

RELION® PRODUCT FAMILY

Grid Automation Recloser Protection and Control RER615

Product Guide

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Contents

1.	Description	3
2.	Standard configurations	3
3.	Protection functions	10
4.	Application	10
5.	Supported ABB solutions	12
6.	Control	13
7.	Measurement	13
8.	Fault location	13
9.	Disturbance recorder	13
10.	. Event log	13
11.	Fault recorder	14
	. Condition monitoring	
13.	. Trip-circuit supervision	14
14.	Self-supervision	14
15.	. Fuse failure supervision	14
16.	. Autoreclosina	14

Hot line tag	.14
Access control	. 14
Inputs and outputs	. 14
Station communication	.16
Technical data	.18
Local HMI	.51
Mounting methods	. 52
Relay case and plug-in unit	. 52
Selection and ordering data	.52
Accessories and ordering data	. 52
Tools	.53
Connection diagrams	. 55
References	.58
Functions, codes and symbols	. 58
Document revision history	. 64
	Access control

Disclaimer

The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document.

© Copyright 2018 ABB.

All rights reserved.

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

1MRS757814 E	Grid Automation
	Recloser Protection and Control RER615
Issued: 2018-12-10	Product version: 2.0
Revision: E	

1. Description

RER615 is a recloser controller designed for remote control and monitoring, protection, fault indication, power quality analysis and automation in medium-voltage secondary distribution systems, including radial, looped and meshed distribution networks, with or without distributed power generation.

RER615 is a member of the Relion® product family. The relay has inherited features from the 615 series relays that are characterized by their compactness as well as environmentally friendly (RoHS compliance) and withdrawable-unit design. Reengineered from the ground up, the relays have been designed to unleash the full potential of the IEC 61850 standard for communication and interoperability between substation automation devices.

With RER615, grid reliability can be enhanced, ranging from basic, non-directional overload protection to extended protection functionality with power quality analyses. RER615 meets today's requirements for smart grids and supports the protection of overhead lines in isolated neutral, resistance-earthed, compensated and solidly earthed networks. RER615 is freely programmable with horizontal GOOSE communication, thus enabling sophisticated interlocking functions. RER615 includes sophisticated protection functionality to detect, isolate and restore power in all types of networks but especially in compensated networks (including recloser tripping curves). As part of an ABB smart grid solution, the relay provides superior fault location, isolation and restoration (FLIR) to lower the frequency and shorten the duration of faults.

The adaptable standard configurations allow the relay to be taken into use right after the application-specific parameters have been set, thus enabling rapid commissioning. RER615 supports the same configuration tools as the other relays in the Relion product family. The freely programmable relay contains six easily manageable setting groups.

Via the relay's front panel HMI or a remote control system, one recloser can be controlled. The relay's large, easy-to-read LCD screen with single-line diagram offers local control and parametrization possibilities with dedicated push buttons for safe operation. Easy Web-based parametrization tool is also available with download possibility.

To protect the relay from unauthorized access and to maintain the integrity of information, the relay is provided with a fourlevel, role-based user authentication system, with individual passwords for the viewer, operator, engineer and administrator levels. The access control system applies to the front panel HMI, embedded Web browser-based HMI and Protection and Control IED Manager PCM600. In addition, the relay also includes cyber security features such as audit trail.

RER615 supports a variety of communication protocols for remote communication, such as IEC 60870-5-101/104, DNP3 level 2 and Modbus, simultaneously also supporting IEC 61850 with GOOSE messaging for high-speed protection, fault isolation and restoration.

2. Standard configurations

RER615 is available in three standard configurations. An example configuration suitable for recloser applications is delivered with each standard configuration. This minimizes the required amount of engineering, allowing fast commissioning by just parametrizing the protection functions. For applications where the example configuration is not suitable, the standard signal configuration can be easily altered using the application configuration or signal matrix functionality of the Protection and Control IED Manager PCM600. The application configuration functionality of PCM600 also supports the creation of multilayer logic functions using various logical elements. By combining protection functions with logic function blocks, the relay configuration can be adapted to user-specific application requirements.

Standard configuration A supports traditional current and voltage transformers. The residual current for the earth-fault protection is derived from the phase currents in a Holmgren connection. Alternatively, the core balance current transformers can be used for measuring the residual current, especially when sensitive earth-fault protection is required.

Standard configuration D supports a combination of traditional current and voltage transformers or alternatively voltage sensors. The residual current for the earth-fault protection is derived from the phase currents in a Holmgren connection. Alternatively, the core balance current transformers can be used for measuring the residual current, especially when sensitive earth-fault protection is required. The sensor inputs are highly flexible and are type-tested to support both ABB's capacitive and resistive voltage sensors.

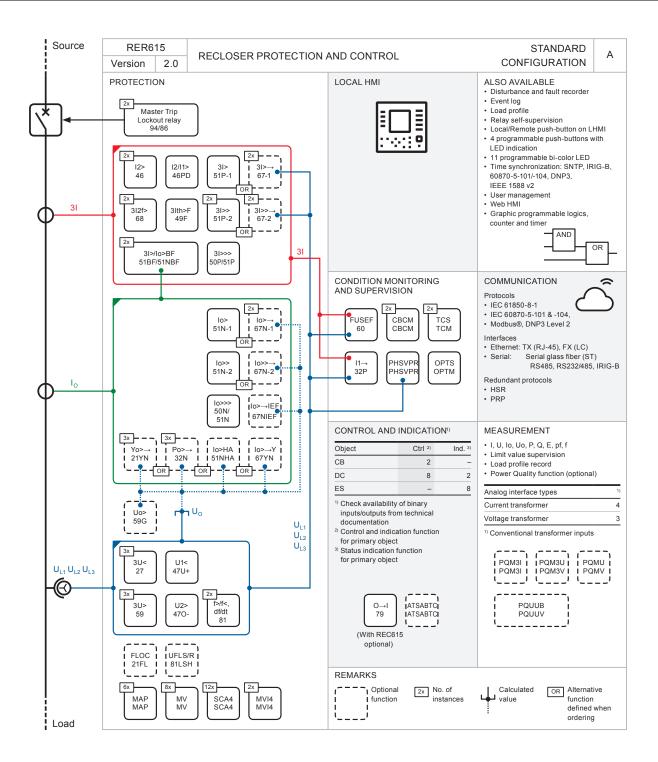


Figure 1. Functionality overview of standard configuration A

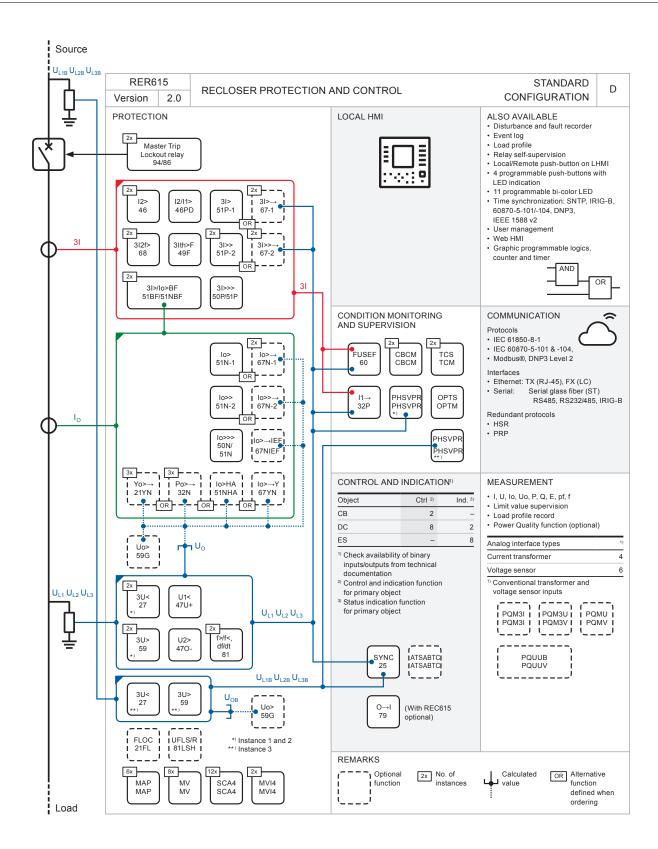


Figure 2. Functionality overview of standard configuration D

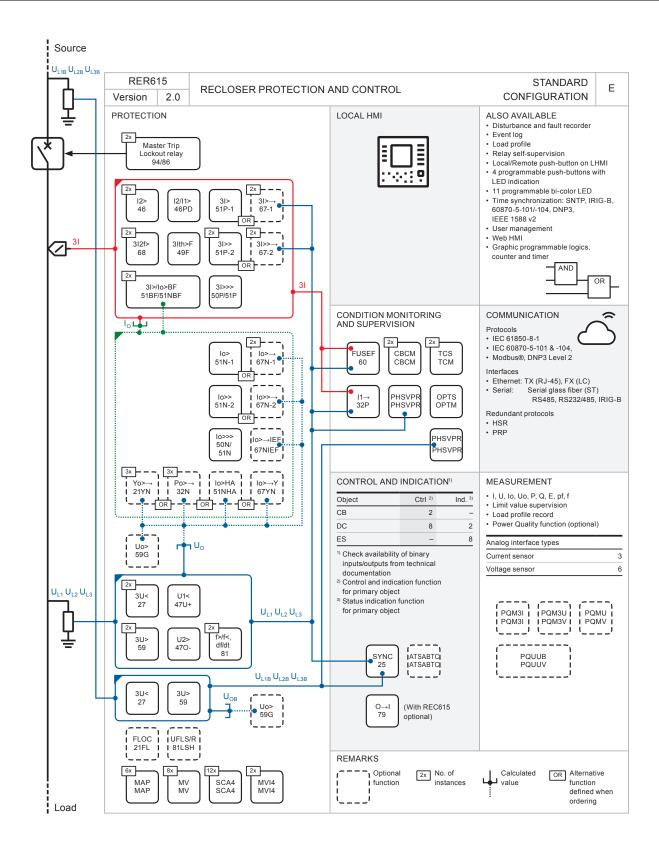


Figure 3. Functionality overview of standard configuration E

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 1. Standard configurations

Description	Std. conf.
Sectionalizer/Midpoint recloser application to be used with conventional transformers supporting reclosing function, directional overcurrent and directional earth-fault protection with phase voltage-based protection and measurement functions, voltage protection, frequency and load-shedding protection, condition monitoring: • Phase voltage inputs based on conventional VTs • Phase current inputs based on conventional CTs • Residual current input based on conventional CT	A
Tie point recloser application to be used with mixed transformers supporting reclosing function, directional overcurrent and directional earth-fault protection with phase voltage-based protection and measurement functions, voltage protection, frequency and load-shedding protection, synchrocheck, condition monitoring: • Phase voltage inputs based on conventional VTs/voltage sensors • Phase current inputs based on conventional CTs • Residual current input based on conventional CT	D
Remote monitoring and control to be used with combi-sensor and additional voltage sensor supporting reclosing function, directional overcurrent and directional earth-fault protection with phase voltage-based protection and measurement functions, voltage protection, frequency and load-shedding protection, synchrocheck, condition monitoring: • Phase voltage inputs based on voltage sensors	
Phase current inputs based on current sensors (Rogowsky coil)	Е

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 2. Supported functions

Function	IEC 61850	IEC 60617	IEC-ANSI	A	D	E
Protection						'
Three-phase non-directional overcurrent protection, low	PHLPTOC	3l>	51P-1	(1)	(1)	(1)
stage	FPHLPTOC	F3I>	F51P-1	(1)	(1)	(1)
Three-phase non-directional overcurrent protection, high stage	PHHPTOC	3l>>	51P-2	(1)	(1)	(1)
Three-phase non-directional overcurrent protection, instantaneous stage	PHIPTOC	3 >>>	50P/51P	1	1	1
Three-phase directional overcurrent protection, low	DPHLPDOC	3 > ->	67-1	(2)	(2)	(2)
stage	FDPHLPDOC	F3l> ->	F67-1	(2)	(2)	(2)
Three-phase directional overcurrent protection, high stage	DPHHPDOC	3 >> ->	67-2	(1)	(1)	(1)
Non-directional earth-fault protection, low stage	EFLPTOC	lo>	51N-1	(1)	(1)	(1) ¹⁾
	FEFLPTOC	Flo>	F51N-1	(1)	(1)	(1) ¹⁾
Non-directional earth-fault protection, high stage	EFHPTOC	lo>>	51N-2	(1)	(1)	(1) ¹⁾
Non-directional earth-fault protection, instantaneous stage	EFIPTOC	lo>>>	50N/51N	1	1	1 ¹⁾
Directional earth-fault protection, low stage	DEFLPDEF	lo> ->	67N-1	(2) ²⁾	(2) ²⁾	(2) ¹⁾²⁾
	FDEFLPDEF	Flo> ->	F67N-1	(2) ²⁾	(2) ²⁾	(2) ¹⁾²⁾
Directional earth-fault protection, high stage	DEFHPDEF	lo>> ->	67N-2	(1) ²⁾	(1) ²⁾	(1) ¹⁾²⁾
Transient / intermittent earth-fault protection	INTRPTEF	lo> -> IEF	67NIEF	(1) ²⁾	(1) ²⁾	(1) ¹⁾²⁾
Admittance-based earth-fault protection	EFPADM	Yo> ->	21YN	(3) ²⁾	(3) ²⁾	(3) ¹⁾²⁾
Nattmetric-based earth-fault protection	WPWDE	Po> ->	32N	(3) ²⁾	(3) ²⁾	(3) ¹⁾²⁾
Harmonics-based earth-fault protection	HAEFPTOC	lo>HA	51NHA	(1)	(1)	(1) ¹⁾
Multifrequency admittance-based earth-fault protection	MFADPSDE	lo> -> Y	67YN	(1) ²⁾	(1) ²⁾	(1) ¹⁾²⁾
Negative-sequence overcurrent protection	NSPTOC	12>	46	2	2	2
Phase discontinuity protection	PDNSPTOC	l2/l1>	46PD	1	1	1
Residual overvoltage protection	ROVPTOV	Uo>	59G	(1) ²⁾	(2)3)4)	(2)3)4)
Three-phase undervoltage protection	PHPTUV	3U<	27	(3)	(3) ⁵⁾	(3) ⁵⁾
Three-phase overvoltage protection	PHPTOV	3U>	59	(3)	(3) ⁵⁾	(3) ⁵⁾
Positive-sequence undervoltage protection	PSPTUV	U1<	47U+	(1)	(1)	(1)
Negative-sequence overvoltage protection	NSPTOV	U2>	470-	(1)	(1)	(1)
Frequency protection	FRPFRQ	f>/f<,df/dt	81	(2)	(2)	(2)
Three-phase thermal protection for feeders, cables and distribution transformers	T1PTTR	3lth>F	49F	1	1	1
Circuit breaker failure protection	CCBRBRF	3I>/Io>BF	51BF/51NBF	2	2	2 ¹⁾
Three-phase inrush detector	INRPHAR	3l2f>	68	1	1	1
Master trip	TRPPTRC	Master Trip	94/86	2	2	2
Multipurpose protection	MAPGAPC	MAP	MAP	6	6	6

