

Relion® Protection and Control

615 series ANSI Technical Manual

Document ID: 1MAC050144-MB

Issued: 07/31/2011 Revision: C

Product version: 4.0

© Copyright 2011 ABB. All rights reserved.

Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

Trademarks

ABB and Relion are registered trademarks of ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.

ABB Inc.

Distribution Automation 4300 Coral Ridge Drive Coral Springs, FL 33065, USA Toll-free: 1 (800) 523-2620 Phone: +1 954-752-6700

Fax: +1 954 345-5329

http://www.abb.com/substationautomation

Disclaimer

The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.

Conformity

This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-6 and EN 60255-27 for the low voltage directive. The IED is designed in accordance with the international standards of the IEC 60255 series and ANSI C37.90. This IED complies with the UL 508 certification.

Section 1	Introduction	23
	This manual	23
	Intended audience	23
	Product documentation	24
	Product documentation set	24
	Document revision history	25
	Related documentation	25
	Symbols and conventions	25
	Safety indication symbols	25
	Manual conventions	26
	Functions, codes and symbols	27
Section 2	615 series overview	33
	Overview	33
	Product series version history	33
	PCM600 and IED connectivity package version	33
	Local HMI	34
	LCD	34
	LEDs	35
	Keypad	35
	Web HMI	36
	Authorization	37
	Communication	38
Section 3	Basic functions	39
	General parameters	39
	Self-supervision	56
	Internal faults	56
	Warnings	58
	LED indication control	60
	Time synchronization	60
	Parameter setting groups	61
	Function block	61
	Functionality	61
	Fault records	63
	Non-volatile memory	69
	Binary input	69
	Binary input filter time	69
	Binary input inversion	70
	Oscillation suppression	71
	Binary output	71
	High-speed outputs HSO	71
	RTD/mA inputs	71

	Functionality	. / 1
	Operation principle	.72
	Selection of input signal type	.72
	Selection of output value format	.72
	Input linear scaling	.73
	Measurement chain supervision	.73
	Selfsupervision	.74
	Calibration	.74
	Limit value supervision	.74
	Deadband supervision	.75
	RTD temperature vs. resistance	.77
	RTD/mA input connection	.78
	RTD/mA card variants	.78
	6RTD/2mA card	.78
	2RTD/1mA card	.80
	Signals	.82
	Settings	.82
	Monitored data	.83
G	DOSE function blocks	.84
	GOOSERCV_BIN function block	.85
	Function block	.85
	Functionality	.85
	Signals	
	GOOSERCV_DP function block	.85
	Function block	.85
	Functionality	.86
	Signals	
	GOOSERCV_MV function block	
	Function block	.86
	Functionality	
	Signals	.86
	GOOSERCV_INT8 function block	.87
	Function block	.87
	Functionality	.87
	Signals	.87
	GOOSERCV_INTL function block	.87
	Function block	.87
	Functionality	.87
	Signals	.88
	GOOSERCV_CMV function block	.88
	Function block	.88
	Functionality	.88

Signals	88
GOOSERCV_ENUM function block	89
Function block	89
Functionality	89
Signals	89
GOOSERCV_INT32 function block	89
Function block	89
Functionality	90
Signals	90
Type conversion function blocks	90
QTY_GOOD function block	90
Functionality	90
Signals	90
QTY_BAD function block	90
Functionality	90
Signals	91
T_HEALTH function block	91
Functionality	91
Signals	91
T_F32_INT8 function block	92
Functionality	92
Function block	92
Settings	92
Configurable logic blocks	92
Standard configurable logic blocks	92
OR function block	92
AND function block	93
XOR function block	94
NOT function block	94
MAX3 function block	95
MIN3 function block	95
R_TRIG function block	95
F_TRIG function block	96
T_POS_XX function blocks	96
Minimum pulse timer	97
Minimum pulse timer TP	97
Minimum second pulse timer 62CLD-1	99
Minimum minute pulse timer 62CLD-2	100
Local/remote control function block CONTROL	101
Function block	101
Functionality	101
Signals	102

	Settings	102
	Monitored data	103
	Factory settings restoration	103
	Load profile record LDPMSTA	103
	Functionality	103
	Quantities	104
	Length of record	105
	Uploading of record	106
	Clearing of record	107
	Configuration	107
	Signals	108
	Settings	108
Section 4	Protection functions	109
	Current protection	109
	Three-phase non-directional overcurrent protection 51P/50P.	109
	Identification	109
	Function block	109
	Functionality	109
	Operation principle	109
	Measurement modes	112
	Timer characteristics	113
	Application	114
	Signals	119
	Settings	120
	Monitored data	122
	Technical data	123
	Technical revision history	124
	Three-phase non-directional long-time overcurrent protection	51LT124
	Identification	124
	Function block	124
	Functionality	124
	Operation principle	125
	Timer characteristics	127
	Application	127
	Signals	
	Settings	
	Monitored data	129
	Three-phase directional overcurrent protection 67/51P and 67	
	Identification	
	Function block	
	Functionality	130
	Operation principle	

	Measuring modes	135
	Directional overcurrent characteristics	136
	Application	144
	Signals	146
	Settings	147
	Monitored data	151
	Technical data	153
Noı	n-directional neutral overcurrent protection 51N/50N and	
Noı	n-directional ground fault protection 51G/50G	153
	Identification	153
	Function block	154
	Functionality	154
	Operation principle	154
	Measurement modes	156
	Timer characteristics	156
	Application	158
	Signals	158
	Settings	159
	Monitored data	161
	Technical data	162
	Technical revision history	162
Ser	nsitive ground-fault protection 50SEF	163
	Identification	163
	Function block	163
	Functionality	163
	Operation principle	163
	Measurement modes	163
	Timer characteristics	163
	Application	163
	Signals	163
	Settings	164
	Monitored data	164
	Technical data	164
Dire	ectional ground-fault protection 67/51N and 67/50N	164
	Identification	164
	Function block	164
	Functionality	164
	Operation principle	
	Directional ground-fault principles	
	Measurement modes	
	Timer characteristics	
	Directional ground-fault characteristics	176
	-	

	Application	185
	Signals	187
	Settings	188
	Monitored data	192
	Technical data	193
	Technical revision history	193
Ne	egative-sequence overcurrent protection 46	194
	Identification	194
	Function block	194
	Functionality	194
	Operation principle	194
	Application	196
	Signals	197
	Settings	197
	Monitored data	198
	Technical data	198
	Technical revision history	199
Ph	nase discontinuity protection 46PD	199
	Identification	199
	Function block	199
	Functionality	199
	Operation principle	199
	Application	201
	Signals	202
	Settings	203
	Monitored data	203
	Technical data	203
Ne	egative-sequence overcurrent protection for motors, 46M	204
	Identification	204
	Function block	204
	Functionality	204
	Operation principle	204
	Timer characteristics	206
	Application	207
	Signals	208
	Settings	208
	Monitored data	209
	Technical data	210
Ph	nase reversal protection, 46R	
	Identification	210
	Function block	210
	Functionality	210

Operation principle	211
Application	211
Signals	212
Settings	212
Monitored data	212
Technical data	213
Loss of load protection 37	213
Identification	213
Function block	213
Functionality	213
Operation principle	213
Application	214
Signals	215
Settings	215
Monitored data	216
Technical data	216
Motor stall protection 51LR	216
Identification	216
Function block	216
Functionality	216
Operation principle	217
Application	217
Signals	218
Settings	218
Monitored data	218
Technical data	219
Loss of Phase, 37	219
Identification	219
Function block	219
Functionality	219
Operation Principle	220
Signals	222
Settings	222
Monitored data	223
Voltage protection	223
Three-phase overvoltage protection 59	223
Identification	223
Function block	223
Functionality	223
Operation principle	223
Timer characteristics	227
Application	227

	Signals	.228
	Settings	.228
	Monitored data	.229
	Technical data	.230
Th	ree-phase undervoltage protection 27	.230
	Identification	.230
	Function block	.230
	Functionality	.230
	Operation principle	.231
	Timer characteristics	.234
	Application	.234
	Signals	.235
	Settings	.235
	Monitored data	.236
	Technical data	.237
Re	sidual overvoltage protection 59G/59N	.237
	Identification	.237
	Function block	.237
	Functionality	.237
	Operation principle	.238
	Application	.239
	Signals	.239
	Settings	.240
	Monitored data	.240
Ne	gative-sequence overvoltage protection 47	.241
	Identification	.241
	Function block	.241
	Functionality	.241
	Operation principle	.241
	Application	.242
	Signals	.243
	Settings	.243
	Monitored data	.243
	Technical data	.244
Po	sitive-sequence undervoltage protection 27PS	.244
	Identification	.244
	Function block	.244
	Functionality	.244
	Operation principle	.245
	Application	.246
	Signals	.247
	Settings	.247

Monitored data	247
Technical data	248
Voltage per Hertz Protection, 24	248
Identification	248
Function Block	248
Functionality	248
Operation Principle	249
Timer Characteristics	252
Application	256
Signals	259
Settings	260
Monitored Data	261
Technical data	261
Frequency protection	262
Frequency protection 81O/81U, 81R	262
Identification	262
Function block	262
Functionality	262
Operation principle	262
Application	265
Signals	266
Settings	267
Monitored Data	268
Technical data	268
Load shedding and restoration, 81LSH	268
Identification	268
Function block	269
Functionality	269
Operation principle	269
Application	274
Signals	278
Settings	279
Monitored data	279
Technical data	279
Power protection	280
Three phase directional power protection	280
Identification	280
Function block	280
Functionality	280
Operation principle	280
Application	282
Signals	283

Settings	.283
Monitored data	.284
Ground directional power protection	.284
Identification	.284
Function block	.285
Functionality	.285
Operation principle	.285
Application	.291
Signals	.291
Settings	.292
Monitored data	.292
Thermal protection	.293
Three-phase thermal protection for feeders, cables and	
distribution transformers, 49F	
Identification	
Function block	
Functionality	
Operation principle	
Application	
Signals	
Settings	
Monitored data	
Technical data	.298
Three-phase thermal overload protection for power transformers,	
two time constants 49T	
Identification	
Function block	
Functionality	
Operation principle	
Application	
Signals	
Settings	
Monitored data	
Technical data	
Thermal overload protection for motors, 49M	
Identification	
Function block	
Functionality	
Operation principle	
Application	
Signals	
Settings	319

