

RELION® 630 SERIES

Feeder Protection and Control REF630

Product Guide

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Contents

1.	Description3	16.	Current circuit supervision	19
2.	Application3	17.	Access control	19
3.	Preconfigurations8	18.	Inputs and outputs	19
4.	Protection functions16	19.	Communication	20
5.	Control	20.	Technical data	22
6.	Fault location17	21.	Front panel user interface	64
7.	Measurement	22.	Mounting methods	64
8.	Disturbance recorder	23.	Selection and ordering data	66
9.	Power quality18	24.	Accessories	70
10	Event log18	26.	Tools	71
11	Disturbance report18	27.	Supported ABB solutions	72
12	Circuit-breaker monitoring18	28.	Terminal diagrams	74
13	Trip-circuit supervision19	29.	References	76
14	Self-supervision19	30.	Functions, codes and symbols	77
15	. Fuse failure supervision19	31.	Document revision history	80

Disclaimer

The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document.

© Copyright 2019 ABB.

All rights reserved.

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	Issued: 2019-02-25
	Revision: H

1. Description

REF630 is a comprehensive feeder management relay for protection, control, measuring and supervision of utility and industrial distribution substations. REF630 is a member of ABB's Relion® product family and a part of its 630 series characterized by functional scalability and flexible configurability. REF630 also features necessary control functions constituting an ideal solution for feeder bay control.

The supported communication protocols including IEC 61850 offer seamless connectivity to industrial automation systems.

2. Application

REF630 provides main protection for overhead lines and cable feeders of distribution networks. The protection relay fits both isolated neutral networks and networks with resistance or impedance earthed neutral. Four pre-defined configurations to match typical feeder protection and control requirements are available. The pre-defined configurations can be used as such or easily adapted or extended with freely selectable add-on functions, by means of which the protection relay can be finetuned to exactly satisfy the specific requirements of your present application.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

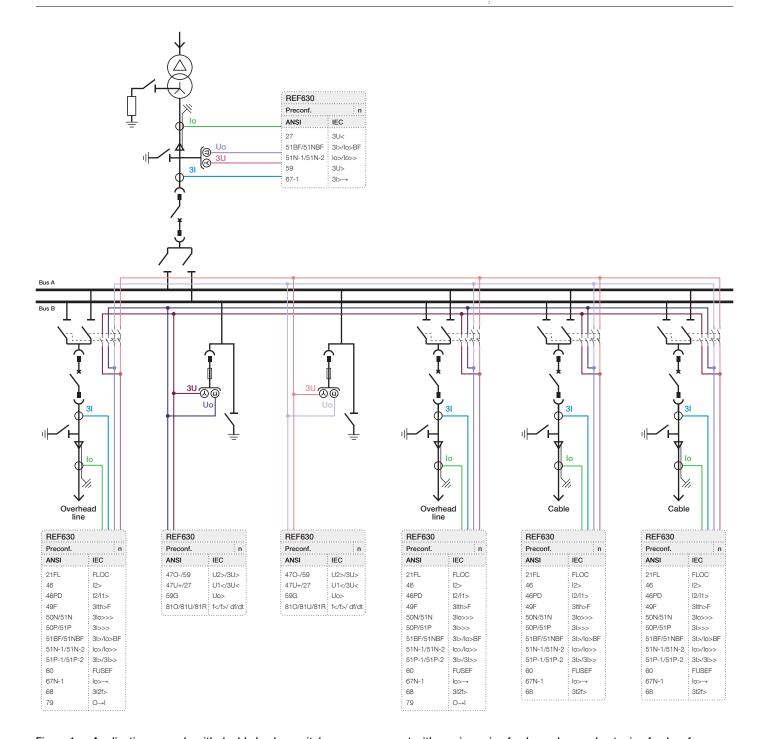


Figure 1. Application example with double busbar switchgear arrangement with one incoming feeder and several outgoing feeders for overhead line and cable feeders in preconfiguration n

Fault locator function is available in all outgoing feeders, and autorecloser is dedicated for overhead line feeders.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

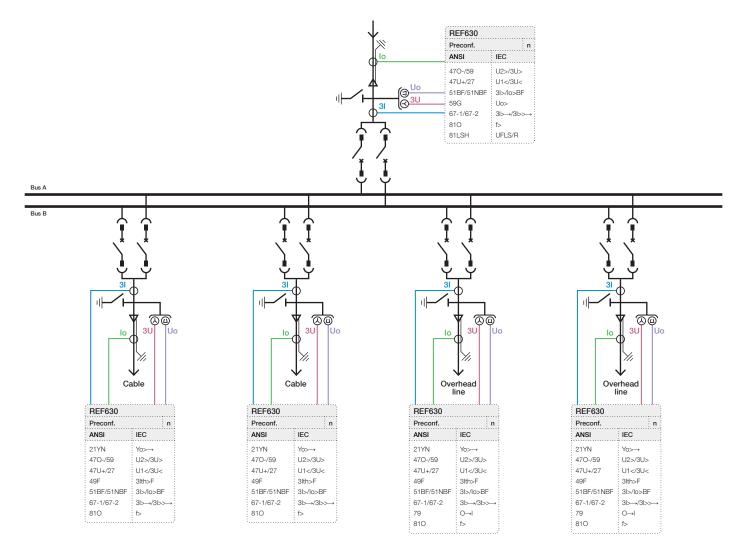


Figure 2. Application example in double busbar, also so called back 2 back, switchgear arrangement with dedicated voltage measurement in each feeder

Admittance-based earth-fault protection is used in all outgoing feeders. The autoreclose function is used in outgoing feeders with overhead lines.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

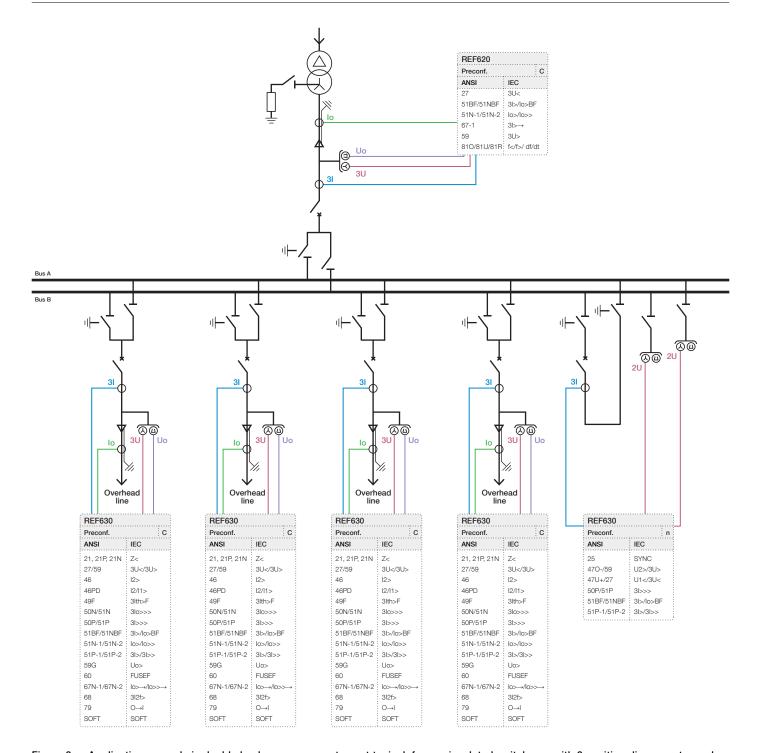


Figure 3. Application example in double busbar arrangement, most typical, for gas insulated switchgear with 3 position disconnector and voltage measurement in each feeder

The bus sectionalizer with also independent voltage measurement on both busbars allows switchgear operation while maintenance works are required on one of the busbar

sections. Preconfiguration C with its distance protection is preconfigured for ring and meshed type feeders.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

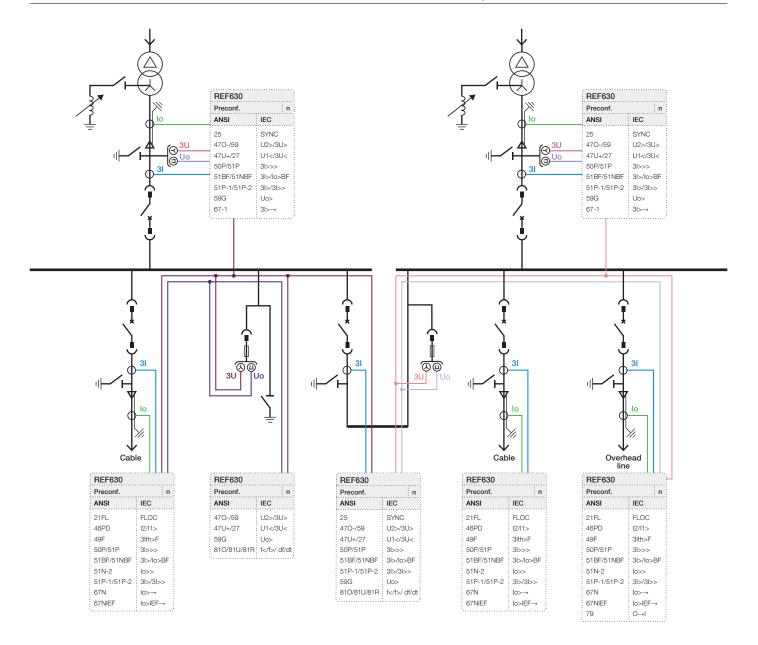


Figure 4. Application example with single busbar switchgear arranged into two bus sections separated with bus coupler

High impedance earthed network with preconfigurations N and directional overcurrent and directional earth-fault functions are used. In incoming feeders and bus coupler the synchrocheck

functionality is used to prevent unsynchronized connection of two separate networks into each other.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

3. Preconfigurations

The 630 series protection relays are offered with optional factory-made preconfigurations for various applications. The preconfigurations contribute to faster commissioning and less engineering of the protection relay. The preconfigurations include default functionality typically needed for a specific application. Each preconfiguration is adaptable using the Protection and Control IED Manager PCM600. By adapting the preconfiguration the protection relay can be configured to suit the particular application.

The adaptation of the preconfiguration may include adding or removing of protection, control and other functions according to the specific application, changing of the default parameter settings, configuration of the default alarms and event recorder settings including the texts shown in the HMI, configuration of the LEDs and function buttons, and adaptation of the default single-line diagram.

In addition, the adaptation of the preconfiguration always includes communication engineering to configure the communication according to the functionality of the protection relay. The communication engineering is done using the communication configuration function of PCM600.

If none of the offered preconfigurations fulfill the needs of the intended area of application, 630 series protection relays can also be ordered without any preconfiguration. In this case the protection relay needs to be configured from the ground up.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