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Function	IEC 61850	IEC 60617	IEC-ANSI	A	D	E
Load-shedding and restoration	LSHDPFRQ	UFLS/R	81LSH	(1)	(1)	(1)
Fault locator	SCEFRFLO	FLOC	21FL	(1)	(1)	(1)
Three-phase power directional element	DPSRDIR	l1->	32P	1	1	1
Power quality						
Current total demand distortion	CMHAI	PQM3I	PQM3I	(1)	(1)	(1)
Voltage total harmonic distortion	VMHAI	PQM3U	PQM3V	(1)	(1)	(1)
Voltage variation	PHQVVR	PQMU	PQMV	(1)	(1)	(1)
Voltage unbalance	VSQVUB	PQUUB	PQVUB	(1)	(1)	(1)
Control						
Circuit-breaker control	CBXCBR	I <-> O CB	I <-> O CB	2	2	2
Disconnector control	DCXSWI	I <-> O DCC	I <-> O DCC	8	8	8
Disconnector position indication	DCSXSWI	I <-> O DC	I <-> O DC	2	2	2
Earthing switch indication	ESSXSWI	I <-> 0 ES	I <-> 0 ES	8	8	8
Autoreclosing	DARREC	O -> I	79	1	1	1
Synchronism and energizing check	SECRSYN	SYNC	25		1	1
Automatic transfer switch	ATSABTC	ATSABTC1	ATSABTC1	(1)	(1)	(1)
Condition monitoring						
Circuit-breaker condition monitoring	SSCBR	СВСМ	СВСМ	2	2	2
Trip circuit supervision	TCSSCBR	TCS	ТСМ	2	2	2
- Fuse failure supervision	SEQSPVC	FUSEF	60	1	1	1
Runtime counter for machines and devices	MDSOPT	OPTS	OPTM	1	1	1
Voltage presence	PHSVPR	PHSVPR	PHSVPR	1	2 ⁶⁾	2 ⁶⁾
Measurement			i		k	
Three-phase current measurement	CMMXU	31	31	1	1	1
Sequence current measurement	CSMSQI	I1, I2, I0	I1, I2, I0	1	1	1
Residual current measurement	RESCMMXU	lo	In	1	1	
Three-phase voltage measurement	VMMXU	3 U	3V	1	2 ⁶⁾	2 ⁶⁾
Sequence voltage measurement	VSMSQI	U1, U2, U0	V1, V2, V0	1	2 ⁶⁾	2 ⁶⁾
Three-phase power and energy measurement	PEMMXU	P, E	P, E	1	1	1
Single-phase power and energy measurement	SPEMMXU	SP, SE	SP, SE	1	1	1
Frequency measurement	FMMXU	f	f	1	2 ⁶⁾	2 ⁶⁾
Load profile record	LDPRLRC	LOADPROF	LOADPROF	1	1	1
Other						
Minimum pulse timer (2 pcs)	TPGAPC	TP	TP	2	2	2
Minimum pulse timer (2 pcs, second resolution)	TPSGAPC	TPS	TPS	1	1	1
Minimum pulse timer (2 pcs, minute resolution)	TPMGAPC	TPM	TPM	1	1	1
Pulse timer (8 pcs)	PTGAPC	PT	PT	2	2	2

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 2. Supported functions, continued

Function	IEC 61850	IEC 60617	IEC-ANSI	A	D	E
Time delay off (8 pcs)	TOFGAPC	TOF	TOF	2	2	2
Time delay on (8 pcs)	TONGAPC	TON	TON	2	2	2
Set-reset (8 pcs)	SRGAPC	SR	SR	2	2	2
Move (8 pcs)	MVGAPC	MV	MV	8	8	8
Generic control point (16 pcs)	SPCGAPC	SPC	SPC	2	2	2
Remote generic control points	SPCRGAPC	SPCR	SPCR	1	1	1
Local generic control points	SPCLGAPC	SPCL	SPCL	1	1	1
Generic up-down counters	UDFCNT	UDCNT	UDCNT	3	3	3
Analog value scaling	SCA4GAPC	SCA4	SCA4	12	12	12
Integer value move	MVI4GAPC	MVI4	MVI4	2	2	2
Daily timer function	DTMGAPC	DTMGAPC1	DTMGAPC1	2	2	2
Programmable buttons (4 buttons)	FKEY4GGIO	FKEY4GGIO1	FKEY4GGIO1	1	1	1
Logging functions				1		
Disturbance recorder	RDRE	DR	DFR	1	1	1
Fault record	FLTRFRC	FAULTREC	FAULTREC	1	1	1

1, 2, ... = number of included instances

() = optional

- 1) lo calculated is always used
- 2) Uo calculated is always used
- 3) Uo calculated is always used with the first instance
- 4) UoB calculated is always used with the second instance
- 5) Voltage group B is always used with the third instance
- Voltage group B is always used with the second instance

3. Protection functions

To allow the customers to customize the relay according to their requirements, it can be ordered as a basic relay or enhanced with selected protection functions. The selection depends on the application, whether it is a compensated network, and whether the compensated network is with distributed generation or closed-loop feeders.

As a standard offering, the relay includes non-directional overcurrent and non-directional earth-fault functions, as well as other protection functions commonly accepted as a means to significantly improve the grid reliability in recloser applications, such as breaker failure and negative-sequence overcurrent protection to detect a broken conductor. Alternatively, a more sensitive phase-discontinuity protection is available. Thermal protection, which is used for protecting feeders, cables and distribution transformers, is also included.

The optional functionalities of the relay include more advanced methods to detect the earth faults in various distribution networks. On top of the permanent earth faults, the relay can be equipped with algorithms that can be used to detect

intermittent and transient temporary faults. This can be used to localize possible future problem points in the distribution network, even before they develop to a fault that causes interruption in the power distribution seen by the end users.

A syncrocheck function is offered with standard configuration D. The synchrocheck function ensures that the voltage, phase angle and frequency on either side of an open circuit breaker meet the conditions for a safe interconnection of two networks.

Some advanced protection functions are optionally available in RER615.

4. Application

The recloser protection and control relay RER615 is suitable for a variety of applications, ranging from basic applications on the line recloser to sophisticated applications including distributed generation and demanding interlocking applications. Because of the large number of protection functions, the illustrated applications are only example applications which can be extended to meet tomorrow's requirements.

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

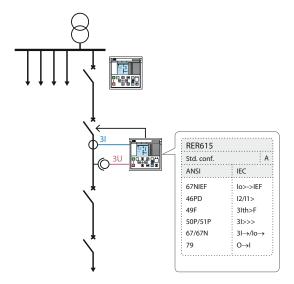


Figure 4. Selective protection in radial feeder

Figure 4 illustrates selective protection in a radial feeder with autoreclosing functionality and advanced admittance-based

earth-fault protection. Additionally, directional overcurrent protection for distributed generation applications is included.

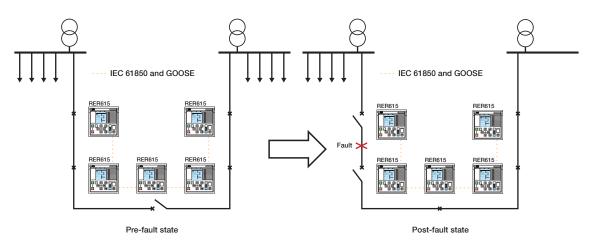


Figure 5. Fault detection, isolation and restoration in radial feeder

Exact earth-fault and overcurrent protection enables autonomous fault detection, isolation and restoration, and can be achieved through IEC 61850 and GOOSE communication as illustrated in <u>Figure 5</u>. In the pre-fault state, the closed loop

network is of radial type with one normal open point (NOP). The fault is accurately located between two circuit breakers, isolating the faulty part and allowing NOP to be closed.

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

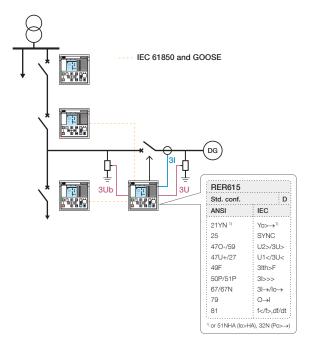


Figure 6. Protection of distributed generation plant

The advanced protection functionality of RER615 ensures secure protection of distributed generation against faults, and early indication of loss-of-mains through IEC 61850 and

GOOSE communication as seen in <u>Figure 6</u>. Safe reconnection is enabled by using the synchrocheck functionality.

5. Supported ABB solutions

RER615 integrates fully with other ABB products such as COM600S, MicroSCADA, SYS600, DMS600, and with ABB's secure, reliable and tested communication solutions, ARG600 and the ARM600 gateway. ABB offers a solution which meets the demanding customer requirements regarding smart grids, and which also contributes to faster engineering.

To facilitate the system engineering, ABB's relays are supplied with connectivity packages. The connectivity packages include a compilation of software and relay-specific information, including single-line diagram templates and a full relay data model. The data model includes event and parameter lists. With the connectivity packages, the relays can be readily configured using PCM600 and integrated with COM600S or the network control and management system MicroSCADA Pro.

Compared to traditional hard-wired, inter-device signaling, peer-to-peer communication over a switched Ethernet LAN offers an advanced and versatile platform for power system protection. Among the distinctive features of the protection system approach, enabled by the full implementation of the IEC 61850 substation automation standard, are fast communication capability, continuous supervision of the protection and communication system's integrity, and an inherent flexibility regarding reconfiguration and upgrades.

At substation level, COM600S uses the data content of the bay-level devices to enhance substation level functionality. COM600S features a Web browser-based HMI, which provides a customizable graphical display for visualizing single-line mimic diagrams for switchgear bay solutions. The Web HMI of COM600S also provides an overview of the whole substation, including relay-specific single-line diagrams, which makes information easily accessible. Substation devices and processes can also be remotely accessed through the Web HMI, which improves personnel safety.

In addition, COM600S can be used as a local data warehouse for the substation's technical documentation and for the network data collected by the devices. The collected network data facilitates extensive reporting and analyzing of network fault situations by using the data historian and event handling features of COM600S. The historical data can be used for accurate monitoring of process and equipment performance, using calculations based on both real-time and historical values. A better understanding of the process dynamics is achieved by combining time-based process measurements with production and maintenance events.

COM600S can also function as a gateway and provide seamless connectivity between the substation devices and network-level control and management systems, such as MicroSCADA Pro and System 800xA.

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 3. Supported ABB solutions

Product	Version
Substation Management Unit COM600S	4.0 SP1 or later
MicroSCADA Pro SYS 600	9.4 or later
System 800xA	5.1 or later

6. Control

Two circuit breakers can be controlled via the front panel HMI of RER615 or via a remote system. The relay also provides position indication for two disconnectors and two earthing switches.

If the amount of available binary inputs or outputs of the chosen standard configuration is not sufficient, the configuration can be modified to release some binary inputs or outputs originally configured for other purposes. In this case, an external input/output module, for example, RIO600, can be integrated with the relay and its binary inputs and outputs used for the less time-critical binary signals of the application.

The suitability of the relay's binary outputs selected for controlling primary devices should be carefully verified, for example, regarding the make and carry and the breaking capacity. If the requirements for the control circuit of the primary device are not met, the use of external auxiliary relays should be considered.

The optional, large, graphical LCD of the relay's HMI includes a single-line diagram with position indication for the relevant primary devices. Interlocking schemes required by the application are configured using the signal matrix or the application configuration function of PCM600. Depending on the standard configuration, the relay also has a synchrocheck function to ensure that the voltage, phase angle and frequency on either side of an open circuit breaker meet the conditions for a safe interconnection of two networks.

7. Measurement

The relay continuously measures the phase currents and voltages, the symmetrical components of the currents, and the residual current. The relay additionally offers frequency measurement. The relay also calculates the demand value of the current over a user-selectable, pre-set time frame, the thermal overload of the protected object, and the phase unbalance based on the ratio between the negative-sequence and positive-sequence current. Active and reactive power as well as residual voltage are also calculated.

Power quality measurement, such as total harmonic values for both current and voltage, voltage sags and swells, and voltage unbalance, is supported. Furthermore, the relay offers three-phase power and energy measurement including power factor.

The measured values can be accessed via the local HMI or remotely via the communication interface of the relay. The values can also be accessed locally or remotely using the Web HMI.

8. Fault location

The relay features an optional impedance-measuring fault location function suitable for locating short-circuits in radial distribution systems. Earth faults can be located in effectively and low-resistance earthed networks. Under circumstances where the fault current magnitude is at least of the same order of magnitude or higher than the load current, earth faults can also be located in isolated neutral distribution networks. The fault location function identifies the type of the fault and then calculates the distance to the fault point. An estimate of the fault resistance value is also calculated. The estimate provides information about the possible fault cause and the accuracy of the estimated distance to the fault point.

9. Disturbance recorder

The relay is provided with a disturbance recorder featuring up to 12 analog and 64 binary signal channels. The analog channels can be set to record either the waveform or the trend of the currents and voltages measured.

The analog channels can be set to trigger the recording function when the measured value falls below or exceeds the set values. The binary signal channels can be set to start a recording either on the rising or the falling edge of the binary signal or on both.

By default, the binary channels are set to record external or internal relay signals, for example, the start or trip signals of the relay stages, or external blocking or control signals. Binary relay signals, such as protection start and trip signals, or an external relay control signal via a binary input, can be set to trigger the recording. Recorded information is stored in a nonvolatile memory and can be uploaded for subsequent fault analysis.

10. Event log

To collect sequence-of-events information, the relay has a non-volatile memory capable of storing 1024 events with the associated time stamps. The non-volatile memory retains its

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

data even if the relay temporarily loses its auxiliary supply. The event log facilitates detailed pre- and post-fault analyses of feeder faults and disturbances. The considerable capacity to process and store data and events in the relay facilitates meeting the growing information demand of future network configurations.