Technical data 320 Differential protection 320 Motor differential protection, 87M 320 Identification 320 Function block symbol 321 Functionality 321 Operation Principle 321 Application 327 Signals 334 Application 327 Signals 334 Monitored Data: 335 Technical Data: 336 Restrained (low stage) and unrestrained (high stage) differential protection for 2W-transformers, 87T 337 Identification 337 Function block 337 Functionality 337 Application principle 337 Application 351 Signals 368 Monitored data 370 Technical data 372 Identification 372 Function block 373 Application 373 Application 376 Signals 380		Monitored data	320
Motor differential protection, 87M		Technical data	320
Identification		Differential protection	320
Function block symbol		Motor differential protection, 87M	320
Functionality 321		Identification	320
Operation Principle 321 Application 327 Signals 334 Settings 334 Monitored Data: 335 Technical Data: 336 Restrained (low stage) and unrestrained (high stage) differential protection for 2W-transformers, 87T 337 Identification 337 Function block 337 Functionality 337 Operation principle 337 Application 351 Signals 368 Monitored data 370 Technical data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 372 Function block 373 Functionality 373 Operation principle 373 Application 373 Settings 380 Monitored data 381 Technical data 381 Technical data 381 Technical data		Function block symbol	321
Application 327 Signals 334 Settings 334 Monitored Data: 335 Technical Data: 336 Restrained (low stage) and unrestrained (high stage) differential protection for 2W-transformers, 87T 337 Identification 337 Function block 337 Functionality 337 Operation principle 337 Application 351 Signals 368 Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 372 Function block 373 Application principle 373 Application principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Technical data 381 Technical of unctions 383 Three-phase transformer inrush detector INR 383 Identification		Functionality	321
Signals 334 Settings 334 Monitored Data: 335 Technical Data: 336 Restrained (low stage) and unrestrained (high stage) 336 differential protection for 2W-transformers, 87T 337 Identification 337 Function block 337 Functionality 337 Operation principle 337 Application 351 Signals 367 Settings 368 Monitored data 370 Technical data 370 Technical data 372 Identification 372 Identification 372 Function block 373 Application 373 Application 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Technical data 381 Three-phase transformer inrush detector INR 383 Identification 383 <t< td=""><td></td><td>Operation Principle</td><td>321</td></t<>		Operation Principle	321
Settings 334 Monitored Data: 335 Technical Data: 336 Restrained (low stage) and unrestrained (high stage) 337 differential protection for 2W-transformers, 87T 337 Identification 337 Function block 337 Functionality 337 Operation principle 337 Application 351 Signals 367 Settings 368 Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 373 Function block 373 Function principle 373 Application 373 Application 376 Signals 380 Settings 380 Settings 380 Settings 380 Monitored data 381 Technical data 381 Tenchical data 381 Three-p		Application	327
Monitored Data: 335 Technical Data: 336 Restrained (low stage) and unrestrained (high stage) differential protection for 2W-transformers, 87T 337 Identification 337 Function block 337 Functionality 337 Operation principle 337 Application 351 Signals 367 Settings 368 Monitored data 370 Technical data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 372 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Identification 383 Function block 383 Function block 383 Functionality <td></td> <td>Signals</td> <td>334</td>		Signals	334
Technical Data: 336 Restrained (low stage) and unrestrained (high stage) differential protection for 2W-transformers, 87T 337 Identification 337 Function block 337 Functionality 337 Operation principle 337 Application 351 Signals 367 Settings 368 Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 372 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Technical data 381 Technical data 381 Technical data 383 Aphication 383 Identification 383 Three-phase transformer inrush		Settings	334
Restrained (low stage) and unrestrained (high stage) differential protection for 2W-transformers, 87T		Monitored Data:	335
differential protection for 2W-transformers, 87T 337 Identification 337 Function block 337 Functionality 337 Operation principle 337 Application 351 Signals 367 Settings 368 Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 372 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Identification 383 Function block 383 Function block 383 Functionality 383 Operation principle 383 Application 383		Technical Data:	336
Identification 337 Function block 337 Functionality 337 Operation principle 337 Application 351 Signals 367 Settings 368 Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 373 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Identification 383 Identification 383 Function block 383 Function block 383 Function principle 383 Application 383 Operation principle 383 Application </td <td></td> <td>Restrained (low stage) and unrestrained (high stage)</td> <td></td>		Restrained (low stage) and unrestrained (high stage)	
Function block 337 Functionality 337 Operation principle 337 Application 351 Signals 367 Settings 368 Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 373 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Three-phase transformer inrush detector INR 383 Identification 383 Function block 383 Function plock 383 Function principle 383 Application 383 Application 383		differential protection for 2W-transformers, 87T	337
Functionality 337 Operation principle 337 Application 351 Signals 367 Settings 368 Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 373 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Identification 383 Function block 383 Function plock 383 Functionality 383 Operation principle 383 Application 383 Application 385		Identification	337
Operation principle 337 Application 351 Signals 367 Settings 368 Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 373 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Identification 383 Function block 383 Function plock 383 Function principle 383 Operation principle 383 Application 385		Function block	337
Application 351 Signals 367 Settings 368 Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 372 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 383		Functionality	337
Signals 367 Settings 368 Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 372 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Identification 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 383		Operation principle	337
Settings 368 Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 372 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Technical data 383 Identification 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 383		Application	351
Monitored data 370 Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 373 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Technical data 383 Identification related functions 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 383		Signals	367
Technical data 372 Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 373 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Three-phase transformer inrush detector INR 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 383		Settings	368
Low impedance restricted ground-fault protection 87L0ZREF 372 Identification 372 Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Technical data 381 Section 5 Protection related functions 383 Identification 383 Function block 383 Function block 383 Function principle 383 Operation principle 383 Application 385 385 Application 385		Monitored data	370
Identification		Technical data	372
Function block 373 Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Three-phase transformer inrush detector INR 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 383		Low impedance restricted ground-fault protection 87L0ZREF	372
Functionality 373 Operation principle 373 Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Identification 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 385		Identification	372
Operation principle 373 Application 376 Signals 380 Settings 381 Technical data 381 Technical data 381 Section 5 Protection related functions 383 Three-phase transformer inrush detector INR 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 385		Function block	373
Application 376 Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Three-phase transformer inrush detector INR 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 385		Functionality	373
Signals 380 Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Three-phase transformer inrush detector INR 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 385		Operation principle	373
Settings 380 Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Three-phase transformer inrush detector INR 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 385		Application	376
Monitored data 381 Technical data 381 Section 5 Protection related functions 383 Three-phase transformer inrush detector INR 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 385		Signals	380
Technical data 381 Section 5 Protection related functions 383 Three-phase transformer inrush detector INR 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 385		Settings	380
Section 5 Protection related functions 383 Three-phase transformer inrush detector INR 383 Identification 383 Function block 383 Functionality 383 Operation principle 383 Application 385		Monitored data	381
Three-phase transformer inrush detector INR		Technical data	381
Three-phase transformer inrush detector INR	Section 5	Protection related functions	202
Identification383Function block383Functionality383Operation principle383Application385	Jechon 5		
Function block			
Functionality			
Operation principle			
Application			
• •			
Oigitais		• •	
		Olgitulo	

Settings	386
Monitored data	386
Technical data	387
Circuit breaker failure protection 50BF	387
Identification	387
Function block	387
Functionality	387
Operation principle	388
Application	392
Signals	393
Settings	394
Monitored data	394
Technical data	394
Protection trip conditioning 86/94	395
Identification	395
Function block	395
Functionality	395
Operation principle	395
Application	396
Signals	398
Settings	398
Monitored data	398
High impedance fault detector HIZ	398
Identification	398
Function block symbol	399
Functionality	399
Operation principle	399
Application	401
Signals	402
Settings	402
Monitored data	402
Arc protection, AFD	402
Identification	402
Function block	403
Functionality	403
Operation principle	403
Application	404
Signals	408
Settings	409
Monitored data	409
Technical data	409
Multi-purpose protection, MAP	410

	Identification	410
	Function Block	410
	Functionality	410
	Operation principle	410
	Level detector	411
	Timer	411
	Blocking logic	411
	Application	412
	Signals	412
	Settings	412
	Monitored Data	413
	Function data	414
	Inputs	414
	Outputs	414
	Settings	414
	Group setting (Basic)	414
	Non-group settings (Basic)	414
	Monitored Data	414
Section 6	Supervision functions	415
Coolion o	Circuit-breaker condition monitoring 52CM	
	Identification	
	Function block	
	Functionality	
	Operation principle	
	Circuit breaker status	
	Circuit breaker operation monitoring	
	Breaker contact travel time	
	Operation counter	420
	Accumulation of I ^y t	
	Remaining life of the circuit breaker	422
	Circuit breaker spring charged indication	
	Gas pressure supervision	
	Application	
	Signals	
	Settings	
	Monitored data	430
	Technical data	
	Trip circuit supervision, TCM	
	Identification	
	Function block	431
	Functionality	
	Operation principle	
	• •	

	Application	.432
,	Signals	.438
,	Settings	.438
	Monitored data	.439
Cur	rent circuit supervision CCM	.439
	Identification	.439
	Function block	.439
	Functionality	.439
	Operation principle	.439
	Application	.442
,	Signals	.446
,	Settings	.447
	Monitored data	.447
•	Technical data	.447
Ad۷	vanced current circuit supervision for transformers, MCS 3I, I2	.447
	Identification	.447
	Function block	.448
	Functionality	.448
	Operation principle	.448
	No-load detection	.449
	CT failure detection	.449
	Internal blocking	.450
	Application	.450
,	Signals	.452
,	Settings	.452
	Monitored data	.453
Fus	se failure supervision 60	.453
	Identification	.453
	Function block	.453
	Functionality	.453
	Operation principle	.454
	Application	.456
,	Signals	.458
,	Settings	.458
	Monitored data	.459
•	Technical data	.459
Mot	tor startup supervision 66/51LRS	.459
	Identification	.459
	Function block	.460
	Functionality	.460
(Operation principle	.460
	Application	.466

	Signals	469
	Settings	469
	Monitored data	470
	Technical data	470
	Cable fault detection, CFD	471
	Identification	471
	Function block	471
	Functionality	471
	Operation principle	471
	Signals	473
	Settings	474
	Monitored data	474
	Runtime counter for machines and devices, OPTM	475
	Identification	475
	Function block	475
	Functionality	475
	Operation principle	
	Application	476
	Signals	
	Settings	477
	Monitored data	
	Technical data	477
04 7	Control functions	470
Section 7	Control functions	
	Identification	
	Function block	
	Functionality	479
	Functionality Operation principle	479 479
	Functionality Operation principle	479 479 482
	Functionality Operation principle Application Signals	479 479 482 483
	Functionality Operation principle Application Signals Settings	479 482 483 484
	Functionality Operation principle Application Signals Settings Monitored data	479 482 483 484
	Functionality Operation principle Application Signals Settings Monitored data Technical revision history	479 482 483 484 484
	Functionality Operation principle Application Signals Settings Monitored data Technical revision history Auto-reclosing 79	479 482 483 484 484 484
	Functionality Operation principle Application Signals Settings Monitored data Technical revision history Auto-reclosing 79 Identification	479 482 483 484 484 485
	Functionality Operation principle Application Signals Settings Monitored data Technical revision history Auto-reclosing 79 Identification Function block	479 482 483 484 484 485 485
	Functionality Operation principle Application Signals Settings Monitored data Technical revision history Auto-reclosing 79 Identification Function block Functionality	
	Functionality Operation principle Application Signals Settings Monitored data Technical revision history Auto-reclosing 79 Identification Function block Functionality Protection signal definition	479 482 483 484 484 485 485 485
	Functionality Operation principle Application Signals Settings Monitored data Technical revision history Auto-reclosing 79 Identification Function block Functionality Protection signal definition Zone coordination	
	Functionality Operation principle Application Signals Settings Monitored data Technical revision history Auto-reclosing 79 Identification Function block Functionality Protection signal definition Zone coordination Master and slave scheme	479482484484485485485485485486
	Functionality Operation principle Application Signals Settings Monitored data Technical revision history Auto-reclosing 79 Identification Function block Functionality Protection signal definition Zone coordination Master and slave scheme Thermal overload blocking	
	Functionality Operation principle Application Signals Settings Monitored data Technical revision history Auto-reclosing 79 Identification Function block Functionality Protection signal definition Zone coordination Master and slave scheme	

Signal collection and delay logic	488
Shot initiation	492
Shot pointer controller	495
Reclose controller	496
Sequence controller	497
Protection coordination controller	498
Circuit breaker controller	499
Counters	501
Application	
Shot initiation	502
Sequence	504
Configuration examples	505
Delayed initiation lines	508
Shot initiation from protection pickup signal	
Fast trip in Switch on to fault	510
Signals	511
Settings	
Monitored data	515
Technical data	516
Synchronism and energizing check, 25	516
Identification	516
Function block	516
Functionality	516
Operation principle	
Application	
Signals	526
Settings	528
Monitored data	529
Technical data	530
Emergency startup 62EST	530
Identification	530
Function block symbol	530
Functionality	
Operation principle	531
Application	531
Signals	532
Settings	
Monitored data	532
Measurement functions	
Basic measurements	
Functions	
Measurement functionality	534

