

4.6.1.6 Signals

Table 496: DPSRDIR Input signals

Name	Туре	Default	Description
U_1	REAL	0.0	Positive sequence voltage
I ₁	REAL	0.0	Positive sequence current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 497: DPSRDIR Output signals

Name	Туре	Description
RELEASE	BOOLEAN	Release signal if direction criteria is satisified
DIRECTION	Enum	Direction information

4.6.1.7 Settings

Table 498: DPSRDIR Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Release delay time	01000	ms	1	10	Release delay time
Characteristic angle	-179180	deg	1	60	Characteristic angle
Max forward angle	090	deg	1	88	Maximum phase angle in forward di- rection
Max reverse angle	090	deg	1	88	Maximum phase angle in reverse di- rection
Min forward angle	090	deg	1	88	Minimum phase angle in forward direction
Min reverse angle	090	deg	1	88	Minimum phase angle in reverse direction
Directional mode	1=Non-directional 2=Forward 3=Re- verse			2=Forward	Directional mode

Table 499: DPSRDIR Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On

Table continues on the next page

1MRS758755 C Protection functions

Parameter	Values (Range)	Unit	Step	Default	Description
	5=off				
Min operate current	0.011.00	xIn	0.01	0.10	Minimum operating current
Min operate voltage	0.011.00	xUn	0.01	0.30	Minimum operating voltage

Table 500: DPSRDIR Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time

4.6.1.8 Monitored data

Table 501: DPSRDIR Monitored data

Name	Туре	Values (Range)	Unit	Description
ANGLE_RCA	FLOAT32	-180.00180.00	deg	Angle between operat- ing angle and charac- teristic angle
DPSRDIR	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.7 Multipurpose protection MAPGAPC

4.7.1 Identification

Function description		IEC 60617 identification	ANSI/IEEE C37.2 device number
Multipurpose protection	MAPGAPC	MAP	MAP

4.7.2 Function block

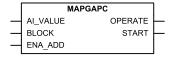


Figure 231: Function block

Protection functions 1MRS758755 C

4.7.3 Functionality

The multipurpose protection function MAPGAPC is used as a general protection with many possible application areas as it has flexible measuring and setting facilities. The function can be used as an under- or overprotection with a settable absolute hysteresis limit. The function operates with the definite time (DT) characteristics.

The function contains a blocking functionality. It is possible to block function outputs, the definite timer or the function itself, if desired.

4.7.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of MAPGAPC can be described using a module diagram. All the modules in the diagram are explained in the next sections.

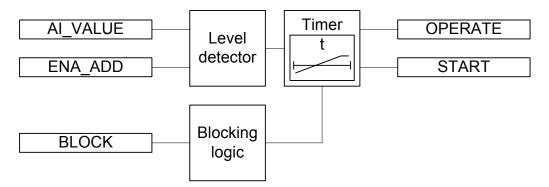


Figure 232: Functional module diagram

Level detector

The level detector compares AI_VALUE to the *Start value* setting. The *Operation mode* setting defines the direction of the level detector.

Table 502: Operation mode types

Operation Mode	Description
"Under"	If the input signal AI_VALUE is lower than the set value of the "Start value" setting, the level detector enables the timer module.
"Over"	If the input signal AI_VALUE exceeds the set value of the <i>Start value</i> setting, the level detector enables the timer module.

The *Absolute hysteresis* setting can be used for preventing unnecessary oscillations if the input signal is slightly above or below the *Start value* setting. After leaving the hysteresis area, the start condition has to be fulfilled again and it is not sufficient for the signal to only return to the hysteresis area. If the ENA_ADD input is activated, the threshold value of the internal comparator is the sum of the *Start value Add* and *Start value* settings. The resulting threshold value for the comparator can be

1MRS758755 C Protection functions

increased or decreased depending on the sign and value of the *Start value Add* setting.

Timer

Once activated, the timer activates the START output. The time characteristic is according to DT. When the operation timer has reached the value set by *Operate delay time*, the OPERATE output is activated. If the starting condition disappears before the module operates, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the operation timer resets and the START output is deactivated.

The timer calculates the start duration value START_DUR, which indicates the percentage ratio of the start situation and the set operation time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking function. The operation modes are controlled by the BLOCK input and the global setting in **Configuration** > **System** > **Blocking mode** which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the protection relay's program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operation timer is frozen to the prevailing value, but the OPERATE output is not deactivated when blocking is activated. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block OPERATE output" mode, the function operates normally but the OPERATE output is not activated.

4.7.5 Application

The function block can be used for any general analog signal protection, either underprotection or overprotection. The setting range is wide, allowing various protection schemes for the function. Thus, the absolute hysteresis can be set to a value that suits the application.

The temperature protection using the RTD sensors can be done using the function block. The measured temperature can be fed from the RTD sensor to the function input that detects too high temperatures in the motor bearings or windings, for example. When the ENA_ADD input is enabled, the threshold value of the internal comparator is the sum of the *Start value Add* and *Start value* settings. This allows a temporal increase or decrease of the level detector depending on the sign and value of the *Start value Add* setting, for example, when the emergency start is activated. If, for example, *Start value* is 100, *Start value Add* is 20 and the ENA_ADD input is active, the input signal needs to rise above 120 before MAPGAPC operates.

Protection functions 1MRS758755 C

4.7.6 Signals

Table 503: MAPGAPC Input signals

Name	Туре	Default	Description
AI_VALUE	FLOAT32	0.0	Analogue input value
BLOCK	BOOLEAN	0=False	Block signal for acti- vating the blocking mode
ENA_ADD	BOOLEAN	0=False	Enable start added

Table 504: MAPGAPC Output signals

Name	Туре	Description
OPERATE	BOOLEAN	Operate
START	BOOLEAN	Start

4.7.7 Settings

4.7.7.1 MAPGAPC Group settings

Table 505: MAPGAPC Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	-10000.010000.0		0.1	0.0	Start value
Start value Add	-100.0100.0		0.1	0.0	Start value Add
Operate delay time	0200000	ms	100	0	Operate delay time

Table 506: MAPGAPC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Operation mode	1=Over 2=Under			1=Over	Operation mode

Table 507: MAPGAPC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	100	0	Reset delay time
Absolute hysteresis	0.01100.00		0.01	0.10	Absolute hysteresis for operation

4.7.8 Monitored data

1MRS758755 C Protection functions

4.7.8.1 MAPGAPC Monitored data

Table 508: MAPGAPC Monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
MAPGAPC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.7.9 Technical data

Table 509: MAPGAPC Technical data

Characteristic	Value
Operation accuracy	±1.0 % of the set value or ±20 ms

5 Protection related functions

5.1 Three-phase inrush detector INRPHAR

5.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase inrush detector	INRPHAR	3I2f>	68

5.1.2 Function block

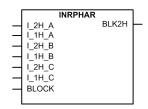


Figure 233: Function block

5.1.3 Functionality

The three-phase inrush detector function INRPHAR is used to coordinate transformer inrush situations in distribution networks.

Transformer inrush detection is based on the following principle: the output signal BLK2H is activated once the numerically derived ratio of second harmonic current I_2H and the fundamental frequency current I_1H exceeds the set value.

The operate time characteristic for the function is of definite time (DT) type.

The function contains a blocking functionality. Blocking deactivates all outputs and resets timers.

5.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of INRPHAR can be described using a module diagram. All the modules in the diagram are explained in the next sections.

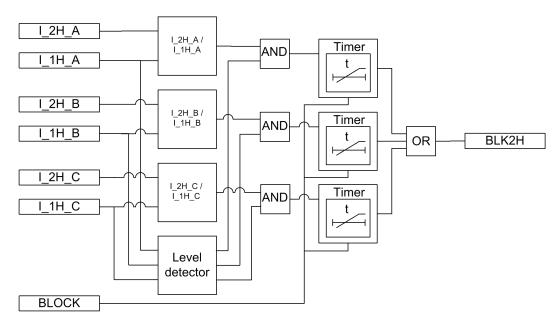


Figure 234: Functional module diagram

I_2H/I_1H

This module calculates the ratio of the second harmonic (I_2H) and fundamental frequency (I_1H) phase currents. The calculated value is compared to the set *Start value*. If the calculated value exceeds the set *Start value*, the module output is activated.

Level detector

The output of the phase specific level detector is activated when the fundamental frequency current I 1H exceeds five percent of the nominal current.

Timer

Once activated, the timer runs until the set *Operate delay time* value. The time characteristic is according to DT. When the operation timer has reached the *Operate delay time* value, the BLK2H output is activated. After the timer has elapsed and the inrush situation still exists, the BLK2H signal remains active until the I_2H/I_1H ratio drops below the value set for the ratio in all phases, that is, until the inrush situation is over. If the drop-off situation occurs within the operate time up counting, the reset timer is activated. If the drop-off time exceeds *Reset delay time*, the operate timer is reset.

The BLOCK input can be controlled with a binary input, a horizontal communication input or an internal signal of the relay program. The activation of the BLOCK input prevents the BLK2H output from being activated.

It is recommended to use the second harmonic and the waveform based inrush blocking from the TR2PTDF function, if available.

5.1.5 Application

Transformer protections require high stability to avoid tripping during magnetizing inrush conditions. A typical example of an inrush detector application is doubling the start value of an overcurrent protection during inrush detection.

The inrush detection function can be used to selectively block overcurrent and earth-fault function stages when the ratio of second harmonic component over the fundamental component exceeds the set value.

Other applications of this function include the detection of inrush in lines connected to a transformer.

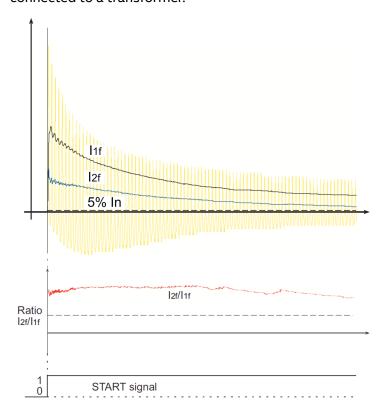


Figure 235: Inrush current in transformer

It is recommended to use the second harmonic and the waveform based inrush blocking from the transformer differential protection function TR2PTDF, if available.

5.1.6 Signals

5.1.6.1 INRPHAR Input signals

Table 510: INRPHAR Input signals

Name	Туре	Default	Description
I_2H_A	SIGNAL	0	Second harmonic phase A current
I_1H_A	SIGNAL	0	Fundamental frequency phase A current
I_2H_B	SIGNAL	0	Second harmonic phase B current
I_1H_B	SIGNAL	0	Fundamental frequency phase B current
I_2H_C	SIGNAL	0	Second harmonic phase C current
I_1H_C	SIGNAL	0	Fundamental frequency phase C current
BLOCK	BOOLEAN	0=False	Block input status

5.1.6.2 INRPHAR Output signals

Table 511: INRPHAR Output signals

Name	Туре	Description
BLK2H	BOOLEAN	Second harmonic based block

5.1.7 Settings

5.1.7.1 INRPHAR Group settings

Table 512: INRPHAR Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Start value	5100	%	1	20	Ratio of the 2. to the 1. harmonic leading to restraint
Operate delay time	2060000	ms	1	20	Operate delay time

Table 513: INRPHAR Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				

Table 514: INRPHAR Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	060000	ms	1	20	Reset delay time

5.1.8 Monitored data

5.1.8.1 INRPHAR Monitored data

Table 515: INRPHAR Monitored data

Name	Туре	Values (Range)	Unit	Description
INRPHAR	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

5.1.9 Technical data

Table 516: INRPHAR Technical data

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	Current measurement:
	± 1.5 % of the set value or $\pm 0.002 \times I_n$
	Ratio I2f/I1f measurement:
	±5.0 % of the set value
Reset time	+35 ms / -0 ms
Reset ratio	Typically 0.96
Operate time accuracy	+35 ms / -0 ms

5.1.10 Technical revision history

Table 517: INRPHAR Technical revision history

Technical revision	Change
В	Internal improvement
С	Internal improvement

5.2 Circuit breaker failure protection CCBRBRF

5.2.1 Identification

Function description		IEC 60617 identification	ANSI/IEEE C37.2 device number
Circuit breaker failure protection	CCBRBRF	3I>/Io>BF	51BF/51NBF

5.2.2 Function block

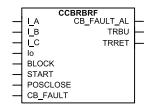


Figure 236: Function block

5.2.3 Functionality

The circuit breaker failure protection function CCBRBRF is activated by trip commands from the protection functions. The commands are either internal commands to the terminal or external commands through binary inputs. The start command is always a default for three-phase operation. CCBRBRF includes a three-phase conditional or unconditional retrip function, and also a three-phase conditional back-up trip function.

CCBRBRF uses the same levels of current detection for both retrip and back-up trip. The operating values of the current measuring elements can be set within a predefined setting range. The function has two independent timers for trip purposes: a retrip timer for the repeated tripping of its own breaker and a back-up timer for the trip logic operation for upstream breakers. A minimum trip pulse length can be set independently for the trip output.

The function contains a blocking functionality. It is possible to block the function outputs, if desired.

5.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of CCBRBRF can be described using a module diagram. All the modules in the diagram are explained in the next sections. Also further information on the retrip and backup trip logics is given in sub-module diagrams.

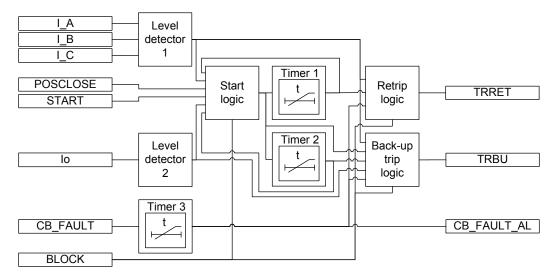


Figure 237: Functional module diagram

Level detector 1

The measured phase currents are compared phasewise to the set *Current value*. If the measured value exceeds the set *Current value*, the level detector reports the exceeding of the value to the start, retrip and backup trip logics. The parameter should be set low enough so that breaker failure situations with small fault current or high load current can be detected. The setting can be chosen in accordance with the most sensitive protection function to start the breaker failure protection.

Level detector 2

The measured residual current is compared to the set *Current value Res*. If the measured value exceeds the set *Current value Res*, the level detector reports the exceeding of the value to the start and backup trip logics. In high-impedance earthed systems, the residual current at phase-to-earth faults is normally much smaller than the short circuit currents. To detect a breaker failure at single-phase earth faults in these systems, it is necessary to measure the residual current separately. In effectively earthed systems, also the setting of the earth-fault current protection can be chosen at a relatively low current level. The current setting should be chosen in accordance with the setting of the sensitive earth-fault protection.

Start logic

The start logic is used to manage the starting of the timer 1 and timer 2. It also resets the function after the circuit breaker failure is handled. On the rising edge of the START input, the enabling signal is send to the timer 1 and timer 2.

Function resetting is prevented during the next 150 ms. The 150 ms time elapse is provided to prevent malfunctioning due to oscillation in the starting signal.

In case the setting *Start latching mode* is set to "Level sensitive", the CCBRBRF is reset immediately after the START signal is deactivated. The recommended setting value is "Rising edge".

The resetting of the function depends on the CB failure mode setting.

• If *CB failure mode* is set to "Current", the resetting logic further depends on the *CB failure trip mode* setting.

- If *CB failure trip mode* is set to "1 out of 3", the resetting logic requires that the values of all the phase currents drop below the *Current value* setting.
- If *CB failure trip mode* is set to "1 out of 4", the resetting logic requires that the values of the phase currents and the residual current drops below the *Current value* and *Current value Res* setting respectively.
- If *CB failure trip mode* is set to "2 out of 4", the resetting logic requires that the values of all the phase currents and the residual current drop below the *Current value* and *Current value Res* setting.
- If *CB failure mode* is set to the "Breaker status" mode, the resetting logic requires that the circuit breaker is in the open condition.
- If the *CB failure mode* setting is set to "Both", the resetting logic requires that the circuit breaker is in the open condition and the values of the phase currents and the residual current drops below the *Current value* and *Current value Res* setting respectively.

The activation of the ${\tt BLOCK}$ input resets the function.

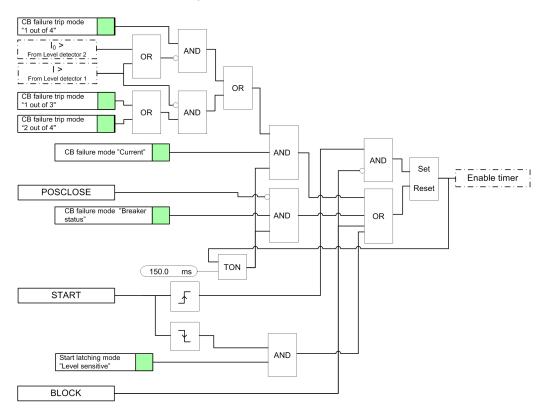


Figure 238: Start logic

Timer 1

Once activated, the timer runs until the set *Retrip time* value has elapsed. The time characteristic is according to DT. When the operation timer has reached the value set with *Retrip time*, the retrip logic is activated. A typical setting is 0...50 ms.

Timer 2

Once activated, the timer runs until the set *CB failure delay* value has elapsed. The time characteristic is according to DT. When the operation timer has reached the set maximum time value *CB failure delay*, the backup trip logic is activated. The value of

this setting is made as low as possible at the same time as any unwanted operation is avoided. A typical setting is 90 - 150 ms, which is also dependent on the retrip timer.

The minimum time delay for the CB failure delay can be estimated as:

 $CB failure delay \geq Retriptime + t_{cbopen} + t_{BFP_reset} + t_{margin}$

(Equation 44)

t _{cbopen} maximum opening time for the circuit breaker

t BFP reset maximum time for the breaker failure protection to detect the correct breaker

function (the current criteria reset)

t _{margin} safety margin

It is often required that the total fault clearance time is less than the given critical time. This time often depends on the ability to maintain transient stability in case of a fault close to a power plant.

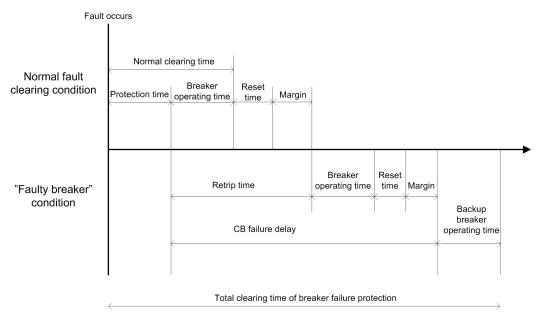


Figure 239: Timeline of the breaker failure protection

Timer 3

This module is activated by the CB_FAULT signal. Once activated, the timer runs until the set CB fault delay value has elapsed. The time characteristic is according to DT. When the operation timer has reached the maximum time value CB fault delay, the CB_FAULT_AL output is activated. After the set time, an alarm is given so that the circuit breaker can be repaired. A typical value is 5 s.

Retrip logic

The retrip logic provides the TRRET output, which can be used to give a retrip signal for the main circuit breaker. Timer 1 activates the retrip logic. The operation of the retrip logic depends on the *CB fail retrip mode* setting.

- The retrip logic is inactive if the CB fail retrip mode setting is set to "Off".
- If *CB fail retrip mode* is set to the "Current check" mode, the activation of the retrip output TRRET depends on the *CB failure mode* setting.
 - If *CB failure mode* is set to the "Current" mode, TRRET is activated when the value of any phase current exceeds the *Current value* setting. The TRRET output remains active for the time set with the *Trip pulse time* setting or until all phase current values drop below the *Current value* setting, whichever is longer.
 - If *CB failure mode* is set to the "Breaker status" mode, TRRET is activated if the circuit breaker is in the closed position. The TRRET output remains active for the time set with the *Trip pulse time* setting or the time the circuit breaker is in the closed position, whichever is longer.
 - If *CB failure mode* is set to "Both", TRRET is activated when either of the "Breaker status" or "Current" mode condition is satisfied.
- If *CB fail retrip mode* is set to the "Without check" mode, TRRET is activated once the timer 1 is activated without checking the current level. The TRRET output remains active for a fixed time set with the *Trip pulse time* setting.

The activation of the BLOCK input or the CB_FAULT_AL output deactivates the TRRET output.

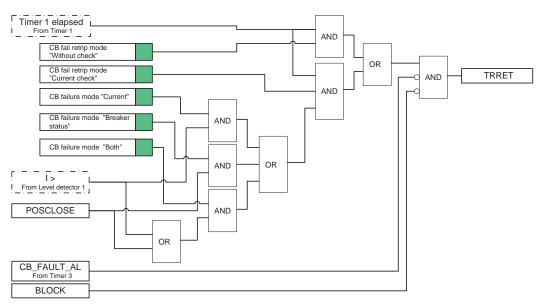


Figure 240: Retrip logic

Backup trip logic

The backup trip logic provides the TRBU output which can be used to trip the upstream backup circuit breaker when the main circuit breaker fails to clear the fault. The backup trip logic is activated by the timer 2 module or timer-enabling signal from the start logic module (rising edge of the START input detected), and simultaneously CB_FAULT_AL is active. The operation of the backup logic depends on the *CB failure mode* setting.

- If the *CB failure mode* is set to "Current", the activation of TRBU depends on the *CB failure trip mode* setting.
 - If *CB failure trip mode* is set to "1 out of 3", the failure detection is based on any of the phase currents exceeding the *Current value* setting. Once TRBU is

- activated, it remains active for the time set with the *Trip pulse time* setting or until the values of all the phase currents drop below the Current value setting, whichever takes longer.
- If CB failure trip mode is set to "1 out of 4", the failure detection is based on either a phase current or a residual current exceeding the *Current value* or Current value Res setting respectively. Once TRBU is activated, it remains active for the time set with the *Trip pulse time* setting or until the values of all the phase currents or residual currents drop below the Current value and Current value Res setting respectively, whichever takes longer.
- If CB failure trip mode is set to "2 out of 4", the failure detection requires that a phase current and a residual current both exceed the Current value and Current value Res setting respectively or two phase currents exceeding the Current value. Once TRBU is activated, it remains active for the time set with the *Trip pulse time* setting or until the values of all the phase currents drop below the Current value, whichever takes longer.

In most applications, "1 out of 3" is sufficient.

- If the CB failure mode is set to "Breaker status", the TRBU output is activated if the circuit breaker is in the closed position. Once activated, the TRBU output remains active for the time set with the *Trip pulse time* setting or the time the circuit breaker is in the closed position, whichever is longer.
- If the CB failure mode setting is set to "Both", TRBU is activated when the "Breaker status" or "Current" mode conditions are satisfied.

The activation of the BLOCK input deactivates the TRBU output.

486 **REC615 & RER615**

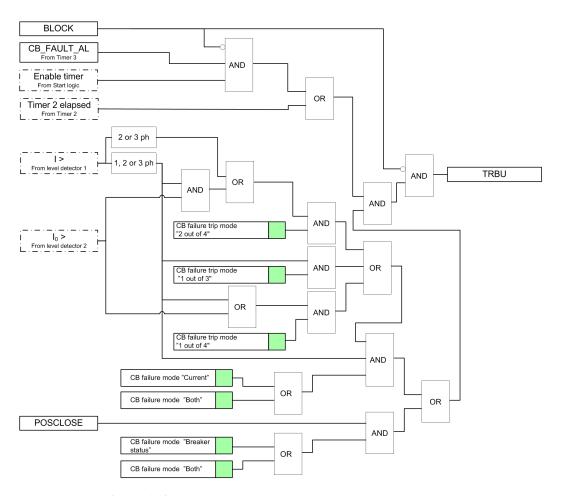


Figure 241: Backup trip logic

5.2.5 Application

The n-1 criterion is often used in the design of a fault clearance system. This means that the fault is cleared even if some component in the fault clearance system is faulty. A circuit breaker is a necessary component in the fault clearance system. For practical and economical reasons, it is not feasible to duplicate the circuit breaker for the protected component, but breaker failure protection is used instead.

The breaker failure function issues a backup trip command to up-stream circuit breakers in case the original circuit breaker fails to trip for the protected component. The detection of a failure to break the current through the breaker is made by measuring the current or by detecting the remaining trip signal (unconditional).

CCBRBRF can also retrip. This means that a second trip signal is sent to the protected circuit breaker. The retrip function is used to increase the operational reliability of the breaker. The function can also be used to avoid backup tripping of several breakers in case mistakes occur during protection relay maintenance and tests.

CCBRBRF is initiated by operating different protection functions or digital logics inside the protection relay. It is also possible to initiate the function externally through a binary input.

CCBRBRF can be blocked by using an internally assigned signal or an external signal from a binary input. This signal blocks the function of the breaker failure protection even when the timers have started or the timers are reset.

The retrip timer is initiated after the start input is set to true. When the pre-defined time setting is exceeded, CCBRBRF issues the retrip and sends a trip command, for example, to the circuit breaker's second trip coil. Both a retrip with current check and an unconditional retrip are available. When a retrip with current check is chosen, the retrip is performed only if there is a current flow through the circuit breaker.

The backup trip timer is also initiated at the same time as the retrip timer. If CCBRBRF detects a failure in tripping the fault within the set backup delay time, which is longer than the retrip time, it sends a backup trip signal to the chosen backup breakers. The circuit breakers are normally upstream breakers which feed fault current to a faulty feeder.

The backup trip always includes a current check criterion. This means that the criterion for a breaker failure is that there is a current flow through the circuit breaker after the set backup delay time.

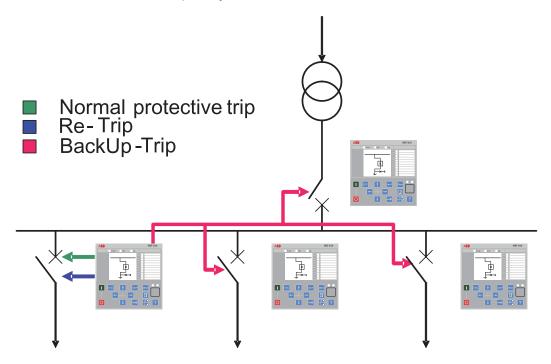


Figure 242: Typical breaker failure protection scheme in distribution substations

5.2.6 Signals

5.2.6.1

Table 518: CCBRBRF Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
lo	SIGNAL	0	Residual current
BLOCK	BOOLEAN	0=False	Block CBFP operation
START	BOOLEAN	0=False	CBFP start command
POSCLOSE	BOOLEAN	0=False	CB in closed position
CB_FAULT	BOOLEAN	0=False	CB faulty and unable to trip

5.2.6.2 CCBRBRF Output signals

Table 519: CCBRBRF Output signals

Name	Туре	Description
CB_FAULT_AL	BOOLEAN	Delayed CB failure alarm
TRBU	BOOLEAN	Backup trip
TRRET	BOOLEAN	Retrip

5.2.7 Settings

5.2.7.1 CCBRBRF Non group settings

Table 520: CCBRBRF Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				
Current value	0.052.00	xIn	0.01	0.30	Operating phase current
Current value Res	0.052.00	xIn	0.01	0.30	Operating residual current
CB failure trip mode	1=2 out of 4			2=1 out of 3	Backup trip current check mode
mode	2=1 out of 3				check mode
	3=1 out of 4				
CB failure mode	1=Current			1=Current	Operating mode of function
	2=Breaker status				Tunction
	3=Both				
CB fail retrip mode	1=Off			1=Off	Operating mode of retrip logic

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
	2=Without Check 3=Current check				
Retrip time	060000	ms	10	120	Delay timer for ret- rip
CB failure delay	060000	ms	10	240	Delay timer for backup trip

Table 521: CCBRBRF Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
CB fault delay	060000	ms	10	5000	Circuit breaker faulty delay
Measurement mode	2=DFT 3=Peak-to-Peak			3=Peak-to-Peak	Phase current measurement mode of function
Trip pulse time	060000	ms	10	200	Pulse length of ret- rip and backup trip outputs
Start latching mode	1=Rising edge 2=Level sensitive			1=Rising edge	Start reset delayed or immediately

5.2.8 **Monitored data**

5.2.8.1

Table 522: CCBRBRF Monitored data

Name	Туре	Values (Range)	Unit	Description
CCBRBRF	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

5.2.9 **Technical data**

Table 523: CCBRBRF Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: f $_{\rm n}$ ±2 Hz
	± 1.5 % of the set value or $\pm 0.002 \times I_n$
Operate time accuracy	±1.0 % of the set value or ±20 ms
Reset time	Typically 40 ms
Retardation time	<20 ms

5.2.10 Technical revision history

Table 524: CCBRBRF Technical revision history

Technical revision	Change
В	Default trip pulse time changed to 150 ms
С	Added new setting parameter <i>Start latching mode</i> . Maximum value changed to 2.00 xIn for the <i>Current value</i> setting.
D	Internal improvement.
E	Maximum value for <i>Current value</i> and <i>Current value Res</i> changed from "1.00 x In" to "2.00 x In".

5.3 Master trip TRPPTRC

5.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Master trip	TRPPTRC	Master Trip	94/86

5.3.2 Function block

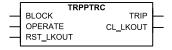


Figure 243: Function block

5.3.3 Functionality

The master trip function TRPPTRC is used as a trip command collector and handler after the protection functions. The features of this function influence the trip signal behavior of the circuit breaker. The minimum trip pulse length can be set when the non-latched mode is selected. It is also possible to select the latched or lockout mode for the trip signal.

5.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

When the TRPPTRC function is disabled, all trip outputs intended to go through the function to the circuit breaker trip coil are blocked.

The operation of TRPPTRC can be described with a module diagram. All the modules in the diagram are explained in the next sections.

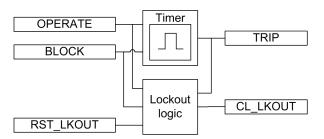


Figure 244: Functional module diagram

Timer

The duration of the TRIP output signal from TRPPTRC can be adjusted with the Trip pulse time setting when the "Non-latched" operation mode is used. The pulse length should be long enough to secure the opening of the breaker. For three-pole tripping, TRPPTRC has a single input OPERATE, through which all trip output signals are routed from the protection functions within the protection relay, or from external protection functions via one or more of the protection relay's binary inputs. The function has a single trip output TRIP for connecting the function to one or more of the protection relay's binary outputs, and also to other functions within the protection relay requiring this signal.

The BLOCK input blocks the TRIP output and resets the timer.

Lockout logic

TRPPTRC is provided with possibilities to activate a lockout. When activated, the lockout can be manually reset after checking the primary fault by activating the ${\tt RST_LKOUT}$ input or from the LHMI clear menu parameter. When using the "Latched" mode, the resetting of the ${\tt TRIP}$ output can be done similarly as when using the "Lockout" mode. It is also possible to reset the "Latched" mode remotely through a separate communication parameter.

The minimum pulse trip function is not active when using the "Lockout" or "Latched" modes but only when the "Non-latched" mode is selected.

The CL LKOUT and TRIP outputs can be blocked with the BLOCK input.

Table 525: Operation modes for the TRPPTRC trip output

Mode	Operation
Non-latched	The <i>Trip pulse length</i> parameter gives the minimum pulse length for TRIP
Latched	${\tt TRIP}$ is latched; both local and remote clearing is possible.
Lockout	TRIP is locked and can be cleared only locally via menu or the RST_LKOUT input.

5.3.5 Application

All trip signals from different protection functions are routed through the trip logic. The most simplified application of the logic function is linking the trip signal and ensuring that the signal is long enough.

The tripping logic in the protection relay is intended to be used in the three-phase tripping for all fault types (3ph operating). To prevent the closing of a circuit breaker after a trip, TRPPTRC can block the CBXCBR closing.

TRPPTRC is intended to be connected to one trip coil of the corresponding circuit breaker. If tripping is needed for another trip coil or another circuit breaker which needs, for example, different trip pulse time, another trip logic function can be used. The two instances of the PTRC function are identical, only the names of the functions, TRPPTRC1 and TRPPTRC2, are different. Therefore, even if all references are made only to TRPPTRC1, they also apply to TRPPTRC2.

The inputs from the protection functions are connected to the OPERATE input. Usually, a logic block OR is required to combine the different function outputs to this input. The TRIP output is connected to the binary outputs on the IO board. This signal can also be used for other purposes within the protection relay, for example when starting the breaker failure protection.

TRPPTRC is used for simple three-phase tripping applications.

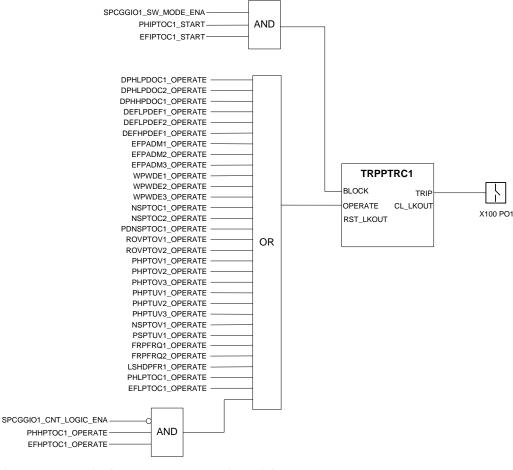


Figure 245: Typical TRPPTRC connection with REC615

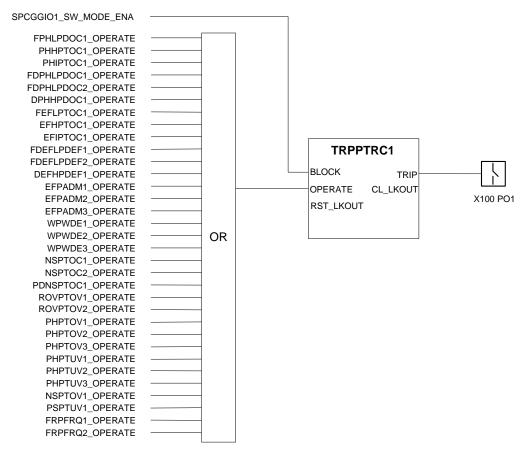


Figure 246: Typical TRPPTRC connection with RER615

5.3.6 Signals

5.3.6.1 TRPPTRC Input signals

Table 526: TRPPTRC Input signals

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Block of function
OPERATE	BOOLEAN	0=False	Operate
RST_LKOUT	BOOLEAN	0=False	Input for resetting the circuit breaker lockout function

5.3.6.2 TRPPTRC Output signals

Table 527: TRPPTRC Output signals

Name	Туре	Description
TRIP	BOOLEAN	General trip output signal
CL_LKOUT	BOOLEAN	Circuit breaker lockout output (set until reset)

5.3.7 Settings

5.3.7.1 TRPPTRC Non group settings (Basic)

Table 528: TRPPTRC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Trip pulse time	2060000	ms	1	250	Minimum duration of trip output signal
Trip output mode	1=Non-latched 2=Latched 3=Lockout			1=Non-latched	Select the opera- tion mode for trip output

5.3.8 Monitored data

5.3.8.1 TRPPTRC Monitored data

Table 529: TRPPTRC Monitored data

Name	Туре	Values (Range)	Unit	Description
TRPPTRC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

5.3.9 Technical revision history

Table 530: TRPPTRC Technical revision history

Technical revision	Change
В	-
С	-
D	Internal improvement.
Е	Setting <i>Trip output mode</i> default setting is changed to "Latched".
F	Internal improvement.

5.4 Fault locator SCEFRFLO

5.4.1 Identification

Function description	1	IEC 60617 identification	ANSI/IEEE C37.2 device number
Fault locator	SCEFRFLO	FLOC	21FL

5.4.2 Function block

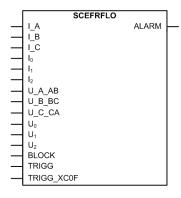


Figure 247: Function block

5.4.3 Functionality

The fault locator function SCEFRFLO provides impedance-based fault location. It is designed for radially operated distribution systems. It is applicable for locating short circuits in all kinds of distribution networks. Earth faults can be located in effectively earthed and in low-resistance or low-reactance earthed networks. Under certain limitations, SCEFRFLO can also be applied for an earth-fault location in unearthed distribution networks.

The fault distance calculation is based on locally measured fundamental frequency current and voltage phasors. The full operation of SCEFRFLO requires that all phase currents and phase-to-earth voltages are measured.

The fault distance estimate is obtained when the function is externally or internally triggered.

5.4.4 Operation principle

The fault distance calculation is done in two steps. First, the fault type is determined with the inbuilt Phase Selection Logic (PSL). Second, based on the selected impedance measuring element (fault loop) the fault distance from the measuring point to the fault location is calculated.

As a fundamental operation criterion, the phase current and voltage magnitudes must exceed the threshold values of 2% xIn and 3% xUn, respectively.

The function can be enabled or disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of SCEFRFLO can be described with a module diagram. All the modules in the diagram are explained in the next sections.

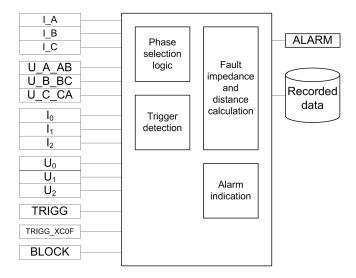


Figure 248: Functional module diagram

5.4.4.1 Phase selection logic

Identification of the faulty phases is provided by the built-in Phase Selection Logic based on combined impedance and current criterion. Phase selection logic is virtually setting-free and has only one parameter, *Z Max phase load*, for discriminating a large symmetrical load from a three-phase fault. The setting *Z Max phase load* can be calculated using the equation.

Z Max phase load =
$$0.8 \cdot \frac{U_{xy}^2}{S_{max}}$$

(Equation 45)

U _{xy} Nominal phase-to-phase voltage S _{max} Maximum three-phase load

For example, if U $_{xy}$ = 20 kV and S $_{max}$ = 1 MVA, then Z Max phase load = 320.0 Ω .

The identification of the faulty phases is compulsory for the correct operation of SCEFRFLO. This is because only one of the impedance-measuring elements (fault loops) provides the correct result for a specific fault type. A three-phase fault is an exception and theoretically it can be calculated with any of the fault loops. The fault loop used in the fault distance calculation is indicated in the recorded data Flt loop as specified in *Table 531*.

Table 531: Fault types and corresponding fault loops

Fault type	Description	Fit loop
-	No fault	No fault
A-E	Phase A-to-earth fault	AG Fault
B-E	Phase B-to-earth fault	BG Fault
C-E	Phase C-to-earth fault	CG Fault
A-B	Phase A-to-B short circuit fault	AB Fault
B-C	Phase B-to-C short circuit fault	BC Fault
C-A	Phase C-to-A short circuit fault	AC Fault
A-B-C-(E)	Three-phase short circuit	ABC Fault

In case of two-phase-to-earth faults (A-B-E, B-C-E or C-A-E), the selected fault loop depends on the location of the individual earth faults. When the faults are located at the same feeder, the corresponding phase-to-phase loop (either "AB Fault" or "BC Fault" or "CA Fault") is used for calculation. When the faults are located at different feeders, the phase-to-earth loop (either "AG Fault" or "BG Fault" or "CG Fault") corresponding to the faulty phase at the protected feeder is used for calculation.

5.4.4.2 Fault impedance and distance calculation

As soon as a fault condition is recognized by the phase selection logic, the fault distance calculation is started with one of the seven impedance-measuring elements, that is, the fault loops. SCEFRFLO employs independent algorithms for each fault type to achieve optimal performance.

The inherent result from the fault distance calculation is the ohmic fault loop impedance value.

Table 532: The calculated impedance values available in the recorded data

Impedance valule	Description
Flt phase reactance	Estimated positive sequence reactance from the substation to the fault location in primary ohms.
Flt point resistance	Fault resistance value in the fault spot in primary ohms. The composition of this term depends on the fault loop as described in the following subsections.

Table continues on the next page

Impedance valule	Description
Flt loop resistance	The total fault loop resistance from the substation to the fault location in primary ohms. Fault point resistance is included in this value. The composition of this term is different for short-circuit and earthfault loops as described in the following subsections.
Flt loop reactance	The total fault loop reactance from the substation to the fault location in primary ohms. The composition of this term is different for short-circuit and earth-faults loops as described in the following subsections.

These impedance values can be utilized as such or they can be further processed in system level fault location applications, such as distribution management system (DMS).

Fault loops "AG Fault" or "BG Fault" or "CG Fault"

Fault loops "AG Fault", "BG Fault" or "CG Fault" are used for single-phase-to-earth faults. When the individual earth faults are located at different feeders, they are also applied in the case of two-phase-to-earth fault. In this case, the phase-to-earth loop (either "AG Fault" or "BG Fault" or "CG Fault") corresponding to the faulty phase at the protected feeder, is used for calculation. *Figure 249* shows the phase-to-earth fault loop model. The following impedances are measured and stored in the recorded data of SCEFRFLO.

Flt point resistance = R_{fault}

(Equation 46)

Flt loop resistance = $R_1 + R_N + R_{fault}$

(Equation 47)

Flt loop reactance = $X_1 + X_N$

(Equation 48)

Flt phase reactance = X_1

(Equation 49)

R $_1$ Estimated positive-sequence resistance from the substation to the fault location

X $_1$ Estimated positive-sequence reactance from the substation to the fault location

R $_0$ Estimated zero-sequence resistance from the substation to the fault location

X $_0$ Estimated zero-sequence reactance from the substation to the fault location

R $_N$ Estimated the earth return path resistance (= (R0 – R1)/3) from the substation to the fault location

X $_N$ Estimated is the earth return path reactance (= (X0 – X1)/3) from the substation to the fault

Estimated fault resistance at the fault location

R fault

The recorded data Flt phase reactance provides the estimated positive-sequence reactance from the substation to the fault location.

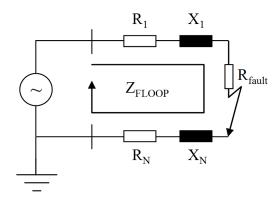
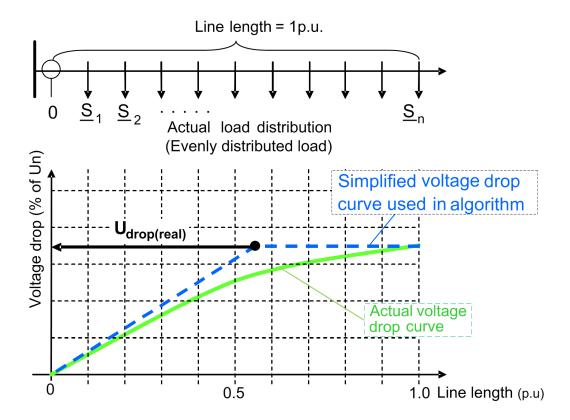


Figure 249: Fault loop impedance for phase-to-earth fault loops "AG Fault", "BG Fault" or "CG Fault"

The earth-fault distance calculation algorithm is selected with setting *EF algorithm* Sel. Options for the selection are "Load compensation" and "Load modelling". For the correct operation of both algorithms there should not be any zero-sequence current sources, for example, earthing transformers, in front of the protection relay location.


The "Load compensation" algorithm utilizes symmetrical components to compensate for the effect of load on the measured voltages and currents. In case of radial feeders, this algorithm should be selected with low-impedance/effectively earthed systems where the fault current is fed from one side only and there are no in-feeds along the protected line.

The "Load modelling" algorithm takes into account the effect of the load in the measured currents and voltages by considering it in the fault loop model. In case of radial feeders, this algorithm can be applied with low-impedance/effectively earthed systems where the fault current is fed from one side only. The "Load modelling" algorithm has been especially designed for unearthed systems.

The "Load modelling" algorithm requires the Equivalent load Dis setting, that is, an equivalent load distance, as an additional parameter. The derivation and meaning of this parameter is illustrated in Figure 250, where the load is assumed to be evenly distributed along the feeder, resulting in the actual voltage drop curve as seen in the middle part of Figure 250.

In case of evenly distributed load, Equivalent load Dis ~ 0.5. When the load is tapped at the end of the feeder, Equivalent load Dis = 1.0. If the load distribution is unknown, a default value of 0.5 can be used for Equivalent load Dis.

The maximum value of the voltage drop, denoted as U_{drop} (real), appears at the end of the feeder. The Equivalent load Dis parameter is the distance at which a single load tap corresponding to the total load of the feeder would result in a voltage drop equal to U _{drop}(real). The dashed curve shows the voltage drop profile in this case.

distance of equivalent load tap = Equivalent load Dis

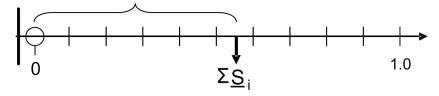


Figure 250: Description of the equivalent load distance

The exact value for *Equivalent load Dis* can be calculated based on the load flow and voltage drop calculations using data from DMS-system and the following equation.

Equivalent load Dis =
$$\frac{U_{d(real)}}{U_{d(tap,d=1)}}$$

(Equation 50)

U $_{d(real)}$ The actual maximum voltage drop of the feeder

U $_{d(tap,d=1)}$ The fictional voltage drop, if the entire load would be tapped at the end (d=1) of the feeder (not drawn in *Figure 250*). The calculation of this value requires data from the DMS system.

Alternatively, the setting *Equivalent load Dis* can be determined by conducting a single-phase earth-fault test (R $_{fault}$ = 0 Ω) at that point of the feeder where the maximum actual voltage drop takes place. This point is typically located at the end

of the main line. As a result, the calculated value is stored in the recorded data Equivalent load Dis.

In addition, when the setting *EF algorithm Sel* is equal to "Load modelling", the *EF algorithm Cur Sel* setting determines whether zero-sequence "lo based" or negative-sequence "l2 based" current based algorithm is used. The difference between "lo based" and "l2 based" methods is that "l2 based" does not require the *Ph capacitive React* and *Ph leakage Ris* settings. In case of "lo based", these settings are needed to compensate for the influence of the line-charging capacitances of the protected feeder. This improves the accuracy of the fault location estimate when fault resistance is involved in the fault.

Under certain restrictions, the "Load modelling" algorithm can also be applied to unearthed networks. In this case the *EF algorithm Cur Sel* setting should be set to "lo based" and thus *Ph capacitive React* and *Ph leakage Ris* settings must be determined.

The prerequisite for the operation of SCEFRFLO in earth faults in unearthed networks is that the earth-fault current of the network corresponding to a solid fault exceeds the pre-fault load current; that is the *Equation 51* is valid.

Flt to Lod Cur ratio =
$$\frac{\left|I_{ef(Rfault=0)}\right|}{\left|I_{Load}\right|} \ge 1$$

(Equation 51)

This ratio is estimated by SCEFRFLO and stored in the recorded data Flt to Lod Cur ratio together with the fault distance estimate.

In case of unearthed network, sufficient fault current magnitude resulting in Flt to Lod Cur ratio >1 can be achieved, for example, with proper switching operations in the background network, if possible, which increase the fault current. If the faulty feeder is re-energized after the switching operation, a new estimate for the fault distance can be obtained. Fault resistance decreases the fault location accuracy and the resistance should not be too high, the maximum is a few hundred ohms. Also low value of Flt to Lod Cur ratio causes inaccuracy and affects the quality of fault distance estimate. Considered inaccuracies affecting the calculated fault distance estimate are reported in the recorded result quality indicator value Flt Dist quality in *Table 533*.

Fault loops "AB Fault", "BC Fault" or "CA Fault"

Fault loops "AB Fault", "BC Fault" or "CA Fault" are used for phase-to-phase short circuit faults as well as in the case of a two-phase-to-earth fault if the individual earth faults are located at the same feeder. *Figure 251* shows the phase-to-phase fault loop model. The following impedances are measured and stored in the recorded data of SCEFRFLO.

Flt point resistance =
$$\frac{R_{fault}}{2}$$

(Equation 52)

Flt loop resistance =
$$R_1 + \frac{R_{fault}}{2}$$

(Equation 53)

Flt loop reactance = Flt phase reactance = X_1

(Equation 54)

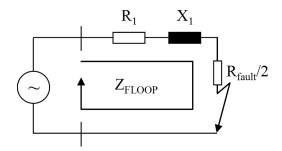


Figure 251: Fault loop impedance for phase-to-phase fault loops (either "AB Fault", "BC Fault" or "CA Fault")

The fault distance calculation algorithm for the phase-to-phase fault loops is defined by using settings *Load Com PP loops* and *Enable simple model*. Options for the selection are "Disabled" or "Enabled".

Load compensation can be enabled or disabled with setting *Load Com PP loops*. The load compensation should be disabled only if the ratio between the fault current and load current is large or when the value of the fault distance estimate for the short circuit fault is required from each shot of an autoreclosing sequence.

The fault distance calculation is most accurate when calculated with the fault loop model. This model requires positive sequence impedances of the protected feeder to be given as settings. If these settings are not available, valid impedance values can be calculated also without the fault loop model with setting *Enable simple model* = "TRUE". However, valid distance estimate, that is, the conversion of measured impedance ("electrical fault distance") into a physical fault distance requires accurate positive sequence impedance settings.

Fault loop "ABC Fault"

Fault loop "ABC Fault" is used exclusively for the three-phase short circuit fault. *Figure 252* shows the three-phase fault loop model. The following impedances are measured and stored in the recorded data of SCEFRFLO.

Flt point resistance = R_{fault}

(Equation 55)

Flt loop resistance = $R_1 + R_{fault}$

(Equation 56)

Flt loop reactance = Flt phase reactance = X_1

(Equation 57)

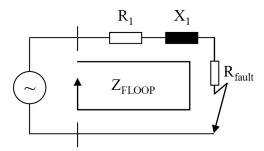


Figure 252: Fault loop impedance for a three-phase fault loop ("ABC Fault")

The three-phase fault distance is calculated with a special measuring element using positive-sequence quantities. This is advantageous especially in case of non-transposed (asymmetric) lines, as the influence of line parameter asymmetry is reduced. If the line is non-transposed, all the phase-to-phase loops have different fault loop reactances. The use of positive-sequence quantities results in the average value of phase-to-phase loop reactances, that is, the most representative estimate in case of three-phase faults.

The fault distance calculation algorithm for the three-phase fault loop is defined by using settings *Load Com PP loops* and *Enable simple model*. Options for the selection are "Disabled" or "Enabled".

Load compensation can be enabled or disabled with setting *Load Com PP loops*. The load compensation should be disabled only if the ratio between the fault current and load current is large or when the value of the fault distance estimate for the short circuit fault is required from each shot of an autoreclosing sequence.

The fault distance calculation is most accurate when the calculation is made with the fault loop model. This model requires positive sequence impedances of the protected feeder to be given as settings. If these settings are not available, valid impedance values can be calculated also without the fault loop model with setting *Enable simple model* = "TRUE". However, valid distance estimate, that is, the conversion of measured impedance ("electrical fault distance") into a physical fault distance requires accurate positive sequence impedance settings.

Estimation of fault resistance in different fault loops

The fault point resistance value provided by the impedance calculation is available in recorded data Flt point resistance and it depends on the applied fault loop as shown in *Figure 253*. In case of earth faults, the estimated fault point resistance includes the total fault point resistance between the faulted phase and earth, for example, the arc and earthing resistances. In case of phase-to-phase faults, the estimated fault point resistance is half of the total fault point resistance between the phases. In case of a three-phase fault, the estimated fault point resistance equals the total fault point resistance as per phase value, for example, the arc resistance per phase.

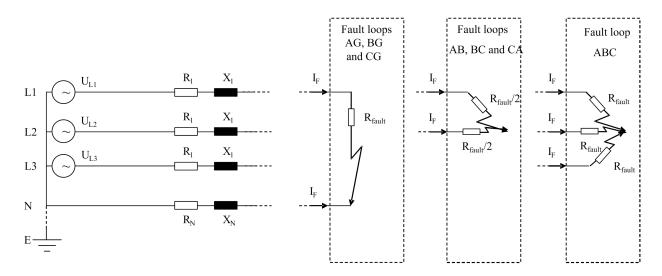


Figure 253: Definition of a physical fault point resistance in different fault loops

Steady-state asymmetry and load compensation

In reality, power systems are never perfectly symmetrical. The asymmetry produces steady-state quantities in the form of zero-sequence and negative-sequence voltages and currents. If not compensated, these are error sources for fault distance calculation especially in case of earth faults. All earth-fault distance calculation algorithms of SCEFRFLO utilize the delta-quantities which mitigate the effects of the steady-state asymmetry.

Load current is another error source for fault distance calculation. Its influence increases with higher fault resistance values. SCEFRFLO employs independent load compensation methods for each fault type to achieve optimal performance. The purpose of load compensation is to improve the accuracy of the fault distance calculation models by estimating the actual fault current in the fault location. Deltaquantities are used for this to mitigate the effect of load current on fault distance estimation. For earth faults, the load compensation is done automatically inside the fault distance calculation algorithm. For short circuit faults, load compensation is enabled with setting *Load Com PP loops*. The default value is "Enabled". The parameter should be set to "Disabled" only if the ratio between the expected fault current and load current is large or when the fault distance estimate for short circuit fault is required for each shot of an autoreclosing sequence.

The delta-quantity describes the change in measured signal due to the fault.

$$\Delta X = X_{fault} + X_{pre-fault}$$

(Equation 58)

x fault Corresponds to the signal value during fault

 $x_{pre-fault}$ Corresponds to the signal value during healthy state just before fault

Result quality indicator

The quality of the estimated fault distance is judged and reported in recorded data as the Flt Dist quality together with the fault distance estimate. The Flt Dist quality is a bit vector indicating detected sources of inaccuracy in the fault distance estimate. In case Flt Dist quality equals 1, the result is not affected by error sources. This results in good quality for fault distance estimate. If factors affecting

negatively to fault distance estimation are detected, the Flt Dist quality is according to *Table 533*. In this case estimated fault distance, Flt distance value is given in HMI in parenthesis.

Table 533: Fault distance quality indicator Flt Dist quality

Value	Corresponding inaccuracy description
2	Estimation stability criterion has not been reached
4	Fault point resistance exceeds 500 Ω
8	Fault point resistance exceeds 5 × X _{loop}
16	Fault point resistance exceeds 20 \times X $_{loop}^{1}$
32	Flt to Lod Cur ratio is below 1.00
64	Fault distance estimate outside tolerances (<-0.1 pu or >1.1 pu)
128	Distance estimate calculation is not done due to too low magnitudes of I or U
256	Distance estimate calculation cannot be per- formed (for example avoiding internal divi- sion by zero)

For example, if fault point resistance exceeds 500Ω and Flt to Lod Cur ratio is below 1.0, Flt Dist quality is "36". As another example, if no error sources are found, but stability criterion is not met, the value of Flt Dist quality is "2".

Impedance settings

The fault distance calculation in SCEFRFLO is based on the fault loop impedance modeling. The fault loop is parametrized with the impedance settings and these can be set at maximum for three line sections (A, B and C). Each section is enabled by entering a section length, which differs from zero to settings *Line Len section A*, *Line Len section B* or *Line Len section C* in the order section A-> section B-> section C

The earth-fault loops require both positive-sequence and zero-sequence impedances, for example, *R1 line section A* and *X1 line section A*, *R0 line section A* and *X0 line section A*. For the short circuit loops, only positive-sequence impedances are needed. Even these can be omitted in the short circuit loops, if the setting *Enable simple model* equals "TRUE".

If the impedance settings are in use, it is important that the settings closely match the impedances of used conductor types. The impedance settings are given in primary ohms [ohm/pu] and the line section lengths in per unit [pu]. Thus, impedances can be either given in ohm/km and section length in km, or ohm/mile and section length in miles. The resulting Flt distance matches the units entered for the line section lengths.

Positive-sequence impedance values

Fault location requires accurate setting values for line impedances. Positivesequence impedances are required both for location of short circuits and earth

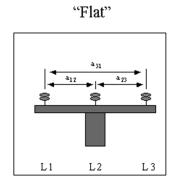
¹ Xloop is the total loop reactance according to settings

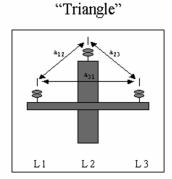
faults. As data sheet impedance per unit values are generally valid only for a certain tower configuration, the values should be adjusted according to the actual installation configuration. This minimizes the fault location errors caused by inaccurate settings.

The positive-sequence reactance per unit and per phase can be calculated with a following approximation equation which applies to symmetrically transposed three-phase aluminium overhead lines without ground wires.

$$X_1 \approx \omega_n \cdot 10^{-4} \left(2 \cdot \ln \frac{a_{en}}{r} + 0.5 \right) [\Omega / km]$$

(Equation 59)


 ω_n 2 × π × f_n, where f_n = fundamental frequency [Hz]


 a_{en} $\sqrt[3]{(a_{12} \cdot a_{23} \cdot a_{31})}$

the geometric average of phase distances [m]

a $_{xy}$ distance [m] between phases x and y

r radius [m] for single conductor

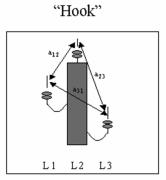


Figure 254: Typical distribution line tower configurations

Example values of positive-sequence impedances for typical medium voltage overhead-lines are given in the following tables.

Table 534: Positive-sequence impedance values for typical 11 kV conductors, "Flat" tower configuration assumed

Name	R1 [Ω/km]	X1 [Ω/km]
ACSR 50 SQ.mm	0.532	0.373
ACSR 500 SQ.mm	0.0725	0.270

Table 535: Positive-sequence impedance values for typical 10/20 kV conductors, "Flat" tower configuration assumed

Name	R1 [Ω/km]	X1 [Ω/km]
Al/Fe 36/6 Sparrow	0.915	0.383
Al/Fe 54/9 Raven	0.578	0.368
Al/Fe 85/14 Pigeon	0.364	0.354
Al/Fe 93/39 Imatra	0.335	0.344
Al/Fe 108/23 Vaasa	0.287	0.344
Al/Fe 305/39 Duck	0.103	0.314

Table 536: Positive-sequence impedance values for typical 33 kV conductors, "Flat" tower configuration assumed

Name	R1 [Ω/km]	X1 [Ω/km]
ACSR 50 sq.mm	0.529	0.444
ACSR 100 sq.mm	0.394	0.434
ACSR 500 sq.mm	0.0548	0.346

Zero-sequence impedance values

Location of earth faults requires both positive-sequence and zero-sequence impedances. For short circuit faults, zero-sequence impedances are not required.

The positive-sequence impedance per unit values for the lines are typically known or can easily be obtained from data sheets. The zero-sequence values are generally not as easy to obtain as they depend on the actual installation conditions and configurations. Sufficient accuracy can, however, be obtained with rather simple calculations using the following equations, which apply per phase for symmetrically transposed three-phase aluminium overhead lines without ground wires.

$$R_0[50Hz] \approx R1 + 0.14804[\Omega / km]$$

(Equation 60)

 $R_0[60Hz] \approx R1 + 0.17765[\Omega / km]$

(Equation 61)

$$X_0 \approx 2 \cdot \omega_n \cdot 10^{-4} \left(3 \cdot \ln \frac{w}{r_{en}} + 0.25 \right) [\Omega / km]$$

(Equation 62)

R $_1$ conductor AC resistance [Ω /km] W $658\sqrt{\frac{\rho_{\it earth}}{f_n}}$

the equivalent depth [m] of the earth return path

 ρ_{earth} earth resistivity [Ωm]

 r_{en} $\sqrt[3]{r \cdot \sqrt[3]{a_{12}^2 \cdot a_{23}^2 \cdot a_{31}^2}}$

the equivalent radius [m] for conductor bundle

r radius [m] for single conductor

a xy distance [m] between phases x and y

Ph leakage Ris and Ph capacitive React settings

The *Ph leakage Ris* and *Ph capacitive React* settings are used for improving fault distance estimation accuracy for earth faults. They are critical for an accurate fault location in unearthed networks. In other types of networks they are less critical. The *Ph leakage Ris* setting represents the leakage losses of the protected feeder in terms of resistance per phase. The *Ph capacitive React* setting represents the total phase-to-earth capacitive reactance of the protected feeder per phase. Based on experience, a proper estimate for *Ph leakage Ris* should be about 20...40 × *Ph capacitive React*.

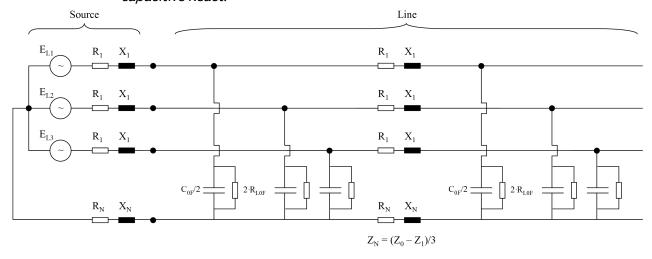


Figure 255: Equivalent diagram of the protected feeder. R LOF = Ph leakage Ris.

The determination of the *Ph capacitive React* setting can be based either on network data or measurement.

If the total phase-to-earth capacitance (including all branches) per phase C $_{
m OF}$ of the protected feeder is known, the setting value can be calculated.

Ph capacitive React =
$$\frac{1}{\left(\omega_{n} \cdot C_{0F}\right)}$$

(Equation 63)

In case of unearthed network, if the earth-fault current produced by the protected feeder I _{ef} is known, the setting value can be calculated.

Ph capacitive React =
$$\frac{\sqrt{3} \cdot U_{xy}}{I_{ef}}$$

(Equation 64)

U xv Phase-to-earth voltage

SCEFRFLO can also determine the value for the *Ph capacitive React* setting by measurements. The calculation of *Ph capacitive React* is triggered by the binary signal connected to the <code>TRIGG_XCOF</code> input when an earth-fault test is conducted outside the protected feeder during commissioning, for example, at the substation busbar. The *Calculation Trg mode* has to be "External". After the activation of the <code>TRIGG_XCOF</code> triggering input, the calculated value for setting *Ph capacitive React* is obtained from recorded data as parameter *XCOF Calc*. This value has to be manually entered for the *Ph capacitive React* setting. The calculated value matches the current switching state of the feeder and thus, if the switching state of the protected feeder changes, the value should be updated.

Figure 256 shows an example configuration, which enables the measurement of setting *Ph capacitive React*.

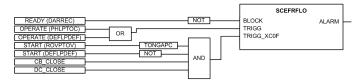


Figure 256: An example configuration, which enables the measurement of setting Ph capacitive React

If the earth fault is detected by the residual overvoltage function (START of ROVPTOV), but not seen by the forward-looking earth-fault protection function (START of DEFLPDEF), the fault is located outside the protected feeder. This is mandatory for valid measurement of setting *Ph capacitive React*. After a set delay (TONGAPC), the input TRIGG_XCOF is activated and the parameter *XCOF Calc* in the recorded data is updated. The delay (TONGAPC) must be set longer than the start delay of the directional earth-fault function DEFLPDEF, but shorter than the minimum operating time of the directional earth-fault functions in any of the feeders. For example, if the start delay is 100 ms and the shortest operating time 300 ms, a value of 300 ms can be used. Circuit breaker and disconnector status is used to verify that the entire feeder is measured.

Modeling a non-homogeneous line

A typical distribution feeder is built with several different types of overhead lines and cables. This means that the feeder is electrically non-homogeneous. SCEFRFLO allows the modeling of the line impedance variation in protection relay with three line sections with independent impedance settings. This improves the accuracy of physical fault distance conversion done in the protection relay, especially in cases where the line impedance non-homogeneity is severe. Each section is enabled by entering a section length, which differs from zero, to settings *Line Len section A*,

510 REC615 & RER615
Technical Manual

Line Len section B or *Line Len section C* in the order section A-> section B-> section C.

Impedance model with one line section is enabled by setting *Line Len section A* to differ from zero. In this case the impedance settings *R1 line section A*, *X1 line section A*, *R0 line section A* and *X0 line section A* are used for the fault distance calculation and for conversion from reactance to physical fault distance. This option should be used only in the case of a homogeneous line, that is, when the protected feeder consists of only one conductor type.

Impedance model with two line sections is enabled by setting both *Line Len section A* and *Line Len section B* to differ from zero. In this case the impedance settings *R1 line section A, X1 line section A, R0 line section A, X0 line section A, R1 line section B, X1 line section B, R0 line section B* and *X0 line section B* are used for the fault distance calculation and for conversion from reactance to physical fault distance. This option should be used in the case of a non-homogeneous line when the protected feeder consists of two types of conductors.

Impedance model with three line sections is enabled by setting *Line Len section A, Line Len section B* and *Line Len section C* all differ from zero. In this case the impedance settings *R1 line section A, X1 line section A, R0 line section A, X0 line section B, X0 line section B, X1 line section B, X0 line section B, X0 line section B, R1 line section C, X1 line section C, R0 line section C and X0 line section C are used for the fault distance calculation and for conversion from reactance to physical fault distance. This option should be used in the case of a non-homogeneous line when the protected feeder consists of more than two types of conductors.*

The effect of line impedance non-homogeneity in the conversion of fault loop reactance into physical fault distance is demonstrated in example shown in *Figure 257* with 10 kilometer long feeder with three line types. The total line impedance for the 10 km line is R1 = 6.602Ω (0.660Ω /km) and X1 = 3.405Ω (0.341Ω /km), consisting of the following sections and impedance values.

- 4 km of PAS 150 (R1 = 0.236 Ω /km, X1 = 0.276 Ω /km)
- 3 km of Al/Fe 54/9 Raven (R1 = 0.536 Ω /km, X1 = 0.369 Ω /km)
- 3 km of Al/Fe 21/4 Swan (R1 = 1.350 Ω /km, X1 = 0.398 Ω /km)

The non-homogeneity of feeder impedance can be illustrated by drawing the protected feeder in RX-diagram (in the impedance plane), as shown in *Figure 257*.

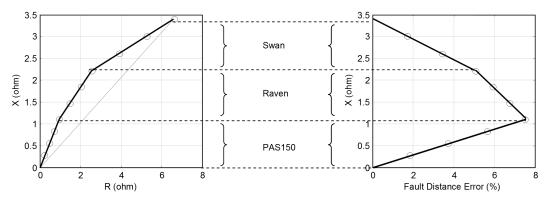


Figure 257: Example impedance diagram of an electrically non-homogeneous feeder (left), and the resulting error in fault distance if the measured fault loop reactance is converted into physical fault distance by using only one line section parameters (right).

In *Figure 257* the feeder is modelled either with one or three line sections with parameters given in *Table 537*.

Table 537: Impedance settings

Parameter	Impedance model with one section	Impedance model with three sections	
R1 line section A	0.660 Ω/pu	0.236 Ω/pu	
X1 line section A	0.341 Ω/pu	0.276 Ω/pu	
Line Len section A	10000 pu	4000 pu	
R1 line section B	N/A	0.536 Ω/pu	
X1 line section B	N/A	0.369 Ω/pu	
Line Len section B	0.000 pu	3000 pu	
R1 line section C	N/A	1.350 Ω/pu	
X1 line section C	N/A	0.398 Ω/pu	
Line Len section C	0.000 pu	3000 pu	

Figure 257 illustrates the conversion error from measured fault loop reactance into physical fault distance. The fault location is varied from 1 km to 10 km in 1 km steps (marked with circles). An error of nearly eight per cent at maximum is created by the conversion procedure when modeling a non-homogenous line with only one section. By using impedance model with three line sections, there is no error in the conversion.

The previous example assumed a short circuit fault and thus, only positive-sequence impedance settings were used. The results, however, also apply for earth faults.

Taps or spurs in the feeder

If the protected feeder consists of taps or spurs, the measured fault impedance corresponds to several physical fault locations (For example, A or B in *Figure 258*). The actual fault location must be identified using additional information, for example, short circuit current indicators placed on tapping points.

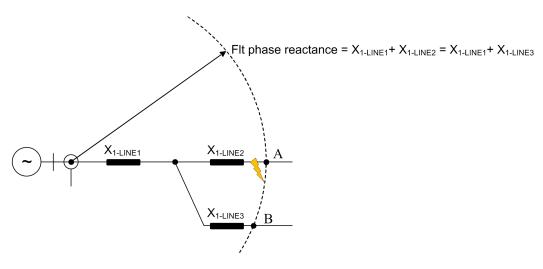


Figure 258: Fault on a distribution line with spurs

5.4.4.3 Trigger detection

The fault distance estimate is obtained when SCEFRFLO is triggered. The triggering method is defined with setting *Calculation Trg mode*. The options for selection are: "External" or "Internal", where the default value is "External". The TRIGG_OUT event indicates fault distance value recording moment. The fault distance estimate, Flt distance, together with the timestamp of actual triggering are saved in the recorded data of SCEFRFLO.

- In case of external triggering, an external trigger signal should be connected to the TRIGG input. The triggering signal is typically a trip signal from a protective function. At triggering moment the fault distance is stored into recorded data.
 It is important that triggering is timed suitably to provide sufficient distance estimation calculation time before tripping of the feeder circuit breaker.
- In case of internal triggering, the TRIGG input is not used for triggering. Instead, the trigger signal is created internally so that the estimation is started when phase selection logic detects a fault and the estimate is triggered when its value has stabilized sufficiently. This is judged by maximum variation in fault distance estimate and defined with setting *Distance estimate Va* (in the same unit as the fault distance estimate). When successive estimates during one fundamental cycle are within "final value ± *Distance estimate Va*", the fault distance estimate (mean of successive estimates) is recorded. In case stabilization criterion has not been fulfilled, the fault distance estimate is given just before the phase currents are interrupted. The phase selection logic is a non-directional function, and thus internal triggering should not be used when directionality is required.

Generally, SCEFRFLO requires a minimum of two fundamental cycles of measuring time after the fault occurrence. *Figure 259* illustrates typical behavior of fault distance estimate of SCEFRFLO as a function of time.