The sequence-of-events information can be accessed either via local HMI or remotely via the communication interface of the relay. The information can also be accessed locally or remotely using the Web HMI.

11. Fault recorder

The relay has the capacity to store the records of the 128 latest fault events. The records can be used to analyze the power system events. The fault recording can be triggered by the start or the trip signal of a protection block, or by both. The available measurement modes include DFT, RMS and peak-to-peak. Fault records store relay measurement values at the moment when any protection function starts. In addition, the maximum demand current with time stamp is separately recorded. The records are stored in the non-volatile memory.

Furthermore, the relay includes a load profile recorder capable of storing measurement values into the relay's memory. The selected measurement values averaged over the selected period, ranging from one minute to three hours, are stored in a non-volatile memory. Depending on the selected measurements and averaging period, the overall length of the load profile recording ranges from some days to several months, even a year, making this feature suitable for monitoring long-time load behavior for the interested loads.

12. Condition monitoring

The condition monitoring functions of the relay constantly monitor the performance and the condition of the circuit breaker. The monitoring comprises the spring charging time, SF6 gas pressure, the travel time and the inactivity time of the circuit breaker.

The monitoring functions provide operational circuit breaker history data, which can be used for scheduling preventive circuit breaker maintenance.

13. Trip-circuit supervision

The trip-circuit supervision continuously monitors the availability and operability of the trip circuit. It provides open-circuit monitoring both when the circuit breaker is in its closed and in its open position. It also detects loss of circuit-breaker control voltage.

14. Self-supervision

The relay's built-in self-supervision system continuously monitors the state of the relay hardware and the operation of

the relay software. Any fault or malfunction detected is used for alerting the operator.

A permanent relay fault blocks the protection functions to prevent incorrect operation.

15. Fuse failure supervision

The fuse failure supervision detects failures between the voltage measurement circuit and the relay. The failures are detected either by the negative sequence-based algorithm or by the delta voltage and delta current algorithm. Upon the detection of a failure, the fuse failure supervision function activates an alarm and blocks voltage-dependent protection functions from unintended operation.

16. Autoreclosing

The relay includes a powerful and flexible multi-shot autoreclosing function. The autoreclosing function provides up to five programmable autoreclosing sequences, which can perform one to five successive autoreclosing shots of desired type and duration.

17. Hot line tag

Standard configurations of the RER615 are delivered with the hot line tag security functionality that will block the close operation of recloser or breaker when enabled. Hot line tag functionality can be enabled either from the local HMI of the RER615 or from the external signal.

18. Access control

To protect the relay from unauthorized access and to maintain information integrity, the relay is provided with a four-level, role-based authentication system with administrator-programmable individual passwords for the viewer, operator, engineer and administrator levels. The access control applies to the local HMI, the Web HMI and PCM600.

19. Inputs and outputs

Depending on the selected standard configuration, the relay is equipped with different analog input channels. Standard configuration A provides three phase-current inputs, one residual current input and three voltage inputs. Standard configuration D provides three phase-current inputs, one residual current input and six sensor voltage inputs or voltage transformers.

The phase-current inputs are rated 1/5 A and the residual current input 0.2/1 A. The residual current is suitable for applications requiring sensitive earth-fault protection and which have core balance current transformers. As the residual current is usually limited to small values, it can also be used in applications where even the phase current is 5A. The three phase voltage inputs and the residual voltage input cover the rated voltages 60...210 V. Both phase-to-phase voltages and phase-to-earth voltages can be connected.

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

The nominal secondary voltage of voltage sensor inputs is user-programmable, supporting both capacitive and resistive voltage sensors from 5 kV up to 38 kV.

The phase current input 1 A or 5 A, the residual current input 0.2 A or 1 A and the rated voltage of the residual voltage input are selected in the relay software. In addition, the binary input

thresholds $18...176\ V\ DC$ are selected by adjusting the relay's parameter settings.

All the binary input and output contacts are freely configurable with the Application Configuration or Signal Matrix tool in PCM600.

Table 4. Number of physical connections in standard configurations

Std. conf.	Order code digi	İ.	Analog channels		Binary channels		
	5-6	7	СТ	VT	Combi-sensor	BI	во
Α	AA	N	4	3	-	8	10
		Α	4	3	-	14	13
D	AD	N	4	6 ¹⁾	-	12	10
E	AE	N	-	3 ²⁾	3	8	10

¹⁾ Support for phase voltage sensors or phase voltage transformer with the SIM0001 module

²⁾ Support for three combi-sensors and three voltage sensors with the SIM0904 module

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

20. Station communication

The relay supports a variety of communication protocols, including IEC 61850 and the most common remote control protocols IEC 60870-5-104, IEC 60870-5-101 Modbus and DNP3. Operational information and controls are available through these protocols. However, some communication functionality, for example horizontal communication between the relays, is only possible through the IEC 61850 communication protocol.

The IEC 61850 communication implementation supports all the monitoring and control functions. Additionally, parameter settings, disturbance recordings and fault records can be accessed using the IEC 61850 protocol. Disturbance recordings are available for any Ethernet-based application in the standard COMTRADE file format. The relay supports simultaneous event reporting to five different clients over the station bus.

The relay can send binary signals to other devices (so-called horizontal communication) using the IEC 61850-8-1 GOOSE profile. Binary GOOSE messaging can, for example, be used for protection and interlocking-based protection schemes. The relay meets the GOOSE performance requirements for tripping applications in distribution substations, as defined by the IEC 61850 standard. Furthermore, the relay supports the sending and receiving of analog values using GOOSE messaging. Analog GOOSE messaging enables fast transfer of the analog measurement values over the station bus. This facilitates, for example, the sharing of RTD input values, such as surrounding temperature, with other relay applications.

All communication connectors, except for the front port connector, are placed on integrated optional communication modules. Modbus implementation supports RTU, ASCII and TCP modes. In addition to the standard Modbus functionality, the relay supports retrieval of timestamped events, changing the active setting group and uploading the latest fault records. If a Modbus TCP connection is used, four clients can be connected to the relay at the same time. Modbus serial and Modbus TCP can also be used in parallel and IEC 61850 and Modbus simultaneously, if required. In addition to the basic standard functionality, the relay supports changing of the active setting group and uploading of disturbance recordings in the IEC 60870-5-101/104 format. DNP3 supports both serial and TCP modes for connection to one master. Changing of the active setting group is also supported. When the relay uses the RS-485 bus for serial communication, both 2-wire and 4-wire connections are supported. Termination and pull-up/down resistors can be configured with jumpers on the communication card, therefore no external resistors are required.

The relay supports several time synchronization methods with a time-stamping resolution of 1 ms. SNTP and IEC 60870-5-104 can be used in Ethernet based time synchronization and IRIG-B is available with special time synchronization wiring. In addition, the relay supports time synchronization via the serial communication protocols Modbus, DNP3 and IEC 60870-5-101.

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

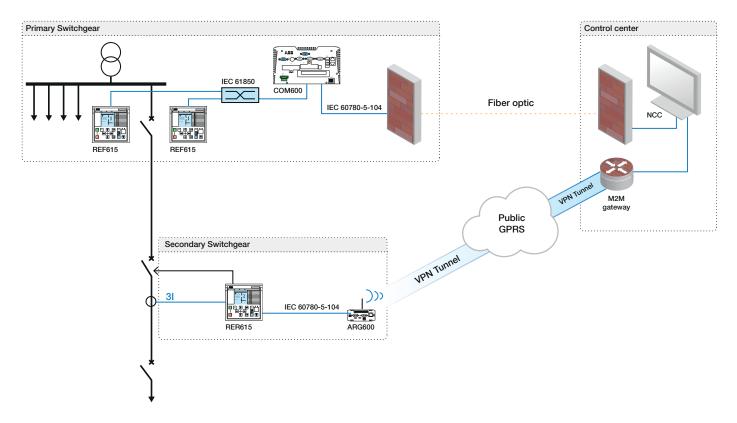


Figure 7. System overview of utility communication

Table 5. Supported station communication interfaces and protocols

Interfaces/Protocols	Ethe	met	Serial		
	100BASE-TX RJ-45	100BASE-FX LC	RS-232/RS-485	Fibre-optic ST	
IEC 61850	•	•	-	-	
MODBUS RTU/ASCII	-	-	•	•	
MODBUS TCP/IP	•	•	-	-	
DNP3 (serial)	-	-	•	•	
DNP3 TCP/IP	•	•	-	-	
IEC 60870-5-101	-	-	•	•	
IEC 60870-5-104	•	•	-	-	

^{• =} Supported

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

21. Technical data

Table 6. Dimensions

Description	Value	
Width	Frame	177 mm
	Case	164 mm
Height	Frame	177 mm (4U)
	Case	160 mm
Depth		201 mm (153 + 48 mm)
Weight	Complete protection relay	4.1 kg
	Plug-in unit only	2.1 kg

Table 7. Power supply

Description	Type 1	Type 2
Nominal auxiliary voltage U _n	100, 110, 120, 220, 240 V AC, 50 and 60 Hz	24, 30, 48, 60 V DC
	48, 60, 110, 125, 220, 250 V DC	
Maximum interruption time in the auxiliary DC voltage without resetting the relay	50 ms at U _n	
Auxiliary voltage variation	38110% of U _n (38264 V AC)	50120% of U _n (1272 V DC)
	80120% of U _n (38.4300 V DC)	
Start-up threshold		19.2 V DC (24 V DC × 80%)
Burden of auxiliary voltage supply under quiescent (P_q)/operating condition	DC <13.0 W (nominal)/<18.0 W (max.) AC <16.0 W (nominal)/<21.0 W (max.)	DC <13.0 W (nominal)/<18.0 W (max.)
Ripple in the DC auxiliary voltage	Max 15% of the DC value (at frequency of 100 Hz)	
Fuse type	T4A/250 V	

The protection relay does not include any batteries as backup power when the auxiliary power goes down. However, the relay configuration and settings, events, disturbance recordings and any critical data

stay in the relay's memory because those are saved to a nonvolatile memory. Also, the relay's real-time clock is kept running via a 48-hour capacitor backup.

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 8. Energizing inputs

Description		Value	
Rated frequency		50/60 Hz	
Current inputs	Rated current, I _n	0.2/1 A ¹⁾	1/5 A ²⁾
	Thermal withstand capability Continuously For 1 s Dynamic current withstand Half-wave value Input impedance	4 A ¹⁾ 100 A ¹⁾ 250 A ¹⁾ <100 mΩ ¹⁾	20 A 500 A 1250 A <20 mΩ
Voltage inputs Rated v	Rated voltage	60210 V AC	
	Voltage withstand • Continuous • For 10 s	240 V AC 360 V AC	
	Burden at rated voltage	<0.05 VA	

Ordering option for residual current input Residual current and/or phase current

Table 9. Energizing inputs of SIM0001

Description		Value
Voltage sensor input	Rated voltage	5 kV38 kV ¹⁾
	Continuous voltage withstand	125 V AC ²⁾
	Input impedance at 50/60 Hz	1 MΩ ³⁾
Voltage inputs	Rated voltage	60210 V AC
	Voltage withstand	
	Continuous	240 V AC
	• For 10 s	360 V AC
	Burden at rated voltage	<0.05 VA

This range is covered with a sensor division ratio of 10 000:1 if the input type is set as CVD sensor. Test to this voltage This range is covered with a sensor divisi
 Test to this voltage
 Neutral input impedance is close to zero

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 10. Energizing inputs of SIM0002/SIM0904

Description		Value	
Current sensor input	Rated current voltage (in secondary side)	75 mV9000 mV ¹⁾	
	Continuous voltage withstand	125 V	
	Input impedance at 50/60 Hz	23 MΩ ²⁾	
Voltage sensor input	Rated voltage	6 kV30 kV ³⁾	
	Continuous voltage withstand	50 V	
	Input impedance at 50/60 Hz	3 ΜΩ	

Equals the current range of 40...4000 A with a 80 A, 3 mV/Hz Rogowski Depending on the used nominal current (hardware gain)

Table 11. Binary inputs

Description	Value
Operating range	±20% of the rated voltage
Rated voltage	24250 V DC
Current drain	1.61.9 mA
Power consumption	31.0570.0 mW
Threshold voltage	16176 V DC
Reaction time	3 ms

Table 12. Signal output with high make and carry

Description	Value ¹⁾
Rated voltage	250 V AC/DC
Continuous contact carry	5 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R <40 ms	1 A/0.25 A/0.15 A
Minimum contact load	100 mA at 24 V AC/DC

X100: SO1 X110: SO1, SO2

Table 13. Signal outputs and IRF output

Description	Value 1)
Rated voltage	250 V AC/DC
Continuous contact carry	5 A
Make and carry for 3.0 s	10 A
Make and carry 0.5 s	15 A
Breaking capacity when the control-circuit time constant L/R <40 ms, at $48/110/220~\rm V~DC$	
Minimum contact load	10 mA at 5 V AC/DC

X100: IRF,SO2 X110: SO3, SO4

²⁾

This range is covered (up to 2*rated) with sensor division ratio of 10 000:1

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 14. Double-pole power outputs with TCS function X100: PO3 and PO4

Description	Value
Rated voltage	250 V AC/DC
Continuous contact carry	8 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R <40 ms, at 48/110/220 V DC (two contacts connected in a series)	5 A/3 A/1 A
Minimum contact load	100 mA at 24 V AC/DC
Trip-circuit monitoring (TCS)	
Control voltage range	20250 V AC/DC
Current drain through the monitoring circuit	~1.5 mA
Minimum voltage over the TCS contact	20 V AC/DC (1520 V)

Table 15. Single-pole power output relays X100: PO1 and PO2

Description	Value
Rated voltage	250 V AC/DC
Continuous contact carry	8 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R <40 ms, at $48/110/220 \text{ V DC}$	5 A/3 A/1 A
Minimum contact load	100 mA at 24 V AC/DC

Table 16. Front port Ethernet interfaces

Ethernet interface	Protocol	Cable	Data transfer rate
Front	TCP/IP protocol	Standard Ethernet CAT 5 cable with RJ-45 connector	10 MBits/s

Table 17. Station communication link, fibre-optic

Connector	Fibre type ¹⁾	Wave length	Max. distance	Permitted path attenuation ²⁾
LC	MM 62.5/125 or 50/125 μm glass fibre core	1300 nm	2 km	<8 dB
ST	MM 62.5/125 or 50/125 μm glass fibre core	820900 nm	1 km	<11 dB