Section 8

Limit value supervision	542
Deadband supervision	543
Power and energy calculation	543
Measurement function applications	543
Three-phase current measurement, IA, IB, IC	544
Identification	544
Function block	545
Signals	545
Settings	546
Monitored data	547
Technical data	548
Sequence current measurement, I1, I2, I0	548
Identification	548
Function block	548
Signals	548
Settings	549
Monitored data	550
Technical data	550
Residual current measurement, IG	550
Identification	550
Function block	551
Signals	551
Settings	551
Monitored data	552
Technical data	552
Three-phase voltage measurement, VA, VB, VC	552
Identification	552
Function block	553
Signals	553
Settings	554
Monitored data	555
Technical data	555
Sequence voltage measurement, V1, V2, V0	556
Identification	556
Function block	557
Signals	557
Settings	557
Monitored data	558
Technical data	558
Residule voltage measurement, VG	559
Identification	559
Function block	559

Signals	559
Settings	560
Monitored data	560
Technical data	560
Three-phase power and energy measurement, P.E	561
Identification	561
Function block	561
Signals	561
Settings	562
Monitored data	563
Technical data	563
Single-phase power and energy measurement	564
Identification	564
Function block	564
Signals	564
Settings	565
Monitored data	565
Technical data	568
Current total demand distortion, PQI	568
Identification	568
Function block	568
Functionality	568
Operation principle	568
Distortion measurement	569
Demand calculation	569
Application	569
Signals	570
Settings	571
Monitored data	571
Voltage total harmonic distortion, PQVPH	572
Identification	572
Function Block	572
Functionality	572
Operation principle	572
Demand calculation	573
Application	573
Signals	573
Settings	574
Monitored data	574
Power Quality, PQSS	575
Identification	575
Function block	575

	Functionality	575
	Operation principle	575
	Phase mode setting	576
	Variation detection	576
	Duration measurement	578
	Variation validation	579
	Three/single-phase selection variation examples	581
	Recorded data	583
	Recorded data information	583
	Application	585
	Signals	587
	Settings	588
	Monitored data	589
	Frequency measurement, f	592
	Identification	592
	Function block	593
	Signals	593
	Settings	593
	Monitored data	593
	Tap change position indication, 84T	594
	Identification	594
	Function block	594
	Functionality	594
	Operation principle	594
	Application	597
	Signals	597
	Settings	597
	Monitored data	598
	Technical data	598
Section 9	Recording functions	599
Occion 3	Disturbance recorder, DFR	
	Functionality	
	Recorded analog inputs	
	Triggering alternatives	
	Length of recordings	
	Sampling frequencies	
	Uploading of recordings	
	Deletion of recordings	
	Storage mode	
	Pre-trigger and post-trigger data	
	Operation modes	
	Exclusion mode	

	Configuration	604
	Application	605
	Settings	606
	Monitored data	608
	Technical revision history	608
	Fault locator FLOC	609
	Identification	609
	Function block	609
	Functionality	609
	Operation principle	609
	Application	
	Signals	614
	Settings	614
	Monitored data	614
Coation 10	Other functions	645
Section 10	Other functions	
	Mimimum pulse timer (2pcs), 17	
	Pulse timer (8pcs), PT	
	Function block	
	Function block	
	Signals	
	Settings	
	Technical data	
	Time delay off timers, TOF	
	Function block	
	Functionality	
	Signals	
	Settings	
	Technical data	
	Time delay on timers, TON	
	Function block	
	Functionality	
	Signals	
	Settings	
	Technical data	
	Set reset flip flops, SR	
	Function block	
	Functionality	
	Signals	
	Settings	
	Move blocks, MV	
	Function block	627

	Functionality	
•	Signals	
Section 11		
	Definite time characteristics	
	Definite time operation	
	Current based inverse definite minimum time characteristics	
	IDMT curves for overcurrent protection	
	Standard inverse-time characteristics	
	User-programmable inverse-time characteristics	
	RI and RD-type inverse-time characteristics	
	Reset in inverse-time modes	
	Inverse-timer freezing	
	Voltage based inverse definite minimum time characteristics	663
	IDMT curves for overvoltage protection	663
	Standard inverse-time characteristics for	
	overvoltage protection	666
	User programmable inverse-time characteristics for	660
	overvoltage protection	
	IDMT curve saturation of overvoltage protection	
	IDMT curves for undervoltage protection	670
	Standard inverse-time characteristics for undervoltage protection	671
		07 1
	User-programmable inverse-time characteristics for undervoltage protection	674
	IDMT curve saturation of undervoltage protection	
	Measurement modes	
	Wedsui chieff filodes	074
Section 12	IED physical connections	
	Protective ground connections	
	Communication connections	
	Ethernet RJ-45 front connection	678
	Ethernet rear connections	678
	EIA-232 serial rear connection	679
	EIA-485 serial rear connection	
	Optical ST serial rear connection	679
	Communication interfaces and protocols	679
	Rear communication modules	680
	COMB01A-COMB014A jumper locations and connections	682
	COMB023A jumper locations and connections	684
	COM0033 and COM0034 jumper locations and connections.	688
	Recommended industrial Ethernet switches	690

Section 13	Technical data	691
Section 14	IED and Functionality tests	697
Section 15	Applicable standards and regulations	699
Section 16	Glossary	701

Section 1 Introduction

1.1 This manual

The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.

1.2 Intended audience

This manual addresses system engineers and installation and commissioning personnel, who use technical data during engineering, installation and commissioning, and in normal service.

The system engineer must have a thorough knowledge of protection systems, protection equipment, protection functions and the configured functional logic in the IEDs. The installation and commissioning personnel must have a basic knowledge in handling electronic equipment.

1.3 Product documentation

1.3.1 Product documentation set

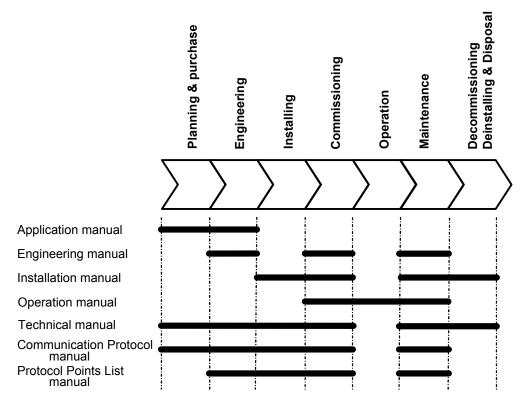


Figure 1: The intended use of manuals in different lifecycles

The engineering manual contains instructions on how to engineer the IEDs using the different tools in PCM600. The manual provides instructions on how to set up a PCM600 project and insert IEDs to the project structure. The manual also recommends a sequence for engineering of protection and control functions, LHMI functions as well as communication engineering for IEC 61850 and DNP3.

The installation manual contains instructions on how to install the IED. The manual provides procedures for mechanical and electrical installation. The chapters are organized in chronological order in which the IED should be installed.

The operation manual contains instructions on how to operate the IED once it has been commissioned. The manual provides instructions for monitoring, controlling and setting the IED. The manual also describes how to identify disturbances and how to view calculated and measured power grid data to determine the cause of a fault.

The application manual contains application descriptions and setting guidelines sorted per function. The manual can be used to find out when and for what purpose a typical protection function can be used. The manual can also be used when calculating settings.

The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data

sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.

The communication protocol manual describes a communication protocol supported by the IED. The manual concentrates on vendor-specific implementations. The point list manual describes the outlook and properties of the data points specific to the IED. The manual should be used in conjunction with the corresponding communication protocol manual.

1.3.2 Document revision history

Document revision/date	Product series version	History
A/01/20/2010	2.0	First release
B/12/31/2010	4.0	Content updated to correspond to the product series version
C/07/31/2011	4.0	Content Updated

Download the latest documents from the ABB web site http://www.abb.com/substationautomation.

1.3.3 Related documentation

Product series- and product-specific manuals can be downloaded from the ABB web site http://www.abb.com/substationautomation.

1.4 Symbols and conventions

1.4.1 Safety indication symbols

The electrical warning icon indicates the presence of a hazard which could result in electrical shock.

The warning icon indicates the presence of a hazard which could result in personal injury.

The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

The information icon alerts the reader to important facts and conditions.

The tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although warning hazards are related to personal injury, it should be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process performance leading to personal injury or death. Therefore, comply fully with all warning and caution notices.

1.4.2 Manual conventions

Conventions used in IED manuals. A particular convention may not be used in this manual.

- Abbreviations and acronyms in this manual are spelled out in the glossary. The glossary also contains definitions of important terms.
- Push button navigation in the LHMI menu structure is presented by using the push button icons, for example:
- HMI menu paths are presented in bold, for example:
 - Select Main menu > Settings.
- LHMI messages are shown in Courier font, for example:

 To save the changes in non-volatile memory, select Yes and press ...
- Parameter names are shown in italics, for example:

 The function can be enabled and disabled with the *Operation* setting.
- Parameter values are indicated with quotation marks, for example: The corresponding parameter values are "Enabled" and "Disabled".
- IED input/output messages and monitored data names are shown in Courier font, for example:
 - When the function picks up, the PICKUP output is set to TRUE.
- Dimensions are provided both in inches and mm. If it is not specifically mentioned then the dimension is in mm

1.4.3 Functions, codes and symbols

All available functions are listed in the table. All of them may not be applicable to all products.

Table 1: REF 615 ANSI 4.0 Function Lists Functions included in standard configurations

Standard configuration functionality	IEC 61850	IEC 60617		ANSI/C37.2 - 20	800
Standard configuration functionality			REF615	REM615	RET615
Protection					
Three-phase non-directional overcurrent protection, low stage, instance 1	PHLPTOC1	3l> (1)	51P-1	51P	51P-1
Three-phase non-directional overcurrent protection, low stage, instance 2	PHLPTOC2	3l> (2)	51P-2		51P-2
Three-phase non-directional overcurrent protection, high stage, instance 1	PHHPTOC1	3l>> (1)	50P-1	50P	50P-1 (1)
Three-phase non-directional overcurrent protection, high stage, instance 2	PHHPTOC2	3l>> (2)	50P-2		50P-1 (2)
Three-phase non-directional overcurrent protection, high stage, instance 3	PHHPTOC3	3l>> (3)	50P-4		50P-2 (1)
Three-phase non-directional overcurrent protection, high stage, instance 4	PHHPTOC4	3l>> (4)	50P-5		50P-2 (2)
Three-phase non-directional overcurrent protection, instantaneous stage, instance 1	PHIPTOC1	3l>>> (1)	50P-3		
Three-phase non-directional long time overcurrent protection, low stage, instance 1	PHLTPTOC1	3I> (3)	51LT		
Three-phase directional overcurrent protection, low stage, instance 1	DPHLPDOC1	3l> -> (1)	67/51P		67/51P (2)
Three-phase directional overcurrent protection, low stage, instance 2	DPHLPDOC2	3l> -> (2)			67/51P (1)
Three-phase directional overcurrent protection, high stage, instance 1	DPHHPDOC1	3l>> -> (1)	67/50P-1		
Three-phase directional overcurrent protection, high stage, instance 2	DPHHPDOC2	3l>> -> (2)	67/50P-2		
Non-directional ground-faultground-fault protection, low stage, instance 1	EFLPTOC1	lo> (1)	51G	51G	51G
Non-directional ground-fault protection, low stage, instance 2	EFLPTOC2	lo> (2)	51N-1		51N-1
Non-directional ground-fault protection, low stage, instance 3	EFLPTOC3	lo> (3)	51N-2		51N-2
Non-directional ground-fault protection, low stage, instance 4	EFLPTOC4	lo> (4)	50SEF		
Non-directional ground-fault protection, high stage, instance 1	EFHPTOC1	lo>> (1)	50G-1	50G	50G-1
Non-directional ground-fault protection, high stage, instance 2	EFHPTOC2	lo>> (2)	50G-2		50G-2
Non-directional ground-fault protection, high stage, instance 3	EFHPTOC3	lo>> (3)	50N-1		50N-1 (1)
Non-directional ground-fault protection, high stage, instance 4	EFHPTOC4	lo>> (4)	50N-2		50N-1 (2)
Non-directional ground-fault protection, high stage, instance 5	EFHPTOC5	lo>> (5)	50N-4		50N-2 (1)
Table continued on next page		•	·	•	•