- Immediately after the fault occurrence, the estimate is affected by initial fault transients in voltages and currents.
- Approximately one fundamental cycle after the fault occurrence, the fault distance estimate starts to approach the final value.
- Approximately two fundamental cycles after the fault occurrence, the stability criterion for fault distance estimate is fulfilled and the TRIGG_OUT event is sent. The recorded data values are stored at this moment.

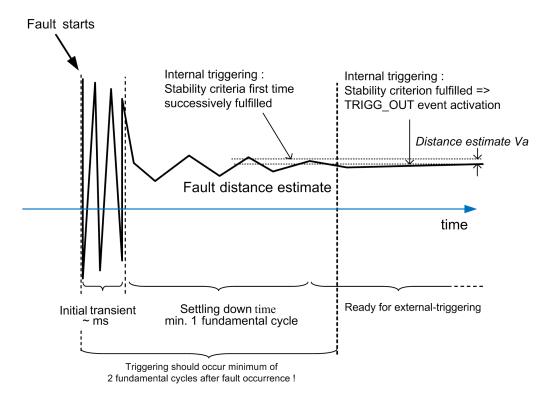


Figure 259: The behavior of fault distance estimate in time

5.4.4.4 Alarm indication

SCEFRFLO contains an alarm output for the calculated fault distance. If the calculated fault distance FLT_DISTANCE is between the settings *Low alarm Dis limit* and *High alarm Dis limit*, the ALARM output is activated.

The ALARM output can be utilized, for example, in regions with waterways or other places where knowledge of certain fault locations is of high importance.

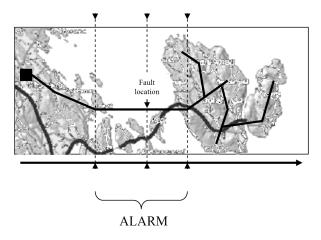


Figure 260: An example of the ALARM output use

5.4.4.5 Recorded data

All the information required for a later fault analysis is recorded to SCEFRFLO recorded data. In the protection relay, recorded data is found in **Monitoring** > **Recorded data** > **Other protection** > **SCEFRFLO**.

The function has also monitored data values which are used for the read-out of continuous calculation values. *Table 538* shows which of the recorded data values are available as continuous monitoring values during a fault.

Table 538: Cross reference table for recorded and monitored data values

Recorded data	Monitored data
Flt loop	FAULT_LOOP
Flt distance	FLT_DISTANCE
Flt Dist quality	FLT_DIST_Q
Flt loop resistance	RFLOOP
Flt loop reactance	XFLOOP
Flt phase reactance	XFPHASE
Flt point resistance	RF
Flt to Lod Cur ratio	IFLT_PER_ILD
Equivalent load Dis	S_CALC
XC0F Calc	XC0F_CALC

5.4.4.6 Measurement modes

The full operation of SCEFRFLO requires that all three phase-to-earth voltages are measured. The voltages can be measured with conventional voltage transformers or voltage dividers connected between the phase and earth (*VT connection* is set to "Wye"). Another alternative is to measure phase-to-phase voltages (*VT connection* is set to "Delta") and residual voltage (Uo). Both alternatives are covered by setting the configuration parameter *Phase voltage Meas* to "Accurate".

When the *Phase voltage Meas* setting is set to "Ph-to-ph without Uo" and only phase-to-phase voltages are available (but not Uo), only short-circuit measuring loops (fault loops "AB Fault", "BC Fault" or "CA Fault" or "ABC Fault") can be measured accurately. In this case, the earth-fault loops (fault loops either "AG Fault", "BG Fault" or "CG Fault") cannot provide correct fault distance estimates and the triggering of the function in case of earth fault is automatically disabled.

5.4.5 Application

The main objective of the feeder terminals is a fast, selective and reliable operation in faults inside the protected feeder. In addition, information on the distance to the fault point is very important for those involved in operation and maintenance. Reliable information on the fault location greatly decreases the downtime of the protected feeders and increases the total availability of a power system.

SCEFRFLO provides impedance-based fault location. It is designed for radially operated distribution systems and is applicable for locating short circuits in all kinds of distribution networks. Earth faults can be located in effectively earthed and low resistance/low-reactance earthed networks. Under certain limitations,

SCEFRFLO can also be applied for earth-fault location in unearthed distribution networks.

Configuration example

A typical configuration example for SCEFRFLO triggering is illustrated in *Figure 256* where external triggering is applied, that is, *Calculation Trg mode* is set to "External". The OPERATE signal from non-directional overcurrent function PHLPTOC is used to provide an indication of a short circuit fault. The OPERATE signal from the directional earth-fault function DEFLPDEF is used to provide an indication of an earth fault at the protected feeder.

SCEFRFLO with the autoreclosing function

When SCEFRFLO is used with the autoreclosing sequence, the distance estimate from the first trip is typically the most accurate one. The fault distance estimates from successive trips are possible but accuracy can be decreased due to inaccurate load compensation. During the dead time of an autoreclosing sequence, the load condition of the feeder is uncertain.

The triggering of SCEFRFLO can also be inhibited during the autoreclosing sequence. This is achieved by connecting the inverted READY signal from the autoreclosing function DARREC, which indicates that the autoreclosing sequence is in progress, to the BLOCK input of SCEFRFLO. Blocking of the SCEFRFLO triggering is suggested during the autoreclosing sequence when the load compensation or steady-state asymmetry elimination is based on the delta quantities. This applies to the short circuit faults when *Load Com PP loops* is set to "Enabled" or, for earth faults, when *EF algorithm Sel* is set to "Load compensation" or "Load modelling".

5.4.6 Signals

5.4.6.1 SCEFRFLO Input signals

Table 539: SCEFRFLO Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
lo	SIGNAL	0	Residual current
I ₁	SIGNAL	0	Positive sequence current
I 2	SIGNAL	0	Negative sequence current
U_A_AB	SIGNAL	0	Phase to earth voltage A or phase to phase voltage AB

Name	Туре	Default	Description	
U_B_BC	SIGNAL	0	Phase to earth voltage B or phase to phase voltage BC	
U_C_CA	SIGNAL	0	Phase to earth voltage C or phase to phase voltage CA	
Uo	SIGNAL	0	Residual voltage	
U ₁	SIGNAL	0	Positive phase sequence voltage	
U ₂	SIGNAL	0	Negative phase sequence voltage	
BLOCK	BOOLEAN	0=False	Signal for blocking the triggering	
TRIGG	BOOLEAN	0=False	Distance calculation triggering signal	
TRIGG_XC0F	BOOLEAN	0=False	XCOF calculation trig- gering signal	

5.4.6.2 SCEFRFLO Output signals

Table 540: SCEFRFLO Output signals

Name	Туре	Description	
ALARM	BOOLEAN	Fault location alarm signal	

5.4.7 Settings

5.4.7.1 SCEFRFLO Group settings

Table 541: SCEFRFLO Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Z Max phase load	1.010000.0	ohm	0.1	80.0	Impedance per phase of max. load, overcurr./un- der-imp., PSL
Ph leakage Ris	201000000	ohm	1	210000	Line PhE leakage resistance in pri- mary ohms
Ph capacitive React	101000000	ohm	1	7000	Line PhE capaci- tive reactance in primary ohms
R1 line section A	0.0001000.000	ohm / pu	0.001	1.000	Positive sequence line resistance, line section A
X1 line section A	0.0001000.000	ohm / pu	0.001	1.000	Positive sequence line reactance, line section A

Parameter	Values (Range)	Unit	Step	Default	Description
R0 line section A	0.0001000.000	ohm / pu	0.001	4.000	Zero sequence line resistance, line section A
X0 line section A	0.0001000.000	ohm / pu	0.001	4.000	Zero sequence line reactance, line section A
Line Len section A	0.0001000.000	pu	0.001	0.000	Line length, section A

Table 542: SCEFRFLO Group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
High alarm Dis limit	0.0001.000	pu	0.001	0.000	High alarm limit for calculated distance
Low alarm Dis limit	0.0001.000	pu	0.001	0.000	Low alarm limit for calculated distance
Equivalent load Dis	0.001.00		0.01	0.50	Equivalent load distance when EF algorithm equals to load modelling
R1 line section B	0.0001000.000	ohm / pu	0.001	1.000	Positive sequence line resistance, line section B
X1 line section B	0.0001000.000	ohm / pu	0.001	1.000	Positive sequence line reactance, line section B
R0 line section B	0.0001000.000	ohm / pu	0.001	4.000	Zero sequence line resistance, line section B
X0 line section B	0.0001000.000	ohm / pu	0.001	4.000	Zero sequence line reactance, line section B
Line Len section B	0.0001000.000	pu	0.001	0.000	Line length, section B
R1 line section C	0.0001000.000	ohm / pu	0.001	1.000	Positive sequence line resistance, line section C
X1 line section C	0.0001000.000	ohm / pu	0.001	1.000	Positive sequence line reactance, line section C
R0 line section C	0.0001000.000	ohm / pu	0.001	4.000	Zero sequence line resistance, line section C
X0 line section C	0.0001000.000	ohm / pu	0.001	4.000	Zero sequence line reactance, line section C
Line Len section C	0.0001000.000	pu	0.001	0.000	Line length, section C

Table 543: SCEFRFLO Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Phase voltage Meas	1=Accurate 2=Ph-to-ph without Uo			1=Accurate	Phase voltage measurement prin- ciple
Calculation Trg mode	1=Internal 2=External			2=External	Trigger mode for distance calcu- lation

Table 544: SCEFRFLO Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
EF algorithm Sel	1=Load compensa- tion 2=Load modelling			1=Load compensa- tion	Selection for PhE- loop calculation al- gorithm
EF algorithm Cur Sel	1=Io based 2=I2 based			1=lo based	Selection for earth- fault current model
Load Com PP loops	0=Disabled 1=Enabled			1=Enabled	Enable load com- pensation for PP/3P-loops
Enable simple model	0=Disabled 1=Enabled			0=Disabled	Enable calc. with- out impedance set- tings for PP/3P- loops
Distance estimate Va	0.0010.300		0.001	0.015	Allowed variation of short circuit distance estimate

5.4.8 Monitored data

5.4.8.1 SCEFRFLO Monitored data

Table 545: SCEFRFLO Monitored data

Name	Туре	Values (Range)	Unit	Description
RF	FLOAT32	0.01000000.0	ohm	Fault point resistance in primary ohms
FAULT_LOOP	Enum	1=AG Fault		Fault impedance
		2=BG Fault		loop
		3=CG Fault		
		4=AB Fault		
		5=BC Fault		
		6=CA Fault		
		7=ABC Fault		
		-5=No fault		
FLT_DISTANCE	FLOAT32	0.003000.00	pu	Fault distance in units selected by the user
FLT_DIST_Q	INT32	0511		Fault distance quality
RFLOOP	FLOAT32	0.01000000.0	ohm	Fault loop resist- ance in primary ohms

Name	Туре	Values (Range)	Unit	Description
XFLOOP	FLOAT32	0.01000000.0	ohm	Fault loop reac- tance in primary ohms
XFPHASE	FLOAT32	0.01000000.0	ohm	Positive sequence fault reactance in primary ohms
IFLT_PER_ILD	FLOAT32	0.0060000.00		Fault to load cur- rent ratio
S_CALC	FLOAT32	0.001.00		Estimated equivalent load distance
XC0F_CALC	FLOAT32	0.01000000.0	ohm	Estimated PhE capacitive reactance of line
SCEFRFLO	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		
Triggering time	Timestamp			Estimate trigger- ing time
Flt loop	Enum	1=AG Fault		Fault loop
		2=BG Fault		
		3=CG Fault		
		4=AB Fault		
		5=BC Fault		
		6=CA Fault		
		7=ABC Fault		
		-5=No fault		
Flt distance	FLOAT32	0.003000.00	pu	Fault distance
Flt Dist quality	INT32	0511		Fault distance quality
Flt loop resist- ance	FLOAT32	0.01000000.0	ohm	Fault loop resistance
Flt loop reac- tance	FLOAT32	0.01000000.0	ohm	Fault loop reactance
Flt phase reac- tance	FLOAT32	0.01000000.0	ohm	Fault phase reactance
Flt point resist- ance	FLOAT32	0.01000000.0	ohm	Fault resistance

Name	Туре	Values (Range)	Unit	Description
Flt to Lod Cur ra- tio	FLOAT32	0.0060000.00		Fault to load cur- rent ratio
Equivalent load Dis	FLOAT32	0.001.00		Estimated equivalent load distance
XC0F Calc	FLOAT32	0.01000000.0	ohm	Estimated PhE capacitive reactance of the line
Pre fault time	Timestamp			Pre-fault time
A Pre Flt Phs A Magn	FLOAT32	0.0040.00	xIn	Pre-fault current phase A, magni- tude
A Pre Flt Phs A Angl	FLOAT32	-180.00180.00	deg	Pre-fault current phase A, angle
A Pre Flt Phs B Magn	FLOAT32	0.0040.00	xIn	Pre-fault current phase B, magni- tude
A Pre Flt Phs B Angl	FLOAT32	-180.00180.00	deg	Pre-fault current phase B, angle
A Pre Flt Phs C Magn	FLOAT32	0.0040.00	xIn	Pre-fault current phase C, magni- tude
A Pre Flt Phs C Angl	FLOAT32	-180.00180.00	deg	Pre-fault current phase C, angle
V Pre Flt Phs A Magn	FLOAT32	0.0040.00	xIn	Pre-fault voltage phase A, magni- tude
V Pre Flt Phs A Angl	FLOAT32	-180.00180.00	deg	Pre-fault voltage phase A, angle
V Pre Flt Phs B Magn	FLOAT32	0.0040.00	xIn	Pre-fault voltage phase B, magni- tude
V Pre Flt Phs B Angl	FLOAT32	-180.00180.00	deg	Pre-fault voltage phase B, angle
V Pre Flt Phs C Magn	FLOAT32	0.0040.00	xIn	Pre-fault voltage phase C, magni- tude
V Pre Flt Phs C Angl	FLOAT32	-180.00180.00	deg	Pre-fault voltage phase C, angle
A Flt Phs A Magn	FLOAT32	0.0040.00	xIn	Fault current phase A, magni- tude
A Flt Phs A angle	FLOAT32	-180.00180.00	deg	Fault current phase A, angle

Name	Туре	Values (Range)	Unit	Description
A Flt Phs B Magn	FLOAT32	0.0040.00	xIn	Fault current phase B, magni- tude
A Flt Phs B angle	FLOAT32	-180.00180.00	deg	Fault current phase B, angle
A Flt Phs C Magn	FLOAT32	0.0040.00	xIn	Fault current phase C, magni- tude
A Flt Phs C angle	FLOAT32	-180.00180.00	deg	Fault current phase C, angle
V Flt Phs A Magn	FLOAT32	0.0040.00	xIn	Fault voltage phase A, magni- tude
V Flt Phs A angle	FLOAT32	-180.00180.00	deg	Fault voltage phase A, angle
V Flt Phs B Magn	FLOAT32	0.0040.00	xIn	Fault voltage phase B, magni- tude
V Flt Phs B angle	FLOAT32	-180.00180.00	deg	Fault voltage phase B, angle
V Flt Phs C Magn	FLOAT32	0.0040.00	xIn	Fault voltage phase C, magni- tude
V Flt Phs C angle	FLOAT32	-180.00180.00	deg	Fault voltage phase C, angle

5.4.9 Technical data

Table 546: SCEFRFLO Technical data

Characteristic	Value
Measurement accuracy	At the frequency f = f _n
	Impedance:
	±2.5 % or ±0.25 Ω
	Distance:
	±2.5 % or ±0.16 km/0.1 mile
	XC0F_CALC:
	±2.5 % or ±50 Ω
	IFLT_PER_ILD:
	±5 % or ±0.05

5.4.10 Technical revision history

Table 547: SCEFRFLO Technical revision history

Technical revision	Change
В	Internal improvement.

6 Supervision functions

6.1 Trip circuit supervision TCSSCBR

6.1.1 Identification

Function description	IEC 61850 identification		ANSI/IEEE C37.2 device number
Trip circuit supervision	TCSSCBR	TCS	ТСМ

6.1.2 Function block

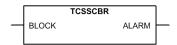


Figure 261: Function block

6.1.3 Functionality

The trip circuit supervision function TCSSCBR is designed to supervise the control circuit of the circuit breaker. The invalidity of a control circuit is detected by using a dedicated output contact that contains the supervision functionality. The failure of a circuit is reported to the corresponding function block in the relay configuration.

The function starts and operates when TCSSCBR detects a trip circuit failure. The operating time characteristic for the function is DT. The function operates after a predefined operating time and resets when the fault disappears.

The function contains a blocking functionality. Blocking deactivates the ${\tt ALARM}$ output and resets the timer.

6.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of TCSSCBR can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

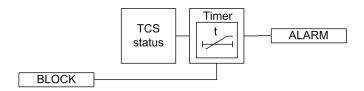


Figure 262: Functional module diagram

TCS status

This module receives the trip circuit status from the hardware. A detected failure in the trip circuit activates the timer.

Timer

Once activated, the timer runs until the set value of *Operate delay time* has elapsed. The time characteristic is according to DT. When the operation timer has reached the maximum time value, the ALARM output is activated. If a drop-off situation occurs during the operate time up counting, the fixed 0.5 s reset timer is activated. After that time, the operation timer is reset.

The BLOCK input can be controlled with a binary input, a horizontal communication input or an internal signal of the relay program. The activation of the BLOCK input prevents the ALARM output to be activated.

6.1.5 Application

TCSSCBR detects faults in the electrical control circuit of the circuit breaker. The function can supervise both open and closed coil circuits. This supervision is necessary to find out the vitality of the control circuits continuously.

Figure 263 shows an application of the trip circuit supervision function use. The best solution is to connect an external R $_{\rm ext}$ shunt resistor in parallel with the circuit breaker internal contact. Although the circuit breaker internal contact is open, TCS can see the trip circuit through R $_{\rm ext}$. The R $_{\rm ext}$ resistor should have such a resistance that the current through the resistance remains small, that is, it does not harm or overload the circuit breaker's trip coil.

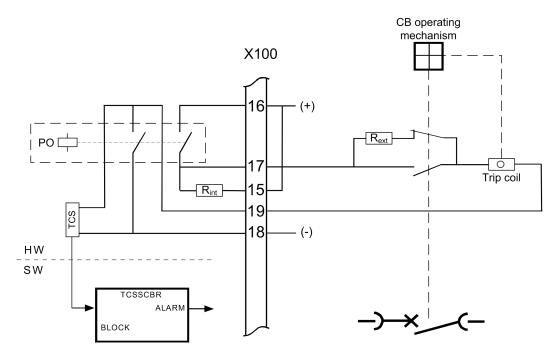


Figure 263: Operating principle of the trip-circuit supervision with an external resistor. The TCSSCBR blocking switch is not required since the external resistor is used.

If TCS is required only in a closed position, the external shunt resistance can be omitted. When the circuit breaker is in the open position, TCS sees the situation as a faulty circuit. One way to avoid TCS operation in this situation would be to block the supervision function whenever the circuit breaker is open.

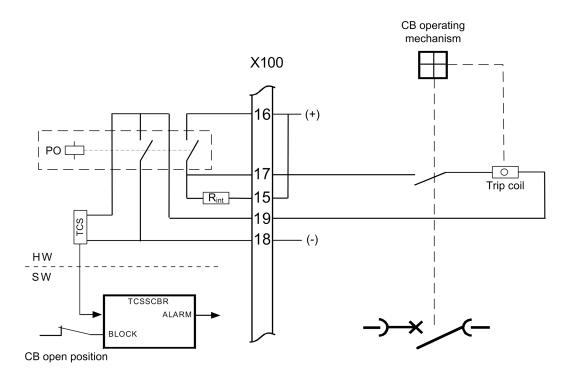


Figure 264: Operating principle of the trip-circuit supervision without an external resistor. The circuit breaker open indication is set to block TCSSCBR when the circuit breaker is open.

Trip circuit supervision and other trip contacts

It is typical that the trip circuit contains more than one trip contact in parallel, for example in transformer feeders where the trip of a Buchholz relay is connected in parallel with the feeder terminal and other relays involved. The supervising current cannot detect if one or all the other contacts connected in parallel are not connected properly.

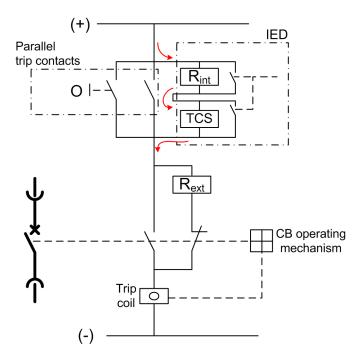


Figure 265: Constant test current flow in parallel trip contacts and trip circuit supervision

In case of parallel trip contacts, the recommended way to do the wiring is that the TCS test current flows through all wires and joints.

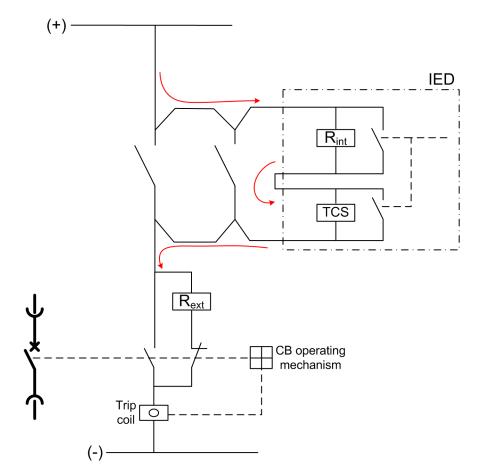


Figure 266: Improved connection for parallel trip contacts where the test current flows through all wires and joints

Several trip circuit supervision functions parallel in circuit

Not only the trip circuit often have parallel trip contacts, it is also possible that the circuit has multiple TCS circuits in parallel. Each TCS circuit causes its own supervising current to flow through the monitored coil and the actual coil current is a sum of all TCS currents. This must be taken into consideration when determining the resistance of R $_{\rm ext}.$

Setting the TCS function in a protection relay not-in-use does not typically affect the supervising current injection.

Trip circuit supervision with auxiliary relays

Many retrofit projects are carried out partially, that is, the old electromechanical relays are replaced with new ones but the circuit breaker is not replaced. This creates a problem that the coil current of an old type circuit breaker can be too high for the protection relay trip contact to break.

The circuit breaker coil current is normally cut by an internal contact of the circuit breaker. In case of a circuit breaker failure, there is a risk that the protection relay trip contact is destroyed since the contact is obliged to disconnect high level of electromagnetic energy accumulated in the trip coil.

Supervision functions 1MRS758755 C

> An auxiliary relay can be used between the protection relay trip contact and the circuit breaker coil. This way the breaking capacity question is solved, but the TCS circuit in the protection relay monitors the healthy auxiliary relay coil, not the circuit breaker coil. The separate trip circuit supervision relay is applicable for this to supervise the trip coil of the circuit breaker.

Dimensioning of the external resistor

Under normal operating conditions, the applied external voltage is divided between the relay's internal circuit and the external trip circuit so that at the minimum 20 V (15...20 V) remains over the relay's internal circuit. Should the external circuit's resistance be too high or the internal circuit's too low, for example due to welded relay contacts, a fault is detected.

Mathematically, the operation condition can be expressed as:

$$U_C - (R_{ext} + R_{int} + R_s) \times I_c \ge 20V \quad AC/DC$$

trip coil resistance

 R_s

(Equation 65)

U _c	Operating voltage over the supervised trip circuit
I _c	Measuring current through the trip circuit, appr. 1.5 mA (0.991.72 mA)
R _{ext}	external shunt resistance
R int	internal shunt resistance, $1\mathrm{k}\Omega$

If the external shunt resistance is used, it has to be calculated not to interfere with the functionality of the supervision or the trip coil. Too high a resistance causes too high a voltage drop, jeopardizing the requirement of at least 20 V over the internal

circuit, while a resistance too low can enable false operations of the trip coil.

Table 548: Values recommended for the external resistor R ext

Operating voltage U _c	Shunt resistor R _{ext}
48 V AC/DC	1.2 kΩ, 5 W
60 V AC/DC	5.6 kΩ, 5 W
110 V AC/DC	22 kΩ, 5 W
220 V AC/DC	33 kΩ, 5 W

Due to the requirement that the voltage over the TCS contact must be 20 V or higher, the correct operation is not guaranteed with auxiliary operating voltages lower than 48 V DC because of the voltage drop in R int, R ext and the operating coil or even voltage drop of the feeding auxiliary voltage system which can cause too low voltage values over the TCS contact. In this case, erroneous alarming can occur.

At lower (<48 V DC) auxiliary circuit operating voltages, it is recommended to use the circuit breaker position to block unintentional operation of TCS. The use of the position indication is described earlier in this chapter.

530 **REC615 & RER615**

Using power output contacts without trip circuit supervision

If TCS is not used but the contact information of corresponding power outputs are required, the internal resistor can be by-passed. The output can then be utilized as a normal power output. When bypassing the internal resistor, the wiring between the terminals of the corresponding output X100:16-15(PO3) or X100:21-20(PO4) can be disconnected. The internal resistor is required if the complete TCS circuit is used.

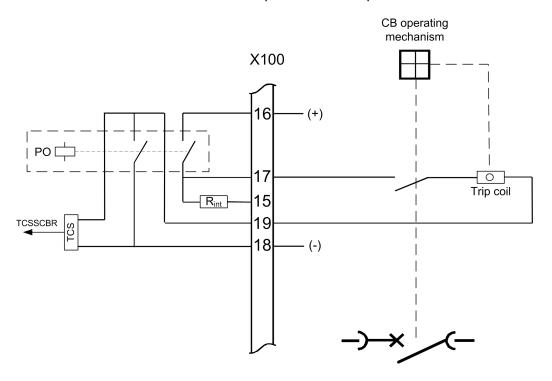


Figure 267: Connection of a power output in a case when TCS is not used and the internal resistor is disconnected

Incorrect connections and use of trip circuit supervision

Although the TCS circuit consists of two separate contacts, it must be noted that those are designed to be used as series connected to guarantee the breaking capacity given in the technical manual of the protection relay. In addition to the weak breaking capacity, the internal resistor is not dimensioned to withstand current without a TCS circuit. As a result, this kind of incorrect connection causes immediate burning of the internal resistor when the circuit breaker is in the close position and the voltage is applied to the trip circuit. The following figure shows incorrect usage of a TCS circuit when only one of the contacts is used.

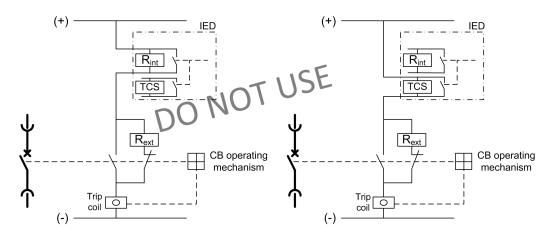


Figure 268: Incorrect connection of trip-circuit supervision

A connection of three protection relays with a double pole trip circuit is shown in the following figure. Only the protection relay R3 has an internal TCS circuit. In order to test the operation of the protection relay R2, but not to trip the circuit breaker, the upper trip contact of the protection relay R2 is disconnected, as shown in the figure, while the lower contact is still connected. When the protection relay R2 operates, the coil current starts to flow through the internal resistor of the protection relay R3 and the resistor burns immediately. As proven with the previous examples, both trip contacts must operate together. Attention should also be paid for correct usage of the trip-circuit supervision while, for example, testing the protection relay.

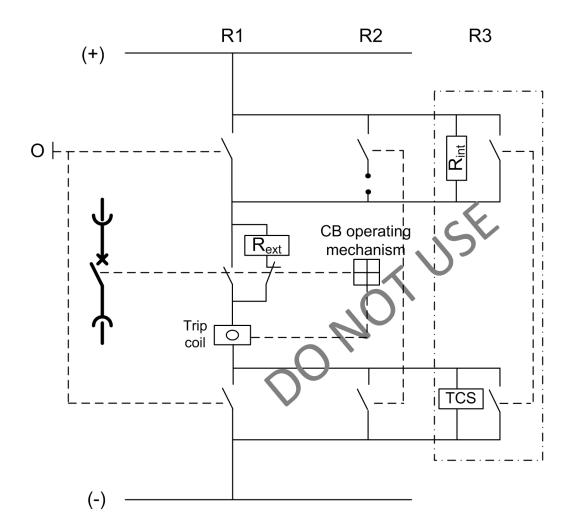


Figure 269: Incorrect testing of protection relays

6.1.6 Signals

6.1.6.1 TCSSCBR Input signals

Table 549: TCSSCBR Input signals

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Block input status

6.1.6.2 TCSSCBR Output signals

Table 550: TCSSCBR Output signals

Name	Туре	Description
ALARM	BOOLEAN	Alarm output

6.1.7 Settings

6.1.7.1 TCSSCBR Non group settings

Table 551: TCSSCBR Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				
Operate delay time	20300000	ms	1	3000	Operate delay time

Table 552: TCSSCBR Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Reset delay time	2060000	ms	1	1000	Reset delay time

6.1.8 Monitored data

6.1.8.1 TCSSCBR Monitored data

Table 553: TCSSCBR Monitored data

Name	Туре	Values (Range)	Unit	Description
TCSSCBR	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

6.1.9 Technical revision history

Table 554: TCSSBR Technical revision history

Technical revision	Change
В	Internal improvement
С	Internal improvement

6.2 Fuse failure supervision SEQSPVC

6.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Fuse failure supervision	SEQSPVC	FUSEF	60

6.2.2 Function block

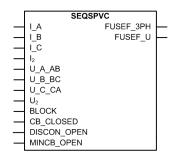


Figure 270: Function block

6.2.3 Functionality

The fuse failure supervision function SEQSPVC is used to block the voltage-measuring functions when failure occurs in the secondary circuits between the voltage transformer (or combi sensor or voltage sensor) and protection relay to avoid misoperations of the voltage protection functions.

SEQSPVC has two algorithms, a negative sequence-based algorithm and a delta current and delta voltage algorithm.

A criterion based on the delta current and the delta voltage measurements can be activated to detect three-phase fuse failures which usually are more associated with the voltage transformer switching during station operations.

6.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of SEQSPVC can be described with a module diagram. All the modules in the diagram are explained in the next sections.

Supervision functions 1MRS758755 C

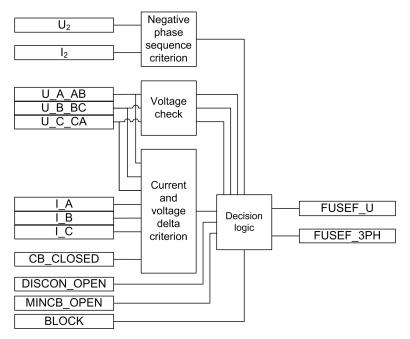


Figure 271: Functional module diagram

Negative phase-sequence criterion

A fuse failure based on the negative-sequence criterion is detected if the measured negative-sequence voltage exceeds the set *Neg Seq voltage Lev* value and the measured negative-sequence current is below the set *Neg Seq current Lev* value. The detected fuse failure is reported to the decision logic module.

Voltage check

The phase voltage magnitude is checked when deciding whether the fuse failure is a three, two or a single-phase fault.

The module makes a phase-specific comparison between each voltage input and the *Seal in voltage* setting. If the input voltage is lower than the setting, the corresponding phase is reported to the decision logic module.

Current and voltage delta criterion

The delta function can be activated by setting the *Change rate enable* parameter to "True". Once the function is activated, it operates in parallel with the negative sequence-based algorithm. The current and voltage are continuously measured in all three phases to calculate:

- Change of voltage dU/dt
- Change of current dI/dt

The calculated delta quantities are compared to the respective set values of the *Current change rate* and *Voltage change rate* settings.

The delta current and delta voltage algorithms detect a fuse failure if there is a sufficient negative change in the voltage amplitude without a sufficient change in the current amplitude in each phase separately. This is performed when the circuit breaker is closed. Information about the circuit breaker position is connected to the CB_CLOSED input.

There are two conditions for activating the current and voltage delta function.

- The magnitude of dU/dt exceeds the corresponding value of the Voltage change rate setting and magnitude of dI/dt is below the value of the Current change rate setting in any phase at the same time due to the closure of the circuit breaker (CB CLOSED = TRUE).
- The magnitude of dU/dt exceeds the value of the Voltage change rate setting
 and the magnitude of dI/dt is below the Current change rate setting in any phase
 at the same time and the magnitude of the phase current in the same phase
 exceeds the Min Op current delta setting.

The first condition requires the delta criterion to be fulfilled in any phase at the same time as the circuit breaker is closed. Opening the circuit breaker at one end and energizing the line from the other end onto a fault could lead to an improper operation of SEQSPVC with an open breaker. If this is considered to be an important disadvantage, the CB_CLOSED input is to be connected to FALSE. In this way only the second criterion can activate the delta function.

The second condition requires the delta criterion to be fulfilled in one phase together with a high current for the same phase. The measured phase current is used to reduce the risk of a false fuse failure detection. If the current on the protected line is low, a voltage drop in the system (not caused by the fuse failure) is not followed by a current change and a false fuse failure can occur. To prevent this, the minimum phase current criterion is checked.

The fuse failure detection is active until the voltages return above the *Min Op voltage delta* setting. If a voltage in a phase is below the *Min Op voltage delta* setting, a new fuse failure detection for that phase is not possible until the voltage returns above the setting value.

Decision logic

If voltages are Wye-connected, it is recommended to scale the default values of voltage-based settings with 1/sqrt(3) because the default setting values apply for Delta-connected settings.

The fuse failure detection outputs <code>FUSEF_U</code> and <code>FUSEF_3PH</code> are controlled according to the detection criteria or external signals.

Table 555: Fuse failure output control

Fuse failure detection criterion	Conditions and function response	
Negative-sequence criterion	If a fuse failure is detected based on the negative sequence criterion, the <code>FUSEF_U</code> output is activated.	
	If the fuse failure detection is active for more than five seconds and at the same time all the phase voltage values are below the set value of the <i>Seal in voltage</i> setting with <i>Enable seal in</i> turned to "True", the function activates the FUSE 3PH output signal.	
	The FUSEF_U output signal is also activated if all the phase voltages are above the <i>Seal in voltage</i> setting for more than 60 seconds and at the same time the negative sequence	

Fuse failure detection criterion	Conditions and function response
	voltage is above Neg Seq voltage Lev for more than 5 seconds, all the phase currents are below the Current dead Lin Val setting and the circuit breaker is closed, that is, CB_CLOSED is TRUE.
Current and voltage delta function criterion	If the current and voltage delta criterion detects a fuse failure condition, but all the voltages are not below the <i>Seal in voltage</i> setting, only the FUSEF_U output is activated.
	If the fuse failure detection is active for more than five seconds and at the same time all the phase voltage values are below the set value of the <i>Seal in voltage</i> setting with <i>Enable seal in</i> turned to "True", the function activates the FUSE_3PH output signal.
External fuse failure detection	The MINCB_OPEN input signal is supposed to be connected through a protection relay binary input to the N.C. auxiliary contact of the miniature circuit breaker protecting the VT secondary circuit. The MINCB_OPEN signal sets the FUSEF_U output signal to block all the voltage-related functions when MCB is in the open state.
	The DISCON_OPEN input signal is supposed to be connected through a protection relay binary input to the N.C. auxiliary contact of the line disconnector. The DISCON_OPEN signal sets the FUSEF_U output signal to block the voltage-related functions when the line disconnector is in the open state.

It is recommended to always set *Enable seal in* to "True". This secures that the blocked protection functions remain blocked until normal voltage conditions are restored if the fuse failure has been active for 5 seconds, that is, the fuse failure outputs are deactivated when the normal voltage conditions are restored.

The activation of the <code>BLOCK</code> input deactivates both <code>FUSEF_U</code> and <code>FUSEF_3PH</code> outputs.

6.2.5 Application

Some protection functions operate on the basis of the measured voltage value in the protection relay point. These functions can fail if there is a fault in the measuring circuits between the voltage transformer (or combi sensor or voltage sensor) and protection relay.

A fault in the voltage-measuring circuit is called a fuse failure. This term is misleading since a blown fuse is just one of the many possible reasons for a broken circuit. Since incorrectly measured voltage can result in a faulty operation of some of the protection functions, it is important to detect the fuse failures. A fast fuse

failure detection is one of the means to block voltage-based functions before they operate.

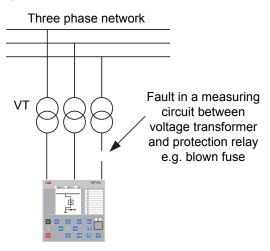


Figure 272: Fault in a circuit from the voltage transformer to the protection relay

A fuse failure occurs due to blown fuses, broken wires or intended substation operations. The negative sequence component-based function can be used to detect different types of single-phase or two-phase fuse failures. However, at least one of the three circuits from the voltage transformers must be intact. The supporting delta-based function can also detect a fuse failure due to three-phase interruptions.

In the negative sequence component-based part of the function, a fuse failure is detected by comparing the calculated value of the negative sequence component voltage to the negative sequence component current. The sequence entities are calculated from the measured current and voltage data for all three phases. The purpose of this function is to block voltage-dependent functions when a fuse failure is detected. Since the voltage dependence differs between these functions, SEQSPVC has two outputs for this purpose.

6.2.6 Signals

6.2.6.1 SEQSPVC Input signals

Table 556: SEQSPVC Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
12	SIGNAL	0	Negative sequence current
U_A_AB	SIGNAL	0	Phase A voltage
U_B_BC	SIGNAL	0	Phase B voltage

Name	Туре	Default	Description
U_C_CA	SIGNAL	0	Phase C voltage
U ₂	SIGNAL	0	Negative phase sequence voltage
BLOCK	BOOLEAN	0=False	Block of function
CB_CLOSED	BOOLEAN	0=False	Active when circuit breaker is closed
DISCON_OPEN	BOOLEAN	0=False	Active when line dis- connector is open
MINCB_OPEN	BOOLEAN	0=False	Active when external MCB opens protected voltage circuit

6.2.6.2 SEQSPVC Output signals

Table 557: SEQSPVC Output signals

Name	Туре	Description
FUSEF_3PH	BOOLEAN	Three-phase start of function
FUSEF_U	BOOLEAN	General start of function

6.2.7 Settings

6.2.7.1 SEQSPVC Non group settings

Table 558: SEQSPVC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				

Table 559: SEQSPVC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Neg Seq current Lev	0.030.20	xln	0.01	0.03	Operate level of neg seq undercur- rent element
Neg Seq voltage Lev	0.030.20	xUn	0.01	0.10	Operate level of neg seq overvolt- age element
Current change rate	0.010.50	xIn	0.01	0.15	Operate level of change in phase current
Voltage change rate	0.250.90	xUn	0.01	0.40	Operate level of change in phase voltage
Change rate enable	0=False 1=True			0=False	Enabling operation of change based function

541

Parameter	Values (Range)	Unit	Step	Default	Description
Min Op voltage del- ta	0.011.00	xUn	0.01	0.50	Minimum operate level of phase volt- age for delta calcu- lation
Min Op current del- ta	0.011.00	xIn	0.01	0.10	Minimum operate level of phase cur- rent for delta calcu- lation
Seal in voltage	0.011.00	xUn	0.01	0.50	Operate level of seal-in phase voltage
Enable seal in	0=False 1=True			0=False	Enabling seal in functionality
Current dead Lin Val	0.051.00	xIn	0.01	0.05	Operate level for open phase current detection

6.2.8 Monitored data

6.2.8.1 SEQSPVC Monitored data

Table 560: SEQSPVC Monitored data

Name	Туре	Values (Range)	Unit	Description
SEQSPVC	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

6.2.9 Technical data

Table 561: SEQSPVC Technical data

Characteristic		Value	
Operate time NPS function		U _{Fault} = 1.1 × set <i>Neg Seq volt-age Lev</i>	<33 ms
		U _{Fault} = 5.0 × set <i>Neg Seq volt-age Lev</i>	<18 ms
	Delta function	ΔU = 1.1 × set <i>Voltage change</i> rate	<30 ms
		ΔU = 2.0 × set <i>Voltage change</i> rate	<24 ms

 $^{^{1}}$ Includes the delay of the signal output contact, f $_{\rm n}$ = 50 Hz, fault voltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements.

REC615 & RER615
Technical Manual

6.3 Runtime counter for machines and devices MDSOPT

6.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Runtime counter for machines and devices	MDSOPT	OPTS	ОРТМ

6.3.2 Function block

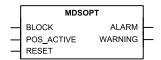


Figure 273: Function block

6.3.3 Functionality

The runtime counter for machines and devices function MDSOPT calculates and presents the accumulated operation time of a machine or device as the output. The unit of time for accumulation is hour. The function generates a warning and an alarm when the accumulated operation time exceeds the set limits. It utilizes a binary input to indicate the active operation condition.

The accumulated operation time is one of the parameters for scheduling a service on the equipment like motors. It indicates the use of the machine and hence the mechanical wear and tear. Generally, the equipment manufacturers provide a maintenance schedule based on the number of hours of service.

6.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of MDSOPT can be described using a module diagram. All the modules in the diagram are explained in the next sections.

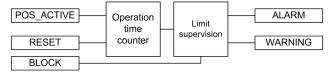


Figure 274: Functional module diagram

Operation time counter

This module counts the operation time. When POS_ACTIVE is active, the count is continuously added to the time duration until it is deactivated. At any time the OPR_TIME output is the total duration for which POS_ACTIVE is active. The unit of time duration count for OPR_TIME is hour. The value is available through the Monitored data view.

The OPR_TIME output is a continuously increasing value and it is stored in a non-volatile memory. When POS_ACTIVE is active, the OPR_TIME count starts increasing from the previous value. The count of OPR_TIME saturates at the final value of 299999, that is, no further increment is possible. The activation of RESET can reset the count to the *Initial value* setting.

Limit Supervision

This module compares the motor run-time count to the set values of *Warning value* and *Alarm value* to generate the WARNING and ALARM outputs respectively when the counts exceed the levels.

The activation of the WARNING and ALARM outputs depends on the *Operating time mode* setting. Both WARNING and ALARM occur immediately after the conditions are met if *Operating time mode* is set to "Immediate". If *Operating time mode* is set to "Timed Warn", WARNING is activated within the next 24 hours at the time of the day set using the *Operating time hour* setting. If *Operating time mode* is set to "Timed Warn Alm", the WARNING and ALARM outputs are activated at the time of day set using *Operating time hour*.

The *Operating time hour* setting is used to set the hour of day in Coordinated Universal Time (UTC). The setting has to be adjusted according to the local time and local daylight-saving time.

The function contains a blocking functionality. Activation of the BLOCK input blocks both WARNING and ALARM.

6.3.5 Application

The machine operating time since commissioning indicates the use of the machine. For example, the mechanical wear and lubrication requirement for the shaft bearing of the motors depend on the use hours.

If some motor is used for long duration runs, it might require frequent servicing, while for a motor that is not used regularly the maintenance and service are scheduled less frequently. The accumulated operating time of a motor together with the appropriate settings for warning can be utilized to trigger the condition based maintenance of the motor.

The operating time counter combined with the subsequent reset of the operatingtime count can be used to monitor the motor's run time for a single run.

Both the long term accumulated operating time and the short term single run duration provide valuable information about the condition of the machine and device. The information can be co-related to other process data to provide diagnoses for the process where the machine or device is applied.

6.3.6 Signals

6.3.6.1 MDSOPT Input signals

Table 562: MDSOPT Input signals

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Block input status
POS_ACTIVE	BOOLEAN	0=False	When active indicates the equipment is running
RESET	BOOLEAN	0=False	Resets the accumula- ted operation time to initial value

6.3.6.2 MDSOPT Output signals

Table 563: MDSOPT Output signals

Name	Туре	Description
ALARM	BOOLEAN	Alarm accumulated operation time exceeds Alarm value
WARNING	BOOLEAN	Warning accumulated opera- tion time exceeds Warning value

6.3.7 Settings

6.3.7.1 MDSOPT Non group settings

Table 564: MDSOPT Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Warning value	0299999	h	1	8000	Warning value for operation time supervision
Alarm value	0299999	h	1	10000	Alarm value for op- eration time super- vision

545

Table 565: MDSOPT Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Initial value	0299999	h	1	0	Initial value for op- eration time super- vision
Operating time hour	023	h	1	0	Time of day when alarm and warning will occur
Operating time mode	1=Immediate 2=Timed Warn 3=Timed Warn Alm			1=Immediate	Operating time mode for warning and alarm

6.3.8 Monitored data

6.3.8.1 MDSOPT Monitored data

Table 566: MDSOPT Monitored data

Name	Туре	Values (Range)	Unit	Description
MDSOPT	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		
OPR_TIME	INT32	0299999	h	Total operation time in hours

6.3.9 Technical data

Table 567: MDSOPT Technical data

Description	Value
Motor runtime measurement accuracy ¹	±0.5 %

6.3.10 Technical revision history

Table 568: MDSOPT Technical revision history

Technical revision	Change
В	Internal improvement.
С	Internal improvement.
D	Internal improvement.

 $^{^{\,1}\,}$ Of the reading, for a stand-alone relay, without time synchronization

REC615 & RER615
Technical Manual

6.4 Voltage presence PHSVPR

6.4.1 Identification

Description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Voltage presence	PHSVPR	PHSVPR	PHSVPR

6.4.2 Function block

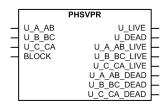


Figure 275: Function block

6.4.3 Functionality

The voltage presence function PHSVPR supervises the voltage presence status. The function can be used for indicating voltage presence status of a load break switch or a circuit breaker.

6.4.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of PHSVPR can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

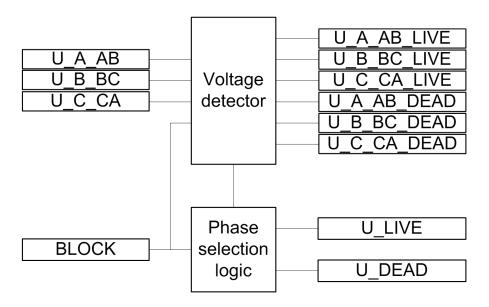


Figure 276: Functional module diagram

Voltage detector

This module supervises voltage presence status value of a load switch or a circuit breaker. The *Voltage selection* setting is used for selecting the phase-to-earth or phase-to-phase voltages for voltage detection, and the *Phase supervision* setting defines which phase or phases are monitored. The measured voltages are compared with threshold settings.

If the measured voltage is larger than the limit value set by *V live value* setting and high voltage lasts longer than the time set by *V live time* setting, the voltage presence is interpreted as live. The corresponding phase specific output indicating live situation is activated. Phase status is also reported to the phase selection logic module.

Once the voltage is lower than setting *V live value*, corresponding phase specific output is deactivated and voltage live timer is reset.

If the measured voltage is lower than setting *V dead value* and low voltage situation lasts longer than the time set by *V dead time* setting, the voltage presence is interpreted as dead. The corresponding phase specific output indicating dead situation is activated. Phase status is also reported to the phase selection logic module.

Once the voltage is larger than setting *V dead value*, the corresponding phase specific output is deactivated and voltage dead timer is reset.

The *Relative hysteresis* setting can be used for preventing unnecessary oscillations if the input signal varies slightly above or below the threshold setting. After leaving the hysteresis area, the start condition has to be fulfilled again and it is not sufficient for the signal to only return back to the hysteresis area.

The activation of the BLOCK input deactivates all outputs and resets internal timers.

Supervision functions 1MRS758755 C

Phase selection logic

General output U_LIVE is activated when setting *Num of phases* matches the number of phases where voltage is set above high level setting. U_LIVE output is deactivated immediately after voltage live condition is no longer met.

General output U_DEAD is activated when setting *Num of phases* matches the number of phases where voltage is below the set low level setting. U_DEAD output is deactivated immediately after voltage dead condition is no longer met.

The activation of the BLOCK input deactivates all outputs.

6.4.5 Application

PHSVPR can be used to detect which one of the MV feeders is energized for feeding the MV/LV transformer. This can reduce the needed time to restore the power after a fault occurs in the distribution network and power needs to be manually re-routed.

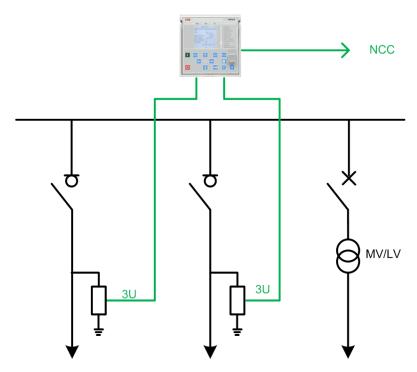


Figure 277: Detect live line to feed MV/LV transformer

PHSVPR can be used in addition to the other indications to detect if it is safe to start working on the line (for example service work).

Never use PHSVPR as the only indication to check if the line is dead.

If the protection relay is used for the fault indication purposes only, then there might be need to confirm the upstream breaker tripping. PHSVPR can be used for this purpose together with protection and generic counter functions.

6.4.6 Signals

Table 569: PHSVPR Input signals

Name	Туре	Default	Description
U_A_AB	SIGNAL	0	Phase-to-earth voltage A or phase-to- phase voltage AB
U_B_BC	SIGNAL	0	Phase-to-earth voltage B or phase-to- phase voltage BC
U_C_CA	SIGNAL	0	Phase-to-earth voltage C or phase-to- phase voltage CA
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 570: PHSVPR Output signals

Name	Туре	Description
U_LIVE	BOOLEAN	Indicate high voltage presence
U_A_AB_LIVE	BOOLEAN	Indicate high phase to earth voltage A or phase to phase voltage AB
U_B_BC_LIVE	BOOLEAN	Indicate high phase to earth voltage B or phase to phase voltage BC
U_C_CA_LIVE	BOOLEAN	Indicate high phase to earth voltage C or phase to phase voltage CA
U_DEAD	BOOLEAN	Indicate low voltage presence
U_A_AB_DEAD	BOOLEAN	Indicate low phase to earth voltage A or phase to phase voltage AB
U_B_BC_DEAD	BOOLEAN	Indicate low phase to earth voltage B or phase to phase voltage BC
U_C_CA_DEAD	BOOLEAN	Indicate low phase to earth voltage C or phase to phase voltage CA

6.4.7 Settings

Table 571: PHSVPR Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Voltage selection	1=phase-to-earth			2=phase-to-phase	Parameter to se- lect phase or

Parameter	Values (Range)	Unit	Step	Default	Description
	2=phase-to-phase				phase-to- phase voltages
Phase supervi-	1=A or AB			4=C or CA	Monitored volt-
sion	2=B or BC				age phase
	3=A&B or AB&BC				
	4=C or CA				
	5=A&C or AB&CA				
	6=B&C or BC&CA				
	7=A&B&C or AB&BC&CA				
Num of phases	1=1 out of 3			1=1 out of 3	Number of pha-
	2=2 out of 3				ses required for voltage supervi-
	3=3 out of 3				sion
V live value	0.21.0	xUn	0.1	0.5	Limit value for high voltage
V live time	4010000	ms	1	100	Duration time for high voltage
V dead value	0.10.8	xUn	0.1	0.2	Limit value for low voltage
V dead time	4010000	ms	1	100	Duration time for low voltage

Table 572: PHSVPR Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Relative hysteresis	1.05.0	%	0.1	4.0	Relative hysteresis for voltage supervision

6.4.8 Monitored data

Table 573: PHSVPR Monitored data

Name	Туре	Values (Range)	Unit	Description
PHSVPR	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

6.4.9 Technical data

Table 574: PHSVPR Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured voltage: $f_n \pm 2$ Hz
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$
Operation time accuracy	±1.0% of the set value or ±20 ms

7 Condition monitoring functions

7.1 Circuit breaker condition monitoring SSCBR

7.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Circuit-breaker condition monitoring	SSCBR	СВСМ	СВСМ

7.1.2 Function block

7.1.3 Functionality

The circuit-breaker condition monitoring function SSCBR is used to monitor different parameters of the circuit breaker. The breaker requires maintenance when the number of operations has reached a predefined value. The energy is calculated from the measured input currents as a sum of I yt values. Alarms are generated when the calculated values exceed the threshold settings.

The function contains a blocking functionality. It is possible to block the function outputs, if desired.

7.1.4 Operation principle

The circuit breaker condition monitoring function includes different metering and monitoring sub-functions. The functions can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off". The operation counters are cleared when *Operation* is set to "Off".

The operation of SSCBR can be described with a module diagram. All the modules in the diagram are explained in the next sections.

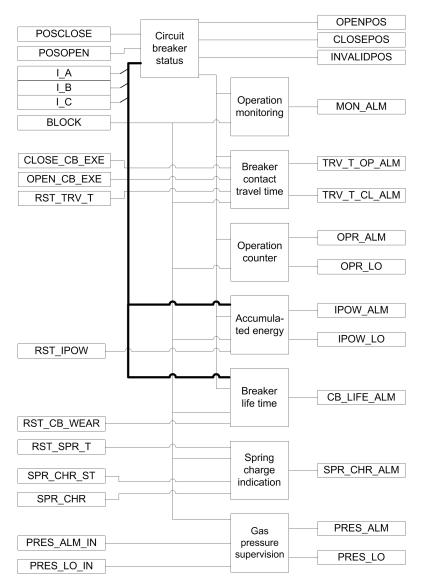


Figure 278: Functional module diagram

7.1.4.1 Circuit breaker status

The Circuit breaker status sub-function monitors the position of the circuit breaker, that is, whether the breaker is in open, closed or invalid position. The operation of the breaker status monitoring can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

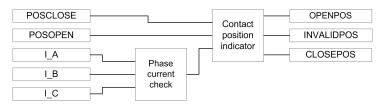


Figure 279: Functional module diagram for monitoring circuit breaker status

Phase current check

This module compares the three phase currents to the setting *Acc stop current*. If the current in a phase exceeds the set level, information about the phase is reported to the contact position indicator module.

Contact position indicator

The OPENPOS output is activated when the auxiliary input contact POSCLOSE is FALSE, the POSOPEN input is TRUE and all the phase currents are below the setting Acc stop current.

The CLOSEPOS output is activated when the auxiliary POSOPEN input is FALSE and the POSCLOSE input is TRUE.

The INVALIDPOS output is activated when both the auxiliary contacts have the same value, that is, both are in the same logical level, or if the auxiliary input contact POSCLOSE is FALSE and the POSOPEN input is TRUE and any of the phase currents exceed the setting Acc stop current.

The status of the breaker is indicated by the binary outputs OPENPOS, INVALIDPOS and CLOSEPOS for open, invalid and closed position respectively.

7.1.4.2 Circuit breaker operation monitoring

The purpose of the circuit breaker operation monitoring subfunction is to indicate if the circuit breaker has not been operated for a long time.

The operation of the circuit breaker operation monitoring can be described with a module diagram. All the modules in the diagram are explained in the next sections.

Figure 280: Functional module diagram for calculating inactive days and alarm for circuit breaker operation monitoring

Inactivity timer

The module calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state. The calculation is done by monitoring the states of the POSOPEN and POSCLOSE auxiliary contacts.

The inactive days INA DAYS is available in the monitored data view. It is also possible to set the initial inactive days with the *Ini inactive days* parameter.

Alarm limit check

When the inactive days exceed the limit value defined with the *Inactive Alm days* setting, the MON ALM alarm is initiated. The time in hours at which this alarm is activated can be set with the Inactive Alm hours parameter as coordinates of UTC. The alarm signal MON ALM can be blocked by activating the binary input BLOCK.

7.1.4.3 Breaker contact travel time

The Breaker contact travel time module calculates the breaker contact travel time for the closing and opening operation. The operation of the breaker contact travel time measurement can be described with a module diagram. All the modules in the diagram are explained in the next sections.

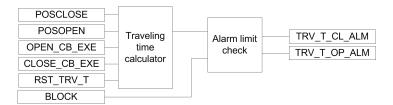


Figure 281: Functional module diagram for breaker contact travel time

Traveling time calculator

The travel time can be calculated using two different methods based on the setting *Travel time Clc mode*.

When the setting *Travel time Clc mode* is "From Pos to Pos", the contact travel time of the breaker is calculated from the time between auxiliary contacts' state change. The opening travel time is measured between the opening of the POSCLOSE auxiliary contact and the closing of the POSOPEN auxiliary contact. The travel time is also measured between the opening of the POSOPEN auxiliary contact and the closing of the POSCLOSE auxiliary contact.

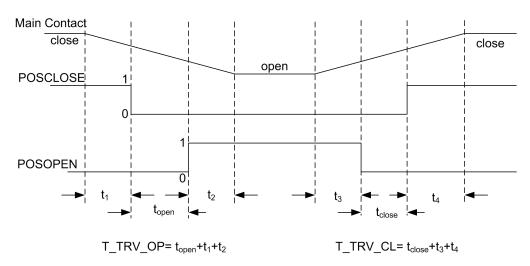


Figure 282: Travel time calculation when Travel time Clc mode is "From Pos to Pos"

There is a time difference t_1 between the start of the main contact opening and the opening of the POSCLOSE auxiliary contact. Similarly, there is a time gap t_2 between the time when the POSOPEN auxiliary contact opens and the main contact is completely open. To incorporate the time $t_1 + t_2$, a correction factor needs to be added with t_{open} to get the actual opening time. This factor is added with the *Opening time Cor* (= t_1 + t_2) setting. The closing time is calculated by adding the value set with the *Closing time Cor* (t_3 + t_4) setting to the measured closing time.

When the setting *Travel time Clc mode* is "From Cmd to Pos", the contact travel time of the breaker is calculated from the time between the circuit breaker opening

or closing command and the auxiliary contacts' state change. The opening travel time is measured between the rising edge of the OPEN_CB_EXE command and the POSOPEN auxiliary contact. The closing travel time is measured between the rising edge of the CLOSE_CB_EXEC command and the POSCLOSE auxiliary contact.

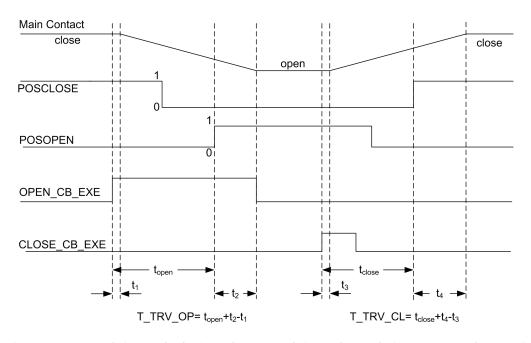


Figure 283: Travel time calculation when Travel time Clc mode is "From Cmd to Pos"

There is a time difference t_1 between the start of the main contact opening and the OPEN_CB_EXE command. Similarly, there is a time gap t_2 between the time when the POSOPEN auxiliary contact opens and the main contact is completely open. Therefore, to incorporate the times t_1 and t_2 , a correction factor needs to be added with t_{open} to get the actual opening time. This factor is added with the *Opening time Cor* (= t_2 - t_1) setting. The closing time is calculated by adding the value set with the *Closing time Cor*(t_4 - t_3) setting to the measured closing time.

The last measured opening travel time T_TRV_OP and the closing travel time T_TRV_CL are available in the monitored data view on the LHMI or through tools via communications.

Alarm limit check

When the measured opening travel time is longer than the value set with the *Open alarm time* setting, the $\mathtt{TRV}_\mathtt{T}_\mathtt{OP}_\mathtt{ALM}$ output is activated. Respectively, when the measured closing travel time is longer than the value set with the *Close alarm time* setting, the $\mathtt{TRV}_\mathtt{T}_\mathtt{CL}_\mathtt{ALM}$ output is activated.

It is also possible to block the ${\tt TRV_T_CL_ALM}$ and ${\tt TRV_T_OP_ALM}$ alarm signals by activating the ${\tt BLOCK}$ input.

7.1.4.4 Operation counter

The operation counter subfunction calculates the number of breaker operation cycles. The opening and closing operations are both included in one operation cycle. The operation counter value is updated after each opening operation.

The operation of the subfunction can be described with a module diagram. All the modules in the diagram are explained in the next sections.

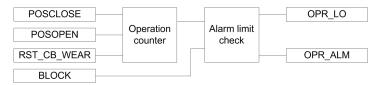


Figure 284: Functional module diagram for counting circuit breaker operations

Operation counter

The operation counter counts the number of operations based on the state change of the binary auxiliary contacts inputs POSCLOSE and POSOPEN.

The number of operations NO_OPR is available in the monitored data view on the LHMI or through tools via communications. The old circuit breaker operation counter value can be taken into use by writing the value to the *Counter initial Val* parameter and by setting the parameter *Initial CB Rmn life* in the clear menu from WHMI or LHMI.

Alarm limit check

The OPR_ALM operation alarm is generated when the number of operations exceeds the value set with the *Alarm Op number* threshold setting. However, if the number of operations increases further and exceeds the limit value set with the *Lockout Op number* setting, the OPR_LO output is activated.

The binary outputs <code>OPR_LO</code> and <code>OPR_ALM</code> are deactivated when the <code>BLOCK</code> input is activated.

7.1.4.5 Accumulation of I y t

Accumulation of the I yt module calculates the accumulated energy.

The operation of the module can be described with a module diagram. All the modules in the diagram are explained in the next sections.

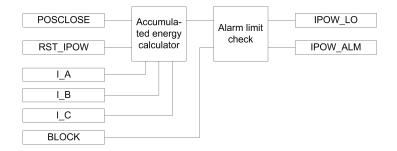


Figure 285: Functional module diagram for calculating accumulative energy and alarm

Accumulated energy calculator

This module calculates the accumulated energy I ^yt [(kA) ^ys]. The factor y is set with the *Current exponent* setting.

The calculation is initiated with the POSCLOSE input opening events. It ends when the RMS current becomes lower than the *Acc stop current* setting value.

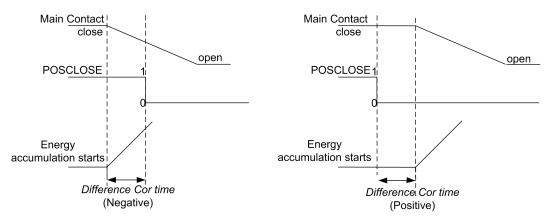


Figure 286: Significance of the Difference Cor time setting

The *Difference Cor time* setting is used instead of the auxiliary contact to accumulate the energy from the time the main contact opens. If the setting is positive, the calculation of energy starts after the auxiliary contact has opened and when the delay is equal to the value set with the *Difference Cor time* setting. When the setting is negative, the calculation starts in advance by the correction time before the auxiliary contact opens.

The accumulated energy outputs $IPOW_A$ ($_B$, $_C$) are available in the monitored data view on the LHMI or through tools via communications. The values can be reset by setting the parameter *Initial CB Rmn life* setting to true in the clear menu from WHMI or LHMI.

Alarm limit check

The IPOW_ALM alarm is activated when the accumulated energy exceeds the value set with the $Alm\ Acc\ currents\ Pwr$ threshold setting. However, when the energy exceeds the limit value set with the $LO\ Acc\ currents\ Pwr$ threshold setting, the IPOW LO output is activated.

The IPOW_ALM and IPOW_LO outputs can be blocked by activating the binary input BLOCK.

7.1.4.6 Remaining life of circuit breaker

Every time the breaker operates, the life of the circuit breaker reduces due to wearing. The wearing in the breaker depends on the tripping current, and the remaining life of the breaker is estimated from the circuit breaker trip curve provided by the manufacturer. The remaining life is decremented at least with one when the circuit breaker is opened.

The operation of the remaining life of the circuit breaker subfunction can be described with a module diagram. All the modules in the diagram are explained in the next sections.

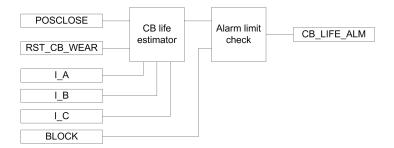


Figure 287: Functional module diagram for estimating the life of the circuit breaker

Circuit breaker life estimator

The circuit breaker life estimator module calculates the remaining life of the circuit breaker. If the tripping current is less than the rated operating current set with the *Rated Op current* setting, the remaining operation of the breaker reduces by one operation. If the tripping current is more than the rated fault current set with the *Rated fault current* setting, the possible operations are zero. The remaining life of the tripping current in between these two values is calculated based on the trip curve given by the manufacturer. The *Op number rated* and *Op number fault* parameters set the number of operations the breaker can perform at the rated current and at the rated fault current, respectively.

The remaining life is calculated separately for all three phases and it is available as a monitored data value CB_LIFE_A ($_B$, $_C$). The values can be cleared by setting the parameter *CB wear values* in the clear menu from WHMI or LHMI.

Clearing CB wear values also resets the operation counter.

Alarm limit check

When the remaining life of any phase drops below the *Life alarm level* threshold setting, the corresponding circuit breaker life alarm CB LIFE ALM is activated.

It is possible to deactivate the CB_LIFE_ALM alarm signal by activating the binary input BLOCK. The old circuit breaker operation counter value can be taken into use by writing the value to the *Initial CB Rmn life* parameter and resetting the value via the clear menu from WHMI or LHMI.

7.1.4.7 Circuit breaker spring-charged indication

The circuit breaker spring-charged indication subfunction calculates the spring charging time.

The operation of the subfunction can be described with a module diagram. All the modules in the diagram are explained in the next sections.

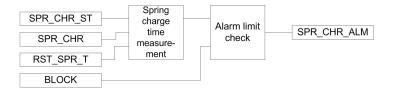


Figure 288: Functional module diagram for circuit breaker spring-charged indication and alarm

Spring charge time measurement

Two binary inputs, SPR CHR ST and SPR CHR, indicate spring charging started and spring charged, respectively. The spring-charging time is calculated from the difference of these two signal timings.

The spring charging time T SPR CHR is available in the monitored data view on the LHMI or through tools via communications.

Alarm limit check

If the time taken by the spring to charge is more than the value set with the Spring charge time setting, the subfunction generates the SPR CHR ALM alarm.

It is possible to block the SPR CHR ALM alarm signal by activating the BLOCK binary input.

7.1.4.8 Gas pressure supervision

The gas pressure supervision subfunction monitors the gas pressure inside the arc chamber.

The operation of the subfunction can be described with a module diagram. All the modules in the diagram are explained in the next sections.

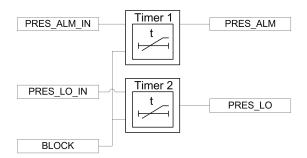


Figure 289: Functional module diagram for circuit breaker gas pressure alarm

The gas pressure is monitored through the binary input signals PRES LO IN and PRES ALM IN.

Timer 1

When the PRES ALM IN binary input is activated, the PRES ALM alarm is activated after a time delay set with the *Pressure alarm time* setting. The PRES ALM alarm can be blocked by activating the BLOCK input.

Timer 2

If the pressure drops further to a very low level, the <code>PRES_LO_IN</code> binary input becomes high, activating the lockout alarm <code>PRES_LO</code> after a time delay set with the *Pres lockout time* setting. The <code>PRES_LO</code> alarm can be blocked by activating the <code>BLOCK</code> input.

7.1.5 Application

SSCBR includes different metering and monitoring subfunctions.

Circuit breaker status

Circuit breaker status monitors the position of the circuit breaker, that is, whether the breaker is in an open, closed or intermediate position.

Circuit breaker operation monitoring

The purpose of the circuit breaker operation monitoring is to indicate that the circuit breaker has not been operated for a long time. The function calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state. There is also the possibility to set an initial inactive day.

Breaker contact travel time

High traveling times indicate the need for the maintenance of the circuit breaker mechanism. Therefore, detecting excessive traveling time is needed. During the opening cycle operation, the main contact starts opening. The auxiliary contact A opens, the auxiliary contact B closes and the main contact reaches its opening position. During the closing cycle, the first main contact starts closing. The auxiliary contact B opens, the auxiliary contact A closes and the main contact reaches its closed position. The travel times are calculated based on the state changes of the auxiliary contacts and the adding correction factor to consider the time difference of the main contact's and the auxiliary contact's position change.

Operation counter

Routine maintenance of the breaker, such as lubricating breaker mechanism, is generally based on a number of operations. A suitable threshold setting to raise an alarm when the number of operation cycle exceeds the set limit helps preventive maintenance. This can also be used to indicate the requirement for oil sampling for dielectric testing in case of an oil circuit breaker.

The change of state can be detected from the binary input of the auxiliary contact. There is a possibility to set an initial value for the counter which can be used to initialize this functionality after a period of operation or in case of refurbished primary equipment.

Accumulation of I y t

Accumulation of I y t calculates the accumulated energy Σ I y t, where the factor y is known as the current exponent. The factor y depends on the type of the circuit breaker. For oil circuit breakers, the factor y is normally 2. In case of a high-voltage system, the factor y can be 1.4...1.5.

Remaining life of the breaker

Every time the breaker operates, the life of the circuit breaker reduces due to wearing. The wearing in the breaker depends on the tripping current, and the remaining life of the breaker is estimated from the circuit breaker trip curve provided by the manufacturer.