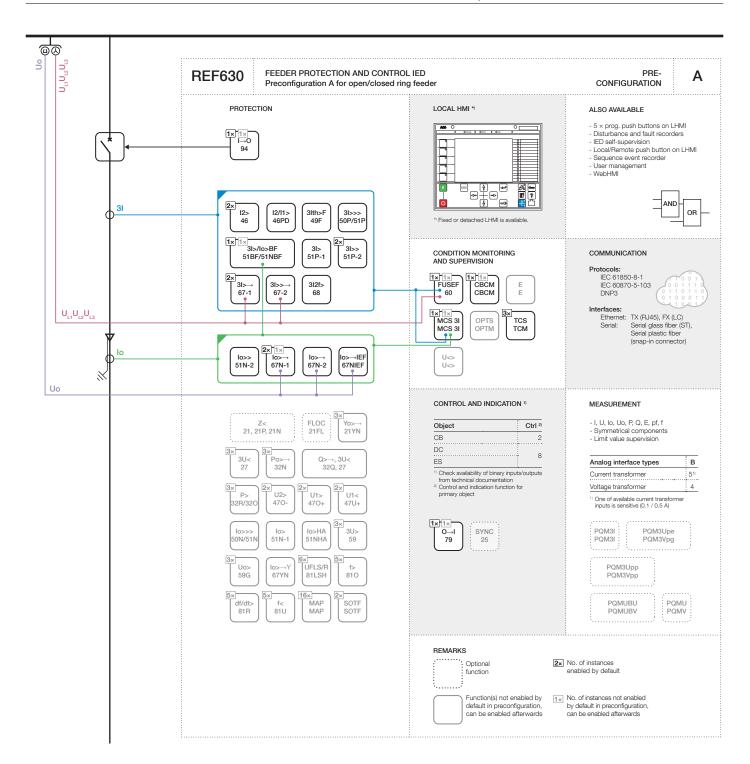


Figure 5. Functionality overview for preconfiguration A

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

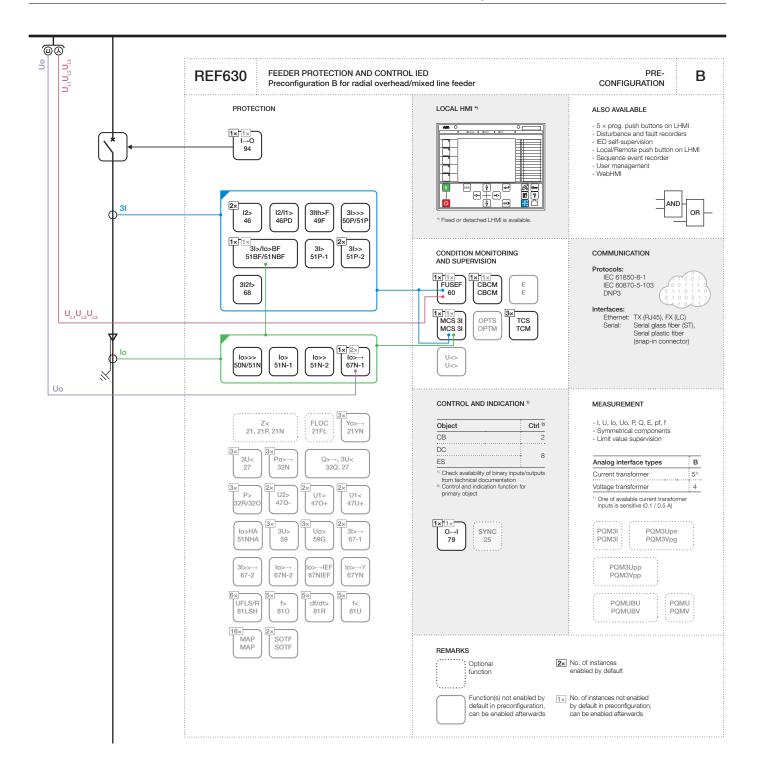


Figure 6. Functionality overview for preconfiguration B

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

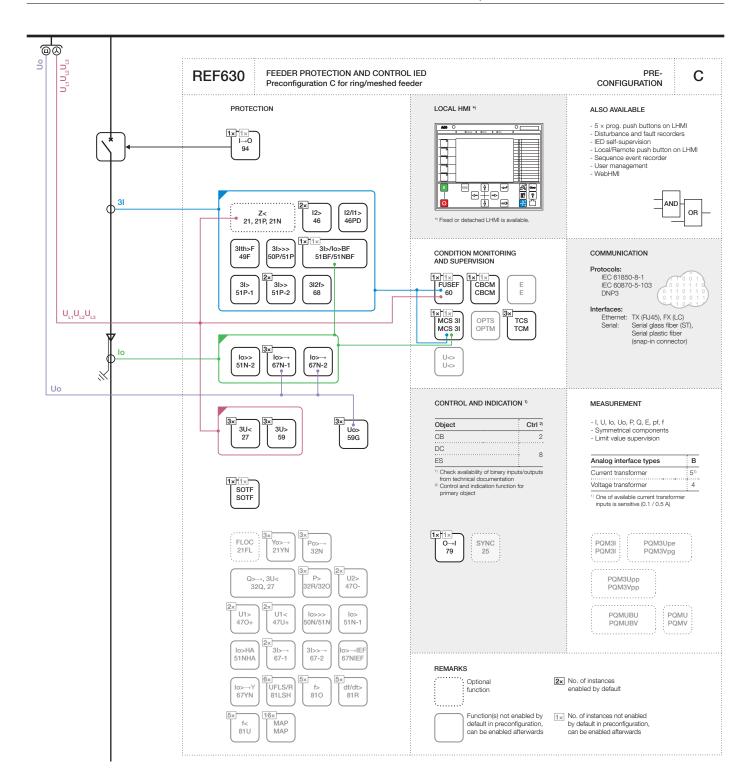


Figure 7. Functionality overview for preconfiguration C

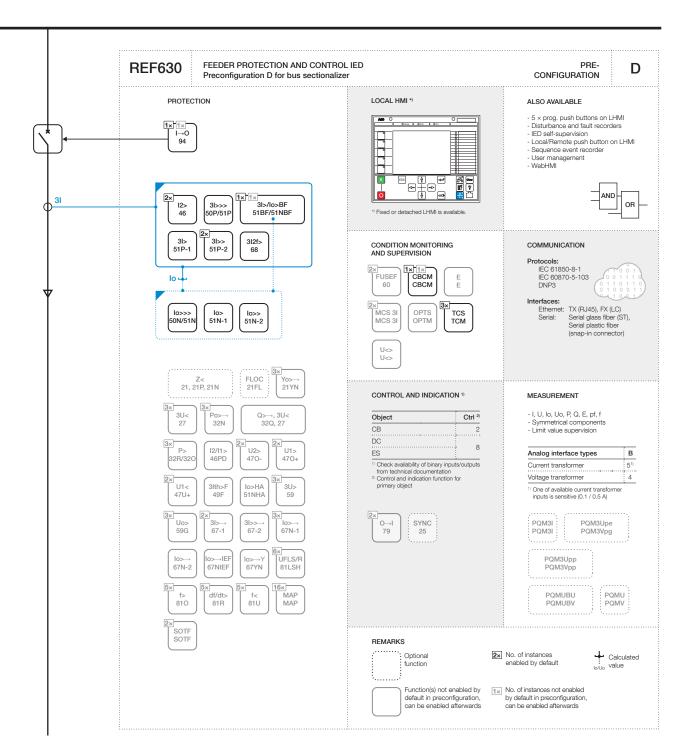


Figure 8. Functionality overview for preconfiguration D

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

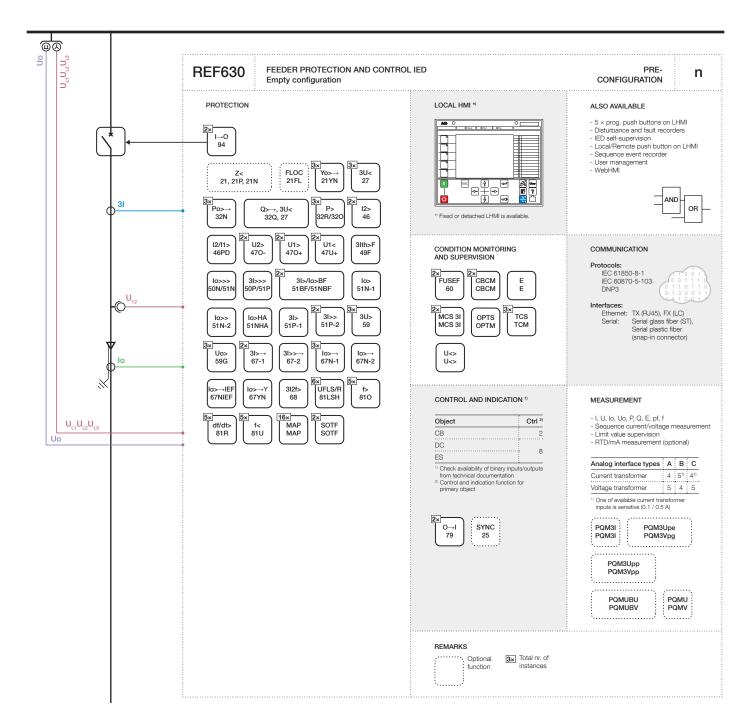


Figure 9. Functionality overview for preconfiguration n

Table 1. REF630 preconfiguration ordering options

Description	Preconfiguration				
Preconfiguration A for open/closed ring feeder	Α				
Preconfiguration B for radial overhead/mixed line feeder	* · · · · · · · · · · · · · · · · · · ·	В	\$		
Preconfiguration C for ring/meshed feeder			С		
Preconfiguration D for bus sectionalizer				D	
Number of instances available					n

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 2. Functions used in preconfigurations

Description	A	В	С	D	n
Protection					
Three-phase non-directional overcurrent protection, low stage	1	1	1	1	1
Three-phase non-directional overcurrent protection, high stage	2	2	2	2	2
Three-phase non-directional overcurrent protection, instantaneous stage	1	1	1	1	1
Three-phase directional overcurrent protection, low stage	2	-	-	-	2
Three-phase directional overcurrent protection, high stage	1	-	-	-	1
Distance protection	-	-	1	-	1
Automatic switch-onto-fault logic	-	-	1	-	2
Fault locator	-	-	-	-	1
Autoreclosing	1	1	1	-	2
Non-directional earth-fault protection, low stage	-	1	-	1	1
Non-directional earth-fault protection, high stage	1	1	1	1	1
Non-directional earth-fault protection, instantaneous stage	-	1	-	1	1
Directional earth-fault protection, low stage	2	1	3	-	3
Directional earth-fault protection, high stage	1	-	1	-	1
Harmonics based earth-fault protection	-	-	-	-	1
Transient/intermittent earth-fault protection	1	-	-	-	1
Admittance-based earth-fault protection	-	-	-	-	3
Multi-frequency admittance-based earth-fault protection	-	-	-	-	1
Wattmetric earth-fault protection	-	-	-	-	3
Phase discontinuity protection	1	1	1	-	1
Negative-sequence overcurrent protection	2	2	2	2	2
Three-phase thermal overload protection for feeder	1	1	1	-	1
Three-phase current inrush detection	1	1	1	1	1
Three-phase overvoltage protection	-	-	3	-	3
Three-phase undervoltage protection	-	-	3	-	3
Positive-sequence overvoltage protection	-	-	-	-	2
Positive-sequence undervoltage protection	-	-	-	-	2
Negative-sequence overvoltage protection	-	-	-	-	2
Residual overvoltage protection	-	-	3	-	3
Directional reactive power undervoltage protection	-	-	-	-	2
Reverse power/directional overpower protection	-	-	-	-	3
Frequency gradient protection	-	-	-	-	5
Overfrequency protection	-	-	-	-	5
Underfrequency protection	-	-	-	-	5
Load shedding	-	- -	-	-	6
Circuit breaker failure protection	1	1	1	1	2

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 2.	Functions (used in p	reconfigur	ations.	continued

Description	A	В	С	D	n
Tripping logic	1	1	1	1	2
Multipurpose analog protection	-	-	-	-	16
Protection-related functions					1
Local acceleration logic	-	-	1	-	1
Communication logic for residual overcurrent	-	-	1	-	1
Scheme communication logic	-	-	1	-	1
Current reversal and WEI logic	-	-	1	-	1
Current reversal and WEI logic for residual overcurrent	-	-	1	-	1
Control				1	
Bay control	1	1	1	1	1
Interlocking interface	4	4	4	1	10
Circuit breaker/disconnector control	4	4	4	1	10
Circuit breaker	1	1	1	1	2
Disconnector	3	3	3	-	8
Local/remote switch interface	-	-	-	-	1
Synchrocheck	-	-	-	-	1
Generic process I/O		·i	i	i	i
Single point control (8 signals)	-	-	-	-	5
Double point indication	-	-	-	-	15
Single point indication	-	-	-	-	64
Generic measured value	-	-	-	-	15
Logic Rotating Switch for function selection and LHMI presentation	-	-	-	-	10
Selector mini switch	-	-	-	-	10
Pulse counter for energy metering	-	-	-	-	4
Event counter	-	-	-	-	1
Supervision and monitoring	ii.	.i	.1		
Runtime counter for machines and devices	-	-	-	-	1
Circuit breaker condition monitoring	1	1	1	1	2
Fuse failure supervision	1	1	1	-	2
Current circuit supervision	1	1	1	-	2
Trip-circuit supervision	3	3	3	3	3
Station battery supervision	-	-	-	-	1
Energy monitoring	-	-	-	-	1
Measured value limit supervision	-	-	-	-	40
Power quality	ii	:	i	:	i
Voltage variation	-	-	-	-	1
Voltage unbalance	-	-	-	-	1
Current harmonics	-	-	-	-	1

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 2. Functions used in preconfigurations, continued

Description	A	В	С	D	n
Voltage harmonics (phase-to-phase)	-	-	-	-	1
Voltage harmonics (phase-to-earth)	-	-	-	_	1
Measurement					
Three-phase current measurement	1	1	1	1	1
Three-phase voltage measurement (phase-to-earth)	1	1	1	1	2
Three-phase voltage measurement (phase-to-phase)	-	-	-	-	2
Residual current measurement	1	1	1	1	1
Residual voltage measurement	1	1	1	-	1
Power monitoring with P, Q, S, power factor, frequency	1	1	1	1	1
Sequence current measurement	1	1	1	1	1
Sequence voltage measurement	1	1	1	1	1
Disturbance recorder function				1	
Analog channels 1-10 (samples)	1	1	1	1	1
Analog channels 11-20 (samples)	-	-	-	-	1
Analog channels 21-30 (calc. val.)	-	-	-	- -	1
Analog channels 31-40 (calc. val.)	-	-	-	-	1
Binary channels 1-16	1	1	1	1	1
Binary channels 17-32	1	1	1	1	1
Binary channels 33-48	1	1	1	1	1
Binary channels 49-64	1	-	1	-	1
Station communication (GOOSE)					
Binary receive	-	-	-	-	10
Double point receive	-	-	-	-	32
Interlock receive	-	-	-	-	59
Integer receive	-	-	-	-	32
Measured value receive	-	-	-	-	60
Single point receive	-	-	-	-	64

n = total number of available function instances regardless of the preconfiguration selected

4. Protection functions

The protection relay offers selective short-circuit and overcurrent protection including three-phase non-directional overcurrent protection with four independent stages, and three-phase directional overcurrent protection with three independent stages. In addition, the protection relay includes three-phase current inrush detection for blocking selected overcurrent protection stages or temporarily increasing the setting values. The included thermal overload protection function uses thermal models of overhead lines and cables. The

negative-sequence overcurrent protection, with two independent stages, is used for phase-unbalance protection. In addition, the protection relay offers phase discontinuity.

Further, the protection relay features selective earth-fault and cross country fault protection for isolated neutral, and for resistance and/or impedance earthed neutral systems including solidly earthed neutral systems. The earth-fault protection includes non-directional earth-fault protection with three independent stages and directional earth-fault protection with

^{1, 2, ... =} number of included instances

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

four independent stages. Apart from the conventional earth-fault protection, the protection relay offers wattmetric, admittance-based and harmonics-based earth-fault protection.

The included transient/intermittent earth-fault protection is based on detection of earth-fault transients related to continuous or intermittent faults. Intermittent earth-fault is a special type of earth-fault encountered in compensated networks with underground cables. In solidly earthed or compensated networks the transient earth-fault protection function detects earth-faults with low fault resistance.

Multi-frequency admittance-based earth-fault protection provides selective directional earth-fault protection for high-impedance earthed networks. The operation is based on multi-frequency neutral admittance measurement utilizing fundamental frequency and harmonic components in Uo and Io. A special filtering algorithm enables dependable and secure fault direction also during intermittent/restriking earth faults. It provides a very good combination of reliability and sensitivity of protection with a single function for low ohmic and higher ohmic earth faults and for transient and intermittent/restriking earth faults.

The residual overvoltage protection, with three independent stages, is used for earth-fault protection of the substation bus and the incoming feeder, and for backup protection of the outgoing feeders.

The protection relay offers distance protection including both circular (mho) and quadrilateral (quad) zone characteristics, three independent zones with separate reach settings for phase-to-phase and phase-to-earth measuring elements and two zones for controlling autoreclosing of circuit breakers. Further, the protection relay offers automatic switch-onto-fault logic with voltage and current based detection options.

The protection relay offers voltage protection functions including three-phase undervoltage and overvoltage protection with three independent stages each, both with phase-to-phase or phase-to-earth measurement. The protection relay also offers overfrequency, underfrequency and rate-of-change of frequency protection to be used in load shedding and network restoration applications.

The reactive power undervoltage protection (QU) can be used at grid connection point of distributed power generation units.

In addition, the protection relay offers three-pole multi-shot autoreclose functions for overhead line feeders.

The protection relay incorporates breaker failure protection for circuit breaker re-tripping or backup tripping for the upstream breaker.

5. Control

The protection relay incorporates local and remote control functions. The protection relay offers a number of freely assignable binary inputs/outputs and logic circuits for establishing bay control and interlocking functions for circuit breakers and motor operated switch-disconnectors. The protection relay supports both single and double busbar substation busbar layouts. The number of controllable primary apparatuses depends on the number of available inputs and outputs in the selected configuration. Besides conventional hardwired signaling also GOOSE messaging according to IEC 61850-8-1 can be used for signal interchange between protection relays to obtain required interlockings.

Further, the protection relay incorporates a synchro-check function to ensure that the voltage, phase angle and frequency on either side of an open circuit breaker satisfy the conditions for safe interconnection of two networks.

6. Fault location

REF630 features an impedance-measuring fault location function suitable for locating short-circuits in radial distribution systems. Earth faults can be located in effectively and low-resistance earthed networks. Under circumstances where the fault current magnitude is at least of the same order of magnitude or higher than the load current, earth faults can also be located in isolated neutral distribution networks. The fault location function identifies the type of the fault and then calculates the distance to the fault point. An estimate of the fault resistance value is also calculated. The estimate provides information about the possible fault cause and the accuracy of the estimated distance to the fault point.

7. Measurement

The protection relay continuously measures the phase currents, positive and negative sequence currents and the residual current. The protection relay also measures phase-to earth or phase-to-phase voltages, positive and negative sequence voltages and the residual voltage. In addition, the protection relay monitors active, reactive and apparent power, the power factor, power demand value over a user-selectable pre-set time frame as well as cumulative active and reactive energy of both directions. Line frequency, the calculated temperature of the feeder, and the phase unbalance value based on the ratio between the negative sequence and positive sequence current are also calculated. Cumulative and averaging calculations utilize the nonvolatile memory available in the protection relay.

The values measured are accessed locally via the front-panel user interface of the protection relay or remotely via the communication interface of the protection relay. The values are also accessed locally or remotely using the Web-browser based user interface.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

8. Disturbance recorder

The protection relay is provided with a disturbance recorder featuring up to 40 analog and 64 binary signal channels. The analog channels can be set to record the waveform of the currents and voltage measured. The analog channels can be set to trigger the recording when the measured value falls below or exceeds the set values. The binary signal channels can be set to start a recording on the rising or the falling edge of the binary signal. The binary channels are set to record external or internal relay signals, for example the start or operate signals of the protection functions, or external blocking or control signals. Binary relay signals such as a protection start or trip signal, or an external relay control signal over a binary input can be set to trigger the recording. In addition, the disturbance recorder settings include pre- and post triggering times.

The disturbance recorder can store up to 100 recordings. The number of recordings may vary depending on the length of the recording and the number of signals included. The disturbance recorder controls the Start and Trip LEDs on the front-panel user interface. The operation of the LEDs is fully configurable enabling activation when one or several criteria, that is, protection function starting or tripping, are fulfilled.

The recorded information is stored in a nonvolatile memory and can be uploaded for subsequent fault analysis.

9. Power quality

Power quality in standards is defined through the characteristics of the supply voltage. Transients, short- and long-duration voltage variations, unbalance and waveform distortion are the key characteristics describing the power quality. The power quality is, however, a customer-driven issue. It can be said that any power problem concerning the voltage or current that results in a failure or misoperation of the customer equipment is a power quality problem.

REF630 has the following power quality monitoring functions.

- Voltage variation
- Voltage unbalance
- Current harmonics
- Voltage harmonics (phase-to-phase and phase-to-earth)

The harmonics measurement functions are used for monitoring the individual harmonic components (up to 20th) and total harmonic distortion (THD). The current harmonic function also monitors total demand distortion (TDD).

The variation in the voltage waveform is evaluated by measuring voltage swells, dips and interruptions. The voltage variation function includes a single-phase, two-phase and three-phase voltage variation measurement. The voltage unbalance function uses five different methods for calculating voltage unbalance.

- Negative-sequence voltage magnitude
- Zero-sequence voltage magnitude
- Ratio of negative-sequence to positive-sequence voltage magnitude
- Ratio of zero-sequence to positive-sequence voltage magnitude
- Ratio of maximum phase voltage magnitude deviation from the mean voltage magnitude to the mean of phase voltage magnitude

10. Event log

The protection relay features an event log which enables logging of event information. The event log can be configured to log information according to user predefined criteria including relay signals. To collect sequence-of-events (SoE) information, the protection relay incorporates a nonvolatile memory with a capacity of storing 1000 events with associated time stamps and user definable event texts. The nonvolatile memory retains its data also in case the protection relay temporarily loses its auxiliary supply. The event log facilitates detailed pre- and postfault analyses of faults and disturbances.