Section 1 Introduction

28

Standard configuration functionality	IEC 61850	IEC 60617		ANSI/C37.2 - 20	
orandara configuration functionality			REF615	REM615	RET615
Non-directional ground-fault protection, high stage, instance 6	EFHPTOC6	lo>> (6)	50N-5		50N-2 (2)
Non-directional ground-fault protection, instantaneous stage, instance 1	EFIPTOC1	lo>>> (1)	50G-3		
Non-directional ground-fault protection, instantaneous stage, instance 2	EFIPTOC2	lo>>> (2)	50N-3		
Directional ground-fault protection, low stage, instance 1	DEFLPDEF1	lo> -> (1)	67/51N	67/51N	67/51N (2)
Directional ground-fault protection, low stage, instance 2	DEFLPDEF2	lo> -> (2)			67/51N (1)
Directional ground-fault protection, high stage, instance 1	DEFHPDEF1	lo>> -> (1)	67/50N-1		
Directional ground-fault protection, high stage, instance 2	DEFHPDEF2	lo>> -> (2)	67/50N-2		
Three phase directional power protection, instance 1	DPSRDIR1	I1-> (1)	32P-1		
Three phase directional power protection, instance 2	DPSRDIR2	I1-> (2)	32P-2		
Ground directional power protection, instance 1	DNZSRDIR1	I2 ->, Io-> (1)	32N-1		
Ground directional power protection, instance 2	DNZSRDIR2	I2 ->, Io-> (2)	32N-2		
Negative-sequence overcurrent protection, instance	NSPTOC1	12> (1)	46-1		46-1
Negative-sequence overcurrent protection, instance 2	NSPTOC2	12> (2)	46-2		46-2
Phase discontinuity protection	PDNSPTOC1	12/11>	46PD		
Residual overvoltage protection, instance 1	ROVPTOV1	Uo> (1)	59G	59G	59G-2
Residual overvoltage protection, instance 2	ROVPTOV2	Uo> (2)	59N-1	59N	59N-2
Residual overvoltage protection, instance 3	ROVPTOV3	Uo> (3)	59N-2		59N-1
Residual overvoltage protection, instance 4	ROVPTOV4	Uo> (4)			59G-1
Three-phase undervoltage protection, instance 1	PHPTUV1	3U< (1)	27-1	27	27-2
Three-phase undervoltage protection, instance 2	PHPTUV2	3U< (2)	27-2		27 -1
Three-phase overvoltage protection, instance 1	PHPTOV1	3U> (1)	59-1	59	59 -2
Three-phase overvoltage protection, instance 2	PHPTOV2	3U> (2)	59-2		59-1
Positive-sequence undervoltage protection, instance 1	PSPTUV1	U1< (1)		27PS	
Positive-sequence undervoltage protection, instance 2	PSPTUV2	U1< (2)			
Negative-sequence overvoltage protection, instance 1	NSPTOV1	U2> (1)	47-1	47	47-2
Negative-sequence overvoltage protection, instance 2	NSPTOV2	U2> (2)	47-2		47-1
Frequency protection, instance 1	FRPFRQ1	f>/f<,df/dt (1)	81-1	81	81-1 (2)
Frequency protection, instance 2	FRPFRQ2	f>/f<,df/dt (2)	81-2		81-2 (2)
Frequency protection, instance 3	FRPFRQ3	f>/f<,df/dt (3)			81-1 (1)
Table continued on next page	1	1	1	ı	ı

Standard configuration functionality	IEC 61850	IEC 60617		ANSI/C37.2 - 20	
			REF615	REM615	RET615
Frequency protection, instance 4	FRPFRQ4	f>/f<,df/dt (4)			81-2 (1)
Voltage per hertz protection, instance 1	OEPVPH1	U/f> (1)	24		24-1 (2)
Voltage per hertz protection, instance 2	OEPVPH2	U/f> (2)			24-2 (2)
Voltage per hertz protection, instance 3	OEPVPH3	U/f> (3)			24-1 (1)
Voltage per hertz protection, instance 4	OEPVPH4	U/f> (4)			24-2 (1)
Three-phase thermal protection for feeders, cables and distribution transformers, Instance 1	T1PTTR1	3lth>F (1)	49F-1		
Three-phase thermal protection for feeders, cables and distribution transformers, Instance 2	T1PTTR2	3lth>F (2)	49F-2		
Three-phase thermal overload protection for power transformers, two time constants	T2PTTR1	3lth>T			49T-1
Negative-sequence overcurrent protection for motors, instance 1	MNSPTOC1	I2>M (1)		46M-1	
Negative-sequence overcurrent protection for motors, instance 2	MNSPTOC2	I2>M (2)		46M-2	
Loss of load supervision, instance 1	LOFLPTUC1	3I< (1)		37M-1	
Loss of load supervision, instance 2	LOFLPTUC2	3I< (2)		37M-2	
Motor load jam protection	JAMPTOC1	Ist>		51LR	
Motor start-up supervision	STTPMSU1	Is2t n<		66/51LRS	
Phase reversal protection	PREVPTOC1	12>>		46R	
Thermal overload protection for motors	MPTTR1	3lth>M		49M	
Motor differential protection	MPDIF1	3dl>M		87M	
Stabilized and instantaneous differential protection for 2W –transformers	TR2PTDF1	3dl>T			87T
Numerical stabilized low impedance restricted ground-fault protection	LREFPNDF1	dloLo>	87LOZREF		87LOZREF (2)
Circuit breaker failure protection, instance 1	CCBRBRF1	3I>/Io>BF (1)	50BF-1	50BF	50BF-1
Circuit breaker failure protection, instance 2	CCBRBRF2	3I>/Io>BF (2)	50BF-2		50BF-2
Three-phase inrush detector, instance 1	INRPHAR1	3l2f> (1)	INR-1		
Three-phase inrush detector, instance 2	INRPHAR2	3l2f> (2)	INR-2		
Master trip, instance 1	TRPPTRC1	Master Trip (1)	86/94-1	86/94-1	86/94-1
Master trip, instance 2	TRPPTRC2	Master Trip (2)	86/94-2	86/94-2	86/94-2
Arc protection, instance 1	ARCSARC1	ARC (1)	AFD-1	AFD-1	AFD-1 (2)
Arc protection, instance 2	ARCSARC2	ARC (2)	AFD-2	AFD-2	AFD-2 (2)
Arc protection, instance 3	ARCSARC3	ARC (3)	AFD-3	AFD-3	AFD-3 (2)
High impedance fault detection	PHIZ1	PHIZ1	HIZ		
Multi-purpose protection, instance 1 ²⁾	MAPGAPC1	MAP (1)		MAP 1	MAP 1
Multi-purpose protection, instance 2 ²⁾	MAPGAPC2	MAP (2)		MAP 2	MAP 2
Table continued on next page	1	1	1	1	1

Section 1 Introduction

Standard configuration functionality	IEC 61850	IEC 60617	ANSI/C37.2 - 2008			
Otalidaid Colliguration functionality	120 0 1000	120 00017	REF615	REM615 RET61		
Multi-purpose protection, instance 3 2)	MAPGAPC3	MAP (3)		MAP 3	MAP 3	
Load shedding and restoration, instance 1	LSHDPFRQ1	UFLS/R (1)	81LSH-1		81LSH-1 (2)	
Load shedding and restoration, instance 2	LSHDPFRQ2	UFLS/R (2)	81LSH-2		81LSH-2 (2)	
Load shedding and restoration, instance 3	LSHDPFRQ3	UFLS/R (3)			81LSH-1 (1)	
Load shedding and restoration, instance 4	LSHDPFRQ4	UFLS/R (4)			81LSH-2 (1)	
Loss of phase, instance 1	PHPTUC1	3I< (1)	37-1		37 (1)	
Loss of phase, instance 2	PHPTUC2	3I< (2)	37-2			
Control						
Circuit-breaker control, instance 1	CBXCBR1	I <-> O CB (1)	52-1	52	52-1	
Circuit-breaker control, instance 2	CBXCBR2	I <-> O CB (2)	52-2		52-2	
Emergency startup	ESMGAPC1	ESTART		62EST		
Auto-reclosing	DARREC1	0->1	79			
Tap changer position indication	TPOSSLTC1	TPOSM			84T	
Synchronism and energizing check	SECRSYN1	SYNC	25			
menu from WHMI or LHMI under the Clear CB wear values menu	value via the clear menu from WHMI or LHMI under the Clear CB wear values menu					
Circuit-breaker condition monitoring, instance 1	SSCBR1	CBCM (1)	52CM-1	52CM	52CM-1)	
Circuit-breaker condition monitoring, instance 2	SSCBR2	CBCM (2)	52CM-2		52CM-2)	
Trip circuit supervision, instance 1	TCSSCBR1	TCS (1)	TCM-1	TCM-1	TCM-1	
Trip circuit supervision, instance 2	TCSSCBR2	TCS (2)	TCM-2	TCM-2	TCM-2	
Current circuit supervision	CCRDIF1	MCS 3I	ССМ	ССМ		
Advanced current circuit supervision for transformers	CTSRCTF1	MCS 3I, I2			MCS 31, 12	
Fuse failure supervision, instance 1	SEQRFUF1	FUSEF (1)	60-1	60	60-1	
Fuse failure supervision, instance 2	SEQRFUF2	FUSEF (2)	60-2		60-2	
Cable fault detection	RCFD1	RCFD1	CFD			
Runtime counter for machines and devices, instance 1	MDSOPT1	OPTS (1)		OPTM-1		
Runtime counter for machines and devices, instance 2	MDSOPT2	OPTS (2)		OPTM-2		
Measurement						
Three-phase current measurement, instance 1	CMMXU1	31	IA, IB, IC	IA, IB, IC	IA, IB, IC (1)	
Three-phase current measurement, instance 2	CMMXU2	3I(B)	IA, IB, IC (2)	IA, IB, IC (2)	IA, IB, IC (2)	