Example for estimating the remaining life of a circuit breaker

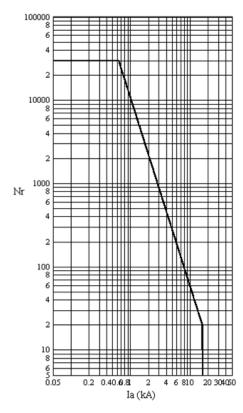


Figure 290: Trip Curves for a typical 12 kV, 630 A, 16 kA vacuum interrupter

Nr the number of closing-opening operations allowed for the circuit breaker the current at the time of tripping of the circuit breaker

Calculation of Directional Coef

The directional coefficient is calculated according to the formula:

$$Directional Coef = \frac{\log\left(\frac{B}{A}\right)}{\log\left(\frac{I_f}{I_r}\right)} = -2.2609$$

(Equation 66)

I r Rated operating current = 630 A
I f Rated fault current = 16 kA
A Op number rated = 30000
B Op number fault = 20

Calculation for estimating the remaining life

Figure 290 shows that there are 30,000 possible operations at the rated operating current of 630 A and 20 operations at the rated fault current 16 kA. Therefore, if the tripping current is 10 kA, one operation at 10 kA is equivalent to 30,000/60=500 operations at the rated current. It is also assumed that prior to this tripping, the remaining life of the circuit breaker is 15,000 operations. Therefore, after one operation of 10 kA, the remaining life of the circuit breaker is 15,000-500=14,500 at the rated operating current.

Remaining life reduction =
$$\left(\frac{I}{I_r}\right)^{-Directional\ Coep}$$

(Equation 67)

Spring-charged indication

For normal operation of the circuit breaker, the circuit breaker spring should be charged within a specified time. Therefore, detecting long spring-charging time indicates that it is time for the circuit breaker maintenance. The last value of the spring-charging time can be used as a service value.

Gas pressure supervision

The gas pressure supervision monitors the gas pressure inside the arc chamber. When the pressure becomes too low compared to the required value, the circuit breaker operations are locked. A binary input is available based on the pressure levels in the function, and alarms are generated based on these inputs.

7.1.6 Signals

7.1.6.1 SSCBR Input signals

Table 575: SSCBR Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block input status
POSOPEN	BOOLEAN	0=False	Signal for open position of apparatus from I/O
POSCLOSE	BOOLEAN	0=False	Signal for close position of apparatus from I/O
OPEN_CB_EXE	BOOLEAN	0=False	Signal for open command to coil

Name	Туре	Default	Description
CLOSE_CB_EXE	BOOLEAN	0=False	Signal for close command to coil
PRES_ALM_IN	BOOLEAN	0=False	Binary pressure alarm input
PRES_LO_IN	BOOLEAN	0=False	Binary pressure input for lockout indication
SPR_CHR_ST	BOOLEAN	0=False	CB spring charging started input
SPR_CHR	BOOLEAN	0=False	CB spring charged input
RST_IPOW	BOOLEAN	0=False	Reset accumulation energy
RST_CB_WEAR	BOOLEAN	0=False	Reset input for CB re- maining life and oper- ation counter
RST_TRV_T	BOOLEAN	0=False	Reset input for CB closing and opening travel times
RST_SPR_T	BOOLEAN	0=False	Reset input for the charging time of the CB spring

7.1.6.2 SSCBR Output signals

Table 576: SSCBR Output signals

Name	Туре	Description
TRV_T_OP_ALM	BOOLEAN	CB open travel time exceeded set value
TRV_T_CL_ALM	BOOLEAN	CB close travel time exceeded set value
SPR_CHR_ALM	BOOLEAN	Spring charging time has crossed the set value
OPR_ALM	BOOLEAN	Number of CB operations exceeds alarm limit
OPR_LO	BOOLEAN	Number of CB operations exceeds lockout limit
IPOW_ALM	BOOLEAN	Accumulated currents power (lyt),exceeded alarm limit
IPOW_LO	BOOLEAN	Accumulated currents power (lyt),exceeded lockout limit
CB_LIFE_ALM	BOOLEAN	Remaining life of CB exceeded alarm limit

Name	Туре	Description
MON_ALM	BOOLEAN	CB 'not operated for long time' alarm
PRES_ALM	BOOLEAN	Pressure below alarm level
PRES_LO	BOOLEAN	Pressure below lockout level
OPENPOS	BOOLEAN	CB is in open position
INVALIDPOS	BOOLEAN	CB is in invalid position (not positively open or closed)
CLOSEPOS	BOOLEAN	CB is in closed position

7.1.7 Settings

7.1.7.1 SSCBR Non group settings

Table 577: SSCBR Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Acc stop current	5.00500.00	A	0.01	10.00	RMS current set- ting below which engy acm stops
Open alarm time	0200	ms	1	40	Alarm level setting for open travel time in ms
Close alarm time	0200	ms	1	40	Alarm level Setting for close travel time in ms
Spring charge time	060000	ms	10	15000	Setting of alarm for spring charging time of CB in ms
Alarm Op number	099999		1	200	Alarm limit for number of operations
Lockout Op num- ber	099999		1	300	Lock out limit for number of opera- tions
Current exponent	0.002.00		0.01	2.00	Current exponent setting for energy calculation
Difference Cor time	-1010	ms	1	5	Corr. factor for time dif in aux. and main contacts open time
Alm Acc currents Pwr	0.0020000.00		0.01	2500.00	Setting of alarm level for accumula- ted currents power
LO Acc currents Pwr	0.0020000.00		0.01	2500.00	Lockout limit set- ting for accumula- ted currents power
Directional Coef	-3.000.50		0.01	-1.50	Directional coeffi- cient for CB life cal- culation
Initial CB Rmn life	099999		1	5000	Initial value for the CB remaining life

Parameter	Values (Range)	Unit	Step	Default	Description
Rated Op current	100.005000.00	А	0.01	1000.00	Rated operating current of the breaker
Rated fault current	500.0075000.00	А	0.01	5000.00	Rated fault current of the breaker
Op number rated	199999		1	10000	Number of opera- tions possible at rated current
Op number fault	110000		1	1000	Number of opera- tions possible at rated fault current
Inactive Alm days	09999		1	2000	Alarm limit value of the inactive days counter
Travel time Clc mode	1=From Cmd to Pos 2=From Pos to Pos			2=From Pos to Pos	Travel time calcu- lation mode selec- tion

Table 578: SSCBR Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Opening time Cor	-100100	ms	1	10	Correction factor for open travel time in ms
Closing time Cor	-100100	ms	1	10	Correction factor for CB close travel time in ms
Counter initial Val	099999		1	0	The operation num- bers counter initial- ization value
Ini Acc currents Pwr	0.0020000.00		0.01	0.00	Initial value for ac- cumulation energy (lyt)
Life alarm level	099999		1	500	Alarm level for CB remaining life
Pressure alarm time	060000	ms	1	10	Time delay for gas pressure alarm in ms
Pres lockout time	060000	ms	10	10	Time delay for gas pressure lockout in ms
Ini inactive days	09999		1	0	Initial value of the inactive days counter
Inactive Alm hours	023	h	1	0	Alarm time of the inactive days counter in hours

7.1.8 Monitored data

7.1.8.1 SSCBR Monitored data

Table 579: SSCBR Monitored data

Name	Туре	Values (Range)	Unit	Description
T_TRV_OP	FLOAT32	060000	ms	Travel time of the CB during

Name	Туре	Values (Range)	Unit	Description
				opening opera- tion
T_TRV_CL	FLOAT32	060000	ms	Travel time of the CB dur- ing closing oper- ation
T_SPR_CHR	FLOAT32	0.0099.99	s	The charging time of the CB spring
NO_OPR	INT32	099999		Number of CB operation cycle
INA_DAYS	INT32	09999		The number of days CB has been inactive
CB_LIFE_A	INT32	-9999999999		CB Remaining life phase A
CB_LIFE_B	INT32	-9999999999		CB Remaining life phase B
CB_LIFE_C	INT32	-9999999999		CB Remaining life phase C
IPOW_A	FLOAT32	0.00030000.00		Accumulated currents power (lyt), phase A
IPOW_B	FLOAT32	0.00030000.00		Accumulated currents power (lyt), phase B
IPOW_C	FLOAT32	0.00030000.00		Accumulated currents power (lyt), phase C
SSCBR	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

7.1.9 Technical data

Table 580: SSCBR Technical data

Characteristic	Value	
Current measuring accuracy	±1.5 % or ±0.002 × I _n	
	(at currents in the range of 0.110 \times I $_{\rm n}$)	
	±5.0 %	

Characteristic	Value
	(at currents in the range of $1040 \times I_n$)
Operate time accuracy	±1.0 % of the set value or ±20 ms
Travelling time measurement	+10 ms / -0 ms

7.1.10 Technical revision history

Table 581: SSCBR Technical revision history

Technical revision	Change
В	Added the possibility to reset spring charge time and breaker travel times
С	Removed the DIFTRVTOPALM and DIFTRVT- CLALM outputs and the corresponding <i>Open</i> <i>Dif alarm time</i> and <i>Close Dif alarm time</i> set- ting parameters
D	The <i>Operation cycle</i> setting parameter renamed to <i>Initial CB Rmn life</i> . The IPOW_A (_B, _C) range changed.
E	Maximum value of initial circuit breaker remaining life time setting (Initial CB Rmn life) changed from 9999 to 99999. Added support for measuring circuit breaker travelling time from opening/closing command and auxiliary contact state signal change.
F	Alarm Op number range increased from 9999 to 99999. Lockout Op number setting range increased from 9999 to 99999. Counter initial value setting range increased from 9999 to 99999.

1MRS758755 C Measurement functions

8 Measurement functions

8.1 Basic measurements

8.1.1 Functions

The three-phase current measurement function CMMXU is used for monitoring and metering the phase currents of the power system.

The three-phase voltage measurement function VMMXU is used for monitoring and metering the phase-to-phase voltages of the power system. The phase-to-earth voltages are also available in VMMXU.

The residual current measurement function RESCMMXU is used for monitoring and metering the residual current of the power system.

The sequence current measurement CSMSQI is used for monitoring and metering the phase sequence currents.

The sequence voltage measurement VSMSQI is used for monitoring and metering the phase sequence voltages.

The frequency measurement FMMXU is used for monitoring and metering the power system frequency.

The three-phase power and energy measurement PEMMXU is used for monitoring and metering active power (P), reactive power (Q), apparent power (S) and power factor (PF) and for calculating the accumulated energy separately as forward active, reversed active, forward reactive and reversed reactive. PEMMXU calculates these quantities using the fundamental frequency phasors, that is, the DFT values of the measured phase current and phase voltage signals.

The information of the measured quantity is available for the operator both locally in LHMI or WHMI and remotely to a network control center with communication.

If the measured data in LHMI or WHMI is within parentheses, there are some problems to express the data.

8.1.2 Measurement functionality

The functions can be enabled or disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

Some of the measurement functions operate on two alternative measurement modes: "DFT" and "RMS". The measurement mode is selected with the *X Measurement mode* setting. Depending on the measuring function if the measurement mode cannot be selected, the measuring mode is "DFT".

Measurement functions 1MRS758755 C

Demand value calculation

The demand values are calculated separately for each measurement function and per phase when applicable. The available measurement modes are "Linear" and "Logarithmic". The "Logarithmic" measurement mode is only effective for phase current and residual current demand value calculations. The demand value calculation mode is selected with the setting parameter **Configuration** > **Measurements** > **A demand Av mode**. The time interval for all demand value calculations is selected with the setting parameter **Configuration** > **Measurements** > **Demand interval**.

If the *Demand interval* setting is set to "15 minutes", for example, the demand values are updated every quarter of an hour. The demand time interval is synchronized to the real-time clock of the protection relay. When the demand time interval or calculation mode is changed, it initializes the demand value calculation. For the very first demand value calculation interval, the values are stated as invalid until the first refresh is available.

The "Linear" calculation mode uses the periodic sliding average calculation of the measured signal over the demand time interval. A new demand value is obtained once in a minute, indicating the analog signal demand over the demand time interval proceeding the update time. The actual rolling demand values are stored in the memory until the value is updated at the end of the next time interval.

The "Logarithmic" calculation mode uses the periodic calculation using a log10 function over the demand time interval to replicate thermal demand ammeters. The logarithmic demand calculates a snapshot of the analog signal every 1/15 x demand time interval.

Each measurement function has its own recorded data values. In protection relay, these are found in **Monitoring** > **Recorded data** > **Measurements**. In the technical manual these are listed in the monitored data section of each measurement function. These values are periodically updated with the maximum and minimum demand values. The time stamps are provided for both values.

Reset of Recorded data initializes a present demand value to the minimum and maximum demand values.

Value reporting

The measurement functions are capable of reporting new values for network control center (SCADA system) based on various functions.

- · Zero-point clamping
- · Deadband supervision
- · Limit value supervision

In the three-phase voltage measurement function VMMXU the supervision functions are based on the phase-to-phase voltages. However, the phase-to-earth voltage values are also reported with the phase-to-phase voltages.

GOOSE is an event based protocol service. Analog GOOSE uses the same event generation functions as vertical SCADA communication for updating the measurement values. Update interval of 500 ms is used for data that do not have zero-point clamping, deadband supervision or limit value supervision.

1MRS758755 C Measurement functions

Zero-point clamping

A measured value under the zero-point clamping limit is forced to zero. This allows the noise in the input signal to be ignored. The active clamping function forces both the actual measurement value and the angle value of the measured signal to zero. In the three-phase or sequence measuring functions, each phase or sequence component has a separate zero-point clamping function. The zero-value detection operates so that once the measured value exceeds or falls below the value of the zero-clamping limit, new values are reported.

Table 582: Zero-point clamping limits

Function	Zero-clamping limit
Three-phase current measurement (CMMXU)	1 % of nominal (In)
Three-phase voltage measurement (VMMXU)	1 % of nominal (Un)
Residual current measurement (RESCMMXU)	1 % of nominal (In)
Residual voltage measurement (RESVMMXU)	1 % of nominal (Un)
Phase sequence current measurement (CSMSQI)	1 % of the nominal (In)
Phase sequence voltage measurement (VSMSQI)	1 % of the nominal (Un)
Three-phase power and energy measurement (PEMMXU)	1.5 % of the nominal (Sn)

When the frequency measurement function FMMXU is unable to measure the network frequency in the undervoltage situation, the measured values are set to the nominal and also the quality information of the data set accordingly. The undervoltage limit is fixed to 10 percent of the nominal for the frequency measurement.

Limit value supervision

The limit value supervision function indicates whether the measured value of X_{INST} exceeds or falls below the set limits. The measured value has the corresponding range information X_{INST} exceeds or falls below the set limits. The measured value has the

- 0: "normal"
- 1: "high"
- 2: "low"
- 3: "high-high"
- 4: "low-low"

The range information changes and the new values are reported.

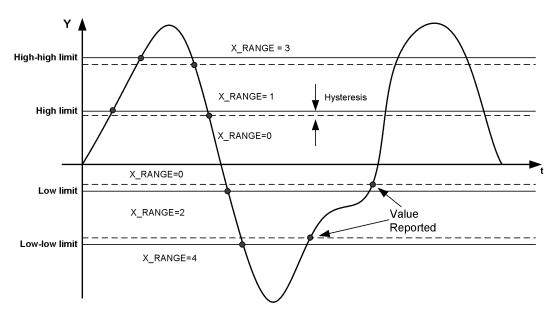


Figure 291: Presentation of operating limits

The range information can also be decoded into boolean output signals on some of the measuring functions and the number of phases required to exceed or undershoot the limit before activating the outputs and can be set with the *Num of phases* setting in the three-phase measurement functions CMMXU and VMMXU. The limit supervision boolean alarm and warning outputs can be blocked.

Table 583: Settings for limit value supervision

Function	Settings for limit value supervision	
Three-phase current measurement	High limit	A high limit
(CMMXU)	Low limit	A low limit
	High-high limit	A high high limit
	Low-low limit	A low low limit
Three-phase voltage measurement	High limit	V high limit
(VMMXU)	Low limit	V low limit
	High-high limit	V high high limit
	Low-low limit	V low low limit
Residual current measurement (RE-	High limit	A high limit res
SCMMXU)	Low limit	-
	High-high limit	A Hi high limit res
	Low-low limit	-
Frequency measurement (FMMXU)	High limit	F high limit
	Low limit	F low limit
	High-high limit	F high high limit
	Low-low limit	F low low limit
Residual voltage measurement (RE-SVMMXU)	High limit	V high limit res

Function	Settings for limit value supervision	
	Low limit	-
	High-high limit	V Hi high limit res
	Low-low limit	-
Phase sequence current measurement (CSMSQI)	High limit	Ps Seq A high limit, Ng Seq A high limit, Zro A high limit
	Low limit	Ps Seq A low limit, Ng Seq A low limit, Zro A low limit
	High-high limit	Ps Seq A Hi high Lim, Ng Seq A Hi high Lim, Zro A Hi high Lim
	Low-low limit	Ps Seq A low low Lim, Ng Seq A low low Lim, Zro A low low Lim
Phase sequence voltage measurement (VSMSQI)	High limit	Ps Seq V high limit, Ng Seq V high limit, Zro V high limit
	Low limit	Ps Seq V low limit, Ng Seq V low limit, Zro V low limit
	High-high limit	Ps Seq V Hi high Lim, Ng Seq V Hi high Lim, Zro V Hi high Lim
	Low-low limit	Ps Seq V low low Lim, Ng Seq V low low Lim,
Three-phase power and energy	High limit	-
measurement (PEMMXU)	Low limit	-
	High-high limit	-
	Low-low limit	-

Deadband supervision

The deadband supervision function reports the measured value according to integrated changes over a time period.

Measurement functions 1MRS758755 C

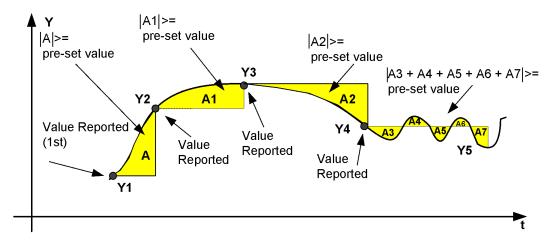


Figure 292: Integral deadband supervision

The deadband value used in the integral calculation is configured with the X deadband setting. The value represents the percentage of the difference between the maximum and minimum limit in the units of 0.001 percent x seconds.

The reporting delay of the integral algorithms in seconds is calculated with the formula:

$$t(s) = \frac{(\text{max} - \text{min}) \times deadband / 1000}{|\Delta Y| \times 100\%}$$

(Equation 68)

Example for CMMXU:

A deadband = 2500 (2.5% of the total measuring range of 40)

I INST
$$A = I$$
 DB $A = 0.30$

If I INST A changes to 0.40, the reporting delay is:

$$t(s) = \frac{(40-0) \times 2500/1000}{|0.40-0.30| \times 100\%} = 10s$$

Table 584: Parameters for deadband calculation

Function	Settings	Maximum/minimum (=range)
Three-phase current meas- urement (CMMXU)	A deadband	40/0 (=40xIn)
Three-phase voltage meas- urement (VMMXU)	V Deadband	4/0 (=4xUn)
Residual current measure- ment (RESCMMXU)	A deadband res	40/0 (=40xln)
Residual voltage measure- ment (RESVMMXU)	V deadband res	4/0 (=4xUn)

Function	Settings	Maximum/minimum (=range)
Frequency measurement (FMMXU)	F deadband	75/35 (=40 Hz) ¹
Phase sequence current measurement (CSMSQI)	Ps Seq A deadband, Ng Seq A deadband, Zro A deadband	40/0 (=40xln)
Phase sequence voltage measurement (VSMSQI)	Ps Seq V deadband, Ng Seq V deadband, Zro V deadband	4/0 (=4xUn)
Three-phase power and energy measurement (PEMMXU)	-	

In the three-phase power and energy measurement function PEMMXU, the deadband supervision is done separately for apparent power S, with the preset value of fixed 10 percent of the Sn, and the power factor PF, with the preset values fixed at 0.10... All the power measurement-related values P, Q, S and PF are reported simultaneously when either one of the S or PF values exceeds the preset limit.

Power and energy calculation

The three-phase power is calculated from the phase-to-earth voltages and phase-to-earth currents. The power measurement function is capable of calculating a complex power based on the fundamental frequency component phasors (DFT).

$$\overline{S} = (\overline{U}_A \cdot \overline{I}_A^* + \overline{U}_B \cdot \overline{I}_B^* + \overline{U}_C \cdot \overline{I}_C^*)$$

(Equation 69)

Once the complex apparent power is calculated, P, Q, S and PF are calculated with the equations:

$$P = \operatorname{Re}(\overline{S})$$

(Equation 70)

$$Q = \operatorname{Im}(\overline{S})$$

(Equation 71)

$$S = \left| \overline{S} \right| = \sqrt{P^2 + Q^2}$$

(Equation 72)

$$Cos\varphi = \frac{P}{S}$$

(Equation 73)

Depending on the unit multiplier selected with *Power unit Mult*, the calculated power values are presented in units of kVA/kW/kVAr or in units of MVA/MW/MVAr.

¹ The value provided is for 50 Hz network. The value for 60 Hz network is 90/36 (=54 Hz)

Measurement functions 1MRS758755 C

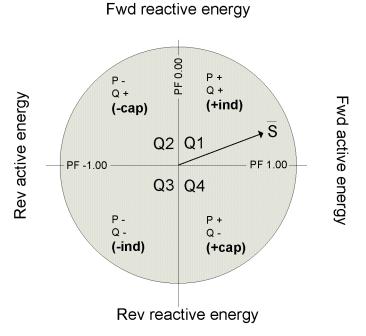


Figure 293: Complex power and power quadrants

Quadrant	Current	Р	Q	PF	Power
Q1	Lagging	+	+	0+1.00	+ind
Q2	Lagging	-	+	01.00	-cap
Q 3	Leading	-	-	01.00	-ind
Q4	Leading	+	-	0+1.00	+cap

The active power P direction can be selected between forward and reverse with *Active power Dir* and correspondingly the reactive power Q direction can be selected with *Reactive power Dir*. This affects also the accumulated energy directions.

The accumulated energy is calculated separately as forward active (EA_FWD_ACM), reverse active (EA_RV_ACM), forward reactive (ER_FWD_ACM) and reverse reactive (ER_RV_ACM). Depending on the value of the unit multiplier selected with *Energy unit Mult*, the calculated power values are presented in units of kWh/kVArh or in units of MWh/MVArh.

When the energy counter reaches its defined maximum value, the counter value is reset and restarted from zero. Changing the value of the *Energy unit Mult* setting resets the accumulated energy values to the initial values, that is, EA_FWD_ACM to *Forward Wh Initial*, EA_RV_ACM to *Reverse Wh Initial*, ER_FWD_ACM to *Forward VArh Initial* and ER_RV_ACM to *Reverse VArh Initial*. It is also possible to reset the accumulated energy to initial values through a parameter or with the RSTACM input.

Sequence components

The phase-sequence components are calculated using the phase currents and phase voltages. More information on calculating the phase-sequence components can be found in *Chapter 11.6 Calculated measurements* in this manual.

8.1.3 Measurement function applications

The measurement functions are used for power system measurement, supervision and reporting to LHMI, a monitoring tool within PCM600, or to the station level, for example, with IEC 61850. The possibility to continuously monitor the measured values of active power, reactive power, currents, voltages, power factors and so on, is vital for efficient production, transmission, and distribution of electrical energy. It provides a fast and easy overview of the present status of the power system to the system operator. Additionally, it can be used during testing and commissioning of protection relays to verify the proper operation and connection of instrument transformers, that is, the current transformers (CTs) and voltage transformers (VTs). The proper operation of the protection relay analog measurement chain can be verified during normal service by a periodic comparison of the measured value from the protection relay to other independent meters.

When the zero signal is measured, the noise in the input signal can still produce small measurement values. The zero point clamping function can be used to ignore the noise in the input signal and, hence, prevent the noise to be shown in the user display. The zero clamping is done for the measured analog signals and angle values.

The demand values are used to neglect sudden changes in the measured analog signals when monitoring long time values for the input signal. The demand values are linear average values of the measured signal over a settable demand interval. The demand values are calculated for the measured analog three-phase current signals.

The limit supervision indicates, if the measured signal exceeds or goes below the set limits. Depending on the measured signal type, up to two high limits and up to two low limits can be set for the limit supervision.

The deadband supervision reports a new measurement value if the input signal has gone out of the deadband state. The deadband supervision can be used in value reporting between the measurement point and operation control. When the deadband supervision is properly configured, it helps in keeping the communication load in minimum and yet measurement values are reported frequently enough.

8.1.4 Three-phase current measurement CMMXU

8.1.4.1 Identification

Function description	1	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase current measurement	СММХИ	31	31

Measurement functions 1MRS758755 C

8.1.4.2 Function block

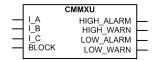


Figure 294: Function block

8.1.4.3 Signals

CMMXU Input signals

Table 586: CMMXU Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for all bi- nary outputs

CMMXU Output signals

Table 587: CMMXU Output signals

Name	Туре	Description
HIGH_ALARM	BOOLEAN	High alarm
HIGH_WARN	BOOLEAN	High warning
LOW_WARN	BOOLEAN	Low warning
LOW_ALARM	BOOLEAN	Low alarm

8.1.4.4 Settings

CMMXU Non group settings

Table 588: CMMXU Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Num of phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required by limit supervision
A high high limit	0.0040.00	xIn	1	1.40	High alarm current limit

Parameter	Values (Range)	Unit	Step	Default	Description
A high limit	0.0040.00	xIn	1	1.20	High warning cur- rent limit
A low limit	0.0040.00	xIn	1	0.00	Low warning cur- rent limit
A low low limit	0.0040.00	xIn	1	0.00	Low alarm current limit
A deadband	100100000		1	2500	Deadband configuration value for integral calculation. (percentage of difference between min and max as 0,001 % s)

Table 589: CMMXU Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Measurement mode	1=RMS 2=DFT			2=DFT	Selects used meas- urement mode

8.1.4.5 Monitored data

CMMXU Monitored data

Table 590: CMMXU Monitored data

Name	Туре	Values (Range)	Unit	Description
IL1-A	FLOAT32	0.0040.00	xIn	Measured cur- rent amplitude phase A
IL2-A	FLOAT32	0.0040.00	xIn	Measured cur- rent amplitude phase B
IL3-A	FLOAT32	0.0040.00	xIn	Measured cur- rent amplitude phase C
Max demand IL1	FLOAT32	0.0040.00	xIn	Maximum de- mand for Phase A
Max demand IL2	FLOAT32	0.0040.00	xIn	Maximum de- mand for Phase B
Max demand IL3	FLOAT32	0.0040.00	xIn	Maximum de- mand for Phase C
Min demand IL1	FLOAT32	0.0040.00	xIn	Minimum de- mand for Phase A

Name	Туре	Values (Range)	Unit	Description
Min demand IL2	FLOAT32	0.0040.00	xln	Minimum de- mand for Phase B
Min demand IL3	FLOAT32	0.0040.00	xln	Minimum de- mand for Phase C
Time max de- mand IL1	Timestamp			Time of maxi- mum demand phase A
Time max de- mand IL2	Timestamp			Time of maxi- mum demand phase B
Time max de- mand IL3	Timestamp			Time of maxi- mum demand phase C
Time min de- mand IL1	Timestamp			Time of mini- mum demand phase A
Time min de- mand IL2	Timestamp			Time of mini- mum demand phase B
Time min de- mand IL3	Timestamp			Time of mini- mum demand phase C
BLOCK	BOOLEAN	0=False 1=True		Block signal for all binary out- puts
HIGH_ALARM	BOOLEAN	0=False 1=True		High alarm
HIGH_WARN	BOOLEAN	0=False 1=True		High warning
LOW_WARN	BOOLEAN	0=False 1=True		Low warning
LOW_ALARM	BOOLEAN	0=False 1=True		Low alarm
I_INST_A	FLOAT32	0.0040.00	xIn	IL1 Amplitude, magnitude of in- stantaneous val- ue
I_ANGL_A	FLOAT32	-180.00180.00	deg	IL1 current angle
I_DB_A	FLOAT32	0.0040.00	xln	IL1 Amplitude, magnitude of re- ported value

580

Name	Туре	Values (Range)	Unit	Description
I_DMD_A	FLOAT32	0.0040.00	xIn	Demand value of IL1 current
I_RANGE_A	Enum	0=normal		IL1 Amplitude
		1=high		range
		2=low		
		3=high-high		
		4=low-low		
I_INST_B	FLOAT32	0.0040.00	xln	IL2 Amplitude, magnitude of in- stantaneous val- ue
I_ANGL_B	FLOAT32	-180.00180.00	deg	IL2 current angle
I_DB_B	FLOAT32	0.0040.00	xln	IL2 Amplitude, magnitude of re- ported value
I_DMD_B	FLOAT32	0.0040.00	xIn	Demand value of IL2 current
I_RANGE_B	Enum	0=normal		IL2 Amplitude
		1=high		range
		2=low		
		3=high-high		
		4=low-low		
I_INST_C	FLOAT32	0.0040.00	xln	IL3 Amplitude, magnitude of in- stantaneous val- ue
I_ANGL_C	FLOAT32	-180.00180.00	deg	IL3 current angle
I_DB_C	FLOAT32	0.0040.00	xln	IL3 Amplitude, magnitude of re- ported value
I_DMD_C	FLOAT32	0.0040.00	xIn	Demand value of IL3 current
I_RANGE_C	Enum	0=normal		IL3 Amplitude
		1=high		range
		2=low		
		3=high-high		
		4=low-low		

8.1.4.6 Technical data

Measurement functions 1MRS758755 C

Table 591: CMMXU Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: f $_{\rm n}$ ±2 Hz
	± 0.5 % or $\pm 0.002 \times I_n$ (at currents in the range of 0.014.00 $\times I_n$)
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5, RMS: No suppression

8.1.4.7 Technical revision history

Table 592: CMMXU Technical revision history

Technical revision	Change
В	Menu changes
С	Phase current angle values added to Monitored data view. Minimum demand value and time added to recorded data. Logarithmic demand calculation mode added and demand interval setting moved under Measurement menu as general setting to all demand calculations.
D	Internal improvement.
E	Internal improvement.

8.1.5 Three-phase voltage measurement VMMXU

8.1.5.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase voltage measure- ment	VMMXU	3U	3V

8.1.5.2 Function block

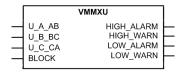


Figure 295: Function block

8.1.5.3 Signals

1MRS758755 C Measurement functions

VMMXU Input signals

Table 593: VMMXU Input signals

Name	Туре	Default	Description
U_A_AB	SIGNAL	0	Phase to earth voltage A or phase to phase voltage AB
U_B_BC	SIGNAL	0	Phase to earth voltage B or phase to phase voltage BC
U_C_CA	SIGNAL	0	Phase to earth voltage C or phase to phase voltage CA
BLOCK	BOOLEAN	0=False	Block signal for all binary outputs

VMMXU Output signals

Table 594: VMMXU Output signals

Name	Туре	Description
HIGH_ALARM	BOOLEAN	High alarm
HIGH_WARN	BOOLEAN	High warning
LOW_WARN	BOOLEAN	Low warning
LOW_ALARM	BOOLEAN	Low alarm

8.1.5.4 Settings

VMMXU Non group settings

Table 595: VMMXU Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Num of phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required by limit supervision
V high high limit	0.004.00	xUn	1	1.40	High alarm voltage limit
V high limit	0.004.00	xUn	1	1.20	High warning volt- age limit
V low limit	0.004.00	xUn	1	0.00	Low warning volt- age limit
V low low limit	0.004.00	xUn	1	0.00	Low alarm voltage limit
V deadband	100100000		1	10000	Deadband configuration value for integral calculation. (percentage of difference between

Parameter	Values (Range)	Unit	Step	Default	Description
					min and max as 0,001 % s)

Table 596: VMMXU Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Measurement mode	1=RMS			2=DFT	Selects used meas- urement mode
	2=DFT				a. cc.

8.1.5.5 Monitored data

VMMXU Monitored data

Table 597: VMMXU Monitored data

Name	Туре	Values (Range)	Unit	Description
U12-kV	FLOAT32	0.004.00	xUn	Measured phase to phase voltage amplitude phase AB
U23-kV	FLOAT32	0.004.00	xUn	Measured phase to phase voltage amplitude phase BC
U31-kV	FLOAT32	0.004.00	xUn	Measured phase to phase voltage amplitude phase CA
BLOCK	BOOLEAN	0=False		Block signal for all binary out-
		1=True		puts
HIGH_ALARM	BOOLEAN	0=False		High alarm
		1=True		
HIGH_WARN	BOOLEAN	0=False		High warning
		1=True		
LOW_WARN	BOOLEAN	0=False		Low warning
		1=True		
LOW_ALARM	BOOLEAN	0=False		Low alarm
		1=True		
U_INST_AB	FLOAT32	0.004.00	xUn	U12 Amplitude, magnitude of in- stantaneous val- ue

Name	Туре	Values (Range)	Unit	Description
U_ANGL_AB	FLOAT32	-180.00180.00	deg	U12 angle
U_DB_AB	FLOAT32	0.004.00	xUn	U12 Amplitude, magnitude of re- ported value
U_DMD_AB	FLOAT32	0.004.00	xUn	Demand value of U12 voltage
U_RANGE_AB	Enum	0=normal		U12 Amplitude
		1=high		range
		2=low		
		3=high-high		
		4=low-low		
U_INST_BC	FLOAT32	0.004.00	xUn	U23 Amplitude, magnitude of in- stantaneous val- ue
U_ANGL_BC	FLOAT32	-180.00180.00	deg	U23 angle
U_DB_BC	FLOAT32	0.004.00	xUn	U23 Amplitude, magnitude of re- ported value
U_DMD_BC	FLOAT32	0.004.00	xUn	Demand value of U23 voltage
U_RANGE_BC	Enum	0=normal		U23 Amplitude
		1=high		range
		2=low		
		3=high-high		
		4=low-low		
U_INST_CA	FLOAT32	0.004.00	xUn	U31 Amplitude, magnitude of in- stantaneous val- ue
U_ANGL_CA	FLOAT32	-180.00180.00	deg	U31 angle
U_DB_CA	FLOAT32	0.004.00	xUn	U31 Amplitude, magnitude of re- ported value
U_DMD_CA	FLOAT32	0.004.00	xUn	Demand value of U31 voltage
U_RANGE_CA	Enum	0=normal		U31 Amplitude
		1=high		range
		2=low		
		3=high-high		

Name	Туре	Values (Range)	Unit	Description
		4=low-low		
U_INST_A	FLOAT32	0.005.00	xUn	UL1 Amplitude, magnitude of in- stantaneous val- ue
U_ANGL_A	FLOAT32	-180.00180.00	deg	UL1 angle
U_DMD_A	FLOAT32	0.005.00	xUn	Demand value of UL1 voltage
U_INST_B	FLOAT32	0.005.00	xUn	UL2 Amplitude, magnitude of in- stantaneous val- ue
U_ANGL_B	FLOAT32	-180.00180.00	deg	UL2 angle
U_DMD_B	FLOAT32	0.005.00	xUn	Demand value of UL2 voltage
U_INST_C	FLOAT32	0.005.00	xUn	UL3 Amplitude, magnitude of in- stantaneous val- ue
U_ANGL_C	FLOAT32	-180.00180.00	deg	UL3 angle
U_DMD_C	FLOAT32	0.005.00	xUn	Demand value of UL3 voltage

8.1.5.6 Technical data

Table 598: VMMXU Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the voltage measured: f $_{\rm n}$ ±2 Hz
	At voltages in range 0.011.15 × U _n
	±0.5 % or ±0.002 × U _n
Suppression of harmonics	DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ RMS: No suppression

8.1.5.7 Technical revision history

Table 599: VMMXU Technical revision history

Technical revision	Change
В	Phase and phase-to-phase voltage angle values and demand values added to Monitored data view.
С	Internal improvement.
D	Internal improvement.

1MRS758755 C Measurement functions

8.1.6 Residual current measurement RESCMMXU

8.1.6.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Residual current measurement	RESCMMXU	lo	In

8.1.6.2 Function block

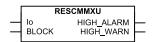


Figure 296: Function block

8.1.6.3 Signals

RESCMMXU Input signals

Table 600: RESCMMXU Input signals

Name	Туре	Default	Description
lo	SIGNAL	0	Residual current
BLOCK	BOOLEAN	0=False	Block signal for all binary outputs

RESCMMXU Output signals

Table 601: RESCMMXU Output signals

Name	Туре	Description
HIGH_ALARM	BOOLEAN	High alarm
HIGH_WARN	BOOLEAN	High warning

8.1.6.4 Settings

RESCMMXU Non group settings

Table 602: RESCMMXU Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On

Parameter	Values (Range)	Unit	Step	Default	Description
	5=off				
A Hi high limit res	0.0040.00	xIn	1	0.20	High alarm current limit
A high limit res	0.0040.00	xIn	1	0.05	High warning cur- rent limit
A deadband res	100100000		1	2500	Deadband configuration value for integral calculation. (percentage of difference between min and max as 0,001 % s)

Table 603: RESCMMXU Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Measurement mode	1=RMS 2=DFT			2=DFT	Selects used meas- urement mode

8.1.6.5 Monitored data

RESCMMXU Monitored data

Table 604: RESCMMXU Monitored data

Name	Туре	Values (Range)	Unit	Description
Io-A	FLOAT32	0.0040.00	xIn	Measured residu- al current
BLOCK	BOOLEAN	0=False 1=True		Block signal for all binary out- puts
HIGH_ALARM	BOOLEAN	0=False 1=True		High alarm
HIGH_WARN	BOOLEAN	0=False 1=True		High warning
I_INST_RES	FLOAT32	0.0040.00	xIn	Residual current Amplitude, mag- nitude of instan- taneous value
I_ANGL_RES	FLOAT32	-180.00180.00	deg	Residual current angle
I_DB_RES	FLOAT32	0.0040.00	xIn	Residual current Amplitude, mag- nitude of repor- ted value
I_DMD_RES	FLOAT32	0.0040.00	xIn	Demand value of residual current

Name	Туре	Values (Range)	Unit	Description
I_RANGE_RES	Enum	0=normal		Residual current
		1=high		Amplitude range
		2=low		
		3=high-high		
		4=low-low		
Max demand Io	FLOAT32	0.0040.00	xIn	Maximum de- mand for residu- al current
Min demand Io	FLOAT32	0.0040.00	xIn	Minimum de- mand for residu- al current
Time max de- mand Io	Timestamp			Time of maxi- mum demand re- sidual current
Time min de- mand Io	Timestamp			Time of mini- mum demand re- sidual current

8.1.6.6 Technical data

Table 605: RESCMMXU Technical data

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	± 0.5 % or $\pm 0.002 \times I_n$ (at currents in the range of $0.014.00 \times I_n$)
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,
	RMS: No suppression

8.1.6.7 Technical revision history

Table 606: RESCMMXU Technical revision history

Technical revision	Change
В	-
С	Residual current angle and demand value added to Monitored data view. Recorded data added for minimum and maximum values with timestamps.
D	Monitored data Min demand Io maximum value range (RESCMSTA2.MinAmps.maxVal.f) is corrected to 40.00.
E	Internal improvement

Measurement functions 1MRS758755 C

8.1.7 Residual voltage measurement RESVMMXU

8.1.7.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Residual voltage measurement	RESVMMXU	Uo	Vn

8.1.7.2 Function block

Figure 297: Function block

8.1.7.3 Signals

RESVMMXU Input signals

Table 607: RESVMMXU Input signals

Name	Туре	Default	Description
Uo	SIGNAL	0	Residual voltage
BLOCK	BOOLEAN	0=False	Block signal for all bi- nary outputs

RESVMMXU Output signals

Table 608: RESVMMXU Output signals

Name	Туре	Description
HIGH_ALARM	BOOLEAN	High alarm
HIGH_WARN	BOOLEAN	High warning

8.1.7.4 Settings

RESVMMXU Non group settings

Table 609: RESVMMXU Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
V Hi high limit res	0.004.00	xUn	1	0.20	High alarm voltage limit

Parameter	Values (Range)	Unit	Step	Default	Description
V high limit res	0.004.00	xUn	1	0.05	High warning volt- age limit
V deadband res	100100000		1	10000	Deadband configuration value for integral calculation. (percentage of difference between min and max as 0,001 % s)

Table 610: RESVMMXU Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Measurement mode	1=RMS 2=DFT				Selects used meas- urement mode

8.1.7.5 Monitored data

RESVMMXU Monitored data

Table 611: RESVMMXU Monitored data

Name	Туре	Values (Range)	Unit	Description
Uo-kV	FLOAT32	0.004.00	xUn	Measured residual voltage
BLOCK	BOOLEAN	0=False 1=True		Block signal for all binary out-
HIGH_ALARM	BOOLEAN	0=False 1=True		High alarm
		1-True		
HIGH_WARN	BOOLEAN	0=False		High warning
		1=True		
U_INST_RES	FLOAT32	0.004.00	xUn	Residual voltage Amplitude, mag- nitude of instan- taneous value
U_ANGL_RES	FLOAT32	-180.00180.00	deg	Residual voltage angle
U_DB_RES	FLOAT32	0.004.00	xUn	Residual voltage Amplitude, mag- nitude of repor- ted value
U_DMD_RES	FLOAT32	0.004.00	xUn	Demand value of residual voltage
U_RANGE_RES	Enum	0=normal		Residual voltage
		1=high		Amplitude range
		2=low		

Name	Туре	Values (Range)	Unit	Description
		3=high-high		
		4=low-low		

8.1.7.6 Technical data

Table 612: RESVMMXU Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured voltage: f/f $_{\rm n}$ = ± 2 Hz
	±0.5 % or ±0.002 × U _n
Suppression of harmonics	DFT: -50 dB at f = $n \times f_n$, where n = 2, 3, 4, 5, RMS: No suppression

8.1.7.7 Technical revision history

Table 613: RESVMMXU Technical revision history

Technical revision	Change
В	-
С	Residual voltage angle and demand value added to Monitored data view
D	Internal improvement
Е	Internal improvement

8.1.8 Frequency measurement FMMXU

8.1.8.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Frequency measurement	FMMXU	F	F

8.1.8.2 Function block

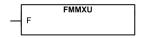


Figure 298: Function block

1MRS758755 C Measurement functions

8.1.8.3 Functionality

The frequency measurement range is 35...75 Hz. The estimated frequencies outside the measurement range are considered to be out of range and the minimum and maximum values are then shown.

When the frequencies cannot be measured, for example, due to too low voltage amplitude, the default value for frequency measurement can be selected with the *Def frequency Sel* setting parameter. In the "Nominal" mode the frequency is set to 50 Hz (or 60 Hz) and in "Zero" mode the frequency is set to zero and shown in parentheses.

8.1.8.4 Signals

FMMXU Input signals

Table 614: FMMXU Input signals

Name	Туре	Default	Description
F	SIGNAL	-	Measured system fre-
			quency

8.1.8.5 Settings

FMMXU Non group settings

Table 615: FMMXU Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				
F high high limit	35.0075.00	Hz	1	60.00	High alarm frequency limit
F high limit	35.0075.00	Hz	1	55.00	High warning frequency limit
F low limit	35.0075.00	Hz	1	45.00	Low warning frequency limit
F low low limit	35.0075.00	Hz	1	40.00	Low alarm frequency limit
F deadband	100100000		1	1000	Deadband configuration value for integral calculation (percentage of difference between min and max as 0,001 % s)

Table 616: FMMXU Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Def frequency Sel	1=Nominal 2=Zero			1=Nominal	Default frequency selection

Measurement functions 1MRS758755 C

8.1.8.6 Monitored data

FMMXU Monitored data

Table 617: FMMXU Monitored data

Name	Туре	Values (Range)	Unit	Description
f-Hz	FLOAT32	35.0075.00	Hz	Measured frequency
F_INST	FLOAT32	35.0075.00	Hz	Frequency, instantaneous value
F_DB	FLOAT32	35.0075.00	Hz	Frequency, reported value
F_RANGE	Enum	0=normal 1=high		Measured frequency range
		2=low		
		3=high-high		
		4=low-low		

8.1.8.7 Technical data

Table 618: FMMXU Technical data

Characteristic	Value
Operation accuracy	±10 mHz
	(in measurement range 3575 Hz)

8.1.8.8 Technical revision history

Table 619: FMMXU Technical revision history

Technical revision	Change
	Added new setting <i>Def frequency Sel.</i> Frequency measurement range lowered from 35
	Hz to 10 Hz.

8.1.9 Sequence current measurement CSMSQI

8.1.9.1 Identification

Function description	IEC 61850 identification		ANSI/IEEE C37.2 device number
Sequence current measurement	CSMSQI	11, 12, 10	11, 12, 10

1MRS758755 C Measurement functions

8.1.9.2 Function block

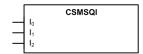


Figure 299: Function block

8.1.9.3 Signals

CSMSQI Input signals

Table 620: CSMSQI Input signals

Name	Туре	Default	Description
Ι ₀	SIGNAL	0	Zero sequence cur- rent
I ₁	SIGNAL	0	Positive sequence current
I 2	SIGNAL	0	Negative sequence current

8.1.9.4 Settings

CSMSQI Non group settings

Table 621: CSMSQI Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Ps Seq A Hi high Lim	0.0040.00	xIn	1	1.40	High alarm current limit for positive sequence current
Ps Seq A high limit	0.0040.00	xIn	1	1.20	High warning cur- rent limit for pos- itive sequence cur- rent
Ps Seq A low limit	0.0040.00	xIn	1	0.00	Low warning cur- rent limit for pos- itive sequence cur- rent
Ps Seq A low low Lim	0.0040.00	xln	1	0.00	Low alarm current limit for positive sequence current
Ps Seq A deadband	100100000		1	2500	Deadband configuration value for positive sequence current for integral calculation.

Parameter	Values (Range)	Unit	Step	Default	Description
					(percentage of dif- ference between min and max as 0,001 % s)
Ng Seq A Hi high Lim	0.0040.00	xIn	1	0.20	High alarm current limit for negative sequence current
Ng Seq A High limit	0.0040.00	xIn	1	0.05	High warning cur- rent limit for neg- ative sequence cur- rent
Ng Seq A low limit	0.0040.00	xIn	1	0.00	Low warning cur- rent limit for neg- ative sequence cur- rent
Ng Seq A low low Lim	0.0040.00	xIn	1	0.00	Low alarm current limit for negative sequence current
Ng Seq A deadband	100100000		1	2500	Deadband configuration value for negative sequence current for integral calculation. (percentage of difference between min and max as 0,001 % s)
Zro A Hi high Lim	0.0040.00	xIn	1	0.20	High alarm current limit for zero se- quence current
Zro A High limit	0.0040.00	xIn	1	0.05	High warning cur- rent limit for zero sequence current
Zro A low limit	0.0040.00	xIn	1	0.00	Low warning cur- rent limit for zero sequence current
Zro A low low Lim	0.0040.00	xIn	1	0.00	Low alarm current limit for zero se- quence current
Zro A deadband	100100000		1	2500	Deadband configuration value for zero sequence current for integral calculation. (percentage of difference between min and max as 0,001 % s)

Monitored data 8.1.9.5

CSMSQI Monitored data

Table 622: CSMSQI Monitored data

Name	Туре	Values (Range)	Unit	Description
NgSeq-A	FLOAT32	0.0040.00	xIn	Measured nega- tive sequence current
PsSeq-A	FLOAT32	0.0040.00	xIn	Measured posi- tive sequence current

Name	Туре	Values (Range)	Unit	Description
ZroSeq-A	FLOAT32	0.0040.00	xIn	Measured zero sequence current
I2_INST	FLOAT32	0.0040.00	xIn	Negative sequence current amplitude, instantaneous value
I2_ANGL	FLOAT32	-180.00180.00	deg	Negative sequence current angle
12_DB	FLOAT32	0.0040.00	xIn	Negative se- quence current amplitude, re- ported value
I2_RANGE	Enum	0=normal		Negative se-
		1=high		quence current amplitude range
		2=low		ampilitude range
		3=high-high		
		4=low-low		
I1_INST	FLOAT32	0.0040.00	xIn	Positive sequence current amplitude, instantaneous value
I1_ANGL	FLOAT32	-180.00180.00	deg	Positive sequence current angle
I1_DB	FLOAT32	0.0040.00	xIn	Positive sequence current amplitude, reported value
I1_RANGE	Enum	0=normal		Positive se-
		1=high		quence current amplitude range
		2=low		
		3=high-high		
		4=low-low		
IO_INST	FLOAT32	0.0040.00	xIn	Zero sequence current ampli- tude, instantane- ous value
IO_ANGL	FLOAT32	-180.00180.00	deg	Zero sequence current angle

Name	Туре	Values (Range)	Unit	Description
IO_DB	FLOAT32	0.0040.00	xIn	Zero sequence current ampli- tude, reported value
IO_RANGE	Enum	0=normal		Zero sequence
		1=high		current ampli- tude range
		2=low		
		3=high-high		
		4=low-low		

8.1.9.6 **Technical data**

Table 623: CSMSQI Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f/f_n = \pm 2 \text{ Hz}$
	±1.0 % or ±0.002 × I _n
	at currents in the range of 0.014.00 \times I $_{\rm n}$
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

8.1.9.7 **Technical revision history**

Table 624: CSMSQI Technical revision history

Technical revision	Change
A	-
В	Sequence current angle values added to the Monitored data view.
С	Internal improvement.

Sequence voltage measurement VSMSQI 8.1.10

Identification 8.1.10.1

Function description			ANSI/IEEE C37.2 device number
Sequence voltage measurement	VSMSQI	U1, U2, U0	V1, V2, V0

1MRS758755 C Measurement functions

8.1.10.2 Function block

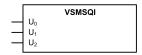


Figure 300: Function block

8.1.10.3 Signals

VSMSQI Input signals

Table 625: VSMSQI Input signals

Name	Туре	Default	Description
U ₀	SIGNAL	0	Zero sequence voltage
U ₁	SIGNAL	0	Positive phase sequence voltage
U ₂	SIGNAL	0	Negative phase sequence voltage

8.1.10.4 Settings

VSMSQI Non group settings

Table 626: VSMSQI Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Ps Seq V Hi high Lim	0.004.00	xUn	1	1.40	High alarm voltage limit for positive sequence voltage
Ps Seq V high limit	0.004.00	xUn	1	1.20	High warning volt- age limit for posi- tive sequence volt- age
Ps Seq V low limit	0.004.00	xUn	1	0.00	Low warning volt- age limit for posi- tive sequence volt- age
Ps Seq V low low Lim	0.004.00	xUn	1	0.00	Low alarm voltage limit for positive sequence voltage
Ps Seq V deadband	100100000		1	10000	Deadband configuration value for positive sequence voltage for integral calculation. (percentage of difference between min and max as 0,001 % s)
Ng Seq V Hi high Lim	0.004.00	xUn	1	0.20	High alarm voltage limit for negative sequence voltage

Parameter	Values (Range)	Unit	Step	Default	Description
Ng Seq V High limit	0.004.00	xUn	1	0.05	High warning volt- age limit for nega- tive sequence volt- age
Ng Seq V low limit	0.004.00	xUn	1	0.00	Low warning volt- age limit for nega- tive sequence volt- age
Ng Seq V low low Lim	0.004.00	xUn	1	0.00	Low alarm voltage limit for negative sequence voltage
Ng Seq V deadband	100100000		1	10000	Deadband configuration value for negative sequence voltage for integral calculation. (percentage of difference between min and max as 0,001 % s)
Zro V Hi high Lim	0.004.00	xUn	1	0.20	High alarm voltage limit for zero se- quence voltage
Zro V High limit	0.004.00	xUn	1	0.05	High warning volt- age limit for zero sequence voltage
Zro V low limit	0.004.00	xUn	1	0.00	Low warning volt- age limit for zero sequence voltage
Zro V low low Lim	0.004.00	xUn	1	0.00	Low alarm voltage limit for zero se- quence voltage
Zro V deadband	100100000		1	10000	Deadband configuration value for zero sequence voltage for integral calculation. (percentage of difference between min and max as 0,001 % s)

8.1.10.5 Monitored data

VSMSQI Monitored data

Table 627: VSMSQI Monitored data

Name	Туре	Values (Range)	Unit	Description
NgSeq-kV	FLOAT32	0.004.00	xUn	Measured nega- tive sequence voltage
PsSeq-kV	FLOAT32	0.004.00	xUn	Measured positive sequence voltage
ZroSeq-kV	FLOAT32	0.004.00	xUn	Measured zero sequence voltage
U2_INST	FLOAT32	0.004.00	xUn	Negative se- quence voltage amplitude, in-

Name	Туре	Values (Range)	Unit	Description
				stantaneous val- ue
U2_ANGL	FLOAT32	-180.00180.00	deg	Negative sequence voltage angle
U2_DB	FLOAT32	0.004.00	xUn	Negative sequence voltage amplitude, reported value
U2_RANGE	Enum	0=normal		Negative se-
		1=high		quence voltage amplitude range
		2=low		
		3=high-high		
		4=low-low		
U1_INST	FLOAT32	0.004.00	xUn	Positive sequence voltage amplitude, instantaneous value
U1_ANGL	FLOAT32	-180.00180.00	deg	Positive sequence voltage angle
U1_DB	FLOAT32	0.004.00	xUn	Positive se- quence voltage amplitude, re- ported value
U1_RANGE	Enum	0=normal		Positive se-
		1=high		quence voltage amplitude range
		2=low		
		3=high-high		
		4=low-low		
UO_INST	FLOAT32	0.004.00	xUn	Zero sequence voltage ampli- tude, instantane- ous value
U0_ANGL	FLOAT32	-180.00180.00	deg	Zero sequence voltage angle

Measurement functions 1MRS758755 C

Name	Туре	Values (Range)	Unit	Description
UO_DB	FLOAT32	0.004.00	xUn	Zero sequence voltage ampli- tude, reported value
U0_RANGE	Enum	0=normal		Zero sequence
		1=high		voltage ampli- tude range
		2=low		
		3=high-high		
		4=low-low		

8.1.10.6 Technical data

Table 628: VSMSQI Technical data

Characteristic	Value	
Operation accuracy	Depending on the frequency of the voltage measured: f $_{\rm n}$ ±2 Hz	
	At voltages in range 0.011.15 × U _n	
	±1.0 % or ±0.002 × U _n	
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,	

8.1.11 Three-phase power and energy measurement PEMMXU

8.1.11.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase power and energy measurement	PEMMXU	P, E	P, E

8.1.11.2 Function block

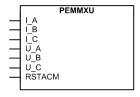


Figure 301: Function block

8.1.11.3 Signals

1MRS758755 C Measurement functions

PEMMXU Input signals

Table 629: PEMMXU Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
U_A	SIGNAL	0	Phase A voltage
U_B	SIGNAL	0	Phase B voltage
U_C	SIGNAL	0	Phase C voltage
RSTACM	BOOLEAN	0=False	Reset of accumulated energy reading

8.1.11.4 Settings

PEMMXU Non group settings

Table 630: PEMMXU Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Power unit Mult	3=Kilo 6=Mega			3=Kilo	Unit multiplier for presentation of the power related values
Energy unit Mult	3=Kilo 6=Mega			3=Kilo	Unit multiplier for presentation of the energy related values
Active power Dir	1=Forward 2=Reverse			1=Forward	Direction of active power flow: For- ward, Reverse
Reactive power Dir	1=Forward 2=Reverse			1=Forward	Direction of reac- tive power flow: Forward, Reverse

Table 631: PEMMXU Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Forward Wh Initial	0999999999		1	0	Preset Initial value for forward active energy
Reverse Wh Initial	0999999999		1	0	Preset Initial value for reverse active energy
Forward VArh Initial	0999999999		1	0	Preset Initial value for forward reactive energy
Reverse VArh Initial	0999999999		1	0	Preset Initial value for reverse reactive energy
Measurement mode	1=PhsA, PhsB, PhsC 2=Arone 3=Pos Seq 4=PhsAB 5=PhsBC			1=PhsA, PhsB, PhsC	Selected measurement mode for power calcula- tion

Parameter	Values (Range)	Unit	Step	Default	Description
	6=PhsCA				
	7=PhsA				
	8=PhsB				
	9=PhsC				

8.1.11.5 Monitored data

PEMMXU Monitored data

Table 632: PEMMXU Monitored data

Name	Туре	Values (Range)	Unit	Description
S-kVA	FLOAT32	-999999.99999 99.9	kVA	Total Apparent Power
P-kW	FLOAT32	-999999.99999 99.9	kW	Total Active Power
Q-kVAr	FLOAT32	-999999.99999 99.9	kVAr	Total Reactive Power
PF	FLOAT32	-1.001.00		Average Power factor
RSTACM	BOOLEAN	0=False 1=True		Reset of accu- mulated energy reading
S_INST	FLOAT32	-999999.99999 99.9	kVA	Apparent power, magnitude of in- stantaneous val- ue
S_DB	FLOAT32	-999999.99999 99.9	kVA	Apparent power, magnitude of re- ported value
S_DMD	FLOAT32	-999999.99999 99.9	kVA	Demand value of apparent power
P_INST	FLOAT32	-999999.99999 99.9	kW	Active power, magnitude of in- stantaneous val- ue
P_DB	FLOAT32	-999999.99999 99.9	kW	Active power, magnitude of re- ported value
P_DMD	FLOAT32	-999999.99999 99.9	kW	Demand value of active power
Q_INST	FLOAT32	-999999.99999 99.9	kVAr	Reactive power, magnitude of in- stantaneous val- ue

Name	Туре	Values (Range)	Unit	Description
Q_DB	FLOAT32	-999999.99999 99.9	kVAr	Reactive power, magnitude of re- ported value
Q_DMD	FLOAT32	-999999.99999 99.9	kVAr	Demand value of reactive power
PF_INST	FLOAT32	-1.001.00		Power factor, magnitude of in- stantaneous val- ue
PF_DB	FLOAT32	-1.001.00		Power factor, magnitude of re- ported value
PF_DMD	FLOAT32	-1.001.00		Demand value of power factor
EA_RV_ACM	INT64	0999999999	kWh	Accumulated reverse active energy value
ER_RV_ACM	INT64	0999999999	kVArh	Accumulated reverse reactive energy value
EA_FWD_ACM	INT64	0999999999	kWh	Accumulated for- ward active ener- gy value
ER_FWD_ACM	INT64	0999999999	kVArh	Accumulated for- ward reactive en- ergy value
Max demand S	FLOAT32	-999999.99999 99.9	kVA	Maximum de- mand value of apparent power
Min demand S	FLOAT32	-999999.99999 99.9	kVA	Minimum de- mand value of apparent power
Max demand P	FLOAT32	-999999.99999 99.9	kW	Maximum de- mand value of active power
Min demand P	FLOAT32	-999999.99999 99.9	kW	Minimum de- mand value of active power
Max demand Q	FLOAT32	-999999.99999 99.9	kVAr	Maximum de- mand value of re- active power
Min demand Q	FLOAT32	-999999.99999 99.9	kVAr	Minimum de- mand value of re- active power
Time max dmd S	Timestamp			Time of maxi- mum demand

Name	Туре	Values (Range)	Unit	Description
Time min dmd S	Timestamp			Time of mini- mum demand
Time max dmd P	Timestamp			Time of maxi- mum demand
Time min dmd P	Timestamp			Time of mini- mum demand
Time max dmd Q	Timestamp			Time of maxi- mum demand
Time min dmd Q	Timestamp			Time of mini- mum demand

8.1.11.6 **Technical data**

Table 633: PEMMXU Technical data

Characteristic	Value
Operation accuracy	At all three currents in range 0.101.20 × I n
	At all three voltages in range 0.501.15 × U _n
	At the frequency f _n ±1 Hz
	±1.5 % for apparent power S
	±1.5 % for active power P and active energy ¹
	±1.5 % for reactive power Q and reactive energy ²
	±0.015 for power factor
Suppression of harmonics	DFT: -50 dB at f = $n \times f_n$, where $n = 2, 3, 4, 5,$

Technical revision history 8.1.11.7

Table 634: PEMMXU Technical revision history

Technical revision	Change
В	Demand values added to Monitored data. Recorded data added to store minimum and maximum demand values with timestamps.
С	Internal improvement.
D	Internal improvement.

Single-phase power and energy measurement SPEMMXU 8.1.12

¹ |PF| >0.5 which equals |cosφ| >0.5 ² |PF| <0.86 which equals |sinφ| >0.5

1MRS758755 C Measurement functions

8.1.12.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Single-phase power and energy measurement	SPEMMXU	SP, SE	SP, SE

8.1.12.2 Function block

Figure 302: Function block

8.1.12.3 Signals

Table 635: SPEMMXU Input signals

Name	Туре	Default	Description
RSTACM	BOOLEAN	0=False	Reset of accumulated energy reading

8.1.12.4 **Settings**

Table 636: SPEMMXU Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Power unit Mult	3=k 6=M			3=k	Unit multiplier for presentation of the power related val- ues
Energy unit Mult	3=k 6=M			3=k	Unit multiplier for presentation of the energy related val- ues
Active power Dir	1=Forward 2=Reverse			1=Forward	Direction of active power flow: For- ward, Reverse
Reactive power Dir	1=Forward 2=Reverse			1=Forward	Direction of reac- tive power flow: Forward, Reverse

Table 637: SPEMMXU Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Forward Wh Initial	0999999999		1	0	Preset Initial value for forward active energy
Reverse Wh Initial	0999999999		1	0	Preset Initial value for reverse active energy

Parameter	Values (Range)	Unit	Step	Default	Description
Forward VArh Initial	0999999999		1	0	Preset Initial value for forward reactive energy
Reverse VArh Initial	0999999999		1	0	Preset Initial value for reverse reactive energy

8.1.12.5 Monitored data

Table 638: SPEMMXU Monitored data

Name	Туре	Values (Range)	Unit	Description
SL1-kVA:1	FLOAT32	-999999.99999 99.9	kVA	Total apparent power, phase A
SL2-kVA:1	FLOAT32	-999999.99999 99.9	kVA	Total apparent power, phase B
SL3-kVA:1	FLOAT32	-999999.99999 99.9	kVA	Total apparent power, phase C
PL1-kW:1	FLOAT32	-999999.99999 99.9	kW	Total active power, phase A
PL2-kW:1	FLOAT32	-999999.99999 99.9	kW	Total active power, phase B
PL3-kW:1	FLOAT32	-999999.99999 99.9	kW	Total active power, phase C
QL1-kVAr:1	FLOAT32	-999999.99999 99.9	kVAr	Total reactive power, phase A
QL2-kVAr:1	FLOAT32	-999999.99999 99.9	kVAr	Total reactive power, phase B
QL3-kVAr:1	FLOAT32	-999999.99999 99.9	kVAr	Total reactive power, phase C
PFL1:1	FLOAT32	-1.001.00		Average power factor, phase A
PFL2:1	FLOAT32	-1.001.00		Average power factor, phase B
PFL3:1	FLOAT32	-1.001.00		Average power factor, phase C

Name	Туре	Values (Range)	Unit	Description
Max demand SL1	FLOAT32	-999999.99999 99.9	kVA	Maximum demand for phase A
Max demand SL2	FLOAT32	-999999.99999 99.9	kVA	Maximum demand for phase B
Max demand SL3	FLOAT32	-999999.99999 99.9	kVA	Maximum demand for phase C
Min demand SL1	FLOAT32	-999999.99999 99.9	kVA	Minimum demand for phase A
Min demand SL2	FLOAT32	-999999.99999 99.9	kVA	Minimum demand for phase B
Min demand SL3	FLOAT32	-999999.99999 99.9	kVA	Minimum demand for phase C
Max demand PL1	FLOAT32	-999999.99999 99.9	kW	Maximum demand for phase A
Max demand PL2	FLOAT32	-999999.99999 99.9	kW	Maximum demand for phase B
Max demand PL3	FLOAT32	-999999.99999 99.9	kW	Maximum demand for phase C
Min demand PL1	FLOAT32	-999999.99999 99.9	kW	Minimum demand for phase A
Min demand PL2	FLOAT32	-999999.99999 99.9	kW	Minimum demand for phase B
Min demand PL3	FLOAT32	-999999.99999 99.9	kW	Minimum demand for phase C
Max demand QL1	FLOAT32	-999999.99999 99.9	kVAr	Maximum demand for phase A
Max demand QL2	FLOAT32	-999999.99999 99.9	kVAr	Maximum demand for phase B
Max demand QL3	FLOAT32	-999999.99999 99.9	kVAr	Maximum demand for phase C

Name	Туре	Values (Range)	Unit	Description
Min demand QL1	FLOAT32	-999999.99999 99.9	kVAr	Minimum demand for phase A
Min demand QL2	FLOAT32	-999999.99999 99.9	kVAr	Minimum demand for phase B
Min demand QL3	FLOAT32	-999999.99999 99.9	kVAr	Minimum demand for phase B
Time max dmd SL1	Timestamp			Time of maximum de- mand phase A
Time max dmd SL2	Timestamp			Time of maximum de- mand phase B
Time max dmd SL3	Timestamp			Time of maximum de- mand phase C
Time max dmd PL1	Timestamp			Time of maximum de- mand phase A
Time max dmd PL2	Timestamp			Time of maximum de- mand phase B
Time max dmd PL3	Timestamp			Time of maximum de- mand phase C
Time max dmd QL1	Timestamp			Time of maximum de- mand phase A
Time max dmd QL2	Timestamp			Time of maximum de- mand phase B
Time max dmd QL3	Timestamp			Time of maximum de- mand phase C
Time min dmd SL1	Timestamp			Time of minimum de- mand phase A
Time min dmd SL2	Timestamp			Time of minimum de- mand phase B
Time min dmd SL3	Timestamp			Time of minimum de- mand phase C
Time min dmd PL1	Timestamp			Time of minimum de- mand phase A
Time min dmd PL2	Timestamp			Time of minimum de- mand phase B

Name	Туре	Values (Range)	Unit	Description
Time min dmd PL3	Timestamp			Time of minimum de- mand phase C
Time min dmd QL1	Timestamp			Time of minimum de- mand phase A
Time min dmd QL2	Timestamp			Time of minimum de- mand phase B
Time min dmd QL3	Timestamp			Time of minimum de- mand phase C
RSTACM	BOOLEAN	0=False 1=True		Reset of accumulated energy reading
S_INST_A	FLOAT32	-999999.99999 99.9	kVA	Apparent power, mag- nitude of instantane- ous value, phase A
S_INST_B	FLOAT32	-999999.99999 99.9	kVA	Apparent power, mag- nitude of instantane- ous value, phase B
S_INST_C	FLOAT32	-999999.99999 99.9	kVA	Apparent power, mag- nitude of instantane- ous value, phase C
S_DB_A	FLOAT32	-999999.99999 99.9	kVA	Apparent power, mag- nitude of reported val- ue, phase A
S_DB_B	FLOAT32	-999999.99999 99.9	kVA	Apparent power, mag- nitude of reported val- ue, phase B
S_DB_C	FLOAT32	-999999.99999 99.9	kVA	Apparent power, mag- nitude of reported val- ue, phase C
S_DMD_A	FLOAT32	-999999.99999 99.9	kVA	Demand value of apparent power, phase A
S_DMD_B	FLOAT32	-999999.99999 99.9	kVA	Demand value of apparent power, phase B
S_DMD_C	FLOAT32	-999999.99999 99.9	kVA	Demand value of apparent power, phase C

Name	Туре	Values (Range)	Unit	Description
P_INST_A	FLOAT32	-999999.99999 99.9	kW	Active power, magnitude of instantaneous value, phase A
P_INST_B	FLOAT32	-999999.99999 99.9	kW	Active power, magnitude of instantaneous value, phase B
P_INST_C	FLOAT32	-999999.99999 99.9	kW	Active power, magnitude of instantaneous value, phase C
P_DB_A	FLOAT32	-999999.99999 99.9	kW	Active power, magnitude of reported value, phase A
P_DB_B	FLOAT32	-999999.99999 99.9	kW	Active power, magnitude of reported value, phase B
P_DB_C	FLOAT32	-999999.99999 99.9	kW	Active power, magnitude of reported value, phase C
P_DMD_A	FLOAT32	-999999.99999 99.9	kW	Demand value of active power, phase A
P_DMD_B	FLOAT32	-999999.99999 99.9	kW	Demand value of active power, phase B
P_DMD_C	FLOAT32	-999999.99999 99.9	kW	Demand value of active power, phase C
Q_INST_A	FLOAT32	-999999.99999 99.9	kVAr	Reactive power, magnitude of instantaneous value, phase A
Q_INST_B	FLOAT32	-999999.99999 99.9	kVAr	Reactive power, magnitude of instantaneous value, phase B
Q_INST_C	FLOAT32	-999999.99999 99.9	kVAr	Reactive power, magnitude of instantaneous value, phase C
Q_DB_A	FLOAT32	-999999.99999 99.9	kVAr	Reactive power, magnitude of reported value, phase A

Name	Туре	Values (Range)	Unit	Description
Q_DB_B	FLOAT32	-999999.99999 99.9	kVAr	Reactive power, magni- tude of reported value, phase B
Q_DB_C	FLOAT32	-999999.99999 99.9	kVAr	Reactive power, magnitude of reported value, phase C
Q_DMD_A	FLOAT32	-999999.99999 99.9	kVAr	Demand value of reactive power, phase A
Q_DMD_B	FLOAT32	-999999.99999 99.9	kVAr	Demand value of reactive power, phase B
Q_DMD_C	FLOAT32	-999999.99999 99.9	kVAr	Demand value of reactive power, phase C
PF_INST_A	FLOAT32	-1.001.00		Power factor, magnitude of instantaneous value, phase A
PF_INST_B	FLOAT32	-1.001.00		Power factor, magnitude of instantaneous value, phase B
PF_INST_C	FLOAT32	-1.001.00		Power factor, magnitude of instantaneous value, phase C
PF_DB_A	FLOAT32	-1.001.00		Power factor, magnitude of reported value, phase A
PF_DB_B	FLOAT32	-1.001.00		Power factor, magnitude of reported value, phase B
PF_DB_C	FLOAT32	-1.001.00		Power factor, magnitude of reported value, phase C
PF_DMD_A	FLOAT32	-1.001.00		Demand value of power factor, phase A
PF_DMD_B	FLOAT32	-1.001.00		Demand value of power factor, phase B
PF_DMD_C	FLOAT32	-1.001.00		Demand value of power factor, phase C

Table continues on the next page

Name	Туре	Values (Range)	Unit	Description
EA_RV_ACM_A	INT64	0999999999	kWh	Accumulated reverse active energy value, phase A
EA_RV_ACM_B	INT64	0999999999	kWh	Accumulated reverse active energy value, phase B
EA_RV_ACM_C	INT64	0999999999	kWh	Accumulated reverse active energy value, phase C
ER_RV_ACM_A	INT64	0999999999	kVArh	Accumulated reverse reactive energy value, phase A
ER_RV_ACM_B	INT64	0999999999	kVArh	Accumulated reverse reactive energy value, phase B
ER_RV_ACM_C	INT64	0999999999	kVArh	Accumulated reverse reactive energy value, phase C
EA_FWD_ACM_A	INT64	0999999999	kWh	Accumulated forward active energy value, phase A
EA_FWD_ACM_B	INT64	0999999999	kWh	Accumulated forward active energy value, phase B
EA_FWD_ACM_C	INT64	0999999999	kWh	Accumulated forward active energy value, phase C
ER_FWD_ACM_A	INT64	0999999999	kVArh	Accumulated forward reactive energy value, phase A
ER_FWD_ACM_B	INT64	0999999999	kVArh	Accumulated forward reactive energy value, phase B
ER_FWD_ACM_C	INT64	0999999999	kVArh	Accumulated forward reactive energy value, phase C

1MRS758755 C Measurement functions

8.1.12.6 Technical data

Table 639: SPEMMXU Technical data

Characteristic	Value
Operation accuracy	At all three currents in range 0.101.20 × I $_{\rm n}$ At all three voltages in range 0.501.15 × U $_{\rm n}$ At the frequency f $_{\rm n}$ ±1 Hz Active power and energy in range PF > 0.71 Reactive power and energy in range PF < 0.71
	±1.5% for power (S, P and Q) ±0.015 for power factor ±1.5% for energy
Suppression of harmonics	DFT: -50 dB at f = n x f _n , where n = 2, 3, 4, 5,

8.2 Disturbance recorder RDRE

8.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Disturbance recorder	RDRE	DR	DFR

8.2.2 Functionality

The relay is provided with a disturbance recorder featuring up to 12 analog and 64 binary signal channels. The analog channels can be set to record either the waveform or the trend of the currents and voltages measured.

