

DESCRIPTIVE BULLETIN

RED615 ANSI

Line differential protection and control

RED615 is a phase-segregated, twoend line differential protection and control relay for protection, control, measurement and supervision in utility and industrial power distribution systems. RED615 is also ideal for line differential applications with an in-zone transformer. RED615 relays communicate between substations either over a fiber-optic link or galvanic pilot wire connection.

RED615 ANSI 5.0 FP1

RED615 is a member of ABB's Relion® family and part of its 615 protection and control product series. The 615 series protection and control relays are characterized by their compactness and withdrawable design. Engineered from the ground up, the 615 series has been designed to unleash the full potential of the IEC 61850 standard for communication and interoperability of substation automation devices.

In addition to RED615, the 615 series includes the following relays:

- REF615 Feeder protection and control
- REF615 Feeder protection and control
- RET615 Transformer protection and control
- REM615 Motor protection and control
- REG615 Generator protection and control

Application

RED615 is available in five standard configurations, one of which is a plain line differential protection with overcurrent backup protection two with added earthfault protection functionality in particular, and another two further extended with directional overcurrent as well as phase-voltage and frequency-based protection. Switch on to fault is now introduced in all standard configurations and voltage unbalance in the two extended ones. They both also include a fault locator which locates short circuits in

radial distribution networks and earth faults in effectively and low-resistance earthed ones. If the fault current is as high as or higher than the load current, earth faults in isolated neutral distribution networks will also be located. In addition, one of the two extended standard configurations includes support for three combi-sensor inputs for phase currents (Rogowski coil) and voltages (voltage divider), whereas the other supports conventional current and voltage instrument transformers as the rest of the standard configurations.

Two RED615 relays interconnected over a communication link form an entirely selective unit protection scheme. Protection of ring-type and meshed distribution networks generally requires unit protection solutions, also applied in radial networks containing distributed power generation.

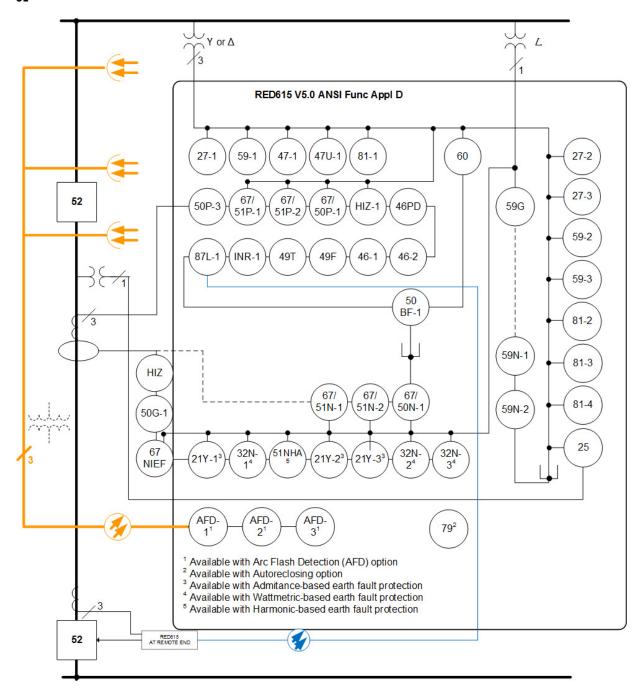
The standard configurations can be tailored to meet application-specific requirements using the IEC 61850 compliant Protection and Control Relay Manager PCM600.

Human-machine interface (HMI)

As a member of the Relion® product family, RED615 shares the same human-machine interface (HMI) look and feel as the other Relion protection and control relays. The same look and feel includes the location of a push button with a certain function and the menu structure.

RED615 is equipped with a large graphical display which can show customizable single-line diagrams (SLD) with position indication for the circuit breaker, disconnectors and the earthing switch. Also measured values provided by the chosen standard configuration can be displayed. The SLDs are customized using PCM600 and can have multiple pages for easy access to selected information. The SLDs can be accessed not only locally but also via the web browser-based HMI that has now been enriched with a number of usability enhancing features.