Standard configuration functionality	IEC 61850	IEC 60617	ANSI/C37.2 - 2008			
Standard configuration functionality	IEC 6 1650	IEC 60617	REF615	REM615	RET615	
Sequence current measurement, instance 1	CSMSQI1	I1, I2, I0	11, 12, 10	11, 12, 10	11, 12, 10 (1)	
Sequence current measurement, instance 2	CSMSQI2	I1, I2, I0(B)	11, 12, 10 (2)	11, 12, 10 (2)	11, 12, 10 (2)	
Residual current measurement, instance 1	RESCMMXU1	lo	IG	IG	IG	
Three-phase voltage measurement, instance 1	VMMXU1	3U	VA, VB, VC	VA, VB, VC	VA, VB, VC (1)	
Three-phase voltage measurement, instance 2	VMMXU2	3U(B)	VA, VB, VC (2)		VA, VB, VC (2)	
Residual voltage measurement, instance 1	RESVMMXU1	Uo	VG	VG	VG	
Residual voltage measurement, instance 2	RESVMMXU2	Uo	VG	VG	VG	
Sequence voltage measurement, instance 1	VSMSQI1	U1, U2, U0	V1, V2, V0	V1, V2, V0	V1, V2, V0 (1)	
Sequence voltage measurement, instance 2	VSMSQI2	U1, U2, U0(B)	V1, V2, V0 (2)		V1, V2, V0 (2)	
Single-phase power and energy measurement, instance 1	SPEMMXU1	SP, SE	SP, SE-1	SP, SE	SP, SE-1	
Single-phase power and energy measurement, instance 2	SPEMMXU2	SP, SE(B)	SP, SE-2		SP, SE-2	
Three-phase power and energy measurement, instance 1	PEMMXU1	P, E	P, E-1	P, E	P, E-1	
Three-phase power and energy measurement, instance 2	PEMMXU2	P, E(B)	P, E-2		P, E-2	
Current total demand distortion, instance 1	CMHAI1	PQM3I	PQI-1			
Current total demand distortion, instance 2	CMHAI2	PQM3I(B)	PQI-2			
Voltage total harmonic distortion, instance 1	VMHAI1	PQM3U	PQVPH-1			
Voltage total harmonic distortion, instance 2	VMHAI2	PQM3U(B)	PQVPH-2			
Voltage variation, instance 1	PHQVVR1	PQ 3U<>	PQSS-1			
Voltage variation, instance 2	PHQVVR2	PQ 3U<>(B)	PQSS-2			
Load profile	LDPMSTA1	-	LoadProf			
2 RTD +1 mA	XARGGIO130	X130 (AIM+RTD)				
6 RTD + 2 mA measurement	XRGGIO130	X130 (RTD)				
Frequency measurement, instance 1	FMMXU1	f	f	f	f	
Frequency measurement, instance 2	FMMXU2	f			f	
Other						
Minimum pulse timer (2 pcs), instance 1	TPGAPC1	TP-1	TP-1	TP-1	TP-1	
Minimum pulse timer (2 pcs), instance 2	TPGAPC2	TP-2	TP-2	TP-2	TP-2	
Minimum pulse timer (2 pcs), instance 3	TPGAPC3	TP-3	TP-3	TP-3	TP-3	
Minimum pulse timer (2 pcs), instance 4	TPGAPC4	TP-4	TP-4	TP-4	TP-4	
Minimum pulse timer (2 pcs, second resolution), instance 1	TPSGAPC1	TPS-1	62CLD-1			
Minimum pulse timer (2 pcs, second resolution), instance 2	TPSGAPC2	TPS-2	62CLD-3			
Table continued on next page		L	L	1	1	

Standard configuration functionality	IEC 61850	IEC 60617	ANSI/C37.2 - 2008			
Standard configuration functionality	IEC 6 1850	IEC 60617	REF615	REM615	RET615	
Minimum pulse timer (2 pcs, minute resolution), instance 1	TPMGAPC1	TPM-1	62CLD-2			
Minimum pulse timer (2 pcs, minute resolution), instance 2	TPMGAPC2	TPM-2	62CLD-4			
Pulse timer (8 pcs), instance 1	PT1	PT-1	PT-1	PT-1	PT-1	
Pulse timer (8 pcs), instance 2	PT2	PT-2	PT-2	PT-2	PT-2	
Time delay off (8 pcs), instance 1	TOFGAPC1	TOF-1	TOF-1	TOF-1	TOF-1	
Time delay off (8 pcs), instance 2	TOFGAPC2	TOF-2	TOF-2	TOF-2	TOF-2	
Time delay on (8 pcs), instance 1	TONGAPC1	TON-1	TON -1	TON -1	TON -1	
Time delay on (8 pcs), instance 2	TONGAPC2	TON-2	TON -2	TON -2	TON -2	
Set reset (8 pcs), instance 1	SRGAPC1	SR-1	SR-1	SR-1	SR-1	
Set reset (8 pcs), instance 2	SRGAPC2	SR-2	SR-2	SR-2	SR-2	
Move (8 pcs), instance 1	MVGAPC1	MV-1	MV-1	MV-1	MV-1	
Move (8 pcs), instance 2	MVGAPC2	MV-2	MV-2	MV-2	MV-2	
Logging functions						
Disturbance recorder	RDRE1	-	DFR	DFR	DFR	
Fault recorder	FLMSTA1	-	FR	FR	FR	
Sequence event recorder	SER	-	SER	SER	SER	
Fault location	DRFLO1	FLO	FLO			

Section 2 615 series overview

2.1 Overview

615 series is a product family of IEDs designed for protection, control, measurement and supervision of utility substations and industrial switchgear and equipment. The design of the IEDs has been guided by the IEC 61850 standard for communication and interoperability of substation automation devices.

The IEDs feature draw-out-type design with a variety of mounting methods, compact size and ease of use. Depending on the product, optional functionality is available at the time of order for both software and hardware, for example, autoreclosure and additional I/Os.

The 615 series IEDs support a range of communication protocols including IEC 61850 with GOOSE messaging, Modbus[®] and DNP3.

2.1.1 Product series version history

Product version	Product history
1.0.1	
1.1	
2.0	
4.0	 User programming through Application Configuration tool Frequency measurement protection Load shedding and restoration Single phase power and energy measurement Load profile recorder

2.1.2 PCM600 and IED connectivity package version

- Protection and Control IED Manager PCM600 Ver.2.3 (plus PCM600 Rollup 20110126 2.3) or later
- IED Connectivity Package REF615 ANSI Ver. 4.0 or later
- IED Connectivity Package REM615 ANSI Ver. 4.0 or later
- IED Connectivity Package RET615 ANSI Ver. 4.0 or later

Download connectivity packages from the ABB web site http://www.abb.com/substationautomation

2.2 Local HMI

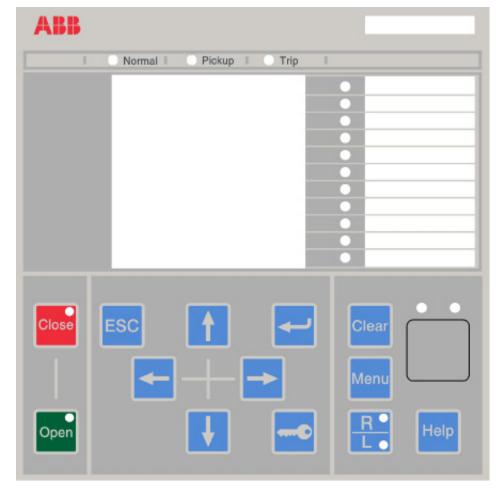


Figure 2: LHMI

The LHMI of the IED contains the following elements:

- Display
- Buttons
- LED indicators
- Communication port

The LHMI is used for setting, monitoring and controlling.

2.2.1 LCD

The LHMI includes a graphical LCD that supports one character sizes. The character size depends on the selected language.

Table 2: Characters and rows on the view

Character size	Rows in view	Characters on row	
Large, variable width (13x14 pixels)	10 rows 8 rows with large screen	min 8	

The display view is divided into four basic areas.

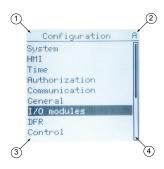


Figure 3: Display layout

- 1 Header
- 2 Icon
- 3 Content
- 4 Scroll bar (displayed when needed)

2.2.2 LEDs

The LHMI includes three protection indicators above the display: Normal, Pickup and Trip.

There are also 11 matrix programmable alarm LEDs on front of the LHMI. The LEDs can be configured with PCM600 and the operation mode can be selected with the LHMI, WHMI or PCM600.

There are two additional LEDs which are embedded into the control buttons and They represent the status of the circuit breaker.

2.2.3 Keypad

The LHMI keypad contains push-buttons which are used to navigate in different views or menus. With the push-buttons you can give open or close commands to one primary object, for example, a circuit breaker, disconnector or switch. The push-buttons are also used to acknowledge alarms, reset indications, provide help and switch between local and remote control mode.

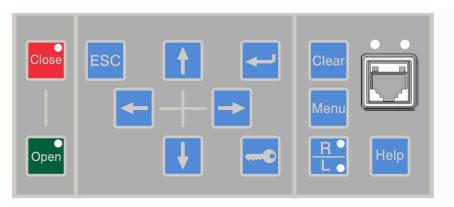


Figure 4: LHMI keypad with object control, navigation and command push-buttons and RJ-45 communication port

2.3 Web HMI

The WHMI enables the user to access the IED via a web browser. The supported web browser version is Internet Explorer 7.0 or Internet Explorer 8.0..

WHMI is enabled by default.

WHMI offers several functions.

- Alarm indications and event lists
- System supervision
- Parameter settings
- Measurement display
- Oscillographic records
- · Phasor diagram

The menu tree structure on the WHMI is almost identical to the one on the LHMI.

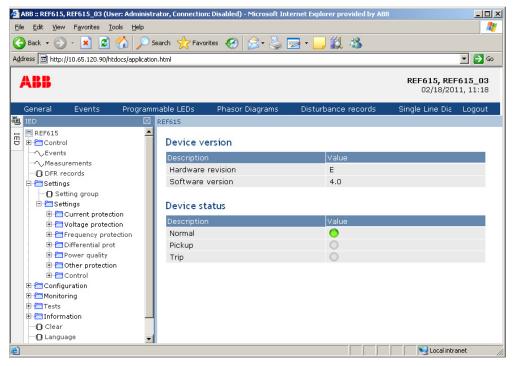


Figure 5: Example view of the WHMI

The WHMI can be accessed locally and remotely.

- Locally by connecting your laptop to the IED via the front communication port.
- Remotely over LAN/WAN.

2.4 Authorization

The user categories have been predefined for the LHMI and the WHMI, each with different rights and default passwords.

The default passwords can be changed with Administrator user rights.

User authorization is disabled by default but WHMI always uses authorization.

Table 3: Predefined user categories

Username	User rights
VIEWER	Read only access
OPERATOR	 Selecting remote or local state with (only locally) Changing setting groups Controlling Clearing alarm and indication LEDs and textual indications
ENGINEER	 Changing settings Clearing event list Clearing DFRs Changing system settings such as IP address, serial baud rate or DFR settings Setting the IED to test mode Selecting language
ADMINISTRATOR	All listed aboveChanging passwordFactory default activation

For user authorization for PCM600, see PCM600 documentation.

2.5 Communication

The IED supports different communication protocols: IEC 61850, Modbus[®] and DNP 3.0 Level 2 - all using TCP/IP. DNP3 and Modbus also support serial communication. Operational information and controls are available through these protocols.

The IEC 61850 communication implementation supports all monitoring and control functions. Additionally, parameter setting and DFR records can be accessed using the IEC 61850 protocol. Oscillographic files are available to any Ethernet-based application in the standard COMTRADE format. Further, the IED can send and receive binary signals from other IEDs (so called horizontal communication) using the IEC61850-8-1 GOOSE profile, where the highest performance class with a total transmission time of 3 ms is supported. Also, the IED supports sending and receiving of analog values using GOOSE messaging. The IED meets the GOOSE performance requirements for tripping applications in distribution substations, as defined by the IEC 61850 standard. The IED can simultaneously report events to five different clients on the station bus.

All communication connectors, except for the front port connector, are placed on integrated optional communication modules. The IED can be connected to Ethernet-based communication systems via the RJ-45 connector (100BASE-TX) or the fiber-optic LC connector (100BASE-FX).