The SoE information can be accessed locally via the user interface on the protection relay's front panel or remotely via the communication interface of the protection relay. The information can further be accessed, either locally or remotely, using the web-browser based user interface.

The logging of communication events is determined by the used communication protocol and the communication engineering. The communication events are automatically sent to station automation and SCADA systems once the required communication engineering has been done.

11. Disturbance report

The disturbance report includes information collected during the fault situation. The report includes general information such as recording time, pre-fault time and post fault time. Further, the report includes pre-fault magnitude, pre-fault angle, fault magnitude and fault angle trip values. By default, the disturbance reports are stored in a nonvolatile memory. The numerical disturbance report can be accessed via the local front panel user interface. A more comprehensive disturbance report with waveforms is available using PCM600.

12. Circuit-breaker monitoring

The condition monitoring functions of the protection relay constantly monitors the performance and the condition of the circuit breaker. The monitoring comprises the spring charging time, SF6 gas pressure, the travel-time, operation counter, accumulated energy calculator, circuit-breaker life estimator and the inactivity time of the circuit breaker.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

The monitoring functions provide operational circuit breaker history data, which can be used for scheduling preventive circuit-breaker maintenance.

13. Trip-circuit supervision

The trip-circuit supervision continuously monitors the availability and operability of the trip circuit. It provides open-circuit monitoring both when the circuit breaker is in its closed and in its open position. It also detects loss of circuit-breaker control voltage.

14. Self-supervision

The relay's built-in self-supervision system continuously monitors the state of the relay hardware and the operation of the relay software. Any fault or malfunction detected is used for alerting the operator.

Self-supervision events are saved into an internal event list which can be accessed locally via the user interface on the protection relay's front panel. The event list can also be accessed using the Web HMI or PCM600.

15. Fuse failure supervision

The fuse failure supervision detects failures between the voltage measurement circuit and the relay. The failures are detected either by the negative sequence-based algorithm or by the delta voltage and delta current algorithm. Upon the detection of a failure, the fuse failure supervision function activates an alarm and blocks voltage-dependent protection functions from unintended operation.

16. Current circuit supervision

Current circuit supervision is used for detecting faults in the current transformer secondary circuits. On detecting of a fault the current circuit supervision function can also activate an alarm LED and block certain protection functions to avoid unintended operation. The current circuit supervision function calculates the sum of the phase currents and compares the sum with the measured single reference current from a core balance current transformer or from another set of phase current transformers.

17. Access control

To protect the protection relay from unauthorized access and to maintain information integrity, the protection relay is provided with an authentication system including user management. Using the IED User Management tool in the Protection and Control IED Manager PCM600, an individual password is assigned to each user by the administrator. Further, the user name is associated to one or more of the four available user groups: System Operator, Protection Engineer, Design Engineer and User Administrator. The user group association for each individual user enables the use of theprotection relay according to the profile of the user group.

18. Inputs and outputs

Depending on the hardware configuration selected, the protection relay is equipped with three phase-current inputs and one or two residual-current inputs for earth-fault protection. The protection relay always includes one residual voltage input for directional earth-fault protection or residual voltage protection. Further, the protection relay includes three phase-voltage inputs for overvoltage, undervoltage and directional overcurrent protection and other voltage based protection functions. Depending on the hardware configuration, the protection relay also includes a dedicated voltage input for synchrocheck.

The phase-current inputs are rated 1/5 A. The protection relay is equipped with one or two alternative residual-current inputs, that is 1/5 A or 0.1/0.5 A. The 0.1/0.5 A input is normally used in applications requiring sensitive earth-fault protection and featuring a core-balance current transformer.

The three phase-voltage inputs, for either phase-to-phase voltages or phase-to-earth voltages, and the residual-voltage input cover the rated voltages 100 V, 110 V, 115 V and 120 V. The rated values of the current and voltage inputs are selected in the relay software.

In addition, the binary input thresholds are selected by adjusting the protection relay's parameter settings. The threshold voltage can be set separately for each binary input.

The optional RTD/mA module facilitates the measurement of up to eight analog signals via the RTD/mA inputs and provides four mA outputs. With RTD sensors the RTD/mA inputs can for instance be used for temperature measurement stator windings, thus extending the functionality of the thermal overload protection and preventing premature aging of the windings. Furthermore, the RTD/mA inputs can be used for measuring the ambient air or cooling media temperature, or bearing temperatures. The RTD/mA inputs can be used for supervision of analog mA signals provided by external transducers. The RTD/mA inputs can be alternatively used also as resistance input or as an input for voltage transducer. The RTD/mA module enables the use of the multipurpose analog protection functions. These protection functions can be used for tripping and alarm purposes based on RTD/mA measuring data, or analog values communicated via GOOSE messaging. The mA outputs can be used for transferring freely selectable measured or calculated analog values to devices provided with mA input capabilities.

The enhanced scalability of the 6U variant protection relays are intended for optimized medium voltage metal-clad switchgear applications where additional binary inputs and outputs are often required.

All binary input and output contacts are freely configurable using the signal matrix of the application configuration function in PCM600.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

See the Input/output overview tables, the selection and ordering data and the terminal diagrams for more information about the inputs and outputs.

Table 3. Analog input configuration

Analog input configuration	CT (1/5 A)	CT sensitive (0.1/0.5 A)	VT	RTD/mA inputs	mA outputs
AA	4	-	5	-	-
АВ	4	1	4	-	-
AC	3	1	5	-	-
ВА	4	-	5	8	4
ВВ	4	1	4	8	4
ВС	3	1	5	8	4

Table 4. Binary input/output options for 4U variants

Binary I/O options	Binary input configuration	ВІ	ВО
Default	AA	14	9
With one optional binary I/O module	AB	23	18
With two optional binary I/O modules ¹⁾	AC	32	27

¹⁾ Not possible if RTD/mA module is selected.

Table 5. Binary input/output options for 6U variants

Binary I/O options	Binary input configuration	ВІ	во
Default	AA	14	9
With one optional binary I/O module	АВ	23	18
With two optional binary I/O modules	AC	32	27
With three optional binary I/O modules	AD	41	36
With four optional binary I/O modules ¹⁾	AE	50	45

¹⁾ Not possible if RTD/mA module is selected.

19. Communication

The protection relay supports the IEC 61850 substation automation standard including horizontal GOOSE communication as well as the well-established DNP3 (TCP/IP) and IEC 60870-5-103 protocols. All operational information and controls are available through these protocols.

Disturbance files are accessed using the IEC 61850 or IEC 60870-5-103 protocols. Disturbance files are also available to any Ethernet based application in the standard COMTRADE format. The protection relay can send binary signals to other protection relays (so called horizontal communication) using the IEC 61850-8-1 GOOSE (Generic Object Oriented Substation Event) profile. Binary GOOSE messaging can, for example, be employed for protection and interlocking-based protection schemes. The protection relay meets the GOOSE performance requirements for tripping applications in distribution

substations, as defined by the IEC 61850 standard. Further, the protection relay supports the sending and receiving of analog values using GOOSE messaging. Analog GOOSE messaging enables fast transfer of analog measurement values over the station bus, thus facilitating for example sharing of RTD input values, such as surrounding temperature values, to other relay applications. Analog GOOSE messages can also be used in load shedding applications. The protection relay interoperates with other IEC 61850 compliant devices, tools and systems and simultaneously reports events to five different clients on the IEC 61850 station bus. For a system using DNP3 over TCP/IP, events can be sent to four different masters. For systems using IEC 60870-5-103, the protection relay can be connected to one master in a station bus with star-topology.

All communication connectors, except for the front port connector, are placed on integrated communication modules.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

The protection relay is connected to Ethernet-based communication systems via the RJ-45 connector (10/100BASE-TX) or the fibre-optic multimode LC connector (100BASE-FX).

IEC 60870-5-103 is available from optical serial port where it is possible to use serial glass fibre (ST connector) or serial plastic fibre (snap-in connector).

The protection relay supports the following time synchronization methods with a timestamping resolution of 1 ms.

Ethernet communication based

- SNTP (simple network time protocol)
- DNP3

With special time synchronization wiring

 IRIG-B (Inter-Range Instrumentation Group - Time Code Format B)

IEC 60870-5-103 serial communication has a time-stamping resolution of 10 ms.

Table 6. Supported communication interface and protocol alternatives

Interfaces/protocols ¹⁾	Ethernet 100BASE-TX RJ-45	Ethernet 100BASE-FX LC	Serial snap-in	Serial ST
IEC 61850	•	•		
DNP3	•	•		
IEC 60870-5-103			•	•

• = Supported

¹⁾ Please refer to the Selection and ordering data chapter for more information

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

20. Technical data

Table 7. Dimensions

Description	Value
Width	220 mm
Height	177 mm (4U) 265.9 mm (6U)
Depth	249.5 mm
Weight box	6.2 kg (4U) 5.5 kg (6U) ¹⁾
Weight LHMI	1.0 kg (4U)

¹⁾ Without LHMI

Table 8. Power supply

Description	600PSM03	600PSM02	
U _{aux} nominal	100, 110, 120, 220, 240 V AC, 50 and 60 Hz	48, 60, 110, 125 V DC	
	110, 125, 220, 250 V DC		
U _{aux} variation	85110% of U _n (85264 V AC)	80120% of U _n (38.4150 V DC)	
	80120% of U _n (88300 V DC)		
Maximum load of auxiliary voltage supply	35 W		
Ripple in the DC auxiliary voltage	Max 15% of the DC value (at frequency of 100 Hz)		
Maximum interruption time in the auxiliary DC voltage without resetting the protection relay	50 ms at U _{aux}		
Power supply input must be protected by an external miniature circuit breaker	For example, type S282 UC-K. The rated maximum load of aux voltage which is given as 35 watts. Depending on the voltage used, select a suitable MCB based on the respective current. Type S282 UC-K has a rated current of 0.75 A at 400 V AC.		

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 9. Energizing inputs

DescriptionValueRated frequency50/60 Hz		Value		
		50/60 Hz	60 Hz	
Operating range		Rated frequency ±5 Hz		
Current inputs	Rated current, I _n	0.1/0.5 A ¹⁾	1/5 A ²⁾	
	Thermal withstand capability:			
	Continuously	4 A	20 A	
	• For 1 s	100 A	500 A	
	• For 10 s	25 A	100 A	
	Dynamic current withstand:			
	Half-wave value	250 A	1250 A	
	Input impedance	<100 mΩ	<20 mΩ	
Voltage inputs	Rated voltage, U _n	ted voltage, U _n 100 V AC/ 110 V AC/ 115 V AC/ 120 V AC		
	Voltage withstand:			
	Continuous	425 V AC		
	• For 10 s	450 V AC		
	Burden at rated voltage	<0.05 VA		

Table 10. Binary inputs

Description	Value	
Operating range	Maximum input voltage 300 V DC	
Rated voltage	24250 V DC	
Current drain	1.61.8 mA	
Power consumption/input	<0.3 W	
Threshold voltage	15221 V DC (parametrizable in the range in steps of 1% of the rated voltage)	
Threshold voltage accuracy	±3.0%	
Ripple in the DC auxiliary voltage	Max 15% of the DC value (at frequency of 100 Hz)	

Residual current
 Phase currents or residual current

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 11. RTD inputs

Description		Value		
RTD inputs	Supported RTD sensor	100 Ω platinum	TCR 0.00385 (DIN 43760)	
		250 Ω platinum	TCR 0.00385	
		100 Ω nickel	TCR 0.00618 (DIN 43760)	
		120 Ω nickel	TCR 0.00618	
		10 Ω copper	TCR 0.00427	
	Supported resistance range	010 kΩ		
	Maximum leadresistance (three-wire	100 Ω platinum	25 Ω per lead	
	measurement)	250 Ω platinum	25 Ω per lead	
		100 Ω nickel	25 Ω per lead	
		120 Ω nickel	25 Ω per lead	
		10 Ω copper	2.5 Ω per lead	
		Resistance	25 Ω per lead	
	Isolation	4 kV	Inputs to all outputs and protective earth	
	RTD / resistance sensing current	Maximum 0.275 mA rms		
	Operation accuracy / temperature	• ±1°C	Pt and Ni sensors for measuring range -40°C 200°C and -40°C70°C ambient temperature	
		• ±2°C	CU sensor for measuring range -40°C200°C in room temperature	
		• ±4°C	CU sensors -40°C70°C ambient temperature	
		• ±5°C	From -40°C100°C of measurement range	
	Operation accuracy / Resistance	±2.5 Ω	0400 Ω range	
		±1.25%	400 $Ω$ 10K $Ω$ ohms range	
	Response time	< Filter time +350 ms	h	
mA inputs	Supported current range	-20+20 mA		
	Current input impedance	100 Ω ±0.1%		
	Operation accuracy	±0.1% ±20 ppm per °C of full-scale Ambient temper 70°C		
Voltage inputs	Supported voltage range	-10 V DC+10 V DC	<u>:</u>	
	Operation accuracy	±0.1% ±40 ppm per °C of full-scale	Ambient temperature -40°C 70°C	

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 12. Signal output and IRF output

IDE rolov	change over -	thypo cianol	output roley

Description	Value
Rated voltage	250 V AC/DC
Continuous contact carry	5 A
Make and carry for 3.0 s	10 A
Make and carry 0.5 s	15 A
Breaking capacity when the control-circuit time constant L/R<40 ms, at U < 48/110/220 V DC	≤0.5 A/≤0.1 A/≤0.04 A
Minimum contact load	100 mA at 24 V AC/DC

Table 13. Power output relays without TCS function

Description	Value
Rated voltage	250 V AC/DC
Continuous contact carry	8 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R<40 ms, at U< 48/110/220 V DC	≤1 A/≤0.3 A/≤0.1 A
Minimum contact load	100 mA at 24 V AC/DC

Table 14. Power output relays with TCS function

Description	Value
Rated voltage	250 V DC
Continuous contact carry	8 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R<40 ms, at U $$ 48/110/220 V DC $$	≤1 A/≤0.3 A/≤0.1 A
Minimum contact load	100 mA at 24 V DC
Control voltage range	20250 V DC
Current drain through the supervision circuit	~1.0 mA
Minimum voltage over the TCS contact	20 V DC

Table 15. mA outputs

Description		Value	
mA outputs	Output range	-20 mA+20 mA	
	Operation accuracy	±0.2 mA	
	Maximum load (including wiring resistance)	700 Ω	
	Hardware response time	~80 ms	
	Isolation level	4 kV	

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 16. Ethernet interfaces

Ethernet interface	Protocol	Cable	Data transfer rate
LAN1 (X1)	TCP/IP protocol	Fibre-optic cable with LC connector or shielded twisted pair CAT 5e cable or better	100 MBits/s

Table 17. LAN (X1) fibre-optic communication link

Wave length	Fibre type	Connector	Permitted path attenuation ¹⁾	Distance
1300 nm	MM 62.5/125 µm or	LC	<7.5 dB	2 km
	MM 50/125 μm glass			
	fibre core			

¹⁾ Maximum allowed attenuation caused by connectors and cable together

Table 18. X4/IRIG-B interface

Туре	Protocol	Cable
Screw terminal, pin row header	IRIG-B	Shielded twisted pair cable Recommended: CAT 5, Belden RS-485 (9841- 9844) or Alpha Wire (Alpha 6222-6230)

Table 19. X9 Optical serial interface characteristics

Wave length	Fibre type	Connector	Permitted path attenuation	Distance
820 nm	MM 62.5/125	ST	4 dB/km	1000 m
820 mm	MM 50/125	ST	4 dB/km	400 m
660 mm	1 mm	Snap-in		10 m

Table 20. Degree of protection of flush-mounted protection relay

Description	Value
Front side	IP 40
Rear side, connection terminals	IP 20

Table 21. Degree of protection of the LHMI

Description	Value
Front and side	IP 42

Table 22. Environmental conditions

Description	Value	
Operating temperature range	-25+55°C (continuous)	
Short-time service temperature range	-40+70°C (<16h) Note: Degradation in MTBF and HMI performance outside the temperature range of -25+55°C	
Relative humidity	<93%, non-condensing	
Atmospheric pressure	86106 kPa	
Altitude	up to 2000 m	
Transport and storage temperature range	-40+85°C	