Standardized communication and redundancy

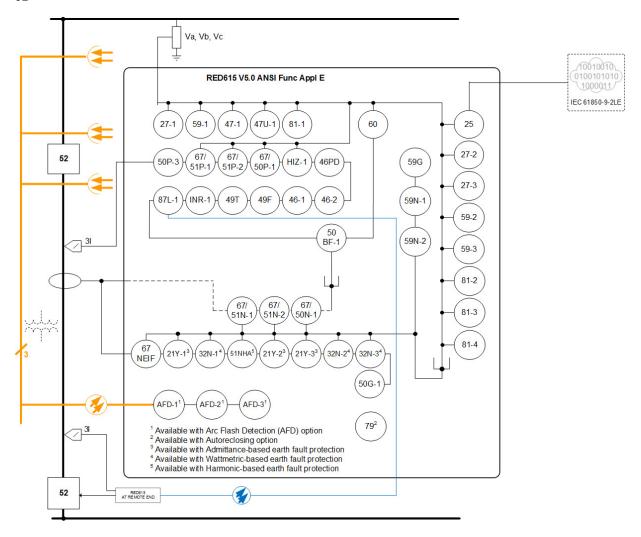

RED615 fully supports the IEC 61850 standard for communication and interoperability of substation automation devices, including fast GOOSE messaging and now also IEC 61850-9-2 LE and Edition 2, offering substantial benefits in terms of extended interoperability. The line differential relay further supports the DNP3, IEC 60870-5-103 and Modbus® protocols, now introducing also the parallel redundancy protocol (PRP) and the high-availability seamless redundancy (HSR) protocol. With the

protocol adapter SPA-ZC 302, Profibus DVP1 can also be used. RED615 is able to use two communication protocols simultaneously.

For redundant Ethernet communication, RED615 offers two optical Ethernet network interfaces. The redundant Ethernet solution can be built on the Ethernet-based IEC 61850, Modbus® and DNP3 protocols.

The implementation of the IEC 61850 standard in RED615 covers both vertical and horizontal communication, including GOOSE messaging with both binary and analog signals as well as parameter setting according to IEC 61850-8-1. In addition, IEC 61850-9-2 LE process bus with sending sampled values of both analog voltages and currents and receiving sampled values of voltages is introduced. The sampled values can also be used for synchrocheck, both in conventional instrument transformer and sensor-based applications, to ensure safe interconnection of two networks. For process bus applications, which require high-accuracy time synchronization, IEEE 1588 V2 is used, with a time stamp resolution of not more than four microseconds. IEEE 1588 V2 is supported in all variants with a redundant Ethernet communication module. In addition, RED615 supports synchronization over Ethernet using SNTP or over a separate bus using IRIG-B.

Protection function overview of RED615 standard configuration D



Main benefits

- Withdrawable plug-in unit design for swift installation and testing
- Selective unit protection as phase-segregated two-end line differential protection, either with sensors or conventional instrument transformers
- Ready-made standard configurations, including line differential communication, for fast and easy setup with tailoring capabilities
- Line differential communication between substations either over a fiber-optic link or a galvanic pilot wire connection

- Ideal for line differential applications with an inzone transformer
- IEC 61850 Edition 2 and Edition 1 support, including HSR and PRP, GOOSE messaging and IEC 61850-9-2 LE for less wiring and supervised communication
- IEEE 1588 V2 for high-accuracy time synchronization and maximum benefit of substation-level ethernet communication
- Large graphical display for showing customizable SLDs, accessible either locally or through a web browser-based HMI

Protection function overview of RED615 standard configuration E

Life cycle services

ABB offers full support for all protection and control relays throughout their entire lifecycle. Our extensive life cycle services include training, customer support, maintenance and modernization.

Standard configurations

Description	Std. conf.
Line differential protection with directional overcurrent and earth-fault protection, voltage and frequency based	D
protection and measurements, synchro-check and circuit-breaker condition monitoring (RTD option,	
optional power quality and fault locator)	
Line differential protection with directional overcurrent and earth-fault protection, voltage and frequency	E
based protection and measurements, circuit-breaker condition monitoring (sensor inputs,	
optional power quality, fault locator and synchro-check with IEC 61850-9-2LE)	