Section 3 Basic functions

3.1 General parameters

Table 4: Analog input settings, phase currents

Parameter	Values (Range)	Unit	Step	Default	Description
Secondary current	2=1A 3=5A			2=1A	Rated secondary current
Primary current	1.06000.0	Α	0.1	600A	Rated primary current
Amplitude corr. A	0.9001.100		0.001	1.000	Phase A amplitude correction factor
Amplitude corr. B	0.9001.100		0.001	1.000	Phase B amplitude correction factor
Amplitude corr. C	0.9001.100		0.001	1.000	Phase C amplitude correction factor
Nominal Current	394000	Α	1	1300	Network Nominal Current (In)
Rated Secondary Value	1.00050.000	mV/Hz	0.001	3.000	Rated Secondary Value (RSV) ratio
Reverse polarity	0=False 1=True			0=False	Reverse the polarity of the phase CTs

Table 5: Analog input settings, residual currentt

Parameter	Values (Range)	Unit	Step	Default	Description
Secondary current	1=0.2A 2=1A 3=5A			2=5A	Secondary current
Primary current	1.06000.0	Α	0.1	100.0	Primary current
Amplitude corr.	0.9001.100		0.001	1.000	Amplitude correction
Reverse polarity	0=False 1=True			0=False	Reverse the polarity of the residual CT

Table 6: Analog input settings, phase voltages

Parameter	Values (Range)	Unit	Step	Default	Description
Primary voltage	0.001440.000	kV	0.001	20.000	Primary rated voltage
Secondary voltage	60210	V	1	100	Secondary rated voltage
VT connection	1=Wye 2=Delta 3=U12 4=UL1			2=Delta	Wye, delta, U12 orUL1 VT connection
Amplitude corr. A	0.9001.100		0.001	1.000	Phase A Voltage phasor magnitude correction of an external voltage transformer
Amplitude corr. B	0.9001.100		0.001	1.000	Phase B Voltage phasor magnitude correction of an external voltage transformer
Amplitude corr. C	0.9001.100		0.001	1.000	Phase C Voltage phasor magnitude correction of an external voltage transformer
Division ratio	100020000		1	10000	Voltage sensor division ratio
Table continues on r	next page	•	•		
Voltage input type	1=Voltage trafo 3=CVD sensor			1=Voltage trafo	Type of the voltage input

Table 7: Analog input settings, residual voltage

Parameter	Values (Range)	Unit	Step	Default	Description
Secondary voltage	60210	V	1	100	Secondary voltage
Primary voltage	0.001440.000	kV	0.001	11.547	Primary voltage
Amplitude corr.	0.9001.100		0.001	1.000	Amplitude correction

Table 8: Programmable LED Input signals

Name	Туре	Default	Description
Programmable LED 1	BOOLEAN	0=False	Status of programmable LED 1
Programmable LED 2	BOOLEAN	0=False	Status of programmable LED 2
Programmable LED 3	BOOLEAN	0=False	Status of programmable LED 3
Programmable LED 4	BOOLEAN	0=False	Status of programmable LED 4
Programmable LED 5	BOOLEAN	0=False	Status of programmable LED 5
Programmable LED 6	BOOLEAN	0=False	Status of programmable LED 6
Programmable LED 7	BOOLEAN	0=False	Status of programmable LED 7
Programmable LED 8	BOOLEAN	0=False	Status of programmable LED 8
ProgrammableALED 9	BOOLEAN	0=False	Status of programmable LED 9
Programmable LED 10	BOOLEAN	0=False	Status of programmableLED 10
Programmable LED 11	BOOLEAN	0=False	Status of programmableLED 11

Table 9: Programmable LED settings

Parameter	Values (Range)	Unit	Step	Default	Description
Alarm mode	0=Follow-S ¹⁾ 1=Follow-F ²⁾ 2=Latched-S ³⁾			0=Follow-S	Alarm mode for programmable LED 1
Description	3=LatchedAck-F-S ⁴⁾			Dra successible LED 4	December 15D december
Description				Programmable LED 1	Programmable LED description
Alarm mode	0=Follow-S 1=Follow-F 2=Latched-S 3=LatchedAck-F-S			0=Follow-S	Alarm mode for programmable LED 2
Description				Programmable LED 2	Programmable LED description
Alarm mode	0=Follow-S 1=Follow-F 2=Latched-S 3=LatchedAck-F-S			0=Follow-S	Alarm mode for programmable LED 3
Description				Programmable LED 3	Programmable LED description
Alarm mode	0=Follow-S 1=Follow-F 2=Latched-S 3=LatchedAck-F-S			0=Follow-S	Alarm mode for programmable LED 4
Description				Programmable LED 4	Programmable LED description
Alarm mode	0=Follow-S 1=Follow-F 2=Latched-S 3=LatchedAck-F-S			0=Follow-S	Alarm mode for programmable LED 5
Description				Programmable LED 5	Programmable LED description
Alarm mode	0=Follow-S 1=Follow-F 2=Latched-S 3=LatchedAck-F-S			0=Follow-S	Alarm mode for programmable LED 6
Description				Programmable LED 6	Programmable LED description
Alarm mode	0=Follow-S 1=Follow-F 2=Latched-S 3=LatchedAck-F-S			0=Follow-S	Alarm mode for programmable LED 7
Description				Programmable LED 7	Programmable LED description
Alarm mode	0=Follow-S 1=Follow-F 2=Latched-S 3=LatchedAck-F-S			0=Follow-S	Alarm mode for programmable LED 8
Description				Programmable LED 8	Programmable LED description
Alarm mode	0=Follow-S 1=Follow-F 2=Latched-S 3=LatchedAck-F-S			0=Follow-S	Alarm mode for programmable LED 9
Description				Programmable LED 9	Programmable LED description
Alarm mode	0=Follow-S 1=Follow-F 2=Latched-S 3=LatchedAck-F-S			0=Follow-S	Alarm mode for programmable LED 10
				Programmable LED 10	Programmable LED description

Section 3 **Basic functions**

Parameter	Values (Range)	Unit	Step	Default	Description
Alarm mode	0=Follow-S 1=Follow-F 2=Latched-S 3=LatchedAck-F-S			0=Follow-S	Alarm mode for programmable LED 11
Description				Programmable LED 11	Programmable LED description

¹⁾Non-latched mode

Table 10: Authorization setting

Parameter	Values (Range)	Unit	Step	Default	Description
Local override	0=False ¹⁾ 1=True ²⁾			1=True	Disable authority
Remote override	0=False ³⁾ 1=True ⁴⁾			1=True	Disable authority
Local viewer				0	Set password
Local operator				0	Set password
Local engineer				0	Set password
Local administrator				0	Set password
Remote viewer				0	Set password
Remote operator				0	Set password
Remote engineer				0	Set password
Remote administrator				0	Set password

¹⁾Authorization override is disabled, LHMI password must be entered. 2)Authorization override is enabled, LHMI password is not asked.

Table 11: Binary input settings

Parameter	Values (Range)	Unit	Step	Default	Description
Threshold voltage	18176	Vdc	2	48	Binary input threshold voltage
Input osc. level	250	events/s	1	30	Binary input oscillation suppression threshold
Input osc. hyst	250	events/s	1	10	Binary input oscillation suppression hysteresis

Table 12: Ethernet front port: settings

Parameter	Values (Range)	Unit	Step	Default	Description	
IP address				192.168.0.254	IP address for front port (fixed)	
Mac address				XX-XX-XX-XX-XX	Mac address for front port	

²⁾Non-latched blinking mode

³⁾Latched mode

⁴⁾Latched blinking mode

³⁾ Authorization override is disabled, communication tools ask password to enter the IED.

⁴⁾Authorization override is enabled, communication tools do not need password to enter the IED, except for WHMI which always requires it.

Table 13: Ethernet rear port: settings

Parameter	Values (Range)	Unit	Step	Default	Description
IP address				192.168.2.10	IP address for rear port(s)
Subnet mask				255.255.255.0	Subnet mask for rear port(s)
Default gateway				192.168.2.1	Default gateway for rear port(s)
Mac address				XX-XX-XX-XX-XX	Mac address for rear port(s)

Table 14: General system settings

Parameter	Values (Range)	Unit	Step	Default	Description
Rated frequency	1=50Hz 2=60Hz			2=60Hz	Rated frequency of the network
Phase rotation	1=ABC 2=ACB			1=ABC	Phase rotation order
Blocking mode	1=Freeze timer 2=Block all 3=Block OPERATE output			1=Freeze timer	Behaviour for function BLOCK inputs
Bay name				REF615 ¹⁾	Bay name in system
IDMT Sat point	1050	I/I>	1	50	Overcurrent IDMT saturation point

1)Depending on the product variant.

Table 15: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Date				0	Date
Time				0	Time
Time format	1=24H:MM:SS:MS 2=12H:MM:SS:MS			1=24H:MM:SS:MS	Time format
Date format	1=DD.MM.YYYY 2=DD/MM/YYYY 3=DD-MM-YYYY 4=MM.DD.YYYY 5=MM/DD/YYYY 6=YYYY-MM-DD 7=YYYY-DD-MM 8=YYYY/DD/MM'			1=DD.MM.YYYY	Date format
Local time offset	-720720	min		0	Local time offset in minutes

Table 16: HMI settings

Parameter	Values (Range)	Unit	Step	Default	Description
FB naming convention	1=IEC61850 2=IEC60617 4=ANSI			4=ANSI	FB naming convention used in IED
Default view	1=Measurements 2=Main menu 3=SLD			1=Measurements	LHMI default view
Backlight timeout	160	min	1	60 min	LHMI backlight timeout
Web HMI mode	1=Active read only 2=Active 3=Disabled			2=Active	Web HMI functionality
Web HMI timeout	160	min	1	10 min	Web HMI login timeout
SLD symbol format	1=IEC 2=ANSI			2=ANSI	Single Line Diagram symbol format
Autoscroll delay	030	s	1	0	Autoscroll delay for Measurements view

Table 17: IEC 60870-5-103 settings

Parameter	Values (Range)	Unit	Step	Default	Description
Serial port 1	0=Not in use 1=COM 1 2=COM2			0=Not in use	COM port for instance 1
Address 1	1255			1	Unit address for instance 1
Start delay 1	020	char		4	Start frame delay in chars for instance 1
End delay 1	020	char		4	End frame delay in chars for instance 1
DevFunType 1	0225			9	Device Function Type for instance 1
UsrFType 1	0255			10	Function type for User Class 2 Frame for instance 1
UsrInfNo 1	0255			230	Information Number for User Class2Frame for instance 1
Class1Priority 1	0=Ev High 1=Ev/DR Equal 2=DR High			0=Ev High	Class 1 data sending priority relationship between Events and Disturbance Recorder data.
Frame1InUse 1	-1=Not in use 0=User frame 1=Standard frame 1 2=Standard frame 2 3=Standard frame 3 4=Standard frame 4 5=Standard frame 5 6=Private frame 6 7=Private frame 7			6=Private frame 6	Active Class2 Frame 1 for instance 1
Frame2InUse 1	-1=Not in use 0=User frame 1=Standard frame 1 2=Standard frame 2 3=Standard frame 3 4=Standard frame 4 5=Standard frame 5 6=Private frame 6 7=Private frame 7			-1=Not in use	Active Class2 Frame 2 for instance 1
Frame3InUse 1	-1=Not in use 0=User frame 1=Standard frame 1 2=Standard frame 2 3=Standard frame 3 4=Standard frame 4 5=Standard frame 5 6=Private frame 6 7=Private frame 7			-1=Not in use	Active Class2 Frame 3 for instance 1
Frame4InUse 1	-1=Not in use 0=User frame 1=Standard frame 1 2=Standard frame 2 3=Standard frame 3 4=Standard frame 4 5=Standard frame 5 6=Private frame 6 7=Private frame 7			-1=Not in use	Active Class2 Frame 4 for instance 1
Class1OvInd 1	0=No indication 1=Both edges 2=Rising edge			2=Rising edge	Overflow Indication for instance 1
Class1OvFType 1	0255			10	Function Type for Class 1 overflow indication for instance 1

Parameter	Values (Range)	Unit	Step	Default	Description
Class1OvInfNo 1	0255			255	Information Number for Class 1 overflow indication for instance 1
Class1OvBackOff 1	0500			500	Backoff Range for Class1 buffer for instance 1
GI Optimize 1	0=Standard behaviour 1=Skip spontaneous 2=Only overflown 3=Combined			0=Standard behaviour	Optimize GI traffic for instance 1
DR Notification 1	0=Disabled 1=Enabled			0=Disabled	Disturbance Recorder spontaneous indications enabled/disabled
Serial port 2	0=Not in use 1=COM 1 2=COM 2			0=Not in use	COM port for instance 2
Address 2	1255			1	Unit address for instance 2
Start delay 2	020	char		4	Start frame delay in chars for instance 2
End delay 2	020	char		4	End frame delay in chars for instance 2
DevFunType	2 0255			9	Device Function Type for instance 2
UsrFType 2	0255			10	Function type for User Class 2 Frame for instance 2
UsrInfNo 2	0255			230	Information Number for User Class2 Frame for instance 2
Class1Priority 2	0=Ev High 1=Ev/DR Equal 2=DR High			0=Ev High	Class 1 data sending priority relationship between Events and Disturbance Recorder data.
Frame1InUse 2	-1=Not in use 0=User frame 1=Standard frame 1 2=Standard frame 2 3=Standard frame 3 4=Standard frame 4 5=Standard frame 5 6=Private frame 6 7=Private frame 7			6=Private frame 6	Active Class2 Frame 1 for instance 2
Frame2InUse 2	-1=Not in use 0=User frame 1=Standard frame 1 2=Standard frame 2 3=Standard frame 3 4=Standard frame 4 5=Standard frame 5 6=Private frame 6 7=Private frame 7			-1=Not in use	Active Class2 Frame 2 for instance 2
Frame3InUse 2 Table continues on n	-1=Not in use 0=User frame 1=Standard frame 1 2=Standard frame 2 3=Standard frame 3 4=Standard frame 4 5=Standard frame 5 6=Private frame 6 7=Private frame 7			-1=Not in use	Active Class2 Frame 3 for instance 2