The analog channels can be set to trigger the recording function when the measured value falls below or exceeds the set values. The binary signal channels can be set to start a recording either on the rising or the falling edge of the binary signal or on both.

By default, the binary channels are set to record external or internal relay signals, for example, the start or trip signals of the relay stages, or external blocking or control signals. Binary relay signals, such as protection start and trip signals, or an external relay control signal via a binary input, can be set to trigger the recording. Recorded information is stored in a nonvolatile memory and can be uploaded for subsequent fault analysis.

8.2.2.1 Recorded analog inputs

The user can map any analog signal type of the protection relay to each analog channel of the disturbance recorder by setting the *Channel selection* parameter of

Measurement functions 1MRS758755 C

> the corresponding analog channel. In addition, the user can enable or disable each analog channel of the disturbance recorder by setting the Operation parameter of the corresponding analog channel to "on" or "off".

All analog channels of the disturbance recorder that are enabled and have a valid signal type mapped are included in the recording.

8.2.2.2 **Triggering alternatives**

The recording can be triggered by any or several of the following alternatives:

- Triggering according to the state change of any or several of the binary channels of the disturbance recorder. The user can set the level sensitivity with the Level trigger mode parameter of the corresponding binary channel.
- Triggering on limit violations of the analog channels of the disturbance recorder (high and low limit)
- Manual triggering via the *Trig recording* parameter (LHMI or communication)
- Periodic triggering.

Regardless of the triggering type, each recording generates the Recording started and Recording made events. The Recording made event indicates that the recording has been stored to the non-volatile memory. In addition, every analog channel and binary channel of the disturbance recorder has its own Channel triggered parameter. Manual trigger has the Manual triggering parameter and periodic trigger has the *Periodic triggering* parameter.

Triggering by binary channels

Input signals for the binary channels of the disturbance recorder can be formed from any of the digital signals that can be dynamically mapped. A change in the status of a monitored signal triggers the recorder according to the configuration and settings. Triggering on the rising edge of a digital input signal means that the recording sequence starts when the input signal is activated. Correspondingly, triggering on the falling edge means that the recording sequence starts when the active input signal resets. It is also possible to trigger from both edges. In addition, if preferred, the monitored signal can be non-triggering. The trigger setting can be set individually for each binary channel of the disturbance recorder with the Level trigger mode parameter of the corresponding binary channel.

Triggering by analog channels

The trigger level can be set for triggering in a limit violation situation. The user can set the limit values with the High trigger level and Low trigger level parameters of the corresponding analog channel. Both high level and low level violation triggering can be active simultaneously for the same analog channel. If the duration of the limit violation condition exceeds the filter time of approximately 50 ms, the recorder triggers. In case of a low level limit violation, if the measured value falls below approximately 0.05 during the filter time, the situation is considered to be a circuit-breaker operation and therefore, the recorder does not trigger. This is useful especially in undervoltage situations. The filter time of approximately 50 ms is common to all the analog channel triggers of the disturbance recorder. The value used for triggering is the calculated peak-to-peak value. Either high or low analog channel trigger can be disabled by setting the corresponding trigger level parameter to zero.

616 **REC615 & RER615** 1MRS758755 C Measurement functions

Manual triggering

The recorder can be triggered manually via the LHMI or via communication by setting the *Trig recording* parameter to TRUE.

Periodic triggering

Periodic triggering means that the recorder automatically makes a recording at certain time intervals. The user can adjust the interval with the *Periodic trig time* parameter. If the value of the parameter is changed, the new setting takes effect when the next periodic triggering occurs. Setting the parameter to zero disables the triggering alternative and the setting becomes valid immediately. If a new non-zero setting needs to be valid immediately, the user should first set the *Periodic trig time* parameter to zero and then to the new value. The user can monitor the time remaining to the next triggering with the Time to trigger monitored data which counts downwards.

8.2.2.3 Length of recordings

The user can define the length of a recording with the *Record length* parameter. The length is given as the number of fundamental cycles.

According to the memory available and the number of analog channels used, the disturbance recorder automatically calculates the remaining amount of recordings that fit into the available recording memory. The user can see this information with the Rem. amount of rec monitored data. The fixed memory size allocated for the recorder can fit in two recordings that are ten seconds long. The recordings contain data from all analog and binary channels of the disturbance recorder, at the sample rate of 32 samples per fundamental cycle.

The user can view the number of recordings currently in memory with the Number of recordings monitored data. The currently used memory space can be viewed with the Rec. memory used monitored data. It is shown as a percentage value.

The maximum number of recordings is 100.

8.2.2.4 Sampling frequencies

The sampling frequency of the disturbance recorder analog channels depends on the set rated frequency. One fundamental cycle always contains the amount of samples set with the *Storage rate* parameter. Since the states of the binary channels are sampled once per task execution of the disturbance recorder, the sampling frequency of binary channels is 400 Hz at the rated frequency of 50 Hz and 480 Hz at the rated frequency of 60 Hz.

Measurement functions 1MRS758755 C

Storage rate (samples per fundamental cycle)	Recording length	Sampling frequency of analog channels, when the rated frequency is 50 Hz	Sampling frequency of binary channels, when the rated frequency is 50 Hz	Sampling frequency of analog channels, when the rated frequency is 60 Hz	Sampling frequency of binary channels, when the rated frequency is 60 Hz
32	1* Record length	1600 Hz	400 Hz	1920 Hz	480 Hz
16	2* Record length	800 Hz	400 Hz	960 Hz	480 Hz
8	4 * Record length	400 Hz	400 Hz	480 Hz	480 Hz

Table 640: Sampling frequencies of the disturbance recorder analog channels

8.2.2.5 Uploading of recordings

The protection relay stores COMTRADE files to the C:\COMTRADE\ folder. The files can be uploaded with the PCM600 or any appropriate computer software that can access the C:\COMTRADE\ folder.

One complete disturbance recording consists of two COMTRADE file types: the configuration file and the data file. The file name is the same for both file types. The configuration file has .CFG and the data file .DAT as the file extension.

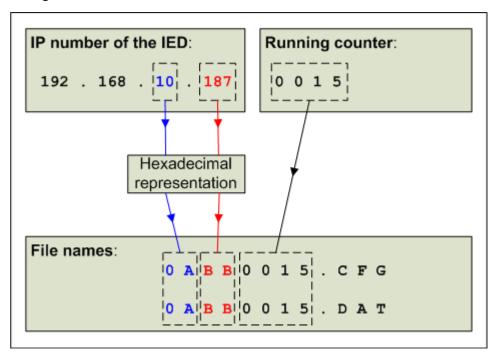


Figure 303: Disturbance recorder file naming

The naming convention of 8+3 characters is used in COMTRADE file naming. The file name is composed of the last two octets of the protection relay's IP number and a running counter, which has a range of 1...9999. A hexadecimal representation is used for the IP number octets. The appropriate file extension is added to the end of the file name.

1MRS758755 C Measurement functions

8.2.2.6 Deletion of recordings

There are several ways to delete disturbance recordings. The recordings can be deleted individually or all at once.

Individual disturbance recordings can be deleted with PCM600 or any appropriate computer software, which can access the protection relay's C:\COMTRADE folder. The disturbance recording is not removed from the protection relay's memory until both of the corresponding COMTRADE files, .CFG and .DAT, are deleted. The user may have to delete both of the files types separately, depending on the software used.

Deleting all disturbance recordings at once is done either with PCM600 or any appropriate computer software, or from the LHMI via the **Clear > Disturbance records** menu. Deleting all disturbance recordings at once also clears the pre-trigger recording in progress.

8.2.2.7 Storage mode

The disturbance recorder can capture data in two modes: waveform and trend mode. The user can set the storage mode individually for each trigger source with the *Storage mode* parameter of the corresponding analog channel or binary channel, the *Stor. mode manual* parameter for manual trigger and the *Stor. mode periodic* parameter for periodic trigger.

In the waveform mode, the samples are captured according to the *Storage rate* and *Pre-trg length* parameters.

In the trend mode, one value is recorded for each enabled analog channel, once per fundamental cycle. The recorded values are RMS values, which are scaled to peak level. The binary channels of the disturbance recorder are also recorded once per fundamental cycle in the trend mode.

Only post-trigger data is captured in trend mode.

The trend mode enables recording times of 32 * Record length.

8.2.2.8 Pre-trigger and post-trigger data

The waveforms of the disturbance recorder analog channels and the states of the disturbance recorder binary channels are constantly recorded into the history memory of the recorder. The user can adjust the percentage of the data duration preceding the triggering, that is, the so-called pre-trigger time, with the *Pre-trg length* parameter. The duration of the data following the triggering, that is, the so-called post-trigger time, is the difference between the recording length and the pre-trigger time. Changing the pre-trigger time resets the history data and the current recording under collection.

8.2.2.9 Operation modes

Disturbance recorder has two operation modes: saturation and overwrite mode. The user can change the operation mode of the disturbance recorder with the *Operation mode* parameter.

Measurement functions 1MRS758755 C

Saturation mode

In saturation mode, the captured recordings cannot be overwritten with new recordings. Capturing the data is stopped when the recording memory is full, that is, when the maximum number of recordings is reached. In this case, the event is sent via the state change (TRUE) of the Memory full parameter. When there is memory available again, another event is generated via the state change (FALSE) of the *Memory full* parameter.

Overwrite mode

When the operation mode is "Overwrite" and the recording memory is full, the oldest recording is overwritten with the pre-trigger data collected for the next recording. Each time a recording is overwritten, the event is generated via the state change of the Overwrite of rec. parameter. The overwrite mode is recommended, if it is more important to have the latest recordings in the memory. The saturation mode is preferred, when the oldest recordings are more important.

New triggerings are blocked in both the saturation and the overwrite mode until the previous recording is completed. On the other hand, a new triggering can be accepted before all pre-trigger samples are collected for the new recording. In such a case, the recording is as much shorter as there were pre-trigger samples lacking.

8.2.2.10 **Exclusion mode**

Exclusion mode is on, when the value set with the Exclusion time parameter is higher than zero. During the exclusion mode, new triggerings are ignored if the triggering reason is the same as in the previous recording. The Exclusion time parameter controls how long the exclusion of triggerings of same type is active after a triggering. The exclusion mode only applies to the analog and binary channel triggerings, not to periodic and manual triggerings.

When the value set with the Exclusion time parameter is zero, the exclusion mode is disabled and there are no restrictions on the triggering types of the successive recordings.

The exclusion time setting is global for all inputs, but there is an individual counter for each analog and binary channel of the disturbance recorder, counting the remaining exclusion time. The user can monitor the remaining exclusion time with the Exclusion time rem parameter (only visible via communication, IEC 61850 data ExcITmRmn) of the corresponding analog or binary channel. The Exclusion time rem parameter counts downwards.

8.2.3 Configuration

The disturbance recorder can be configured with PCM600 or any tool supporting the IEC 61850 standard.

The disturbance recorder can be enabled or disabled with the Operation parameter under the Configuration > Disturbance recorder > General menu.

One analog signal type of the protection relay can be mapped to each of the analog channels of the disturbance recorder. The mapping is done with the Channel selection parameter of the corresponding analog channel. The name of the analog channel is user-configurable. It can be modified by writing the new name to the Channel id text parameter of the corresponding analog channel.

Any external or internal digital signal of the protection relay which can be dynamically mapped can be connected to the binary channels of the disturbance recorder. These signals can be, for example, the start and trip signals from protection function blocks or the external binary inputs of the protection relay. The connection is made with dynamic mapping to the binary channel of the disturbance recorder using, for example, SMT of PCM600. It is also possible to connect several digital signals to one binary channel of the disturbance recorder. In that case, the signals can be combined with logical functions, for example AND and OR. The name of the binary channel can be configured and modified by writing the new name to the *Channel id text* parameter of the corresponding binary channel.

Note that the *Channel id text* parameter is used in COMTRADE configuration files as a channel identifier.

The recording always contains all binary channels of the disturbance recorder. If one of the binary channels is disabled, the recorded state of the channel is continuously FALSE and the state changes of the corresponding channel are not recorded. The corresponding channel name for disabled binary channels in the COMTRADE configuration file is Unused BI.

To enable or disable an analog or a binary channel of the disturbance recorder, the *Operation* parameter of the corresponding analog or binary channel is set to "on" or "off".

The states of manual triggering and periodic triggering are not included in the recording, but they create a state change to the *Periodic triggering* and *Manual triggering* status parameters, which in turn create events.

The TRIGGERED output can be used to control the indication LEDs of the protection relay. The TRIGGERED output is TRUE due to the triggering of the disturbance recorder, until all the data for the corresponding recording has been recorded.

The IP number of the protection relay and the content of the *Bay name* parameter are both included in the COMTRADE configuration file for identification purposes.

8.2.4 Application

The disturbance recorder is used for post-fault analysis and for verifying the correct operation of protection relays and circuit breakers. It can record both analog and binary signal information. The analog inputs are recorded as instantaneous values and converted to primary peak value units when the protection relay converts the recordings to the COMTRADE format.

COMTRADE is the general standard format used in storing disturbance recordings.

The binary channels are sampled once per task execution of the disturbance recorder. The task execution interval for the disturbance recorder is the same as for the protection functions. During the COMTRADE conversion, the digital status values are repeated so that the sampling frequencies of the analog and binary channels correspond to each other. This is required by the COMTRADE standard.

The disturbance recorder follows the 1999 version of the COMTRADE standard and uses the binary data file format.

8.2.5 Settings

8.2.5.1 RDRE Non-group general settings

Table 641: RDRE Non-group general settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off		1	1=on	Disturbance recorder on/off
Record length	10500	fundamental cycles	1	50	Size of the re- cording in fundamental cycles
Pre-trg length	0100	%	1	50	Length of the recording preceding the triggering
Operation mode	1=Saturation 2=Overwrite		1	1	Operation mode of the recorder
Exclusion time	01 000 000	ms	1	0	The time during which triggerings of same type are ignored
Storage rate	32, 16, 8	samples per fundamental cycle		32	Storage rate of the wave- form record- ing
Periodic trig time	0604 800	s	10	0	Time between periodic triggerings
Stor. mode periodic	0=Waveform 1=Trend / cy- cle		1	0	Storage mode for periodic triggering
Stor. mode manual	0=Waveform 1=Trend / cy- cle		1	0	Storage mode for manual triggering

Table 642: RDRE Non-group channel settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off		1	1=on	Analog chan- nel is enabled or disabled
Channel selection	0=Disabled 1=Io 2=IL1 3=IL2 4=IL3 5=IoB 6=IL1B 7=IL2B 8=IL3B 9=Uo 10=U1 11=U2 12=U3 13=UoB 14=U1B 15=U2B 16=U3B 17=Clo 18=Sl1¹ 19=Sl2¹ 20=SU0 21=SU1¹ 22=SU2¹ 23=CloB 24=Sl1B¹ 25=Sl2B¹ 26=SU0B 27=SU1B¹ 28=SU2B¹		0	0=Disabled	Select the signal to be recorded by this channel. Applicable values for this parameter are product variant dependent. Every product variant includes only the values that are applicable to that particular variant

Table continues on the next page

¹ Recordable values are available only in trend mode. In waveform mode, samples for this signal type are constant zeroes. However, these signal types can be used to trigger the recorder on limit violations of the corresponding analog channel.

Parameter	Values (Range)	Unit	Step	Default	Description
	29=U12				
	30=U23				
	31=U31				
	32=UL1				
	33=UL2				
	34=UL3				
	35=U12B				
	36=U23B				
	37=U31B				
	38=UL1B				
	39=UL2B				
	40=UL3B				
Channel id text	0 to 64 char- acters, alpha- numeric			DR analog channel X	Identification text for the analog chan- nel used in the COM- TRADE format
High trigger level	0.0060.00	pu	0.01	10.00	High trigger level for the analog chan- nel
Low trigger level	0.002.00	pu	0.01	0.00	Low trigger level for the analog chan- nel
Storage mode	0=Waveform 1=Trend / cy- cle		1	0	Storage mode for the analog channel

Table 643: RDRE Non-group binary channel settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off		1	5=off	Binary chan- nel is enabled or disabled
Level trigger mode	1=Positive or Rising 2=Negative or Falling		1	1=Rising	Level trigger mode for the binary chan- nel

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
	3=Both 4=Level trig- ger off				
Storage mode	0=Waveform 1=Trend / cy- cle		1	0	Storage mode for the binary channel
Channel id text	0 to 64 char- acters, alpha- numeric			DR binary channel X	Identification text for the analog chan- nel used in the COM- TRADE format

Table 644: RDRE Control data

Parameter	Values (Range)	Unit	Step	Default	Description
Trig recording	0=Cancel 1=Trig				Trigger the disturbance recording
Clear record- ings	0=Cancel 1=Trig				Clear all re- cordings cur- rently in memory

8.2.6 Monitored data

8.2.6.1 Monitored data

Table 645: RDRE Monitored data

Parameter	Values (Range)	Unit	Step	Default	Description
Number of recordings	0100				Number of record- ings currently in memory
Rem. amount of rec.	0100				Remaining amount of recordings that fit into the availa- ble recording mem- ory, when current settings are used
Rec. memory used	0100	%			Storage mode for the binary channel
Time to trigger	0604 800	S			Time remaining to the next periodic triggering

8.2.7 Technical revision history

Table 646: RDRE Technical revision history

Technical revision	Change
В	ChNum changed to EChNum (RADR's) RADR912 added (Analog channels 912) RBDR3364 added (Binary channels 3364)
С	New channels added to parameter <i>Channel selection</i> Selection names for <i>Trig Recording</i> and <i>Clear Recordings updated</i>
D	Symbols in the <i>Channel selection</i> setting are updated
Е	New channels IL1C, IL2C and IL3C added to Channel selection parameter
F	Internal improvement
G	Internal improvement

9 Control functions

9.1 Circuit-breaker control CBXCBR and Disconnector control DCXSWI

9.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Circuit breaker control	CBXCBR	I<->O CB	I<->O CB
Disconnector control	DCXSWI	I<->O DCC	I<->O DCC

9.1.2 Function block

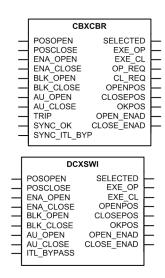


Figure 304: Function block

9.1.3 Functionality

CBXCBR and DCXSWI are intended for circuit breaker and disconnector control and status information purposes. These functions execute commands and evaluate block conditions and different time supervision conditions. The functions perform an execution command only if all conditions indicate that a switch operation is allowed. If erroneous conditions occur, the functions indicate an appropriate cause

Control functions 1MRS758755 C

value. The functions are designed according to the IEC 61850-7-4 standard with logical nodes CILO, CSWI and XSWI/XCBR.

The circuit breaker and disconnector control functions have an operation counter for closing and opening cycles. The counter value can be read and written remotely from the place of operation or via LHMI.

9.1.4 Operation principle

Status indication and validity check

The object state is defined by two digital inputs, POSOPEN and POSCLOSE, which are also available as outputs OPENPOS and CLOSEPOS together with the OKPOS according to *Table 647*. The debouncing and short disturbances in an input are eliminated by filtering. The binary input filtering time can be adjusted separately for each digital input used by the function block. The validity of the digital inputs that indicate the object state is used as additional information in indications and event logging. The reporting of faulty or intermediate position of the apparatus occurs after the *Event delay* setting, assuming that the circuit breaker is still in a corresponding state.

Table 647: Status indication

Input		Status	Output			
POSOPEN	POSCLOSE	POSITION (Monitored data)	OKPOS	OPENPOS	CLOSEPOS	
1=True	0=False	1=Open	1=True	1=True	0=False	
0=False	1=True	2=Closed	1=True	0=False	1=True	
1=True	1=True	3=Faulty/Bad (11)	0=False	0=False	0=False	
0=False	0=False	0=Intermedi- ate (00)	0=False	0=False	0=False	

Enabling and blocking

CBXCBR and DCXSWI have an enabling and blocking functionality for interlocking and synchrocheck purposes.

Circuit breaker control CBXCBR

Normally, the CB closing is enabled (that is, <code>CLOSE_ENAD</code> signal is TRUE) by activating both <code>ENA_CLOSE</code> and <code>SYNC_OK</code> inputs. Typically, the <code>ENA_CLOSE</code> comes from the interlocking, and <code>SYNC_OK</code> comes from the synchronism and energizing check. The input <code>SYNC_ITL_BYP</code> can be used for bypassing this control. The <code>SYNC_ITL_BYP</code> input can be used to activate <code>CLOSE_ENAD</code> discarding the <code>ENA_CLOSE</code> and <code>SYNC_OK</code> input states. However, the <code>BLK_CLOSE</code> input always blocks the <code>CLOSE_ENAD</code> output.

The CB opening (OPEN_ENAD) logic is the same as CB closing logic, except that SYNC_OK is used only in closing. The SYNC_ITL_BYP input is used in both CLOSE ENAD and OPEN ENAD logics.

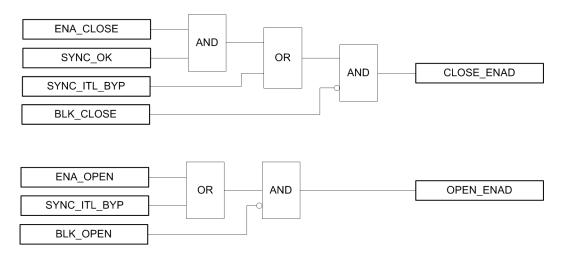


Figure 305: Enabling and blocking logic for CLOSE_ENAD and OPEN_ENAD signals

Opening and closing operations

The opening and closing operations are available via communication, binary inputs or LHMI commands. As a prerequisite for control commands, there are enabling and blocking functionalities for both opening and closing commands (CLOSE_ENAD and OPEN_ENAD signals). If the control command is executed against the blocking or if the enabling of the corresponding command is not valid, CBXCBR and DCXSWI generate an error message.

When close command is given from communication, via LHMI or activating the ${\tt AU_CLOSE}$ input, it is carried out (the ${\tt EXE_CL}$ output) only if ${\tt CLOSE_ENAD}$ is TRUE.

If the SECRSYN function is used in "Command" mode, the CL_REQ output can be used in CBXCBR. Initially, the $SYNC_OK$ input is FALSE. When the close command given, it activates the CL_REQ output, which should be routed to SECRSYN. The close command is then processed only after $SYNC_OK$ is received from SECRSYN.

When using SECRSYN in the "Command" mode, the CBXCBR setting Operation timeout should be set longer than SECRSYN setting Maximum Syn time. Control functions 1MRS758755 C

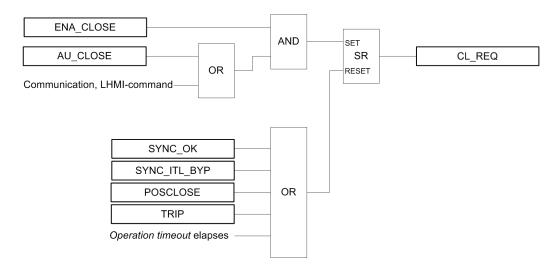


Figure 306: Condition for enabling the close request (CL REQ) for CBXCBR

When the open command is given from communication, via LHMI or activating the AU OPEN input, it is processed only if OPEN ENAD is TRUE. OP REQ output is also available.

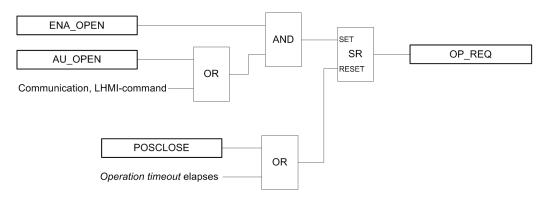


Figure 307: Condition for enabling the open request (OP REQ) for CBXCBR

OPEN and CLOSE outputs

The EXE OP output is activated when the open command is given (AU OPEN, via communication or from LHMI) and OPEN ENAD signal is TRUE. In addition, the protection trip commands can be routed through the CBXCBR function by using the TRIP input. When the TRIP input is TRUE, the EXE OP output is activated immediately and bypassing all enabling or blocking conditions.

The EXE CL output is activated when the close command is given (AU CLOSE, via communication or from LHMI) and CLOSE ENAD signal is TRUE. When the TRIP input is "TRUE", CB closing is not allowed.

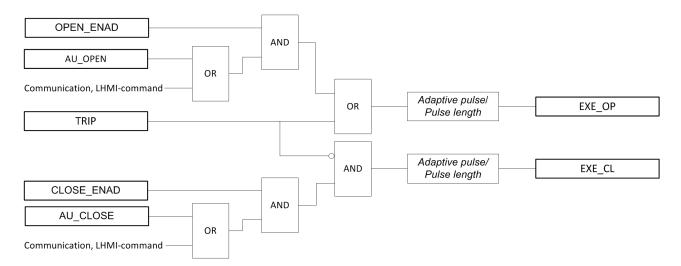


Figure 308: OPEN and CLOSE outputs logic for CBXCBR

Opening and closing pulse widths

The pulse width type can be defined with the *Adaptive pulse* setting. The function provides two modes to characterize the opening and closing pulse widths. When the *Adaptive pulse* is set to "TRUE", it causes a variable pulse width, which means that the output pulse is deactivated when the object state shows that the apparatus has entered the correct state. If apparatus fails to enter the correct state, the output pulse is deactivated after the set *Operation timeout* setting, and an error message is displayed. When the *Adaptive pulse* is set to "FALSE", the functions always use the maximum pulse width, defined by the user-configurable *Pulse length* setting. The *Pulse length* setting is the same for both the opening and closing commands. When the apparatus already is in the right position, the maximum pulse length is given.

The *Pulse length* setting does not affect the length of the trip pulse.

Control methods

The command execution mode can be set with the *Control model* setting. The alternatives for command execution are direct control and secured object control, which can be used to secure controlling.

The secured object control SBO is an important feature of the communication protocols that support horizontal communication, because the command reservation and interlocking signals can be transferred with a bus. All secured control operations require two-step commands: a selection step and an execution step. The secured object control is responsible for the several tasks.

- Command authority: ensures that the command source is authorized to operate the object
- Mutual exclusion: ensures that only one command source at a time can control
 the object
- Interlocking: allows only safe commands
- Execution: supervises the command execution
- Command canceling: cancels the controlling of a selected object.

Control functions 1MRS758755 C

In direct operation, a single message is used to initiate the control action of a physical device. The direct operation method uses less communication network capacity and bandwidth than the SBO method, because the procedure needs fewer messages for accurate operation.

The "status-only" mode means that control is not possible (non-controllable) via communication or from LHMI. However, it is possible to control a disconnector (DCXSWI) from ${\tt AU}$ OPEN and ${\tt AU}$ CLOSE inputs.

AU_OPEN and AU_CLOSE control the object directly regardless of the set *Control model.* These inputs can be used when control is wanted to be implemented purely based on ACT logic and no additional exception handling is needed. However, in case of simultaneous open and close control, the open control is always prioritized.

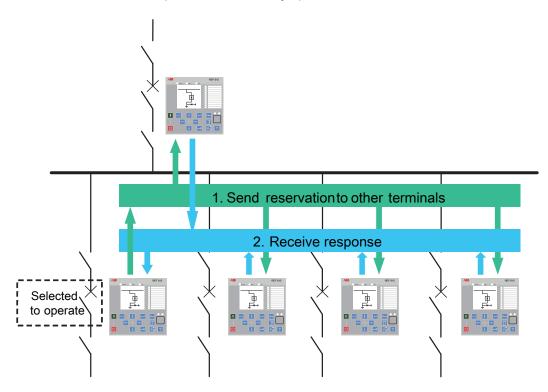


Figure 309: Control procedure in the SBO method

Local/Remote operations

The local/remote selection affects CBXCBR and DCXSWI.

- Local: the opening and closing via communication is disabled.
- Remote: the opening and closing via LHMI is disabled.
- AU OPEN and AU CLOSE inputs function regardless of the local/remote selection.

9.1.5 Application

In the field of distribution and sub-transmission automation, reliable control and status indication of primary switching components both locally and remotely is in a significant role. They are needed especially in modern remotely controlled substations.

Control and status indication facilities are implemented in the same package with CBXCBR and DCXSWI. When primary components are controlled in the energizing phase, for example, the correct execution sequence of the control commands must be ensured. This can be achieved, for example, with interlocking based on the status indication of the related primary components. The interlocking on substation level can be applied using the IEC 61850 GOOSE messages between feeders.

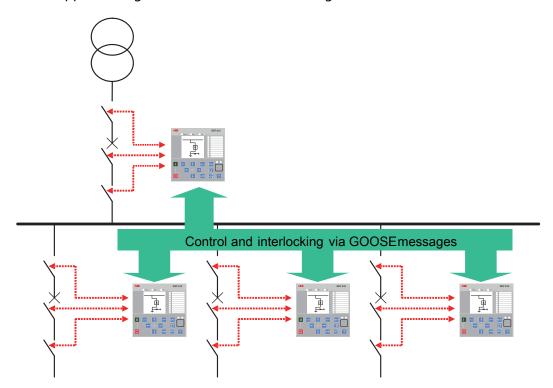


Figure 310: Status indication-based interlocking via the GOOSE messaging

9.1.6 Signals

9.1.6.1 CBXCBR Input signals

Table 648: CBXCBR Input signals

Name	Туре	Default	Description
POSOPEN	BOOLEAN	0=False	Signal for open position of apparatus from I/O ¹
POSCLOSE	BOOLEAN	0=False	Signal for close position of apparatus from I/O ¹
ENA_OPEN	BOOLEAN	1=True	Enables opening

Table continues on the next page

¹ Not available for monitoring

Name	Туре	Default	Description
ENA_CLOSE	BOOLEAN	1=True	Enables closing
BLK_OPEN	BOOLEAN	0=False	Blocks opening
BLK_CLOSE	BOOLEAN	0=False	Blocks closing
AU_OPEN	BOOLEAN	0=False	Auxiliary open 12
AU_CLOSE	BOOLEAN	0=False	Auxiliary close 12
TRIP	BOOLEAN	0=False	Trip signal
SYNC_OK	BOOLEAN	1=True	Synchronism-check OK
SYNC_ITL_BYP	BOOLEAN	0=False	Discards ENA_OPEN and ENA_CLOSE in- terlocking when TRUE

DCXSWI Input signals 9.1.6.2

Table 649: DCXSWI Input signals

Name	Туре	Default	Description
POSOPEN	BOOLEAN	0=False	Apparatus open position
POSCLOSE	BOOLEAN	0=False	Apparatus closed position
ENA_OPEN	BOOLEAN	1=True	Enables opening
ENA_CLOSE	BOOLEAN	1=True	Enables closing
BLK_OPEN	BOOLEAN	0=False	Blocks opening
BLK_CLOSE	BOOLEAN	0=False	Blocks closing
AU_OPEN	BOOLEAN	0=False	Executes the command for open direction 12
AU_CLOSE	BOOLEAN	0=False	Executes the command for close direction 12
ITL_BYPASS	BOOLEAN	0=False	Discards ENA_OPEN and ENA_CLOSE in- terlocking when TRUE

Always direct operation
 Not available for monitoring

9.1.6.3 CBXCBR Output signals

Table 650: CBXCBR Output signals

Name	Туре	Description
SELECTED	BOOLEAN	Object selected
EXE_OP	BOOLEAN	Executes the command for open direction
EXE_CL	BOOLEAN	Executes the command for close direction
OP_REQ	BOOLEAN	Open request
CL_REQ	BOOLEAN	Close request
OPENPOS	BOOLEAN	Signal for open position of apparatus from I/O
CLOSEPOS	BOOLEAN	Signal for close position of apparatus from I/O
OKPOS	BOOLEAN	Apparatus position is ok
OPEN_ENAD	BOOLEAN	Opening is enabled based on the input status
CLOSE_ENAD	BOOLEAN	Closing is enabled based on the input status

9.1.6.4 DCXSWI Output signals

Table 651: DCXSWI Output signals

Name	Туре	Description
SELECTED	BOOLEAN	Object selected
EXE_OP	BOOLEAN	Executes the command for open direction
EXE_CL	BOOLEAN	Executes the command for close direction
OPENPOS	BOOLEAN	Apparatus open position
CLOSEPOS	BOOLEAN	Apparatus closed position
OKPOS	BOOLEAN	Apparatus position is ok
OPEN_ENAD	BOOLEAN	Opening is enabled based on the input status
CLOSE_ENAD	BOOLEAN	Closing is enabled based on the input status

9.1.7 Settings

9.1.7.1 CBXCBR Non group settings

Table 652: CBXCBR Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation mode on/off
Select timeout	10000300000	ms	10000	30000	Select timeout in ms
Pulse length	1060000	ms	1	200	Open and close pulse length
Control model	0=status-only 1=direct-with-nor- mal-security 4=sbo-with-en- hanced-security			4=sbo-with-en- hanced-security	Select control model
Operation timeout	1060000	ms	1	500	Timeout for negative termination
Identification				CBXCBR1 switch position	Control Object identification

Table 653: CBXCBR Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation counter	010000		1	0	Breaker operation cycles
Adaptive pulse	0=False 1=True			1=True	Stop in right position
Event delay	010000	ms	1	200	Event delay of the intermediate position
Vendor				0	External equipment vendor
Serial number				0	External equipment serial number
Model				0	External equipment model

9.1.7.2 DCXSWI Non group settings

Table 654: DCXSWI Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation mode on/off
	5=off				0.1, 0.1
Select timeout	10000300000	ms	10000	30000	Select timeout in ms
Pulse length	1060000	ms	1	100	Open and close pulse length
Control model	0=status-only			4=sbo-with-en- hanced-security	Select control mod- el
	1=direct-with-nor- mal-security			Thanced Security	
	4=sbo-with-en- hanced-security				
Operation timeout	1060000	ms	1	30000	Timeout for negative termination
Identification				DCXSWI1 switch position	Control Object identification

Table 655: DCXSWI Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation counter	010000		1	0	Breaker operation cycles
Adaptive pulse	0=False 1=True			1=True	Stop in right position
Event delay	060000	ms	1	10000	Event delay of the intermediate position
Vendor				0	External equipment vendor
Serial number				0	External equipment serial number
Model				0	External equipment model

9.1.8 Monitored data

9.1.8.1 CBXCBR Monitored data

Table 656: CBXCBR Monitored data

Name	Туре	Values (Range)	Unit	Description
POSITION	Dbpos	0=intermediate 1=open		Apparatus position indication
		2=closed 3=faulty		

9.1.8.2 DCXSWI Monitored data

Table 657: DCXSWI Monitored data

Name	Туре	Values (Range)	Unit	Description
POSITION	Dbpos	0=intermediate 1=open		Apparatus position indication
		2=closed		
		3=faulty		

9.1.9 Technical revision history

Table 658: CBXCBR Technical revision history

Technical revision	Change	
В	Interlocking bypass input (ITL_BYPASS) and opening enabled (OPEN_ENAD)/closing enabled (CLOSE_ENAD) outputs added. ITL_BYPASS bypasses the ENA_OPEN and ENA_CLOSE states.	
С	Internal improvement.	
D	Added inputs TRIP and SYNC_OK. Renamed input ITL_BYPASS to SYNC_ITL_BYP. Added outputs CL_REQ and OP_REQ. Outputs OPENPOS and CLOSEPOS are forced to "FALSE" in case status is Faulty (11).	

Table 659: DCXSWI Technical revision history

Technical revision	Change
В	Maximum and default values changed to 60 s and 10 s respectively for <i>Event delay</i> settings. Default value changed to 30 s for <i>Operation timeout</i> setting.
С	Outputs OPENPOS and CLOSEPOS are forced to "FALSE" in case status is Faulty (11).

9.2 Disconnector position indicator DCSXSWI and earthing switch indication ESSXSWI

9.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Disconnector position indication	DCSXSWI	I<->O DC	I<->0 DC
Earthing switch indication	ESSXSWI	I<->O ES	I<->O ES

9.2.2 Function block

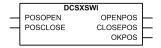


Figure 311: Function block

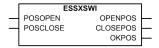


Figure 312: Function block

9.2.3 Functionality

The functions DCSXSWI and ESSXSWI indicate remotely and locally the open, close and undefined states of the disconnector and earthing switch. The functionality of both is identical, but each one is allocated for a specific purpose visible in the function names. For example, the status indication of disconnectors or circuit breaker truck can be monitored with the DCSXSWI function.

The functions are designed according to the IEC 61850-7-4 standard with the logical node XSWI.

9.2.4 Operation principle

Status indication and validity check

The object state is defined by the two digital inputs POSOPEN and POSCLOSE, which are also available as outputs OPENPOS and CLOSEPOS together with the OKPOS according to *Table 660*. The debounces and short disturbances in an input are eliminated by filtering. The binary input filtering time can be adjusted separately for each digital input used by the function block. The validity of digital inputs that indicate the object state is used as additional information in indications and event logging.

Table	660.	Status	indic	ation
Iable	OOU:	Status	mulc	ation

Input		Status	Output		
POSOPEN	POSCLOSE	POSITION (Monitored data)	OKPOS	OPENPOS	CLOSEPOS
1=True	0=False	1=Open	1=True	1=True	0=False
0=False	1=True	2=Closed	1=True	0=False	1=True
1=True	1=True	3=Faulty/Bad (11)	0=False	0=False	0=False
0=False	0=False	0=Intermedi- ate (00)	0=False	0=False	0=False

9.2.5 Application

In the field of distribution and sub-transmission automation, the reliable control and status indication of primary switching components both locally and remotely is in a significant role. These features are needed especially in modern remote controlled substations. The application area of DCSXSWI and ESSXSWI functions covers remote and local status indication of, for example, disconnectors, air-

Control functions 1MRS758755 C

break switches and earthing switches, which represent the lowest level of power switching devices without short-circuit breaking capability.

9.2.6 Signals

9.2.6.1 DCSXSWI Input signals

Table 661: DCSXSWI Input signals

Name	Туре	Default	Description
POSOPEN	BOOLEAN	0=False	Signal for open position of apparatus from I/O ¹
POSCLOSE	BOOLEAN	0=False	Signal for closed position of apparatus from I/O ¹

9.2.6.2 ESSXSWI Input signals

Table 662: ESSXSWI Input signals

Name	Туре	Default	Description
POSOPEN	BOOLEAN	0=False	Signal for open position of apparatus from I/O ¹
POSCLOSE	BOOLEAN	0=False	Signal for closed position of apparatus from I/O ¹

9.2.6.3 DCSXSWI Output signals

Table 663: DCSXSWI Output signals

Name	Туре	Description	
OPENPOS	BOOLEAN	Apparatus open position	
CLOSEPOS	BOOLEAN	Apparatus closed position	
OKPOS	BOOLEAN	Apparatus position is ok	

¹ Not available for monitoring

9.2.6.4 ESSXSWI Output signals

Table 664: ESSXSWI Output signals

Name	Туре	Description
OPENPOS	BOOLEAN	Apparatus open position
CLOSEPOS	BOOLEAN	Apparatus closed position
OKPOS	BOOLEAN	Apparatus position is ok

9.2.7 Settings

9.2.7.1 DCSXSWI Non group settings

Table 665: DCSXSWI Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Identification				DCSXSWI1 switch position	Control Object identification

Table 666: DCSXSWI Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Event delay	060000	ms	1	30000	Event delay of the intermediate position
Vendor				0	External equipment vendor
Serial number				0	External equipment serial number
Model				0	External equipment model

9.2.7.2 ESSXSWI Non group settings

Table 667: ESSXSWI Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Identification				ESSXSWI1 switch position	Control Object identification

Table 668: ESSXSWI Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Event delay	060000	ms	1	30000	Event delay of the intermediate position
Vendor				0	External equipment vendor
Serial number				0	External equipment serial number
Model				0	External equipment model

Control functions 1MRS758755 C

9.2.8 Monitored data

9.2.8.1 DCSXSWI Monitored data

Table 669: DCSXSWI Monitored data

Name	Туре	Values (Range)	Unit	Description
POSITION	Dbpos	0=intermediate		Apparatus posi-
		1=open		tion indication
		2=closed		
		3=faulty		

9.2.8.2 ESSXSWI Monitored data

Table 670: ESSXSWI Monitored data

Name	Туре	Values (Range)	Unit	Description
POSITION	Dbpos	0=intermediate		Apparatus posi-
		1=open		tion indication
		2=closed		
		3=faulty		

9.2.9 Technical revision history

Table 671: DCSXSWI Technical revision history

Technical revision	Change
В	Maximum and default values changed to 60 s and 30 s respectively for <i>Event delay</i> settings.
С	Outputs OPENPOS and CLOSEPOS are forced to "FALSE" in case status is Faulty (11).

Table 672: ESSXSWI Technical revision history

Technical revision	Change
В	Maximum and default values changed to 60 s and 30 s respectively for <i>Event delay</i> settings.
С	Outputs OPENPOS and CLOSEPOS are forced to "FALSE" in case status is Faulty (11).

9.3 Synchronism and energizing check SECRSYN

9.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Synchronism and energizing check	SECRSYN	SYNC	25

9.3.2 Function block

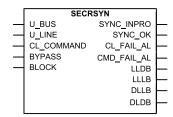


Figure 313: Function block

9.3.3 Functionality

The synchronism and energizing check function SECRSYN checks the condition across the circuit breaker from separate power system parts and gives the permission to close the circuit breaker. SECRSYN includes the functionality of synchrocheck and energizing check.

Asynchronous operation mode is provided for asynchronously running systems. The main purpose of the asynchronous operation mode is to provide a controlled closing of circuit breakers when two asynchronous systems are connected.

The synchrocheck operation mode checks that the voltages on both sides of the circuit breaker are perfectly synchronized. It is used to perform a controlled reconnection of two systems which are divided after islanding and it is also used to perform a controlled reconnection of the system after reclosing.

The energizing check function checks that at least one side is dead to ensure that closing can be done safely.

The function contains a blocking functionality. It is possible to block function outputs and timers if desired.

9.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

SECRSYN has two parallel functionalities, the synchro check and energizing check functionality. The operation of SECRSYN can be described using a module diagram. All the modules in the diagram are explained in the next sections.

Control functions 1MRS758755 C

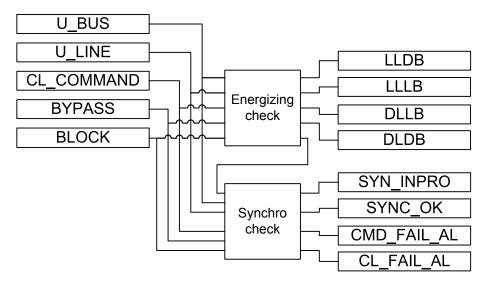


Figure 314: Functional module diagram

If Energizing check is passed, no further conditions need to be fulfilled to permit closing. Otherwise, Synchro check function can operate either with the U_AB or U_A voltages. The selection of used voltages is defined with the *VT connection* setting of the line voltage general parameters.

By default, voltages U_BUS and U_LINE are connected as presented in *Figure 323*. If necessary, connections can be switched by setting *Voltage source switch* to "True".

Energizing check

The Energizing check function checks the energizing direction. Energizing is defined as a situation where a dead network part is connected to an energized section of the network. The conditions of the network sections to be controlled by the circuit breaker, that is, which side has to be live and which side dead, are determined by the setting. A situation where both sides are dead is possible as well. The actual value for defining the dead line or bus is given with the *Dead bus value* and *Dead line value* settings. Similarly, the actual values of live line or bus are defined with the *Live bus value* and *Live line value* settings.

Table 673: Live dead mode of operation under which switching can be carried out

Live dead mode	Description
Both Dead	Both line and bus de-energized
Live L, Dead B	Bus de-energized and line energized
Dead L, Live B	Line de-energized and bus energized
Dead Bus, L Any	Both line and bus de-energized or bus de- energized and line energized
Dead L, Bus Any	Both line and bus de-energized or line de- energized and bus energized

Table continues on the next page

Live dead mode	Description
One Live, Dead	Bus de-energized and line energized or line de-energized and bus energized
Not Both Live	Both line and bus de-energized or bus de- energized and line energized or line de-ener- gized and bus energized

When the energizing direction corresponds to the settings, the situation has to be constant for a time set with the *Energizing time* setting before the circuit breaker closing is permitted. The purpose of this time delay is to ensure that the dead side remains de-energized and also that the situation is not caused by a temporary interference. If the conditions do not persist for a specified operation time, the timer is reset and the procedure is restarted when the conditions allow. The circuit breaker closing is not permitted if the measured voltage on the live side is greater than the set value of *Max energizing V*.

The measured energized state is available as a monitored data value ENERG_STATE and as four function outputs \mathtt{LLDB} (live line / dead bus), \mathtt{LLLB} (live line / live bus), \mathtt{DLLB} (dead line / live bus) and \mathtt{DLDB} (dead line / dead bus), of which only one can be active at a time. It is also possible that the measured energized state indicates "Unknown" if at least one of the measured voltages is between the limits set with the dead and live setting parameters.

Synchro check

The Synchro check function measures the difference between the line voltage and bus voltage. The function permits the closing of the circuit breaker when certain conditions are simultaneously fulfilled.

- The measured line and bus voltages are higher than the set values of Live bus value and Live line value (ENERG_STATE equals to "Both Live").
- The measured bus and line frequency are both within the range of 95 to 105 percent of the value of $f_{\,\rm n}$.
- The measured voltages for the line and bus are less than the set value of *Max* energizing *V*.

In case *Syncro check mode* is set to "Syncronous", the additional conditions must be fulfilled.

- In the synchronous mode, the closing is attempted so that the phase difference at closing is close to zero.
- The synchronous mode is only possible when the frequency slip is below 0.1 percent of the value of f $_{\rm n}$.
- The voltage difference must not exceed the 1 percent of the value of U $_{\mbox{\scriptsize n}}.$

In case *Syncro check mode* is set to "Asyncronous", the additional conditions must be fulfilled.

- The measured difference of the voltages is less than the set value of Difference voltage.
- The measured difference of the phase angles is less than the set value of Difference angle.
- The measured difference in frequency is less than the set value of Frequency difference.
- The estimated breaker closing angle is decided to be less than the set value of Difference angle.

Control functions 1MRS758755 C

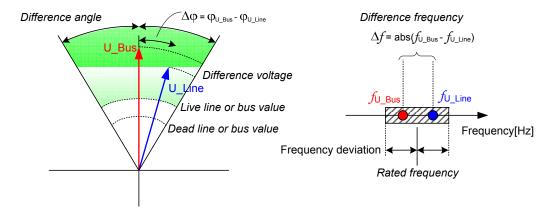


Figure 315: Conditions to be fulfilled when detecting synchronism between systems

When the frequency, phase angle and voltage conditions are fulfilled, the duration of the synchronism conditions is checked so as to ensure that they are still met when the condition is determined on the basis of the measured frequency and phase difference. Depending on the circuit breaker and the closing system, the delay from the moment the closing signal is given until the circuit breaker finally closes is about 50...250 ms. The selected Closing time of CB informs the function how long the conditions have to persist. The Synchro check function compensates for the measured slip frequency and the circuit breaker closing delay. The phase angle advance is calculated continuously with the formula.

Closing angle =
$$|(\angle U_{Bus} - \angle U_{Line})^{\circ} + ((f_{Bus} - f_{line}) \times (T_{CB} + T_{PL}) \times 360^{\circ})|$$

(Equation 74)

\angle U $_{\mathrm{Bus}}$	Measured bus voltage phase angle
∠U _{Line}	Measured line voltage phase angle
f _{Bus}	Measured bus frequency
f _{line}	Measured line frequency
T _{CB}	Total circuit breaker closing delay, including the delay of the protection relay output contacts defined with the <i>Closing time of CB</i> setting parameter value

The closing angle is the estimated angle difference after the breaker closing delay.

The Minimum Syn time setting time can be set, if required, to demand the minimum time within which conditions must be simultaneously fulfilled before the SYNC OK output is activated.

The measured voltage, frequency and phase angle difference values between the two sides of the circuit breaker are available as monitored data values U_DIFF_MEAS, FR_DIFF_MEAS and PH_DIFF_MEAS. Also, the indications of the conditions that are not fulfilled and thus preventing the breaker closing permission are available as monitored data values U DIFF SYNC, PH DIF SYNC and FR_DIFF_SYNC. These monitored data values are updated only when the Synchro check is enabled with the Synchro check mode setting and the measured ENERG STATE is "Both Live".

Continuous mode

The continuous mode is activated by setting the parameter *Control mode* to "Continuous". In the continuous control mode, Synchro check is continuously

checking the synchronism. When synchronism is detected (according to the settings), the <code>SYNC_OK</code> output is set to TRUE (logic '1') and it stays TRUE as long as the conditions are fulfilled. The command input is ignored in the continuous control mode. The mode is used for situations where Synchro check only gives the permission to the control block that executes the CB closing.

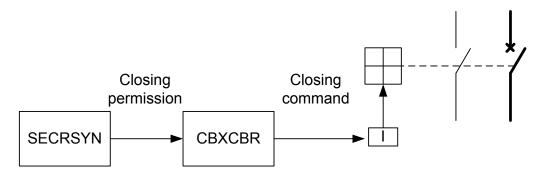


Figure 316: A simplified block diagram of the Synchro check function in the continuous mode operation

Command mode

If *Control mode* is set to "Command", the purpose of the Synchro check functionality in the command mode is to find the instant when the voltages on both sides of the circuit breaker are in synchronism. The conditions for synchronism are met when the voltages on both sides of the circuit breaker have the same frequency and are in phase with a magnitude that makes the concerned busbars or lines such that they can be regarded as live.

In the command mode operation, an external command signal CL_COMMAND, besides the normal closing conditions, is needed for delivering the closing signal. In the command control mode operation, the Synchro check function itself closes the breaker via the SYNC_OK output when the conditions are fulfilled. In this case, the control function block delivers the command signal to close the Synchro check function for the releasing of a closing-signal pulse to the circuit breaker. If the closing conditions are fulfilled during a permitted check time set with *Maximum Syn time*, the Synchro check function delivers a closing signal to the circuit breaker after the command signal is delivered for closing.

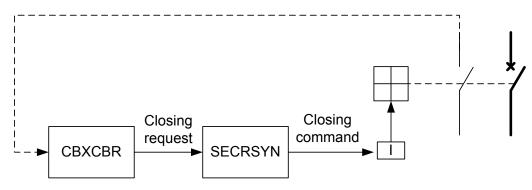


Figure 317: A simplified block diagram of SECRSYN in the command mode operation

Control functions 1MRS758755 C

> The closing signal is delivered only once for each activated external closing command signal. The pulse length of the delivered closing is set with the Close pulse setting.

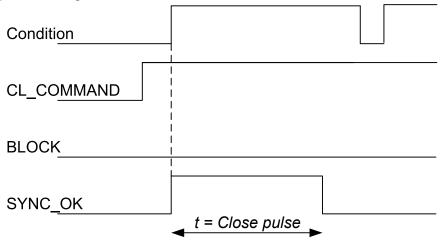


Figure 318: Determination of the pulse length of the closing signal

In the command control mode operation, there are alarms for a failed closing attempt (CL FAIL AL) and for a command signal that remains active too long (CMD FAIL AL).

If the conditions for closing are not fulfilled within the set time of Maximum Syn time, a failed closing attempt alarm is given. The CL FAIL AL alarm output signal is pulse-shaped and the pulse length is 500 ms. If the external command signal is removed too early, that is, before conditions are fulfilled and the closing pulse is given, the alarm timer is reset.

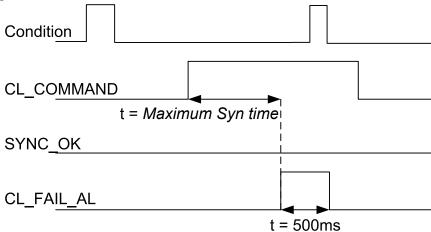


Figure 319: Determination of the checking time for closing

The control module receives information about the circuit breaker status and thus is able to adjust the command signal to be delivered to the Synchro check function. If the external command signal CL_COMMAND is kept active longer than necessary, the CMD FAIL AL alarm output is activated. The alarm indicates that the control module has not removed the external command signal after the closing operation. To avoid unnecessary alarms, the duration of the command signal should be set in such a way that the maximum length of the signal is always below Maximum Syn *time* + 5s.

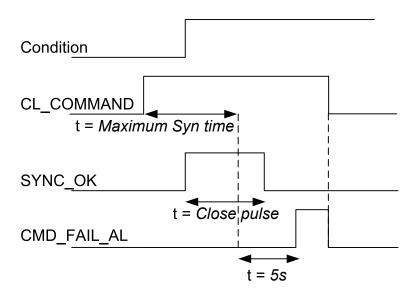


Figure 320: Determination of the alarm limit for a still-active command signal

Closing is permitted during *Maximum Syn time*, starting from the moment the external command signal CL_COMMAND is activated. The CL_COMMAND input must be kept active for the whole time that the closing conditions are waited to be fulfilled. Otherwise, the procedure is cancelled. If the closing-command conditions are fulfilled during *Maximum Syn time*, a closing pulse is delivered to the circuit breaker. If the closing conditions are not fulfilled during the checking time, the alarm CL_FAIL_AL is activated as an indication of a failed closing attempt. The closing pulse is not delivered if the closing conditions become valid after *Maximum Syn time* has elapsed. The closing pulse is delivered only once for each activated external command signal, and a new closing-command sequence cannot be started until the external command signal is reset and reactivated. The SYNC_INPRO output is active when the closing-command sequence is in progress and it is reset when the CL COMMAND input is reset or *Maximum Syn time* has elapsed.

Bypass mode

SECRSYN can be set to the bypass mode by setting the parameters *Synchrocheck mode* and *Live dead mode* to "Off" or alternatively by activating the BYPASS input.

In the bypass mode, the closing conditions are always considered to be fulfilled by SECRSYN. Otherwise, the operation is similar to the normal mode.

Voltage angle difference adjustment

In application where the power transformer is located between the voltage measurement and the vector group connection gives phase difference to the voltages between the high- and low-voltage sides, the angle adjustment can be used to meet synchronism.

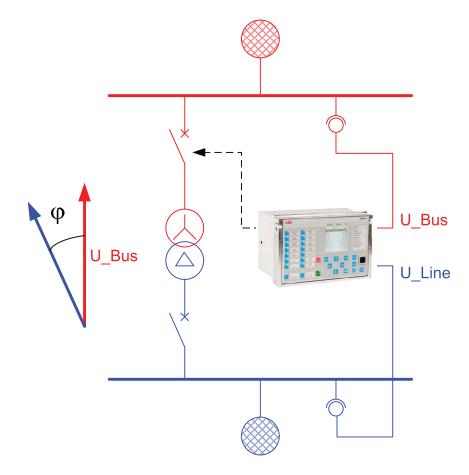


Figure 321: Angle difference when power transformer is in synchrocheck zone

The vector group of the power transformer is defined with clock numbers, where the value of the hour pointer defines the low-voltage-side phasor and the highvoltage-side phasor is always fixed to the clock number 12, which is same as zero. The angle between clock numbers is 30 degrees. When comparing phase angles, transformer is used, the low-voltage-side voltage phasor leads by 30 degrees or lags by 330 degrees the high-voltage-side phasor. The rotation of the phasors is counterclockwise.

The generic rule is that a low-voltage-side phasor lags the high-voltage-side phasor by clock number * 30°. This is called angle difference adjustment and can be set for SECRSYN with the *Phase shift* setting.

9.3.5 **Application**

The main purpose of the synchrocheck function is to provide control over the closing of the circuit breakers in power networks to prevent the closing if the conditions for synchronism are not detected. This function is also used to prevent the reconnection of two systems which are divided after islanding and a three-pole reclosing.

The Synchro check function block includes both the synchronism check function and the energizing function to allow closing when one side of the breaker is dead.

Network and the generator running in parallel with the network are connected through the line AB. When a fault occurs between A and B, the protection relay protection opens the circuit breakers A and B, thus isolating the faulty section from the network and making the arc that caused the fault extinguish. The first attempt to recover is a delayed autoreclosure made a few seconds later. Then, the autoreclose function DARREC gives a command signal to the synchrocheck function to close the circuit breaker A. SECRSYN performs an energizing check, as the line AB is de-energized (U_BUS> Live bus value, U_LINE< Dead line value). After verifying the line AB is dead and the energizing direction is correct, the protection relay energizes the line (U_BUS -> U_LINE) by closing the circuit breaker A. The PLC of the power plant discovers that the line has been energized and sends a signal to the other synchrocheck function to close the circuit breaker B. Since both sides of the circuit breaker B are live (U_BUS > Live bus value, U_LINE > Live bus value), the synchrocheck function controlling the circuit breaker B performs a synchrocheck and, if the network and the generator are in synchronism, closes the circuit breaker.

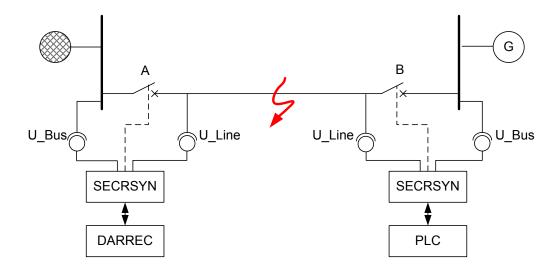


Figure 322: Synchrocheck function SECRSYN checking energizing conditions and synchronism

Connections

A special attention is paid to the connection of the protection relay. Furthermore it is checked that the primary side wiring is correct.

A faulty wiring of the voltage inputs of the protection relay causes a malfunction in the synchrocheck function. If the wires of an energizing input have changed places, the polarity of the input voltage is reversed (180°). In this case, the protection relay permits the circuit breaker closing in a situation where the voltages are in opposite phases. This can damage the electrical devices in the primary circuit. Therefore, it is extremely important that the wiring from the voltage transformers to the terminals on the rear of the protection relay is consistent regarding the energizing inputs U BUS (bus voltage) and U LINE (line voltage).

The wiring should be verified by checking the reading of the phase difference measured between the $\mathtt{U_BUS}$ and $\mathtt{U_LINE}$ voltages. The phase difference measured by the protection relay has to be close to zero within the permitted accuracy tolerances. The measured phase differences are indicated in the LHMI. At the same time, it is recommended to check the voltage difference and the frequency

differences presented in the monitored data view. These values should be within the permitted tolerances, that is, close to zero.

Figure 323 shows an example where the synchrocheck is used for the circuit breaker closing between a busbar and a line. The phase-to-phase voltages are measured from the busbar and also one phase-to-phase voltage from the line is measured.

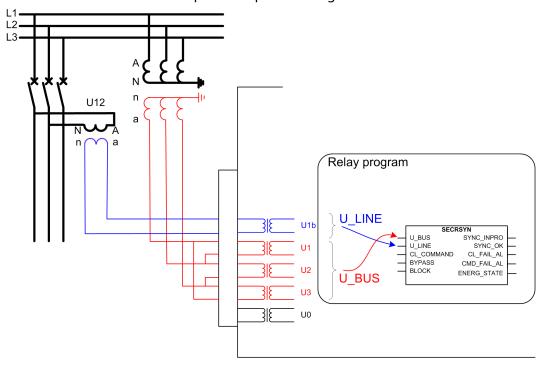


Figure 323: Connection of voltages for the protection relay and signals used in synchrocheck

9.3.6 Signals

9.3.6.1 SECRSYN Input signals

Table 674: SECRSYN Input signals

Name	Туре	Default	Description
U_BUS	SIGNAL	0	Busbar voltage
U_LINE	SIGNAL	0	Line voltage
CL_COMMAND	BOOLEAN	0=False	External closing request
BYPASS	BOOLEAN	0=False	Request to bypass synchronism check and voltage check
BLOCK	BOOLEAN	0=False	Blocking signal of the synchro check and voltage check func- tion

1MRS758755 C

9.3.6.2 SECRSYN Output signals

Table 675: SECRSYN Output signals

Name	Туре	Description	
SYNC_INPRO	BOOLEAN	Synchronizing in progress	
SYNC_OK	BOOLEAN	Systems in synchronism	
CL_FAIL_AL	BOOLEAN	CB closing failed	
CMD_FAIL_AL	BOOLEAN	CB closing request failed	
LLDB	BOOLEAN	Live Line, Dead Bus	
LLLB	BOOLEAN	Live Line, Live Bus	
DLLB	BOOLEAN	Dead Line, Live Bus	
DLDB	BOOLEAN	Dead Line, Dead Bus	

9.3.7 Settings

9.3.7.1 SECRSYN Group settings

Table 676: SECRSYN Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Live dead mode	-1=Off			1=Both Dead	Energizing check mode
	1=Both Dead				mode
	2=Live L, Dead B				
	3=Dead L, Live B				
	4=Dead Bus, L Any				
	5=Dead L, Bus Any				
	6=One Live, Dead				
	7=Not Both Live				
Difference voltage	0.010.50	xUn	0.01	0.05	Maximum voltage difference limit
Difference frequen- cy	0.00020.1000	xFn	0.0001	0.0010	Maximum frequen- cy difference limit
Difference angle	590	deg	1	5	Maximum angle difference limit

Table 677: SECRSYN Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Synchro check mode	1=Off 2=Synchronous 3=Asynchronous			3=Asynchronous	Synchro check operation mode

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
Dead line value	0.10.8	xUn	0.1	0.2	Voltage low limit line for energizing check
Live line value	0.21.0	xUn	0.1	0.8	Voltage high limit line for energizing check
Dead bus value	0.10.8	xUn	0.1	0.2	Voltage low limit bus for energizing check
Live bus value	0.21.0	xUn	0.1	0.5	Voltage high limit bus for energizing check
Max energizing V	0.501.15	xUn	0.01	1.05	Maximum voltage for energizing

Table 678: SECRSYN Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Control mode	1=Continuous 2=Command			1=Continuous	Selection of syn- chro check com- mand or Continu- ous control mode
Close pulse	20060000	ms	10	200	Breaker closing pulse duration
Phase shift	-180180	deg	1	0	Correction of phase difference between measured U_BUS and U_LINE
Minimum Syn time	060000	ms	10	0	Minimum time to accept synchronizing
Maximum Syn time	1006000000	ms	10	2000	Maximum time to accept synchronizing
Energizing time	10060000	ms	10	100	Time delay for en- ergizing check
Closing time of CB	40250	ms	10	60	Closing time of the breaker
Voltage source switch	0=False 1=True			0=False	Voltage source switch

9.3.8 Monitored data

9.3.8.1 SECRSYN Monitored data

Table 679: SECRSYN Monitored data

Name	Туре	Values (Range)	Unit	Description
ENERG_STATE	Enum	0=Unknown 1=Both Live		Energization state of Line and Bus
		2=Live L, Dead B		
		3=Dead L, Live B		

Table continues on the next page

Name	Туре	Values (Range)	Unit	Description
		4=Both Dead		
U_DIFF_MEAS	FLOAT32	0.001.00	xUn	Calculated volt- age amplitude difference
FR_DIFF_MEAS	FLOAT32	0.0000.100	xFn	Calculated volt- age frequency difference
PH_DIFF_MEAS	FLOAT32	0.00180.00	deg	Calculated volt- age phase angle difference
U_DIFF_SYNC	BOOLEAN	0=False		Voltage differ- ence out of limit
		1=True		for synchronizing
PH_DIF_SYNC	BOOLEAN	0=False		Phase angle dif- ference out of
		1=True		limit for synchro- nizing
FR_DIFF_SYNC	BOOLEAN	0=False		Frequency difference out of limit
		1=True		for synchronizing
SECRSYN	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

9.3.9 Technical data

Table 680: SECRSYN Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the voltage measured: f $_{\rm n}$ ± 1 Hz
	Voltage:
	± 3.0 % of the set value or $\pm 0.01 \times U_n$
	Frequency:
	±10 mHz
	Phase angle:
	±3°
Reset time	<50 ms
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	±1.0 % of the set value or ±20 ms

Autoreclosing DARREC 9.4

Identification 9.4.1

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Autoreclosing	DARREC	O -> I	79

9.4.2 **Function block**

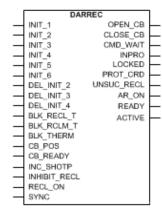


Figure 324: Function block

9.4.3 **Functionality**

About 80 to 85 percent of faults in the MV overhead lines are transient and automatically cleared with a momentary de-energization of the line. The rest of the faults, 15 to 20 percent, can be cleared by longer interruptions. The de-energization of the fault location for a selected time period is implemented through automatic reclosing, during which most of the faults can be cleared.

In case of a permanent fault, the automatic reclosing is followed by final tripping. A permanent fault must be located and cleared before the fault location can be re-energized.

The autoreclosing function DARREC can be used with any circuit breaker suitable for autoreclosing. The function provides five programmable autoreclosing shots which can perform one to five successive autoreclosings of desired type and duration, for instance one high-speed and one delayed autoreclosing.

When the reclosing is initiated with starting of the protection function, the autoreclosing function can execute the final trip of the circuit breaker in a short operate time, provided that the fault still persists when the last selected reclosing has been carried out.

9.4.3.1 Protection signal definition

The *Control line* setting defines which of the initiation signals are protection start and trip signals and which are not. With this setting, the user can distinguish the blocking signals from the protection signals. The *Control line* setting is a bit mask, that is, the lowest bit controls the <code>INIT_1</code> line and the highest bit the <code>INIT_6</code> line. Some example combinations of the *Control line* setting are as follows:

Table 681: Control line setting definition

Control line setting	INIT_1	INIT_2 DEL_INIT _2	INIT_3 DEL_INIT _3	INIT_4 DEL_INIT _4	INIT_5	INIT_6
0	other	other	other	other	other	other
1	prot	other	other	other	other	other
2	other	prot	other	other	other	other
3	prot	prot	other	other	other	other
4	other	other	prot	other	other	other
5	prot	other	prot	other	other	other
63	prot	prot	prot	prot	prot	prot

prot = protection signal other = non-protection signal

When the corresponding bit or bits in both the *Control line* setting and the $INIT_X$ line are TRUE:

- The CLOSE CB output is blocked until the protection is reset
- If the INIT_X line defined as the protection signal is activated during the discrimination time, the AR function goes to lockout
- If the INIT_X line defined as the protection signal stays active longer than the time set by the Max trip time setting, the AR function goes to lockout (long trip)
- The UNSUC_RECL output is activated after a pre-defined two minutes (alarming earth-fault).

9.4.3.2 Zone coordination

Zone coordination is used in the zone sequence between local protection units and downstream devices. At the falling edge of the ${\tt INC_SHOTP}$ line, the value of the shot pointer is increased by one, unless a shot is in progress or the shot pointer already has the maximum value.

The falling edge of the INC_SHOTP line is not accepted if any of the shots are in progress.