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 23. Environmental tests

Description	Type test value	Reference
Dry heat test (humidity <50%)	96 h at +55°C16 h at +85°C	IEC 60068-2-2
Cold test	• 96 h at -25°C • 16 h at -40°C	IEC 60068-2-1
Damp heat test, cyclic	• 6 cycles at +2555°C, Rh >93%	IEC 60068-2-30
Storage test	• 96 h at -40°C • 96 h at +85°C	IEC 60068-2-1 IEC 60068-2-2

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 24. Electromagnetic compatibility tests

Description	Type test value	Reference
100 kHz and 1 MHz burst disturbance test		IEC 61000-4-18, level 3 IEC 60255-22-1
Common mode	2.5 kV	
Differential mode	1.0 kV	
3 MHz, 10 MHz and 30 MHz burst disturbance test		IEC 61000-4-18 IEC 60255-22-1, class III
Common mode	2.5 kV	
Electrostatic discharge test		IEC 61000-4-2, level 4 IEC 60255-22-2 IEEE C37.90.3.2001
Contact discharge	8 kV	
Air discharge	15 kV	
Radio frequency interference tests		
Conducted, common mode	10 V (rms), f=150 kHz80 MHz	IEC 61000-4-6 , level 3 IEC 60255-22-6
Radiated, pulse-modulated	10 V/m (rms), f=900 MHz	ENV 50204 IEC 60255-22-3
Radiated, amplitude-modulated	10 V/m (rms), f=802700 MHz	IEC 61000-4-3, level 3 IEC 60255-22-3
Fast transient disturbance tests		IEC 61000-4-4 IEC 60255-22-4, class A
All ports	4 kV	
Surge immunity test		IEC 61000-4-5, level 3/2 IEC 60255-22-5
Communication	1 kV line-to-earth	
Binary inputs, voltage inputs	2 kV line-to-earth 1 kV line-to-line	
Other ports	4 kV line-to-earth, 2 kV line-to-line	
Power frequency (50 Hz) magnetic field		IEC 61000-4-8
• 13 s	1000 A/m	
Continuous	300 A/m	
Pulse magnetic field immunity test	1000 A/m 6.4/16 μs	IEC 61000-4-9
Damped oscillatory magnetic field immunity test		IEC 61000-4-10
• 2 s	100 A/m	
• 1 MHz	400 transients/s	
Power frequency immunity test	Binary inputs only	IEC 60255-22-7, class A IEC 61000-4-16
Common mode	300 V rms	
Differential mode	150 V rms	
Conducted common mode disturbances	15 Hz150 kHz Test level 3 (10/1/10 V rms)	IEC 61000-4-16

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 24. Electromagnetic compatibility tests, continued

Description	Type test value	Reference
Voltage dips and short interruptions	30%/10 ms 60%/100 ms 60%/1000 ms >95%/5000 ms	IEC 61000-4-11
Electromagnetic emission tests		EN 55011, class A IEC 60255-25
Conducted, RF-emission (mains terminal)		
0.150.50 MHz	<79 dB(μV) quasi peak <66 dB(μV) average	
0.530 MHz	<73 dB(μV) quasi peak <60 dB(μV) average	
Radiated RF-emission		
30230 MHz	<40 dB(µV/m) quasi peak, measured at 10 m distance	
2301000 MHz	<47 dB(μV/m) quasi peak, measured at 10 m distance	

Table 25. Insulation tests

Description	Type test value	Reference
Dielectric tests		IEC 60255-5 IEC 60255-27
Test voltage	2 kV, 50 Hz, 1 min 500 V, 50 Hz, 1 min, communication	
Impulse voltage test		IEC 60255-5 IEC 60255-27
Test voltage	5 kV, 1.2/50 μs, 0.5 J 1 kV, 1.2/50 μs, 0.5 J, communication	
Insulation resistance measurements		IEC 60255-5 IEC 60255-27
Isolation resistance	>100 MΩ, 500 V DC	
Protective bonding resistance		IEC 60255-27
Resistance	<0.1Ω, 4 A, 60 s	

Table 26. Mechanical tests

Description	Reference	Requirement
Vibration tests (sinusoidal)	IEC 60068-2-6 (test Fc) IEC 60255-21-1	Class 1
Shock and bump test	IEC 60068-2-27 (test Ea shock) IEC 60068-2-29 (test Eb bump) IEC 60255-21-2	Class 1
Seismic test	IEC 60255-21-3 (method A)	Class 1

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 27. Product safety

Description	Reference
LV directive	2006/95/EC
Standard	EN 60255-27 (2005) EN 60255-1 (2009)

Table 28. EMC compliance

Description	Reference
EMC directive	2004/108/EC
Standard	EN 50263 (2000) EN 60255-26 (2007)

Table 29. RoHS compliance

Description

Complies with RoHS directive 2002/95/EC

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Protection functions

Table 30. Three-phase non-directional overcurrent protection (PHxPTOC)

Characteristic		Value	
Operation accuracy		At the frequency f = f _n	
	PHLPTOC	±1.5% of the set value or ±0.002 × I _n	
	PHHPTOC and PHIPTOC	$\pm 1.5\%$ of set value or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$) $\pm 5.0\%$ of the set value (at currents in the range of $1040 \times I_n$)	
Start time ¹⁾²⁾	PHIPTOC: I _{Fault} = 2 × set <i>Start value</i> I _{Fault} = 10 × set <i>Start value</i>	Typically 17 ms (±5 ms) Typically 10 ms (±5 ms)	
	PHHPTOC: I _{Fault} = 2 × set <i>Start value</i>	Typically 19 ms (±5 ms)	
	PHLPTOC: I _{Fault} = 2 × set <i>Start value</i>	Typically 23 ms (±15 ms)	
Reset time		<45 ms	
Reset ratio		Typically 0.96	
Retardation time		<30 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms	
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³⁾	
Suppression of harmonics		RMS: No suppression DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5, Peak-to-Peak: No suppression P-to-P+backup: No suppression	

¹⁾ Set Operate delay time = 0.02 s, Operate curve type = IEC definite time, Measurement mode = default (depends on stage), current before fault = 0.0 × I_n, f_n = 50 Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

²⁾ Includes the delay of the signal output contact

³⁾ Includes the delay of the heavy-duty output contact

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 31. Three-phase non-directional overcurrent protection (PHxPTOC) main settings

Parameter	Function	Value (Range)	Step	
Start Value	PHLPTOC	0.055.00 pu	0.01	
	PHHPTOC	0.1040.00 pu	0.01	
	PHIPTOC	0.1040.00 pu	0.01	
Time multiplier	PHLPTOC	0.0515.00	0.01	
	PHHPTOC	0.0515.00	0.01	
Operate delay time	PHLPTOC	0.04200.00 s	0.01	
	PHHPTOC	0.02200.00 s	0.01	
	PHIPTOC	0.02200.00 s	0.01	
Operating curve type ¹⁾	PHLPTOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6	, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19	
	PHHPTOC	Definite or inverse time Curve type: 1, 3, 5, 9, 10,	Definite or inverse time Curve type: 1, 3, 5, 9, 10, 12, 15, 17	
	PHIPTOC	Definite time		

¹⁾ For further reference, see the Operation characteristics table

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 32. Three-phase directional overcurrent protection (DPHxPDOC)

Characteristic		Value	
Operation accuracy		At the frequency f = f _n	
	DPHLPDOC	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$ Phase angle: $\pm 2^\circ$	
	DPHHPDOC	Current: $ \pm 1.5\% \text{ of the set value or } \pm 0.002 \times I_n \text{ (at currents in the range of } 0.110 \\ \times I_n \text{)} \\ \pm 5.0\% \text{ of the set value (at currents in the range of } 1040 \times I_n \text{)} \\ \text{Voltage:} \\ \pm 1.5\% \text{ of the set value or } \pm 0.002 \times U_n \\ \text{Phase angle:} \\ \pm 2^\circ \\ $	
Start time ¹⁾²⁾	I _{Fault} = 2.0 × set <i>Start value</i>	Typically 24 ms (±15 ms)	
Reset time		<40 ms	
Reset ratio		Typically 0.96	
Retardation time		<35 ms	
Operate time accuracy in def	inite time mode	±1.0% of the set value or ±20 ms	
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³⁾	
Suppression of harmonics		RMS: No suppression DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ Peak-to-Peak: No suppression P-to-P+backup: No suppression	

¹⁾ Measurement mode = default (depends of stage), current before fault = 0.0 × I_n, f_n = 50 Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

Table 33. Three-phase directional overcurrent protection (DPHxPDOC) main settings

Parameter	Function	Value (Range)	Step
Start value	DPHLPDOC	0.055.00 pu	0.01
	DPHHPDOC	0.055.00 pu	0.01
Time multiplier	DPHxPDOC	0.0515.00	0.01
Operate delay time	DPHxPDOC	0.04200.00 s	0.01
Directional mode	DPHxPDOC	1 = Non-directional 2 = Forward 3 = Reverse	
Characteristic angle	DPHxPDOC	-179180°	1
Operating curve type ¹⁾	DPHLPDOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19	
	DPHHPDOC	Definite or inverse time Curve type: 1, 3, 5, 9, 10, 12, 15, 17	

¹⁾ For further reference, refer to the Operation characteristics table

²⁾ Includes the delay of the signal output contact

³⁾ Maximum Start value = $2.5 \times I_n$, Start value multiples in range of 1.5...20

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 34. Distance protection (DSTPDIS)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	Current: $ \pm 1.5\% \text{ of the set value or } \pm 0.003 \times I_n $ $ \text{Voltage:} $ $ \pm 1.0\% \text{ of the set value or } \pm 0.003 \times U_n $ $ \text{Impedance:} $ $ \pm 2.0\% \text{ of the set value or } \pm 0.01 \Omega \text{ static accuracy} $ $ \text{Phase angle: } \pm 2^\circ $
Start time ¹⁾²⁾ SIR ³⁾ : 0.160	Typically 4050 ms (±15 ms)
Transient overreach SIR = 0.160	<6%
Reset time	<65 ms
Reset ratio	Typically 0.95/1.05
Operate time accuracy	±1.0% of the set value or ±20 ms

Includes the delay of the signal output contact Relates to start signals of the Zone Z1–Zone ZAR2 SIR = Source impedance ratio

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 35. Distance protection (DSTPDIS) main settings

Parameter	Function	Value (Range)	Steps
Phase voltage Meas	DSTPDIS	Accurate PP without Uo	-
System grounding GFC	DSTPDIS	High impedance Low impedance From input	-
Phase Sel mode GFC	DSTPDIS	Overcurrent Voltdep overcur Under impedance Overcur/underZ	-
EF detection Mod GFC	DSTPDIS	lo Io OR Uo Io AND Uo Io AND Ioref	-
Operate delay GFC	DSTPDIS	0.10060.000 s	0.001
Ph Str A Ph Sel GFC	DSTPDIS	0.1010.00 pu	0.01
Ph Lo A Ph Sel GFC	DSTPDIS	0.1010.00 pu	0.01
Ph V Ph Sel GFC	DSTPDIS	0.101.00 pu	0.01
PP V Ph Sel GFC	DSTPDIS	0.101.00 pu	0.01
Z Chr Mod Ph Sel GFC	DSTPDIS	Quadrilateral Mho (circular)	-
Load Dsr mode GFC	DSTPDIS	Off On	-
X Gnd Fwd reach GFC	DSTPDIS	0.013000.00 Ω	0.01
X Gnd Rv reach GFC	DSTPDIS	0.013000.00 Ω	0.01
Ris Gnd Rch GFC	DSTPDIS	0.01500.00 Ω	0.01
X PP Fwd reach GFC	DSTPDIS	0.013000.00 Ω	0.01
X PP Rv reach GFC	DSTPDIS	0.013000.00 Ω	0.01
Resistive PP Rch GFC	DSTPDIS	0.01100.00 Ω	0.01
Ris reach load GFC	DSTPDIS	1.003000.00 Ω	0.01
Angle load area GFC	DSTPDIS	545°	1
Z Max Ph load GFC	DSTPDIS	1.0010000.00 Ω	0.01
Gnd Op current GFC	DSTPDIS	0.0110.00 pu	0.01
Gnd Op A Ref GFC	DSTPDIS	0.0110.00 pu	0.01
Gnd Str voltage GFC	DSTPDIS	0.021.00 pu	0.01
Ph Prf mode Hi Z GFC	DSTPDIS	No filter No preference Cyc A-B-C-A Cyc A-C-B-A Acyc A-B-C Acyc A-C-B Acyc B-A-C Acyc B-C-A Acyc C-A-B Acyc C-B-A	-

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 35. Distance protection (DSTPDIS) main settings, continued

Parameter	Function	Value (Range)	Steps
Ph Prf mode Lo Z GFC	DSTPDIS	All loops PE only PP only BLK leading PE BLK lagging PE	-
Gnd Op A XC GFC	DSTPDIS	0.1010.00 pu	0.01
PP voltage XCF GFC	DSTPDIS	0.101.00 pu	0.01
Cross-country DI GFC	DSTPDIS	0.0010.00 s	0.01
Impedance mode Zn	DSTPDIS	Rectangular Polar	-
Impedance Chr Gnd Zn	DSTPDIS	Quadrilateral Mho (circular) Mho dir line Offset dir line Bullet (combi)	-
Impedance Chr PP Zn	DSTPDIS	Quadrilateral Mho (circular) Mho dir line Offset dir line Bullet (combi)	-
Max phase angle zone	DSTPDIS	045°	1
Min phase angle zone	DSTPDIS	90135°	1
Pol quantity zone	DSTPDIS	Pos. seq. volt. Self pol Cross Pol	-
Directional mode Zn1	DSTPDIS	Non-directional Forward Reverse	-
Op Mod PP loops Zn1	DSTPDIS	Disabled Enabled	-
PP Op delay Mod Zn1	DSTPDIS	Disabled Enabled	-
R1 zone 1	DSTPDIS	0.013000.00 Ω	0.01
X1 zone 1	DSTPDIS	0.013000.00 Ω	0.01
X1 reverse zone 1	DSTPDIS	0.013000.00 Ω	0.01
Z1 zone 1	DSTPDIS	0.013000.00 Ω	0.01
Z1 angle zone 1	DSTPDIS	1590°	1
Z1 reverse zone 1	DSTPDIS	0.013000.00 Ω	0.01
Min Ris PP Rch Zn1	DSTPDIS	0.01100.00 Ω	0.01
Max Ris PP Rch Zn1	DSTPDIS	0.01100.00 Ω	0.01
R0 zone 1	DSTPDIS	0.013000.00 Ω	0.01
X0 zone 1	DSTPDIS	0.013000.00 Ω	0.01
Factor K0 zone 1	DSTPDIS	0.04.0	0.1
Factor K0 angle Zn1	DSTPDIS	-135135°	1

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 35. Distance protection (DSTPDIS) main settings, continued

Parameter	Function	Value (Range)	Steps
Min Ris Gnd Rch Zn1	DSTPDIS	0.01500.00 Ω	0.01
Max Ris Gnd Rch Zn1	DSTPDIS	0.01500.00 Ω	0.01
Gnd operate Dl Zn1	DSTPDIS	0.03060.000 s	0.001

Table 36. Automatic switch-onto-fault function (CVRSOF)

Characteristic	Value
Operation accuracies	At the frequency f = f _n
	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$
Operate time accuracy	±1.0% of the set value or ±35 ms
Suppression of harmonics	DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,

Table 37. Fault locator (SCEFRFLO)

Characteristic	Value
Operation accuracies	At the frequency f = f _n
	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$ Fault location accuracy: $\pm 2.5\%$ of the line length or ± 0.2 km/0.13 mile. Actual fault location accuracy depends on the fault and the power system characteristics.
Suppression of harmonics	DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,

Table 38. Fault locator (SCEFRFLO) main settings

Parameter	Function	Value (Range)	Step
Phase voltage Meas	SCEFRFLO	Accurate PP without Uo	-
Calculation Trg mode	SCEFRFLO	External Internal Continuous	-
Pre fault time	SCEFRFLO	0.100300.000 s	0.001
Z Max phase load	SCEFRFLO	1.0010000.00 Ω	0.01
Ph leakage Ris	SCEFRFLO	11000000 Ω	1
Ph capacitive React	SCEFRFLO	11000000 Ω	1
R1 line section A	SCEFRFLO	0.0011000.000 Ω/pu	0.001
X1 line section A	SCEFRFLO	0.0011000.000 Ω/pu	0.001
R0 line section A	SCEFRFLO	0.0011000.000 Ω/pu	0.001
X0 line section A	SCEFRFLO	0.0011000.000 Ω/pu	0.001
Line Len section A	SCEFRFLO	0.0011000.000 pu	0.001