^{1) (}MM) multi-mode fibre, (SM) single-mode fibre

²⁾ Maximum allowed attenuation caused by connectors and cable together

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 18. IRIG-B

Description	Value
IRIG time code format	B004, B005 ¹⁾
Isolation	500V 1 min
Modulation	Unmodulated
Logic level	TTL level
Current consumption	24 mA
Power consumption	1020 mW

¹⁾ According to the 200-04 IRIG standard

Table 19. Degree of protection of flush-mounted protection relay

Description	Value
Front side	IP 54
Rear side, connection terminals	IP 20

Table 20. Environmental conditions

Description	Value
Operating temperature range	-25+55°C (continuous)
Short-time service temperature range	-40+85°C (<16h) ¹⁾²⁾
Relative humidity	<93%, non-condensing
Atmospheric pressure	86106 kPa
Altitude	Up to 2000 m
Transport and storage temperature range	-40+85°C

Degradation in MTBF and HMI performance outside the temperature range of -25...+55 $^{\circ}$ C For relays with an LC communication interface the maximum operating temperature is +70 $^{\circ}$ C

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 21. Electromagnetic compatibility tests

Description	Type test value	Reference
1 MHz/100 kHz burst disturbance test		IEC 61000-4-18 IEC 60255-26 IEEE C37.90.1-2012
Common mode	2.5 kV	
Differential mode	2.5 kV	
3 MHz, 10 MHz and 30 MHz burst disturbance test		IEC 61000-4-18 IEC 60255-26, class III
Common mode	2.5 kV	
Electrostatic discharge test		IEC 61000-4-2 IEC 60255-26 IEEE C37.90.3-2001
Contact discharge	8 kV	
Air discharge	15 kV	
Radio frequency interference test	10 V (rms) f = 150 kHz80 MHz 10 V/m (rms) f = 802700 MHz 10 V/m f = 900 MHz 20 V/m (rms) f = 801000 MHz	IEC 61000-4-6 IEC 60255-26, class III IEC 61000-4-3 IEC 60255-26, class III ENV 50204 IEC 60255-26, class III IEEE C37.90.2-2004
Fast transient disturbance test		IEC 61000-4-4 IEC 60255-26 IEEE C37.90.1-2012
All ports	4 kV	
Surge immunity test		IEC 61000-4-5 IEC 60255-26
Communication	1 kV, line-to-earth	
Other ports	4 kV, line-to-earth 2 kV, line-to-line	
Power frequency (50 Hz) magnetic field immunity test		IEC 61000-4-8
Continuous13 s	300 A/m 1000 A/m	
Pulse magnetic field immunity test	1000 A/m 6.4/16 µs	IEC 61000-4-9
Damped oscillatory magnetic field immunity test		IEC 61000-4-10
• 2 s	100 A/m	
• 1 MHz	400 transients/s	
Power frequency immunity test	Binary inputs only	IEC 61000-4-16 IEC 60255-26, class A
Common mode	300 V rms	
Differential mode	150 V rms	

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 21. Electromagnetic compatibility tests, continued

Description	Type test value	Reference
Emission tests		EN 55011, class A IEC 60255-26 CISPR 11 CISPR 22
Conducted		
0.150.50 MHz	<79 dB (μV) quasi peak <66 dB (μV) average	
0.530 MHz	<73 dB (μV) quasi peak <60 dB (μV) average	
Radiated		
30230 MHz	<40 dB (μ V/m) quasi peak, measured at 10 m distance	
2301000 MHz	<47 dB (μ V/m) quasi peak, measured at 10 m distance	

Table 22. Insulation tests

Description	Type test value	Reference
Dielectric tests	2 kV, 50 Hz, 1 min 500 V, 50 Hz, 1 min, communication	IEC 60255-27
Impulse voltage test	5 kV, 1.2/50 μs, 0.5 J 1 kV, 1.2/50 μs, 0.5 J, communication	IEC 60255-27
Insulation resistance measurements	>100 MΩ, 500 V DC	IEC 60255-27
Protective bonding resistance	<0.1 Ω, 4 A, 60 s	IEC 60255-27

Table 23. Mechanical tests

Description	Requirement	Reference
		IEC 60068-2-6 (test Fc) IEC 60255-21-1
		IEC 60068-2-27 (test Ea shock) IEC 60068-2-29 (test Eb bump) IEC 60255-21-2
Seismic test	Class 2	IEC 60255-21-3

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 24. Environmental tests

Description	Type test value	Reference	
Dry heat test	• 96 h at +55°C • 16 h at +85°C ¹⁾	IEC 60068-2-2	
Cold test	• 96 h at -25°C • 16 h at -40°C	IEC 60068-2-1	
Damp heat test	 6 cycles (12 h + 12 h) at +25°C+55°C, humidity >93% 	IEC 60068-2-30	
Change of temperature test	• 5 cycles (3 h + 3 h) at -25°C+55°C	IEC60068-2-14	
Storage test	 96 h at -40°C 96 h at +85°C 	IEC 60068-2-1 IEC 60068-2-2	
Mixed gas corrosion ²⁾ Test parameters according to GR-63-CC (outdoor): • Temp: 30°C ±1 • RH: 70% ±2 • H2S: 100 ±15 ppb • CI2: 20 ±3 ppb • NO2: 200 ±30 ppb • SO2: 200 ±30 ppb		IEC 60068-2-60, test procedure 2	
Salt mist test ²⁾	Severity level 2	IEC 60068-2-52, Test Kb	

¹⁾ For relays with an LC communication interface the maximum operating temperature is +70°C

Table 25. Product safety

Description	Reference
LV directive	2006/95/EC
Standard	EN 60255-27 (2013) EN 60255-1 (2009)

Table 26. EMC compliance

Description	Reference	
EMC directive	2004/108/EC	
Standard	EN 60255-26 (2013)	

Table 27. RoHS compliance

Description	
Complies with RoHS directive 2002/95/EC	

For relays with optional conformal coating (the chosen coating is recognized by Underwriters Laboratories (UL) and compliant with the US military specification MIL-I-46058C, IPC-CC-830 (Institute of Printed Circuits) and the RoHS (Restriction of Hazardous Substances) directive 2002/95/EC)

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Protection functions

Table 28. Three-phase non-directional overcurrent protection ((F)PHxPTOC)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured current: f _n ±2 Hz		
	(F)PHLPTOC	±1.5% of the se	t value or ±0.002 × I _n	
	PHHPTOC and PHIPTOC	$\pm 1.5\%$ of set value or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$) $\pm 5.0\%$ of the set value (at currents in the range of $1040 \times I_n$)		
Start time 1)2)		Minimum	Typical	Maximum
	PHIPTOC: I _{Fault} = 2 × set <i>Start value</i> I _{Fault} = 10 × set <i>Start value</i>	16 ms 11 ms	19 ms 12 ms	23 ms 14 ms
	PHHPTOC and (F)PHLPTOC: I _{Fault} = 2 × set <i>Start value</i>	23 ms	26 ms	29 ms
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<30 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³⁾ ±5.0% of the theoretical value or ±40 ms ³⁾⁴⁾		
Suppression of harmonics		RMS: No suppression DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5, Peak-to-Peak: No suppression P-to-P+backup: No suppression		

Set Operate delay time = 0.02 s, Operate curve type = IEC definite time, Measurement mode = default (depends on stage), current before fault = 0.0 × In, fn = 50 Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements Includes the delay of the signal output contact

Includes the delay of the heavy-duty output contact Valid for FPHLPTOC

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 29. Three-phase non-directional overcurrent protection ((F)PHxPTOC) main settings

Parameter	Function	Value (Range)	Step		
Start value	(F)PHLPTOC	0.055.00 × I _n	0.01		
	PHHPTOC	0.1040.00 × I _n	0.01		
	PHIPTOC	1.0040.00 × I _n	0.01		
Time multiplier	(F)PHLPTOC	0.0515.00	0.01		
	PHHPTOC	0.0515.00	0.01		
Operate delay time	(F)PHLPTOC	40200000 ms	10		
	PHHPTOC	40200000 ms	10		
	PHIPTOC	20200000 ms	10		
Operating curve type ¹⁾	(F)PHLPTOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -37, -38, -39			
	PHHPTOC	Definite or inverse time Curve type: 1, 3, 5, 9, 10,	Definite or inverse time Curve type: 1, 3, 5, 9, 10, 12, 15, 17		
	PHIPTOC	Definite time	Definite time		

¹⁾ For further reference, see the Operation characteristics table

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 30. Three-phase directional overcurrent protection ((F)DPHxPDOC)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the current/voltage measured: $f_n \pm 2 \text{ Hz}$		
	(F)DPHLPDOC	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$ Phase angle: $\pm 2^\circ$		
	DPHHPDOC	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$) $\pm 5.0\%$ of the set value (at currents in the range of $1040 \times I_n$) Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$ Phase angle: $\pm 2^\circ$		
Start time ¹⁾²⁾		Minimum	Typical	Maximum
	I _{Fault} = 2.0 × set <i>Start value</i>	39 ms	43 ms	47 ms
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³⁾ ±5.0% of the theoretical value or ±40 ms ³⁾⁴⁾		
Suppression of harmonics		DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,		

¹⁾ Measurement mode and Pol quantity = default, current before fault = 0.0 × I_n, voltage before fault = 1.0 × U_n, f_n = 50 Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

²⁾ Includes the delay of the signal output contact

³⁾ Maximum Start value = $2.5 \times I_n$, Start value multiples in range of 1.5...20

⁴⁾ Valid for (F)DPHLPDOC

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 31. Three-phase directional overcurrent protection ((F)DPHxPDOC) main settings

Parameter	Function	Value (Range)	Step
Start value	(F)DPHLPDOC	0.055.00 × I _n	0.01
	DPHHPDOC	0.1040.00 × I _n	0.01
Time multiplier	DPHxPDOC	0.0515.00	0.01
Operate delay time	DPHxPDOC	40200000 ms	10
Directional mode	DPHxPDOC	1 = Non-directional 2 = Forward 3 = Reverse	-
Characteristic angle	DPHxPDOC	-179180°	1
Operating curve type ¹⁾	(F)DPHLPDOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, -' -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -37, -38, -39	
	DPHHPDOC	Definite or inverse time Curve type: 1, 3, 5, 9, 10, 12, 15, 17	

¹⁾ For further reference, see the Operating characteristics table

Table 32. Non-directional earth-fault protection ((F)EFxPTOC)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured current: f _n ±2 Hz		
	(F)EFLPTOC	±1.5% of the set value or ±0.002 × I _n		
	EFHPTOC and EFIPTOC	$\pm 1.5\%$ of set value or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$) $\pm 5.0\%$ of the set value (at currents in the range of $1040 \times I_n$)		
Start time ¹⁾²⁾		Minimum	Typical	Maximum
	EFIPTOC: I _{Fault} = 2 × set <i>Start value</i> I _{Fault} = 10 × set <i>Start value</i>	16 ms 11 ms	19 ms 12 ms	23 ms 14 ms
	EFHPTOC and (F)EFLPTOC: I _{Fault} = 2 × set <i>Start value</i>	23 ms	26 ms	29 ms
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<30 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse time mode		$\pm 5.0\%$ of the theoretical value or ± 20 ms $^{3)}$ $\pm 5.0\%$ of the theoretical value or ± 40 ms $^{3)4)}$		
Suppression of harmonics		RMS: No suppression DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ Peak-to-Peak: No suppression		

¹⁾ Measurement mode = default (depends on stage), current before fault = 0.0 × I_n, f_n = 50 Hz, earth-fault current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

²⁾ Includes the delay of the signal output contact

³⁾ Maximum Start value = 2.5 × I_n, Start value multiples in range of 1.5...20

Valid for FEFLPTOC

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 33. Non-directional earth-fault protection ((F)EFxPTOC) main settings

Parameter	Function	Value (Range)	Step	
Start value	(F)EFLPTOC	0.0105.000 × I _n	0.005	
	EFHPTOC	0.1040.00 × I _n	0.01	
	EFIPTOC	1.0040.00 × I _n	0.01	
Time multiplier	(F)EFLPTOC and EFHPTOC	0.0515.00	0.01	
Operate delay time	(F)EFLPTOC and EFHPTOC	40200000 ms	10	
	EFIPTOC	40200000 ms	10	
Operating curve type ¹⁾	(F)EFLPTOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, -1, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -2, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -3, -37, -38, -39		
	EFHPTOC	Definite or inverse time Curve type: 1, 3, 5, 9, 10, 12, 15, 17		
	EFIPTOC	Definite time		

¹⁾ For further reference, see the Operation characteristics table

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 34. Directional earth-fault protection ((F)DEFxPDEF)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured current: f _n ±2 Hz		
	(F)DEFLPDEF	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ Voltage $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$ Phase angle: $\pm 2^\circ$		
	DEFHPDEF	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$) $\pm 5.0\%$ of the set value (at currents in the range of $1040 \times I_n$) Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$ Phase angle: $\pm 2^\circ$		
Start time ¹⁾²⁾	DEFHPDEF I _{Fault} = 2 × set <i>Start value</i>	Minimum	Typical	Maximum
		42 ms	46 ms	49 ms
	(F)DEFLPDEF I _{Fault} = 2 × set <i>Start value</i>	58 ms	62 ms	66 ms
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<30 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³⁾ ±5.0% of the theoretical value or ±40 ms ³⁾⁴⁾		
Suppression of harmonics		RMS: No suppression DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ Peak-to-Peak: No suppression		

¹⁾ Set Operate delay time = 0.06 s, Operate curve type = IEC definite time, Measurement mode = default (depends on stage), current before fault = 0.0 × In, fn = 50 Hz, earth-fault current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

Includes the delay of the signal output contact Maximum $Start\ value = 2.5 \times I_n$, $Start\ value\ multiples$ in range of 1.5...20

Valid for FDEFLPDEF

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 35. Directional earth-fault protection ((F)DEFxPDEF) main settings

Parameter	Function	Value (Range)	Step
Start value	(F)DEFLPDEF	0.0105.000 × I _n	0.005
	DEFHPDEF	0.1040.00 × I _n	0.01
Directional mode	(F)DEFxPDEF	1 = Non-directional - 2 = Forward 3 = Reverse	
Time multiplier	(F)DEFLPDEF	0.0515.00	0.01
	DEFHPDEF	0.0515.00	0.01
Operate delay time	(F)DEFLPDEF	60200000 ms	10
	DEFHPDEF	40200000 ms	10
Operating curve type ¹⁾	(F)DEFLPDEF	-3, -4, -5, -6, -7, -8, -9, -10, -	8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, -1, -2, 11, -12, -13, -14, -15, -16, -17, -18, -19, -20, 27, -28, -29, -30, -31, -32, -33, -34, -35, -36,
	DEFHPDEF	Definite or inverse time Curve type: 1, 3, 5, 15, 17	
Operation mode	(F)DEFxPDEF	1 = Phase angle 2 = IoSin 3 = IoCos 4 = Phase angle 80 5 = Phase angle 88	-