9.4.3.3 Master and slave scheme

With the cooperation between the AR units in the same protection relay or between protection relays, sequential reclosings of two breakers at a line end in a $1\frac{1}{2}$ -breaker, double breaker or ring-bus arrangement can be achieved. One unit is defined as a master and it executes the reclosing first. If the reclosing is successful and no trip takes place, the second unit, that is the slave, is released to complete the reclose shot. With persistent faults, the breaker reclosing is limited to the first breaker.

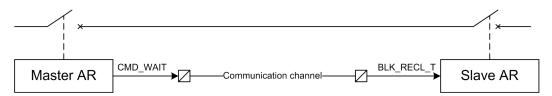


Figure 325: Master and slave scheme

If the AR unit is defined as a master by setting its terminal priority to high:

- The unit activates the CMD_WAIT output to the low priority slave unit whenever a shot is in progress, a reclosing is unsuccessful or the BLK RCLM T input is active
- The CMD_WAIT output is reset one second after the reclose command is given or if the sequence is unsuccessful when the reclaim time elapses.

If the AR unit is defined as a slave by setting its terminal priority to low:

- The unit waits until the master releases the BLK_RECL_T input (the CMD_WAIT output in the master). Only after this signal has been deactivated, the reclose time for the slave unit can be started.
- The slave unit is set to a lockout state if the BLK_RECL_T input is not released within the time defined by the *Max wait time* setting, which follows the initiation of an autoreclosing shot.

If the terminal priority of the AR unit is set to "none", the AR unit skips all these actions.

9.4.3.4 Thermal overload blocking

An alarm or start signal from the thermal overload protection (T1PTTR) can be routed to the input $\texttt{BLK_THERM}$ to block and hold the reclose sequence. The $\texttt{BLK_THERM}$ signal does not affect the starting of the sequence. When the reclose time has elapsed and the $\texttt{BLK_THERM}$ input is active, the shot is not ready until the $\texttt{BLK_THERM}$ input deactivates. Should the $\texttt{BLK_THERM}$ input remain active longer than the time set by the setting Max Thm block time, the AR function goes to lockout.

If the BLK_THERM input is activated when the auto wait timer is running, the auto wait timer is reset and the timer restarted when the BLK_THERM input deactivates.

9.4.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off". Setting *Operation* to "Off" resets non-volatile counters.

The reclosing operation can be enabled and disabled with the *Reclosing operation* setting. This setting does not disable the function, only the reclosing functionality. The setting has three parameter values: "On", "External Ctl" and "Off". The setting value "On" enables the reclosing operation and "Off" disables it. When the setting value "External Ctl" is selected, the reclosing operation is controlled with the RECL ON input. AR ON is activated when reclosing operation is enabled.

The operation of DARREC can be described using a module diagram. All the modules in the diagram are explained in the next sections.

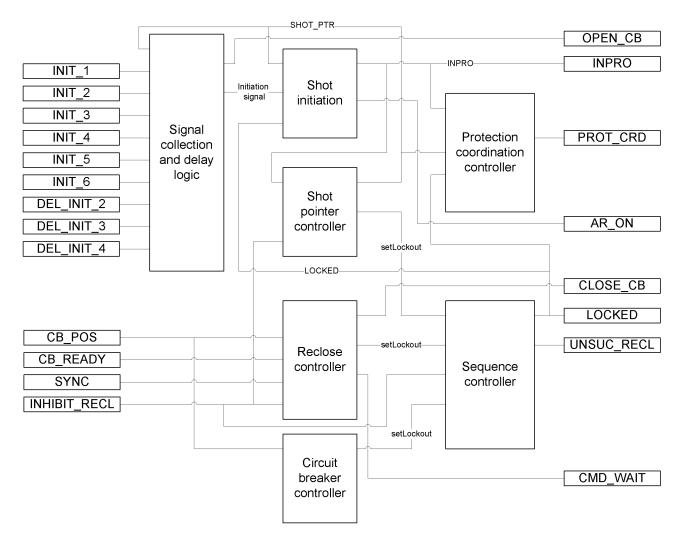


Figure 326: Functional module diagram

9.4.4.1 Signal collection and delay logic

When the protection trips, the initiation of autoreclosing shots is in most applications executed with the $\mathtt{INIT}_1\ldots 6$ inputs. The $\mathtt{DEL}_\mathtt{INIT}2\ldots 4$ inputs are not used. In some countries, starting the protection stage is also used for the shot initiation. This is the only time when the \mathtt{DEL} \mathtt{INIT} inputs are used.

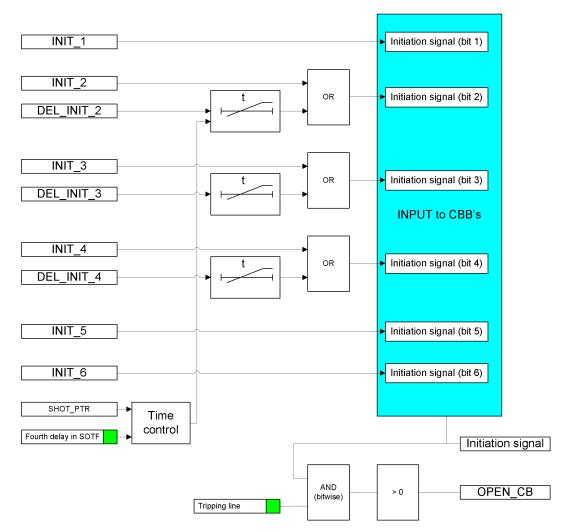


Figure 327: Schematic diagram of delayed initiation input signals

In total, the AR function contains six separate initiation lines used for the initiation or blocking of the autoreclosing shots. These lines are divided into two types of channels. In three of these channels, the signal to the AR function can be delayed, whereas the other three channels do not have any delaying capability.

Each channel that is capable of delaying a start signal has four time delays. The time delay is selected based on the shot pointer in the AR function. For the first reclose attempt, the first time delay is selected; for the second attempt, the second time delay and so on. For the fourth and fifth attempts, the time delays are the same.

Time delay settings for the DEL_INIT_2 signal

- Str 2 delay shot 1
- Str 2 delay shot 2
- Str 2 delay shot 3
- Str 2 delay shot 4

Time delay settings for the DEL INIT 3 signal

- Str 3 delay shot 1
- Str 3 delay shot 2
- Str 3 delay shot 3

• Str 3 delay shot 4

Time delay settings for the DEL INIT 4 signal

- Str 4 delay shot 1
- Str 4 delay shot 2
- Str 4 delay shot 3
- Str 4 delay shot 4

Normally, only two or three reclosing attempts are made. The third and fourth attempts are used to provide the so-called fast final trip to lockout.

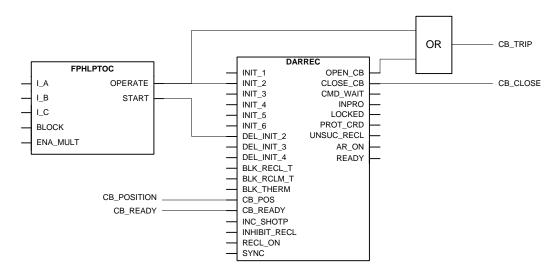


Figure 328: Autoreclosing configuration example

Delayed <code>DEL_INIT_2...4</code> signals are used only when the autoreclosing shot is initiated with the start signal of a protection stage. After a start delay, the AR function opens the circuit breaker and an autoreclosing shot is initiated. When the shot is initiated with the trip signal of the protection, the protection function trips the circuit breaker and simultaneously initiates the autoreclosing shot.

If the circuit breaker is manually closed against the fault, that is, if SOTF is used, the fourth time delay can automatically be taken into use. This is controlled with the internal logic of the AR function and the *Fourth delay in SOTF* parameter.

A typical autoreclose situation is where one autoreclosing shot has been performed after the fault was detected. There are two types of such cases: operation initiated with protection start signal and operation initiated with protection trip signal. In both cases, the autoreclosing sequence is successful: the reclaim time elapses and no new sequence is started.

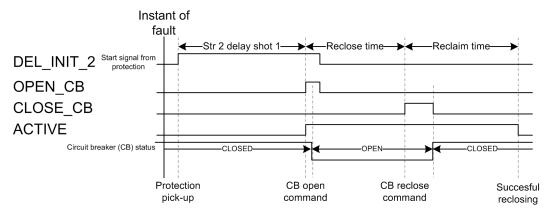


Figure 329: Signal scheme of autoreclosing operation initiated with protection start signal

The autoreclosing shot is initiated with a start signal of the protection function after the start delay time has elapsed. The autoreclosing starts when the Str 2 delay shot 1 setting elapses.

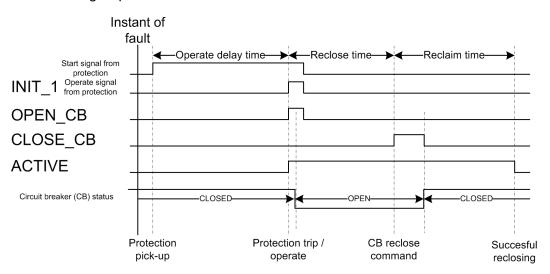


Figure 330: Signal scheme of autoreclosing operation initiated with protection operate signal

The autoreclosing shot is initiated with a trip signal of the protection function. The autoreclosing starts when the protection operate delay time elapses.

Normally, all trip and start signals are used to initiate an autoreclosing shot and trip the circuit breaker. ACTIVE output indicates reclosing sequence in progress. If any of the input signals INIT X or DEL INIT X are used for blocking, the corresponding bit in the *Tripping line* setting must be FALSE. This is to ensure that the circuit breaker does not trip from that signal, that is, the signal does not activate the OPEN CB output. The default value for the setting is "63", which means that all initiation signals activate the OPEN CB output. The lowest bit in the Tripping *line* setting corresponds to the INIT 1 input, the highest bit to the INIT 6 line.

9.4.4.2 Shot initiation

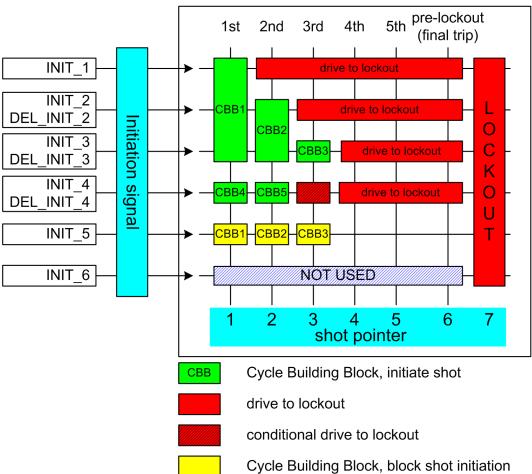


Figure 331: Example of an autoreclosing program with a reclose scheme matrix

In the AR function, each shot can be programmed to locate anywhere in the reclose scheme matrix. The shots are like building blocks used to design the reclose program. The building blocks are called CBBs. All blocks are alike and have settings which give the attempt number (columns in the matrix), the initiation or blocking signals (rows in the matrix) and the reclose time of the shot.

The settings related to CBB configuration are:

- First...Seventh reclose time
- Init signals CBB1...CBB7
- Blk signals CBB1...CBB7
- Shot number CBB1...CBB7

The reclose time defines the open and dead times, that is, the time between the <code>OPEN_CB</code> and the <code>CLOSE_CB</code> commands. The <code>Init</code> signals <code>CBBx</code> setting defines the initiation signals. The <code>Blk</code> signals <code>CBBx</code> setting defines the blocking signals that are related to the CBB (rows in the matrix). The <code>Shot</code> number <code>CBB1...CBB7</code> setting defines which shot is related to the CBB (columns in the matrix). For example, CBB1 settings are:

- First reclose time = 1.0s
- Init signals CBB1 = 7 (three lowest bits: 111000 = 7)
- Blk signals CBB1 = 16 (the fifth bit: 000010 = 16)

• Shot number CBB1 = 1

CBB2 settings are:

- Second reclose time = 10s
- Init signals CBB2 = 6 (the second and third bits: 011000 = 6)
- Blk signals CBB2 = 16 (the fifth bit: 000010 = 16)
- Shot number CBB2 = 2

CBB3 settings are:

- Third reclose time = 30s
- Init signals CBB3 = 4 (the third bit: 001000 = 4)
- Blk signals CBB3 = 16 (the fifth bit: 000010 = 16)
- Shot number CBB3 = 3

CBB4 settings are:

- Fourth reclose time = 0.5s
- *Init signals CBB4* = 8 (the fourth bit: 000100 = 8)
- Blk signals CBB4 = 0 (no blocking signals related to this CBB)
- Shot number CBB4 = 1

If a shot is initiated from the ${\tt INIT}\ 1$ line, only one shot is allowed before lockout. If a shot is initiated from the INIT 3 line, three shots are allowed before lockout.

A sequence initiation from the INIT $\,$ 4 line leads to a lockout after two shots. In a situation where the initiation is made from both the INIT 3 and INIT 4 lines, a third shot is allowed, that is, CBB3 is allowed to start. This is called conditional lockout. If the initiation is made from the INIT 2 and INIT 3 lines, an immediate lockout occurs.

The INIT 5 line is used for blocking purposes. If the INIT 5 line is active during a sequence start, the reclose attempt is blocked and the AR function goes to lockout.

If more than one CBBs are started with the shot pointer, the CBB with the smallest individual number is always selected. For example, if the INIT 2 and INIT 4 lines are active for the second shot, that is, the shot pointer is 2, CBB2 is started instead of CBB5.

Even if the initiation signals are not received from the protection functions, the AR function can be set to continue from the second to the fifth reclose shot. The AR function can, for example, be requested to automatically continue with the sequence when the circuit breaker fails to close when requested. In such a case, the AR function issues a CLOSE CB command. When the wait close time elapses, that is, the closing of the circuit breaker fails, the next shot is automatically started. Another example is the embedded generation on the power line, which can make the synchronism check fail and prevent the reclosing. If the autoreclose sequence is continued to the second shot, a successful synchronous reclosing is more likely than with the first shot, since the second shot lasts longer than the first one.

664 **REC615 & RER615**

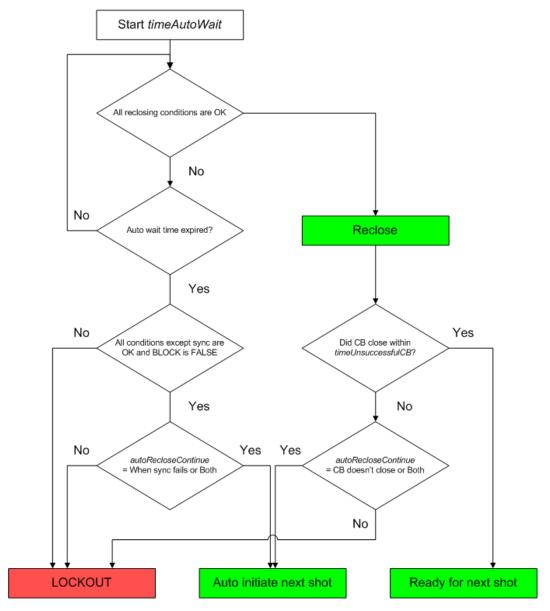


Figure 332: Logic diagram of auto-initiation sequence detection

Automatic initiation can be selected with the *Auto initiation Cnd* setting to be the following:

- · Not allowed: no automatic initiation is allowed
- When the synchronization fails, the automatic initiation is carried out when the auto wait time elapses and the reclosing is prevented due to a failure during the synchronism check
- When the circuit breaker does not close, the automatic initiation is carried out
 if the circuit breaker does not close within the wait close time after issuing the
 reclose command
- Both: the automatic initiation is allowed when synchronization fails or the circuit breaker does not close.

The *Auto init* parameter defines which <code>INIT_X</code> lines are activated in the auto-initiation. The default value for this parameter is "0", which means that no auto-initiation is selected.

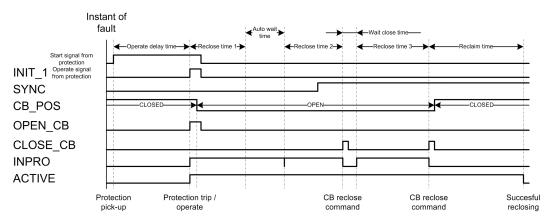


Figure 333: Example of an auto-initiation sequence with synchronization failure in the first shot and circuit breaker closing failure in the second shot

In the first shot, the synchronization condition is not fulfilled (SYNC is FALSE). When the auto wait timer elapses, the sequence continues to the second shot. During the second reclosing, the synchronization condition is fulfilled and the close command is given to the circuit breaker after the second reclose time has elapsed.

After the second shot, the circuit breaker fails to close when the wait close time has elapsed. The third shot is started and a new close command is given after the third reclose time has elapsed. The circuit breaker closes normally and the reclaim time starts. When the reclaim time has elapsed, the sequence is concluded successful.

9.4.4.3 Shot pointer controller

The execution of a reclose sequence is controlled by a shot pointer. It can be adjusted with the SHOT_PTR monitored data.

The shot pointer starts from an initial value "1" and determines according to the settings whether or not a certain shot is allowed to be initiated. After every shot, the shot pointer value increases. This is carried out until a successful reclosing or lockout takes place after a complete shot sequence containing a total of five shots.

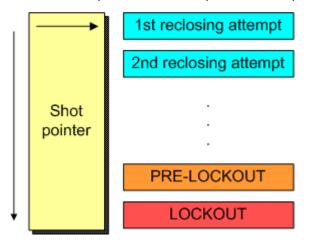


Figure 334: Shot pointer function

Every time the shot pointer increases, the reclaim time starts. When the reclaim time ends, the shot pointer sets to its initial value, unless no new shot is initiated.

The shot pointer increases when the reclose time elapses or at the falling edge of the INC SHOTP signal.

When SHOT_PTR has the value six, the AR function is in a so called pre-lockout state. If a new initiation occurs during the pre-lockout state, the AR function goes to lockout. Therefore, a new sequence initiation during the pre-lockout state is not possible.

The AR function goes to the pre-lockout state in the following cases:

- During SOTF
- When the AR function is active, it stays in a pre-lockout state for the time defined by the reclaim time
- When all five shots have been executed
- When the frequent operation counter limit is reached. A new sequence initiation forces the AR function to lockout.

9.4.4.4 Reclose controller

The reclose controller calculates the reclose, discrimination and reclaim times. The reclose time is started when the INPRO signal is activated, that is, when the sequence starts and the activated CBB defines the reclose time.

When the reclose time has elapsed, the ${\tt CLOSE_CB}$ output is not activated until the following conditions are fulfilled:

- The ${\tt SYNC}$ input must be TRUE if the particular CBB requires information about the synchronism
- All AR initiation inputs that are defined protection lines (using the *Control line* setting) are inactive
- The circuit breaker is open
- The circuit breaker is ready for the close command, that is, the CB_READY input is TRUE. This is indicated by active READY output.

If at least one of the conditions is not fulfilled within the time set with the *Auto wait time* parameter, the autoreclose sequence is locked.

The synchronism requirement for the CBBs can be defined with the *Synchronisation set* setting, which is a bit mask. The lowest bit in the *Synchronisation set* setting is related to CBB1 and the highest bit to CBB7. For example, if the setting is set to "1", only CBB1 requires synchronism. If the setting is it set to "7", CBB1, CBB2 and CBB3 require the SYNC input to be TRUE before the reclosing command can be given.

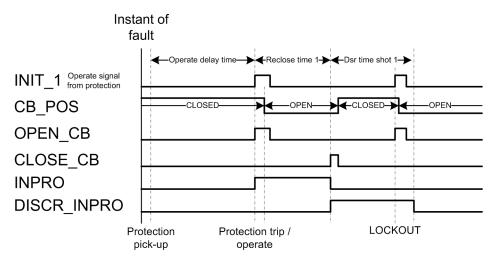


Figure 335: Initiation during discrimination time - AR function goes to lockout

The discrimination time starts when the close command <code>CLOSE_CB</code> has been given. If a start input is activated before the discrimination time has elapsed, the AR function goes to lockout. The default value for each discrimination time is zero. The discrimination time can be adjusted with the $Dsr\ time\ shot\ 1...4$ parameter.

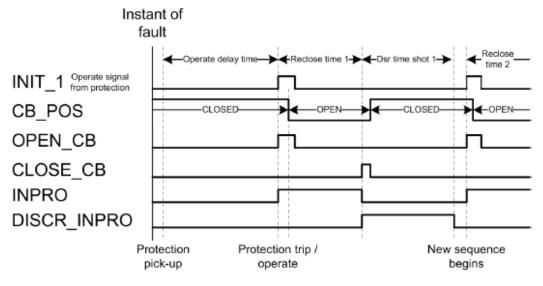


Figure 336: Initiation after elapsed discrimination time - new shot begins

9.4.4.5 Sequence controller

When the LOCKED output is active, the AR function is in lockout. This means that new sequences cannot be initialized, because AR is insensitive to initiation commands. It can be released from the lockout state in the following ways.

- The function is reset through communication with the *RecRs* parameter. The same functionality can also be found in the Clear menu (DARREC1 reset).
- The lockout is automatically reset after the reclaim time, if the *Auto lockout reset* setting is in use.

If the *Auto lockout reset* setting is not in use, the lockout can be released only with the *RecRs* parameter.

The AR function can go to lockout for many reasons.

- The INHIBIT RECL input is active.
- All shots have been executed and a new initiation is made (final trip).
- The time set with the *Auto wait time* parameter expires and the automatic sequence initiation is not allowed because of a synchronization failure.
- The time set with the *Wait close time* parameter expires, that is, the circuit breaker does not close or the automatic sequence initiation is not allowed due to a closing failure of the circuit breaker.
- A new shot is initiated during the discrimination time.
- The time set with the *Max wait time* parameter expires, that is, the master unit does not release the slave unit.
- The frequent operation counter limit is reached and new sequence is initiated. The lockout is released when the recovery timer elapses.
- The protection trip signal has been active longer than the time set with the *Max wait time* parameter since the shot initiation.
- The circuit breaker is closed manually during an autoreclosing sequence and the manual close mode is FALSE.

9.4.4.6 Protection coordination controller

The PROT_CRD output is used for controlling the protection functions. In several applications, such as fuse-saving applications involving down-stream fuses, tripping and initiation of shot 1 should be fast (instantaneous or short-time delayed). The tripping and initiation of shots 2, 3 and definite tripping time should be delayed.

In this example, two overcurrent elements PHLPTOC and PHIPTOC are used. PHIPTOC is given an instantaneous characteristic and PHLPTOC is given a time delay.

The PROT_CRD output is activated, if the SHOT_PTR value is the same or higher than the value defined with the *Protection crd limit* setting and all initialization signals have been reset. The PROT_CRD output is reset under the following conditions:

- If the cut-out time elapses
- If the reclaim time elapses and the AR function is ready for a new sequence
- If the AR function is in lockout or disabled, that is, if the value of the *Protection crd mode* setting is "AR inoperative" or "AR inop, CB man".

The PROT_CRD output can also be controlled with the *Protection crd mode* setting. The setting has the following modes:

- "no condition": the PROT_CRD output is controlled only with the Protection crd limit setting
- "AR inoperative": the PROT_CRD output is active, if the AR function is disabled or in the lockout state, or if the INHIBIT_RECL input is active
- "CB close manual": the PROT_CRD output is active for the reclaim time if the
 circuit breaker has been manually closed, that is, the AR function has not issued a
 close command
- "AR inop, CB man": both the modes "AR inoperative" and "CB close manual" are effective

"always": the PROT_CRD output is constantly active

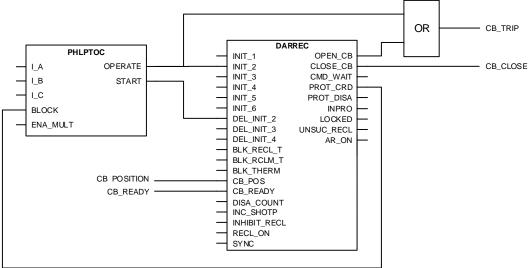


Figure 337: Configuration example of using the PROT_CRD output for protection blocking

If the *Protection crd limit* setting has the value "1", the instantaneous three-phase overcurrent protection function PHIPTOC is disabled or blocked after the first shot.

9.4.4.7 Circuit breaker controller

Circuit breaker controller contains two features: SOTF and frequent-operation counter. SOTF protects the AR function in permanent faults.

The circuit breaker position information is controlled with the *CB closed Pos status* setting. The setting value "TRUE" means that when the circuit breaker is closed, the CB_POS input is TRUE. When the setting value is "FALSE", the CB_POS input is FALSE, provided that the circuit breaker is closed. The reclose command pulse time can be controlled with the *Close pulse time* setting: the $CLOSE_CB$ output is active for the time set with the *Close pulse time* setting. The $CLOSE_CB$ output is deactivated also when the circuit breaker is detected to be closed, that is, when the CB_POS input changes from open state to closed state. The *Wait close time* setting defines the time after the $CLOSE_CB$ command activation, during which the circuit breaker should be closed. If the closing of circuit breaker does not happen during this time, the autoreclosing function is driven to lockout or, if allowed, an auto-initiation is activated.

The main motivation for autoreclosing to begin with is the assumption that the fault is temporary by nature, and that a momentary de-energizing of the power line and an automatic reclosing restores the power supply. However, when the power line is manually energized and an immediate protection trip is detected, it is very likely that the fault is of a permanent type. A permanent fault is, for example, energizing a power line into a forgotten earthing after a maintenance work along the power line. In such cases, SOTF is activated, but only for the reclaim time after energizing the power line and only when the circuit breaker is closed manually and not by the AR function.

SOTF disables any initiation of an autoreclosing shot. The energizing of the power line is detected from the \mbox{CB} \mbox{POS} information.

SOTF is activated when the AR function is enabled or when the AR function is started and the SOTF should remain active for the reclaim time.

When SOTF is detected, the parameter *SOTF* is active.

If the *Manual close mode* setting is set to FALSE and the circuit breaker has been manually closed during an autoreclosing shot, the AR unit goes to an immediate lockout.

If the *Manual close mode* setting is set to TRUE and the circuit breaker has been manually closed during an autoreclosing shot (the INPRO is active), the shot is considered as completed.

When SOTF starts, reclaim time is restarted, provided that it is running.

The frequent-operation counter is intended for blocking the autoreclosing function in cases where the fault causes repetitive autoreclosing sequences during a short period of time. For instance, if a tree causes a short circuit and, as a result, there are autoreclosing shots within a few minutes interval during a stormy night. These types of faults can easily damage the circuit breaker if the AR function is not locked by a frequent-operation counter.

The frequent-operation counter has three settings:

- Frq Op counter limit
- Frq Op counter time
- Frq Op recovery time

The Frq Op counter limit setting defines the number of reclose attempts that are allowed during the time defined with the Frq Op counter time setting. If the set value is reached within a pre-defined period defined with the Frq Op counter time setting, the AR function goes to lockout when a new shot begins, provided that the counter is still above the set limit. The lockout is released after the recovery time has elapsed. The recovery time can be defined with the Frq Op recovery time setting .

If the circuit breaker is manually closed during the recovery time, the reclaim time is activated after the recovery timer has elapsed.

9.4.5 Counters

The AR function contains six counters. Their values are stored in a semi-retain memory. The counters are increased at the rising edge of the reclosing command. The counters count the following situations.

- COUNTER: counts every reclosing command activation
- CNT_SHOT1: counts reclosing commands that are executed from shot 1
- CNT_SHOT2: counts reclosing commands that are executed from shot 2
- CNT_SHOT3: counts reclosing commands that are executed from shot 3
- CNT_SHOT4: counts reclosing commands that are executed from shot 4
- CNT SHOT5: counts reclosing commands that are executed from shot 5

The counters are disabled through communication with the *DsaCnt* parameter. When the counters are disabled, the values are not updated.

The counters are reset through communication with the *CntRs* parameter. The same functionality can also be found in the clear menu (DARREC1 counters).

9.4.6 Application

Modern electric power systems can deliver energy to users very reliably. However, different kind of faults can occur. Protection relays play an important role in detecting failures or abnormalities in the system. They detect faults and give commands for corresponding circuit breakers to isolate the defective element before excessive damage or a possible power system collapse occurs. A fast isolation also limits the disturbances caused for the healthy parts of the power system.

The faults can be transient, semi-transient or permanent. For example, a permanent fault in power cables means that there is a physical damage in the fault location that must first be located and repaired before the network voltage can be restored.

In overhead lines, the insulating material between phase conductors is air. The majority of the faults are flash-over arcing faults caused by lightning, for example. Only a short interruption is needed for extinguishing the arc. These faults are transient by nature.

A semi-transient fault can be caused for example by a bird or a tree branch falling on the overhead line. The fault disappears on its own if the fault current burns the branch or the wind blows it away.

Transient and semi-transient faults can be cleared by momentarily de-energizing the power line. Using the autoreclose function minimizes interruptions in the power system service and brings the power back on-line quickly and effortlessly.

The basic idea of the autoreclose function is simple. In overhead lines, where the possibility of self-clearing faults is high, the autoreclose function tries to restore the power by reclosing the breaker. This is a method to get the power system back into normal operation by removing the transient or semi-transient faults. Several trials, that is, autoreclose shots are allowed. If none of the trials is successful and the fault persists, definite final tripping follows.

The autoreclose function can be used with every circuit breaker that has the ability for a reclosing sequence. In DARREC autoreclose function the implementing method of autoreclose sequences is patented by ABB.

Table 682: Important definitions related to auto-reclosing

Autoreclose shot	An operation where after a preset time the breaker is closed from the breaker tripping caused by protection.
Autoreclose sequence	A predefined method to do reclose attempts (shots) to restore the power system.
SOTF	If the protection detects a fault immediately after an open circuit breaker has been closed, it indicates that the fault was already there. It can be, for example, a forgotten earthing after maintenance work. Such closing of the circuit breaker is known as switch on to fault. Autoreclosing in such conditions is prohibited.
Final trip	Occurs in case of a permanent fault, when the circuit breaker is opened for the last time after all programmed autoreclose operations. Since no auto-reclosing follows, the circuit breaker remains open. This is called final trip or definite trip.

9.4.6.1 Shot initiation

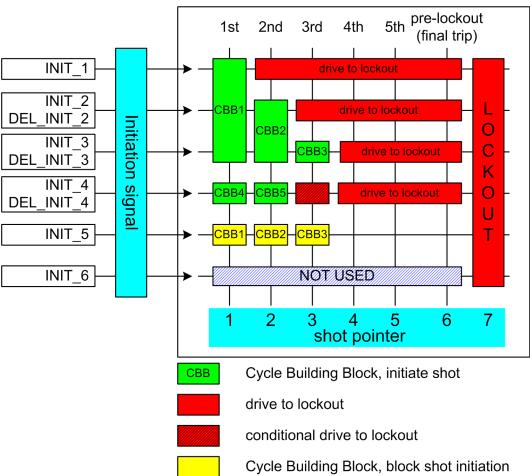


Figure 338: Example of an autoreclosing program with a reclose scheme matrix

In the AR function, each shot can be programmed to locate anywhere in the reclose scheme matrix. The shots are like building blocks used to design the reclose program. The building blocks are called CBBs. All blocks are alike and have settings which give the attempt number (columns in the matrix), the initiation or blocking signals (rows in the matrix) and the reclose time of the shot.

The settings related to CBB configuration are:

- First...Seventh reclose time
- Init signals CBB1...CBB7
- Blk signals CBB1...CBB7
- Shot number CBB1...CBB7

The reclose time defines the open and dead times, that is, the time between the <code>OPEN_CB</code> and the <code>CLOSE_CB</code> commands. The <code>Init</code> signals <code>CBBx</code> setting defines the initiation signals. The <code>Blk</code> signals <code>CBBx</code> setting defines the blocking signals that are related to the CBB (rows in the matrix). The <code>Shot</code> number <code>CBB1...CBB7</code> setting defines which shot is related to the CBB (columns in the matrix). For example, CBB1 settings are:

- First reclose time = 1.0s
- Init signals CBB1 = 7 (three lowest bits: 111000 = 7)

- Blk signals CBB1 = 16 (the fifth bit: 000010 = 16)
- Shot number CBB1 = 1

CBB2 settings are:

- Second reclose time = 10s
- Init signals CBB2 = 6 (the second and third bits: 011000 = 6)
- *Blk signals CBB2* = 16 (the fifth bit: 000010 = 16)
- Shot number CBB2 = 2

CBB3 settings are:

- Third reclose time = 30s
- *Init signals CBB3* = 4 (the third bit: 001000 = 4)
- Blk signals CBB3 = 16 (the fifth bit: 000010 = 16)
- Shot number CBB3 = 3

CBB4 settings are:

- Fourth reclose time = 0.5s
- Init signals CBB4 = 8 (the fourth bit: 000100 = 8)
- Blk signals CBB4 = 0 (no blocking signals related to this CBB)
- Shot number CBB4 = 1

If a shot is initiated from the INIT 1 line, only one shot is allowed before lockout. If a shot is initiated from the INIT 3 line, three shots are allowed before lockout.

A sequence initiation from the INIT $\,$ 4 line leads to a lockout after two shots. In a situation where the initiation is made from both the INIT 3 and INIT 4 lines, a third shot is allowed, that is, CBB3 is allowed to start. This is called conditional lockout. If the initiation is made from the INIT 2 and INIT 3 lines, an immediate lockout occurs.

The INIT 5 line is used for blocking purposes. If the INIT 5 line is active during a sequence start, the reclose attempt is blocked and the AR function goes to lockout.

If more than one CBBs are started with the shot pointer, the CBB with the smallest individual number is always selected. For example, if the INIT 2 and INIT 4 lines are active for the second shot, that is, the shot pointer is 2, CBB2 is started instead of CBB5.

Even if the initiation signals are not received from the protection functions, the AR function can be set to continue from the second to the fifth reclose shot. The AR function can, for example, be requested to automatically continue with the sequence when the circuit breaker fails to close when requested. In such a case, the AR function issues a ${\tt CLOSE}$ CB command. When the wait close time elapses, that is, the closing of the circuit breaker fails, the next shot is automatically started. Another example is the embedded generation on the power line, which can make the synchronism check fail and prevent the reclosing. If the autoreclose sequence is continued to the second shot, a successful synchronous reclosing is more likely than with the first shot, since the second shot lasts longer than the first one.

674 **REC615 & RER615**

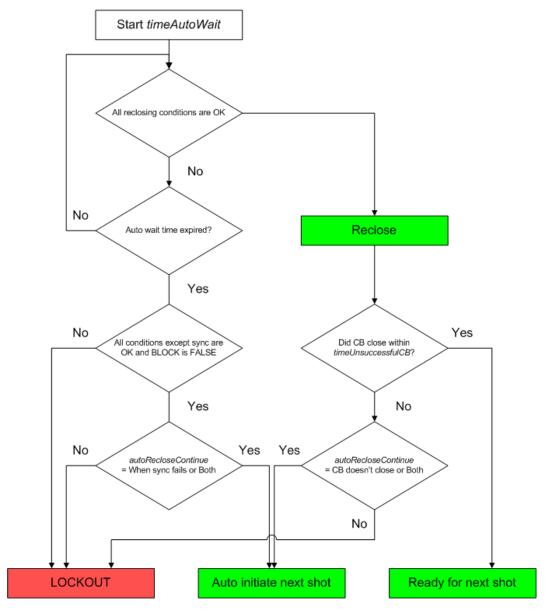


Figure 339: Logic diagram of auto-initiation sequence detection

Automatic initiation can be selected with the *Auto initiation Cnd* setting to be the following:

- · Not allowed: no automatic initiation is allowed
- When the synchronization fails, the automatic initiation is carried out when the auto wait time elapses and the reclosing is prevented due to a failure during the synchronism check
- When the circuit breaker does not close, the automatic initiation is carried out
 if the circuit breaker does not close within the wait close time after issuing the
 reclose command
- Both: the automatic initiation is allowed when synchronization fails or the circuit breaker does not close.

The *Auto init* parameter defines which <code>INIT_X</code> lines are activated in the auto-initiation. The default value for this parameter is "0", which means that no auto-initiation is selected.

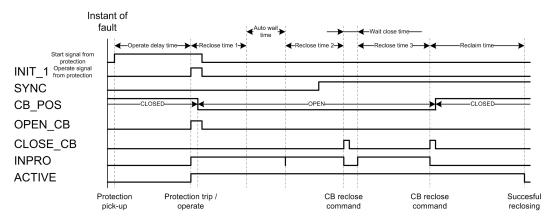


Figure 340: Example of an auto-initiation sequence with synchronization failure in the first shot and circuit breaker closing failure in the second shot

In the first shot, the synchronization condition is not fulfilled (SYNC is FALSE). When the auto wait timer elapses, the sequence continues to the second shot. During the second reclosing, the synchronization condition is fulfilled and the close command is given to the circuit breaker after the second reclose time has elapsed.

After the second shot, the circuit breaker fails to close when the wait close time has elapsed. The third shot is started and a new close command is given after the third reclose time has elapsed. The circuit breaker closes normally and the reclaim time starts. When the reclaim time has elapsed, the sequence is concluded successful.

9.4.6.2 Sequence

The auto reclose sequence is implemented by using CBBs. The highest possible amount of CBBs is seven. If the user wants to have, for example, a sequence of three shots, only the first three CBBs are needed. Using building blocks instead of fixed shots gives enhanced flexibility, allowing multiple and adaptive sequences.

Each CBB is identical. The Shot number CBB_ setting defines at which point in the auto-reclose sequence the CBB should be performed, that is, whether the particular CBB is going to be the first, second, third, fourth or fifth shot.

During the initiation of a CBB, the conditions of initiation and blocking are checked. This is done for all CBBs simultaneously. Each CBB that fulfils the initiation conditions requests an execution.

The function also keeps track of shots already performed, that is, at which point the auto-reclose sequence is from shot 1 to lockout. For example, if shots 1 and 2 have already been performed, only shots 3 to 5 are allowed.

Additionally, the *Enable shot jump* setting gives two possibilities:

- Only such CBBs that are set for the next shot in the sequence can be accepted for execution. For example, if the next shot in the sequence should be shot 2, a request from CBB set for shot 3 is rejected.
- Any CBB that is set for the next shot or any of the following shots can be accepted for execution. For example, if the next shot in the sequence should be shot 2, also CBBs that are set for shots 3, 4 and 5 are accepted. In other words, shot 2 can be ignored.

In case there are multiple CBBs allowed for execution, the CBB with the smallest number is chosen. For example, if CBB2 and CBB4 request an execution, CBB2 is allowed to execute the shot.

The auto-reclose function can perform up to five auto-reclose shots or cycles.

9.4.6.3 Configuration examples

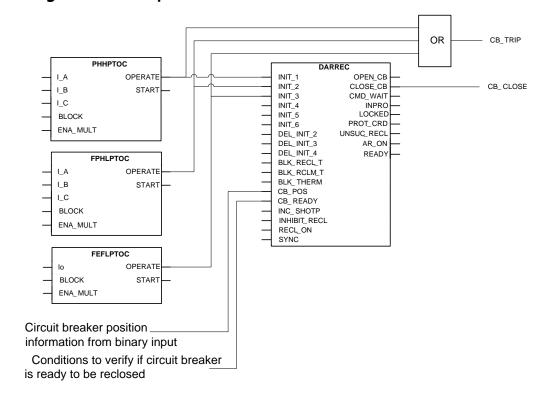


Figure 341: Example connection between protection and autoreclosing functions in protection relay configuration

It is possible to create several sequences for a configuration.

Autoreclose sequences for overcurrent and non-directional earth-fault protection applications where high speed and delayed autoreclosings are needed can be as follows:

Example 1.

The sequence is implemented by two shots which have the same reclosing time for all protection functions, namely I>>, I> and Io>. The initiation of the shots is done by activating the operating signals of the protection functions.

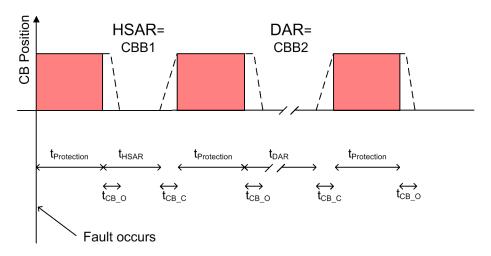


Figure 342: Autoreclosing sequence with two shots

 $\begin{array}{ll} t_{\,HSAR} & \text{Time delay of high-speed autoreclosing, here: } \textit{First reclose time} \\ t_{\,DAR} & \text{Time delay of delayed autoreclosing, here: } \textit{Second reclose time} \\ t_{\,Protection} & \text{Operating time for the protection stage to clear the fault} \\ t_{\,CB_O} & \text{Operating time for opening the circuit breaker} \\ t_{\,CB_C} & \text{Operating time for closing the circuit breaker} \end{array}$

In this case, the sequence needs two CBBs. The reclosing times for shot 1 and shot 2 are different, but each protection function initiates the same sequence. The CBB sequence is described in *Table 683* as follows:

Figure 343: Two shots with three initiation lines

Table 683: Settings for configuration example 1

Setting name	Setting value	
Shot number CBB1	1	
Init signals CBB1	7 (lines 1, 2 and 3 = 1+2+4 = 7)	
First reclose time	0.3s (an example)	
Shot number CBB2	2	
Init signals CBB2	7 (lines 1, 2 and 3 = 1+2+4 = 7)	
Second reclose time	15.0s (an example)	

Example 2

There are two separate sequences implemented with three shots. Shot 1 is implemented by CBB1 and it is initiated with the high stage of the overcurrent protection (I>>). Shot 1 is set as a high-speed autoreclosing with a short time delay. Shot 2 is implemented with CBB2 and meant to be the first shot of the autoreclose sequence initiated by the low stage of the overcurrent protection (I>) and the low stage of the non-directional earthfault protection (Io>). It has the same reclosing time in both situations. It is set as a high-speed autoreclosing for corresponding faults. The third shot, which is the second shot in the autoreclose sequence initiated by I> or Io>, is set as a delayed autoreclosing and executed after an unsuccessful high-speed autoreclosing of a corresponding sequence.

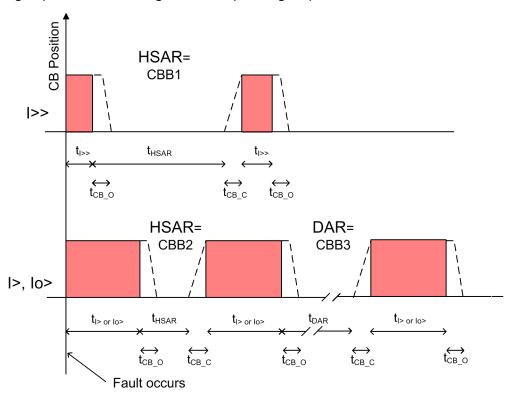


Figure 344: Autoreclosing sequence with two shots with different shot settings according to initiation signal

t _{HSAR}	Time delay of high-speed autoreclosing, here: First reclose time
t _{DAR}	Time delay of delayed autoreclosing, here: Second reclose time
t _{>>}	Operating time for the I>> protection stage to clear the fault
t _{I>} or _{Io>}	Operating time for the I> or Io> protection stage to clear the fault
t _{CB_O}	Operating time for opening the circuit breaker
t _{CB_C}	Operating time for closing the circuit breaker

In this case, the number of needed CBBs is three, that is, the first shot's reclosing time depends on the initiation signal.

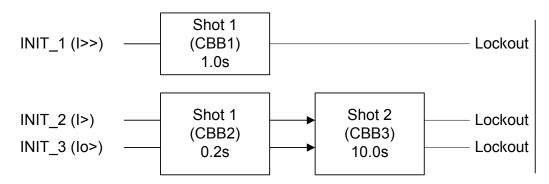


Figure 345: Three shots with three initiation lines

If the sequence is initiated from the $INIT_1$ line, that is, the overcurrent protection high stage, the sequence is one shot long. If the sequence is initiated from the $INIT_2$ or $INIT_3$ lines, the sequence is two shots long.

Table 684: Settings for configuration example 2

Setting name	Setting value
Shot number CBB1	1
Init signals CBB1	1 (line 1)
First reclose time	0.0s (an example)
Shot number CBB2	1
Init signals CBB2	6 (lines 2 and 3 = 2+4 = 6)
Second reclose time	0.2s (an example)
Shot number CBB3	2
Init signals CBB3	6 (lines 2 and 3 = 2+4 = 6)
Third reclose time	10.0s

9.4.6.4 Delayed initiation lines

The auto-reclose function consists of six individual auto-reclose initiation lines INIT 1...INIT 6 and three delayed initiation lines:

- DEL INIT 2
- DEL_INIT_3
- DEL_INIT_4

<code>DEL_INIT_2</code> and <code>INIT_2</code> are connected together with an OR-gate, as are inputs 3 and 4. Inputs 1, 5 and 6 do not have any delayed input. From the auto-reclosing point of view, it does not matter whether <code>INIT_x</code> or <code>DEL_INIT_x</code> line is used for shot initiation or blocking.

The auto-reclose function can also open the circuit breaker from any of the initiation lines. It is selected with the *Tripping line* setting. As a default, all initiation lines activate the $OPEN\ CB$ output.

680 REC615 & RER615
Technical Manual

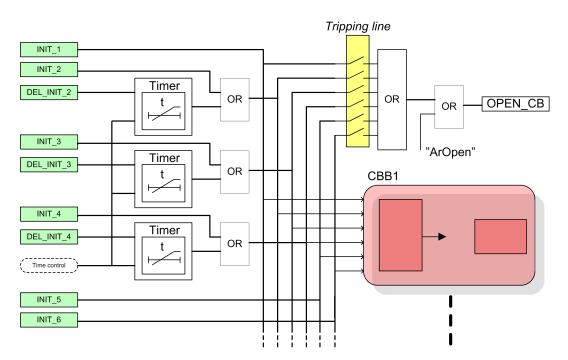


Figure 346: Simplified logic diagram of initiation lines

Each delayed initiation line has four different time settings:

Table 685: Settings for delayed initiation lines

Setting name	Description and purpose
Str x delay shot 1	Time delay for the DEL_INIT_x line, where x is the number of the line 2, 3 or 4. Used for shot 1.
Str x delay shot 2	Time delay for the $\mathtt{DEL_INIT_x}$ line, used for shot 2.
Str x delay shot 3	Time delay for the $\mathtt{DEL_INIT_x}$ line, used for shot 3.
Str x delay shot 4	Time delay for the $\mathtt{DEL_INIT_x}$ line, used for shots 4 and 5. Optionally, can also be used with SOTF.

9.4.6.5 Shot initiation from protection start signal

In it simplest, all auto-reclose shots are initiated by protection trips. As a result, all trip times in the sequence are the same. This is why using protection trips may not be the optimal solution. Using protection start signals instead of protection trips for initiating shots shortens the trip times.

Example 1

When a two-shot-sequence is used, the start information from the protection function is routed to the $\mathtt{DEL_INIT}$ 2 input and the operate information to the \mathtt{INIT} 2 input. The following conditions have to apply:

- protection operate time = 0.5s
- Str 2 delay shot 1 = 0.05s

- Str 2 delay shot 2 = 60s
- Str 2 delay shot 3 = 60s

Operation in a permanent fault:

- Protection starts and activates the DEL INIT 2 input.
- 2. After 0.05 seconds, the first autoreclose shot is initiated. The function opens the circuit breaker: the OPEN_CB output activates. The total trip time is the protection start delay + 0.05 seconds + the time it takes to open the circuit breaker.
- 3. After the first shot, the circuit breaker is reclosed and the protection starts again.
- 4. Because the delay of the second shot is 60 seconds, the protection is faster and trips after the set operation time, activating the INIT 2 input. The second shot is initiated.
- 5. After the second shot, the circuit breaker is reclosed and the protection starts again.
- 6. Because the delay of the second shot is 60 seconds, the protection is faster and trips after the set operation time. No further shots are programmed after the final trip. The function is in lockout and the sequence is considered unsuccessful.

Example 2

The delays can be used also for fast final trip. The conditions are the same as in Example 1, with the exception of *Str 2 delay shot 3* = 0.10 seconds.

The operation in a permanent fault is the same as in Example 1, except that after the second shot when the protection starts again, *Str 2 delay shot 3* elapses before the protection operate time and the final trip follows. The total trip time is the protection start delay + 0.10 seconds + the time it takes to open the circuit breaker.

9.4.6.6 Fast trip in Switch on to fault

The Str_delay shot 4 parameter delays can also be used to achieve a fast and accelerated trip with SOTF. This is done by setting the *Fourth delay in SOTF* parameter to "1" and connecting the protection start information to the corresponding DEL INIT input.

When the function detects a closing of the circuit breaker, that is, any other closing except the reclosing done by the function itself, it always prohibits shot initiation for the time set with the *Reclaim time* parameter. Furthermore, if the *Fourth delay in SOTF* parameter is "1", the *Str_ delay shot 4* parameter delays are also activated.

Example 1

The protection operation time is 0.5 seconds, the *Fourth delay in SOTF* parameter is set to "1" and the $Str\ 2$ delay shot 4 parameter is 0.05 seconds. The protection start signal is connected to the DEL INIT 2 input.

If the protection starts after the circuit breaker closes, the fast trip follows after the set 0.05 seconds. The total trip time is the protection start delay + 0.05 seconds + the time it takes to open the circuit breaker.

REC615 & RER615Technical Manual

9.4.7 Signals

9.4.7.1 DARREC Input signals

Table 686: DARREC Input signals

Name	Туре	Default	Description	
INIT_1	BOOLEAN	0=False	AR initialization / blocking signal 1	
INIT_2	BOOLEAN	0=False	AR initialization / blocking signal 2	
INIT_3	BOOLEAN	0=False	AR initialization / blocking signal 3	
INIT_4	BOOLEAN	0=False	AR initialization / blocking signal 4	
INIT_5	BOOLEAN	0=False	AR initialization / blocking signal 5	
INIT_6	BOOLEAN	0=False	AR initialization / blocking signal 6	
DEL_INIT_2	BOOLEAN	0=False	Delayed AR initializa- tion / blocking signal 2	
DEL_INIT_3	BOOLEAN	0=False	Delayed AR initialization / blocking signal	
DEL_INIT_4	BOOLEAN	0=False	Delayed AR initializa- tion / blocking signal 4	
BLK_RECL_T	BOOLEAN	0=False	Blocks and resets re- close time	
BLK_RCLM_T	BOOLEAN	0=False	Blocks and resets re- claim time	
BLK_THERM	BOOLEAN	0=False	Blocks and holds the reclose shot from the thermal overload	
CB_POS	BOOLEAN	0=False	Circuit breaker position input	
CB_READY	BOOLEAN	1=True	Circuit breaker status signal	
INC_SHOTP	BOOLEAN	0=False	A zone sequence co- ordination signal	
INHIBIT_RECL	BOOLEAN	0=False	Interrupts and in- hibits reclosing se- quence	

Table continues on the next page

Name	Туре	Default	Description
RECL_ON	BOOLEAN	0=False	Level sensitive signal for allowing (high) / not allowing (low) re- closing
SYNC	BOOLEAN	0=False	Synchronizing check fulfilled

9.4.7.2 DARREC Output signals

Table 687: DARREC Output signals

Name	Туре	Description	
OPEN_CB	BOOLEAN	Open command for circuit breaker	
CLOSE_CB	BOOLEAN	Close (reclose) command for circuit breaker	
CMD_WAIT	BOOLEAN	Wait for master command	
INPRO	BOOLEAN	Reclosing shot in progress, activated during dead time	
LOCKED	BOOLEAN	Signal indicating that AR is locked out	
PROT_CRD	BOOLEAN	A signal for coordination be- tween the AR and the protec- tion	
UNSUC_RECL	BOOLEAN	Indicates an unsuccessful re- closing sequence	
AR_ON	BOOLEAN	Autoreclosing allowed	
READY	BOOLEAN	Indicates that the AR is ready for a new sequence, i.e. the CB_READY input equals TRUE	
ACTIVE	BOOLEAN	Reclosing sequence is in progress	

9.4.8 Settings

9.4.8.1 DARREC Non group settings

Table 688: DARREC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off/On
	5=off				
Reclosing opera- tion	1=Off 2=External Ctl			1=Off	Reclosing opera- tion (Off, External Ctl / On)

Table continues on the next page

Parameter	Values (Range)	Unit	Step	Default	Description
	3=On				
Close pulse time	1010000	ms	10	200	CB close pulse time
Reclaim time	1001800000	ms	100	10000	Reclaim time
Terminal priority	1=None			1=None	Terminal priority
	2=Low (follower)				
	3=High (master)				
Synchronisation set	_		1	0	Selection for syn-
Synemonisation set	0121				chronizing require- ment for reclosing
Auto initiation cnd	1=Not allowed			2=When sync fails	Auto initiation con- dition
	2=When sync fails				dition
	3=CB doesn't close				
	4=Both				
Tripping line	063		1	0	Tripping line,
					defines INIT in- puts which cause
					OPEN_CB activa-
Fourth delay in	0-5-1			0=False	Sets 4th delay into
SOTF	0=False 1=True			0 1 4.50	use for all DEL_IN-
	1-True				IT signals during SOTF
First reclose time	0300000	ms	10	5000	Dead time for CBB1
Second reclose time	0300000	ms	10	5000	Dead time for CBB2
Third reclose time	0300000	ms	10	5000	Dead time for CBB3
Fourth reclose time	0300000	ms	10	5000	Dead time for CBB4
Fifth reclose time	0300000	ms	10	5000	Dead time for CBB5
Sixth reclose time	0300000	ms	10	5000	Dead time for CBB6
Seventh reclose time	0300000	ms	10	5000	Dead time for CBB7
Init signals CBB1	063		1	0	Initiation lines for CBB1
Init signals CBB2	063		1	0	Initiation lines for CBB2
Init signals CBB3	063		1	0	Initiation lines for CBB3
Init signals CBB4	063		1	0	Initiation lines for CBB4
Init signals CBB5	063		1	0	Initiation lines for CBB5
Init signals CBB6	063		1	0	Initiation lines for CBB6
Init signals CBB7	063		1	0	Initiation lines for CBB7
Shot number CBB1	05		1	0	Shot number for CBB1
Shot number CBB2	05		1	0	Shot number for CBB2
Shot number CBB3	05		1	0	Shot number for CBB3
Shot number CBB4	05		1	0	Shot number for CBB4
Shot number CBB5	05		1	0	Shot number for CBB5
Shot number CBB6	05		1	0	Shot number for CBB6
Shot number CBB7	05		1	0	Shot number for CBB7

Parameter	Values (Range)	Unit	Step	Default	Description
Frq Op counter limit	0250		1	0	Frequent operation counter lockout limit
Frq Op counter time	1250	min	1	1	Frequent operation counter time
Frq Op recovery time	1250	min	1	1	Frequent operation counter recovery time
Auto init	063		1	0	Defines INIT lines that are activated at auto initiation

Table 689: DARREC Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Manual close mode	0=False			0=False	Manual close mode
	1=True				
Wait close time	5010000	ms	50	250	Allowed CB closing time after reclose command
Max wait time	1001800000	ms	100	10000	Maximum wait time for BLK_RECL_T re- lease
Max trip time	10010000	ms	100	10000	Maximum wait time for deactivation of protection signals
Max Thm block time	1001800000	ms	100	10000	Maximum wait time for thermal block- ing signal deactiva- tion
Cut-out time	01800000	ms	100	10000	Cutout time for protection coordination
Dsr time shot 1	010000	ms	100	0	Discrimination time for first reclosing
Dsr time shot 2	010000	ms	100	0	Discrimination time for second reclosing
Dsr time shot 3	010000	ms	100	0	Discrimination time for third reclosing
Dsr time shot 4	010000	ms	100	0	Discrimination time for fourth reclosing
Auto wait time	060000	ms	10	2000	Wait time for re- closing condition fullfilling
Auto lockout reset	0=False 1=True			1=True	Automatic lockout reset
Protection crd limit	15		1	1	Protection coordination shot limit
Protection crd mode	1=No condition 2=AR inoperative 3=CB close manual 4=AR inop, CB man 5=Always			4=AR inop, CB man	Protection coordination mode
Control line	063		1	63	Control line, de- fines INIT inputs which are protec- tion signals
Enable shot jump	0=False			1=True	Enable shot jump- ing

Parameter	Values (Range)	Unit	Step	Default	Description
	1=True				
CB closed Pos status	0=False 1=True			0=False	Circuit breaker closed position sta- tus
Blk signals CBB1	063		1	0	Blocking lines for CBB1
Blk signals CBB2	063		1	0	Blocking lines for CBB2
Blk signals CBB3	063		1	0	Blocking lines for CBB3
Blk signals CBB4	063		1	0	Blocking lines for CBB4
Blk signals CBB5	063		1	0	Blocking lines for CBB5
Blk signals CBB6	063		1	0	Blocking lines for CBB6
Blk signals CBB7	063		1	0	Blocking lines for CBB7
Str 2 delay shot 1	0300000	ms	10	0	Delay time for start2, 1st reclose
Str 2 delay shot 2	0300000	ms	10	0	Delay time for start2 2nd reclose
Str 2 delay shot 3	0300000	ms	10	0	Delay time for start2 3rd reclose
Str 2 delay shot 4	0300000	ms	10	0	Delay time for start2, 4th reclose
Str 3 delay shot 1	0300000	ms	10	0	Delay time for start3, 1st reclose
Str 3 delay shot 2	0300000	ms	10	0	Delay time for start3 2nd reclose
Str 3 delay shot 3	0300000	ms	10	0	Delay time for start3 3rd reclose
Str 3 delay shot 4	0300000	ms	10	0	Delay time for start3, 4th reclose
Str 4 delay shot 1	0300000	ms	10	0	Delay time for start4, 1st reclose
Str 4 delay shot 2	0300000	ms	10	0	Delay time for start4 2nd reclose
Str 4 delay shot 3	0300000	ms	10	0	Delay time for start4 3rd reclose
Str 4 delay shot 4	0300000	ms	10	0	Delay time for start4, 4th reclose

9.4.9 Monitored data

9.4.9.1 DARREC Monitored data

Table 690: DARREC Monitored data

Name	Туре	Values (Range)	Unit	Description
DISA_COUNT	BOOLEAN	0=False 1=True		Signal for counter disabling
FRQ_OPR_CNT	INT32	02147483647		Frequent opera- tion counter

Name	Туре	Values (Range)	Unit	Description
FRQ_OPR_AL	BOOLEAN	0=False		Frequent opera-
		1=True		tion counter alarm
STATUS	Enum	-1=Not defined		AR status signal for IEC61850
		1=Ready		101 15 (61830
		2=InProgress		
		3=Successful		
		4=WaitingFor- Trip		
		5=TripFromPro- tection		
		6=FaultDisap- peared		
		7=WaitToCom- plete		
		8=CBclosed		
		9=CycleUnsuc- cessful		
		10=Unsuccessful		
		11=Aborted		
INPRO_1	BOOLEAN	0=False		Reclosing shot in
		1=True		progress, shot 1
INPRO_2	BOOLEAN	0=False		Reclosing shot in
		1=True		progress, shot 2
INPRO_3	BOOLEAN	0=False		Reclosing shot in
		1=True		progress, shot 3
INPRO_4	BOOLEAN	0=False		Reclosing shot in
		1=True		progress, shot 4
INPRO_5	BOOLEAN	0=False		Reclosing shot in
		1=True		progress, shot 5
DISCR_INPRO	BOOLEAN	0=False		Signal indicating
		1=True		that discrimina- tion time is in
				progress
CUTOUT_INPRO	BOOLEAN	0=False		Signal indicating
		1=True		that cut-out time is in progress
Table continues o				

1MRS758755 C Control functions

Name	Туре	Values (Range)	Unit	Description
SUC_RECL	BOOLEAN	0=False 1=True		Indicates a suc- cessful reclosing sequence
UNSUC_CB	BOOLEAN	0=False 1=True		Indicates an unsuccessful CB closing
CNT_SHOT1	INT32	02147483647		Resetable oper- ation counter, shot 1
CNT_SHOT2	INT32	02147483647		Resetable oper- ation counter, shot 2
CNT_SHOT3	INT32	02147483647		Resetable oper- ation counter, shot 3
CNT_SHOT4	INT32	02147483647		Resetable oper- ation counter, shot 4
CNT_SHOT5	INT32	02147483647		Resetable oper- ation counter, shot 5
COUNTER	INT32	02147483647		Resetable opera- tion counter, all shots
SHOT_PTR	INT32	17		Shot pointer val- ue
MAN_CB_CL	BOOLEAN	0=False 1=True		Indicates CB manual closing during reclosing sequence
SOTF	BOOLEAN	0=False 1=True		Switch-onto- fault
DARREC	Enum	1=on 2=blocked 3=test 4=test/blocked 5=off		Status

9.4.10 Technical data

Table 691: DARREC Technical data

Characteristic	Value
Operate time accuracy	±1.0 % of the set value or ±20 ms

Control functions 1MRS758755 C

9.4.11 Technical revision history

Table 692: DARREC Technical revision history

Technical revision	Change
В	The PROT_DISA output removed and removed the related settings
С	The default value of the <i>CB closed Pos status</i> setting changed from "True" to "False"
D	SHOT_PTR output range 07 (earlier 06)
E	Monitored data ACTIVE transferred to be ACT visible output. SHOT_PTR output range 17.
F	Internal improvement

9.5 Automatic transfer switch ATSABTC

9.5.1 Identification

Description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Automatic transfer switch	ATSABTC	ATSABTC	ATSABTC

9.5.2 Function block

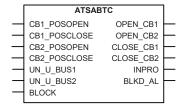


Figure 347: Function block

9.5.3 Functionality

The automatic transfer switch function ATSABTC acts as a back-up in case of interruption in the active supply path. In the application, voltages are measured on bus 1 and bus 2, while the currents are measured on the common busbar. An undervoltage on the active bus automatically switches over to the other healthy bus.

1MRS758755 C Control functions

Automatic reconnection to the preferred bus is established when the voltage on the preferred bus has reached a normal level. The preferred main bus can be selected from the settings. The automatic operation can be selected on/off from a virtual button on the SLD.

Automatic operation ongoing is signalled outside to output INPRO. If the automatic operations are blocked an alarm is activated on the LED panel.

9.5.4 Operation principle

The *Operation* setting is used to enable or disable the function. "On" enables the function and "Off" disables the function.

The operation of ATSABTC can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

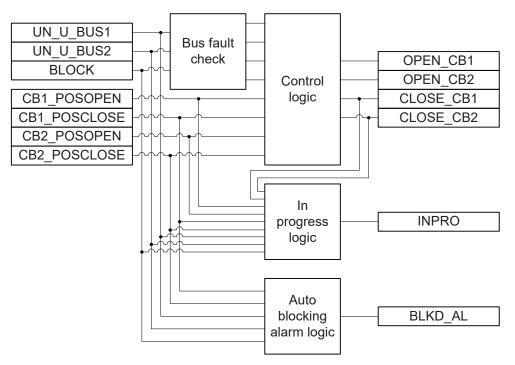


Figure 348: Functional module diagram

All inputs and outputs for the ATSABTC function block are binary signals. Voltage presence indication at each bus is connected to inputs UN_U_BUS1 and UN_U_BUS2, where a binary TRUE represents under-voltage on bus. Fault on the busbar (earth fault or overcurrent) is connected to the input BLOCK.

Bus fault check

Under-voltage on respective bus is detected with UN_U_BUS1 and UN_U_BUS2 . Input BLOCK also indicates common bus fault, but furthermore blocks the automatic operation in the control logic modules.

Control functions 1MRS758755 C

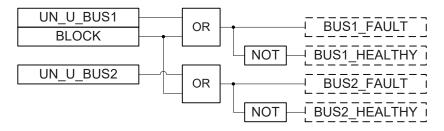


Figure 349: Sub module diagram for Bus fault check

Control logic

Depending on the Main bus priority setting, the control logic reads the states of the circuit breakers and performs automatic transfers depending on bus voltage presence and blocking conditions. In control logic sub module diagrams, all the open/close situations in automatic mode are illustrated.

CB1 control logic

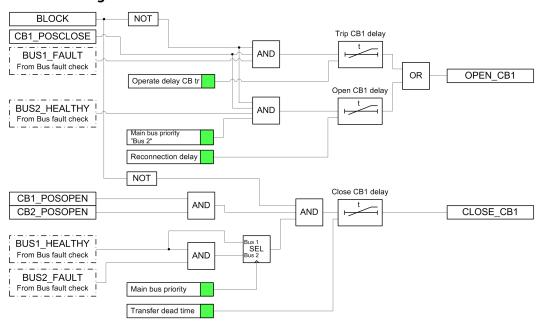


Figure 350: Sub module diagram for CB1 control logic

Operation of the output signals is described in the table.

Table 693: Operating conditions for output signals of CB1

Output signal	Operation description	Operation type
OPEN_CB1	If bus 1 is faulty and the CB1 position is closed,	Protection

Output signal	Operation description	Operation type
	OPEN_CB1 is activated after CB1 Trip delay has expired.	
	Setting Main bus priority = "bus 2".	Automatic reconnection
	If CB1 position is closed and bus 2 is healthy, OPEN_CB1 is activated after <i>Open CB1 de-lay</i> has expired.	
CLOSE_CB1	Setting <i>Main bus priority</i> = "bus 1".	Automatic reconnection
	If both CB1 and CB2 are open, and bus 1 is healthy, CLOSE_CB1 is activated after <i>Close CB1 delay</i> has expired. Operation is independent of the state on bus 2.	
	Setting <i>Main bus priority</i> = "bus 2".	Automatic transfer
	If both CB1 and CB2 are open, bus 2 is faulty and bus 1 is healthy, CLOSE_CB1 is activated after <i>Close CB1 delay</i> has expired.	

Activation of ${\tt BLOCK}$ input deactivates the outputs and resets the timers.

Control functions 1MRS758755 C

CB2 control logic BLOCK NOT Trip CB2 delay CB2_POSCLOSE AND BUS2_FAULT From Bus fault check OR OPEN_CB2 Operate delay CB tr Open CB2 delay BUS1_HEALTHY ! AND From Bus fault check Main bus priority "Bus 1" Reconnection delay NOT Close CB2 delay CB1_POSOPEN AND CB2_POSOPEN AND CLOSE_CB2 BUS1 FAULT From Bus fault check AND Bus 1 SEL Bus 2 BUS2_HEALTHY ! From Bus fault check Main bus priority Transfer dead time

Figure 351: Sub module diagram for CB2 control logic

Operation of the output signals is described in the table.

Table 694: Operating conditions for output signals of CB2

Output signal	Operation description	Operation type
OPEN_CB2	If bus 2 is faulty and the CB2 position is closed, OPEN_CB2 is activated after "CB2 Trip delay" has expired.	Protection
	Setting <i>Main bus priority</i> = "bus 1".	Automatic reconnection
	If CB2 position is closed and bus 1 is healthy, OPEN_CB2 is activated after "Open CB2 delay" has expired.	
CLOSE_CB2	Setting Main bus priority = "bus 2". If both CB1 and CB2 are open, and bus 2 is healthy, CLOSE_CB2 is activated after Close CB2 delay has expired. Operation is independent of the state on bus 1.	Automatic reconnection
	Setting Main bus priority = "bus 1".	Automatic transfer

1MRS758755 C Control functions

Output signal	Operation description	Operation type
	If both CB1 and CB2 are open, bus 1 is faulty and bus 2 is healthy, CLOSE_CB2 is activated after <i>Close CB2 delay</i> has expired.	

Activation of BLOCK input deactivates the outputs and resets the timers.

In progress logic

Automatic operation ongoing is signalled outside to output INPRO. The INPRO output is set TRUE if an undervoltage is detected on the active bus or if an auto reconnection is initialized. INPRO is reset when an auto transfer or an auto reconnection is completed or if the fault is cleared during the waiting time.

Auto blocking alarm logic

Blocking alarm for auto switching is signalled outside to output <code>BLKD_AL</code>. Blocking alarm is TRUE for various reasons.

- BLOCK input is active
- CB1 is closed and under-voltage detected on bus 2
- CB2 is closed and under-voltage detected on bus 1
- Undervoltage detected on both bus 1 and bus 2

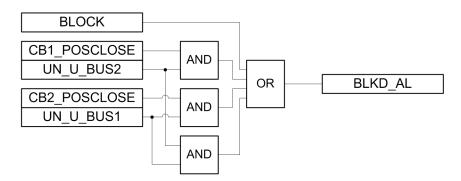


Figure 352: Sub module diagram for auto blocking alarm logic

Control functions 1MRS758755 C

9.5.5 Application

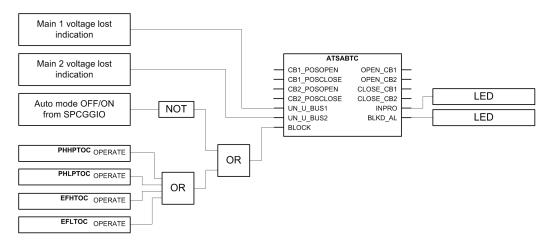


Figure 353: Application configuration example

A recommended application configuration example is described in *Figure 353*. Undervoltage detection on bus 1 and undervoltage detection on bus 2 are connected directly to the <code>UN_U_BUS1</code> and <code>UN_U_BUS2</code>. The undervoltage indication at each bus can be detected from for example functions PHPTUV, VMMXU or PHSVPR.