Table 39. Autoreclosing (DARREC)

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 40. Non-directional earth-fault protection (EFxPTOC)

Characteristic		Value	
Operation accuracy		At the frequency f = f _n	
	EFLPTOC	±1.5% of the set value or ±0.001 × I _n	
	EFHPTOC and EFIPTOC	$\pm 1.5\%$ of set value or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$) $\pm 5.0\%$ of the set value (at currents in the range of $1040 \times I_n$)	
Start time 1)2)	EFIPTOC: I _{Fault} = 2 × set <i>Start value</i>	Typically 12 ms (±5 ms)	
	EFHPTOC: I _{Fault} = 2 × set <i>Start value</i>	Typically 19 ms (±5 ms)	
	EFLPTOC: I _{Fault} = 2 × set <i>Start value</i>	Typically 23 ms (±15 ms)	
Reset time		<45 ms	
Reset ratio		Typically 0.96	
Retardation time		<30 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms	
Operate time accuracy in in	verse time mode	$\pm 5.0\%$ of the theoretical value or ± 20 ms $^{3)}$	
Suppression of harmonics		RMS: No suppression DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ Peak-to-Peak: No suppression	

¹⁾ Operate curve type = IEC definite time, Measurement mode = default (depends on stage), current before fault = 0.0 × I_n, f_n = 50 Hz, earth-fault current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

Table 41. Non-directional earth-fault protection (EFxPTOC) main settings

Parameter	Function	Value (Range)	Step
Start value	EFLPTOC	0.0105.000 pu	0.005
	EFHPTOC	0.1040.00 pu	0.01
	EFIPTOC	0.1040.00 pu	0.01
Time multiplier	EFLPTOC	0.0515.00	0.01
	EFHPTOC	0.0515.00	0.01
Operate delay time	EFLPTOC	0.04200.00 s	0.01
	EFHPTOC	0.02200.00 s	0.01
	EFIPTOC	0.02200.00 s	0.01
Operating curve type ¹⁾	EFLPTOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19	
	EFHPTOC	Definite or inverse time Curve type: 1, 3, 5, 9, 10, 12, 15, 17	
	EFIPTOC	Definite time	

¹⁾ For further reference, see the Operation characteristics table

Includes the delay of the signal output contact

³⁾ Maximum $Start\ value = 2.5 \times I_n$, $Start\ value\ multiples\ in\ range\ of\ 1.5...20$

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 42. Directional earth-fault protection (DEFxPDEF)

Characteristic		Value	
Operation accuracy		At the frequency f = f _n	
	DEFLPDEF	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ Voltage $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$ Phase angle: $\pm 2^\circ$	
	DEFHPDEF	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$) $\pm 5.0\%$ of the set value (at currents in the range of $1040 \times I_n$) Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$ Phase angle: $\pm 2^\circ$	
Start time ¹⁾²⁾	DEFHPDEF and DEFLPTDEF: I _{Fault} = 2 × set <i>Start value</i>	Typically 54 ms (±15 ms)	
Reset time		Typically 40 ms	
Reset ratio		Typically 0.96	
Retardation time		<30 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms	
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³⁾	
Suppression of harmonics		RMS: No suppression DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ Peak-to-Peak: No suppression	

¹⁾ Set Operate delay time = 0.06 s, Operate curve type = IEC definite time, Measurement mode = default (depends on stage), current before fault = $0.0 \times I_n$, $f_n = 50$ Hz, earth-fault current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements Includes the delay of the signal output contact Maximum $Start \ value = 2.5 \times I_n$, $Start \ value$ multiples in range of 1.5 to 20

²⁾

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 43. Directional earth-fault protection (DEFxPDEF) main settings

Parameter	Function	Value (Range)	Step
Start Value	DEFLPDEF	0.0105.000 pu	0.005
	DEFHPDEF	0.1040.00 pu	0.01
Directional mode	DEFLPDEF and DEFHPDEF	1=Non-directional 2=Forward 3=Reverse	
Time multiplier	DEFLPDEF	0.0515.00	0.01
	DEFHPDEF	0.0515.00	0.01
Operate delay time	DEFLPDEF	0.06200.00 s	0.01
	DEFHPDEF	0.06200.00 s	0.01
Operating curve type ¹⁾	DEFLPDEF	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19	
	DEFHPDEF	Definite or inverse time Curve type: 1, 3, 5, 15, 17	
Operation mode	DEFLPDEF and DEFHPDEF	1=Phase angle 2=loSin 3=loCos 4=Phase angle 80 5=Phase angle 88	

¹⁾ For further reference, refer to the Operation characteristics table

Table 44. Harmonics based earth-fault protection (HAEFPTOC)

Characteristic	Value
Operation accuracy	At the frequency $f = f_n$ ±5% of the set value or ±0.004 × I_n
Start time ¹⁾²⁾	Typically 83 ms
Reset time	<40 ms
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Operate time accuracy in IDMT mode ³⁾	±5.0% of the set value or ±20 ms
Suppression of harmonics	-80 dB at f = f _n -3 dB at f = 11 × f _n

¹⁾ Fundamental frequency current = $1.0 \times I_n$. Harmonics current before fault = $0.0 \times I_n$, harmonics fault current $2.0 \times Start$ value. Results based on statistical distribution of 1000 measurement.

Table 45. Harmonics based earth-fault protection (HAEFPTOC) main settings

Parameter	Function	Value (Range)	Step	
Start value	HAEFPTOC	0.055.00 pu	0.01	
Time multiplier	HAEFPTOC	0.0515.00	0.01	
Operating curve type	HAEFPTOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19	
Operate delay time	HAEFPTOC	0.10200.00 s	0.01	
Minimum operate time	HAEFPTOC	0.10200.00 s	0.01	

 ²⁾ Includes the delay of the signal output contact
 3) Maximum Start value = 2.5 × I_n, Start value multiples in range of 2...20

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 46. Transient/intermittent earth-fault protection (INTRPTEF)

Characteristic	Value	
Operation accuracy (Uo criteria with transient protection)	At the frequency f = f _n	
	±1.5% of the set value or ±0.002 × Uo	
Operate time accuracy	±1.0% of the set value or ±20 ms	
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5	

Table 47. Transient/intermittent earth-fault protection (INTRPTEF) main settings

Parameter	Function	Value (Range)	Step	
Directional mode	INTRPTEF	1=Non-directional 2=Forward 3=Reverse	-	
Voltage start value	INTRPTEF	0.050.50 pu	0.01	
Operate delay time	INTRPTEF	0.041200.00 s	0.01	
Operation mode	INTRPTEF	1=Intermittent EF 2=Transient EF	-	
Min operate current	INTRPTEF	0.011.00 pu	0.01	
Peak counter limit	INTRPTEF	220	1	

Table 48. Admittance-based earth-fault protection (EFPADM)

Characteristic	Value
Operation accuracy ¹⁾	At the frequency f = f _n
	±1.0% or ±0.01 mS (in range of 0.5100 mS)
Start time ²⁾	Typically 65 ms (±15 ms)
Reset time	<50 ms
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Suppression of harmonics	-50dB at f = n × f _n , where n = 2, 3, 4, 5,

¹⁾ Io varied during the test. Uo = $1.0 \times U_n$ = phase to earth voltage during earth-fault in compensated or unearthed network.

²⁾ Includes the delay of the signal output contact. Results based on statistical distribution of 1000 measurements.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 49. Admittance-based earth-fault protection (EFPADM) main settings

Parameter	Function	Value (Range)	Step	
Operation mode	EFPADM	Yo Go Bo Yo, Go Yo, Bo Go, Bo Yo, Go, Bo	-	
Directional mode	EFPADM	Non-directional Forward Reverse	-	
Voltage start value	EFPADM	0.012.00 pu	0.01	
Circle conductance	EFPADM	-500.00500.00 mS	0.01	
Circle susceptance	EFPADM	-500.00500.00 mS	0.01	
Circle radius	EFPADM	0.05500.00 mS	0.01	
Conductance forward	EFPADM	-500.00500.00 mS	0.01	
Conductance reverse	EFPADM	-500.00500.00 mS	0.01	
Susceptance forward	EFPADM	-500.00500.00 mS	0.01	
Susceptance reverse	EFPADM	-500.00500.00 mS	0.01	
Operate delay time	EFPADM	0.06200.00 s	0.01	

Table 50. Multi-frequency admittance-based earth-fault protection (MFADPSDE)

Characteristic	Value
Operation accuracy	At the frequency f = f _n ±1.5% of the set value or ±0.002 × U _n
Start time 1)	Typically 50 ms (±10 ms)
Reset time	<40 ms
Operate time accuracy	±1.0% of the set value or ±20 ms

¹⁾ Includes the delay of the signal output contact. Results based on statistical distribution of 1000 measurements.

Table 51. Multi-frequency admittance-based earth-fault protection (MFADPSDE) main settings

Parameter	Function	Value (Range)	Step	
Directional mode	MFADPSDE	Forward Reverse	-	
Voltage start value	MFADPSDE	0.011.00 pu	0.01	
Operate delay time	MFADPSDE	0.06200.00 s	0.01	
Operating quantity	MFADPSDE	Adaptive Amplitude	-	
Operation mode	MFADPSDE	Intermittent EF General EF Alarming EF	-	
Min Fwd Op current	MFADPSDE	0.011.00 pu	0.01	
Min Rev Op current	MFADPSDE	0.011.00 pu	0.01	
Peak counter limit	MFADPSDE	320	1	•••••

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 52. Wattmetric earth-fault protection (WPWDE)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	±3.0% of the set value or ±0.002 × S _n
Start time ¹⁾²⁾	Typically 65 ms (±15 ms)
Reset time	<45 ms
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Operate time accuracy in inverse time mode	±5.0% of the set value or ±20 ms
Suppression of harmonics	-50 dB at f = n × f _n , where n = 2, 3, 4, 5,

¹⁾ lo varied during the test. Uo = 1.0 × U_n = phase to earth voltage during earth-fault in compensated or un-earthed network. The residual power value before fault = 0.0 pu, f_n = 50 Hz, results based on statistical distribution of 1000 measurements.

Table 53. Wattmetric earth-fault protection (WPWDE) main settings

Parameter	Function	Value (Range)	Step	
Directional mode	WPWDE	Forward Reverse	-	
Current start value	WPWDE	0.015.00 pu	0.01	
Voltage start value	WPWDE	0.0101.000 pu	0.001	
Power start value	WPWDE	0.0031.000 pu	0.001	
Reference power	WPWDE	0.0501.000 pu	0.001	
Characteristic angle	WPWDE	-179180°	1	•••••
Time multiplier	WPWDE	0.052.00	0.01	
Operating curve type	WPWDE	ANSI Def. Time IEC Def. Time WattMetric IDMT	-	
Operate delay time	WPWDE	0.06200.00 s	0.01	

Table 54. Phase discontinuity protection (PDNSPTOC)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	±2% of the set value
Start time	Typically 15 ms
Reset time	<40 ms
Reset ratio	Typically 0.96
Retardation time	<35 ms
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = $n \times f_n$, where $n = 2, 3, 4, 5,$

²⁾ Includes the delay of the signal output contact.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 55. Phase discontinuity protection (PDNSPTOC) main settings

Parameter	Function	Value (Range)	Step
Start value	PDNSPTOC	10100%	1
Operate delay time	PDNSPTOC	0.10030.000 s	0.001
Min phase current	PDNSPTOC	0.050.30 pu	0.01

Table 56. Negative-sequence overcurrent protection (NSPTOC)

Characteristic		Value	
Operation accuracy		At the frequency f = f _n	
		±1.5% of the set value or ±0.002 × I _n	
Start time $^{1)2)}$ $I_{Fault} = 2 \times set \ \textit{Start value}$ $I_{Fault} = 10 \times set \ \textit{Start value}$		Typically 23 ms (±15 ms) Typically 16 ms (±15 ms)	
Reset time		<40 ms	
Reset ratio		Typically 0.96	
Retardation time		<35 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms	
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³⁾	
Suppression of harmonics		DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,	

Operate curve type = IEC definite time, negative sequence current before fault = 0.0, f_n = 50 Hz

Table 57. Negative-sequence overcurrent protection (NSPTOC) main settings

Parameter	Function	Value (Range)	Step	
Start value	NSPTOC	0.015.00 pu	0.01	
Time multiplier	NSPTOC	0.0515.00	0.01	
Operate delay time	NSPTOC	0.04200.00 s	0.01	
Operating curve type ¹⁾	NSPTOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6,	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19	

¹⁾ For further reference, see the Operation characteristics table

Table 58. Three-phase thermal overload protection for feeder (T1PTTR)

Characteristic	Value	
Operation accuracy	At the frequency f = f _n	
	Current measurement: $\pm 0.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of 0.014.00 × I_n)	
Operate time accuracy ¹⁾	±2.0% or ±0.50 s	

Overload current > 1.2 × Operate level temperature, Current reference > 0.50 pu

Includes the delay of the signal output contact Maximum $Start\ value = 2.5 \times I_n$, $Start\ value\ multiples$ in range of 1.5 to 20

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 59. Three-phase thermal overload protection for feeder (T1PTTR) main settings

Parameter	Function	Value (Range)	Step	
Alarm value	T1PTTR	20.0150.0°	0.1	
Env temperature Set	T1PTTR	-50100°	1	
Maximum temperature	T1PTTR	20.0200.0°	0.1	
Reclose temperature	T1PTTR	20.0150.0°	0.1	
Temperature rise	T1PTTR	0.0200.0°	0.1	
Time constant	T1PTTR	11000 min	1	
Current reference	T1PTTR	0.054.00 pu	0.01	
Current multiplier	T1PTTR	15	1	
Initial temperature	T1PTTR	-50.0100.0°	0.1	

Table 60. Three-phase current inrush detection (INRPHAR)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	Current measurement: ±1.5% of the set value or ±0.002 × I _n Ratio I2f/I1f measurement: ±5.0% of the set value
Reset time	+35 ms / -0 ms
Reset ratio	Typically 0.96
Operate time accuracy	+30 ms / -0 ms

Table 61. Three-phase current inrush detection (INRPHAR) main settings

Parameter	Function	Value (Range)	Step
Start value	INRPHAR	5100%	1
Operate delay time	INRPHAR	0.0260.00 s	0.001

Table 62. Three-phase overvoltage protection (PHPTOV)

Characteristic		Value	
Operation accuracy		At the frequency f = f _n	
		±1.5% of the set value or ±0.002 × U _n	
Start time ¹⁾²⁾	U _{Fault} = 2.0 × set <i>Start value</i>	Typically 17 ms (±15 ms)	
Reset time		<40 ms	
Reset ratio		Depends of the set Relative hysteresis	
Retardation time		<35 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms	
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³⁾	
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,	

¹⁾ $Start\ value = 1.0 \times U_n.\ Voltage\ before\ fault = 0.9 \times U_n,\ f_n = 50\ Hz,\ overvoltage\ in\ one\ phase-to-phase\ with\ nominal\ frequency\ injected\ from\ random\ phase\ angle$

Includes the delay of the signal output contact

Maximum Start value = 1.20 × U_n, Start value multiples in range of 1.10...2.00

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 63. Three-phase overvoltage protection (PHPTOV) main settings

Parameter	Function	Value (Range)	Step
Start value	PHPTOV	0.051.60 pu	0.01
Time multiplier	PHPTOV	0.0515.00	0.01
Operate delay time	PHPTOV	0.40300.000 s	0.10
Operating curve type ¹⁾	PHPTOV	Definite or inverse time Curve type: 5, 15, 17, 18, 19, 20	

¹⁾ For further reference, see the Operation characteristics table

Table 64. Three-phase undervoltage protection (PHPTUV)

Characteristic		Value	
Operation accuracy		At the frequency f = f _n	
		±1.5% of the set value or ±0.002 × U _n	
Start time ¹⁾²⁾ U _{Fault} = 0.9 × set <i>Start value</i>		Typically 24 ms (±15 ms)	
Reset time		<40 ms	
Reset ratio		Depends of the set Relative hysteresis	
Retardation time		<35 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms	
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³⁾	
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,	