¹⁾ For further reference, see the Operating characteristics table

Table 36. Transient/intermittent earth-fault protection (INTRPTEF)

Characteristic	Value
Operation accuracy (Uo criteria with transient protection)	Depending on the frequency of the measured current: f _n ±2 Hz
	±1.5% of the set value or ±0.002 × Uo
Operate time accuracy	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = $n \times f_n$, where $n = 2, 3, 4, 5$

Table 37. Transient/intermittent earth-fault protection (INTRPTEF) main settings

Parameter	Function	Value (Range)	Step
Directional mode	INTRPTEF	1 = Non-directional 2 = Forward 3 = Reverse	-
Operate delay time	INTRPTEF	401200000 ms	10
Voltage start value	INTRPTEF	0.050.50 × U _n	0.01
Operation mode	INTRPTEF	1 = Intermittent EF 2 = Transient EF	-
Peak counter limit	INTRPTEF	220	1
Min operate current	INTRPTEF	0.011.00 × I _n	0.01

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 38. Admittance-based earth-fault protection (EFPADM)

Characteristic	Value	Value		
Operation accuracy ¹⁾	At the frequency f = f _n			
	±1.0% or ±0.01 mS (In range of 0.5100 mS)			
Start time ²⁾	Minimum	Typical	Maximum	
	56 ms	60 ms	64 ms	
Reset time	40 ms	40 ms		
Operate time accuracy	±1.0% of the set	±1.0% of the set value of ±20 ms		
Suppression of harmonics		-50 dB at f = n × f _n , where n = 2, 3, 4, 5,		

Table 39. Admittance-based earth-fault protection (EFPADM) main settings

Parameter	Function	Value (Range)	Step	
Voltage start value	EFPADM	0.012.00 × U _n	0.01	
Directional mode	EFPADM	1 = Non-directional 2 = Forward 3 = Reverse	-	
Operation mode	EFPADM	1 = Yo 2 = Go 3 = Bo 4 = Yo, Go 5 = Yo, Bo 6 = Go, Bo 7 = Yo, Go, Bo	-	
Operate delay time	EFPADM	60200000 ms	10	***********
Circle radius	EFPADM	0.05500.00 mS	0.01	
Circle conductance	EFPADM	-500.00500.00 mS	0.01	
Circle susceptance	EFPADM	-500.00500.00 mS	0.01	************
Conductance forward	EFPADM	-500.00500.00 mS	0.01	
Conductance reverse	EFPADM	-500.00500.00 mS	0.01	
Susceptance forward	EFPADM	-500.00500.00 mS	0.01	***************************************
Susceptance reverse	EFPADM	-500.00500.00 mS	0.01	
Conductance tilt Ang	EFPADM	-3030°	1	
Susceptance tilt Ang	EFPADM	-3030°	1	************

Uo = 1.0 × Un
 Includes the delay of the signal output contact, results based on statistical distribution of 1000 measurements

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 40. Wattmetric-based earth-fault protection (WPWDE)

Characteristic	Value		
Operation accuracy	Depending on the frequency of the measured current: f _n ±2 Hz		
	Current and voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ Power: $\pm 3\%$ of the set value or $\pm 0.002 \times P_n$		
Start time ¹⁾²⁾	Typically 63 ms		
Reset time	Typically 40 ms		
Reset ratio	Typically 0.96		
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms		
Operate time accuracy in IDMT mode	±5.0% of the set value or ±20 ms		
Suppression of harmonics	-50 dB at f = n × f _n , where n = 2,3,4,5,		

¹⁾ lo varied during the test, Uo = $1.0 \times U_n$ = phase-to-earth voltage during earth fault in compensated or unearthed network, the residual power value before fault = 0.0 pu, $f_n = 50 \text{ Hz}$, results based on statistical distribution of 1000 measurements

Table 41. Wattmetric-based earth-fault protection (WPWDE) main settings

Parameter	Function	Value (Range)	Step	
Directional mode	WPWDE	2 = Forward 3 = Reverse	-	
Current start value	WPWDE	0.0105.000 × I _n	0.001	
Voltage start value	WPWDE	0.0101.000 × U _n	0.001	
Power start value	WPWDE	0.0031.000 × P _n	0.001	
Reference power	WPWDE	0.0501.000 × P _n	0.001	
Characteristic angle	WPWDE	-179180°	1	•••••
Time multiplier	WPWDE	0.052.00	0.01	
Operating curve type ¹⁾	WPWDE	Definite or inverse time Curve type: 5, 15, 20		
Operate delay time	WPWDE	60200000 ms	10	
Min operate current	WPWDE	0.0101.000 × I _n	0.001	
Min operate voltage	WPWDE	0.011.00 × U _n	0.01	***************

¹⁾ For further reference, refer to the Operating characteristics table

²⁾ Includes the delay of the signal output contact

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 42. Harmonics-based earth-fault protection (HAEFPTOC)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: f _n ±2 Hz
	±5% of the set value or ±0.004 × I _n
Start time ¹⁾²⁾	Typically 77 ms
Reset time	Typically 40 ms
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Operate time accuracy in IDMT mode ³⁾	±5.0% of the set value or ±20 ms
Suppression of harmonics	-50 dB at f = f _n
	-3 dB at f = 13 × f _n

¹⁾ Fundamental frequency current = $1.0 \times I_n$, harmonics current before fault = $0.0 \times I_n$, harmonics fault current $2.0 \times Start\ value$, results based on statistical distribution of 1000 measurements

Table 43. Harmonics-based earth-fault protection (HAEFPTOC) main settings

Parameter	Function	Value (Range)	Step
Start value	HAEFPTOC	0.055.00 × I _n	0.01
Time multiplier	HAEFPTOC	0.0515.00	0.01
Operate delay time	HAEFPTOC	100200000 ms	10
Operating curve type ¹⁾	HAEFPTOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19	
Minimum operate time	HAEFPTOC	100200000 ms	10

¹⁾ For further reference, see Operation characteristics table

Table 44. Multifrequency admittance-based earth-fault protection (MFADPSDE)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured voltage: $f_{\text{n}}\text{±}2\text{Hz}$
	±1.5% of the set value or ±0.002 × U _n
Start time ¹⁾	Typically 35 ms
Reset time	Typically 40 ms
Operate time accuracy	±1.0% of the set value or ±20 ms

¹⁾ Includes the delay of the signal output contact, results based on statistical distribution of 1000 measurements

²⁾ Includes the delay of the signal output contact

³⁾ Maximum $Start\ value = 2.5\ \times\ I_n$, $Start\ value\ multiples\ in\ range\ of\ 2...20$

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 45. Multifrequency admittance-based earth-fault protection (MFADPSDE) main settings

Parameter	Function	Value (Range)	Step	
Directional mode	MFADPSDE	2 = Forward 3 = Reverse	-	
Voltage start value	MFADPSDE	0.011.00 × U _n	0.01	
Operate delay time	MFADPSDE	601200000 ms	10	
Operating quantity	MFADPSDE	1 = Adaptive 2 = Amplitude 3 = Resistive	-	
Min operate current	MFADPSDE	0.0055.000 × I _n	0.001	
Operation mode	MFADPSDE	1 = Intermittent EF 3 = General EF 4 = Alarming EF	-	
Peak counter limit	MFADPSDE	220	1	

Table 46. Negative-sequence overcurrent protection (NSPTOC)

Characteristic		Value	Value		
Operation accuracy		Depending on the frequency of the measured current: f _n			
		±1.5% of the set	±1.5% of the set value or ±0.002 × I _n		
Start time 1)2)		Minimum	Typical	Maximum	
	I _{Fault} = 2 × set <i>Start value</i> I _{Fault} = 10 × set <i>Start value</i>	23 ms 15 ms	26 ms 18 ms	28 ms 20 ms	
Reset time		Typically 40 ms	Typically 40 ms		
Reset ratio		Typically 0.96	Typically 0.96		
Retardation time		<35 ms			
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms			
Operate time accuracy in inverse time mode		±5.0% of the the	±5.0% of the theoretical value or ±20 ms ³⁾		
Suppression of harmonics		DFT: -50 dB at f	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,		

Negative sequence current before fault = 0.0, f_n = 50 Hz, results based on statistical distribution of 1000 measurements

Table 47. Negative-sequence overcurrent protection (NSPTOC) main settings

Parameter	Function	Value (Range)	Step	
Start value	NSPTOC	0.015.00 × I _n	0.01	
Time multiplier	NSPTOC	0.0515.00	0.01	
Operate delay time	NSPTOC	40200000 ms	10	
Operating curve type ¹⁾	NSPTOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6,	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19	

For further reference, see the Operation characteristics table

Includes the delay of the signal output contact Maximum Start value = $2.5 \times I_n$, Start value multiples in range of 1.5...20

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 48. Phase discontinuity protection (PDNSPTOC)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: f _n ±2 Hz
	±2% of the set value
Start time	<70 ms
Reset time	Typically 40 ms
Reset ratio	Typically 0.96
Retardation time	<35 ms
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,

Table 49. Phase discontinuity protection (PDNSPTOC) main settings

Parameter	Function	Value (Range)	Step
Start value	PDNSPTOC	10100%	1
Operate delay time	PDNSPTOC	10030000 ms	1
Min phase current	PDNSPTOC	0.050.30 × I _n	0.01

Table 50. Residual overvoltage protection (ROVPTOV)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured voltage: $f_n \pm 2$ Hz $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$		
U _{Fault} = 2 × set <i>Start value</i>	48 ms	51 ms	54 ms	
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Suppression of harmonics		DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,		

¹⁾ Residual voltage before fault = 0.0 × U_n, f_n = 50 Hz, residual voltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

Table 51. Residual overvoltage protection (ROVPTOV) main settings

Parameter	Function	Value (Range)	Step
Start value	ROVPTOV	0.0101.000 × U _n	0.001
Operate delay time	ROVPTOV	40300000 ms	1

²⁾ Includes the delay of the signal output contact

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 52. Three-phase undervoltage protection (PHPTUV)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the voltage measured: f_n ±2 Hz ±1.5% of the set value or ±0.002 × U _n		
	U _{Fault} = 0.9 × set <i>Start value</i>	62 ms	66 ms	70 ms
Reset time		Typically 40 ms		
Reset ratio		Depends on the set Relative hysteresis		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³⁾		S ³⁾
Suppression of harmonics		DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,		

¹⁾ Start value = 1.0 × U_n. Voltage before fault = 1.1 × U_n, f_n = 50 Hz, undervoltage in one phase-to-phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

Table 53. Three-phase undervoltage protection (PHPTUV) main settings

Parameter	Function	Value (Range)	Step
Start value	PHPTUV	0.051.20 × U _n	0.01
Time multiplier	PHPTUV	0.0515.00	0.01
Operate delay time	PHPTUV	60300000 ms	10
Operating curve type ¹⁾	PHPTUV	Definite or inverse time Curve type: 5, 15, 21, 22, 23	3

¹⁾ For further reference, see the Operation characteristics table

Table 54. Three-phase overvoltage protection (PHPTOV)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured voltage: f_n ±2 Hz ±1.5% of the set value or ±0.002 × U _n		
	U _{Fault} = 1.1 × set <i>Start value</i>	23 ms	27 ms	31 ms
Reset time		Typically 40 ms		
Reset ratio		Depends on the set Relative hysteresis		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³⁾		S ³⁾
Suppression of harmonics		DFT: -50 dB at f	= $n \times f_n$, where $n = 2, 3$, 4, 5,

¹⁾ Start value = 1.0 × U_n, Voltage before fault = 0.9 × U_n, f_n = 50 Hz, overvoltage in one phase-to-phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

²⁾ Includes the delay of the signal output contact

³⁾ Minimum Start value = 0.50, Start value multiples in range of 0.90...0.20

²⁾ Includes the delay of the signal output contact

³⁾ Maximum Start value = 1.20 × U_n, Start value multiples in range of 1.10...2.00

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 55. Three-phase overvoltage protection (PHPTOV) main settings

Parameter	Function	Value (Range)	Step
Start value	PHPTOV	0.051.60 × U _n	0.01
Time multiplier	PHPTOV	0.0515.00	0.01
Operate delay time	PHPTOV	40300000 ms	10
Operating curve type ¹⁾	PHPTOV	Definite or inverse time Curve type: 5, 15, 17, 18, 19, 20	

¹⁾ For further reference, see the Operation characteristics table

Table 56. Positive-sequence undervoltage protection (PSPTUV)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured voltage: f_n ±2 Hz ±1.5% of the set value or ±0.002 × U _n		
U _{Fault} = 0.99 × set <i>Start value</i> U _{Fault} = 0.9 × set <i>Start value</i>	52 ms 44 ms	55 ms 47 ms	58 ms 50 ms	
Reset time		Typically 40 ms		
Reset ratio		Depends on the set Relative hysteresis		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,		

¹⁾ Start value = 1.0 × U_n, positive-sequence voltage before fault = 1.1 × U_n, f_n = 50 Hz, positive sequence undervoltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

Table 57. Positive-sequence undervoltage protection (PSPTUV) main settings

Parameter	Function	Value (Range)	Step
Start value	PSPTUV	0.0101.200 × U _n	0.001
Operate delay time	PSPTUV	40120000 ms	10
Voltage block value	PSPTUV	0.011.00 × U _n	0.01

²⁾ Includes the delay of the signal output contact

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 58. Negative-sequence overvoltage protection (NSPTOV)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the voltage measured: f _n ±1.5% of the set value or ±0.002 × U _n		
	U _{Fault} = 1.1 × set <i>Start value</i> U _{Fault} = 2.0 × set <i>Start value</i>	33 ms 24 ms	35 ms 26 ms	37 ms 28 ms
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Suppression of harmonics		DFT: -50 dB at f	= $n \times f_n$, where $n = 2, 3$,	4, 5,

¹⁾ Negative-sequence voltage before fault = 0.0 × U_n, f_n = 50 Hz, negative-sequence overvoltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