Load fault detections on busbar, such as overcurrent and earth-fault functions are connected as grouped protection input to BLOCK. *Auto mode OFF/ON* is connected to input BLOCK.

1MRS758755 C Control functions

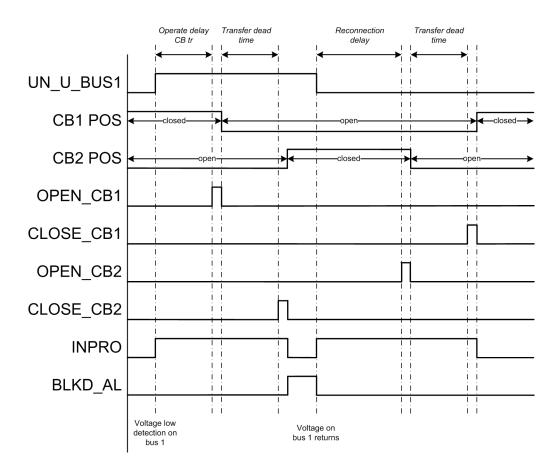


Figure 354: Signal scheme illustrating an automatic transfer switch and an automatic reconnection operation caused by a temporary undervoltage on the preferred bus 1 (all other excluded inputs are "FALSE" during the sequence)

9.5.6 Signals

Table 695: ATSABTC Input signals

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Blocking of function
UN_U_BUS1	BOOLEAN	0=False	Under-voltage on bus 1
UN_U_BUS2	BOOLEAN	0=False	Under-voltage on bus 2
CB1_POSOPEN	BOOLEAN	0=False	Circuit breaker open status for bus 1
CB1_POSCLOSE	BOOLEAN	0=False	Circuit breaker close status for bus 1

Name	Туре	Default	Description
CB2_POSOPEN	BOOLEAN	0=False	Circuit breaker open status for bus 2
CB2_POSCLOSE	BOOLEAN	0=False	Circuit breaker close status for bus 2

Table 696: ATSABTC Output signals

Name	Туре	Description
OPEN_CB1	BOOLEAN	Circuit breaker open command for bus 1
CLOSE_CB1	BOOLEAN	Circuit breaker close command for bus 1
OPEN_CB2	BOOLEAN	Circuit breaker open command for bus 2
CLOSE_CB2	BOOLEAN	Circuit breaker close command for bus 2
INPRO	BOOLEAN	Automatic operation in progress
BLKD_AL	BOOLEAN	Automatic transfer switch blocked alarm

9.5.7 Settings

Table 697: ATSABTC Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Main bus priority	1=Bus 1 2=Bus 2			1=Bus 1	Main bus priority (1 or 2)
Operate delay CB tr	0120000	ms	10	200	Circuit breaker trip delay
Transfer dead time	0120000	ms	10	100	Transfer dead time for closing of circuit breaker
Reconnection delay	0300000	ms	10	60000	Delay for opening of non prioritized CB

9.5.8 Monitored data

Table 698: ATSABTC Monitored data

Name	Туре	Values (Range)	Unit	Description
ATSABTC	Enum	1=on		Status
		2=blocked		
		3=test		

1MRS758755 C Control functions

Name	Туре	Values (Range)	Unit	Description
		4=test/blocked		
		5=off		

9.5.9 Technical data

Table 699: ATSABTC Technical data

Characteristic	Value
Operation time accuracy	±1.0% of the set value or ±20 ms

10 Power quality measurement functions

10.1 Current total demand distortion CMHAI

10.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Current total demand distortion	СМНАІ	PQM3I	PQM3I

10.1.2 Function block

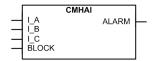


Figure 355: Function block

10.1.3 Functionality

The current total demand distortion function CMHAI is used for monitoring the current total demand distortion TDD.

10.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of CMHAI can be described with a module diagram. All the modules in the diagram are explained in the next sections.

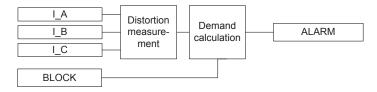


Figure 356: Functional module diagram

Distortion measurement

The distortion measurement module measures harmonics up to the 11th harmonic. The total demand distortion TDD is calculated from the measured harmonic components with the formula

$$TDD = \frac{\sqrt{\sum_{k=2}^{N} I_k^2}}{I_{max_demand}}$$

(Equation 75)

 I_k k^{th} harmonic component

I max demand The maximum demand current measured by CMMXU

If CMMXU is not available in the configuration or the measured maximum demand current is less than the *Initial Dmd current* setting, *Initial Dmd current* is used for I max_demand.

Demand calculation

The demand value for TDD is calculated separately for each phase. If any of the calculated total demand distortion values is above the set alarm limit *TDD alarm limit*, the ALARM output is activated.

The demand calculation window is set with the *Demand interval* setting. It has seven window lengths from "1 minute" to "180 minutes". The window type can be set with the *Demand window* setting. The available options are "Sliding" and "Non-sliding".

The activation of the BLOCK input blocks the ALARM output.

10.1.5 Application

In standards, the power quality is defined through the characteristics of the supply voltage. Transients, short-duration and long-duration voltage variations, unbalance and waveform distortions are the key characteristics describing power quality. Power quality is, however, a customer-driven issue. It could be said that any power problem concerning voltage or current that results in a failure or misoperation of customer equipment is a power quality problem.

Harmonic distortion in a power system is caused by nonlinear devices. Electronic power converter loads constitute the most important class of nonlinear loads in a power system. The switch mode power supplies in a number of single-phase electronic equipment, such as personal computers, printers and copiers, have a very high third-harmonic content in the current. Three-phase electronic power converters, that is, dc/ac drives, however, do not generate third-harmonic currents. Still, they can be significant sources of harmonics.

Power quality monitoring is an essential service that utilities can provide for their industrial and key customers. Not only can a monitoring system provide information about system disturbances and their possible causes, it can also detect problem conditions throughout the system before they cause customer complaints, equipment malfunctions and even equipment damage or failure. Power quality problems are not limited to the utility side of the system. In fact, the majority of power quality problems are localized within customer facilities. Thus, power quality

monitoring is not only an effective customer service strategy but also a way to protect a utility's reputation for quality power and service.

CMHAI provides a method for monitoring the power quality by means of the current waveform distortion. CMHAI provides a short-term 3-second average and a long-term demand for TDD.

10.1.6 Signals

10.1.6.1 CMHAI Input signals

Table 700: CMHAI Input signals

Name	Туре	Default	Description
I_A	Signal	0	Phase A current
I_B	Signal	0	Phase B current
I_C	Signal	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for all bi- nary outputs

10.1.6.2 CMHAI Output signals

Table 701: CMHAI Output signals

Name	Туре	Description
ALARM	BOOLEAN	Alarm signal for TDD

10.1.7 Settings

10.1.7.1 CMHAI Non group settings

Table 702: CMHAI Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				
Demand interval	0=1 minute			2=10 minutes	Time interval for demand calculation
	1=5 minutes				demand calculation
	2=10 minutes				
	3=15 minutes				
	4=30 minutes				
	5=60 minutes				
	6=180 minutes				
Demand window	1=Sliding			1=Sliding	Demand calculation window type

Parameter	Values (Range)	Unit	Step	Default	Description
	2=Non-sliding				
TDD alarm limit	1.0100.0	%	0.1	50.0	TDD alarm limit

Table 703: CMHAI Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Initial Dmd current	0.101.00	xIn	0.01	1.00	Initial demand cur- rent

10.1.8 Monitored data

10.1.8.1 CMHAI Monitored data

Table 704: CMHAI Monitored data

Name	Туре	Values (Range)	Unit	Description
Max demand TDD IL1	FLOAT32	0.00500.00	%	Maximum de- mand TDD for phase A
Max demand TDD IL2	FLOAT32	0.00500.00	%	Maximum de- mand TDD for phase B
Max demand TDD IL3	FLOAT32	0.00500.00	%	Maximum de- mand TDD for phase C
Time max dmd TDD IL1	Timestamp			Time of maxi- mum demand TDD phase A
Time max dmd TDD IL2	Timestamp			Time of maxi- mum demand TDD phase B
Time max dmd TDD IL3	Timestamp			Time of maxi- mum demand TDD phase C
3SMHTDD_A	FLOAT32	0.00500.00	%	3 second mean value of TDD for phase A
DMD_TDD_A	FLOAT32	0.00500.00	%	Demand value for TDD for phase A
3SMHTDD_B	FLOAT32	0.00500.00	%	3 second mean value of TDD for phase B
DMD_TDD_B	FLOAT32	0.00500.00	%	Demand value for TDD for phase B

Name	Туре	Values (Range)	Unit	Description
3SMHTDD_C	FLOAT32	0.00500.00	%	3 second mean value of TDD for phase C
DMD_TDD_C	FLOAT32	0.00500.00	%	Demand value for TDD for phase C

10.2 Voltage total harmonic distortion VMHAI

10.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Voltage total harmonic distortion	VMHAI	PQM3U	PQM3V

10.2.2 Function block

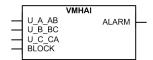


Figure 357: Function block

10.2.3 Functionality

The voltage total harmonic distortion function VMHAI is used for monitoring the voltage total harmonic distortion THD.

10.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of VMHAI can be described with a module diagram. All the modules in the diagram are explained in the next sections.

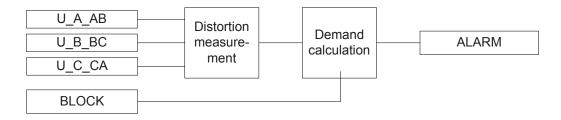


Figure 358: Functional module diagram

Distortion measurement

The distortion measurement module measures harmonics up to the 11th harmonic. The total harmonic distortion THD for voltage is calculated from the measured harmonic components with the formula

$$THD = \frac{\sqrt{\sum_{k=2}^{N} U_k^2}}{U_1}$$

(Equation 76)

U_k kth harmonic component

U₁ the voltage fundamental component amplitude

Demand calculation

The demand value for THD is calculated separately for each phase. If any of the calculated demand THD values is above the set alarm limit *THD alarm limit*, the ALARM output is activated.

The demand calculation window is set with the *Demand interval* setting. It has seven window lengths from "1 minute" to "180 minutes". The window type can be set with the *Demand window* setting. The available options are "Sliding" and "Non-sliding".

The activation of the BLOCK input blocks the ALARM output.

10.2.5 Application

VMHAI provides a method for monitoring the power quality by means of the voltage waveform distortion. VMHAI provides a short-term three-second average and long-term demand for THD.

10.2.6 Signals

10.2.6.1 VMHAI Input signals

Table 705: VMHAI Input signals

Name	Туре	Default	Description
U_A_AB	SIGNAL	0	Phase-to-earth volt- age A or phase-to- phase voltage AB
U_B_BC	SIGNAL	0	Phase-to-earth volt- age B or phase-to- phase voltage BC
U_C_CA	SIGNAL	0	Phase-to-earth volt- age C or phase-to- phase voltage CA
BLOCK	BOOLEAN	0=False	Block signal for all bi- nary outputs

10.2.6.2 VMHAI Output signals

Table 706: VMHAI Output signals

Name	Туре	Description
ALARM	BOOLEAN	Alarm signal for THD

10.2.7 Settings

10.2.7.1 VMHAI Non group settings (Basic)

Table 707: VMHAI Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				
Demand interval	0=1 minute			2=10 minutes	Time interval for demand calculation
	1=5 minutes				demand calculation
	2=10 minutes				
	3=15 minutes				
	4=30 minutes				
	5=60 minutes				
	6=180 minutes				
Demand window	1=Sliding			1=Sliding	Demand calculation
	2=Non-sliding				window type
THD alarm limit	1.0100.0	%	0.1	50.0	THD alarm limit

10.2.8 Monitored data

10.2.8.1 VMHAI Monitored data

Table 708: VMHAI Monitored data

Name	Туре	Values (Range)	Unit	Description
Max demand THD UL1	FLOAT32	0.00500.00	%	Maximum de- mand THD for phase A
Max demand THD UL2	FLOAT32	0.00500.00	%	Maximum de- mand THD for phase B
Max demand THD UL3	FLOAT32	0.00500.00	%	Maximum de- mand THD for phase C
Time max dmd THD UL1	Timestamp			Time of maxi- mum demand THD phase A
Time max dmd THD UL2	Timestamp			Time of maxi- mum demand THD phase B
Time max dmd THD UL3	Timestamp			Time of maxi- mum demand THD phase C
3SMHTHD_A	FLOAT32	0.00500.00	%	3 second mean value of THD for phase A
DMD_THD_A	FLOAT32	0.00500.00	%	Demand value for THD for phase A
3SMHTHD_B	FLOAT32	0.00500.00	%	3 second mean value of THD for phase B
DMD_THD_B	FLOAT32	0.00500.00	%	Demand value for THD for phase B
3SMHTHD_C	FLOAT32	0.00500.00	%	3 second mean value of THD for phase C
DMD_THD_C	FLOAT32	0.00500.00	%	Demand value for THD for phase C

10.2.9 Technical revision history

Table 709: VMHAI Technical revision history

Technical revision	Change	
В	Internal improvement.	
С	Internal improvement.	

10.3 Voltage variation PHQVVR

10.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Voltage variation	PHQVVR	PQMU	PQMV

10.3.2 Function block

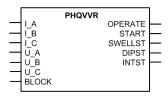


Figure 359: Function block

10.3.3 Functionality

The voltage variation function PHQVVR is used for measuring the short-duration voltage variations in distribution networks.

Power quality in the voltage waveform is evaluated by measuring voltage swells, dips and interruptions. PHQVVR includes single-phase and three-phase voltage variation modes.

Typically, short-duration voltage variations are defined to last more than half of the nominal frequency period and less than one minute. The maximum magnitude (in the case of a voltage swell) or depth (in the case of a voltage dip or interruption) and the duration of the variation can be obtained by measuring the RMS value of the voltage for each phase. International standard 61000-4-30 defines the voltage variation to be implemented using the RMS value of the voltage. IEEE standard 1159-1995 provides recommendations for monitoring the electric power quality of the single-phase and polyphase ac power systems.

PHQVVR contains a blocking functionality. It is possible to block a set of function outputs or the function itself, if desired.

10.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of PHQVVR can be described with a module diagram. All the modules in the diagram are explained in the next sections.

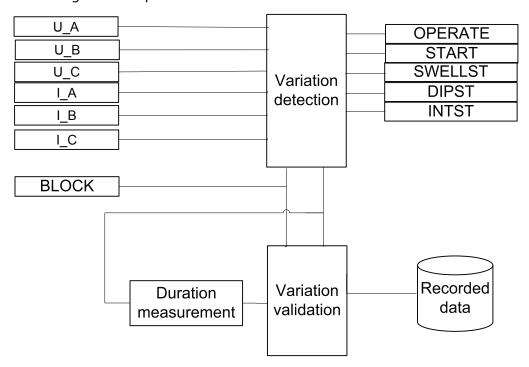


Figure 360: Functional module diagram

10.3.4.1 Phase mode setting

PHQVVR is designed for both single-phase and polyphase ac power systems, and selection can be made with the *Phase mode* setting, which can be set either to the "Single Phase" or "Three Phase" mode. The default setting is "Single Phase".

The basic difference between these alternatives depends on how many phases are needed to have the voltage variation activated. When the *Phase mode* setting is "Single Phase", the activation is straightforward. There is no dependence between the phases for variation start. The START output and the corresponding phase start are activated when the limit is exceeded or undershot. The corresponding phase start deactivation takes place when the limit (includes small hysteresis) is undershot or exceeded. The START output is deactivated when there are no more active phases.

However, when *Phase mode* is "Three Phase", all the monitored phase signal magnitudes, defined with *Phase supervision*, have to fall below or rise above the limit setting to activate the START output and the corresponding phase output, that is, all the monitored phases have to be activated. Accordingly, the deactivation occurs when the activation requirement is not fulfilled, that is, one or more monitored phase signal magnitudes return beyond their limits. Phases do not need to be activated by the same variation type to activate the START output. Another

consequence is that if only one or two phases are monitored, it is sufficient that these monitored phases activate the START output.

10.3.4.2 Variation detection

The module compares the measured voltage against the limit settings. If there is a permanent undervoltage or overvoltage, the Reference voltage setting can be set to this voltage level to avoid the undesired voltage dip or swell indications. This is accomplished by converting the variation limits with the Reference voltage setting in the variation detection module, that is, when there is a voltage different from the nominal voltage, the *Reference voltage* setting is set to this voltage.

The Variation enable setting is used for enabling or disabling the variation types. By default, the setting value is "Swell+dip+Int" and all the alternative variation types are indicated. For example, for setting "Swell+dip", the interruption detection is not active and only swell or dip events are indicated.

In a case where *Phase mode* is "Single Phase" and the dip functionality is available, the output DIPST is activated when the measured TRMS value drops below the Voltage dip set 3 setting in one phase and also remains above the Voltage Int set setting. If the voltage drops below the Voltage Int set setting, the output INTST is activated. INTST is deactivated when the voltage value rises above the setting Voltage Int set. When the same measured TRMS magnitude rises above the setting *Voltage swell set 3*, the SWELLST output is activated.

There are three setting value limits for dip (Voltage dip set 1...3) and swell activation (Voltage swell set 1..3) and one setting value limit for interruption.

If Phase mode is "Three Phase", the DIPST and INTST outputs are activated when the voltage levels of all monitored phases, defined with the parameter *Phase supervision*, drop below the *Voltage Int set* setting value. An example for the detection principle of voltage interruption for "Three Phase" when *Phase supervision* is "Ph A + B + C", and also the corresponding start signals when *Phase mode* is "Single Phase", are as shown in the example for the detection of a three-phase interruption.

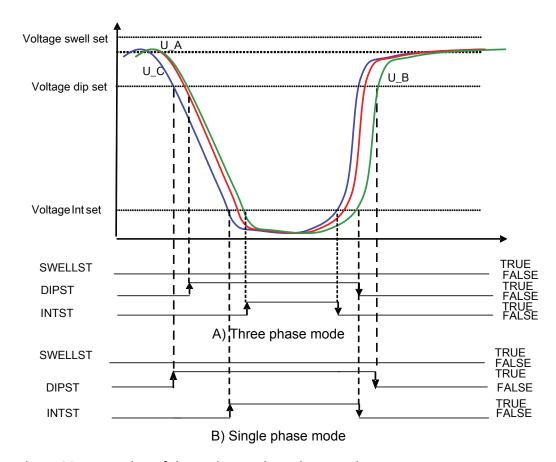


Figure 361: Detection of three-phase voltage interruption

The module measures voltage variation magnitude on each phase separately, that is, there are phase-segregated outputs ST_A , ST_B and ST_C for voltage variation indication. The configuration parameter *Phase supervision* defines which voltage phase or phases are monitored. If a voltage phase is selected to be monitored, the function assumes it to be connected to a voltage measurement channel. In other words, if an unconnected phase is monitored, the function falsely detects a voltage interruption in that phase.

The maximum magnitude and depth are defined as percentage values calculated from the difference between the reference and the measured voltage. For example, a dip to 70 percent means that the minimum voltage dip magnitude variation is 70 percent of the reference voltage amplitude.

The activation of the BLOCK input resets the function and outputs.

10.3.4.3 Variation validation

The validation criterion for voltage variation is that the measured total variation duration is between the set minimum and maximum durations (Either one of *VVa dip time 1*, *VVa swell time 1* or *VVa Int time 1*, depending on the variation type, and *VVa Dur Max*). The maximum variation duration setting is the same for all variation types.

Figure 362 shows voltage dip operational regions. In *Figure 361*, only one voltage dip/swell/Int set is drawn, whereas in this figure there are three sub-limits for the dip operation. When *Voltage dip set 3* is undershot, the corresponding $ST \times A$

also the DIPST outputs are activated. When the TRMS voltage magnitude remains between *Voltage dip set 2* and *Voltage dip set 1* for a period longer than *VVa dip time 2* (shorter time than *VVa dip time 3*), a momentary dip event is detected. Furthermore, if the signal magnitude stays between the limits longer than *VVa dip time 3* (shorter time than *VVa Dur max*), a temporary dip event is detected. If the voltage remains below *Voltage dip set 1* for a period longer than *VVa dip time 1* but a shorter time than *VVa dip time 2*, an instantaneous dip event is detected.

For an event detection, the OPERATE output is always activated for one task cycle. The corresponding counter and only one of them (INSTDIPCNT, MOMDIPCNT or TEMPDIPCNT) is increased by one. If the dip limit undershooting duration is shorter than *VVa dip time 1*, *VVa swell time 1* or *VVa Int time 1*, the event is not detected at all, and if the duration is longer than *VVa Dur Max*, MAXDURDIPCNT is increased by one but no event detection resulting in the activation of the OPERATE output and recording data update takes place. These counters are available through the monitored data view on the LHMI or through tools via communications. There are no phase-segregated counters but all the variation detections are registered to a common time/magnitude-classified counter type. Consequently, a simultaneous multiphase event, that is, the variation-type event detection time moment is exactly the same for two or more phases, is counted only once also for single-phase power systems.

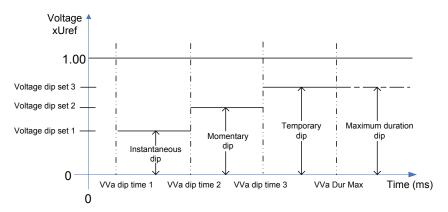


Figure 362: Voltage dip operational regions

In *Figure 363*, the corresponding limits regarding the swell operation are provided with the inherent magnitude limit order difference. The swell functionality principle is the same as for dips, but the different limits for the signal magnitude and times and the inherent operating zone change (here, *Voltage swell set x* > 1.0 xUn) are applied.

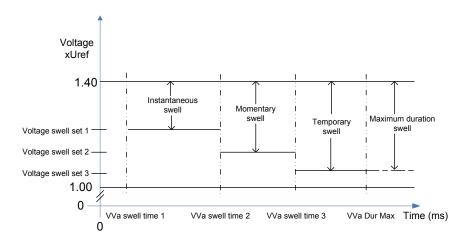


Figure 363: Voltage swell operational regions

For interruption, as shown in *Figure 364*, there is only one magnitude limit but four duration limits for interruption classification. Now the event and counter type depends only on variation duration time.

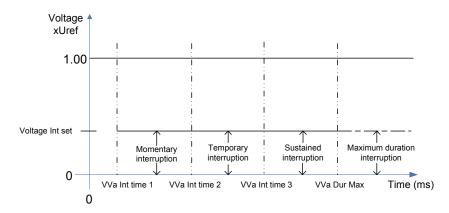


Figure 364: Interruption operating regions

Generally, no event detection is done if both the magnitude and duration requirements are not fulfilled. For example, the dip event does not indicate if the TRMS voltage magnitude remains between *Voltage dip set 3* and *Voltage dip set 2* for a period shorter than *VVa dip time 3* before rising back above *Voltage dip set 3*.

The event indication ends and possible detection is done when the TRMS voltage returns above (for dip and interruption) or below (for swell) the activation-starting limit. For example, after an instantaneous dip, the event indication when the voltage magnitude exceeds *Voltage dip set 1* is not detected (and recorded) immediately but only if no longer dip indication for the same dip variation takes place and maximum duration time for dip variation does not exceed before the signal magnitude rises above *Voltage dip set 3*. There is a small hysteresis for all these limits to avoid the oscillation of the output activation. No drop-off approach is applied here due to the hysteresis.

Consequently, only one event detection and recording of the same variation type can take place for one voltage variation, so the longest indicated variation of each variation type is detected. Furthermore, it is possible that another instantaneous dip event replaces the one already indicated if the magnitude again undershoots *Voltage dip set 1* for the set time after the first detection and the signal magnitude

or time requirement is again fulfilled. Another possibility is that if the time condition is not fulfilled for an instantaneous dip detection but the signal rises above *Voltage dip set 1*, the already elapsed time is included in the momentary dip timer. Especially the interruption time is included in the dip time. If the signal does not exceed *Voltage dip set 2* before the timer *VVa dip time 2* has elapsed when the momentary dip timer is also started after the magnitude undershooting *Voltage dip set 2*, the momentary dip event instead is detected. Consequently, the same dip occurrence with a changing variation depth can result in several dip event indications but only one detection. For example, if the magnitude has undershot *Voltage dip set 1* but remained above *Voltage Intr set* for a shorter time than the value of *VVa dip time 1* but the signal rises between *Voltage dip set 1* and *Voltage dip set 2* so that the total duration of the dip activation is longer than *VVa dip time 2* and the maximum time is not overshot, this is detected as a momentary dip even though a short instantaneous dip period has been included. In text, the terms "deeper" and "higher" are used for referring to dip or interruption.

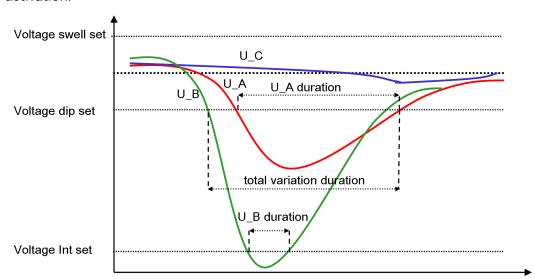
Although examples are given for dip events, the same rules can be applied to the swell and interruption functionality too. For swell indication, "deeper" means that the signal rises even more and "higher" means that the signal magnitude becomes lower respectively.

The adjustable voltage thresholds adhere to the relationships:

VVa dip time 1 ≤ VVa dip time 2 ≤ VVa dip time 3.

VVa swell time 1 ≤ VVa swell time 2 ≤ VVa swell time 3.

VVa Int time 1 ≤ VVa Int time 2 ≤ VVa Int time 3.


There is a validation functionality built-in function that checks the relationship adherence so that if $VVa \times time 1$ is set higher than $VVa \times time 2$ or $VVa \times time 3$, $VVa \times time 2$ and $VVa \times time 3$ are set equal to the new $VVa \times time 1$. If $VVa \times time 2$ is set higher than $VVa \times time 3$, $VVa \times time 3$ is set to the new $VVa \times time 2$. If $VVa \times time 2$ is set lower than $VVa \times time 1$, the entered $VVa \times time 2$ is rejected. If $VVa \times time 3$ is set lower than $VVa \times time 2$, the entered $VVa \times time 3$ is rejected.

10.3.4.4 Duration measurement

The duration of each voltage phase corresponds to the period during which the measured TRMS values remain above (swell) or below (dip, interruption) the corresponding limit.

Besides the three limit settings for the variation types dip and swell, there is also a specific duration setting for each limit setting. For interruption, there is only one limit setting common for the three duration settings. The maximum duration setting is common for all variation types.

The duration measurement module measures the voltage variation duration of each phase voltage separately when the *Phase mode* setting is "Single Phase". The phase variation durations are independent. However, when the *Phase mode* setting is "Three Phase", voltage variation may start only when all the monitored phases are active. An example of variation duration when *Phase mode* is "Single Phase" can be seen in *Figure 365*. The voltage variation in the example is detected as an interruption for the phase B and a dip for the phase A, and also the variation durations are interpreted as independent U_B and U_A durations. In case of single-phase interruption, the DIPST output is active when either ST_A or ST_B is active. The measured variation durations are the times measured between the activation of the ST_A or ST_B outputs and deactivation of the ST_A or ST_B outputs. When

the *Phase mode* setting is "Three Phase", the example case does not result in any activation.

Figure 365: Single-phase interruption for the Phase mode value "Single Phase"

10.3.4.5 Three/single-phase selection variation examples

The provided rules always apply for single-phase (*Phase Mode* is "Single Phase") power systems. However, for three-phase power systems (where *Phase Mode* is "Three Phase"), it is required that all the phases have to be activated before the activation of the START output. Interruption event indication requires all three phases to undershoot *Voltage Int set* simultaneously, as shown in *Figure 361*. When the requirement for interruption for "Three Phase" is no longer fulfilled, variation is indicated as a dip as long as all phases are active.

In case of a single-phase interruption of *Figure 365*, when there is a dip indicated in another phase but the third phase is not active, there is no variation indication start when *Phase Mode* is "Three Phase". In this case, only the *Phase Mode* value "Single Phase" results in the ST B interruption and the ST A dip.

It is also possible that there are simultaneously a dip in one phase and a swell in other phases. The functionality of the corresponding event indication with one inactive phase is shown in *Figure 366*. Here, the "Swell + dip" variation type of *Phase mode* is "Single Phase". For the selection "Three Phase" of *Phase mode*, no event indication or any activation takes place due to a non-active phase.

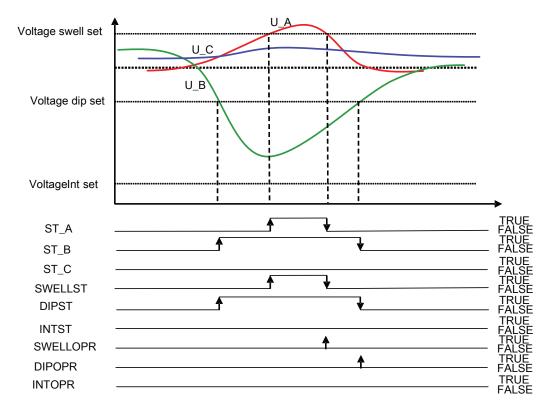


Figure 366: Concurrent dip and swell when Phase mode is "Single Phase"

In *Figure 367*, one phase is in dip and two phases have a swell indication. For the *Phase Mode* value "Three Phase", the activation occurs only when all the phases are active. Furthermore, both swell and dip variation event detections take place simultaneously. In case of a concurrent voltage dip and voltage swell, both SWELLCNT and DIPCNT are incremented by one.

Also *Figure 367* shows that for the *Phase Mode* value "Three Phase", two different time moment variation event swell detections take place and, consequently, DIPCNT is incremented by one but SWELLCNT is totally incremented by two. Both in *Figure 366* and *Figure 367* it is assumed that variation durations are sufficient for detections to take place.

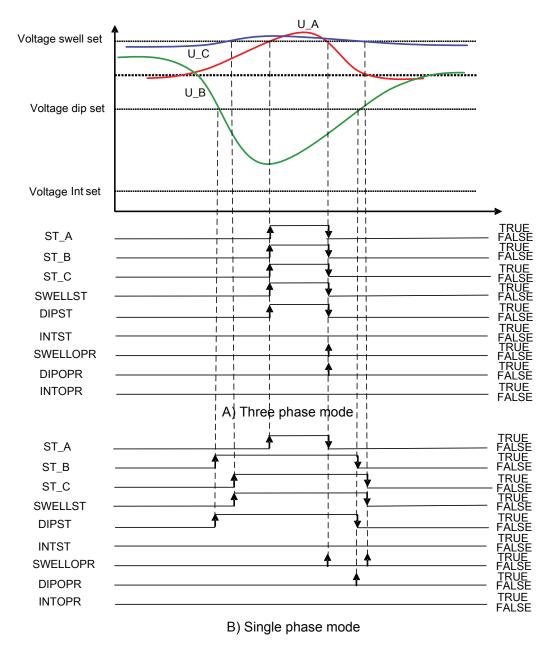


Figure 367: Concurrent dip and two-phase swell

10.3.5 Recorded data

Besides counter increments, the information required for a later fault analysis is stored after a valid voltage variation is detected.

Recorded data information

When voltage variation starts, the phase current magnitudes preceding the activation moment are stored. Also, the initial voltage magnitudes are temporarily stored at the variation starting moment. If the variation is, for example, a two-phase voltage dip, the voltage magnitude of the non-active phase is stored from this same moment, as shown in *Figure 368*. The function tracks each variation-

active voltage phase, and the minimum or maximum magnitude corresponding to swell or dip/interruption during variation is temporarily stored. If the minimum or maximum is found in tracking and a new magnitude is stored, also the inactive phase voltages are stored at the same moment, that is, the inactive phases are not magnitude-tracked. The time instant (time stamp) at which the minimum or maximum magnitude is measured is also temporarily stored for each voltage phase where variation is active. Finally, variation detection triggers the recorded data update when the variation activation ends and the maximum duration time is not exceeded.

The data objects to be recorded for PHQVVR are given in *Table 710*. There are totally three data banks, and the information given in the table refers to one data bank content.

The three sets of recorded data available are saved in data banks 1-3. The data bank 1 holds always the most recent recorded data, and the older data sets are moved to the next banks ($1\rightarrow2$ and $2\rightarrow3$) when a valid voltage variation is detected. When all three banks have data and a new variation is detected, the newest data are placed into bank 1 and the data in bank 3 are overwritten by the data from bank 2.

Figure 368 shows a valid recorded voltage interruption and two dips for the Phase mode value "Single Phase". The first dip event duration is based on the $\mathtt{U}_-\mathtt{A}$ duration, while the second dip is based on the time difference between the dip stop and start times. The first detected event is an interruption based on the $\mathtt{U}_-\mathtt{B}$ duration given in Figure 368. It is shown also with dotted arrows how voltage time stamps are taken before the final time stamp for recording, which is shown as a solid arrow. Here, the $\mathtt{U}_-\mathtt{B}$ timestamp is not taken when the $\mathtt{U}_-\mathtt{A}$ activation starts.

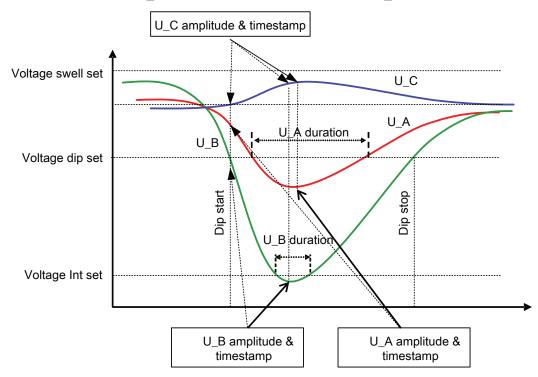


Figure 368: Valid recorded voltage interruption and two dips

Table 710: PHQVVR recording data bank parameters

Parameter description	Parameter name
Event detection triggering time stamp	Time
Variation type	Variation type
Variation magnitude Ph A	Variation Ph A
Variation magnitude Ph A time stamp (maximum/minimum magnitude measuring time moment during variation)	Var Ph A rec time
Variation magnitude Ph B	Variation Ph B
Variation magnitude Ph B time stamp (maximum/minimum magnitude measuring time moment during variation)	Var Ph B rec time
Variation magnitude Ph C	Variation Ph C
Variation magnitude Ph C time stamp (maximum/minimum magnitude measuring time moment during variation)	Var Ph C rec time
Variation duration Ph A	Variation Dur Ph A
Variation Ph A start time stamp (phase A variation start time moment)	Var Dur Ph A time
Variation duration Ph B	Variation Dur Ph B
Variation Ph B start time stamp (phase B variation start time moment)	Var Dur Ph B time
Variation duration Ph C	Variation Dur Ph C
Variation Ph C start time stamp (phase C variation start time moment)	Var Dur Ph C time
Current magnitude Ph A preceding variation	Var current Ph A
Current magnitude Ph B preceding variation	Var current Ph B
Current magnitude Ph C preceding variation	Var current Ph C

Table 711: Enumeration values for the recorded data parameters

Setting name	Enum name	Value
Variation type	Swell	1
Variation type	Dip	2
Variation type	Swell + dip	3
Variation type	Interruption	4
Variation type	Swell + Int	5
Variation type	Dip + Int	6
Variation type	Swell+dip+Int	7

10.3.6 Application

Voltage variations are the most typical power quality variations on the public electric network. Typically, short-duration voltage variations are defined to last

more than half of the nominal frequency period and less than one minute (European Standard EN 50160 and IEEE Std 1159-1995).

These short-duration voltage variations are almost always caused by a fault condition. Depending on where the fault is located, it can cause either a temporary voltage rise (swell) or voltage drop (dip). A special case of voltage drop is the complete loss of voltage (interruption).

PHQVVR is used for measuring short-duration voltage variations in distribution networks. The power quality is evaluated in the voltage waveform by measuring the voltage swells, dips and interruptions.

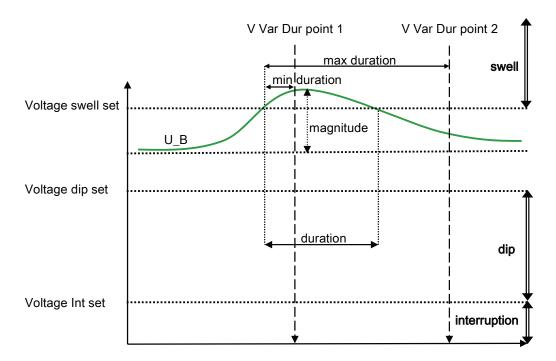


Figure 369: Duration and voltage magnitude limits for swell, dip and interruption measurement

Voltage dips disturb the sensitive equipment such as computers connected to the power system and may result in the failure of the equipment. Voltage dips are typically caused by faults occurring in the power distribution system. Typical reasons for the faults are lightning strikes and tree contacts. In addition to fault situations, the switching of heavy loads and starting of large motors also cause dips.

Voltage swells cause extra stress for the network components and the devices connected to the power system. Voltage swells are typically caused by the earth faults that occur in the power distribution system.

Voltage interruptions are typically associated with the switchgear operation related to the occurrence and termination of short circuits. The operation of a circuit breaker disconnects a part of the system from the source of energy. In the case of overhead networks, automatic reclosing sequences are often applied to the circuit breakers that interrupt fault currents. All these actions result in a sudden reduction of voltages on all voltage phases.

Due to the nature of voltage variations, the power quality standards do not specify any acceptance limits. There are only indicative values for, for example, voltage dips

in the European standard EN 50160. However, the power quality standards like the international standard IEC 61000-4-30 specify that the voltage variation event is characterized by its duration and magnitude. Furthermore, IEEE Std 1159-1995 gives the recommended practice for monitoring the electric power quality.

Voltage variation measurement can be done to the phase-to-earth and phase-to-phase voltages. The power quality standards do not specify whether the measurement should be done to phase or phase-to-phase voltages. However, in some cases it is preferable to use phase-to-earth voltages for measurement. The measurement mode is always TRMS.

10.3.7 Signals

10.3.7.1 PHQVVR Input signals

Table 712: PHQVVR Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current mag- nitude
I_B	SIGNAL	0	Phase B current mag- nitude
I_C	SIGNAL	0	Phase C current mag- nitude
U_A	SIGNAL	0	Phase-to-earth volt- age A
U_B	SIGNAL	0	Phase-to-earth volt- age B
u_c	SIGNAL	0	Phase-to-earth volt- age C
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

10.3.7.2 PHQVVR Output signals

Table 713: PHQVVR Output signals

Name	Туре	Description	
OPERATE	BOOLEAN	Voltage variation detected	
START	BOOLEAN	Voltage variation present	
SWELLST	BOOLEAN	Voltage swell active	
DIPST	BOOLEAN	Voltage dip active	
INTST	BOOLEAN	Voltage interruption active	

10.3.8 Settings

10.3.8.1 PHQVVR Group settings

Table 714: PHQVVR Group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Reference voltage	10.0200.0	%Un	0.1	57.7	Reference supply voltage in %
Voltage dip set 1	10.0100.0	%	0.1	80.0	Dip limit 1 in % of reference voltage
VVa dip time 1	0.554.0	cycles	0.1	3.0	Voltage variation dip duration 1
Voltage dip set 2	10.0100.0	%	0.1	80.0	Dip limit 2 in % of reference voltage
VVa dip time 2	10.0180.0	cycles	0.1	30.0	Voltage variation dip duration 2
Voltage dip set 3	10.0100.0	%	0.1	80.0	Dip limit 3 in % of reference voltage
VVa dip time 3	200060000	ms	10	3000	Voltage variation dip duration 3
Voltage swell set 1	100.0140.0	%	0.1	120.0	Swell limit 1 in % of reference voltage
VVa swell time 1	0.554.0	cycles	0.1	0.5	Voltage variation swell duration 1
Voltage swell set 2	100.0140.0	%	0.1	120.0	Swell limit 2 in % of reference voltage
VVa swell time 2	10.080.0	cycles	0.1	10.0	Voltage variation swell duration 2
Voltage swell set 3	100.0140.0	%	0.1	120.0	Swell limit 3 in % of reference voltage
VVa swell time 3	200060000	ms	10	2000	Voltage variation swell duration 3
Voltage Int set	0.0100.0	%	0.1	10.0	Interruption limit in % of reference volt- age
VVa Int time 1	0.530.0	cycles	0.1	3.0	Voltage variation Int duration 1
VVa Int time 2	10.0180.0	cycles	0.1	30.0	Voltage variation Int duration 2
VVa Int time 3	200060000	ms	10	3000	Voltage variation interruption duration 3
VVa Dur Max	1003600000	ms	100	60000	Maximum voltage variation duration

Table 715: PHQVVR Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on			1=on	Operation Off / On
	5=off				
Variation enable	1=Swell			7=Swell+dip+Int	Enable variation
	2=Dip				type
	3=Swell + dip				
	4=Interruption				
	5=Swell + Int				
	6=Dip + Int				
	7=Swell+dip+Int				

Table 716: PHQVVR Non group settings (Advanced)

Parameter	Values (Range)	Unit	Step	Default	Description
Phase supervision	1=Ph A			7=Ph A + B + C	Monitored voltage phase
	2=Ph B				priase
	3=Ph A + B				
	4=Ph C				
	5=Ph A + C				
	6=Ph B + C				
	7=Ph A + B + C				
Phase mode	1=Three Phase 2=Single Phase			2=Single Phase	Three/Single phase mode

10.3.9 Monitored data

10.3.9.1 PHQVVR Monitored data

Table 717: PHQVVR Monitored data

Name	Туре	Values (Range)	Unit	Description
ST_A	BOOLEAN	0=False 1=True		Start Phase A (Voltage Varia- tion Event in pro- gress)
ST_B	BOOLEAN	0=False 1=True		Start Phase B (Voltage Varia- tion Event in pro- gress)
ST_C	BOOLEAN	0=False 1=True		Start Phase C (Voltage Varia- tion Event in pro- gress)
INSTSWELLCNT	INT32	02147483647		Instantaneous swell operation counter
MOMSWELLCNT	INT32	02147483647		Momentary swell operation counter
TEMPSWELLCNT	INT32	02147483647		Temporary swell operation counter
MAXDURS- WELLCNT	INT32	02147483647		Maximum dura- tion swell opera- tion counter
INSTDIPCNT	INT32	02147483647		Instantaneous dip operation counter

Name	Туре	Values (Range)	Unit	Description
MOMDIPCNT	INT32	02147483647		Momentary dip operation counter
TEMPDIPCNT	INT32	02147483647		Temporary dip operation counter
MAXDURDIPCNT	INT32	02147483647		Maximum dura- tion dip opera- tion counter
MOMINTCNT	INT32	02147483647		Momentary in- terruption opera- tion counter
TEMPINTCNT	INT32	02147483647		Temporary inter- ruption opera- tion counter
SUSTINTCNT	INT32	02147483647		Sustained inter- ruption opera- tion counter
MAXDURINTCNT	INT32	02147483647		Maximum duration interruption operation counter
PHQVVR	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		
Time	Timestamp			Time
Variation type	Enum	0=No variation		Variation type
		1=Swell		
		2=Dip		
		3=Swell + dip		
		4=Interruption		
		5=Swell + Int		
		6=Dip + Int		
		7=Swell+dip+Int		
Variation Ph A	FLOAT32	0.005.00	xUn	Variation magni- tude Phase A
Var Ph A rec time	Timestamp			Variation magni- tude Phase A time stamp

Name	Туре	Values (Range)	Unit	Description
Variation Ph B	FLOAT32	0.005.00	xUn	Variation magni- tude Phase B
Var Ph B rec time	Timestamp			Variation magni- tude Phase B time stamp
Variation Ph C	FLOAT32	0.005.00	xUn	Variation magni- tude Phase C
Var Ph C rec time	Timestamp			Variation magni- tude Phase C time stamp
Variation Dur Ph A	FLOAT32	0.0003600.000	S	Variation dura- tion Phase A
Var Dur Ph A time	Timestamp			Variation Ph A start time stamp
Variation Dur Ph B	FLOAT32	0.0003600.000	S	Variation dura- tion Phase B
Var Dur Ph B time	Timestamp			Variation Ph B start time stamp
Variation Dur Ph C	FLOAT32	0.0003600.000	S	Variation dura- tion Phase C
Var Dur Ph C time	Timestamp			Variation Ph C start time stamp
Var current Ph A	FLOAT32	0.0060.00	xIn	Current magni- tude Phase A preceding varia- tion
Var current Ph B	FLOAT32	0.0060.00	xIn	Current magni- tude Phase B preceding varia- tion
Var current Ph C	FLOAT32	0.0060.00	xIn	Current magni- tude Phase C preceding varia- tion
Time	Timestamp			Time
Variation type	Enum	0=No variation		Variation type
		1=Swell		
		2=Dip		
		3=Swell + dip		
		4=Interruption		
		5=Swell + Int		
		6=Dip + Int		
		7=Swell+dip+Int		

Name	Туре	Values (Range)	Unit	Description
Variation Ph A	FLOAT32	0.005.00	xUn	Variation magni- tude Phase A
Var Ph A rec time	Timestamp			Variation magni- tude Phase A time stamp
Variation Ph B	FLOAT32	0.005.00	xUn	Variation magni- tude Phase B
Var Ph B rec time	Timestamp			Variation magni- tude Phase B time stamp
Variation Ph C	FLOAT32	0.005.00	xUn	Variation magni- tude Phase C
Var Ph C rec time	Timestamp			Variation magni- tude Phase C time stamp
Variation Dur Ph A	FLOAT32	0.0003600.000	s	Variation dura- tion Phase A
Var Dur Ph A time	Timestamp			Variation Ph A start time stamp
Variation Dur Ph B	FLOAT32	0.0003600.000	S	Variation dura- tion Phase B
Var Dur Ph B time	Timestamp			Variation Ph B start time stamp
Variation Dur Ph C	FLOAT32	0.0003600.000	S	Variation dura- tion Phase C
Var Dur Ph C time	Timestamp			Variation Ph C start time stamp
Var current Ph A	FLOAT32	0.0060.00	xIn	Current magni- tude Phase A preceding varia- tion
Var current Ph B	FLOAT32	0.0060.00	xIn	Current magni- tude Phase B preceding varia- tion
Var current Ph C	FLOAT32	0.0060.00	xIn	Current magni- tude Phase C preceding varia- tion
Time	Timestamp			Time
Variation type	Enum	0=No variation		Variation type
		1=Swell		
		2=Dip		
		3=Swell + dip		

Name	Туре	Values (Range)	Unit	Description
		4=Interruption		
		5=Swell + Int		
		6=Dip + Int		
		7=Swell+dip+Int		
Variation Ph A	FLOAT32	0.005.00	xUn	Variation magni- tude Phase A
Var Ph A rec time	Timestamp			Variation magni- tude Phase A time stamp
Variation Ph B	FLOAT32	0.005.00	xUn	Variation magni- tude Phase B
Var Ph B rec time	Timestamp			Variation magni- tude Phase B time stamp
Variation Ph C	FLOAT32	0.005.00	xUn	Variation magni- tude Phase C
Var Ph C rec time	Timestamp			Variation magni- tude Phase C time stamp
Variation Dur Ph A	FLOAT32	0.0003600.000	s	Variation dura- tion Phase A
Var Dur Ph A time	Timestamp			Variation Ph A start time stamp
Variation Dur Ph B	FLOAT32	0.0003600.000	s	Variation dura- tion Phase B
Var Dur Ph B time	Timestamp			Variation Ph B start time stamp
Variation Dur Ph C	FLOAT32	0.0003600.000	s	Variation dura- tion Phase C
Var Dur Ph C time	Timestamp			Variation Ph C start time stamp
Var current Ph A	FLOAT32	0.0060.00	xIn	Current magni- tude Phase A preceding varia- tion
Var current Ph B	FLOAT32	0.0060.00	xIn	Current magni- tude Phase B preceding varia- tion
Var current Ph C	FLOAT32	0.0060.00	xIn	Current magnitude Phase C preceding variation

10.3.10 Technical data

Table 718: PHQVVR Technical data

Characteristic	Value
Operation accuracy	±1.5 % of the set value or ±0.2 % of reference voltage
Reset ratio	Typically 0.96 (Swell), 1.04 (Dip, Interruption)

10.4 Voltage unbalance VSQVUB

10.4.1 Identification

Function description	IEC 61850 identification		ANSI/IEEE C37.2 device number
Voltage unbalance	VSQVUB	PQUUB	PQVUB

10.4.2 Function block

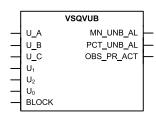


Figure 370: Function block

10.4.3 Functionality

The voltage unbalance function VSQVUB monitors voltage unbalance conditions in power transmission and distribution networks. It can be applied to identify a network and load unbalance that can cause sustained voltage unbalance. VSQVUB is also used to monitor the commitment of the power supply utility of providing a high-quality, that is, a balanced voltage supply on a continuous basis.

VSQVUB uses five different methods for calculating voltage unbalance. The methods are the negative-sequence voltage magnitude, zero-sequence voltage magnitude, ratio of the negative-sequence voltage magnitude to the positive-sequence voltage magnitude, ratio of the zero-sequence voltage magnitude to the positive-sequence voltage magnitude and ratio of maximum phase voltage magnitude deviation from the mean voltage magnitude to the mean of the phase voltage magnitude.

VSQVUB provides statistics which can be used to verify the compliance of the power quality with the European standard EN 50160 (2000). The statistics over selected period include a freely selectable percentile for unbalance. VSQVUB also includes an alarm functionality providing a maximum unbalance value and the date and time of occurrence.

The function contains a blocking functionality. It is possible to block a set of function outputs or the function itself, if desired.

10.4.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "On" and "Off".

The operation of VSQVUB can be described with a module diagram. All the modules in the diagram are explained in the next sections.

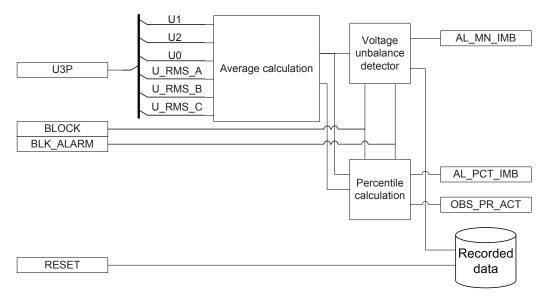


Figure 371: Functional module diagram

Average calculation

VSQVUB calculates two sets of measured voltage unbalance values, a three-second and a ten-minute non-sliding average value. The three-second average value is used for continuous monitoring. The ten-minute average is used for percentile calculation for a longer period.

The Average calculation module uses five different methods for the average calculation. The required method can be selected with the *Unb detection method* parameter.

When the "Neg Seq" mode is selected with *Unb detection method*, the voltage unbalance is calculated based on the negative-sequence voltage magnitude. Similarly, when the "Zero Seq" mode is selected, the voltage unbalance is calculated based on the zero-sequence voltage magnitude. When the "Neg to Pos Seq" mode is selected, the voltage unbalance is calculated based on the ratio of the negative-sequence voltage magnitude to the positive-sequence magnitude. When the "Zero to Pos Seq" mode is selected, the voltage unbalance is calculated based on the ratio of the zero-sequence voltage magnitude to the positive-sequence magnitude. When the "Ph vectors Comp" mode is selected, the ratio of the maximum phase voltage magnitude deviation from the mean voltage magnitude to the mean of the phase voltage magnitude is used for voltage unbalance calculation.

The calculated three-second value and ten-minute value are available in the Monitored data view through the outputs 3S MN UNB and 10MN MN UNB.

For VT connection = "Delta", the calculated zero-sequence voltage is always zero, hence, the setting *Unb detection method* = "Zero Seq" is not applicable in this VT configuration.

Voltage unbalance detector

The three-second average value is calculated and compared to the set value Unbalance start val. If the voltage unbalance exceeds this limit, the MN UNB AL output is activated.

The activation of the BLOCK input blocks MN UNB AL output.

Percentile calculation

The Percentile calculation module performs the statistics calculation for the level of voltage unbalance value for a settable duration. The operation of the Percentile calculation module can be described with a module diagram.

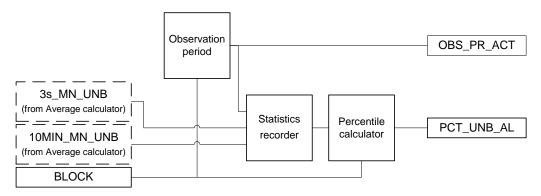


Figure 372: Percentile calculation

Observation period

The Observation period module calculates the length of the observation time for the Statistics recorder sub-module as well as determines the possible start of a new one. A new period can be started by timed activation using calendar time settings Obs period Str year, Obs period Str month, Obs period Str day and Obs period Str hour.

The observation period start time settings Obs period Str year, Obs period Str month, Obs period Str day and Obs period Str hour are used to set the calendar time in UTC. These settings have to be adjusted according to the local time and local daylight saving time.

A preferable way of continuous statistics recordings can be selected over a longer period (months, years). With the *Trigger mode* setting, the way the next possible observation time is activated after the former one has finished can be selected.

730 **REC615 & RER615**

Table 719: Trigger mode observation times

Trigger mode	Observation time
Single	Only one period of observation time is activated.
Periodic	The time gap between the two trigger signals is seven days.
Continuous	The next period starts right after the previous observation period is completed.

The length of the period is determined by the settings *Obs period selection* and *User Def Obs period*. The OBS_PR_ACT output is an indication signal which exhibits rising edge (TRUE) when the observation period starts and falling edge (FALSE) when the observation period ends.

If the *Percentile unbalance, Trigger mode* or *Obs period duration* settings change when OBS_PR_ACT is active, OBS_PR_ACT deactivates immediately.

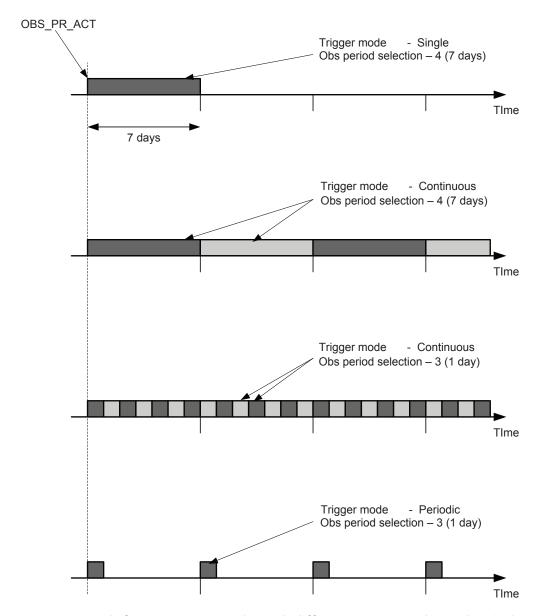


Figure 373: Periods for statistics recorder with different trigger modes and period settings

The <code>BLOCK</code> input blocks the <code>OBS_PR_ACT</code> output, which then disables the maximum value calculation of the Statistics recorder module. If the trigger mode is selected "Periodic" or "Continuous" and the blocking is deactivated before the next observation period is due to start, the scheduled period starts normally.

Statistics recorder

The Statistics recorder module provides readily calculated three-second or tenminute values of the selected phase to the percentile calculator module based on the length of the active observation period. If the observation period is less than one day, the three-second average values are used. If the observation period is one day or longer, the ten-minute average values are used.

The maximum three-second or ten-minute mean voltage unbalance is recorded during the active observation period. The observation period start time PR_STR_TIME , observation period end time PR_END_TIME , maximum voltage unbalance value during observation period active, MAX_UNB_VAL and time of occurrence MAX_UNB_TIME are available through the Monitored data view. These outputs are updated once OBS PR ACT deactivates.

Percentile calculator

The purpose of the Percentile calculator module is to find the voltage unbalance level so that during the observation time 95 percent (default value of the *Percentile unbalance* setting) of all the measured voltage unbalance amplitudes are less than or equal to the calculated percentile.

The computed output value PCT_UNB_VAL , below which the percentile of the values lies, is available in the Monitored data view. The PCT_UNB_VAL output value is updated at the end of the observation period.

If the output PCT_UNB_VAL is higher than the defined setting *Unbalance start val* at the end of the observation period, an alarm output PCT_UNB_AL is activated. The PCT_UNB_AL output remains active for the whole period before the next period completes.

The BLOCK input blocks the output PCT UNB VAL.

Recorded data

The information required for a later fault analysis is stored when the Recorded data module is triggered. This happens when a voltage unbalance is detected by the Voltage unbalance detector module.

Three sets of recorded data are available in total. The sets are saved in data banks 1...3. The data bank 1 holds the most recent recorded data. Older data are moved to the subsequent banks (1 to 2 and 2 to 3) when a voltage unbalance is detected. When all three banks have data and a new variation is detected, the latest data set is placed into bank 1 and the data in bank 3 is overwritten by the data from bank 2.

The recorded data can be reset with the RESET binary input signal by navigating to the HMI reset (Main menu > Clear > Reset recorded data > VSQVUBx) or through tools via communications.

When a voltage unbalance is detected in the system, VSQVUB responds with the $\texttt{MN_UNB_AL}$ alarm signal. During the alarm situation, VSQVUB stores the maximum magnitude and the time of occurrence and the duration of alarm $\texttt{MN_UNB_AL}$. The recorded data is stored when MN UNB AL is deactivated.

Table 720: Recorded data

Parameter	Description
Alarm high mean Dur	Time duration for alarm high mean unbalance
Max unbalance Volt	Maximum three-second voltage
Time Max Unb Volt	Time stamp of voltage unbalance

10.4.5 Application

Voltage unbalance is one of the basic power quality parameters.

Ideally, in a three-phase or multiphase power system, the frequency and voltage magnitude of all the phases are equal and the phase displacement between any two consecutive phases is also equal. This is called a balanced source. Apart from the balanced source, usually the power system network and loads are also balanced, implying that network impedance and load impedance in each phase are equal. In some cases, the condition of a balance network and load is not met completely, which leads to a current and voltage unbalance in the system. Providing unbalanced supply voltage has a detrimental effect on load operation. For example, a small magnitude of a negative-sequence voltage applied to an induction motor results in a significant heating of the motor.

A balanced supply, balanced network and balanced load lead to a better power quality. When one of these conditions is disturbed, the power quality is deteriorated. VSQVUB monitors voltage unbalance conditions in power transmission and distribution networks. VSQVUB calculates two sets of measured values, a three-second and a ten-minute non-sliding average value. The three-second average value is used for continuous monitoring while the ten-minute average value is used for percentile calculation for a longer period of time. It can be applied to identify the network and load unbalance that may cause sustained voltage unbalance. A single-phase or phase-to-phase fault in the network or load side can create voltage unbalance but, as faults are usually isolated in a short period of time, the voltage unbalance is not a sustained one. Therefore, the voltage unbalance may not be covered by VSQVUB.

Another major application is the long-term power quality monitoring. This can be used to confirm a compliance to the standard power supply quality norms. The function provides a voltage unbalance level which corresponds to the 95 th percentile of the ten minutes' average values of voltage unbalance recorded over a period of up to one week. It means that for 95 percent of time during the observation period the voltage unbalance was less than or equal to the calculated percentile. An alarm can be obtained if this value exceeds the value that can be set.

The function uses five different methods for calculating voltage unbalance.

- Negative-sequence voltage magnitude
- Zero-sequence voltage magnitude
- Ratio of negative-sequence to positive-sequence voltage magnitude
- Ratio of zero-sequence to positive-sequence voltage magnitude
- Ratio of maximum phase voltage magnitude deviation from the mean voltage magnitude to the mean of phase voltage magnitude.

Usually, the ratio of the negative-sequence voltage magnitude to the positive-sequence voltage magnitude is selected for monitoring the voltage unbalance. However, other methods may also be used if required.

10.4.6 Signals

10.4.6.1 VSQVUB Input signals

Table 721: VSQVUB Input signals

Name	Туре	Default	Description
U_A	SIGNAL	0	Phase A voltage
U_B	SIGNAL	0	Phase B voltage
U_C	SIGNAL	0	Phase C voltage
U ₁	SIGNAL	0	Positive phase sequence voltage
U ₂	SIGNAL	0	Negative phase sequence voltage
U ₀	SIGNAL	0	Zero sequence voltage
BLOCK	BOOLEAN	0=False	Block all outputs ex- cept measured values

10.4.6.2 VSQVUB Output signals

Table 722: VSQVUB Output signals

Name	Туре	Description
MN_UNB_AL	BOOLEAN	Alarm active when 3 sec voltage unbalance exceeds the limit
PCT_UNB_AL	BOOLEAN	Alarm active when percentile unbalance exceeds the limit
OBS_PR_ACT	BOOLEAN	Observation period is active

10.4.7 Settings

10.4.7.1 VSQVUB Non group settings

Table 723: VSQVUB Non group settings (Basic)

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation On/Off
Unb detection method	1=Neg Seq 2=Zero Seq 3=Neg to Pos Seq 4=Zero to Pos Seq 5=Ph vectors Comp			3=Neg to Pos Seq	Set the operation mode for voltage unbalance calcula- tion
Unbalance start Val	1100	%	1	1	Voltage unbalance start value

Parameter	Values (Range)	Unit	Step	Default	Description
Trigger mode	1=Single 2=Periodic 3=Continuous			3=Continuous	Specifies the ob- servation period triggering mode
Percentile unbalance	1100	%	1	95	The percent to which percentile value PCT_UNB_VAL is calculated
Obs period selection	1=1 Hour 2=12 Hours 3=1 Day 4=7 Days 5=User defined			5=User defined	Observation period for unbalance calculation
User Def Obs peri- od	1168	h	1	168	User define observation period for statistic calculation
Obs period Str year	20082076			2011	Calendar time for observation period start year in YYYY
Obs period Str month	1=January 2=February 3=March 4=April 5=May 6=June 7=July 8=August 9=September 10=October 11=November 12=December			1=January	Calendar time for observation period start month
Obs period Str day	131			1	Calendar time for observation period start day
Obs period Str hour	023	h		0	Calendar time for observation period start hour

10.4.8 Monitored data

10.4.8.1 VSQVUB Monitored data

Table 724: VSQVUB Monitored data

Name	Туре	Values (Range)	Unit	Description
3S_MN_UNB	FLOAT32	0.00150.00	%	Non sliding 3 second mean val- ue of voltage un- balance
10MIN_MN_UNB	FLOAT32	0.00150.00	%	Sliding 10 mi- nutes mean value

Name	Туре	Values (Range)	Unit	Description
				of voltage unbalance
PCT_UNB_VAL	FLOAT32	0.00150.00	%	Limit below which percentile unbalance of the values lie
MAX_UNB_VAL	FLOAT32	0.00150.00	%	Maximum volt- age unbalance measured in the observation peri- od
MAX_UNB_TIME	Timestamp			Time stamp at which max- imum voltage unbalance meas- ured in the ob- servation period
PR_STR_TIME	Timestamp			Time stamp of starting of the previous obser- vation period
PR_END_TIME	Timestamp			Time stamp of end of previous observation peri- od
Alarm high mean Dur	FLOAT32	0.0003600.000	S	Time duration for alarm high mean unbalance
Max unbalance Volt	FLOAT32	0.00150.00	%	Maximum 3 sec- onds unbalance voltage
Time Max Unb Volt	Timestamp			Time stamp of maximum voltage unbalance
Alarm high mean Dur	FLOAT32	0.0003600.000	s	Time duration for alarm high mean unbalance
Max unbalance Volt	FLOAT32	0.00150.00	%	Maximum 3 sec- onds unbalance voltage
Time Max Unb Volt	Timestamp			Time stamp of maximum voltage unbalance
Alarm high mean Dur	FLOAT32	0.0003600.000	S	Time duration for alarm high mean unbalance

Name	Туре	Values (Range)	Unit	Description
Max unbalance Volt	FLOAT32	0.00150.00	%	Maximum 3 sec- onds unbalance voltage
Time Max Unb Volt	Timestamp			Time stamp of maximum voltage unbalance
VSQVUB	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

10.4.9 Technical data

Table 725: VSQVUB Technical data

Characteristic	Value
Operation accuracy	± 1.5 % of the set value or $\pm 0.002 \times U_n$
Reset ratio	Typically 0.96

11 General function block features

11.1 Definite time characteristics

11.1.1 Definite time operation

The DT mode is enabled when the *Operating curve type* setting is selected either as "ANSI Def. Time" or "IEC Def. Time". In the DT mode, the <code>OPERATE</code> output of the function is activated when the time calculation exceeds the set *Operate delay time* .

The user can determine the reset in the DT mode with the *Reset delay time* setting, which provides the delayed reset property when needed.

The *Type of reset curve* setting has no effect on the reset method when the DT mode is selected, but the reset is determined solely with the *Reset delay time* setting.

The purpose of the delayed reset is to enable fast clearance of intermittent faults, for example self-sealing insulation faults, and severe faults which may produce high asymmetrical fault currents that partially saturate the current transformers. It is typical for an intermittent fault that the fault current contains so called drop-off periods, during which the fault current falls below the set start current, including hysteresis. Without the delayed reset function, the operate timer would reset when the current drops off. In the same way, an apparent drop-off period of the secondary current of the saturated current transformer can also reset the operate timer.

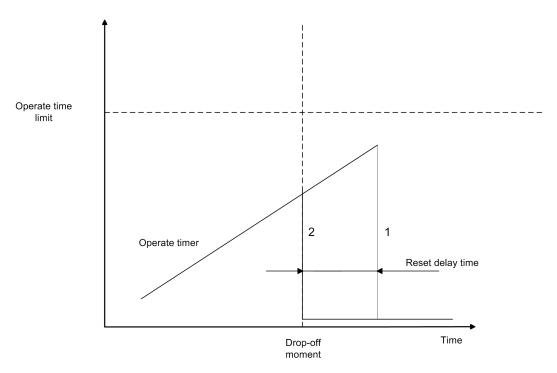


Figure 374: Operation of the counter in drop-off

In case 1, the reset is delayed with the *Reset delay time* setting and in case 2, the counter is reset immediately, because the *Reset delay time* setting is set to zero.

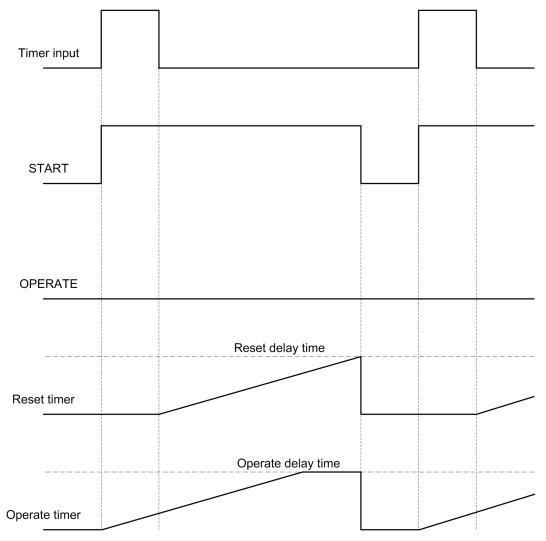


Figure 375: Drop-off period is longer than the set Reset delay time

When the drop-off period is longer than the set *Reset delay time*, as described in *Figure 375*, the input signal for the definite timer (here: timer input) is active, provided that the current is above the set *Start value*. The input signal is inactive when the current is below the set *Start value* and the set hysteresis region. The timer input rises when a fault current is detected. The definite timer activates the START output and the operate timer starts elapsing. The reset (drop-off) timer starts when the timer input falls, that is, the fault disappears. When the reset (drop-off) timer elapses, the operate timer is reset. Since this happens before another start occurs, the OPERATE output is not activated.

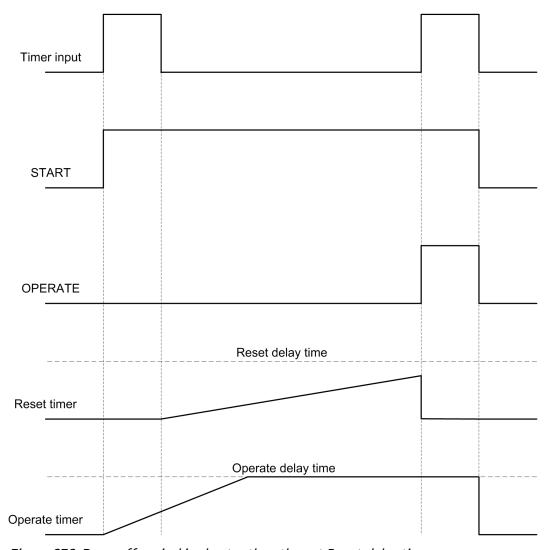


Figure 376: Drop-off period is shorter than the set Reset delay time

When the drop-off period is shorter than the set *Reset delay time*, as described in *Figure 376*, the input signal for the definite timer (here: timer input) is active, provided that the current is above the set *Start value*. The input signal is inactive when the current is below the set *Start value* and the set hysteresis region. The timer input rises when a fault current is detected. The definite timer activates the START output and the operate timer starts elapsing. The Reset (drop-off) timer starts when the timer input falls, that is, the fault disappears. Another fault situation occurs before the reset (drop-off) timer has elapsed. This causes the activation of the OPERATE output, since the operate timer already has elapsed.