¹⁾ Start value = 1.0 × Un, Voltage before fault = 1.1 × Un, fn = 50 Hz, undervoltage in one phase-to-phase with nominal frequency injected from random phase angle

Table 65. Three-phase undervoltage protection (PHPTUV) main settings

Parameter	Function	Value (Range)	Step	
Start value	PHPTUV	0.051.20 pu	0.01	
Time multiplier	PHPTUV	0.0515.00	0.01	
Operate delay time	PHPTUV	0.040300.000 s	0.010	
Operating curve type ¹⁾	PHPTUV	Definite or inverse time Curve type: 5, 15, 21, 22, 2	3	

¹⁾ For further reference, see the Operation characteristics table

²⁾ Includes the delay of the signal output contact

³⁾ Minimum $Start \ value = 0.50 \times U_n$, $Start \ value \ multiples in range of 0.90...0.20$

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 66. Positive-sequence overvoltage protection (PSPTOV)

Characteristic		Value	
Operation accuracy		At the frequency f = f _n	
		±1.5% of the set value or ±0.002 × U _n	
Start time ¹⁾²⁾	U _{Fault} = 1.1 × set <i>Start value</i> U _{Fault} = 2.0 × set <i>Start value</i>	Typically 29 ms (±15 ms)	
		Typically 24 ms (±15 ms)	
Reset time		<40 ms	
Reset ratio		Typically 0.96	
Retardation time		<35 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms	
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,	

¹⁾ Positive-sequence voltage before fault = $0.0 \times U_n$, $f_n = 50$ Hz, positive-sequence overvoltage of nominal frequency injected from random phase angle

Table 67. Positive-sequence overvoltage protection (PSPTOV) main settings

Parameter	Function	Value (Range)	Step
Start value	PSPTOV	0.8001.600 pu	0.001
Operate delay time	PSPTOV	0.040120.000 s	0.001

Table 68. Positive-sequence undervoltage protection (PSPTUV)

Characteristic		Value	
Operation accuracy		At the frequency f = f _n	
		±1.5% of the set value or ±0.002 × U _n	
Start time ¹⁾²⁾	U _{Fault} = 0.9 × set <i>Start value</i>	Typically 28 ms (±15 ms)	
Reset time		<40 ms	
Reset ratio		Typically 0.96	
Retardation time		<35 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms	
Suppression of harmonics		DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,	

¹⁾ Positive-sequence voltage before fault = 1.1 × Un, fn = 50 Hz, positive-sequence undervoltage of nominal frequency injected from random phase angle

Table 69. Positive-sequence undervoltage protection (PSPTUV) main settings

Parameter	Function	Value (Range)	Step
Start value	PSPTUV	0.0101.200 pu	0.001
Operate delay time	PSPTUV	0.040120.000 s	0.001
Voltage block value	PSPTUV	0.011.0 pu	0.01

²⁾ Includes the delay of the signal output contact

²⁾ Includes the delay of the signal output contact

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 70. Negative-sequence overvoltage protection (NSPTOV)

Characteristic		Value	
Operation accuracy		At the frequency f = f _n	
		±1.5% of the set value or ±0.002 × U _n	
Start time ¹⁾²⁾ $U_{Fault} = 1.1 \times set$ Start value $U_{Fault} = 2.0 \times set$ Start value		Typically 29 ms (± 15ms) Typically 24 ms (± 15ms)	
Reset time		<40 ms	
Reset ratio		Typically 0.96	
Retardation time		<35 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms	
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,	

¹⁾ Negative-sequence voltage before fault = $0.0 \times U_n$, $f_n = 50$ Hz, negative-sequence overvoltage of nominal frequency injected from random phase angle

Table 71. Negative-sequence overvoltage protection (NSPTOV) main settings

Parameter	Function	Value (Range)	Step
Start value	NSPTOV	0.0101.000 pu	0.001
Operate delay time	NSPTOV	0.040120.000 s	0.001

Table 72. Residual overvoltage protection (ROVPTOV)

Characteristic		Value	
Operation accuracy		At the frequency f = f _n	
		±1.5% of the set value or ±0.002 × U _n	
Start time ¹⁾²⁾	U _{Fault} = 1.1 × set <i>Start value</i>	Typically 27 ms (± 15 ms)	
Reset time		<40 ms	
Reset ratio		Typically 0.96	
Retardation time		<35 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms	
Suppression of harmonics		DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,	

¹⁾ Residual voltage before fault = $0.0 \times U_n$, $f_n = 50$ Hz, residual voltage with nominal frequency injected from random phase angle

Table 73. Residual overvoltage protection (ROVPTOV) main settings

Parameter	Function	Value (Range)	Step
Start value	ROVPTOV	0.0101.000 pu	0.001
Operate delay time	ROVPTOV	0.040300.000 s	0.001

²⁾ Includes the delay of the signal output contact

²⁾ Includes the delay of the signal output contact

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 74. Directional reactive power undervoltage protection (DQPTUV)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	Power:
	1.5% or $0.002 \times Q_n$ (±1.5%) for power, PF -0.710.71
	Voltage:
	±1.5% of the set value or ±0.002 × U _n
Start time ¹⁾	Typically 22 ms
Reset time	<40 ms
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = $n \times f_n$, where $n = 2, 3, 4, 5$ and so on

¹⁾ Start value = 0.05 × S_n, Reactive power before fault = 0.8 × Start value. Reactive power overshoot 2 times. Results based on statistical distribution of 1000 measurement.

Table 75. Directional reactive power undervoltage protection (DQPTUV) main settings

Parameter	Function	Value (Range)	Step
Voltage start value	DQPTUV	0.201.20 pu	0.01
Operate delay time	DQPTUV	0.1300.00 s	0.01
Min reactive power	DQPTUV	0.010.50 pu	0.01
Min PS current	DQPTUV	0.020.20 pu	0.01
Pwr sector reduction	DQPTUV	0.010.0°	1.0

Table 76. Frequency gradient protection (DAPFRC)

Characteristic		Value	
Operation accuracy		df/dt < ±10 Hz/s: ±10 mHz/s Undervoltage blocking: ±1.5% of the set value or ±0.002 × U _n	
Start time ¹⁾²⁾ $Start value = 0.05 Hz/s$ $df/dt_{FAULT} = \pm 1.0 Hz/s$		Typically 110 ms (±15 ms)	
Reset time		<150 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±30 ms	
Suppression of harmonics		DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,	

Frequency before fault = 1.0 × f_n, f_n = 50 Hz
 Includes the delay of the signal output contact

Table 77. Frequency gradient protection (DAPFRC) main settings

Parameter	Function	Value (Range)	Step
Start value	DAPFRC	-10.0010.00 Hz/s	0.01
Operate delay time	DAPFRC	0.12060.000 s	0.001

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 78. Overfrequency protection (DAPTOF)

Characteristic		Value	
Operation accuracy		At the frequency f = 3566 Hz	
		±0.003 Hz	
Start time ¹⁾²⁾	f _{Fault} = 1.01 × set <i>Start value</i>	Typically <190 ms	
Reset time		<190 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±30 ms	
Suppression of harmonics		DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,	

¹⁾ Frequency before fault = $0.99 \times f_n$, $f_n = 50 \text{ Hz}$

Table 79. Overfrequency protection (DAPTOF) main settings

Parameter	Function	Value (Range)	Step
Start value	DAPTOF	35.064.0 Hz	0.1
Operate delay time	DAPTOF	0.17060.000 s	0.001

Table 80. Underfrequency protection (DAPTUF)

Characteristic		Value	
Operation accuracy		At the frequency f = 3566 Hz	
		±0.003 Hz	
Start time ¹⁾²⁾	f _{Fault} = 0.99 × set <i>Start value</i>	Typically <190 ms	
Reset time		<190 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±30 ms	
Suppression of harmonics		DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,	

¹⁾ Frequency before fault = 1.01 \times f_n, f_n = 50 Hz

Table 81. Underfrequency protection (DAPTUF) main settings

Parameter	Function	Value (Range)	Step
Start value	DAPTUF	35.064.0 Hz	0.1
Operate delay time	DAPTUF	0.17060.000 s	0.001

²⁾ Includes the delay of the signal output contact

²⁾ Includes the delay of the signal output contact

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 82. Load shedding (LSHDPFRQ)

Characteristic		Value	
Operation accuracy		At the frequency f = 3566 Hz	
		±0.003 Hz	
Start time ¹⁾²⁾	Load shed mode	Typically 175 ms (±15 ms)	
	Freq<: f _{Fault} = 0.80 × set <i>Start value</i> freq< AND dfdt>: df/dt = 0.3 Hz/s	Typically 250 ms (±15 ms)	
Reset time		<190 ms	
Operate time accuracy in definite time mode		±1.0% of the set value or ±30 ms	
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,	

¹⁾ Frequency before fault = 1.2 \times f_n, f_n = 50 Hz

Table 83. Load shedding (LSHDPFRQ) main settings

Parameter	Function	Value (Range)	Step
Load shed mode	LSHDPFRQ	Freq< freq< AND dfdt> Freq< OR dfdt>	-
Restore mode	LSHDPFRQ	Disabled Auto Manual	-
Start Val frequency	LSHDPFRQ	35.0060.00 Hz	0.01
Start value df/dt	LSHDPFRQ	0.1010.00 Hz/s	0.01
Frequency Op delay	LSHDPFRQ	0.08200.00 s	0.01
Df/dt operate delay	LSHDPFRQ	0.1260.00 s	0.01
Restore start Val	LSHDPFRQ	45.0060.00 Hz	0.01
Restore delay time	LSHDPFRQ	0.1760.00 s	0.01

Table 84. Reverse power/directional overpower protection (DOPPDPR)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	$\pm 3\%$ of the set value or $\pm 0.002 \times S_n$
Start time ¹⁾²⁾	Typically 20 ms (±15 ms)
Reset time	<40 ms
Reset ratio	Typically 0.94
Retardation time	<45 ms
Operate time accuracy	±1.0% of the set value of ±20 ms

¹⁾ $U = U_n$, $F_n = 50$ Hz, results based on statistical distribution of 1000 measurements.

²⁾ Includes the delay of the signal output contact

²⁾ Includes the delay of the signal output contact.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 85. Reverse power/directional overpower protection (DOPPDPR) main settings

Parameter	Function	Value (Range)	Step
Directional mode	DOPPDPR	Forward Reverse	-
Start value	DOPPDPR	0.012.00 pu	0.01
Power angle	DOPPDPR	-90.0090.00°	0.01
Operate delay time	DOPPDPR	0.04300.00 s	0.01

Table 86. Circuit breaker failure protection (CCBRBRF)

Characteristic	Value	
Operation accuracy	At the frequency f = f _n	
	±1.5% of the set value or ±0.002 × I _n	
Operate time accuracy	±1.0% of the set value or ±30 ms	

Table 87. Circuit breaker failure protection (CCBRBRF) main settings

Parameter	Function	Value (Range)	Step	
Current value	CCBRBRF	0.051.00 pu	0.01	
Current value Res	CCBRBRF	0.051.00 pu	0.01	
CB failure mode	CCBRBRF	1 = Current 2 = Breaker status 3 = Both	-	
CB fail trip mode	CCBRBRF	1 = Off 2 = Without check 3 = Current check	-	
Retrip time	CCBRBRF	0.0060.00 s	0.01	
CB failure delay	CCBRBRF	0.0060.00 s	0.01	
CB fault delay	CCBRBRF	0.0060.00 s	0.01	

Table 88. Multipurpose analog protection (MAPGAPC)

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

Table 89. Multipurpose analog protection (MAPGAPC) main settings

Parameter	Function	Value (Range)	Step
Operation mode	MAPGAPC	Over Under	-
Start value	MAPGAPC	-10000.010000.0	0.1
Start value Add	MAPGAPC	-100.0100.0	0.1
Operate delay time	MAPGAPC	0.00200.00 s	0.01

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 90. Operation characteristics

Parameter	Value (Range)
Operating curve type	1 = ANSI Ext. inv. 2 = ANSI Very. inv. 3 = ANSI Norm. inv. 4 = ANSI Mod inv. 5 = ANSI Def. Time 6 = L.T.E. inv. 7 = L.T.V. inv. 8 = L.T. inv. 9 = IEC Norm. inv. 10 = IEC Very inv. 11 = IEC inv. 12 = IEC Ext. inv. 13 = IEC S.T. inv. 14 = IEC L.T. inv 15 = IEC Def. Time 17 = Programmable 18 = RI type 19 = RD type
Operating curve type (voltage protection)	5 = ANSI Def. Time 15 = IEC Def. Time 17 = Inv. Curve A 18 = Inv. Curve B 19 = Inv. Curve C 20 = Programmable 21 = Inv. Curve A 22 = Inv. Curve B 23 = Programmable

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Protection-related functions

Table 91. Local acceleration logic (DSTPLAL)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	±1.5% of the set value or ±0.002 × I _n
Operate time accuracy	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

Table 92. Local acceleration logic (DSTPLAL) main settings

Parameter	Function	Value (Range)	Step	
Load current value	DSTPLAL	0.011.00 pu	0.01	
Minimum current	DSTPLAL	0.011.00 pu	0.01	
Minimum current time	DSTPLAL	0.00060.000 s	0.001	
Load release on time	DSTPLAL	0.00060.000 s	0.001	
Load release off Tm	DSTPLAL	0.00060.000 s	0.001	
Loss of load Op	DSTPLAL	Disabled Enabled	-	
Zone extension	DSTPLAL	Disabled Enabled	-	

Table 93. Communication logic for residual overcurrent (RESCPSCH)

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

Table 94. Communication logic for residual overcurrent (RESCPSCH) main settings

Parameter	Function	Value (Range)	Step
Scheme type	RESCPSCH	Off Intertrip Permissive UR Permissive OR Blocking	-
Coordination time	RESCPSCH	0.00060.000 s	0.001
Carrier Min Dur	RESCPSCH	0.00060.000 s	0.001

Table 95. Scheme communication logic (DSOCPSCH)

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 96. Scheme communication logic (DSOCPSCH) main settings

Parameter	Function	Value (Range)	Step
Scheme type	DSOCPSCH	Off Intertrip Permissive UR Permissive OR Blocking	-
Coordination time	DSOCPSCH	0.00060.000 s	0.001
Carrier dur time	DSOCPSCH	0.00060.000 s	0.001

Table 97. Current reversal and WEI logic (CRWPSCH)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	±1.5% of the set value or ±0.002 × U _n
Operate time accuracy	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,

Table 98. Current reversal and WEI logic (CRWPSCH) main settings

Parameter	Function	Value (Range)	Step	
Reversal mode	CRWPSCH	Off On	-	
Wei mode	CRWPSCH	Off Echo Echo & Trip	-	
PhV level for Wei	CRWPSCH	0.100.90 pu	0.01	•••••
PPV level for Wei	CRWPSCH	0.100.90 pu	0.01	
Reversal time	CRWPSCH	0.00060.000 s	0.001	•••••
Reversal reset time	CRWPSCH	0.00060.000 s	0.001	
Wei Crd time	CRWPSCH	0.00060.000 s	0.001	

Table 99. Current reversal and WEI logic for residual overcurrent (RCRWPSCH)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	±1.5% of the set value or ±0.002 × U _n
Operate time accuracy	±1.0% of the set value or ±20 ms

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 100. Current reversal and WEI logic for residual overcurrent (RCRWPSCH) main settings

Parameter	Function	Value (Range)	Step
Reversal mode	RCRWPSCH	Off On	-
Wei mode	RCRWPSCH	Off Echo Echo & Trip	-
Residual voltage Val	RCRWPSCH	0.050.70 pu	0.01
Reversal time	RCRWPSCH	0.00060.000 s	0.001
Reversal reset time	RCRWPSCH	0.00060.000 s	0.001
Wei Crd time	RCRWPSCH	0.00060.000 s	0.001

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Control functions

Table 101. Synchrocheck (SYNCRSYN)

Characteristic	Value	
Operation accuracy	At the frequency f = f _n	
·	Voltage: ±1.0% or ±0.002 × U _n Frequency: ±10 mHz Phase angle ±2°	
Reset time	<50 ms	
Reset ratio	Typically 0.96	
Operate time accuracy	+90ms/0 ms	

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Supervision and monitoring functions

Table 102. Runtime counter for machines and devices (MDSOPT)

Characteristic	Value
Motor run-time measurement accuracy 1)	±0.5%

¹⁾ Of the reading, for a stand-alone protection relay without time synchronization