Table 59. Negative-sequence overvoltage protection (NSPTOV) main settings

Parameter	Function	Value (Range)	Step
Start value	NSPTOV	0.0101.000 × U _n	0.001
Operate delay time	NSPTOV	40120000 ms	1

Table 60. Frequency protection (FRPFRQ)

Characteristic		Value
Operation accuracy	f>/f<	±5 mHz
	df/dt	±50 mHz/s (in range df/dt <5 Hz/s) ±2.0% of the set value (in range 5 Hz/s < df/dt < 15 Hz/s)
Start time	f>/f<	<80 ms
	df/dt	<120 ms
Reset time		<150 ms
Operate time accuracy		±1.0% of the set value or ±30 ms

²⁾ Includes the delay of the signal output contact

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 61. Frequency protection (FRPFRQ) main settings

Parameter	Function	Value (Range)	Step
Operation mode	FRPFRQ	1 = Freq< 2 = Freq> 3 = df/dt 4 = Freq< + df/dt 5 = Freq> + df/dt 6 = Freq< OR df/dt 7 = Freq> OR df/dt	-
Start value Freq>	FRPFRQ	0.90001.2000 × f _n	0.0001
Start value Freq<	FRPFRQ	0.80001.1000 × f _n	0.0001
Start value df/dt	FRPFRQ	-0.20000.2000 × f _n /s	0.0001
Operate Tm Freq	FRPFRQ	80200000 ms	10
Operate Tm df/dt	FRPFRQ	120200000 ms	10

Table 62. Three-phase thermal protection for feeders, cables and distribution transformers (T1PTTR)

Characteristic	Value	
Operation accuracy	Depending on the frequency of the measured current: $f_n \pm 2 \text{ Hz}$	
	Current measurement: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of 0.014.00 × I_n)	
Operate time accuracy ¹⁾	±2.0% of the theoretical value or ±0.50 s	

¹⁾ Overload current $> 1.2 \times$ Operate level temperature

Table 63. Three-phase thermal protection for feeders, cables and distribution transformers (T1PTTR) main settings

Parameter	Function	Value (Range)	Step	
Env temperature Set	T1PTTR	-50100°C	1	
Current reference	T1PTTR	0.054.00 × I _n	0.01	
Temperature rise	T1PTTR	0.0200.0°C	0.1	
Time constant	T1PTTR	6060000 s	1	
Maximum temperature	T1PTTR	20.0200.0°C	0.1	
Alarm value	T1PTTR	20.0150.0°C	0.1	
Reclose temperature	T1PTTR	20.0150.0°C	0.1	
Current multiplier	T1PTTR	15	1	
Initial temperature	T1PTTR	-50.0100.0°C	0.1	

Table 64. Circuit breaker failure protection (CCBRBRF)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: f _n ±2 Hz
	±1.5% of the set value or ±0.002 × I _n
Operate time accuracy	±1.0% of the set value or ±20 ms
Reset time	Typically 40 ms
Retardation time	<20 ms

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 65. Circuit breaker failure protection (CCBRBRF) main settings

Parameter	Function	Value (Range)	Step	
Current value	CCBRBRF	0.052.00 × I _n	0.01	
Current value Res	CCBRBRF	0.052.00 × I _n	0.01	
CB failure mode	CCBRBRF	1 = Current 2 = Breaker status 3 = Both	-	
CB fail trip mode	CCBRBRF	1 = Off 2 = Without check 3 = Current check	-	
Retrip time	CCBRBRF	060000 ms	10	
CB failure delay	CCBRBRF	060000 ms	10	
CB fault delay	CCBRBRF	060000 ms	10	

Table 66. Three-phase inrush detector (INRPHAR)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	Current measurement: ±1.5% of the set value or ±0.002 × I _n Ratio I2f/I1f measurement: ±5.0% of the set value
Reset time	+35 ms / -0 ms
Reset ratio	Typically 0.96
Operate time accuracy	+35 ms / -0 ms

Table 67. Three-phase inrush detector (INRPHAR) main settings

Parameter	Function	Value (Range)	Step
Start value	INRPHAR	5100%	1
Operate delay time	INRPHAR	2060000 ms	1

Table 68. Multipurpose protection (MAPGAPC)

Characteristic	Value
Operation accuracy	±1.0% of the set value or ±20 ms

Table 69. Multipurpose protection (MAPGAPC) main settings

Parameter	Function	Value (Range)	Step
Start value	MAPGAPC	-10000.010000.0	0.1
Operate delay time	MAPGAPC	0200000 ms	100
Operation mode	MAPGAPC	1 = Over 2 = Under	-

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 70. Load-shedding and restoration (LSHDPFRQ)

Characteristic		Value
Operation accuracy	f<	±5 mHz
	df/dt	±100 mHz/s (in range df/dt < 5 Hz/s) ± 2.0% of the set value (in range 5 Hz/s < df/dt < 15 Hz/s)
Start time	f<	<80 ms
df/dt		<120 ms
Reset time		<150 ms
Operate time accuracy		±1.0% of the set value or ±30 ms

Table 71. Load-shedding and restoration (LSHDPFRQ) main settings

Parameter	Function	Value (Range)	Step
Load shed mode	LSHDPFRQ	1 = Freq< 6 = Freq< OR df/dt 8 = Freq< AND df/dt	-
Restore mode	LSHDPFRQ	1 = Disabled 2 = Auto 3 = Manual	-
Start value Freq	LSHDPFRQ	0.8001.200 × f _n	0.001
Start value df/dt	LSHDPFRQ	-0.2000.005 × f _n /s	0.005
Operate Tm Freq	LSHDPFRQ	80200000 ms	10
Operate Tm df/dt	LSHDPFRQ	120200000 ms	10
Restore start Val	LSHDPFRQ	0.8001.200 × f _n	0.001
Restore delay time	LSHDPFRQ	80200000 ms	10

Table 72. Fault locator (SCEFRFLO)

Characteristic	Value
Measurement accuracy	At the frequency f = f _n
	Impedance: $\pm 2.5\%$ or $\pm 0.25~\Omega$ Distance:
	±2.5% or ±0.16 km/0.1 mile
	XC0F_CALC: $\pm 2.5\%$ or ± 50 Ω
	IFLT_PER_ILD: ±5% or ±0.05

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 73. Fault locator (SCEFRFLO) main settings

Parameter	Function	Value (Range)	Step
Z Max phase load	SCEFRFLO	1.010000.00 Ω	0.1
Ph leakage Ris	SCEFRFLO	201000000 Ω	1
Ph capacitive React	SCEFRFLO	101000000 Ω	1
R1 line section A	SCEFRFLO	0.0001000.000 Ω/pu	0.001
X1 line section A	SCEFRFLO	0.0001000.000 Ω/pu	0.001
R0 line section A	SCEFRFLO	0.0001000.000 Ω/pu	0.001
X0 line section A	SCEFRFLO	0.0001000.000 Ω/pu	0.001
Line Len section A	SCEFRFLO	0.0001000.000 pu	0.001

Table 74. Operation characteristics

Parameter	Value (Range)
Operating curve type	1 = ANSI Ext. inv. 2 = ANSI Very. inv. 3 = ANSI Norm. inv. 4 = ANSI Mod inv. 5 = ANSI Def. Time 6 = L.T.E. inv. 7 = L.T.V. inv. 8 = L.T. inv. 9 = IEC Norm. inv. 10 = IEC Very inv. 11 = IEC inv. 12 = IEC Ext. inv. 13 = IEC S.T. inv. 14 = IEC L.T. inv 15 = IEC Def. Time 17 = Programmable 18 = RI type 19 = RD type
Operating curve type (voltage protection)	5 = ANSI Def. Time 15 = IEC Def. Time 17 = Inv. Curve A 18 = Inv. Curve B 19 = Inv. Curve C 20 = Programmable 21 = Inv. Curve A 22 = Inv. Curve B

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Power quality functions

Table 75. Voltage variation (PHQVVR)

Characteristic	Value
•	±1.5% of the set value or ±0.2% of reference voltage
Reset ratio	Typically 0.96 (Swell), 1.04 (Dip, Interruption)

Table 76. Voltage variation (PHQVVR) main settings

Parameter	Function	Value (Range)	Step	
Voltage dip set 1	PHQVVR	10.0100.0%	0.1	
Voltage dip set 2	PHQVVR	10.0100.0%	0.1	
Voltage dip set 3	PHQVVR	10.0100.0%	0.1	
Voltage swell set 1	PHQVVR	100.0140.0%	0.1	
Voltage swell set 2	PHQVVR	100.0140.0%	0.1	
Voltage swell set 3	PHQVVR	100.0140.0%	0.1	
Voltage Int set	PHQVVR	0.0100.0%	0.1	
VVa Dur Max	PHQVVR	1003600000 ms	100	

Table 77. Voltage unbalance (VSQVUB)

Characteristic	Value
•	±1.5% of the set value or ±0.002 × U _n
Reset ratio	Typically 0.96

Table 78. Voltage unbalance (VSQVUB) main settings

Parameter	Function	Value (Range)	Step
Operation	VSQVUB	1 = on 5 = off	-
Unb detection method	VSQVUB	1 = Neg Seq 2 = Zero Seq 3 = Neg to Pos Seq 4 = Zero to Pos Seq 5 = Ph vectors Comp	-

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Control functions

Table 79. Autoreclosing (DARREC)

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

Table 80. Synchronism and energizing check (SECRSYN)

Characteristic	Value
Operation accuracy	Depending on the frequency of the voltage measured: $f_{\text{n}} \pm 1 \text{ Hz}$
	Voltage: ±3.0% of the set value or ±0.01 × U _n Frequency: ±10 mHz Phase angle: ±3°
Reset time	<50 ms
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms

Table 81. Synchronism and energizing check (SECRSYN) main settings

Parameter	Function	Value (Range)	Step
Live dead mode	SECRSYN	-1 = Off 1 = Both Dead 2 = Live L, Dead B 3 = Dead L, Live B 4 = Dead Bus, L Any 5 = Dead L, Bus Any 6 = One Live, Dead 7 = Not Both Live	-
Difference voltage	SECRSYN	0.010.50 × U _n	0.01
Difference frequency	SECRSYN	0.00020.1000 × f _n	0.0001
Difference angle	SECRSYN	590°	1
Synchrocheck mode	SECRSYN	1 = Off 2 = Synchronous 3 = Asynchronous	-
Dead line value	SECRSYN	0.10.8 × U _n	0.1
Live line value	SECRSYN	0.21.0 × U _n	0.1
Max energizing V	SECRSYN	0.501.15 × U _n	0.01
Control mode	SECRSYN	1 = Continuous 2 = Command	-
Close pulse	SECRSYN	20060000 ms	10
Phase shift	SECRSYN	-180180°	1
Minimum Syn time	SECRSYN	060000 ms	10
Maximum Syn time	SECRSYN	1006000000 ms	10
Energizing time	SECRSYN	10060000 ms	10
Closing time of CB	SECRSYN	40250 ms	10

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 82. Automatic transfer switch (ATSABTC)

Characteristic	Value
Operation time accuracy	±1.0% of the set value or ±20 ms

Table 83. Automatic transfer switch (ATSABTC) main settings

Parameter	Function	Value (Range)	Step
Operation	ATSABTC	1=on 5=off	
Main bus priority	ATSABTC	1=Bus 1 2=Bus 2	
Operate delay CB tr	ATSABTC	0120000 ms	10 ms
Transfer dead time	ATSABTC	0120000 ms	10 ms
Reconnection delay	ATSABTC	0300000 ms	10 ms

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Condition monitoring functions

Table 84. Circuit breaker condition monitoring (SSCBR)

Characteristic	Value
Current measuring accuracy	At the frequency f = f _n
	$\pm 1.5\%$ or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$) $\pm 5.0\%$ (at currents in the range of $1040 \times I_n$)
Operate time accuracy	±1.0% of the set value or ±20 ms
Traveling time measurement	±10 ms

Table 85. Fuse failure supervision (SEQSPVC)

Characteristic		Value
Operate time ¹⁾	NPS function	U _{Fault} = 1.1 × set <i>Neg Seq voltage</i> <33 ms <i>Lev</i> U _{Fault} = 5.0 × set <i>Neg Seq voltage</i> <18 ms
		Lev
	Delta function	ΔU = 1.1 × set <i>Voltage change rate</i> <30 ms
		$\Delta U = 2.0 \times \text{set } Voltage change rate $ <24 ms

Includes the delay of the signal output contact, f_n = 50 Hz, fault voltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

Table 86. Runtime counter for machines and devices (MDSOPT)

Description	Value
Motor runtime measurement accuracy ¹⁾	±0.5%

¹⁾ Of the reading, for a stand-alone relay, without time synchronization

Table 87. Voltage presence (PHSVPR)

Characteristic	Value	
Operation accuracy	Depending on the frequency of the measured voltage: f _n ±2 Hz	
	±1.5% of the set value or ±0.002 × U _n	
Operation time accuracy	±1.0% of the set value or ±20 ms	

Table 88. Voltage presence (PHSVPR) main settings

Parameter	Function	Value (Range)	Step
Num of phases	PHSVPR	1=1 out of 3 2=2 out of 3 3=3 out of 3	
V live value	PHSVPR	0.21.0 × U _n	0.1
V live time	PHSVPR	4010000 ms	1 ms
V dead value	PHSVPR	0.10.8 × U _n	0.1
V dead time	PHSVPR	4010000 ms	1 ms

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Measurement functions

Table 89. Three-phase current measurement (CMMXU)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: f _n ±2 Hz
	$\pm 0.5\%$ or $\pm 0.002 \times I_n$ (at currents in the range of 0.014.00 $\times I_n$)
Suppression of harmonics	DFT: -50 dB at f = $n \times f_n$, where $n = 2, 3, 4, 5,$ RMS: No suppression

Table 90. Sequence current measurement (CSMSQI)

Characteristic	Value
	Depending on the frequency of the measured current: $f/f_n = \pm 2 \text{ Hz}$
	$\pm 1.0\%$ or $\pm 0.002 \times I_n$ at currents in the range of 0.014.00 \times I_n
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

Table 91. Residual current measurement (RESCMMXU)

Characteristic	Value
Operation accuracy	Depending on the frequency of the current measured: f/f _n = ±2 Hz
	$\pm 0.5\%$ or $\pm 0.002 \times I_n$ at currents in the range of 0.014.00 \times I_n
Suppression of harmonics	DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ RMS: No suppression

Table 92. Three-phase voltage measurement (VMMXU)