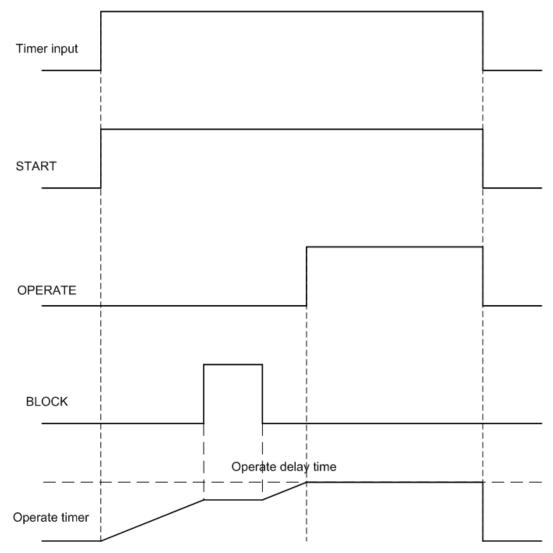


Figure 377: Operating effect of the BLOCK input when the selected blocking mode is "Freeze timer"

If the <code>BLOCK</code> input is activated when the operate timer is running, as described in *Figure 377*, the timer is frozen during the time <code>BLOCK</code> remains active. If the timer input is not active longer than specified by the *Reset delay time* setting, the operate timer is reset in the same way as described in *Figure 375*, regardless of the <code>BLOCK</code> input .

The selected blocking mode is "Freeze timer".

11.2 Current based inverse definite minimum time characteristics

11.2.1 IDMT curves for overcurrent protection

In inverse-time modes, the operation time depends on the momentary value of the current: the higher the current, the faster the operation time. The operation time calculation or integration starts immediately when the current exceeds the set *Start value* and the START output is activated.

The OPERATE output of the component is activated when the cumulative sum of the integrator calculating the overcurrent situation exceeds the value set by the inverse-time mode. The set value depends on the selected curve type and the setting values used. The curve scaling is determined with the *Time multiplier* setting.

There are two methods to level out the inverse-time characteristic.

- The *Minimum operate time* setting defines the minimum operating time for the IDMT curve, that is, the operation time is always at least the *Minimum operate time* setting.
- Alternatively, the IDMT Sat point is used for giving the leveling-out point as a multiple of the Start value setting. (Global setting: Configuration > System > IDMT Sat point). The default parameter value is 50. This setting affects only the overcurrent and earth-fault IDMT timers.

IDMT operation time at currents over 50 x In is not guaranteed.

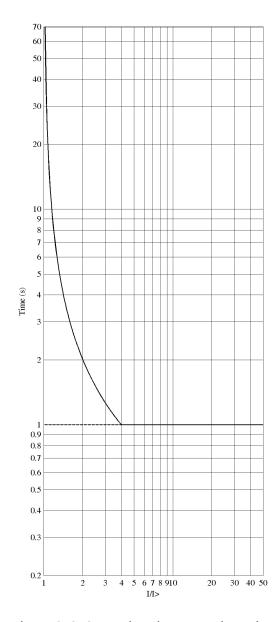


Figure 378: Operation time curve based on the IDMT characteristic leveled out with the Minimum operate time setting is set to 1000 milliseconds (the IDMT Sat point setting is set to maximum).

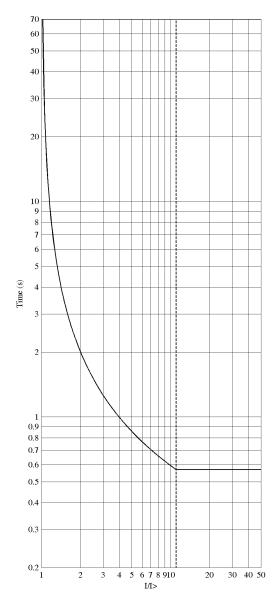


Figure 379: Operation time curve based on the IDMT characteristic leveled out with IDMT Sat point setting value "11" (the Minimum operate time setting is set to minimum).

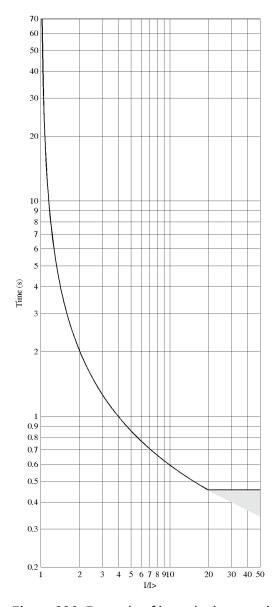


Figure 380: Example of how the inverse time characteristic is leveled out with currents over 50 x In and the Setting Start value setting "2.5 x In". (the IDMT Sat point setting is set to maximum and the Minimum operate time setting is set to minimum).

The grey zone in *Figure 380* shows the behavior of the curve in case the measured current is outside the guaranteed measuring range. Also, the maximum measured current of 50×10^{-2} In gives the leveling-out point $50/2.5 = 20 \times 1/1$.

11.2.1.1 Standard inverse-time characteristics

For inverse-time operation, both IEC and ANSI/IEEE standardized inverse-time characteristics are supported.

The operate times for the ANSI and IEC IDMT curves are defined with the coefficients A, B and C.

The values of the coefficients can be calculated according to the formula:

$$t[s] = \left(\frac{A}{\left(\frac{I}{I>}\right)^{c} - 1} + B\right) \cdot k$$

(Equation 77)

t[s] Operate time in seconds

I measured current
I> set *Start value*k set *Time multiplier*

Table 726: Curve parameters for ANSI and IEC IDMT curves

Curve name	Α	В	С
(1) ANSI Extremely Inverse	28.2	0.1217	2.0
(2) ANSI Very Inverse	19.61	0.491	2.0
(3) ANSI Normal Inverse	0.0086	0.0185	0.02
(4) ANSI Moderately Inverse	0.0515	0.1140	0.02
(6) Long Time Ex- tremely Inverse	64.07	0.250	2.0
(7) Long Time Very Inverse	28.55	0.712	2.0
(8) Long Time Inverse	0.086	0.185	0.02
(9) IEC Normal Inverse	0.14	0.0	0.02
(10) IEC Very Inverse	13.5	0.0	1.0
(11) IEC Inverse	0.14	0.0	0.02
(12) IEC Extremely Inverse	80.0	0.0	2.0
(13) IEC Short Time Inverse	0.05	0.0	0.04
(14) IEC Long Time Inverse	120	0.0	1.0

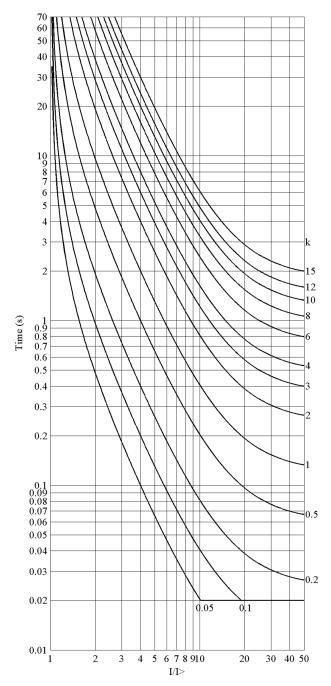


Figure 381: ANSI extremely inverse-time characteristics

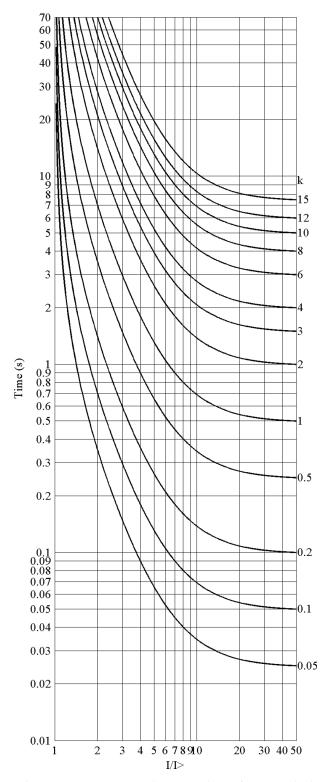


Figure 382: ANSI very inverse-time characteristics

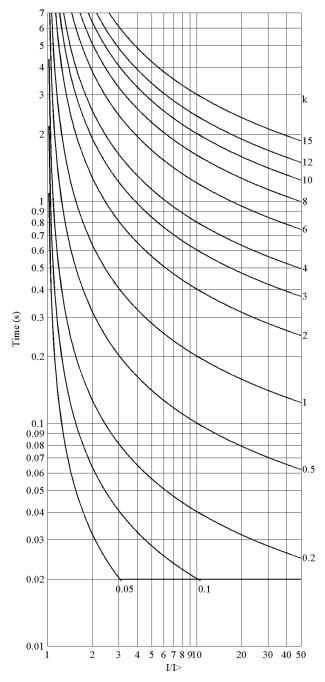


Figure 383: ANSI normal inverse-time characteristics

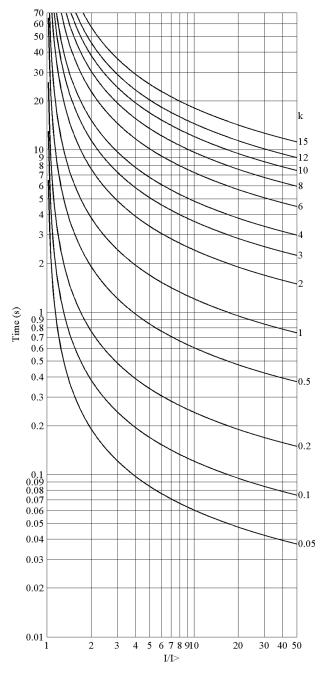


Figure 384: ANSI moderately inverse-time characteristics

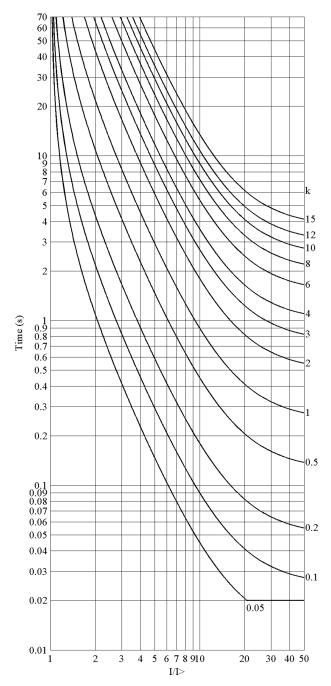


Figure 385: ANSI long-time extremely inverse-time characteristics

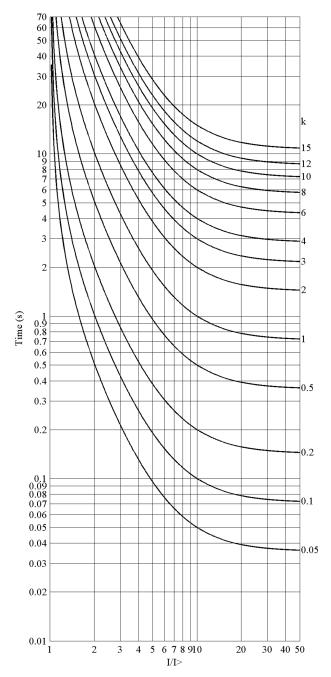


Figure 386: ANSI long-time very inverse-time characteristics

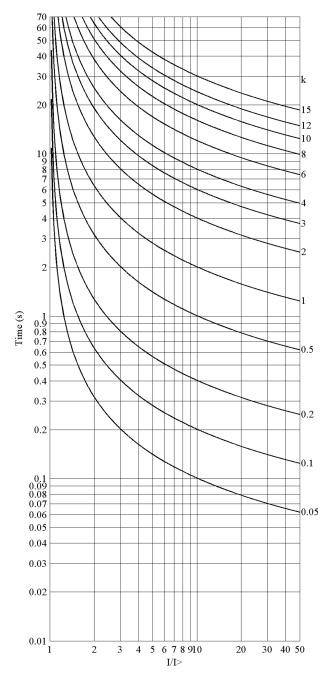


Figure 387: ANSI long-time inverse-time characteristics

Figure 388: IEC normal inverse-time characteristics

Figure 389: IEC very inverse-time characteristics

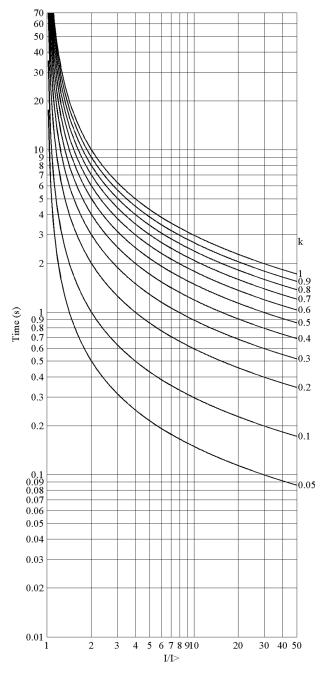


Figure 390: IEC inverse-time characteristics

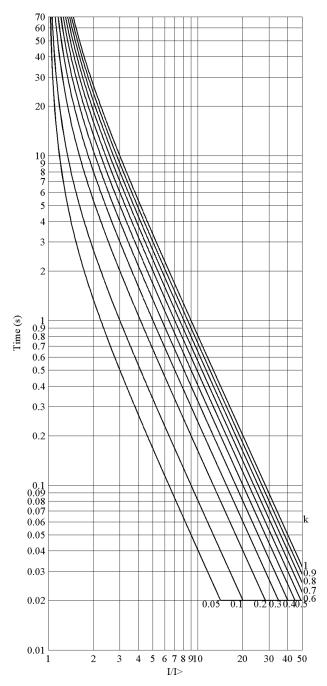


Figure 391: IEC extremely inverse-time characteristics

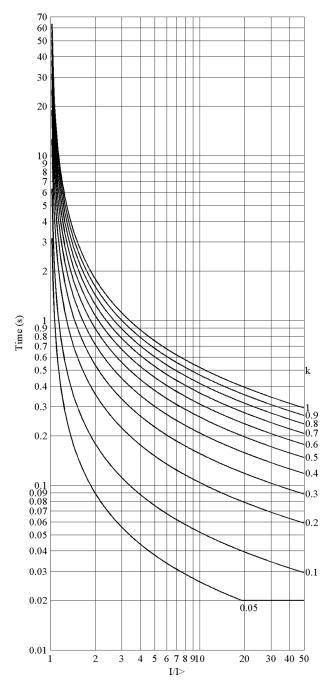


Figure 392: IEC short-time inverse-time characteristics

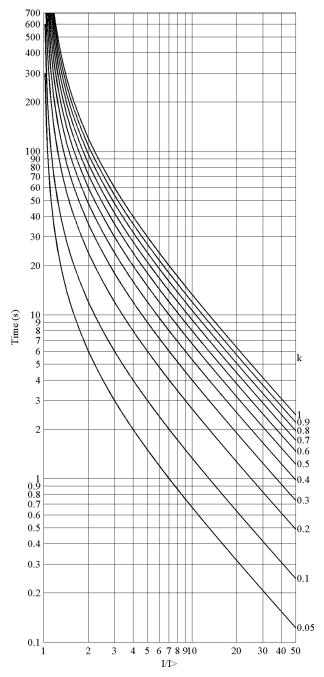


Figure 393: IEC long-time inverse-time characteristics

11.2.1.2 User-programmable inverse-time characteristics

The user can define curves by entering parameters into the following standard formula:

$$t[s] = \left(\frac{A}{\left(\frac{I}{I>}\right)^{c} - E} + B\right) \cdot k$$

(Equation 78)

t[s] Operate time (in seconds)

A set Curve parameter A

B set Curve parameter B

C set Curve parameter C

E set Curve parameter E

I Measured current

I> set Start value

k set Time multiplier

11.2.1.3 RI and RD-type inverse-time characteristics

The RI-type simulates the behavior of electromechanical relays. The RD-type is an earth-fault specific characteristic.

The RI-type is calculated using the formula

$$t[s] = \left(\frac{k}{0.339 - 0.236 \times \frac{I}{I}}\right)$$

(Equation 79)

The RD-type is calculated using the formula

$$t[s] = 5.8 - 1.35 \times \ln\left(\frac{I}{k \times I}\right)$$

762

(Equation 80)

t[s] Operate time (in seconds)
k set *Time multiplier*I Measured current
I> set *Start value*

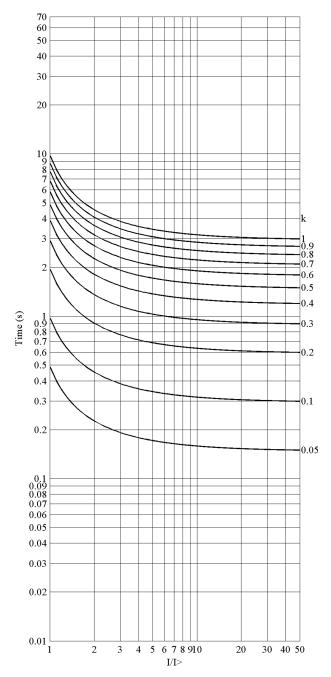


Figure 394: RI-type inverse-time characteristics

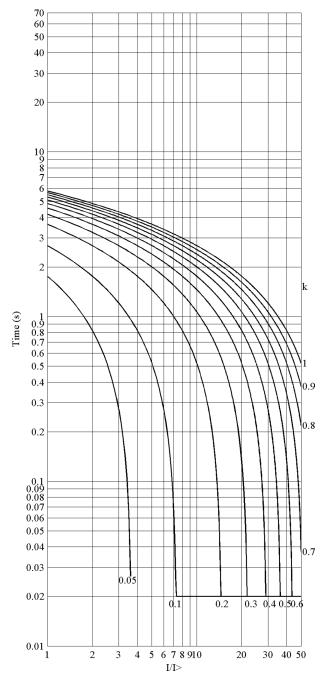


Figure 395: RD-type inverse-time characteristics

11.2.2 Recloser inverse-time characteristics

For inverse-time operation, standard recloser inverse-time characteristics are supported.

The trip times for the curves are defined with the coefficients A, B, and C.

The values of the coefficients can be calculated according to the formula:

$$t[s] = \left(\frac{A}{\left(\frac{I}{I>}\right)^{c} - D} + B\right) \times k$$

(Equation 81)

t[s] Operate time in seconds

I measured current
I> set *Start value*

k set *Time multiplier*

Table 727: Curve parameters for recloser curves

Curve name	A	В	С	D		
Recloser 1 (102)	Point to point data					
Recloser 2 (135)	11.4161	0.488986	1.84911	0.239257		
Recloser 3 (140)	13.5457	0.992904	1.76391	0.379882		
Recloser 4 (106)	Point to point data					
Recloser 5 (114)	Point to point data					
Recloser 6 (136)	Point to point data					
Recloser 7 (152)	Point to point data					
Recloser 8 (113)	1.68546	0.158114	1.78873	0.436523		
Recloser 8+ (111)	1.42732	-0.003704	1.70112	0.366699		
Recloser 8*	1.42302	-0.007846	1.42529	0.442626		
Recloser 9 (131)	2.75978	5.10647	1.0353	0.614258		
Recloser 11 (141)	21.6149	10.6768	2.69489	-0.67185		
Recloser 13 (142)	Point to point data					
Recloser 14 (119)	Point to point data					
Recloser 15 (112)	Point to point data					
Recloser 16 (139)	Point to point data					
Recloser 17 (103)	Point to point data					
Recloser 18 (151)	Point to point data					

Table continues on the next page

Curve name	A	В	С	D	
Recloser A (101)	Point to point data				
Recloser B (117)	4.22886	0.008933	1.7822	0.319885	
Recloser C (133)	8.76047	0.029977	1.80788	0.380004	
Recloser D (116)	5.23168	0.000462	2.17125	0.17205	
Recloser E (132)	10.7656	0.004284	2.18261	0.249969	
Recloser F (163)	Point to point data				
Recloser G (121)	Point to point data				
Recloser H (122)	Point to point data				
Recloser J (164)	Point to point data				
Recloser K- Ground (165)	Point to point data				
Recloser K- Phase (162)	11.9847	-0.000324	2.01174	0.688477	
Recloser L (107)	Point to point data				
Recloser M (118)	Point to point data				
Recloser N (104)	0.285625	-0.71079	0.911551	0.464202	
Recloser P (115)	Point to point data				
Recloser P (115)	Point to point data				
Recloser R (105)	0.001015	-0.13381	0.00227	0.998848	
Recloser T (161)	Point to point data				
Recloser V (137)	Point to point data				
Recloser W (138)	15.4628	0.056438	1.6209	0.345703	
Recloser Y (120)	Point to point data				
Recloser Z (134)	Point to point data				



Figure 396: Recloser curve 1 (102)

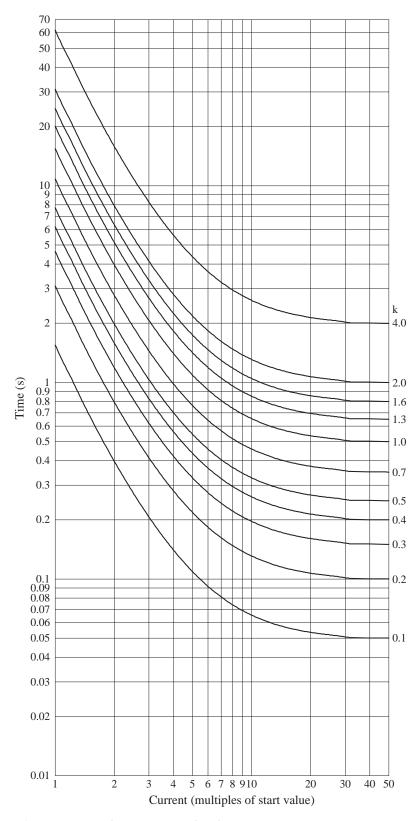


Figure 397: Recloser curve 2 (135)

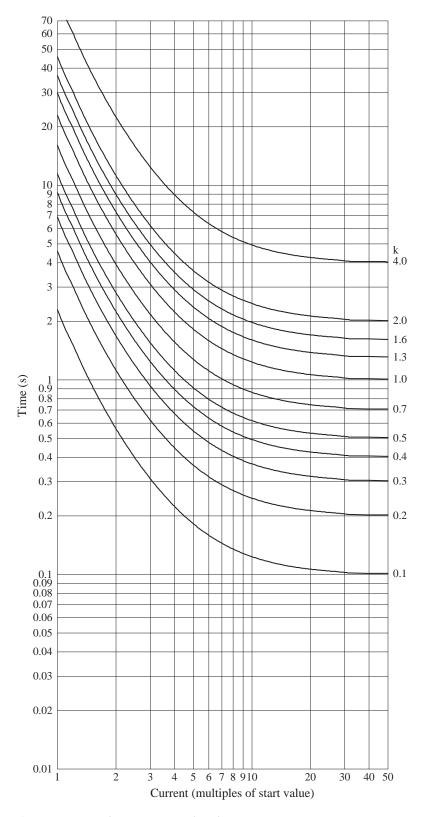


Figure 398: Recloser curve 3 (140)

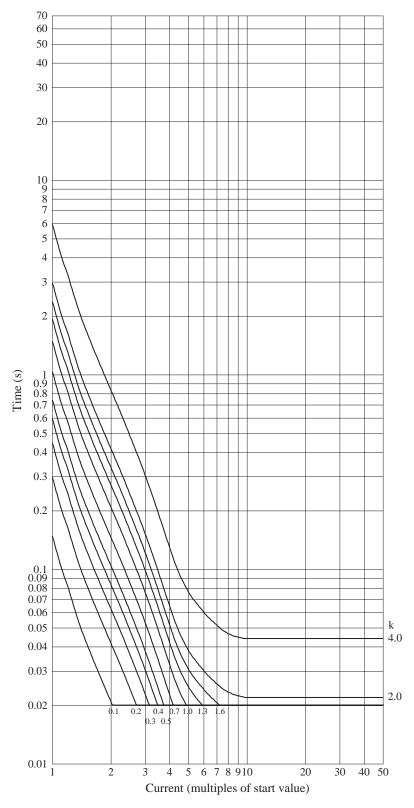


Figure 399: Recloser curve 4 (106)

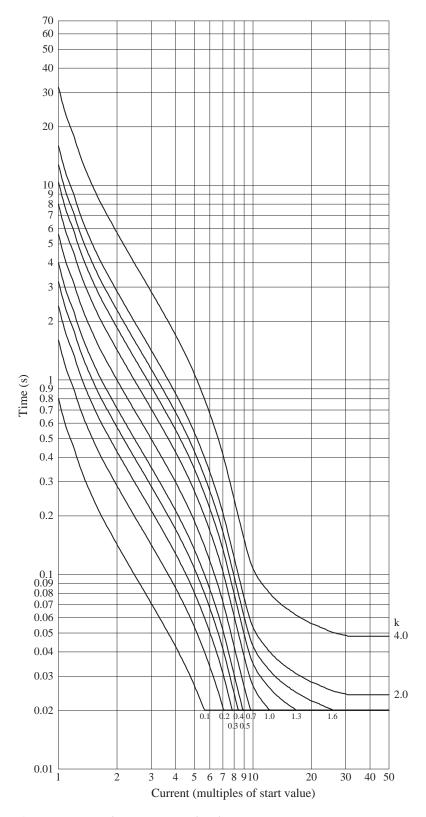


Figure 400: Recloser curve 5 (114)

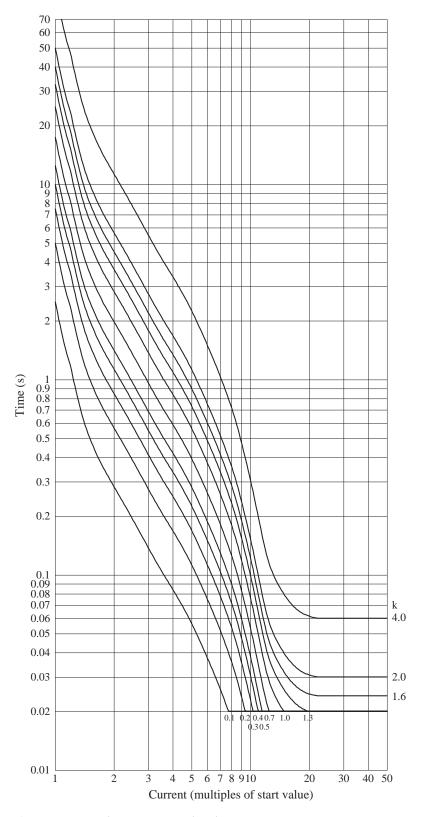


Figure 401: Recloser curve 6 (136)

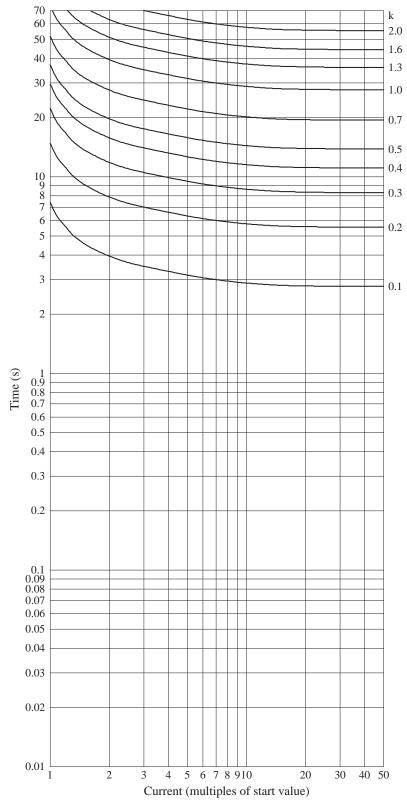


Figure 402: Recloser curve 7 (152)

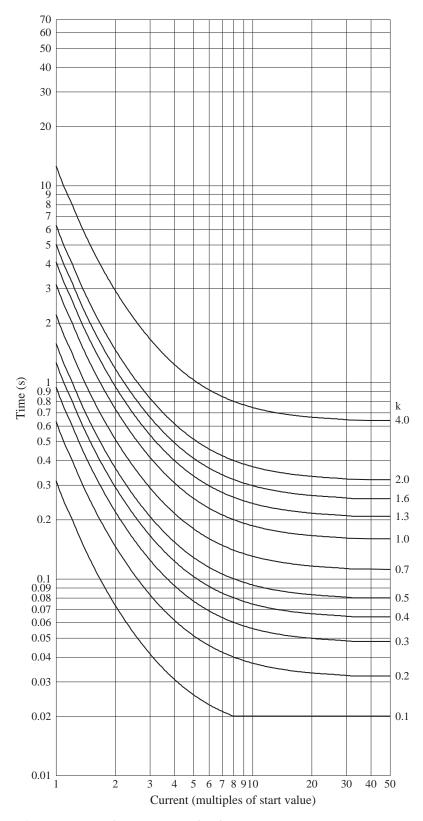


Figure 403: Recloser curve 8 (113)

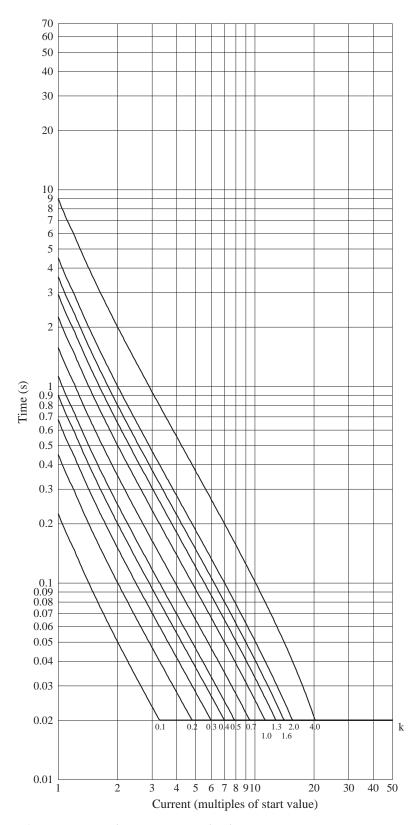


Figure 404: Recloser curve 8+ (111)

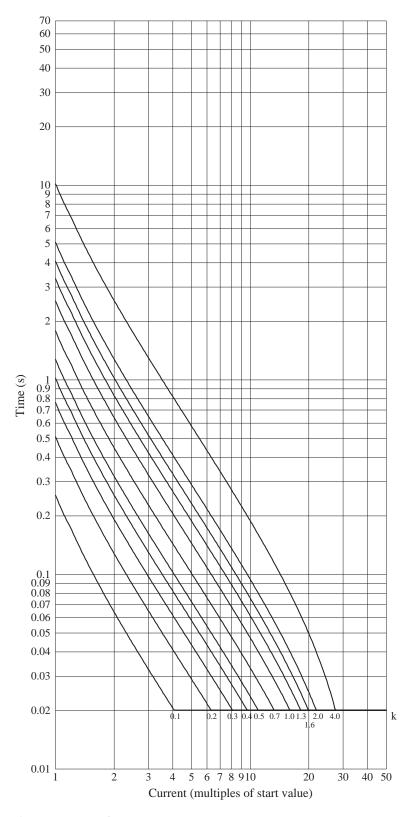


Figure 405: Recloser curve 8*

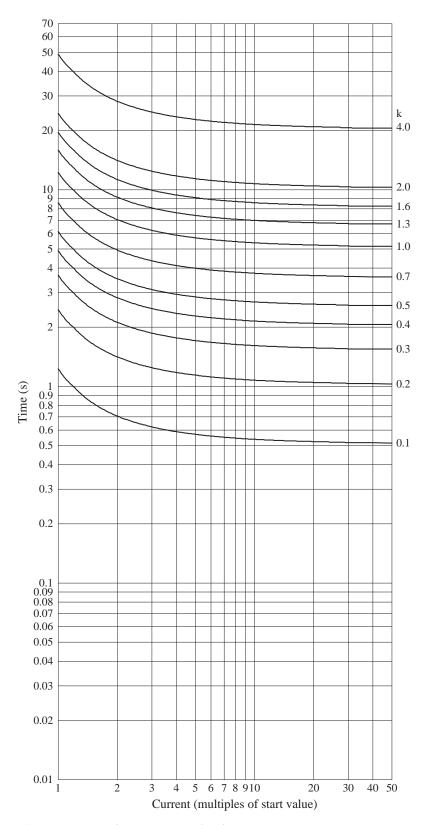


Figure 406: Recloser curve 9 (131)

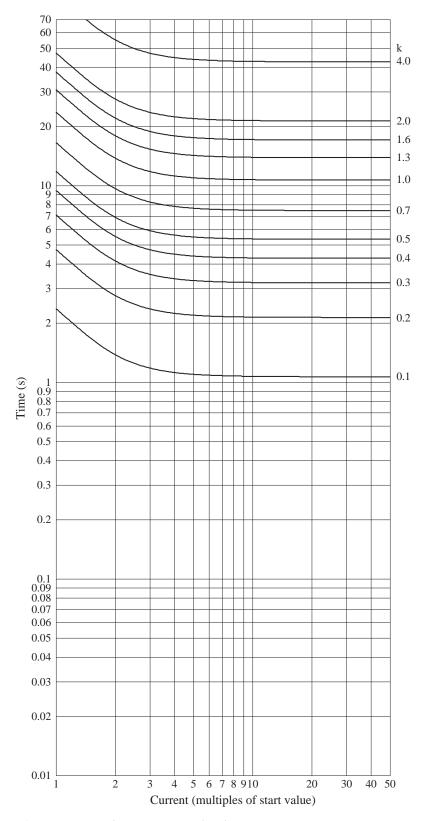


Figure 407: Recloser curve 11 (141)

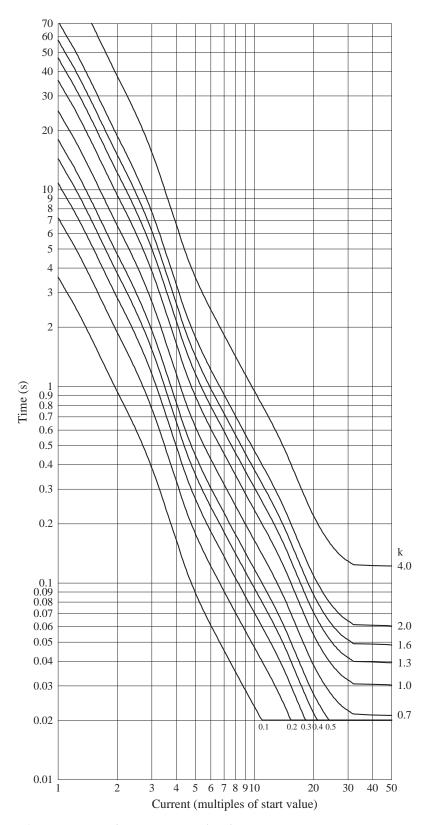


Figure 408: Recloser curve 13 (142)

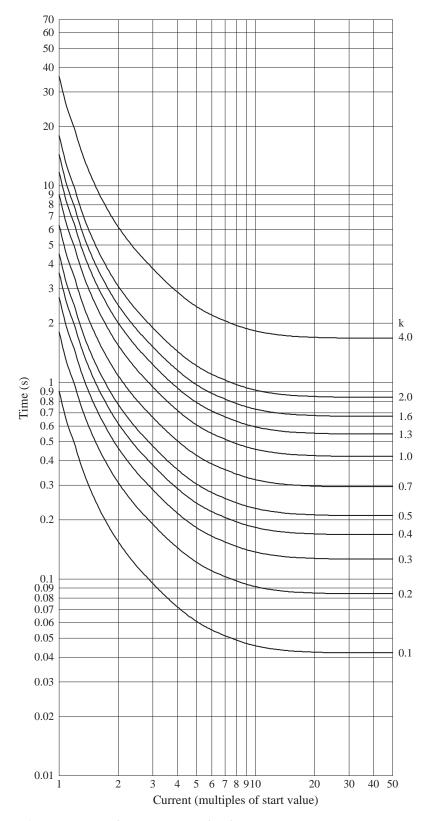


Figure 409: Recloser curve 14 (119)

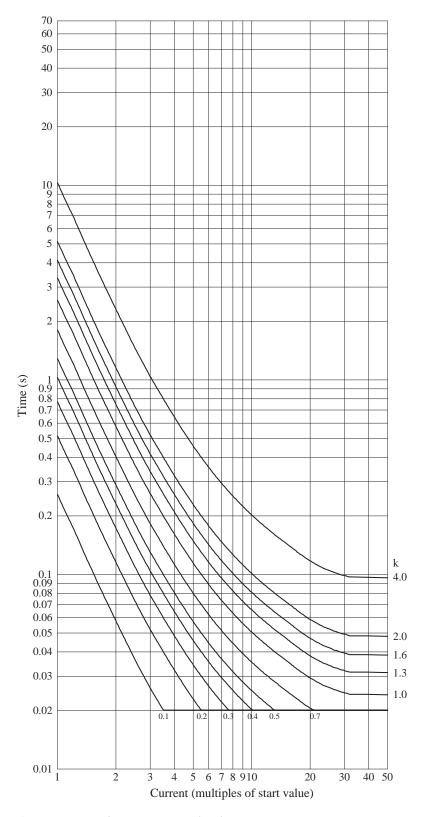


Figure 410: Recloser curve 15 (112)

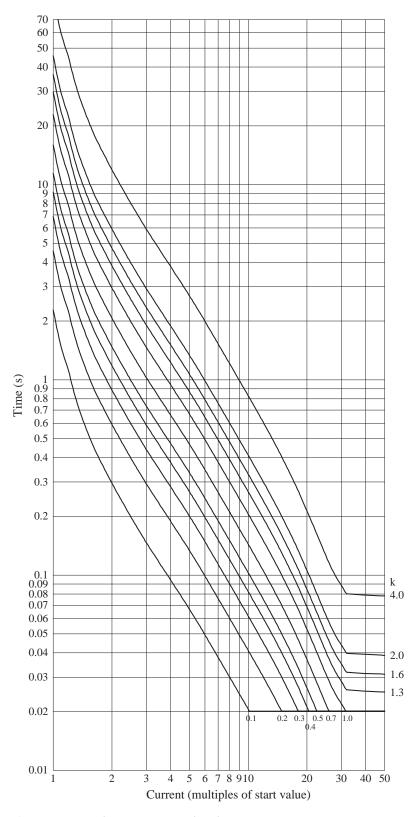


Figure 411: Recloser curve 16 (139)

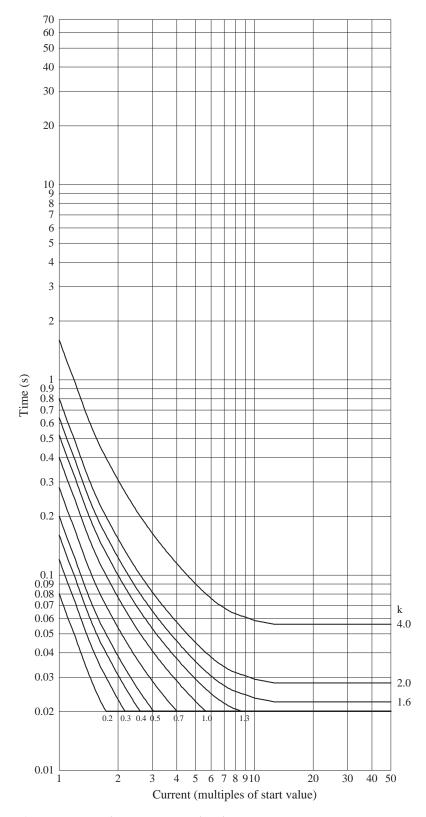


Figure 412: Recloser curve 17 (103)

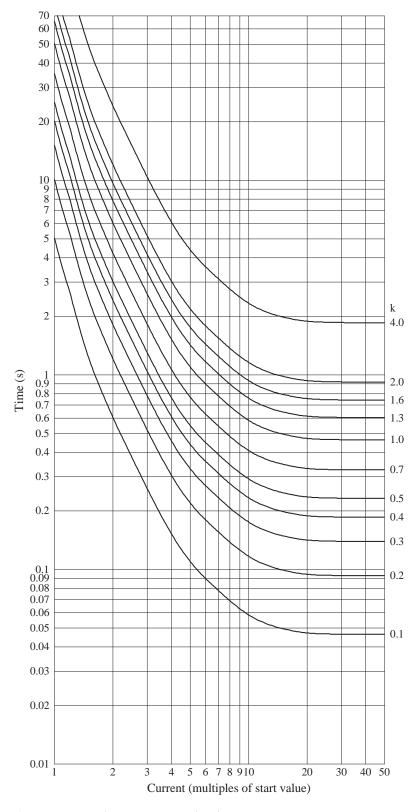


Figure 413: Recloser curve 18 (151)

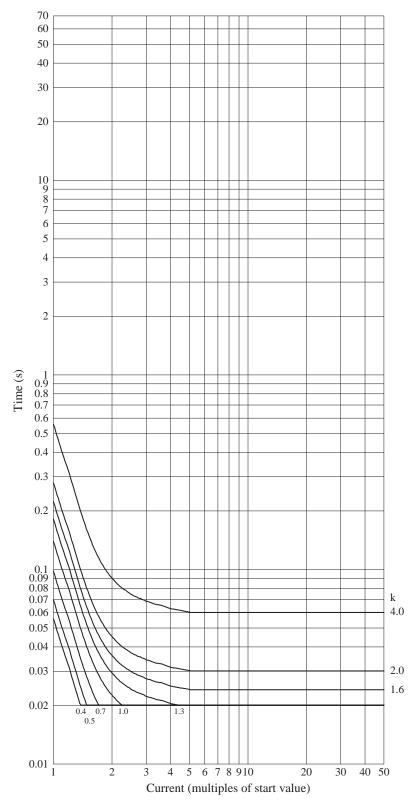


Figure 414: Recloser curve A (101)

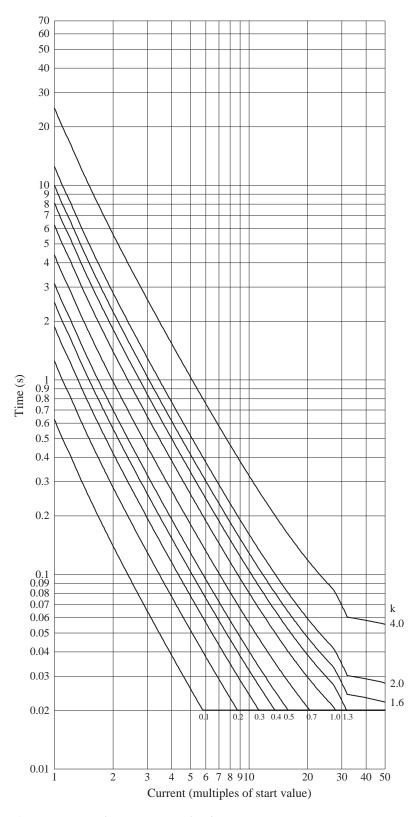


Figure 415: Recloser curve B (117)

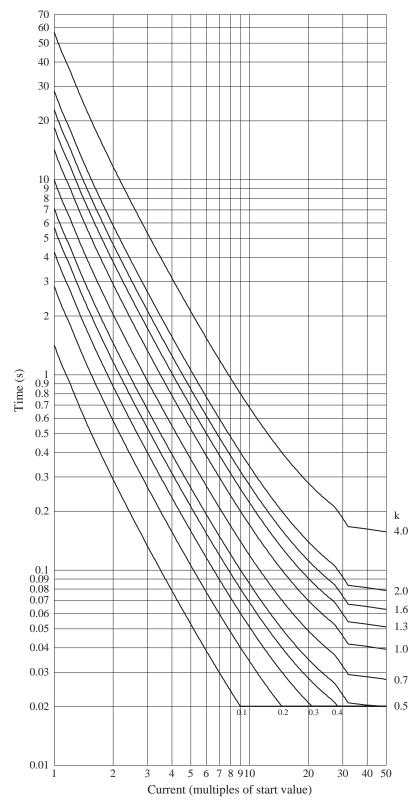


Figure 416: Recloser curve C (133)

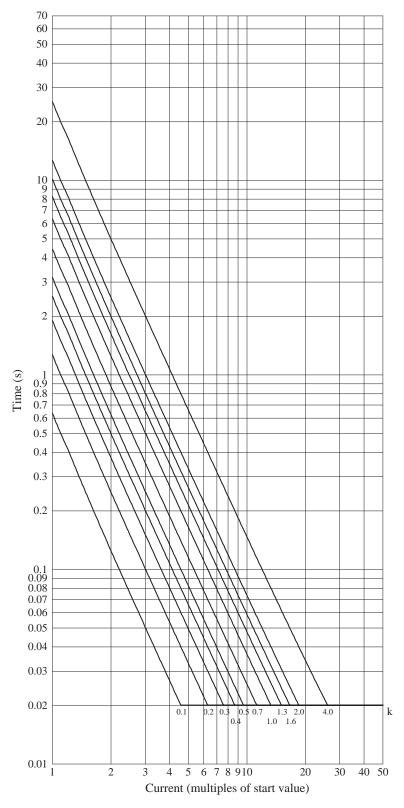


Figure 417: Recloser curve D (116)

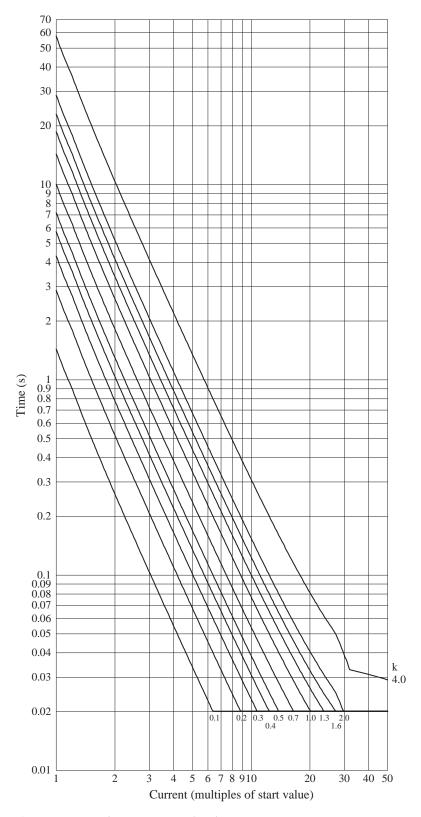


Figure 418: Recloser curve E (132)

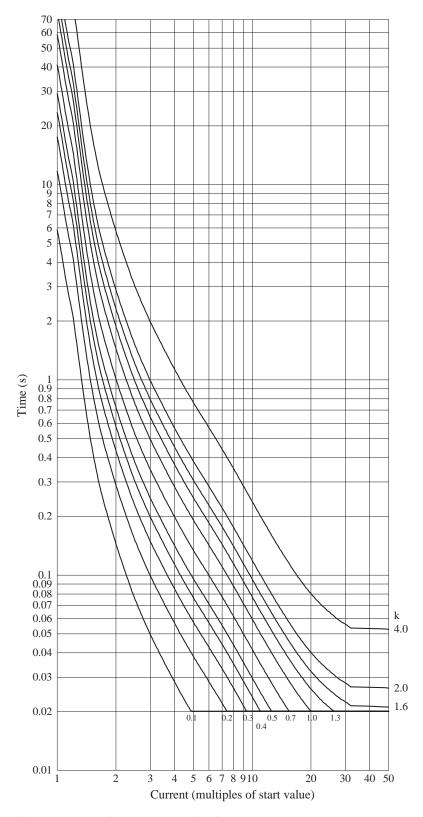


Figure 419: Recloser curve F (163)

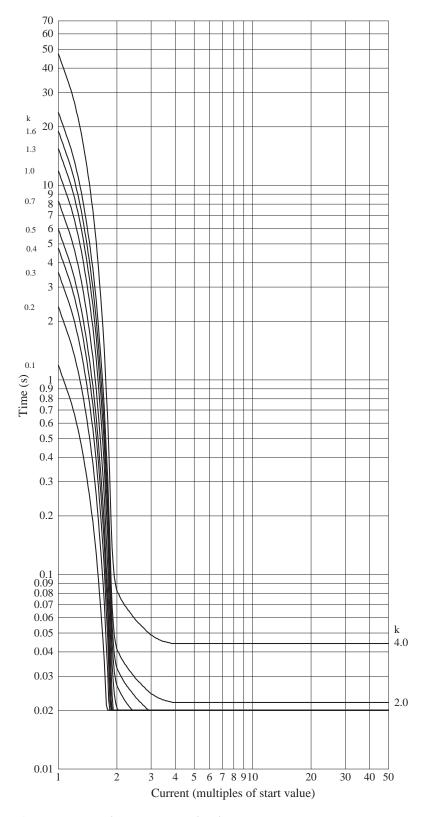


Figure 420: Recloser curve G (121)

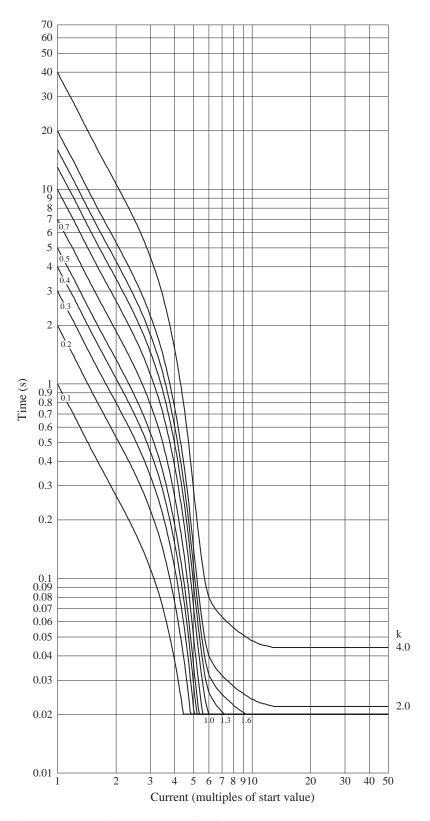


Figure 421: Recloser curve H (122)

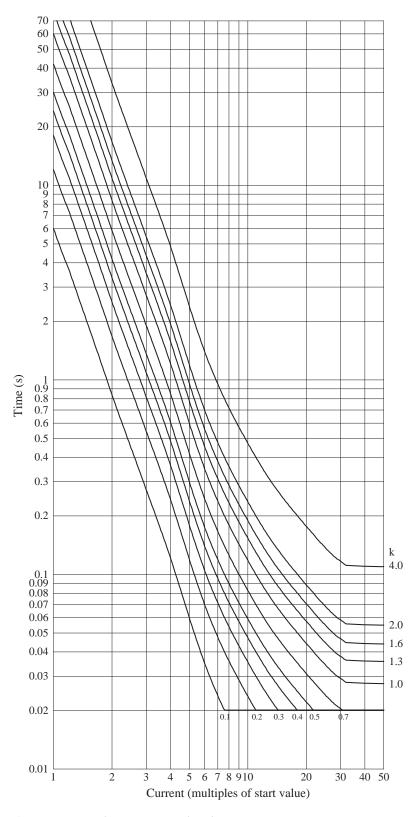


Figure 422: Recloser curve J (164)

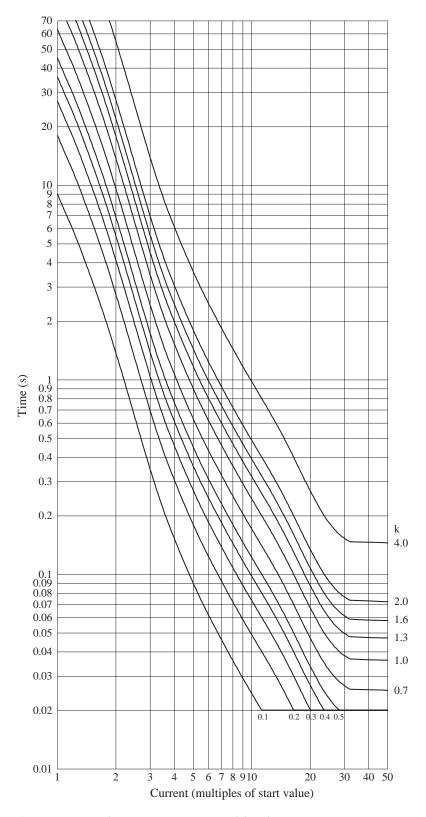


Figure 423: Recloser curve K-ground (165)

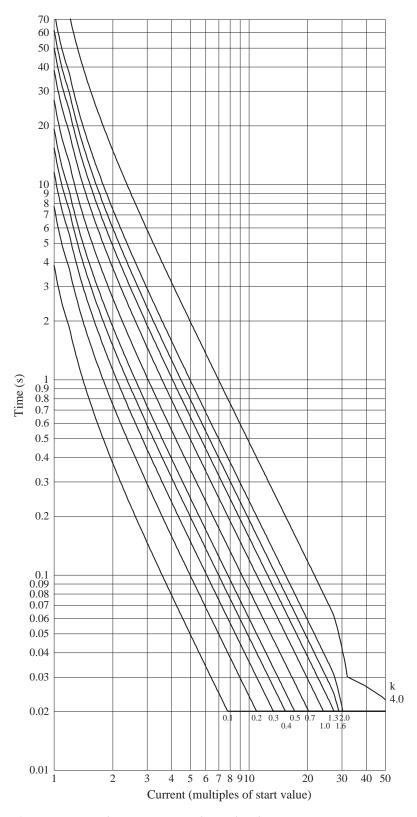


Figure 424: Recloser curve K-phase (162)

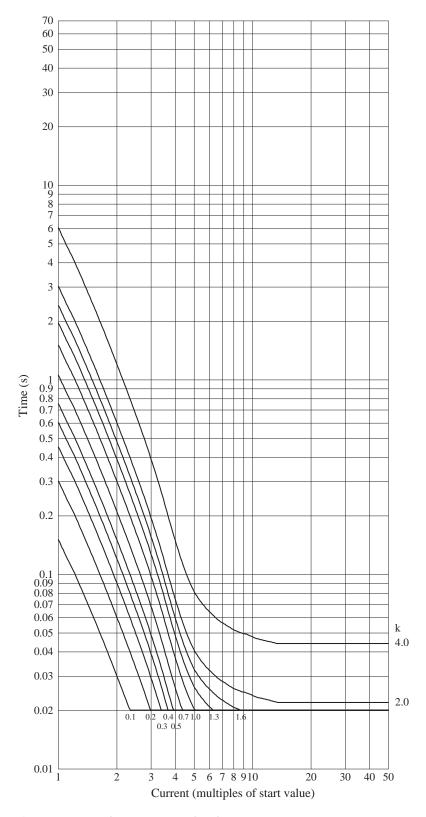


Figure 425: Recloser curve L (107)

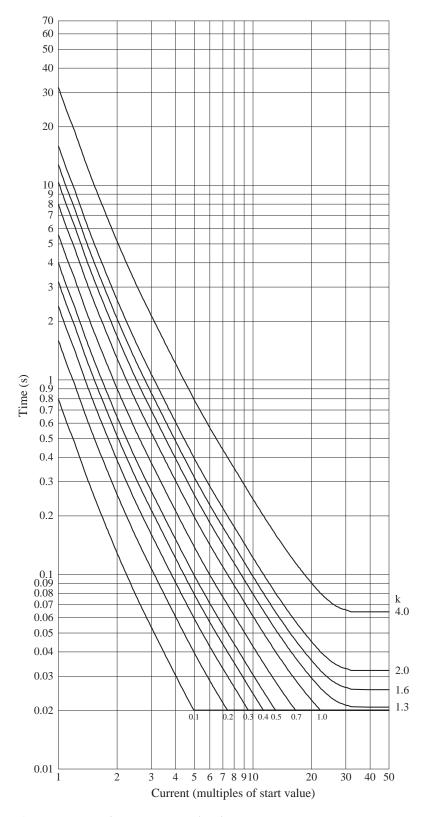


Figure 426: Recloser curve M (118)

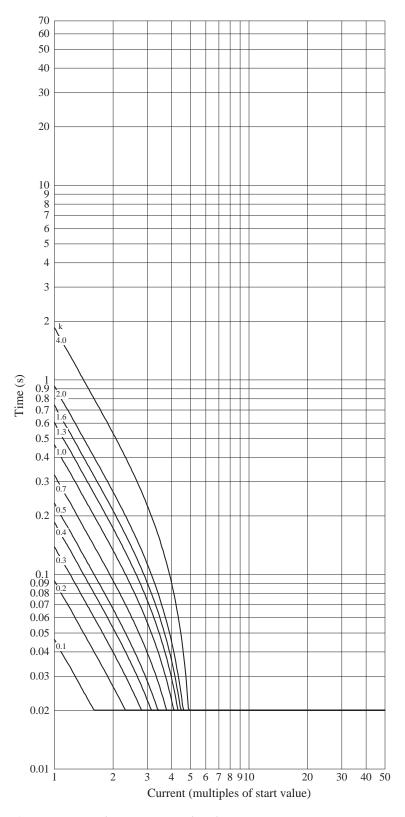


Figure 427: Recloser curve N (104)

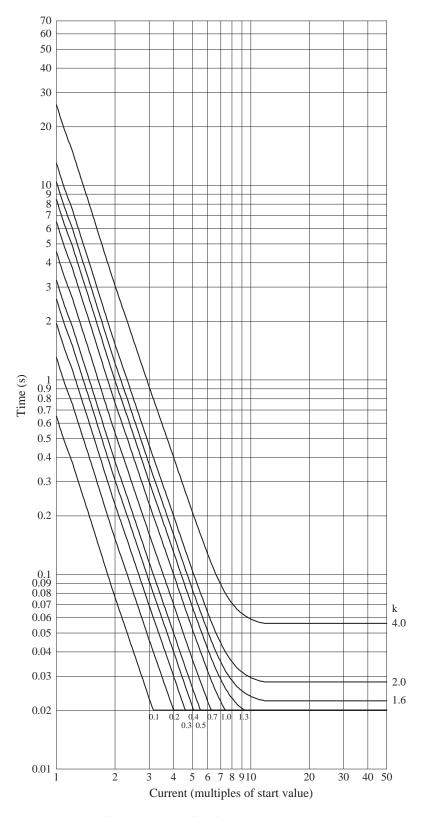


Figure 428: Recloser curve P (115)

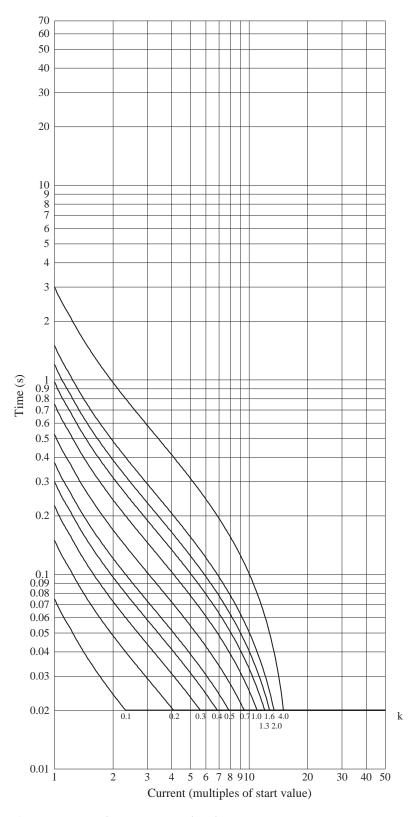


Figure 429: Recloser curve R (105)

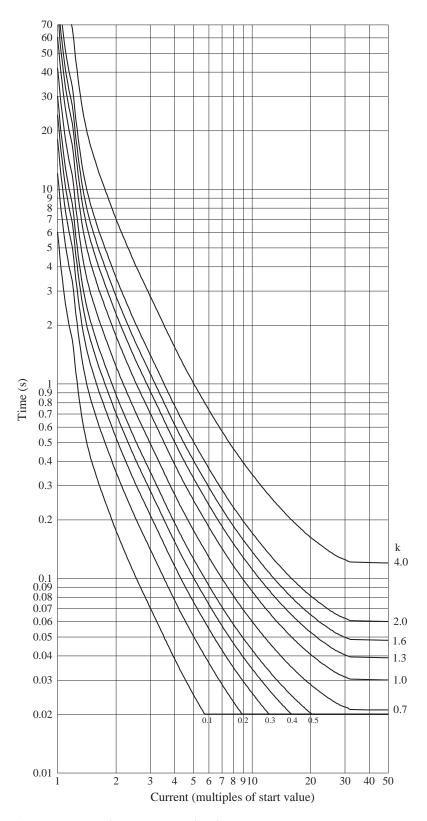


Figure 430: Recloser curve T (161)

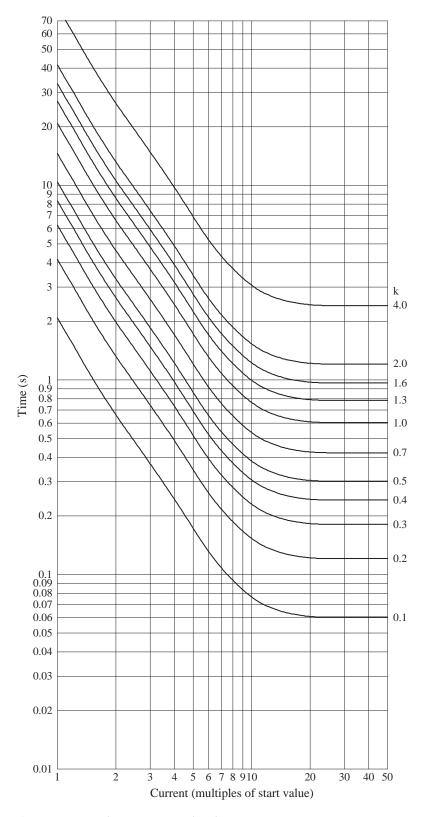


Figure 431: Recloser curve V (137)

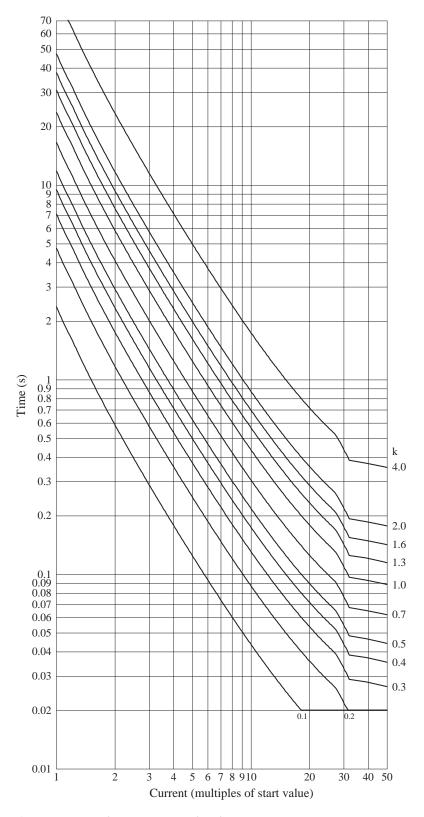


Figure 432: Recloser curve W (138)

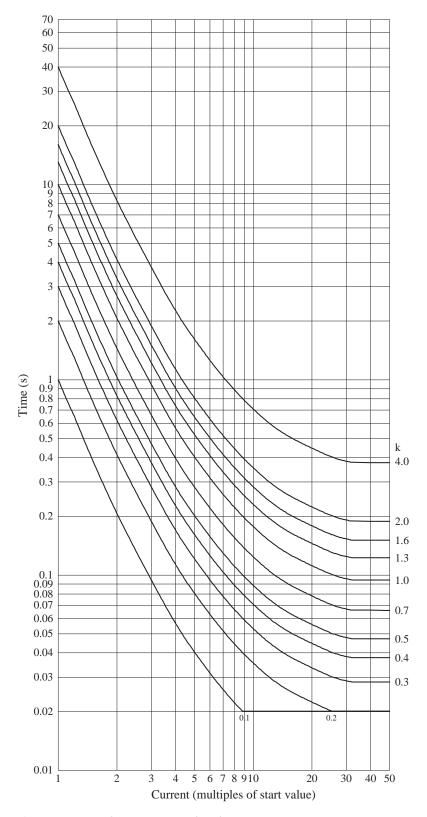


Figure 433: Recloser curve Y (120)

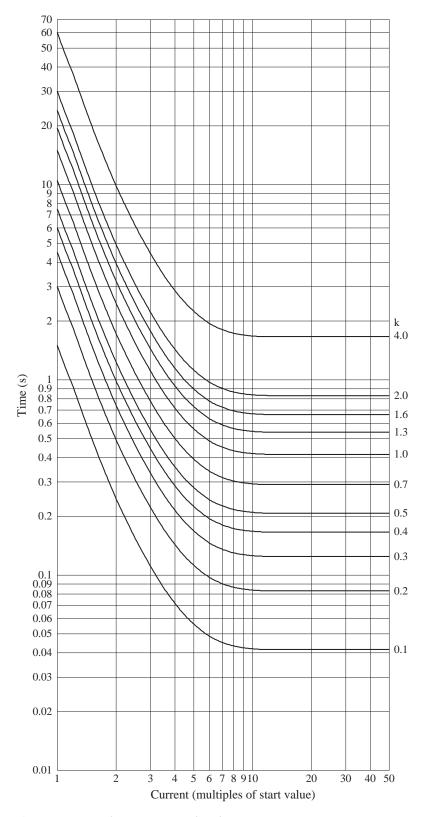


Figure 434: Recloser curve Z (134)

11.2.3 Reset in inverse-time modes

The user can select the reset characteristics by using the *Type of reset curve* setting.

Table 728: Values for reset mode

Setting name	Possible values
Type of reset curve	1=Immediate
	2=Def time reset
	3=Inverse reset

Immediate reset

If the *Type of reset curve* setting in a drop-off case is selected as "Immediate", the inverse timer resets immediately.

Definite time reset

The definite type of reset in the inverse-time mode can be achieved by setting the *Type of reset curve* parameter to "Def time reset". As a result, the operate inverse-time counter is frozen for the time determined with the *Reset delay time* setting after the current drops below the set *Start value*, including hysteresis. The integral sum of the inverse-time counter is reset, if another start does not occur during the reset delay.

If the *Type of reset curve* setting is selected as "Def time reset", the current level has no influence on the reset characteristic.

Inverse reset

Inverse reset curves are available only for ANSI and user-programmable curves. If you use other curve types, immediate reset occurs.