Table 103. Runtime counter for machines and devices (MDSOPT) main settings

Parameter	Function	Value (Range)	Step
Warning value	MDSOPT	0299999 h	1
Alarm value	MDSOPT	0299999 h	1
Initial value	MDSOPT	0299999 h	1
Operating time hour	MDSOPT	023 h	1
Operating time mode	MDSOPT	Immediate Timed Warn Timed Warn Alm	-

Table 104. Circuit breaker condition monitoring (SSCBR)

Characteristic	Value
Current measuring accuracy At the frequency f = f _n	
	$\pm 1.5\%$ or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$) $\pm 5.0\%$ (at currents in the range of $1040 \times I_n$)
Operate time accuracy	±1.0% of the set value or ±20 ms
Traveling time measurement	±10 ms

Table 105. Fuse failure supervision (SEQRFUF)

Characteristic	Value	
Operation accuracy		At the frequency f = f _n
		Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$
Operate time ¹⁾ • NPS function • Delta function	NPS function	U _{Fault} = 1.1 × set <i>Neg Seq voltage</i> Lev U _{Fault} = 5.0 × set <i>Neg Seq voltage</i> Lev Typically 35 ms (±15 ms) Typically 25 ms (±15 ms)
	Delta function	$\Delta U = 1.1 \times \text{set } Voltage \ change \ rate$ Typically 35 ms (±15 ms) $\Delta U = 2.0 \times \text{set } Voltage \ change \ rate$ Typically 28 ms (±15 ms)

¹⁾ Includes the delay of the signal output contact, $f_n = 50$ Hz, fault voltage with nominal frequency injected from random phase angle

Table 106. Current circuit supervision (CCRDIF)

Characteristic	Value
Operate time ¹⁾	<30 ms

¹⁾ Including the delay of the output contact

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 107. Current circuit supervision (CCRDIF) main settings

Parameter	Function	Value (Range)	Step
Start value	CCRDIF	0.052.00 pu	0.01
Maximum operate current	CCRDIF	0.055.00 pu	0.01

Table 108. Trip-circuit supervision (TCSSCBR)

Characteristic	Value
Time accuracy	±1.0% of the set value or ±40 ms

Table 109. Station battery supervision (SPVNZBAT)

Characteristic	Value
	±1.0% of the set value
Operate time accuracy	±1.0% of the set value or ±40 ms

Table 110. Energy monitoring (EPDMMTR)

Characteristic	Value
Operation accuracy	At all three currents in range $0.101.20 \times In_n$ At all three voltages in range $0.501.15 \times U_n$ At the frequency $f = f_n$ Active power and energy in range $ PF > 0.71$ Reactive power and energy in range $ PF < 0.71$
	±1.5% for energy
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Power quality functions

Table 111. Voltage variation (PHQVVR)

Characteristic	Value
	±1.5% of the set value or ±0.2% of reference voltage
Reset ratio	Typically 0.96 (Swell), 1.04 (Dip, Interruption)

Table 112. Voltage variation (PHQVVR) main settings

Parameter	Function	Value (Range)	Step	
Voltage swell set	PHQVVR	100.0200.0%	0.1	
Voltage dip set	PHQVVR	0.0100.0%	0.1	
Voltage Int set	PHQVVR	0.0100.0%	0.1	
V Var Dur point 1	PHQVVR	0.00860.000 s	0.001	
V Var Dur point 2	PHQVVR	0.00860.000 s	0.001	

Table 113. Voltage unbalance (VSQVUB) main settings

Parameter	Function	Value (Range)	Step
Operation	VSQVUB	Off On	-
Unb detection method	VSQVUB	Negative Seq Zero sequence Neg to Pos Seq Zero to Pos Seq Ph vectors Comp	-

Table 114. Current harmonics (CMHAI) main settings

Parameter	Function	Value (Range)	Step
Operation	СМНАІ	Off On	-
Measuring mode	СМНАІ	Phase A Phase B Phase C Worst case	-
Low limit	CMHAI	1.050%	0.1

Table 115. Voltage harmonics (phase-to-phase) (VPPMHAI) main settings

Parameter	Function	Value (Range)	Step
Operation	VPPMHAI	On Off	-
Measuring mode	VPPMHAI	Phase AB Phase BC Phase CA Worst case	-
Low limit	VPPMHAI	1.050%	0.1

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 116. Voltage harmonics (phase-to-earth) (VPHMHAI) main settings

Parameter	Function	Value (Range)	Step
Operation	VPHMHAI	On Off	-
Measuring mode	VPHMHAI	Phase A Phase B Phase C Worst case	-
Low limit	VPHMHAI	1.050%	0.1

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Measurement functions

Table 117. Three-phase current measurement (CMMXU)

Characteristic	Value
·	At the frequency f = f _n
	$\pm 0.5\%$ or $\pm 0.002 \times I_n$ (at currents in the range of 0.014.00 \times I_n)
Suppression of harmonics	DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5, RMS: No suppression

Table 118. Three-phase voltage measurement (phase-to-earth) (VPHMMXU)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	$\pm 0.5\%$ or $\pm 0.002 \times U_n$ (at voltages in the range of 0.011.15 \times U_n)
Suppression of harmonics	DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ RMS: No suppression

Table 119. Three-phase voltage measurement (phase-to-phase) (VPPMMXU)

Characteristic	Value
· ·	At the frequency f = f _n
	$\pm 0.5\%$ or $\pm 0.002 \times U_n$ (at voltages in the range of 0.011.15 \times U_n)
Suppression of harmonics	DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ RMS: No suppression

Table 120. Residual current measurement (RESCMMXU)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	$\pm 0.5\%$ or $\pm 0.002 \times I_n$ (at currents in the range of 0.014.00 \times I_n)
Suppression of harmonics	DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ RMS: No suppression

Table 121. Residual voltage measurement (RESVMMXU)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	±0.5% or ±0.002 × U _n
	DFT: -50 dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ RMS: No suppression

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 122. Power monitoring with P, Q, S, power factor, frequency (PWRMMXU)

Characteristic	Value
Operation accuracy	At all three currents in range $0.101.20 \times In_n$ At all three voltages in range $0.501.15 \times U_n$ At the frequency $f = f_n$ Active power and energy in range $ PF > 0.71$ Reactive power and energy in range $ PF < 0.71$
	±1.5% for power (S, P and Q) ±0.015 for power factor
Suppression of harmonics	DFT: -50 dB at f = $n \times f_n$, where $n = 2, 3, 4, 5,$

Table 123. Sequence current measurement (CSMSQI)

Characteristic	Value
· · · · · · · · · · · · · · · · · · ·	At the frequency f = f _n
	$\pm 1.0\%$ or $\pm 0.002 \times I_n$ at currents in the range of 0.014.00 \times I_n
Suppression of harmonics	DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,

Table 124. Sequence voltage measurement (VSMSQI)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	±1.0% or ±0.002 × U _n At voltages in range of 0.01…1.15 × U _n
Suppression of harmonics	DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

21. Front panel user interface

The 630 series protection relays can be ordered with a detached front-panel user interface (HMI). An integrated HMI is available for 4U high housing. The local HMI includes a large graphical monochrome LCD with a resolution of 320 x 240 pixels (width x height). The amount of characters and rows fitting the view depends on the character size as the characters' width and height may vary.

In addition, the local HMI includes dedicated open/close operating buttons and five programmable function buttons with

LED indicators. The 15 programmable alarm LEDs can indicate a total of 45 alarms. The local HMI offers full front-panel user-interface functionality with menu navigation, menu views and operational data. In addition, the local HMI can, using PCM600, be configured to show a single-line diagram (SLD). The SLD view displays the status of the primary apparatus such as circuit breakers and disconnectors, selected measurement values and busbar arrangements.

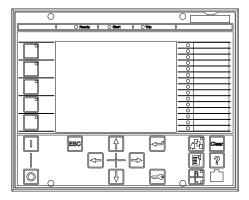


Figure 10. Local user interface

22. Mounting methods

By means of appropriate mounting accessories the standard relay case for the 630 series protection relays can be flush mounted, semi-flush mounted or wall mounted. Detachable HMI is intended for optimized mounting in medium voltage metal-clad switchgear, thus reducing wiring between the low-voltage compartment and the panel door. Further, the protection relays can be mounted in any standard 19" instrument cabinet by means of 19" rack mounting accessories.

For the routine testing purposes, the relay cases can be installed with RTXP test switches (RTXP8, RTXP18 or RTXP24) which can be mounted side by side with the relay case in a 19" rack.

Mounting methods:

- Flush mounting
- · Semi-flush mounting
- Overhead/ceiling mounting

- 19" rack mounting
- Wall mounting
- Mounting with a RTXP8, RTXP18 or RTXP24 test switch to a 19"rack
- Door mounting of the local HMI, relay case mounted in the low-voltage compartment of the switchgear

To ensure grounding of the RTD channels, a separate cable shield rail is included in the protection relay delivery when the optional RTD/mA module is ordered.

For further information regarding different mounting options see the installation manual.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

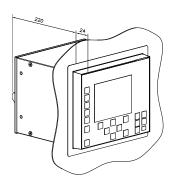


Figure 11. Flush mounting

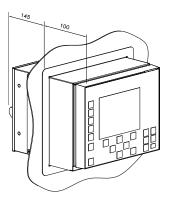


Figure 12. Semi-flush mounting

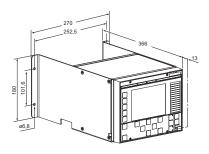
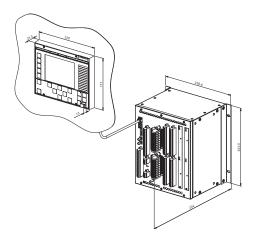
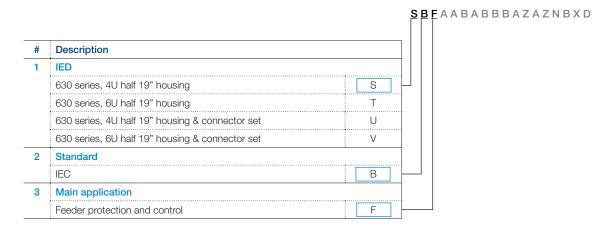


Figure 13. Wall mounting




Figure 14. 6U half 19" unit wall mounted with two mounting brackets and detached LHMI

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

23. Selection and ordering data

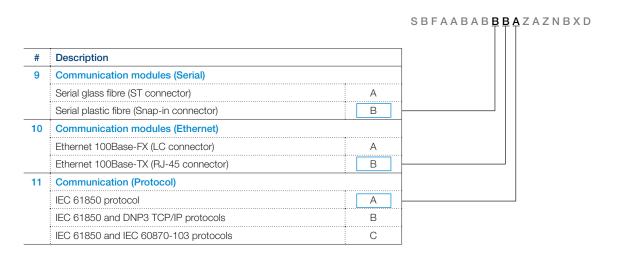
The IED type and serial number label identifies the protection and control relay. The label placed is on the side of the protection relay's case. The labels include a set of smaller size labels, one label for each module in the protection relay. The module labels state the type and serial number of each module.

The order code consists of a string of letters and digits generated from the hardware and software modules of the protection relay. Use the ordering key information in tables to generate the order code when ordering protection and control relays.

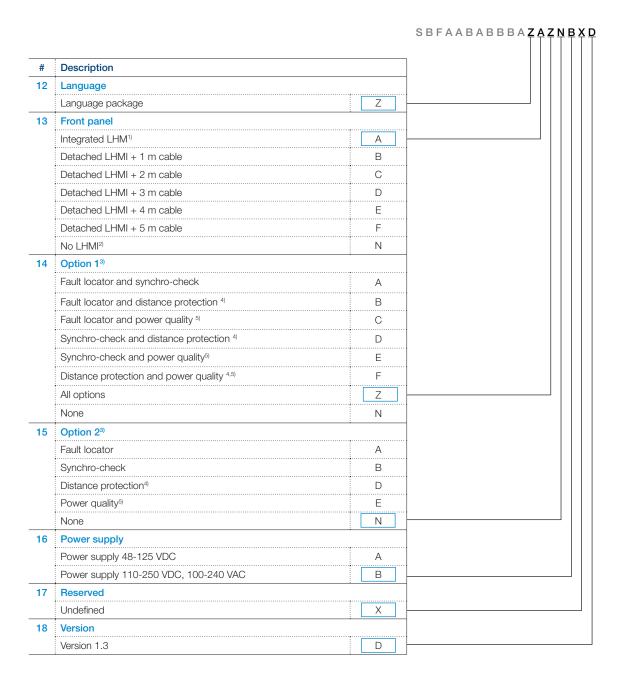
Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

The preconfiguration determines the analog input and binary I/O options. The example below shows standard configuration "A" with chosen options.

SBFAABAB BBAZAZNBXD


#	Description		
4-8			
	Pre- conf.	Available analog input options	Available binary input/ output options
	Α	AB= 4I (I ₀ 1/5 A) + 1I (I ₀ 0.1/0.5 A) + 4U	AB = 23 BI + 18 BO AC = 32 BI + 27 BO AD ²⁾ = 41 BI + 36 BO AE ²⁾ = 50 BI + 45 BO
	В	AB = 4I (I ₀ 1/5 A) + 1I (I ₀ 0.1/0.5 A) + 4U	$AB = 23 BI + 18 BO$ $AC = 32 BI + 27 BO$ $AD^{(2)} = 41 BI + 36 BO$ $AE^{(2)} = 50 BI + 45 BO$
	C ¹⁾	AB = 4I (I ₀ 1/5 A) + 1I (I ₀ 0.1/0.5 A) + 4U	AB = 23 BI + 18 BO AC = 32 BI + 27 BO AD ² = 41 BI + 36 BO AE ² = 50 BI + 45 BO
	D	AB = 4I (I ₀ 1/5 A) + 1I (I ₀ 0.1/0.5 A) + 4U	$AB = 23 BI + 18 BO$ $AC = 32 BI + 27 BO$ $AD^{(2)} = 41 BI + 36 BO$ $AE^{(2)} = 50 BI + 45 BO$
	N	AA = 4I (I ₀ 1/5 A) + 5U AB = 4I (I ₀ 1/5 A) + 1I (I ₀ 0.1/0.5 A) + 4U AC = 3I + 1I (I ₀ 0.1/0.5 A) + 5U BA = 4I (I ₀ 1/5 A) + 5U + 8mA/RTD in + 4mA out BB = 4I (I ₀ 1/5 A) + 1I (I ₀ 0.1/0.5 A) + 4U 8mA/RTD in + 4mA out BC = 3I + 1I (I ₀ 0.1/0.5 A) + 5U + 8mA/RTD in + 4mA out	AA = 14 BI + 9 BO AB = 23 BI + 18 BO AC ³ = 32 BI + 27 BO AD ² = 41 BI + 36 BO AE ^{2,4} = 50 BI + 45 BO

¹⁾ Preconfiguration C requires that the distance protection option is chosen for digit #14 or digit #15 2) Binary input/output options AD and AE require 6U half 19" IED housing (digit #1 = T or V)


³⁾ Binary input/output option AC is not available for 4U high variant (digit #1 = S or U) with RTD card options (digit #5-6 = BA, BB or BC)

⁴⁾ Binary input/output option AE is not available for 6U high variant (digit #1 = T or V) with RTD card options (digit #5-6 = BA, BB or BC)

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

¹⁾ Integrated HMI is not available for 6 U high variant (digit #1 = T or V)

²⁾ Preconfiguration requires HMI, so option N is not valid if preconfiguration is selected. A detached LHMI cannot be used if No LHMI configuration has been chosen

³⁾ Any optional function can be chosen only once. Due to this, the option 2 (digit 15) has limitations based on the selection in option 1 (digit 14).