Parameter	Values (Range)	Unit	Step	Default	Description
Frame4InUse 2	-1=Not in use 0=User frame 1=Standard frame 1 2=Standard frame 2 3=Standard frame 3 4=Standard frame 4 5=Standard frame 5 6=Private frame 6 7=Private frame 7			-1=Not in use	Active Class2 Frame 4 for instance 2
Class1OvInd 2	0=No indication 1=Both edges 2=Rising edge			2=Rising edge	Overflow Indication for instance 2
Class1OvFType 2	0255			10	Function Type for Class 1 overflow indication for instance 2
Class1OvInfNo 2	0255			255	Information Number for Class 1 overflow indication for instance 2
Class1OvBackOff 2	0500			500	Backoff Range for Class1 buffer for instance 2
GI Optimize 2	0=Standard behaviour 1=Skip spontaneous 2=Only overflown 3=Combined			0=Standard behaviour	Optimize GI traffic for instance 2
DR Notification 2	0=Disabled 1=Enabled			0=Disabled	Disturbance Recorder spontaneous indications enabled/disabled
Internal Overflow	0=False 1=True			0=False	Internal Overflow: TRUE-System level overflow occurred (indication only)

Table 18: IEC 61850-8-1 MMS settings

Parameter	Values (Range)	Unit	Step	Default	Description
Unit mode	1=Primary 0=Nominal 2=Primary-Nominal			0=Nominal	IEC 61850-8-8 unit mode

Table 19: Modbus settings

Parameter	Values (Range)	Unit	Step I	Default	Description
Serial port 1	0=Not in use 1=COM 1 2=COM 2			0=Not in use	COM port for Serial interface 1
Parity 1	0=none 1=odd 2=even			2=even	Parity for Serial interface 1
Address 1	1255			1	Modbus unit address on Serial interface 1
Link mode 1	1=RTU 2=ASCII			1=RTU	Modbus link mode on Serial interface 1
Start delay 1	020	char		4	Start frame delay in chars on Serial interface 1
End delay 1	020	char		3	End frame delay in chars on Serial interface 1
Serial port 2	0=Not in use 1=COM 1 2=COM 2			0=Not in use	COM port for Serial interface 2
Parity 2	0=none 1=odd 2=even			2=even	Parity for Serial interface 2
Address 2	1255			2	Modbus unit address on Serial interface 2
Link mode 2	1=RTU 2=ASCII			1=RTU	Modbus link mode on Serial interface 2
Start delay 2	020			4	Start frame delay in chars on Serial interface 2
End delay 2	020			3	End frame delay in chars on Serial interface 2
MaxTCPClients	05 5				Maximum number of Modbus TCP/IP clients
TCPWriteAuthority	0=No clients 1=Reg. clients 2=All clients			2=All clients	Write authority setting for Modbus TCP/IP clients
EventID	0=Address 1=UID			0=Address	Event ID selection
TimeFormat	0=UTC 1=Local			1=Local	Time format for Modbus time stamps
ClientIP1				000.000.000.00	Modbus Registered Client 1
ClientIP2				000.000.000.000	Modbus Registered Client 2
ClientlP3				000.000.000.000	Modbus Registered Client 3
ClientlP4				000.000.000	Modbus Registered Client 4
ClientlP5				000.000.000.000	Modbus Registered Client 5
CtlStructPWd1				***	Password for Modbus control struct 1

Parameter	Values (Range)	Unit	Step	Default	Description
CtlStructPWd2				***	Password for Modbus control struct 2
CtlStructPWd3				***	Password for Modbus control struct 3
CtlStructPWd4				****	Password for Modbus control struct 4
CtlStructPWd5				****	Password for Modbus control struct 5
CtlStructPWd6				****	Password for Modbus control struct 6
CtlStructPWd7				****	Password for Modbus control struct 7
CtlStructPWd8				****	Password for Modbus control struct 8

Table 20: DNP3: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
DNP physical layer	1=Serial 2=TCP/IP			2=TCP/IP	DNP physical layer
Unit address	165519		1	1	DNP unit address
Master address	165519		1	3	DNP master and UR address
Serial port	0=Not in use 1=COM 1 2=COM 2			0=Not in use	COM port for serial interface, when physical layer is serial.
Need time interval	065535	min	1	30	Period to set IIN need time bit
Time format	0=UTC 1=Local			1=Local	UTC or local. Coordinate with master.
CROB select timeout	165535	sec	1	10	Control Relay Output Block select timeout
Data link confirm	0=Never 1=Only Multiframe 2=Always			0=Never	Data link confirm mode
Data link confirm TO	10065535	ms	1	3000	Data link confirm timeout
Data link retries	065535		1	3	Data link retries count
Data link Rx to Tx delay	0255	ms	1	0	Turnaround transmission delay
Data link inter char delay	020	char	1	4	Inter character delay for incoming messages
App layer confirm	1=Disable 2=Enable			1=Disable	Application layer confirm mode
App confirm TO	10065535	ms	1	5000	Application layer confirm and UR timeout
App layer fragment	2562048	bytes	1	2048	Application layer fragment size
Legacy master SBO	1=Disable 2=Enable			1=Disable	Legacy DNP Master SBO sequence number relax enable
Default Var Obj 01	12		1	1	1=BI; 2=BI with status.
Default Var Obj 02	12		1	2	1=BI event; 2=BI event with time.
Default Var Obj 30	14		1	2	1=32 bit Al; 2=16 bit Al; 3=32 bit Al without flag; 4=16 bit Al without flag.
Default Var Obj 32	14		1	4	1=32 bit AI event; 2=16 bit AI event; 3=32 bit AI event with time; 4=16 bit AI event with time.
Table continued on next pa	age				

Table 21: COM1/COM2 serial communication settings

Parameter	Values (Range)	Unit	Step	Default	Description
Fiber mode	0=No fiber 2=Fiber optic			0=No fiber	Fiber mode for COM1
Serial mode	1=RS485 2Wire 2=RS485 4Wire 3=RS232 no handshake 4=RS232 with handshake			1=RS485 2Wire	Serial mode for COM1
CTS delay	060000			0	CTS delay for COM1
RTS delay	060000			0	RTS delay for COM1
Baudrate	1=300 2=600 3=1200 4=2400 5=4800 6=9600 7=19200 8=38400 9=57600 10=115200			6=9600	Baudrate for COM1
Parity	0=None 1=old 2=even			2=even	Parity for COM1

If this protocol does not operate as expected, check that another serial protocol is not using the same COM port.

DNP 3.0 protocol ignores any parity setting in the COM settings group; DNP 3.0 is defined as an 8 bit/no parity protocol with a 16-bit CRC every 16 bytes. This provides better error detection than parity.

Table 22: Serial communication settings

Parameter	Values (Range)	Unit	Step	Default	Description
Fiber mode	0=No fiber 2=Fiber optic			0=No fiber	Fiber mode for COM2
Serial mode	1=RS485 2Wire 2=RS485 4Wire 3=RS232 no handshake 4=RS232 with handshake			1=RS485 2Wire	Serial mode for COM2
CTS delay	060000			0	CTS delay for COM2
RTS delay	060000			0	RTS delay for COM2
Baudrate	1=300 2=600 3=1200 4=2400 5=4800 6=9600 7=19200 8=38400 9=57600 10=115200			6=9600	Baudrate for COM2

Table 23: Time: Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Date				0	Date
Time				0	Time
Time format	1=HH:MM:SS:MSAM 2=HH:MM:SS:MSPM			1=HH:MM:SS:MSAM	Time format
Date format	1=DD.MM.YYYY 2=DD/MM/YYYY 3=YYYY-MM-DD 4=MM.DD.YYYY 5=MM/DD/YYYY 6=YYYY-MM-DD 7=YYYY-DD-MM 8=YYYY/DD/MM			5=MM/DD/YYYY	Date format
Local time offset	-720720	min		0	Local time offset in minutes
Synch source	0=None 1=SNTP 2=Modbus 5=IRIG-B 8=Line differential 9=DNP 17=IEC60870-5-10			1=SNTP	Time synchronization source
IP SNTP primary				10.58.125.165	IP address for SNTP primary server
IP SNTP secondary				192.168.2.165	IP address for SNTP secondary server
DST on time				02:00	Daylight savings time on, time (hh:mm)
DST on date				01.05.	Daylight savings time on, date (dd:mm)
DST on day	0=No in use 1=Mon 2=Tue 3=Wed 4=Thu 5=Fri 6=Sat 7=Sun			0=Not in use	Daylight savings time on, day of week
DST offset	-720720	min		60	Daylight savings time offset, in minutes
DST off time				02:00	Daylight savings time off, time (hh:mm)
DST off date				25.09.	Daylight savings time off, date (dd:mm)
DST off day	0=No in use 1=Mon 2=Tue 3=Wed 4=Thu 5=Fri 6=Sat 7=Sun			0=Not in use	Daylight savings time off, day of week

Table 24: X100 PSM binary output signals

Name	Туре	Default	Description
X100-PO1	BOOLEAN	0=False	Connectors 6-7
X100-PO2	BOOLEAN	0=False	Connectors 8-9
X100-SO1	BOOLEAN	0=False	Connectors 10c-11nc-12no
X100-SO2	BOOLEAN	0=False	Connectors 13c-14no
X100-PO3	BOOLEAN	0=False	Connectors 15-17/18-19
X100-PO4	BOOLEAN	0=False	Connectors 20-22/23-24

Table 25: X110 BIO binary output signals

Name	Туре	Default	Description	
X110-SO1	BOOLEAN	0=False	Connectors 14c-15no-16nc	
X110-SO2	BOOLEAN	0=False Connectors 17c-18no-19nc		
X110-SO3	BOOLEAN	0=False	Connectors 20c-21no-22nc	
X110-SO4	BOOLEAN	0=False	Connectors 23-24	

Table 26: X110 BIO binary input signals

Name	Туре	Description	
X110-Input 1	BOOLEAN	Connectors 1-2	
X110-Input 2	BOOLEAN	Connectors 3-4	
X110-Input 3	BOOLEAN	Connectors 5-6c	
X110-Input 4	BOOLEAN	Connectors 7-6c	
X110-Input 5	BOOLEAN	Connectors 8-9c	
X110-Input 6	BOOLEAN	Connectors 10-9c	
X110-Input 7	BOOLEAN	Connectors 11-12c	
X110-Input 8	BOOLEAN	Connectors 13-12c	