Characteristic	Value
Operation accuracy	Depending on the frequency of the voltage measured: f_n ±2 Hz At voltages in range 0.011.15 × U _n
	±0.5% or ±0.002 × U _n
Suppression of harmonics	DFT: -50 dB at f = $n \times f_n$, where $n = 2, 3, 4, 5,$ RMS: No suppression

Table 93. Sequence voltage measurement (VSMSQI)

Characteristic	Value
Operation accuracy	Depending on the frequency of the voltage measured: f_n ±2 Hz At voltages in range 0.011.15 × U_n
	±1.0% or ±0.002 × U _n
Suppression of harmonics	DFT: -50 dB at f = $n \times f_n$, where $n = 2, 3, 4, 5,$

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 94. Three-phase power and energy measurement (PEMMXU)

Characteristic	Value
Operation accuracy	At all three currents in range $0.101.20 \times I_n$ At all three voltages in range $0.501.15 \times U_n$ At the frequency $f_n \pm 1$ Hz
	±1.5% for apparent power S ±1.5% for active power P and active energy ¹⁾ ±1.5% for reactive power Q and reactive energy ²⁾ ±0.015 for power factor
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

Table 95. Single-phase power and energy measurement (SPEMMXU)

Characteristic	Value
Operation accuracy	At all three currents in range $0.101.20 \times I_n$ At all three voltages in range $0.501.15 \times U_n$ At the frequency $f_n \pm 1$ Hz Active power and energy in range $ PF > 0.71$ Reactive power and energy in range $ PF < 0.71$
	±1.5% for power (S, P and Q) ±0.015 for power factor ±1.5% for energy
Suppression of harmonics	DFT: -50 dB at f = n x f_n , where n = 2, 3, 4, 5,

Table 96. Frequency measurement (FMMXU)

Characteristic	Value
Operation accuracy	±10 mHz
	(in measurement range 3575 Hz)

[|]PF| >0.5 which equals $|\cos\phi|$ >0.5 |PF| <0.86 which equals $|\sin\phi|$ >0.5

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

22. Local HMI

The relay is available with one large display. The LCD display offers front-panel user interface functionality with menu navigation and menu views. However, the large display offers increased front-panel usability with less menu scrolling and improved information overview. In addition, the display includes a user-configurable single line diagram (SLD) with position indication for the associated primary equipment. Depending on the chosen standard configuration, the relay displays the related measuring values, apart from the default single line diagram. The SLD view can also be accessed using the Web browser-based user interface. The default SLD can be modified according to user requirements by using the Graphical Display Editor in PCM600.

The local HMI includes a push button (L/R) for local/remote operation of the relay. When the relay is in the local mode, it can be operated only by using the local front panel user interface. When the relay is in the remote mode, it can execute commands sent from a remote location. The relay supports the remote selection of local/remote mode via a binary input. This feature facilitates, for example, the use of an external switch at the substation to ensure that all relays are in the local mode during maintenance work and that the circuit breakers cannot be operated remotely from the network control center.

Further, it offers four functional user-configurable push buttons. These buttons can be used, for example, to change setting groups and the non-reclose mode or to block protection functions.

Figure 8. Large display

Table 97. Large display

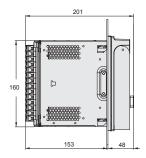
Character size ¹⁾	Rows in the view	Characters per row
Small, mono-spaced (6 × 12 pixels)	10	20
Large, variable width (13 × 14 pixels)	7	8 or more

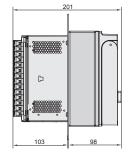
¹⁾ Depending on the selected language

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

23. Mounting methods

By means of appropriate mounting accessories, the standard relay case can be flush mounted, semi-flush mounted or wall mounted. The flush mounted and wall mounted relay cases can also be mounted in a tilted position (25°) using special accessories.


Further, the relays can be mounted in any standard 19" instrument cabinet by means of 19" mounting panels available with cut-outs for one or two relays.


- Flush mounting
- Semi-flush mounting
- Semi-flush mounting in a 25° tilt
- Rack mounting
- Wall mounting
- Mounting to a 19" equipment frame

Panel cut-out for flush mounting

Height: 161.5 ±1 mmWidth: 165.5 ±1 mm

Mounting methods

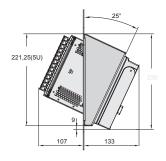


Figure 9. Flush mounting

Figure 10. Semi-flush mounting

Figure 11. Semi-flush mounting in a 25° tilt

24. Relay case and plug-in unit

The relay cases are assigned to a certain type of plug-in unit. For safety reasons, the relay cases for current measuring relays are provided with automatically operating contacts for short-circuiting the CT secondary circuits when a relay unit is withdrawn from its case. The relay case is further provided with a mechanical coding system preventing the current measuring

relay units from being inserted into relay cases intended for voltage measuring relay units.

25. Selection and ordering data

Use the <u>ABB Library</u> to access the selection and ordering information and to generate the order number.

26. Accessories and ordering data

Table 98. Mounting accessories

Item	Order number
Semi-flush mounting kit	1MRS050696
Wall mounting kit	1MRS050697
Inclined semi-flush mounting kit	1MRS050831
19" rack mounting kit with cut-out for one relay	1MRS050694
19" rack mounting kit with cut-out for two relays	1MRS050695

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

27. Tools

The protection relay is delivered as a preconfigured unit. The default parameter setting values can be changed from the front-panel user interface (local HMI), the Web browser-based user interface (Web HMI) or Protection and Control IED Manager PCM600 in combination with the relay-specific connectivity package.

PCM600 offers extensive relay configuration functions. For example, depending on the protection relay, the relay signals, application, graphical display and single-line diagram, and IEC 61850 communication, including horizontal GOOSE communication, can be modified with PCM600.

When the Web HMI is used, the protection relay can be accessed either locally or remotely using a Web browser

(Internet Explorer). For security reasons, the Web HMI is disabled by default but it can be enabled via the local HMI. The Web HMI functionality can be limited to read-only access.

The relay connectivity package is a collection of software and specific relay information, which enables system products and tools to connect and interact with the protection relay. The connectivity packages reduce the risk of errors in system integration, minimizing device configuration and setup times. Further, the connectivity packages for protection relays of this product series include a flexible update tool for adding one additional local HMI language to the protection relay. The update tool is activated using PCM600, and it enables multiple updates of the additional HMI language, thus offering flexible means for possible future language updates.

Table 99. Tools

Description	Version
PCM600	2.9 or later
Web browser	IE 8.0, IE 9.0, IE 10.0 or IE 11.0
RER615 Connectivity Package	2.0 or later

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 100. Supported functions

•	•
•	•
•	
	•
•	•
•	•
•	•
-	•
-	•
-	•
-	•
-	•
-	•
•	•
-	•
-	•
-	•
•	-
•	•
•	•
-	•
	- - - - - - - - - - -

^{• =} Supported

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

28. Connection diagrams

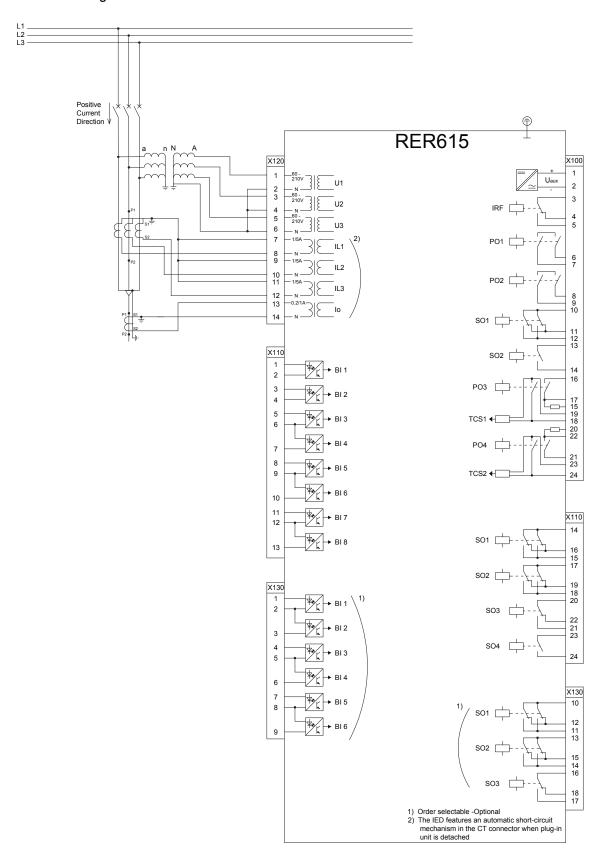


Figure 12. Connection diagram for the A configuration

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

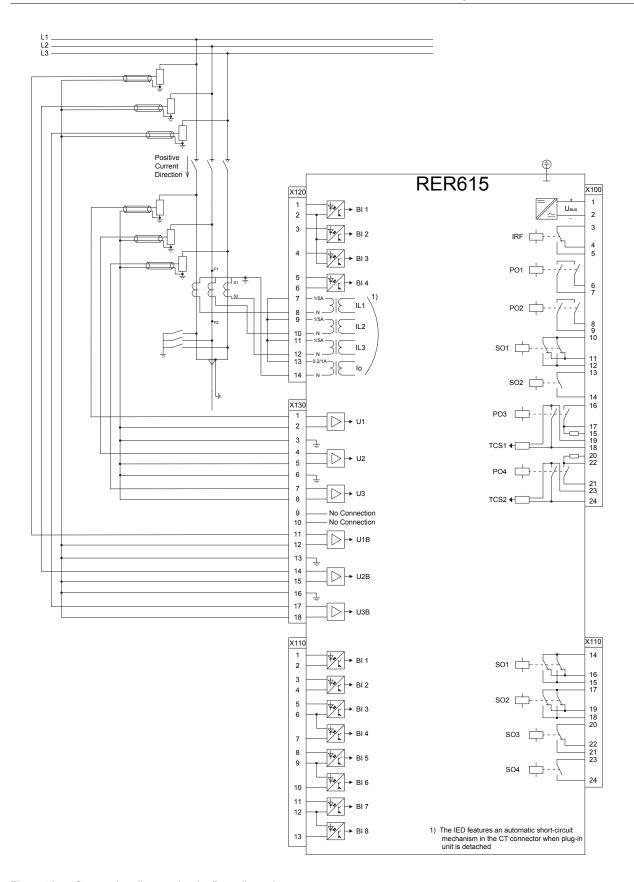


Figure 13. Connection diagram for the D configuration

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

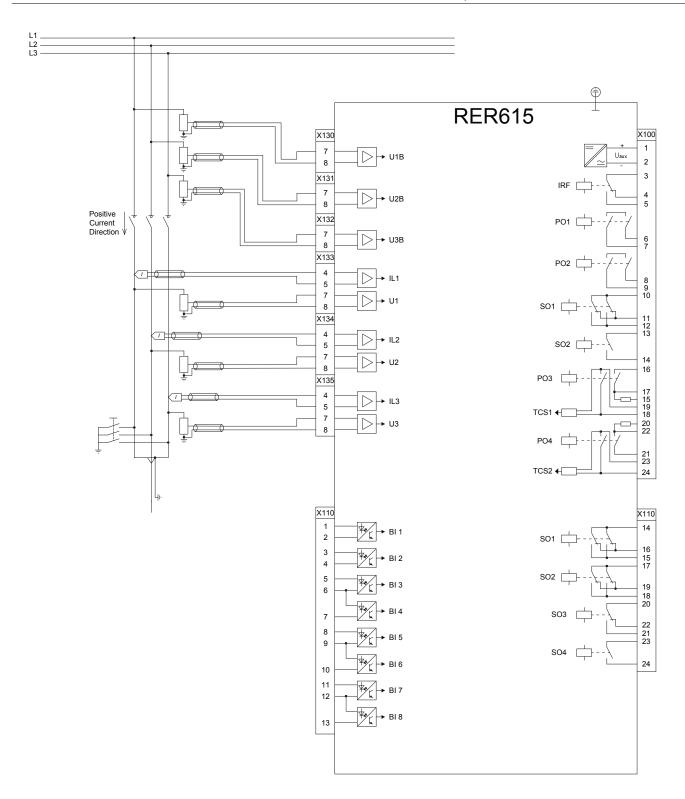


Figure 14. Connection diagram for the E configuration

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

29. References

The <u>www.abb.com/substationautomation</u> portal provides information on the entire range of distribution automation products and services.

The latest relevant information on the RER615 protection and control relay is found on the <u>product page</u>. Scroll down the page to find and download the related documentation.

30. Functions, codes and symbols

All available functions are listed in the table. All of them may not be applicable to all products.