Standard delayed inverse reset

The reset characteristic required in ANSI (IEEE) inverse-time modes is provided by setting the *Type of reset curve* parameter to "Inverse reset". In this mode, the time delay for reset is given with the following formula using the coefficient D, which has its values defined in the table below.

$$t[s] = \left(\frac{D}{\left(\frac{I}{I>}\right)^2 - 1}\right) \cdot k$$

(Equation 82)

t[s] Reset time (in seconds) k set *Time multiplier*

Table continues on the next page

- I Measured current
- I> set Start value

Table 729: Coefficients for ANSI delayed inverse reset curves

Curve name	D
(1) ANSI Extremely Inverse	29.1
(2) ANSI Very Inverse	21.6
(3) ANSI Normal Inverse	0.46
(4) ANSI Moderately Inverse	4.85
(6) Long Time Extremely Inverse	30
(7) Long Time Very Inverse	13.46
(8) Long Time Inverse	4.6

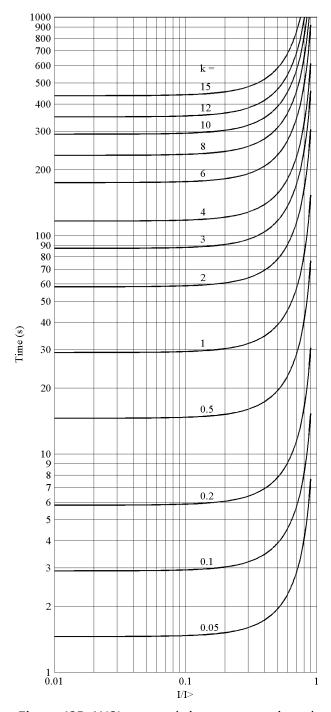


Figure 435: ANSI extremely inverse reset time characteristics

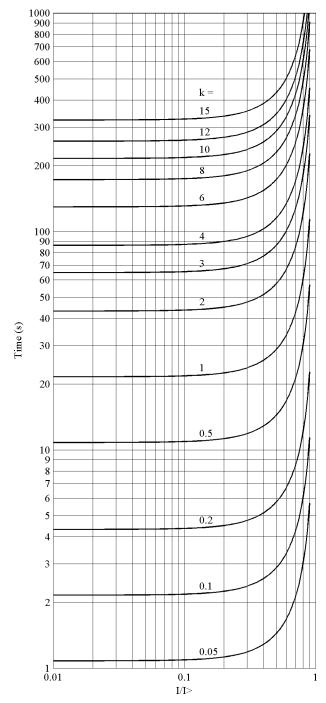


Figure 436: ANSI very inverse reset time characteristics

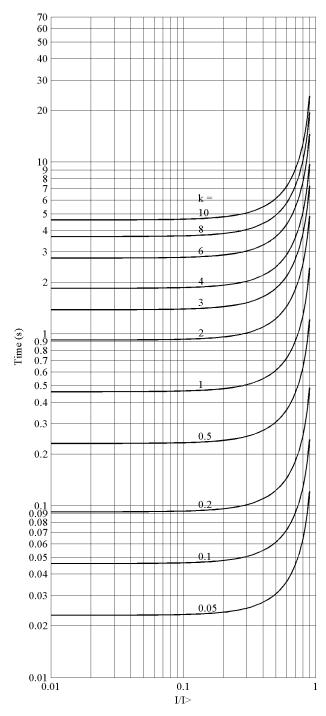


Figure 437: ANSI normal inverse reset time characteristics

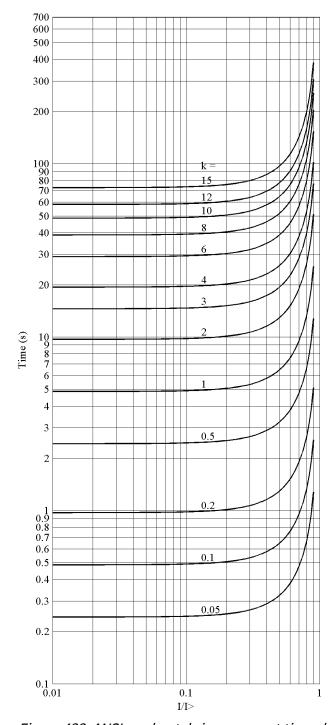


Figure 438: ANSI moderately inverse reset time characteristics

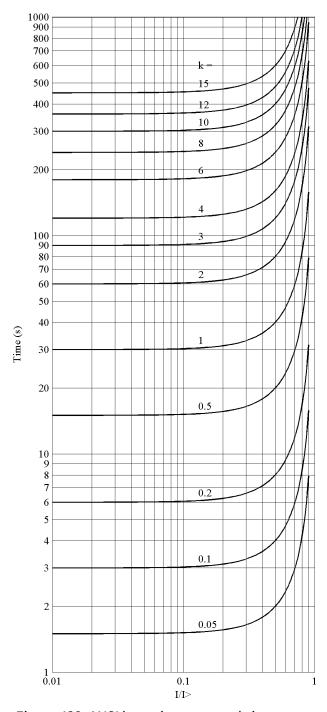


Figure 439: ANSI long-time extremely inverse reset time characteristics

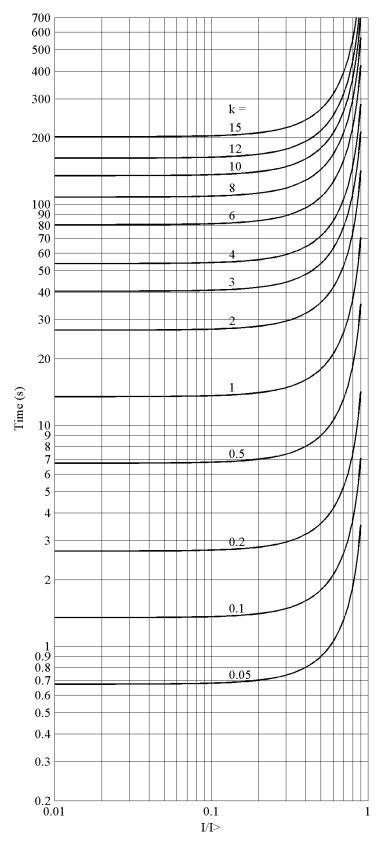


Figure 440: ANSI long-time very inverse reset time characteristics

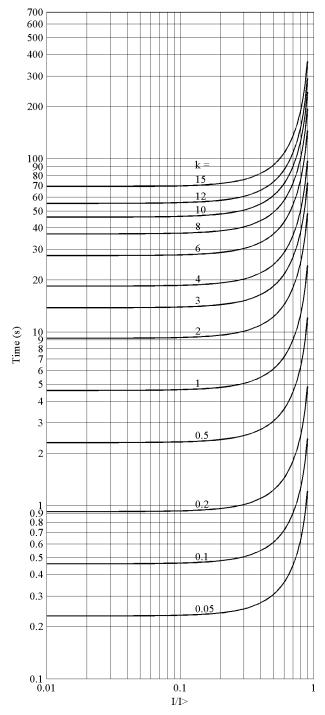


Figure 441: ANSI long-time inverse reset time characteristics

The delayed inverse-time reset is not available for IEC-type inverse time curves.

User-programmable delayed inverse reset

The user can define the delayed inverse reset time characteristics with the following formula using the set *Curve parameter D*.

$$t[s] = \left(\frac{D}{\left(\frac{I}{I>}\right)^2 - 1}\right) \cdot k$$

(Equation 83)

t[s] Reset time (in seconds)
k set *Time multiplier*D set *Curve parameter D*I Measured current
I> set *Start value*

11.2.4 Inverse-timer freezing

When the BLOCK input is active, the internal value of the time counter is frozen at the value of the moment just before the freezing. Freezing of the counter value is chosen when the user does not wish the counter value to count upwards or to be reset. This may be the case, for example, when the inverse-time function of a protection relay needs to be blocked to enable the definite-time operation of another protection relay for selectivity reasons, especially if different relaying techniques (old and modern relays) are applied.

The selected blocking mode is "Freeze timer".

The activation of the BLOCK input also lengthens the minimum delay value of the timer.

Activating the BLOCK input alone does not affect the operation of the START output. It still becomes active when the current exceeds the set *Start value*, and inactive when the current falls below the set *Start value* and the set *Reset delay time* has expired.

11.3 Voltage based inverse definite minimum time characteristics

11.3.1 IDMT curves for overvoltage protection

In inverse-time modes, the operate time depends on the momentary value of the voltage, the higher the voltage, the faster the operate time. The operate time calculation or integration starts immediately when the voltage exceeds the set value of the *Start value* setting and the START output is activated.

The OPERATE output of the component is activated when the cumulative sum of the integrator calculating the overvoltage situation exceeds the value set by the inverse time mode. The set value depends on the selected curve type and the setting values used. The user determines the curve scaling with the *Time multiplier* setting.

The *Minimum operate time* setting defines the minimum operate time for the IDMT mode, that is, it is possible to limit the IDMT based operate time for not becoming too short. For example:

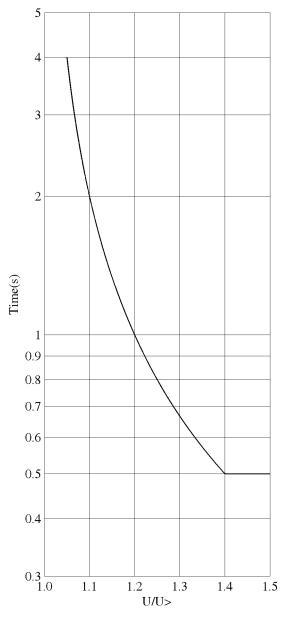


Figure 442: Operate time curve based on IDMT characteristic with Minimum operate time set to 0.5 second

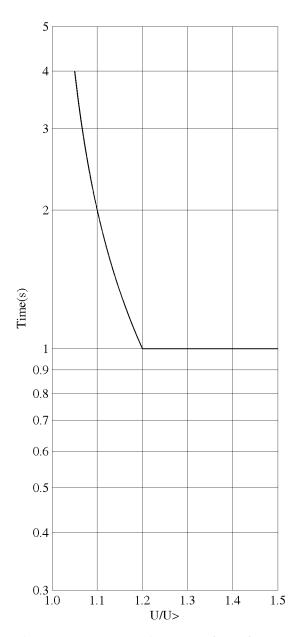


Figure 443: Operate time curve based on IDMT characteristic with Minimum operate time set to 1 second

11.3.1.1 Standard inverse-time characteristics for overvoltage protection

The operate times for the standard overvoltage IDMT curves are defined with the coefficients A, B, C, D and E.

The inverse operate time can be calculated with the formula:

$$t\left[S\right] = \frac{k \cdot A}{\left(B \times \frac{U - U}{U} > -C\right)^{E}} + D$$

(Equation 84)

t [s] operate time in seconds

U measured voltage

U> the set value of *Start value* k the set value of *Time multiplier*

Table 730: Curve coefficients for the standard overvoltage IDMT curves

Curve name	A	В	С	D	E
(17) Inverse Curve A	1	1	0	0	1
(18) Inverse Curve B	480	32	0.5	0.035	2
(19) Inverse Curve C	480	32	0.5	0.035	3

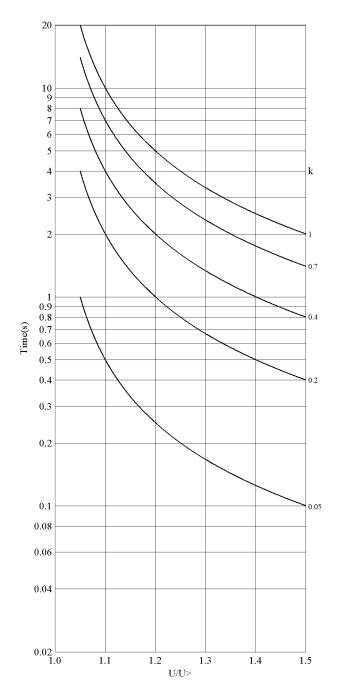


Figure 444: Inverse curve A characteristic of overvoltage protection

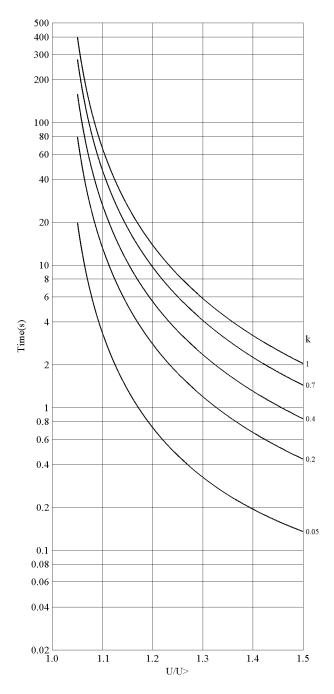


Figure 445: Inverse curve B characteristic of overvoltage protection

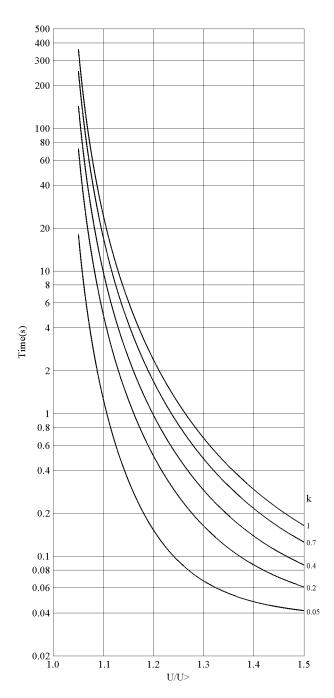


Figure 446: Inverse curve C characteristic of overvoltage protection

11.3.1.2 User programmable inverse-time characteristics for overvoltage protection

The user can define the curves by entering the parameters using the standard formula:

$$t\left[S\right] = \frac{k \cdot A}{\left(B \times \frac{U - U}{U} > -C\right)^{E}} + D$$

(Equation 85)

t[s] operate time in seconds Α the set value of Curve parameter A В the set value of Curve parameter B C the set value of Curve parameter C D the set value of Curve parameter D F the set value of Curve parameter E U measured voltage U> the set value of Start value k the set value of Time multiplier

11.3.1.3 IDMT curve saturation of overvoltage protection

For the overvoltage IDMT mode of operation, the integration of the operate time does not start until the voltage exceeds the value of Start value. To cope with discontinuity characteristics of the curve, a specific parameter for saturating the equation to a fixed value is created. The Curve Sat Relative setting is the parameter and it is given in percents compared to Start value. For example, due to the curve equation B and C, the characteristics equation output is saturated in such a way that when the input voltages are in the range of Start value to Curve Sat Relative in percent over Start value, the equation uses Start value * (1.0 + Curve Sat Relative / 100) for the measured voltage. Although, the curve A has no discontinuities when the ratio U/U> exceeds the unity, Curve Sat Relative is also set for it. The Curve Sat Relative setting for curves A, B and C is 2.0 percent. However, it should be noted that the user must carefully calculate the curve characteristics concerning the discontinuities in the curve when the programmable curve equation is used. Thus, the Curve Sat Relative parameter gives another degree of freedom to move the inverse curve on the voltage ratio axis and it effectively sets the maximum operate time for the IDMT curve because for the voltage ratio values affecting by this setting, the operation time is fixed, that is, the definite time, depending on the parameters but no longer the voltage.

11.3.2 IDMT curves for undervoltage protection

In the inverse-time modes, the operate time depends on the momentary value of the voltage, the lower the voltage, the faster the operate time. The operate time calculation or integration starts immediately when the voltage goes below the set value of the *Start value* setting and the START output is activated.

The OPERATE output of the component is activated when the cumulative sum of the integrator calculating the undervoltage situation exceeds the value set by the inverse-time mode. The set value depends on the selected curve type and the setting values used. The user determines the curve scaling with the *Time multiplier* setting.

The *Minimum operate time* setting defines the minimum operate time possible for the IDMT mode. For setting a value for this parameter, the user should carefully study the particular IDMT curve.

11.3.2.1 Standard inverse-time characteristics for undervoltage protection

The operate times for the standard undervoltage IDMT curves are defined with the coefficients A, B, C, D and E.

The inverse operate time can be calculated with the formula:

$$t\left[S\right] = \frac{k \cdot A}{\left(B \times \frac{U < -U}{U <} - C\right)^{E}} + D$$

(Equation 86)

t [s] operate time in seconds

U measured voltage

U< the set value of the *Start value* setting k the set value of the *Time multiplier* setting

Table 731: Curve coefficients for standard undervoltage IDMT curves

Curve name	A	В	С	D	E
(21) Inverse Curve A	1	1	0	0	1
(22) Inverse Curve B	480	32	0.5	0.055	2

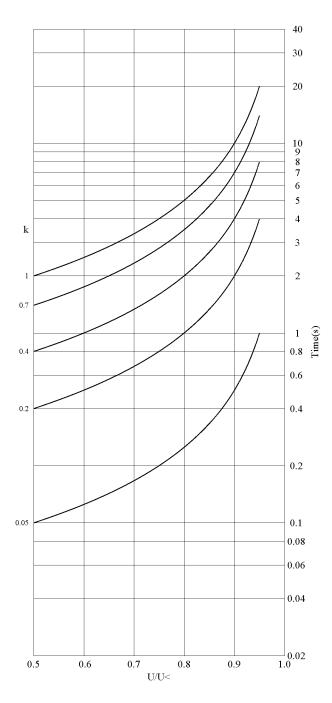


Figure 447: : Inverse curve A characteristic of undervoltage protection

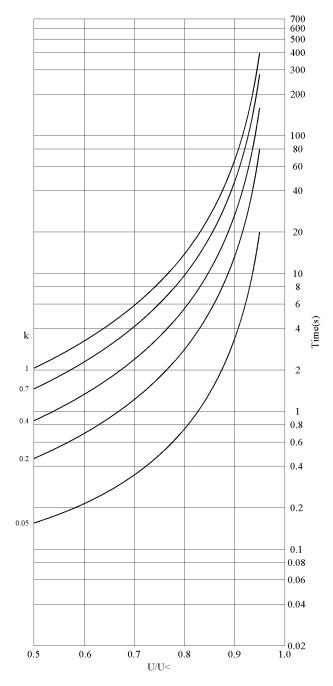


Figure 448: Inverse curve B characteristic of undervoltage protection

11.3.2.2 User-programmable inverse-time characteristics for undervoltage protection

The user can define curves by entering parameters into the standard formula:

$$t\left[S\right] = \frac{k \cdot A}{\left(B \times \frac{U < -U}{U < -C}\right)^{E}} + D$$

(Equation 87)

t[s]	operate time in seconds
Α	the set value of $\mathit{Curveparameter}A$
В	the set value of $\mathit{Curve}\ \mathit{parameter}\ \mathit{B}$
С	the set value of $\it Curve\ parameter\ C$
D	the set value of $Curve\ parameter\ D$
E	the set value of $\mathit{Curve}\ \mathit{parameter}\ \mathit{E}$
U	measured voltage
U<	the set value of Start value
k	the set value of <i>Time multiplier</i>

11.3.2.3 IDMT curve saturation of undervoltage protection

For the undervoltage IDMT mode of operation, the integration of the operate time does not start until the voltage falls below the value of Start value. To cope with discontinuity characteristics of the curve, a specific parameter for saturating the equation to a fixed value is created. The Curve Sat Relative setting is the parameter and it is given in percents compared with Start value. For example, due to the curve equation B, the characteristics equation output is saturated in such a way that when input voltages are in the range from Start value to Curve Sat Relative in percents under Start value, the equation uses Start value * (1.0 - Curve Sat Relative/ 100) for the measured voltage. Although, the curve A has no discontinuities when the ratio U/U> exceeds the unity, Curve Sat Relative is set for it as well. The Curve Sat Relative setting for curves A, B and C is 2.0 percent. However, it should be noted that the user must carefully calculate the curve characteristics concerning also discontinuities in the curve when the programmable curve equation is used. Thus, the Curve Sat Relative parameter gives another degree of freedom to move the inverse curve on the voltage ratio axis and it effectively sets the maximum operate time for the IDMT curve because for the voltage ratio values affecting by this setting, the operation time is fixed, that is, the definite time, depending on the parameters but no longer the voltage.

11.4 Frequency measurement and protection

All the function blocks that use frequency quantity as their input signal share the common features related to the frequency measurement algorithm. The frequency estimation is done from one phase (phase-to-phase or phase voltage) or from the positive phase sequence (PPS). The voltage groups with three-phase inputs use PPS as the source. The frequency measurement range is $0.6...1.5 \times F_n$. The df/dt measurement range always starts from $0.6 \times F_n$. When the frequency exceeds these limits, it is regarded as out of range and a minimum or maximum value is held as the measured value respectively with appropriate quality information. The frequency estimation requires 160 ms to stabilize after a bad quality signal. Therefore, a delay

of 160 ms is added to the transition from the bad quality. The bad quality of the signal can be due to restrictions like:

- The source voltage is below 0.02 × U_n at F_n.
- The source voltage waveform is discontinuous.
- The source voltage frequency rate of change exceeds 15 Hz/s (including stepwise frequency changes).

When the bad signal quality is obtained, the nominal or zero (depending on the *Def frequency Sel* setting) frequency value is shown with appropriate quality information in the measurement view. The frequency protection functions are blocked when the quality is bad, thus the timers and the function outputs are reset. When the frequency is out of the function block's setting range but within the measurement range, the protection blocks are running. However, the OPERATE outputs are blocked until the frequency restores to a valid range.

11.5 Measurement modes

In many current or voltage dependent function blocks, there are various alternative measuring principles.

- RMS
- · DFT which is a numerically calculated fundamental component of the signal
- Peak-to-peak
- · Peak-to-peak with peak backup

Consequently, the measurement mode can be selected according to the application.

In extreme cases, for example with high overcurrent or harmonic content, the measurement modes function in a slightly different way. The operation accuracy is defined with the frequency range of f/fn=0.95...1.05. In peak-to-peak and RMS measurement modes, the harmonics of the phase currents are not suppressed, whereas in the fundamental frequency measurement the suppression of harmonics is at least -50 dB at the frequency range of $f=n \times fn$, where n=2,3,4,5,...

RMS

The RMS measurement principle is selected with the *Measurement mode* setting using the value "RMS". RMS consists of both AC and DC components. The AC component is the effective mean value of the positive and negative peak values. RMS is used in applications where the effect of the DC component must be taken into account.

RMS is calculated according to the formula:

$$I_{RMS} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} I_i^2}$$

(Equation 88)

- n The number of samples in a calculation cycle
- I_i The current sample value

DFT

The DFT measurement principle is selected with the *Measurement mode* setting using the value "DFT". In the DFT mode, the fundamental frequency component of the measured signal is numerically calculated from the samples. In some applications, for example, it can be difficult to accomplish sufficiently sensitive settings and accurate operation of the low stage, which may be due to a considerable amount of harmonics on the primary side currents. In such a case, the operation can be based solely on the fundamental frequency component of the current. In addition, the DFT mode has slightly higher CT requirements than the peak-to-peak mode, if used with high and instantaneous stages.

Peak-to-peak

The peak-to-peak measurement principle is selected with the *Measurement mode* setting using the value "Peak-to-Peak". It is the fastest measurement mode, in which the measurement quantity is made by calculating the average from the positive and negative peak values. The DC component is not included. The retardation time is short. The damping of the harmonics is quite low and practically determined by the characteristics of the anti-aliasing filter of the protection relay inputs. Consequently, this mode is usually used in conjunction with high and instantaneous stages, where the suppression of harmonics is not so important. In addition, the peak-to-peak mode allows considerable CT saturation without impairing the performance of the operation.

Peak-to-peak with peak backup

The peak-to-peak with peak backup measurement principle is selected with the *Measurement mode* setting using the value "P-to-P+backup". It is similar to the peak-to-peak mode, with the exception that it has been enhanced with the peak backup. In the peak-to-peak with peak backup mode, the function starts with two conditions: the peak-to-peak value is above the set start current or the peak value is above two times the set *Start value*. The peak backup is enabled only when the function is used in the DT mode in high and instantaneous stages for faster operation.

11.6 Calculated measurements

Calculated residual current and voltage

The residual current is calculated from the phase currents according to equation:

$$\overline{Io} = -(\overline{I}_A + \overline{I}_B + \overline{I}_C)$$

(Equation 89)

The residual voltage is calculated from the phase-to-earth voltages when the VT connection is selected as "Wye" with the equation:

$$\overline{Uo} = (\overline{U}_A + \overline{U}_B + \overline{U}_C)/3$$

(Equation 90)

Sequence components

The phase-sequence current components are calculated from the phase currents according to:

$$\overline{I}_0 = (\overline{I}_A + \overline{I}_B + \overline{I}_C)/3$$

(Equation 91)

$$\overline{I}_1 = (\overline{I}_A + a \cdot \overline{I}_B + a^2 \cdot \overline{I}_C)/3$$

(Equation 92)

$$\overline{I}_2 = (\overline{I}_A + a^2 \cdot \overline{I}_B + a \cdot \overline{I}_C)/3$$

(Equation 93)

The phase-sequence voltage components are calculated from the phase-to-earth voltages when *VT connection* is selected as "Wye" with the equations:

$$\overline{U}_0 = (\overline{U}_A + \overline{U}_B + \overline{U}_C)/3$$

(Equation 94)

$$\overline{U}_1 = (\overline{U}_A + a \cdot \overline{U}_B + a^2 \cdot \overline{U}_C)/3$$

(Equation 95)

$$\overline{U}_2 = (\overline{U}_A + a^2 \cdot \overline{U}_B + a \cdot \overline{U}_C)/3$$

(Equation 96)

When *VT connection* is selected as "Delta", the positive and negative phase sequence voltage components are calculated from the phase-to-phase voltages according to the equations:

$$\overline{U}_1 = (\overline{U}_{AB} - a^2 \cdot \overline{U}_{BC})/3$$

(Equation 97)

$$\overline{U}_2 = (\overline{U}_{AB} - a \cdot \overline{U}_{BC})/3$$

(Equation 98)

The phase-to-earth voltages are calculated from the phase-to-phase voltages when *VT connection* is selected as "Delta" according to the equations.

$$\overline{U}_A = \overline{U}_0 + (\overline{U}_{AB} - \overline{U}_{CA})/3$$

(Equation 99)

$$\overline{U}_B = \overline{U}_0 + (\overline{U}_{BC} - \overline{U}_{AB})/3$$

(Equation 100)

$$\overline{U}_C = \overline{U}_0 + (\overline{U}_{CA} - \overline{U}_{BC})/3$$

(Equation 101)

If the \overline{U}_0 channel is not valid, it is assumed to be zero.

The phase-to-phase voltages are calculated from the phase-to-earth voltages when *VT connection* is selected as "Wye" according to the equations.

$$\overline{U}_{AB} = \overline{U}_A - \overline{U}_B$$

(Equation 102)

$$\overline{U}_{BC} = \overline{U}_B - \overline{U}_C$$

(Equation 103)

$$\overline{U}_{CA} = \overline{U}_C - \overline{U}_A$$

(Equation 104)

12 Requirements for measurement transformers

12.1 Current transformers

12.1.1 Current transformer requirements for overcurrent protection

For reliable and correct operation of the overcurrent protection, the CT has to be chosen carefully. The distortion of the secondary current of a saturated CT may endanger the operation, selectivity, and co-ordination of protection. However, when the CT is correctly selected, a fast and reliable short circuit protection can be enabled.

The selection of a CT depends not only on the CT specifications but also on the network fault current magnitude, desired protection objectives, and the actual CT burden. The protection settings of the protection relay should be defined in accordance with the CT performance as well as other factors.

12.1.1.1 Current transformer accuracy class and accuracy limit factor

The rated accuracy limit factor (F_n) is the ratio of the rated accuracy limit primary current to the rated primary current. For example, a protective current transformer of type 5P10 has the accuracy class 5P and the accuracy limit factor 10. For protective current transformers, the accuracy class is designed by the highest permissible percentage composite error at the rated accuracy limit primary current prescribed for the accuracy class concerned, followed by the letter "P" (meaning protection).

Table 732: Limits of errors according to IEC 60044-1 for protective current transformers

Accuracy class	Current error at rated primary	Phase displacement at rated primary current		Composite error at rated
	current (%)	minutes	centiradians	accuracy limit primary current (%)
5P	±1	±60	±1.8	5
10P	±3	-	-	10

The accuracy classes 5P and 10P are both suitable for non-directional overcurrent protection. The 5P class provides a better accuracy. This should be noted also if there are accuracy requirements for the metering functions (current metering, power metering, and so on) of the protection relay.

The CT accuracy primary limit current describes the highest fault current magnitude at which the CT fulfils the specified accuracy. Beyond this level, the secondary current of the CT is distorted and it might have severe effects on the performance of the protection relay.

In practise, the actual accuracy limit factor (Fa) differs from the rated accuracy limit factor (F_n) and is proportional to the ratio of the rated CT burden and the actual CT burden.

The actual accuracy limit factor is calculated using the formula:

$$F_a \approx F_n \times \frac{\left|S_{in} + S_n\right|}{\left|S_{in} + S\right|}$$

 F_n the accuracy limit factor with the nominal external burden S_n

the internal secondary burden of the CT S_{in}

the actual external burden

12.1.1.2 Non-directional overcurrent protection

Current transformer selection

Non-directional overcurrent protection does not set high requirements on the accuracy class or on the actual accuracy limit factor (Fa) of the CTs. It is, however, recommended to select a CT with F_a of at least 20.

The nominal primary current I_{1n} should be chosen in such a way that the thermal and dynamic strength of the current measuring input of the protection relay is not exceeded. This is always fulfilled when

$$I_{1n} > I_{kmax} / 100$$

I_{kmax} is the highest fault current.

The saturation of the CT protects the measuring circuit and the current input of the protection relay. For that reason, in practice, even a few times smaller nominal primary current can be used than given by the formula.

Recommended start current settings

If I_{kmin} is the lowest primary current at which the highest set overcurrent stage is to operate, the start current should be set using the formula:

Current start value <
$$0.7 \times (I_{kmin} / I_{1n})$$

 I_{1n} is the nominal primary current of the CT.

The factor 0.7 takes into account the protection relay inaccuracy, current transformer errors, and imperfections of the short circuit calculations.

The adequate performance of the CT should be checked when the setting of the high set stage overcurrent protection is defined. The operate time delay caused by the CT saturation is typically small enough when the overcurrent setting is noticeably lower than Fa.

When defining the setting values for the low set stages, the saturation of the CT does not need to be taken into account and the start current setting is simply according to the formula.

832 **REC615 & RER615**

Delay in operation caused by saturation of current transformers

The saturation of CT may cause a delayed protection relay operation. To ensure the time selectivity, the delay must be taken into account when setting the operate times of successive protection relays.

With definite time mode of operation, the saturation of CT may cause a delay that is as long as the time constant of the DC component of the fault current, when the current is only slightly higher than the starting current. This depends on the accuracy limit factor of the CT, on the remanence flux of the core of the CT, and on the operate time setting.

With inverse time mode of operation, the delay should always be considered as being as long as the time constant of the DC component.

With inverse time mode of operation and when the high-set stages are not used, the AC component of the fault current should not saturate the CT less than 20 times the starting current. Otherwise, the inverse operation time can be further prolonged. Therefore, the accuracy limit factor F_a should be chosen using the formula:

 $F_a > 20 \times Current start value / I_{1n}$

The Current start value is the primary start current setting of the protection relay.

12.1.1.3 Example for non-directional overcurrent protection

The following figure describes a typical medium voltage feeder. The protection is implemented as three-stage definite time non-directional overcurrent protection.

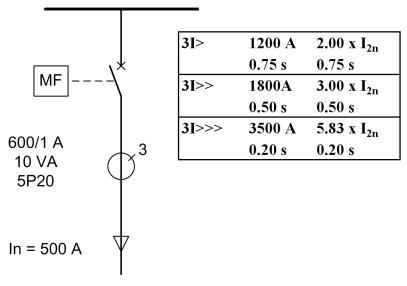


Figure 449: Example of three-stage overcurrent protection

The maximum three-phase fault current is 41.7 kA and the minimum three-phase short circuit current is 22.8 kA. The actual accuracy limit factor of the CT is calculated to be 59.

The start current setting for low-set stage (3I>) is selected to be about twice the nominal current of the cable. The operate time is selected so that it is selective with the next protection relay (not visible in *Figure 449*). The settings for the high-set stage and instantaneous stage are defined also so that grading is ensured with the downstream protection. In addition, the start current settings have to be defined so that the protection relay operates with the minimum fault current and it does not

operate with the maximum load current. The settings for all three stages are as in Figure 449.

For the application point of view, the suitable setting for instantaneous stage (I>>>) in this example is 3 500 A (5.83 \times I_{2n}). I_{2n} is the 1.2 multiple with nominal primary current of the CT. For the CT characteristics point of view, the criteria given by the current transformer selection formula is fulfilled and also the protection relay setting is considerably below the F_a . In this application, the CT rated burden could have been selected much lower than 10 VA for economical reasons.

13 Protection relay's physical connections

13.1 Module slot numbering

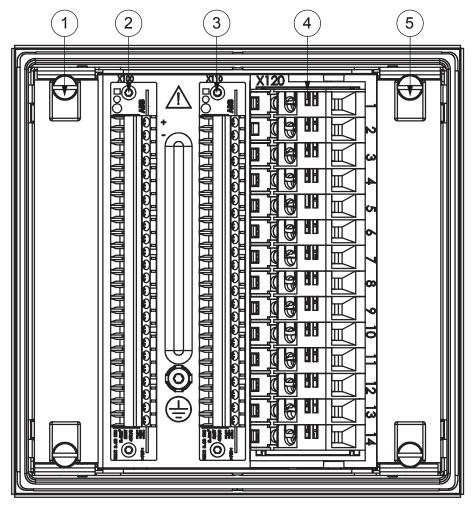


Figure 450: Module slot numbering

1	X000
2	X100
3	X110
4	X120
5	X130

13.2 Protective earth connections

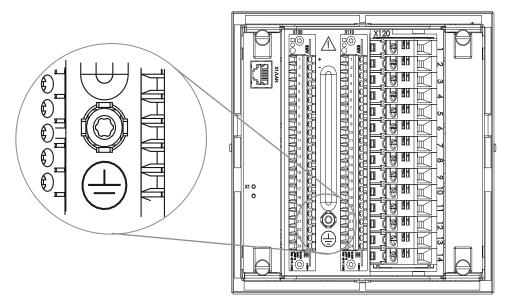


Figure 451: The protective earth screw is located between connectors X100 and X110

The earth lead must be at least 6.0 mm² and as short as possible.

13.3 Binary and analog connections

All binary and analog connections are described in the product specific application engineering guides.

13.4 Communication connections

The front communication connection is an RJ-45 type connector used mainly for configuration and setting.

- Galvanic RJ-45 Ethernet connection
- Optical LC Ethernet connection
- ST-type glass fiber serial connection
- EIA-485 serial connection
- EIA-232 serial connection

Never touch the end face of an optical fiber connector.

Always install dust caps on unplugged fiber connectors.

If contaminated, clean optical connectors only with fiber-optic cleaning products.

13.4.1 Ethernet RJ-45 front connection

The protection relay is provided with an RJ-45 connector on the LHMI. The connector is intended for configuration and setting purposes. The interface on the PC side has to be configured in a way that it obtains the IP address automatically. There is a DHCP server inside protection relay for the front interface only.

The events and setting values and all input data such as memorized values and disturbance records can be read via the front communication port.

Only one of the possible clients can be used for parametrization at a time.

- PCM600
- LHMI
- WHMI

The default IP address of the protection relay through this port is 192.168.0.254.

The front port supports TCP/IP protocol. A standard Ethernet CAT 5 crossover cable is used with the front port.

The speed of the front connector interface is limited to 10 Mbps.

13.4.2 Ethernet rear connections

The Ethernet station bus communication module is provided with either galvanic RJ-45 connection or optical multimode LC type connection, depending on the product variant and the selected communication interface option. A shielded twisted-pair cable CAT 5e is used with the RJ-45 connector and an optical multimode cable (≤2 km) with the LC type connector.

In addition, communication modules with multiple Ethernet connectors enable the forwarding of Ethernet traffic. The variants include an internal switch that handles the Ethernet traffic between an protection relay and a station bus. In this case, the used network can be a ring or daisy-chain type of network topology. In loop type topology, a self-healing Ethernet loop is closed by a managed switch supporting rapid spanning tree protocol. In daisy-chain type of topology, the network is bus type and it is either without switches, where the station bus starts from the station client, or with a switch to connect some devices and the protection relays of this product series to the same network.

The protection relay's default IP address through rear Ethernet port is 192.168.2.10 with the TCP/IP protocol. The data transfer rate is 100 Mbps.

13.4.3 EIA-232 serial rear connection

The EIA-232 connection follows the TIA/EIA-232 standard and is intended to be used with a point-to-point connection. The connection supports hardware flow control (RTS, CTS, DTR, DSR), full-duplex and half-duplex communication.

13.4.4 EIA-485 serial rear connection

The EIA-485 communication module follows the TIA/EIA-485 standard and is intended to be used in a daisy-chain bus wiring scheme with 2-wire half-duplex or 4-wire full-duplex, multi-point communication.

The maximum number of devices (nodes) connected to the bus where the protection relay is used is 32, and the maximum length of the bus is 1200 meters.

13.4.5 Optical ST serial rear connection

Serial communication can be used optionally through an optical connection either in loop or star topology. The connection idle state is light on or light off.

Using ST loop mode requires an ST serial converter that supports detecting and removing of duplicate request after transmission trough full circle.

13.4.6 Communication interfaces and protocols

The communication protocols supported depend on the optional rear communication module.

Table 733: Supported station communication interfaces and protocols

Interfaces / Protocols	Ethernet		Serial		
Protocois	100BASE-TX RJ-45	100BASE-FX LC	EIA-232/EIA-485	Fibre-optic ST	
IEC 61850	•	•	-	-	
MODBUS RTU/ ASCII	-	-	•	•	
MODBUS TCP/IP	•	•	-	-	
DNP3 (serial)	-	-	•	•	
DNP3 TCP/IP	•	•	-	-	
IEC 60870-5-101	-	-	•	•	

Table continues on the next page

838

Interfaces / Protocols	Ethernet		Serial	
Protocois	100BASE-TX RJ-45	100BASE-FX LC	EIA-232/EIA-485	Fibre-optic ST
IEC 60870-5-104	•	•	-	-
• = Supported				

13.4.7 Rear communication modules

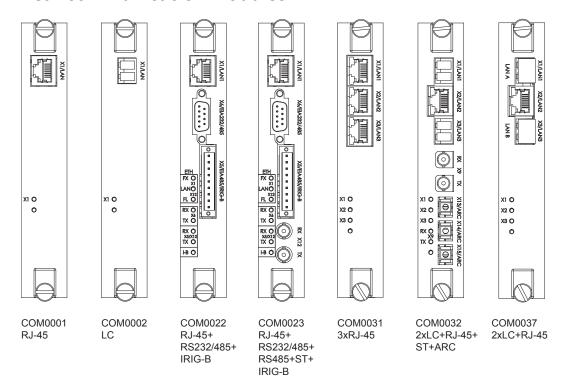


Figure 452: Communication module options

Table 734: Station bus communication interfaces included in communication modules

Module ID	RJ-45	LC	EIA-485/ EIA-232	EIA-485	ST
СОМ0001	1	-	-	-	-
СОМ0002	-	1	-	-	-
СОМ0022	1	-	1	-	-
СОМ0023	1	-	1	1	1

Module ID	RJ-45	LC	EIA-485/ EIA-232	EIA-485	ST
СОМ0031	3	-	-	-	-
СОМ0032	1	2	-	-	1
СОМ0037	1	2	-	-	-

Table 735: LED descriptions for COM0001 and COM0002

LED	Connector	Description ²
X1	X1	X1/LAN link status and activity (RJ-45 and LC)
RX1	X5	COM2 2-wire/4-wire receive activity
TX1	X5	COM2 2-wire/4-wire transmit activity
RX2	X5	COM1 2-wire receive activity
TX2	X5	COM1 2-wire transmit activity
I-B	X5	IRIG-B signal activity

Table 736: LED descriptions for COM0022 and COM0023

LED	Connector	Description ³
FX	X12	Not used by COM0023
X1	X1	LAN Link status and activity (RJ-45 and LC)
FL	X12	Not used by COM0023
RX	Х6	COM1 2-wire / 4-wire receive activity
тх	X6	COM1 2-wire / 4-wire transmit activity
RX	X5 / X12	COM2 2-wire / 4-wire or fiber-optic receive activity
тх	X5 / X12	COM2 2-wire / 4-wire or fiber-optic transmit activity
I-B	X5	IRIG-B signal activity

Depending on the COM module and jumper configuration
Depending on the jumper configuration

Table 737: LED descriptions for COM0031, COM0032 and COM0037

LED	Connector	Description
X1	X1	X1/LAN1 link status and activity
X2	X2	X2/LAN2 link status and activity
Х3	Х3	X3/LAN3 link status and activity
RX	Х9	COM1 fiber-optic receive activity
TX	Х9	COM1 fiber-optic transmit activity

13.4.7.1 COM0022 and COM0023 jumper locations and connections

The optional communication module COM0022 supports EIA-232/EIA-485 serial communication (X6 connector). Only COM1 (X6 connector) is used for serial communication.

Connector X5 on COM0022 is dedicated to IRIG-B.

Table 738: Configuration options of the communication port for COM0022

COM1 connector X6
EIA-232
EIA-485 2-wire
EIA-485 4-wire

The optional communication module COM0023 supports EIA-232/EIA-485 serial communication (X6 connector), EIA-485 serial communication (X5 connector) and optical ST serial communication (X12 connector).

Two independent communication ports are supported by COM0023. The two 2-wire ports use COM1 and COM2. Alternatively, if only one 4-wire port is configured, it uses COM2. The fibre-optic ST connection uses the COM1 port.

Table 739: Configuration options of the communication ports for COM0023

COM1 connector X6	COM2 connector X5 or X12
EIA-232	Optical ST (X12)
EIA-485 2-wire	EIA-485 2-wire (X5)
EIA-485 4-wire	EIA-485 4-wire (X5)

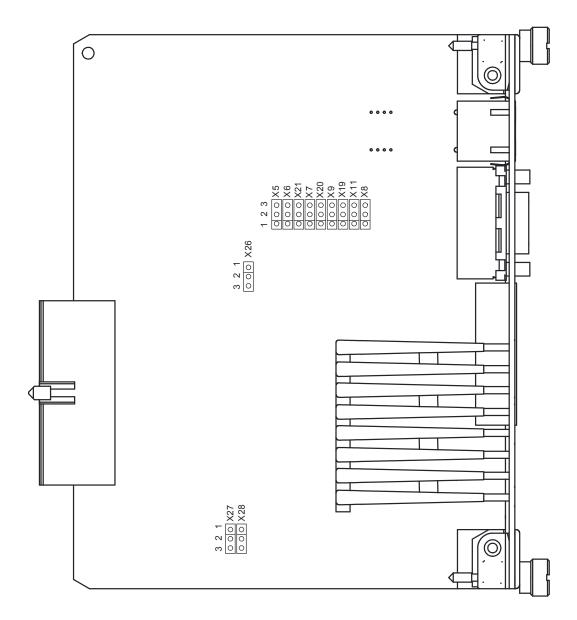


Figure 453: Jumper connections on communication module COM0022 revisions A-F

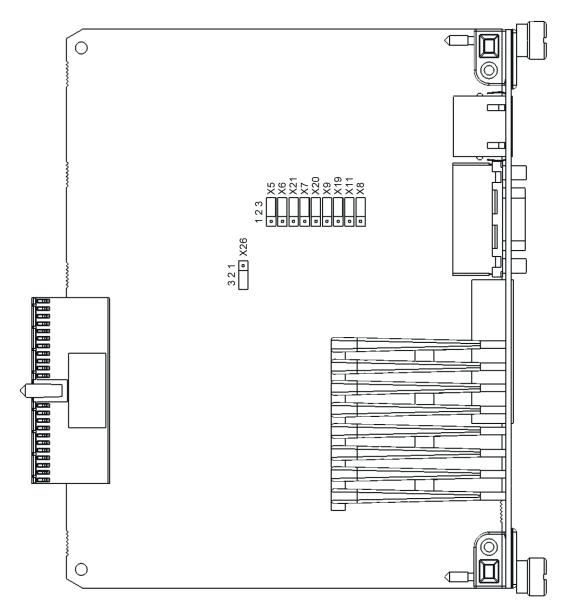


Figure 454: Jumper connections on communication module COM0022 revision G or later

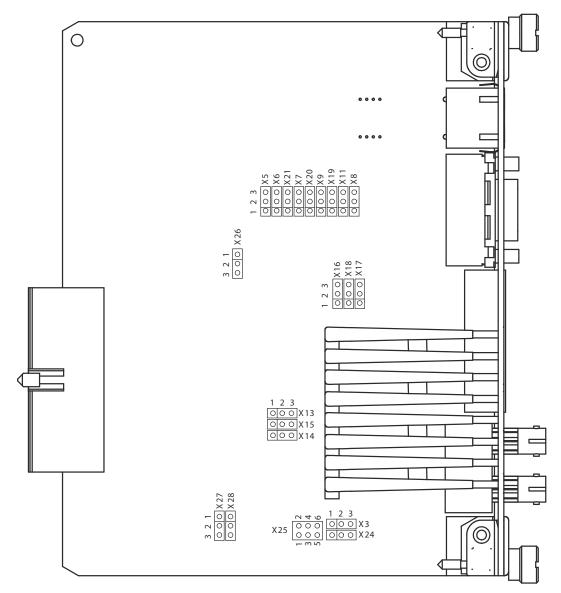


Figure 455: Jumper connections on communication module COM0023 revisions A-F

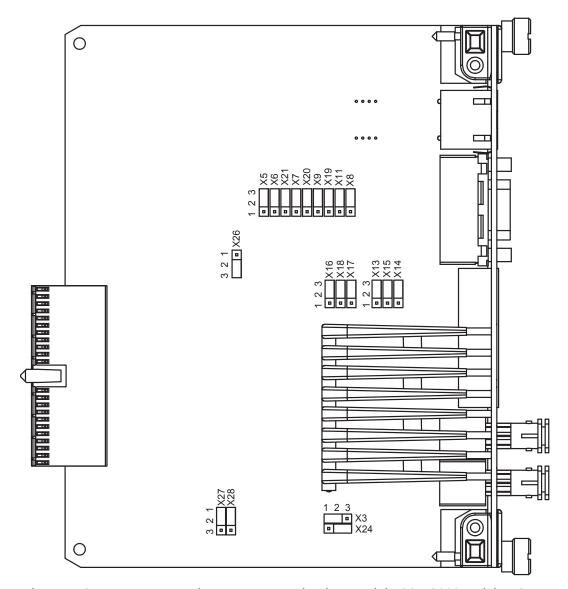


Figure 456: Jumper connections on communication module COM0023 revision G

COM1 port connection type can be either EIA-232 or EIA-485. The type is selected by setting jumpers X19, X20, X21 and X26. The jumpers are set to EIA-232 by default.

Table 740: EIA-232 and EIA-485 jumper connectors for COM1

Group	Jumper connection	Description
X19	1-2	EIA-485
	2-3	EIA-232
X20	1-2	EIA-485
	2-3	EIA-232
X21	1-2	EIA-485
	2-3	EIA-232
X26	1-2	EIA-485

Group	Jumper connection	Description
	2-3	EIA-232

To ensure fail-safe operation, the bus is to be biased at one end using the pull-up and pull-down resistors on the communication module. In the 4-wire connection, the pull-up and pull-down resistors are selected by setting jumpers X5, X6, X8, X9 to enabled position. The bus termination is selected by setting jumpers X7, X11 to enabled position.

The jumpers have been set to no termination and no biasing as default.

Table 741: 2-wire EIA-485 jumper connectors for COM1

Group	Jumper connection	Description	Notes
X5	1-2 2-3	A+ bias enabled A+ bias disabled ¹	
Х6	1-2 2-3	B- bias enabled B- bias disabled ¹	COM1 Rear connector X6 2-wire connection
X7	1-2 2-3	Bus termination enabled Bus termination disabled ¹	

Table 742: 4-wire EIA-485 jumper connectors for COM1

Group	Jumper connection	Description	Notes
X5	1-2 2-3	A+ bias enabled A+ bias disabled ¹	
Х6	1-2 2-3	B- bias enabled B- bias disabled ¹	COM1 Rear connector X6 4- wire TX channel
Х7	1-2 2-3	Bus termination enabled Bus termination disabled ¹	
Х9	1-2 2-3	A+ bias enabled A+ bias disabled ¹	
X8	1-2 2-3	B- bias enabled B- bias disabled ¹	4-wire RX channel
X11	1-2 2-3	Bus termination enabled Bus termination disabled $^{\mathrm{1}}$	

COM2 port connection can be either EIA-485 or optical ST. Connection type is selected by setting jumpers X27 and X28.

Default setting

Table 743: COM2 serial connection X5 EIA-485/ X12 Optical ST

Group	Jumper connection	Description
X27	1-2	EIA-485
	2-3	Optical ST
X28	1-2	EIA-485
	2-3	Optical ST

Table 744: 2-wire EIA-485 jumper connectors for COM2

Group	Jumper connection	Description
X13	1-2 2-3	A+ bias enabled A+ bias disabled
X14	1-2 2-3	B- bias enabled B- bias disabled
X15	1-2 2-3	Bus termination enabled Bus termination disabled

Table 745: 4-wire EIA-485 jumper connectors for COM2

Group	Jumper connection	Description	Notes
X13	1-2 2-3	A+ bias enabled A+ bias disabled	
X14	1-2 2-3	B- bias enabled B- bias disabled	COM2 4-wire TX channel
X15	1-2 2-3	Bus termination enabled Bus termination disabled	
X17	1-2 2-3	A+ bias enabled A+ bias disabled	
X18	1-2 2-3	B- bias enabled B- bias disabled	4-wire RX channel
X19	1-2 2-3	Bus termination enabled Bus termination disabled	

Table 746: Optical ST connection (X12)

Group	Jumper connection	Description
х3	1-2 2-3	Star topology Loop topology
X24	1-2 2-3	Idle state = Light on Idle state = Light off

Table 747: EIA-232 connections for COM0022 and COM0023 (X6)

Pin	EIA-232
1	DCD
2	RxD
3	TxD
4	DTR
5	AGND
6	-
7	RTS
8	CTS

Table 748: EIA-485 connections for COM0022 and COM0023 (X6)

Pin	2-wire mode	4-wire mode
1	-	Rx/+
6	-	Rx/-
7	B/-	Tx/-
8	A/+	Tx/+

Table 749: EIA-485 connections for COM0023 (X5)

Pin	2-wire mode	4-wire mode
9	-	Rx/+
8	-	Rx/-
7	A/+	Tx/+
6	B/-	Tx/-

Pin	2-wire mode	4-wire mode
5	AGND (isolated ground)	
4	IRIG-B +	
3	IRIG-B -	
2	-	
1	GND (case)	

13.4.7.2 COM0032 jumper locations and connections

The optional communication modules include support for optical ST serial communication (X9 connector). The fibre-optic ST connection uses the COM1 port.

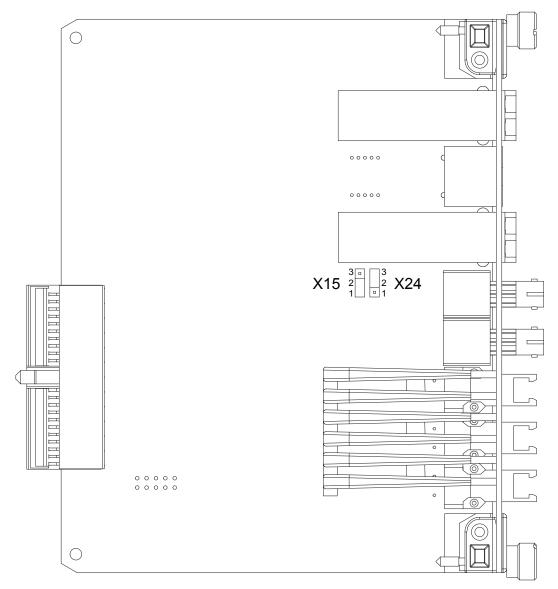


Figure 457: Jumper connections on communication module COM0032

Table 750: X9 Optical ST jumper connectors

Group	Jumper connection	Description
X15	1-2 2-3	Star topology Loop topology
X24	1-2 2-3	Idle state = Light on Idle state = Light off

1MRS758755 C Technical data

14 Technical data

14.1 Dimensions

Table 751: Dimensions

Description	Value	
Width	Frame	177 mm
	Case	164 mm
Height	Frame	177 mm (4U)
	Case	160 mm
Depth		201 mm (153 + 48 mm)
Weight	Complete protection relay	4.1 kg
	Plug-in unit only	2.1 kg

14.2 Power supply

Table 752: Power supply

Description	Type 1	Type 2	
Nominal auxiliary voltage U _n	100, 110, 120, 220, 240 V AC, 50 and 60 Hz	24, 30, 48, 60 V DC	
	48, 60, 110, 125, 220, 250 V DC		
Maximum interruption time in the auxili- ary DC voltage without resetting the re- lay	50 ms at U _n		
Auxiliary voltage variation	38110% of U _n (38264 V AC)	50120% of U _n (1272 V DC)	
	80120% of U _n (38.4300 V DC)		
Start-up threshold		19.2 V DC (24 V DC × 80%)	
Burden of auxiliary voltage supply under quiescent (P q)/operating condition	DC <13.0 W (nominal)/<18.0 W (max.)	DC <13.0 W (nominal)/<18.0 W (max.)	
quiescent (1 q)/operating condition	AC <16.0 W (nominal)/<21.0 W (max.)		
Ripple in the DC auxiliary voltage	Max 15% of the DC value (at frequency of 100 Hz)		
Fuse type	T4A/250 V		

The protection relay does not include any batteries as backup power when the auxiliary power goes down. However, the relay configuration and settings, events, disturbance recordings and any critical data stay in the relay's memory because those are saved to a nonvolatile memory. Also, the relay's real-time clock is kept running via a 48-hour capacitor backup.

Technical data 1MRS758755 C

14.3 Energizing inputs

Table 753: Energizing inputs

Description		Value	
Rated frequency		50/60 Hz	
Current inputs	Rated current, I _n	0.2/1 A ¹	1/5 A ²
	Thermal withstand capability:		
	• Continuously	4 A ¹	20 A
	• For 1 s	100 A ¹	500 A
	Dynamic current withstand:		
	Half-wave value	250 A ¹	1250 A
Input impedance		<100 mΩ ¹	<20 mΩ
Voltage inputs Rated voltage		60210 V AC	·
	Voltage withstand:		
	• Continuous	240 V AC	
	• For 10 s	360 V AC	
	Burden at rated voltage	<0.05 VA	

14.4 Energizing inputs of SIM0001

Table 754: Energizing inputs of SIM0001

Description		Value
Voltage sensor input	Rated voltage	5 kV38 kV ¹
	Continuous voltage withstand	125 V AC ²
	Input impedance at 50/60 Hz	1 MΩ ³
Voltage inputs	Rated voltage	60210 V AC
	Voltage withstand	240 V AC
	• Continuous • For 10 s	360 V AC
	Burden at rated voltage	<0.05 VA

¹ Ordering option for residual current input

² Residual current and/or phase current

¹ This range is covered with a sensor division ratio of 10 000:1 if the input type is set as CVD sensor.

² Test to this voltage

³ Neutral input impedance is close to zero

Technical data 1MRS758755 C

Energizing inputs of SIM0002/SIM0904 14.5

Table 755: Energizing inputs of SIM0002/SIM0904

Description		Value
Current sensor input	Rated current voltage (in secondary side)	75 mV9000 mV ¹
	Continuous voltage withstand	125 V
	Input impedance at 50/60 Hz	23 MΩ ²
Voltage sensor in-	Rated voltage	6 kV30 kV ³
put	Continuous voltage withstand	50 V
	Input impedance at 50/60 Hz	3 ΜΩ

14.6 **Binary inputs**

Table 756: Binary inputs

Description	Value
Operating range	±20% of the rated voltage
Rated voltage	24250 V DC
Current drain	1.61.9 mA
Power consumption	31.0570.0 mW
Threshold voltage	16176 V DC
Reaction time	3 ms

¹ Equals the current range of 40...4000 A with a 80 A, 3 mV/Hz Rogowski ² Depending on the used nominal current (hardware gain)

³ This range is covered (up to 2*rated) with sensor division ratio of 10 000:1

Technical data 1MRS758755 C

Signal output with high make and carry 14.7

Table 757: Signal output with high make and carry

Description	Value ¹
Rated voltage	250 V AC/DC
Continuous contact carry	5 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R <40 ms	1 A/0.25 A/0.15 A
Minimum contact load	100 mA at 24 V AC/DC

Signal outputs and IRF output 14.8

Table 758: Signal outputs and IRF output

Description	Value ¹
Rated voltage	250 V AC/DC
Continuous contact carry	5 A
Make and carry for 3.0 s	10 A
Make and carry 0.5 s	15 A
Breaking capacity when the control-circuit time constant L/R <40 ms, at 48/110/220 V DC	1 A/0.25 A/0.15 A
Minimum contact load	10 mA at 5 V AC/DC

¹ X100: SO1

X110: SO1, SO2

X130: SO1, SO2 when REC615 is equipped with BIO0006 $^{\rm 1}$ X100: IRF,SO2

1MRS758755 C Technical data

14.9 Double-pole power outputs with TCS function X100: PO3 and PO4

Table 759: Double-pole power outputs with TCS function X100: PO3 and PO4

Description	Value
Rated voltage	250 V AC/DC
Continuous contact carry	8 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R <40 ms at 48/110/220 V DC (two contacts connected in a series)	5 A/3 A/1 A
Minimum contact load	100 mA at 24 V AC/DC
Trip-circuit monitoring (TCS)	20250 V AC/DC
 Control voltage range Current drain through the monitoring circuit Minimum voltage over the TCS contact 	~1.5 mA 20 V AC/DC (1520 V)

14.10 Single-pole power output relays X100: PO1 and PO2

Table 760: Single-pole power output relays X100: PO1 and PO2

Description	Value
Rated voltage	250 V AC/DC
Continuous contact carry	8 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R <40 ms, at 48/110/220 V DC	5 A/3 A/1 A
Minimum contact load	100 mA at 24 V AC/DC

Technical data 1MRS758755 C

14.11 Ethernet interfaces

Table 761: Ethernet interfaces

Ethernet interface	Protocol	Cable	Data transfer rate
Front	TCP/IP protocol	Standard Ethernet CAT 5 cable with RJ-45 connector	10 MBits/s
Rear	TCP/IP protocol	Shielded twisted pair CAT 5e cable with RJ-45 connector or fibre-optic cable with LC connector	100 MBits/s

14.12 Serial rear interface

Table 762: Serial rear interface

Туре	Counter connector
Serial port (X5)	10-pin counter connector Weidmüller BL 3.5/10/180F AU OR BEDR
	or
	9-pin counter connector Weidmüller BL
	3.5/9/180F AU OR BEDR ¹
Serial port (X16)	9-pin D-sub connector DE-9
Serial port (X12)	Optical ST-connector

14.13 Fibre-optic communication link

Table 763: Fibre-optic communication link

Connector	Fibre type	Wave length	Max. distance	Permitted path attenuation ¹
LC	MM 62.5/125 or	1300 nm	2 km	<8 dB

¹ Depending on the optional communication module

¹ Maximum allowed attenuation caused by connectors and cable together

Technical data 1MRS758755 C

Connector	Fibre type	Wave length	Max. distance	Permitted path attenuation ¹
	50/125 μm glass fibre core			
ST	MM 62.5/125 or 50/125 μm glass fibre core	820900 nm	1 km	<11 dB

IRIG-B 14.14

Table 764: IRIG-B

Description	Value
IRIG time code format	B004, B005 ²
Isolation	500V 1 min
Modulation	Unmodulated
Logic level	TTL level
Current consumption	24 mA
Power consumption	1020 mW

Degree of protection of flush-mounted protection 14.15 relay

Table 765: Degree of protection of flush-mounted protection relay

Description	Value
Front side	IP 54 ³
Rear side, connection terminals	IP 20 ³

¹ Maximum allowed attenuation caused by connectors and cable together

According to the 200-04 IRIG standard
 According to IEC 60529

Technical data 1MRS758755 C

Environmental conditions 14.16

Table 766: Environmental conditions

Description	Value
Operating temperature range	-25+55ºC (continuous)
Short-time service temperature range	-40+85ºC (<16h) 1 2
Relative humidity	<93%, non-condensing
Atmospheric pressure	86106 kPa
Altitude	Up to 2000 m
Transport and storage temperature range	-40+85ºC

Degradation in MTBF and HMI performance outside the temperature range of -25...+55 °C For relays with an LC communication interface the maximum operating temperature is +70 °C

15 Protection relay and functionality tests

15.1 Electromagnetic compatibility tests

Table 767: Electromagnetic compatibility tests

Description	Type test value	Reference
1 MHz/100 kHz burst disturb-		IEC 61000-4-18
ance test		IEC 60255-26
		IEEE C37.90.1-2012
Common mode	2.5 kV	
Differential mode	2.5 kV	
3 MHz, 10 MHz and 30 MHz		IEC 61000-4-18
burst disturbance test		IEC 60255-26
Common mode	2.5 kV	
Electrostatic discharge test		IEC 61000-4-2
		IEC 60255-26
		IEEE C37.90.3-2001
Contact discharge	8 kV	
• Air discharge	15 kV	
Radio frequency interference test		
	10 V (rms)	IEC 61000-4-6
	f = 150 kHz80 MHz	IEC 60255-26
	10 V/m (rms)	IEC 61000-4-3
	f = 802700 MHz	IEC 60255-26
	10 V/m	ENV 50204
	f = 900 MHz	IEC 60255-26
	20 V/m (rms)	IEEE C37.90.2-2004
	f = 801000 MHz	

Description	Type test value	Reference
Fast transient disturbance		IEC 61000-4-4
test		IEC 60255-26
		IEEE C37.90.1-2012
• All ports	4 kV	
Surge immunity test		IEC 61000-4-5
		IEC 60255-26
Communication	2 kV, line-to-earth	
Other ports	4 kV, line-to-earth	
	2 kV, line-to-line	
Power frequency (50 Hz) magnetic field immunity test		IEC 61000-4-8
Continuous	300 A/m	
• 13 s	1000 A/m	
Pulse magnetic field immuni-	1000 A/m	IEC 61000-4-9
ty test	6.4/16 μs	
Damped oscillatory magnetic field immunity test		IEC 61000-4-10
•2s	100 A/m	
• 1 MHz	400 transients/s	
Voltage dips and short inter-	0%/50 ms Criterion A	IEC 61000-4-11
ruptions	40%/200 ms Criterion C	IEC 61000-4-29
	70%/500 ms Criterion C	IEC 60255-26
	0%/5000 ms Criterion C	
Conducted common mode	15 Hz150 kHz	IEC 61000-4-16
disturbances	Test level 3 (10/1/10 V rms)	
Power frequency immunity	Binary inputs only	IEC 61000-4-16
test		IEC 60255-26, class A
Common mode	300 V rms	
Differential mode	150 V rms	
Emission tests		EN 55011, class A
		IEC 60255-26
		CISPR 11
		CISPR 22

Description	Type test value	Reference
Conducted		
0.150.50 MHz	<79 dB (μV) quasi peak <66 dB (μV) average	
0.530 MHz	<73 dB (μV) quasi peak <60 dB (μV) average	
• Radiated		
30230 MHz	<40 dB (μV/m) quasi peak, measured at 10 m distance	
2301000 MHz	<47 dB (μV/m) quasi peak, measured at 10 m distance	
13 GHz	<76 dB (μV/m) peak	
	<56 dB (μV/m) average, measured at 3 m distance	
36 GHz	<80 dB (μV/m) peak	
	<60 dB (µV/m) average, measured at 3 m distance	

15.2 Insulation tests

Table 768: Insulation tests

Description	Type test value	Reference
Dielectric tests	2 kV, 50 Hz, 1 min 500 V, 50 Hz, 1 min, communication	IEC 60255-27
Impulse voltage test	5 kV, 1.2/50 μs, 0.5 J 1 kV, 1.2/50 μs, 0.5 J, communication	IEC 60255-27
Insulation resistance measurements	>100 M Ω, 500 V DC	IEC 60255-27
Protective bonding resistance	<0.1 Ω, 4 A, 60 s	IEC 60255-27

15.3 Mechanical tests

Table 769: Mechanical tests

Description	Requirement	Reference
Vibration tests (sinusoidal)	Class 2	IEC 60068-2-6 (test Fc)

Description	Requirement	Reference
		IEC 60255-21-1
Shock and bump test	Class 2	IEC 60068-2-27 (test Ea shock)
		IEC 60068-2-29 (test Eb bump) IEC 60255-21-2
		IEC 00255-21-2
Seismic test	Class 2	IEC 60255-21-3

15.4 Environmental tests

Table 770: Environmental tests

Description	Type test value	Reference
Dry heat test	 96 h at +55°C 16 h at +85°C 	IEC 60068-2-2
Cold test	 96 h at -25°C 16 h at -40°C 	IEC 60068-2-1
Damp heat test	• 6 cycles (12 h + 12 h) at +25°C+55°C, humidity >93%	IEC 60068-2-30
Change of temperature test	• 5 cycles (3 h + 3 h) at -25°C+55°C	IEC60068-2-14
Storage test	 96 h at -40°C 96 h at +85°C 	IEC 60068-2-1 IEC 60068-2-2
Mixed gas corrosion ²	Test parameters according to GR-63-CORE (outdoor): Temp: 30°C ±1 RH: 70% ±2 H2S: 100 ±15 ppb CI2: 20 ±3 ppb NO2: 200 ±30 ppb SO2: 200 ±30 ppb	IEC 60068-2-60, test procedure 2
Salt mist test ²	Severity level 2	IEC 60068-2-52, Test Kb

¹ For relays with an LC communication interface the maximum operating temperature is +70°C

² For relays with optional conformal coating (the chosen coating is recognized by Underwriters Laboratories (UL) and compliant with the US military specification MIL-I-46058C, IPC-CC-830 (Institute of Printed Circuits) and the RoHS (Restriction of Hazardous Substances) directive 2002/95/EC)

15.5 Product safety

Table 771: Product safety

Description	Reference
LV directive	2014/35/EU
Standard	EN 60255-27
	EN 60255-1

15.6 EMC compliance

Table 772: EMC compliance

Description	Reference
EMC directive	2014/30/EU
Standard	EN 60255-26

16 Applicable standards and regulations

EU CE:

- EMC Directive 2014/30/EU
- Low-voltage directive 2014/35/EU
- RoHS Directive 2011/65/EU
- WEEE directive 2012/19/EU
- EN 60255-1
- EN 60255-26
- EN 60255-27
- EN 61000-6-2
- EN 61000-6-4

UK UKCA:

- Electromagnetic Compatibility Regulations 2016
- Electrical Equipment (Safety) Regulations 2016
- The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012
- BS EN 60255-1
- BS EN 60255-26
- BS EN 60255-27
- BS EN 61000-6-2
- BS EN 61000-6-4

IEC:

- IEC 60255-1
- IEC 60255-26
- IEC 60255-27
- IEC 61000-6-2
- IEC 61000-6-4
- IEC 61850

1MRS758755 C Glossary

17 Glossary

100BASE-FX A physical medium defined in the IEEE 802.3 Ethernet standard for local

area networks (LANs) that uses fiber optic cabling

100BASE-TX A physical medium defined in the IEEE 802.3 Ethernet standard for local

area networks (LANs) that uses twisted-pair cabling category 5 or higher

with RJ-45 connectors

AC Alternating current

ACT 1. Application Configuration tool in PCM600

2. Trip status in IEC 61850

CAT 5 A twisted pair cable type designed for high signal integrity

CAT 5e An enhanced version of CAT 5 that adds specifications for far end cross-

talk

CBB Cycle building block

COMTRADE Common format for transient data exchange for power systems. Defined

by the IEEE Standard.

CPU Central processing unit
CT Current transformer

CTS Clear to send

DAN Doubly attached node

DC 1. Direct current

2. Disconnector

3. Double command

DCD Data carrier detect

DFT Discrete Fourier transform

DHCP Dynamic Host Configuration Protocol

DNP3 A distributed network protocol originally developed by Westronic. The

DNP3 Users Group has the ownership of the protocol and assumes re-

sponsibility for its evolution.

DPC Double-point control

DSR Data set ready
DT Definite time

DTR Data terminal ready

EEPROM Electrically erasable programmable read-only memory

EIA-232 Serial communication standard according to Electronics Industries Asso-

ciation

EIA-485 Serial communication standard according to Electronics Industries Asso-

ciation

Glossary 1MRS758755 C

EMC Electromagnetic compatibility

Ethernet A standard for connecting a family of frame-based computer networking

technologies into a LAN

FIFO First in, first out

FPGA Field-programmable gate array

FTP File transfer protocol

FTPS FTP Secure

GFC General fault criteria

GOOSE Generic Object-Oriented Substation Event

GPS Global Positioning System
HMI Human-machine interface

HSR High-availability seamless redundancy
HTTPS Hypertext Transfer Protocol Secure
IDMT Inverse definite minimum time

IEC International Electrotechnical Commission
IEC 60870-5-101 Companion standard for basic telecontrol tasks

IEC 60870-5-104 Network access for IEC 60870-5-101

IEC 61850 International standard for substation communication and modeling
IEC 61850-8-1 A communication protocol based on the IEC 61850 standard series
IEC 61850-9-2 A communication protocol based on the IEC 61850 standard series

IEC 61850-9-2 LE Lite Edition of IEC 61850-9-2 offering process bus interface

IEEE 1686 Standard for Substation Intelligent Electronic Devices' (IEDs') Cyber Se-

curity Capabilities

IP Internet protocol

IP address A set of four numbers between 0 and 255, separated by periods. Each

server connected to the Internet is assigned a unique IP address that

specifies the location for the TCP/IP protocol.

IPC Institute of Printed Circuits

IRF 1. Internal fault

2. Internal relay fault

IRIG-B Inter-Range Instrumentation Group's time code format B

LAN Local area network

LC Connector type for glass fiber cable, IEC 61754-20

LCD Liquid crystal display

LE Light Edition

LED Light-emitting diode

LHMI Local human-machine interface

MAC Media access control
MCB Miniature circuit breaker

MMS 1. Manufacturing message specification

Table continues on the next page

866

Technical Manual

1MRS758755 C Glossary

2. Metering management system

Modbus A serial communication protocol developed by the Modicon company in

1979. Originally used for communication in PLCs and RTU devices.

MV Medium voltage
NC Normally closed
P2P peer-to-peer

PC 1. Personal computer

2. Polycarbonate

PCM600 Protection and Control IED Manager

Peak-to-peak 1. The amplitude of a waveform between its maximum positive value and

its maximum negative value

2. A measurement principle where the measurement quantity is made by calculating the average from the positive and negative peak values without including the DC component. The peak-to-peak mode allows considerable CT saturation without impairing the performance of the operation.

Peak-to-peak with peak back-

up

A measurement principle similar to the peak-to-peak mode but with the function starting on two conditions: the peak-to-peak value is above the set start current or the peak value is above two times the set start value

PLC Programmable logic controller

PPS Pulse per second

PRP Parallel redundancy protocol
PTP Precision Time Protocol
RAM Random access memory

RCA Also known as MTA or base angle. Characteristic angle.

RJ-45 Galvanic connector type
RMS Root-mean-square (value)

RoHS Restriction of hazardous substances

ROM Read-only memory

RSTP Rapid spanning tree protocol

RTC Real-time clock

RTD Resistance temperature detector

RTS Ready to send

SAN Single attached node SBO Select-before-operate

SCADA Supervision, control and data acquisition

SCL XML-based substation description configuration language defined by IEC

61850

Single-line dia-

gram

Simplified notation for representing a three-phase power system. Instead of representing each of three phases with a separate line or terminal, only

one conductor is represented.

SMT Signal Matrix tool in PCM600

Glossary 1MRS758755 C

SMV Sampled measured values
SNTP Simple Network Time Protocol

SOTF Switch onto fault

ST Connector type for glass fiber cable

SW Software

TCP/IP Transmission Control Protocol/Internet Protocol

TCS Trip-circuit supervision

TLV Type length value

UL Underwriters Laboratories
UTC Coordinated universal time

VT Voltage transformer
WAN Wide area network

WHMI Web human-machine interface

ABB Distribution Solutions
Digital Substation Products

P.O. Box 699 FI-65101 VAASA, Finland Phone +358 10 22 11

www.abb.com/mediumvoltage www.abb.com/relion www.abb.com/substationautomation