Supported functions

Function	IEC 61850	ANSI	D	E
Protection				
Three-phase non-directional overcurrent protection, low stage	PHLPTOC	51P	-	-
Three-phase non-directional overcurrent protection, high stage	РННРТОС	50P	-	-
Three-phase non-directional overcurrent protection, instantaneous stage	PHIPTOC	50P/51P	1	1
Three-phase directional overcurrent protection, low stage	DPHLPDOC	67/51P	2	2
Three-phase directional overcurrent protection, high stage	DPHHPDOC	67/50P	1	1
Non-directional earth-fault protection, low stage	PHPVOC	51N-1	-	-
Non-directional earth-fault protection, high stage	EFHPTOC	50G	-	-
Non-directional earth-fault protection, instantaneous stage	EFIPTOC	50N/51N	-	-
Directional earth-fault protection, low stage	DEFLPDEF	67/51N	2	2 ²⁾
Directional earth-fault protection, high stage	DEFHPDEF	67/50N	1	1 ²⁾
Admittance based earth-fault protection	EFPADM	21YN	(3)3)	(3)2)3)
Wattmetric based earth-fault protection	WPWDE	32N	(3)3)	(3)2)3)
Transient/intermittent earth-fault protection	INTRPTEF	67NIEF	14)	12)4)
Harmonics based earth-fault protection	HAEFPTOC	51NHA	13)4)	13)4)
Non-directional (cross-country) earth fault protection, using calculated lo	EFHPTOC	51N-2	1	1
Negative-sequence overcurrent protection	NSPTOC	46	2	2
Phase discontinuity protection	PDNSPTOC	46PD	1	1
Residual overvoltage protection	ROVPTOV	59/59N	3	3 ²⁾
Three-phase undervoltage protection	PHPTUV	27	3	3
Three-phase overvoltage protection	PHPTOV	59	3	3
Positive-sequence undervoltage protection	PSPTUV	47U+	1	1
Negative-sequence overvoltage protection	NSPTOV	47	1	1
Frequency protection	FRPFRQ	81	4	4
Three-phase thermal protection for feeders, cables and distribution transformers	T1PTTR	49F	1	1
Three-phase thermal overload protection for power transformers, two time constants	T2PTTR	49T	1	1
Binary signal transfer	BSTGGIO	BST	1	1
Circuit breaker failure protection	CCBRBRF	50BF	1	1
Three-phase inrush detector	INRPHAR	INR	1	1
Switch onto fault	CBPSOF	SOTF	1	1
Master trip	TRPPTRC	86/94	2	2
Multi-purpose protection	MAPGAPC	MAP	18	18
Fault locator	SCEFRFLO	21FL	(1)	(1)
Line differential protection with in zone power transformer	LNPLDF	87L	1	1
High impedance fault detection	PHIZ	HIZ	1	-
Power Quality				
Current total demand distortion	СМНАІ	PQI	(1)6)	(1)6)
Voltage total harmonic distortion	VMHAI	PQVPH	(1) ⁶⁾	(1) ⁶⁾
Voltage variation	PHQVVR	PQSS	(1)6)	(1)6)
Voltage unbalance	VSQVUB	PQVUB	(1) ⁶⁾	(1) ⁶⁾
Control				
Circuit-breaker control	CBXCBR	52	1	1

_

Supported functions

Function	IEC 61850	ANSI	С	D
Control				
Disconnector control	DCXSWI	29DS	2	2
Earthing switch control	ESXSWI	29GS	1	1
Disconnector position indication	DCSXSWI		3	3
Earthing switch indication	ESSXSWI	29GS	2	2
Auto-reclosing	DARREC	79	(1)	(1)
Synchronism and energizing check	SECRSYN	25	1	(1) ⁷⁾
Condition monitoring				
Circuit-breaker condition monitoring	SSCBR	52CM	1	1
Trip circuit supervision	TCSSCBR	ТСМ	2	2
Current circuit supervision	CCSPVC	ССМ	1	1
Fuse failure supervision	SEQSPVC	60	1	1
Protection communication supervision	PCSRTPC	PCS	1	1
Runtime counter for machines and devices	MDSOPT	ОРТМ	1	1
Measurement				
Disturbance recorder	RDRE	DFR	1	1
Load profile record	LDPRLRC	LoadProf	1	1
Fault record	FLTRFRC	-FAULTREC	1	1
Three-phase current measurement	СММХИ	IA, IB, IC	1	2
Sequence current measurement	CSMSQI	11, 12, 10	1	2
Residual current measurement	RESCMMXU	IG	1	1
Three-phase voltage measurement	VMMXU	VA, VB, VC	2	1 (2)7)
Residual voltage measurement	RESVMMXU	VG	1	
Sequence voltage measurement	VSMSQI	V1, V2, V0	1	1
Three-phase power and energy measurement	PEMMXU	P, E	1	1
RTD/mA measurement	XRGGIO130	X130 (RTD)	(1)	
Frequency measurement	FMMXU	f	1	1
IEC 61850-9-2 LE sampled value sending 5)5)0	SMVSENDER	SMVSENDER	(1)	(1)
IEC 61850-9-2 LE sampled value receiving (voltage sharing) 5)6)	SMVRCV	SMVRECEIVER	(1)	(1)

1, 2, ... = Number of included instances. The instances of a protection function represent the number of identical protection function blocks available in the standard configuration.

() = option

TR = The function block is to be used on the terminal side in the application

^{1) &}quot;Uo measured" is always used.

^{2) &}quot;Uo calculated" is always used.

³⁾ One of the following can be ordered as an option: admittance-based E/F, wattmetric-based E/F or harmonics-based E/F.

^{4) &}quot;Io measured" is always used.

^{5) &}quot;Io calculated" is always used

⁶⁾ Power quality option includes current total demand distortion, voltage total harmonic distortion, voltage variation and voltage unbalance.

⁷⁾ Available only with IEC 61850-9-2

⁸⁾ Available only with COM0031-0037

Notes