⁴⁾ Preconficuration C requires that the distance protection option is chosen for digit #14 or #15

⁵⁾ Power quality functions: Voltage variation, voltage unbalance, current harmonics, voltage harmonics (phase-to-phase) and voltage harmonics (phase-to-earth)

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Example code: SBFAABABBBAZAZNBXD

Your ordering code:

Figure 15. Ordering key for complete protection relays

24. Accessories

Table 125. Mounting accessories

Item	Order number
Flush mounting kit for one 4U half 19" housing the protection relay	1KHL400040R0001
Semi-flush mounting kit for one 4U half 19" housing the protection relay	1KHL400444R0001
Wall-mounting kit (cabling towards the mounting wall) for one 4U half 19" housing the protection relay	1KHL400067R0001
Wall-mounting kit (cabling to the front) for one 4U half 19" housing the protection relay	1KHL400449R0001
19" rack mounting kit for one 4U half 19" housing the protection relay	1KHL400236R0001
19" rack mounting kit for two 4U half 19" housing the protection relays	1KHL400237R0001
Overhead/ceiling mounting kit (with cable space) for one 4U half 19" housing the protection relay	1KHL400450R0001
Wall-mounting kit for direct rear wall mounting (with cabling to the front) of one 6U half 19" housing the protection relay	1KHL400452R0001
Wall-mounting kit (with cabling towards the mounting wall) for one 6U half 19" housing the protection relay	1KHL400200R0001
Overhead/ceiling mounting kit (with cable space) for one 6U half 19" housing the protection relay	1KHL400464R0001
	i

Table 126. Test switch mounting accessories

Item	Order number
19" rack mounting kit for one RTXP8 test switch (the test switch is not included in the delivery)	1KHL400465R0001
19" rack mounting kit for one RTXP18 test switch (the test switch is not included in the delivery)	1KHL400467R0001
19" rack mounting kit for one RTXP24 test switch (the test switch is not included in the delivery)	1KHL400469R0001

Table 127. Connector sets

Item	Order number
Connector set for one 4U housing the protection relay including analog input variant 4I + 5U or 5I + 4U	2RCA021735
Connector set for one 6U housing the protection relay including analog input variant 4I + 5U or 5I + 4U	2RCA021736
Connector set for one 4U housing the protection relay including analog input variant 7I + 3U	2RCA023041
Connector set for one 6U housing the protection relay including analog input variant 7I + 3U	2RCA023042
Connector set for one 4U housing the protection relay including analog input variant 8I + 2U	2RCA023039
Connector set for one 6U housing the protection relay including analog input variant 8I + 2U	2RCA023040

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 128. Optional cables for external display module

Items	Order number
LHMI cable (1 m)	2RCA025073P0001
LHMI cable (2 m)	2RCA025073P0002
LHMI cable (3 m)	2RCA025073P0003
LHMI cable (4 m)	2RCA025073P0004
LHMI cable (5 m)	2RCA025073P0005

26. Tools

The protection relay is delivered either with or without an optional factory made preconfiguration. The default parameter setting values can be changed from the front-panel user interface, the web-browser based user interface (WebHMI) or the PCM600 tool in combination with the relay-specific connectivity package.

PCM600 offers extensive relay configuration functions such as relay application configuration, signal configuration, DNP3 communication configuration and IEC 61850 communication configuration including horizontal communication, GOOSE.

When the web-browser based user interface is used, the protection relay can be accessed either locally or remotely

using a web browser (IE 7.0 or later). For security reasons, the web-browser based user interface is disabled by default. The interface can be enabled with the PCM600 tool or from the front panel user interface. The functionality of the interface is by default limited to read-only, but can be configured to enable read and write access by means of PCM600 or the local HMI.

The relay connectivity package is a collection of software and specific protection relay information, which enable system products and tools to connect and interact with the protection relay. The connectivity packages reduce the risk of errors in system integration, minimizing device configuration and set-up times.

Table 129. Tools

Description	Version
PCM600	2.5 or later
Web browser	IE 8.0, IE 9.0 or IE 10.0
REF630 Connectivity Package	1.3 or later

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 130. Supported functions

Function	WebHMI	PCM600
Parameter setting	•	•
Disturbance handling	•	•
Signal monitoring	•	•
Event viewer	•	•
Alarm LED viewing	•	•
Hardware configuration	-	•
Signal matrix	-	•
Graphical display editor	-	•
IED configuration templates	-	•
Communication management	-	•
Disturbance record analysis	-	•
IED user management	-	•
User management	-	•
Creating/handling projects	-	•
Graphical application configuration	-	•
IEC 61850 communication configuration, including GOOSE	-	•
IED Compare	-	•

27. Supported ABB solutions

ABB's 630 series protection and control protection relays together with the Grid Automation controller COM600 constitute a genuine IEC 61850 solution for reliable power distribution in utility and industrial power systems. To facilitate and streamline the system engineering ABB's relays are supplied with connectivity packages. The connectivity packages include a compilation of software and relay-specific information such as single-line diagram templates, manuals and a full relay data model including event and parameter lists. With the connectivity packages, the relays can be readily configured via the PCM600 Protection and Control IED Manager and integrated with the Grid Automation controller COM600 or the MicroSCADA Pro network control and management system.

The 630 series relays offer support for the IEC 61850 standard including horizontal GOOSE messaging. Compared to traditional hard-wired, inter-device signaling, peer-to-peer communication over a switched Ethernet LAN offers an advanced and versatile platform for power system protection. Among the distinctive features of the protection system approach, enabled by the full implementation of the IEC 61850

substation automation standard, are fast communication capability, continuous supervision of the protection and communication system's integrity, and an inherent flexibility regarding reconfiguration and upgrades

At substation level, COM600 uses the logic processor and data content of the bay level devices to enhance substation level functionality. COM600 features a Web-browser based HMI which provides a customizable graphical display for visualizing single line mimic diagrams for switchgear bay solutions. To enhance personnel safety, the Web HMI also enables remote access to substation devices and processes. Furthermore, COM600 can be used as a local data warehouse for technical documentation of the substation and for network data collected by the devices. The collected network data facilitates extensive reporting and analyzing of network fault situations using the data historian and event handling features of COM600.

COM600 also features gateway functionality providing seamless connectivity between the substation devices and network-level control and management systems such as MicroSCADA Pro and System 800xA.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 131. Supported ABB solutions

Product	Version
Grid Automation Controller COM600	3.5 or later
MicroSCADA Pro SYS 600	9.3 FP1 or later
System 800xA	5.1 or later

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

28. Terminal diagrams

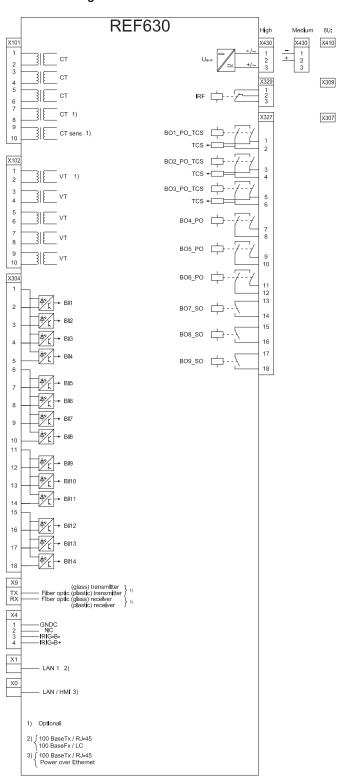
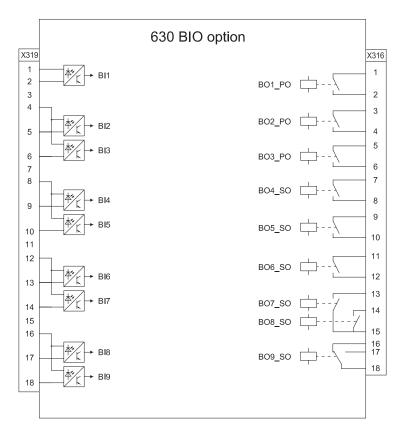


Figure 16. Terminal diagram for REF630

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	



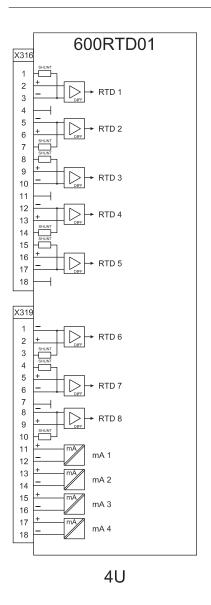

Figure 17. 630 series BIO module option

Table 132. BIO options

Unit	ві/во
4U	X319 + X316 ¹⁾
	X324 + X321
6U	X324 + X321 ¹⁾
	X329 + X326
	X334 + X331
	X339 + X336

¹⁾ Occupied by RTD module when ordered

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

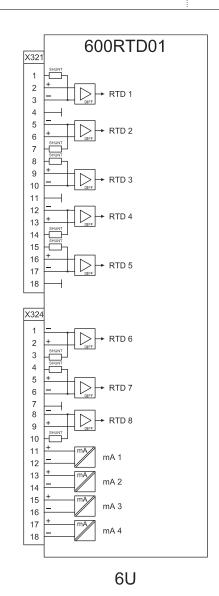


Figure 18. 630 series RTD module option

29. References

The www.abb.com/substationautomation portal offers you information about the distribution automation product and service range.

You will find the latest relevant information on the REF630 protection relay on the <u>product page</u>. Scroll down the page to find and download the related documentation.

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

30. Functions, codes and symbols

Table 133. Functions included in the relay

Description	IEC 61850	IEC 60617	ANSI
Protection		'	'
Three-phase non-directional overcurrent protection, low stage	PHLPTOC	3I>	51P-1
Three-phase non-directional overcurrent protection, high stage	PHHPTOC	3 >>	51P-2
Three-phase non-directional overcurrent protection, instantaneous stage	PHIPTOC	3 >>>	50P/51P
Three-phase directional overcurrent protection, low stage	DPHLPDOC	3 > ->	67-1
Three-phase directional overcurrent protection, high stage	DPHHPDOC	3 >> ->	67-2
Distance protection	DSTPDIS	Z<	21, 21P, 21N
Automatic switch-onto-fault logic	CVRSOF	SOTF	SOTF
Fault locator	SCEFRFLO	FLOC	21FL
Autoreclosing	DARREC	O -> I	79
Non-directional earth-fault protection, low stage	EFLPTOC	10>	51N-1
Non-directional earth-fault protection, high stage	EFHPTOC	10>>	51N-2
Non-directional earth-fault protection, instantaneous stage	EFIPTOC	10>>>	50N/51N
Directional earth-fault protection, low stage	DEFLPDEF	10> ->	67N-1
Directional earth-fault protection, high stage	DEFHPDEF	10>> ->	67N-2
Harmonics based earth-fault protection	HAEFPTOC	lo>HA	51NHA
Transient/intermittent earth-fault protection	INTRPTEF	10> -> IEF	67NIEF
Admittance-based earth-fault protection	EFPADM	Yo>->	21YN
Multi-frequency admittance-based earth-fault protection	MFADPSDE	I0> ->Y	67YN
Wattmetric earth-fault protection	WPWDE	Po>->	32N
Phase discontinuity protection	PDNSPTOC	l2/l1>	46PD
Negative-sequence overcurrent protection	NSPTOC	l2>	46
Three-phase thermal overload protection for feeder	T1PTTR	3lth>F	49F
Three-phase current inrush detection	INRPHAR	312f>	68
Three-phase overvoltage protection	PHPTOV	3U>	59
Three-phase undervoltage protection	PHPTUV	3U<	27
Positive-sequence overvoltage protection	PSPTOV	U1>	470+
Positive-sequence undervoltage protection	PSPTUV	U1<	47U+
Negative-sequence overvoltage protection	NSPTOV	U2>	470-
Residual overvoltage protection	ROVPTOV	U0>	59G
Directional reactive power undervoltage protection	DQPTUV	Q>>,3U<	32Q,27
Reverse power/directional overpower protection	DOPPDPR	P>	32R/32O
Frequency gradient protection	DAPFRC	df/dt>	81R
Overfrequency protection	DAPTOF	f>	810
Underfrequency protection	DAPTUF	f<	81U

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 133. Functions included in the relay, continued

Description	IEC 61850	IEC 60617	ANSI
Load shedding	LSHDPFRQ	UFLS/R	81LSH
Circuit breaker failure protection	CCBRBRF	3I>/I0>BF	51BF/51NBF
Tripping logic	TRPPTRC	I-> 0	94
Multipurpose analog protection	MAPGAPC	MAP	MAP
Protection-related functions			
Local acceleration logic	DSTPLAL	LAL	LAL
Communication logic for residual overcurrent	RESCPSCH	CLN	85N
Scheme communication logic	DSOCPSCH	CL	85
Current reversal and WEI logic	CRWPSCH	CLCRW	85CRW
Current reversal and WEI logic for residual overcurrent	RCRWPSCH	CLCRWN	85NCRW
Control			
Bay control	QCCBAY	CBAY	CBAY
Interlocking interface	SCILO	3	3
Circuit breaker/disconnector control	GNRLCSWI	I <-> O CB/DC	I <-> O CB/DC
Circuit breaker	DAXCBR	I <-> O CB	I <-> O CB
Disconnector	DAXSWI	I <-> O DC	I <-> O DC
Local/remote switch interface	LOCREM	R/L	R/L
Synchrocheck	SYNCRSYN	SYNC	25
Generic process I/O			
Single point control (8 signals)	SPC8GGIO	-	-
Double point indication	DPGGIO	-	-
Single point indication	SPGGIO	-	-
Generic measured value	MVGGIO	-	-
Logic Rotating Switch for function selection and LHMI presentation	SLGGIO	-	-
Selector mini switch	VSGGIO	-	-
Pulse counter for energy metering	PCGGIO	-	-
Event counter	CNTGGIO	-	-
Supervision and monitoring			
Runtime counter for machines and devices	MDSOPT	OPTS	ОРТМ
Circuit breaker condition monitoring	SSCBR	CBCM	СВСМ
Fuse failure supervision	SEQRFUF	FUSEF	60
Current circuit supervision	CCRDIF	MCS 3I	MCS 3I
Trip-circuit supervision	TCSSCBR	TCS	TCM
Station battery supervision	SPVNZBAT	U<>	U<>
Energy monitoring	EPDMMTR	Е	E
Measured value limit supervision	MVEXP		

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

Table 133. Functions included in the relay, continued

Description	IEC 61850	IEC 60617	ANSI
Voltage variation	PHQVVR	PQMU	PQMV
Voltage unbalance	VSQVUB	PQMUBU	PQMUBV
Current harmonics	CMHAI	PQM3I	PQM3I
Voltage harmonics (phase-to-phase)	VPPMHAI	PQM3Upp	PQM3Vpp
Voltage harmonics (phase-to-earth)	VPHMHAI	PQM3Upe	PQM3Vpg
Measurement			
Three-phase current measurement	СММХИ	31	31
Three-phase voltage measurement (phase-to-earth)	VPHMMXU	3Upe	3Upe
Three-phase voltage measurement (phase-to-phase)	VPPMMXU	ЗUрр	ЗUрр
Residual current measurement	RESCMMXU	10	10
Residual voltage measurement	RESVMMXU	U0	U0
Power monitoring with P, Q, S, power factor, frequency	PWRMMXU	PQf	PQf
Sequence current measurement	CSMSQI	l1, l2	I1, I2
Sequence voltage measurement	VSMSQI	U1, U2	V1, V2
Analog channels 1-10 (samples)	A1RADR	ACH1	ACH1
Analog channels 11-20 (samples)	A2RADR	ACH2	ACH2
Analog channels 21-30 (calc. val.)	A3RADR	ACH3	ACH3
Analog channels 31-40 (calc. val.)	A4RADR	ACH4	ACH4
Binary channels 1-16	B1RBDR	BCH1	BCH1
Binary channels 17 -32	B2RBDR	BCH2	BCH2
Binary channels 33 -48	B3RBDR	всн3	всн3
Binary channels 49 -64	B4RBDR	BCH4	BCH4
Station communication (GOOSE)			
Binary receive	GOOSEBINRCV	-	-
Double point receive	GOOSEDPRCV	-	-
nterlock receive	GOOSEINTLKRCV	-	-
nteger receive	GOOSEINTRCV	-	-
Measured value receive	GOOSEMVRCV	-	-
Single point receive	GOOSESPRCV	-	-

Feeder Protection and Control	1MRS756976 H
REF630	
Product version: 1.3	

31. Document revision history

Document revision/date	Product version	History	
A/2009-10-26	1.0	First release	
B/2009-12-23	1.0	Content updated	
C/2011-02-23	1.1	Content updated to correspond to the product version	
D/2011–05-18	1.1	Content updated	
E/2012-08-29	1.2	Content updated to correspond to the product version	
F/2014-12-03	1.3	Content updated to correspond to the product version	
G/2015-03-31	1.3	Content updated	
H/2019-02-25	1.3	Content updated	

ABB Distribution Solutions Distribution Automation

P.O. Box 699 FI-65101 VAASA, Finland Phone +358 10 22 11

www.abb.com/mediumvoltage www.abb.com/relion