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 101. Functions included in the relay

Function	IEC 61850	IEC 60617	IEC-ANSI
Protection		,	'
Three-phase non-directional overcurrent protection,	PHLPTOC1	3l> (1)	51P-1 (1)
low stage, instance 1	FPHLPTOC1	F3I> (1)	F51P-1 (1)
Three-phase non-directional overcurrent protection, high stage, instance 1	PHHPTOC1	3l>> (1)	51P-2 (1)
Three-phase non-directional overcurrent protection, instantaneous stage, instance 1	PHIPTOC1	3l>>> (1)	50P/51P (1)
Three-phase directional overcurrent protection, low	DPHLPDOC1	3l> -> (1)	67-1 (1)
stage, instance 1	FDPHLPDOC1	F3l> -> (1)	F67-1 (1)
Three-phase directional overcurrent protection, low	DPHLPDOC2	3l> -> (2)	67-1 (2)
stage, instance 2	FDPHLPDOC2	F3l> -> (2)	F67-1 (2)
Three-phase directional overcurrent protection, high stage, instance 1	DPHHPDOC1	3l>> -> (1)	67-2 (1)
Non-directional earth-fault protection, low stage,	EFLPTOC1	lo> (1)	51N-1 (1)
nstance 1	FEFLPTOC1	Flo> (1)	F51N-1 (1)
Non-directional earth-fault protection, high stage, nstance 1	EFHPTOC1	lo>> (1)	51N-2 (1)
Non-directional earth-fault protection, instantaneous stage, instance 1	EFIPTOC1	lo>>> (1)	50N/51N (1)
	DEFLPDEF1	lo> -> (1)	67N-1 (1)
Directional earth-fault protection, low stage, instance 1	FDEFLPDEF1	Flo> -> (1)	F67N-1 (1)
Directional courts foult protection law store instance 2	DEFLPDEF2	lo> -> (2)	67N-1 (2)
Directional earth-fault protection, low stage, instance 2	FDEFLPDEF2	Flo> -> (2)	F67N-1 (2)
Directional earth-fault protection, high stage, instance 1	DEFHPDEF1	lo>> -> (1)	67N-2 (1)
Fransient / intermittent earth-fault protection,instance 1	INTRPTEF1	lo> -> IEF (1)	67NIEF (1)
Admittance-based earth-fault protection, instance 1 1)	EFPADM1	Yo> -> (1)	21YN (1)
Admittance-based earth-fault protection, instance 2 1)	EFPADM2	Yo> -> (2)	21YN (2)
Admittance-based earth-fault protection, instance 3 1)	EFPADM3	Yo> -> (3)	21YN (3)
Wattmetric-based earth-fault protection, instance 1 1)	WPWDE1	Po> -> (1)	32N (1)
Vattmetric-based earth-fault protection, instance 2 1)	WPWDE2	Po> -> (2)	32N (2)
Wattmetric-based earth-fault protection, instance 3 1)	WPWDE3	Po> -> (3)	32N (3)
Harmonics-based earth-fault protection, instance 1 1)	HAEFPTOC1	Io>HA (1)	51NHA (1)
Multifrequency admittance-based earth-fault protection, instance 1	MFADPSDE1	lo> -> Y (1)	67YN (1)
Negative-sequence overcurrent protection, instance 1	NSPTOC1	I2> (1)	46 (1)
Negative-sequence overcurrent protection, instance 2	NSPTOC2	12> (2)	46 (2)
Phase discontinuity protection, instance 1	PDNSPTOC1	l2/l1> (1)	46PD (1)
Residual overvoltage protection, instance 1	ROVPTOV1	Uo> (1)	59G (1)
Residual overvoltage protection, instance 2	ROVPTOV2	Uo> (2)	59G (2)

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 101. Functions included in the relay, continued

Function	IEC 61850	IEC 60617	IEC-ANSI
Γhree-phase undervoltage protection, instance 1	PHPTUV1	3U< (1)	27 (1)
hree-phase undervoltage protection, instance 2	PHPTUV2	3U< (2)	27 (2)
hree-phase undervoltage protection, instance 3	PHPTUV3	3U< (3)	27 (3)
hree-phase overvoltage protection, instance 1	PHPTOV1	3U> (1)	59 (1)
hree-phase overvoltage protection, instance 2	PHPTOV2	3U> (2)	59 (2)
Three-phase overvoltage protection, instance 3	PHPTOV3	3U> (3)	59 (3)
Positive-sequence undervoltage protection, instance 1	PSPTUV1	U1< (1)	47U+ (1)
Negative-sequence overvoltage protection, instance 1	NSPTOV1	U2> (1)	470- (1)
requency protection, instance 1	FRPFRQ1	f>/f<,df/dt (1)	81 (1)
requency protection, instance 2	FRPFRQ2	f>/f<,df/dt (2)	81 (2)
Three-phase thermal protection for feeders, cables and distribution transformers, instance 1	T1PTTR1	3lth>F (1)	49F (1)
Circuit breaker failure protection, instance 1	CCBRBRF1	3l>/lo>BF (1)	51BF/51NBF (1)
Circuit breaker failure protection, instance 2	CCBRBRF2	3l>/lo>BF (2)	51BF/51NBF (2)
Fhree-phase inrush detector, instance 1	INRPHAR1	3l2f> (1)	68 (1)
Master trip, instance 1	TRPPTRC1	Master Trip (1)	94/86 (1)
Master trip, instance 2	TRPPTRC2	Master Trip (2)	94/86 (2)
Multipurpose protection, instance 1 2)	MAPGAPC1	MAP (1)	MAP (1)
/ultipurpose protection, instance 2 2)	MAPGAPC2	MAP (2)	MAP (2)
Multipurpose protection, instance 3 2)	MAPGAPC3	MAP (3)	MAP (3)
/ultipurpose protection, instance 4 2)	MAPGAPC4	MAP (4)	MAP (4)
Multipurpose protection, instance 5 2)	MAPGAPC5	MAP (5)	MAP (5)
Multipurpose protection, instance 6 2)	MAPGAPC6	MAP (6)	MAP (6)
oad-shedding and restoration, instance 1	LSHDPFRQ1	UFLS/R (1)	81LSH (1)
Fault locator, instance 1	SCEFRFLO1	FLOC (1)	21FL (1)
Fhree-phase power directional element, instance 1	DPSRDIR1	I1-> (1)	32P (1)
Power quality	i	i.	i
Current total demand distortion, instance 1	CMHAI1	PQM3I (1)	PQM3I (1)
/oltage total harmonic distortion, instance 1	VMHAI1	PQM3U (1)	PQM3V (1)
/oltage variation, instance 1	PHQVVR1	PQMU (1)	PQMV (1)
/oltage unbalance, instance 1	VSQVUB1	PQUUB (1)	PQVUB (1)
Control	i	i.	b
Circuit-breaker control, instance 1	CBXCBR1	I <-> O CB (1)	I <-> O CB (1)
Circuit-breaker control, instance 2	CBXCBR2	I <-> O CB (2)	I <-> O CB (2)
Disconnector control, instance 1	DCXSWI1	I <-> O DCC (1)	I <-> O DCC (1)
Disconnector control, instance 2	DCXSWI2	I <-> O DCC (2)	I <-> O DCC (2)
Disconnector control, instance 3	DCXSWI3	I <-> O DCC (3)	I <-> O DCC (3)
Disconnector control, instance 4	DCXSWI4	I <-> O DCC (4)	I <-> O DCC (4)

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 101.	Functions	included	ın the	relav.	continued

Function	IEC 61850	IEC 60617	IEC-ANSI
Disconnector control, instance 5	DCXSWI5	I <-> O DCC (5)	I <-> O DCC (5)
Disconnector control, instance 6	DCXSWI6	I <-> O DCC (6)	I <-> O DCC (6)
Disconnector control, instance 7	DCXSWI7	I <-> O DCC (7)	I <-> O DCC (7)
Disconnector control, instance 8	DCXSWI8	I <-> O DCC (8)	I <-> O DCC (8)
Disconnector position indication, instance 1	DCSXSWI1	I <-> O DC (1)	I <-> O DC (1)
Disconnector position indication, instance 2	DCSXSWI2	I <-> O DC (2)	I <-> O DC (2)
Earthing switch indication, instance 1	ESSXSWI1	I <-> O ES (1)	I <-> O ES (1)
Earthing switch indication, instance 2	ESSXSWI2	I <-> O ES (2)	I <-> O ES (2)
Earthing switch indication, instance 3	ESSXSWI3	I <-> O ES (3)	I <-> O ES (3)
Earthing switch indication, instance 4	ESSXSWI4	I <-> O ES (4)	I <-> O ES (4)
Earthing switch indication, instance 5	ESSXSWI5	I <-> O ES (5)	I <-> O ES (5)
Earthing switch indication, instance 6	ESSXSWI6	I <-> O ES (6)	I <-> O ES (6)
Earthing switch indication, instance 7	ESSXSWI7	I <-> O ES (7)	I <-> O ES (7)
Earthing switch indication, instance 8	ESSXSWI8	I <-> O ES (8)	I <-> O ES (8)
Autoreclosing, instance 1	DARREC1	O -> I (1)	79 (1)
Synchronism and energizing check, instance 1	SECRSYN1	SYNC (1)	25 (1)
Automatic transfer switch,instance1	ATSABTC1	ATSABTC1	ATSABTC1
Condition monitoring			
Circuit-breaker condition monitoring, instance 1	SSCBR1	CBCM (1)	CBCM (1)
Circuit-breaker condition monitoring, instance 2	SSCBR2	CBCM (2)	CBCM (2)
rip circuit supervision, instance 1	TCSSCBR1	TCS (1)	TCM (1)
rip circuit supervision, instance 2	TCSSCBR2	TCS (2)	TCM (2)
use failure supervision, instance 1	SEQSPVC1	FUSEF (1)	60 (1)
Runtime counter for machines and devices, instance 1	MDSOPT1	OPTS (1)	OPTM (1)
/oltage presence, instance 1	PHSVPR1	PHSVPR(1)	PHSVPR(1)
Voltage presence, instance 2	PHSVPR2	PHSVPR(2)	PHSVPR(2)
Measurement			
hree-phase current measurement, instance 1	CMMXU1	3I (1)	3I (1)
Sequence current measurement, instance 1	CSMSQI1	l1, l2, l0 (1)	I1, I2, I0 (1)
Residual current measurement, instance 1	RESCMMXU1	lo (1)	In (1)
Three-phase voltage measurement, instance 1	VMMXU1	3U (1)	3V (1)
hree-phase voltage measurement, instance 2	VMMXU2	3U (2)	3V (2)
Sequence voltage measurement, instance 1	VSMSQI1	U1, U2, U0 (1)	V1, V2, V0 (1)
Sequence voltage measurement, instance 2	VSMSQI2	U1, U2, U0 (2)	V1, V2, V0 (2)
hree-phase power and energy measurement, nstance 1	PEMMXU1	P, E (1)	P, E (1)
Single-phase power and energy measurement, nstance 1	SPEMMXU1	SP, SE (1)	SP, SE (1)

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 101. Functions included in the relay, continued

Function	IEC 61850	IEC 60617	IEC-ANSI
Frequency measurement, instance 1	FMMXU1	f (1)	f (1)
requency measurement, instance 2	FMMXU2	f (2)	f (2)
oad profile record, instance 1	LDPRLRC1	LOADPROF (1)	LOADPROF (1)
Other			
Minimum pulse timer (2 pcs), instance 1	TPGAPC1	TP (1)	TP (1)
Minimum pulse timer (2 pcs), instance 2	TPGAPC2	TP (2)	TP (2)
Minimum pulse timer (2 pcs, second resolution), nstance 1	TPSGAPC1	TPS (1)	TPS (1)
Viinimum pulse timer (2 pcs, minute resolution), nstance 1	TPMGAPC1	TPM (1)	TPM (1)
Pulse timer (8 pcs), instance 1	PTGAPC1	PT (1)	PT (1)
Pulse timer (8 pcs), instance 2	PTGAPC2	PT (2)	PT (2)
ime delay off (8 pcs), instance 1	TOFGAPC1	TOF (1)	TOF (1)
ime delay off (8 pcs), instance 2	TOFGAPC2	TOF (2)	TOF (2)
Fime delay on (8 pcs), instance 1	TONGAPC1	TON (1)	TON (1)
ime delay on (8 pcs), instance 2	TONGAPC2	TON (2)	TON (2)
Set-reset (8 pcs), instance 1	SRGAPC1	SR (1)	SR (1)
Set-reset (8 pcs), instance 2	SRGAPC2	SR (2)	SR (2)
Nove (8 pcs), instance 1	MVGAPC1	MV (1)	MV (1)
Nove (8 pcs), instance 2	MVGAPC2	MV (2)	MV (2)
Move (8 pcs), instance 3	MVGAPC3	MV (3)	MV (3)
flove (8 pcs), instance 4	MVGAPC4	MV (4)	MV (4)
Nove (8 pcs), instance 5	MVGAPC5	MV (5)	MV (5)
Move (8 pcs), instance 6	MVGAPC6	MV (6)	MV (6)
Move (8 pcs), instance 7	MVGAPC7	MV (7)	MV (7)
Nove (8 pcs), instance 8	MVGAPC8	MV (8)	MV (8)
Generic control point (16 pcs), instance 1	SPCGAPC1	SPC (1)	SPC (1)
Seneric control point (16 pcs), instance 2	SPCGAPC2	SPC (2)	SPC (2)
Remote generic control points, instance 1	SPCRGAPC1	SPCR (1)	SPCR (1)
ocal generic control points, instance 1	SPCLGAPC1	SPCL (1)	SPCL (1)
Generic up-down counters, instance 1	UDFCNT1	UDCNT (1)	UDCNT (1)
Generic up-down counters, instance 2	UDFCNT2	UDCNT (2)	UDCNT (2)
Generic up-down counters, instance 3	UDFCNT3	UDCNT (3)	UDCNT (3)
nalog value scaling, instance 1	SCA4GAPC1	SCA4 (1)	SCA4 (1)
Analog value scaling, instance 2	SCA4GAPC2	SCA4 (2)	SCA4 (2)
Analog value scaling, instance 3	SCA4GAPC3	SCA4 (3)	SCA4 (3)
Analog value scaling, instance 4	SCA4GAPC4	SCA4 (4)	SCA4 (4)
Analog value scaling, instance 5	SCA4GAPC5	SCA4 (5)	SCA4 (5)

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

Table 101. Functions included in the relay, continued

Function	IEC 61850	IEC 60617	IEC-ANSI
Analog value scaling, instance 6	SCA4GAPC6	SCA4 (6)	SCA4 (6)
Analog value scaling, instance 7	SCA4GAPC7	SCA4 (7)	SCA4 (7)
Analog value scaling, instance 8	SCA4GAPC8	SCA4 (8)	SCA4 (8)
Analog value scaling, instance 9	SCA4GAPC9	SCA4 (9)	SCA4 (9)
Analog value scaling, instance 10	SCA4GAPC10	SCA4 (10)	SCA4 (10)
Analog value scaling, instance 11	SCA4GAPC11	SCA4 (11)	SCA4 (11)
Analog value scaling, instance 12	SCA4GAPC12	SCA4 (12)	SCA4 (12)
Integer value move, instance 1	MVI4GAPC1	MVI4 (1)	MVI4 (1)
Integer value move, instance 2	MVI4GAPC2	MVI4 (2)	MVI4 (2)
Daily timer function, instance 1	DTMGAPC1	DTMGAPC1	DTMGAPC1
Daily timer function, instance 2	DTMGAPC2	DTMGAPC2	DTMGAPC2
Programmable buttons (4 buttons)	FKEY4GGIO1	FKEY4GGIO1	FKEY4GGIO1
Logging functions			
Disturbance recorder	RDRE1	DR (1)	DFR (1)
Fault record	FLTRFRC1	FAULTREC (1)	FAULTREC (1)

Grid Automation	1MRS757814 E
Recloser Protection and Control RER615	
Product version: 2.0	

31. Document revision history

Document revision/date	Product version	History
A/2013-09-17	1.0	First release
B/2013-11-15	1.0	Content updated
C/2015-03-06	1.1	Content updated to correspond to the product version
D/2018-08-31	2.0	Content updated to correspond to the product version
E/2018-12-10	2.0	Content updated

ABB Distribution Solutions Distribution Automation

P.O. Box 699 FI-65101 VAASA, Finland Phone +358 10 22 11

www.abb.com/mediumvoltage www.abb.com/relion