Table 27: X110 BIO binary input settings

Parameter	Values (Range)	Unit	Step	Default	Description
Input 1 filter time	51000	ms		5	Connectors 1-2
Input 2 filter time	51000	ms		5	Connectors 3-4
Input 3 filter time	51000	ms		5	Connectors 5-6c
Input 4 filter time	51000	ms		5	Connectors 7-6c
Input 5 filter time	51000	ms		5	Connectors 8-9c
Input 6 filter time	51000	ms		5	Connectors 10-9c
Input 7 filter time	51000	ms		5	Connectors 11-12c
Input 8 filter time	51000	ms		5	Connectors 13-12c
Input 1 inversion	0=False 1=True			0=False	Connectors 1-2
Input 2 inversion	0=False 1=True			0=False	Connectors 3-4
Input 3 inversion	0=False 1=True			0=False	Connectors 5-6c
Input 4 inversion	0=False 1=True			0=False	Connectors 7-6c
Input 5 inversion	0=False 1=True			0=False	Connectors 8-9c
Input 6 inversion	0=False 1=True			0=False	Connectors 10-9c
Input 7 inversion	0=False 1=True			0=False	Connectors 11-12c
Input 8 inversion	0=False 1=True			0=False	Connectors 13-12c

Table 28: X120 AIM input signals

Name	Туре	Description
X120-Input 1	BOOLEAN	Connectors 1-2c
X120-Input 2	BOOLEAN	Connectors 3-2c
X120-Input 3	BOOLEAN	Connectors 4-2c
X120-Input 4	BOOLEAN	Connectors 5-6

Table 29: X120 AIM iput settings

Parameter	Values (Range)	Unit	Step	Default	Description
Input 1 filter time	51000	ms		5	Connectors 1-2c
Input 2 filter time	51000	ms		5	Connectors 3-2c
Input 3 filter time	51000	ms		5	Connectors 4-2c
Input 4 filter time	51000	ms		5	Connectors 5-6
Input 1 inversion	0=False 1=True			0=False	Connectors 1-2c
Input 2 inversion	0=False 1=True			0=False	Connectors 3-2c
Input 3 inversion	0=False 1=True			0=False	Connectors 4-2c
Input 4 inversion	0=False 1=True			0=False	Connectors 5-6

Table 30: X130 BIO binary output signals

Name	Туре	Default	Description
X130-SO1	BOOLEAN	0=False	Connectors 10c-11no-12nc
X130-SO2	BOOLEAN	0=False	Connectors 13c-14no-15nc
X130-SO3	BOOLEAN	0=False	Connectors 16c-17no-18nc

Table 31: X130 BIO binary input signals

Name	Туре	Description
X130-Input 1	BOOLEAN	Connectors 1-2c
X130-Input 2	BOOLEAN	Connectors 3-2c
X130-Input 3	BOOLEAN	Connectors 4-5c
X130-Input 4	BOOLEAN	Connectors 6-5c
X130-Input 5	BOOLEAN	Connectors 7-8c
X130-Input 6	BOOLEAN	Connectors 9-8c

Table 32: X130 BIO settings

Parameter	Values (Range)	Unit	Step	Default	Description
Input 1 filter time	51000	ms		5	Connectors 1-2c
Input 2 filter time	51000	ms		5	Connectors 3-2c
Input 3 filter time	51000	ms		5	Connectors 4-5c
Input 4 filter time	51000	ms		5	Connectors 6-5c
Input 5 filter time	51000	ms		5	Connectors 7-8c
Input 6 filter time	51000	ms		5	Connectors 9-8c
Input 1 inversion	0=False 1=True			0=False	Connectors 1-2c
Input 2 inversion	0=False 1=True			0=False	Connectors 3-2c
Input 3 inversion	0=False 1=True			0=False	Connectors 4-5c
Input 4 inversion	0=False 1=True			0=False	Connectors 6-5c
Input 5 inversion	0=False 1=True			0=False	Connectors 7-8c
Input 6 inversion	0=False 1=True			0=False	Connectors 9-8c

Table 33: X130 AIM binary input signals

Name	Туре	Description
X130-Input 1	BOOLEAN	Connectors 1-2
X130-Input 2	BOOLEAN	Connectors 3-4
X130-Input 3	BOOLEAN	Connectors 5-6
X130-Input 4	BOOLEAN	Connectors 7-8

Table 34: X130 AIM binary input settings

Parameter	Values (Range)	Unit	Step	Default	Description
Input 1 filter time	51000	ms		5	Connectors 1-2
Input 2 filter time	51000	ms		5	Connectors 3-4
Input 3 filter time	51000	ms		5	Connectors 5-6
Input 4 filter time	51000	ms		5	Connectors 7-8
Input 1 inversion	0=False 1=True			0=False	Connectors 1-2
Input 2 inversion	0=False 1=True			0=False	Connectors 3-4
Input 3 inversion	0=False 1=True			0=False	Connectors 5-6
Input 4 inversion	0=False 1=True			0=False	Connectors 7-8

3.2 Self-supervision

The IED's extensive self-supervision system continuously supervises the software and the electronics. It handles run-time fault situation and informs the user about a fault via the LHMI and through the communications channels.

There are two types of fault indications.

- · Internal faults
- Warnings

3.2.1 Internal faults

When an IED internal fault is detected, the green Normal LED begins to flash and the self-supervision output contact is activated.

Internal fault indications have the highest priority on the LHMI. None of the other LHMI indications can override the internal fault indication.

An indication about the fault is shown as a message on the LHMI. The text Internal Fault with an additional text message, a code, date and time, is shown to indicate the fault type.

Different actions are taken depending on the severity of the fault. The IED tries to eliminate the fault by restarting. After the fault is found to be permanent, the IED stays in internal fault mode. All other output contacts are released and locked for the internal fault. The IED continues to perform internal tests during the fault situation.

If an internal fault disappears, the green Normal LED stops flashing and the IED returns to the normal service state. The fault indication message remains on the LCD until manually cleared.

The self-supervision signal output operates on the closed circuit principle. Under normal conditions the relay is energized and the contact gap 3-5 in slot X100 is closed. If the auxiliary power supply fails or an internal fault is detected, the contact gap 3-5 is opened.

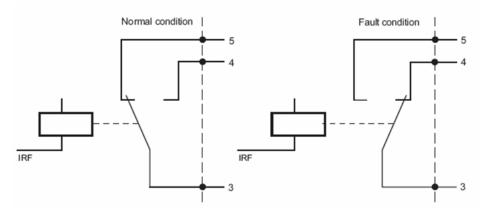


Figure 6: Output contact

The internal fault code indicates the type of internal IED fault. When a fault appears, record the code so that it can be reported to ABB customer service.

Table 35: Internal fault indications and codes

Fault indication	Fault code	Additional information
Internal Fault System error	2	An internal system error has occurred.
Internal Fault File system error	7	A file system error has occurred.
Internal Fault Test	8	Internal fault test activated manually by the user.
Internal Fault SW watchdog error	10	Watchdog reset has occurred too many times within an hour.
Internal Fault SO-relay(s),X100	43	Faulty Signal Output relay(s) in card located in slot X100.
Internal Fault SO-relay(s),X110	44	Faulty Signal Output relay(s) in card located in slot X110.
Internal Fault PO-relay(s),X120	45	Faulty Signal Output relay(s) in card located in slot X120.
Internal Fault PO-relay(s),X130	46	Faulty Signal Output relay(s) in card located in slot X130.
Internal Fault SO-relay(s),X100	53	Faulty Power Output relay(s) in card located in slot X100.
Internal Fault SO-relay(s),X110	54	Faulty Power Output relay(s) in card located in slot X110.
Internal Fault SO-relay(s),X120	55	Faulty Power Output relay(s) in card located in slot X120.
Internal Fault SO-relay(s),X130	56	Faulty Power Output relay(s) in card located in slot X130.
Internal Fault Light sensor error	57	Faulty ARC light sensor input(s).
Table continues on next pa	age	

Fault indication	Fault code	Additional information
Internal Fault Conf. error,X000	62	Card in slot X000 is wrong type.
Internal Fault Conf. error,X100	63	Card in slot X100 is wrong type or does not belong to the original composition.
Internal Fault Conf. error,X110	64	Card in slot X110 is wrong type, is missing, or does not belong to the original composition.
Internal Fault Conf. error,X120	65	Card in slot X120 is wrong type, is missing or does not belong to the original composition.
nternal Fault Conf. error,X130	66	Card in slot X130 is wrong type, is missing or does not belong to the original composition.
Internal Fault Card error,X000	72	Card in slot X000 is faulty.
Internal Fault Card error,X100	73	Card in slot X100 is faulty.
Internal Fault Card error,X110	74	Card in slot X110 is faulty.
Internal Fault Card error,X120	75	Card in slot X120 is faulty.
Internal Fault Card error,X130	76	Card in slot X130 is faulty.
Internal Fault LHMI module	79	LHMI module is faulty. The fault indication may not be seen on the LHMI during the fault.
Internal Fault RAM error	80	Error in the RAM memory on the CPU card.
Internal Fault ROM error	81	Error in the ROM memory on the CPU card.
Internal Fault EEPROM error	82	Error in the EEPROM memory on the CPU card.
Internal Fault FPGA error	83	Error in the FPGA on the CPU card.
Internal Fault RTC error	84	Error in the RTC on the CPU card.
Internal Fault RTD card error, X130	96	Card in slot X130 has RTD fault.

For further information on internal fault indications, see the operation manual.

3.2.2 Warnings

58

In case of a warning, the IED continues to operate except for those protection functions possibly affected by the fault, and the green Normal LED remains lit as during normal operation.

Warnings are indicated with the text Warning and is additionally provided with the name of the warning, a numeric code, and the date and time on the LHMI. The fault indication message can be manually cleared.

If a fault appears, record the name and code so that it can be provided to ABB customer service.

Table 36: Warning indications and codes

Warning indication	Warning code	Additional information
Warning Watchdog reset	10	A watchdog reset has occurred.
Warning Power down det.	11	The auxiliary supply voltage has dropped too low.
Warning IEC61850 error	20	Error when building the IEC 61850 data model.
Warning Modbus error	21	Error in the Modbus communication.
Warning DNP3 error	22	Error in the DNP3 communication.
Warning Dataset error	24	Error in the Data set(s).
Warning Report cont. error	25	Error in the Report control block(s).
Warning GOOSE contr. error	26	Error in the GOOSE control block(s).
Warning SCL config error	27	Error in the SCL configuration file or the file is missing.
Warning Logic error	28	Too many connections in the configuration.
Warning SMT logic error	29	Error in the SMT connections.
Warning GOOSE input error	30	Error in the GOOSE connections.
Warning GOOSE Rx. error	32	Error in the GOOSE message receiving.
Warning AFL error	33	Analog channel configuration error.
Warning Unack card comp.	40	A new composition has not been acknowledged/accepted.
Warning Protection comm.	50	Error in protection communication.
Warning ARC1 cont. light	85	A continuous light has been detected on the ARC light input 1.
Warning ARC2 cont. light	86	A continuous light has been detected on the ARC light input 2.
Warning ARC3 cont. light	87	A continuous light has been detected on the ARC light input 3.
Warning RTD card error,X130	96	Temporary error occurred in RTD card located in slot X130
Warning RTD card error,X130	106	Measurement error in RTD card located in slot X130

For further information on warning indications, see the operation manual.

3.3 LED indication control

The IED includes a global conditioning function LEDPTRC that is used with the protection indication LEDs.

LED indication control should never be used for tripping purposes. There is a separate trip logic function TRPPTRC available in the IED configuration.

LED indication control is preconfigured in a such way that all the protection functions general pickup and trip signals are combined with this function (available as output signals OUT_PICKUP and OUT_TRIP). These signals are always internally connected to Pickup and Trip LEDs. LEDPTRC collects and combines phase information from different protection functions (available as output signals OUT_PU_A /_B /_C and OUT_TRP_A /_B /_C). There is also combined ground fault information collected from all the ground fault functions available in the IED configuration (available as output signals OUT_PU_NEUT and OUT_TRP_NEUT).

3.4 Time synchronization

The IED has an internal real-time clock which can be either free-running or synchronized from an external source. The real-time clock is used for time stamping events, recorded data and disturbance recordings.

The IED is provided with a 48-hour capacitor back-up that enables the real-time clock to keep time in case of an auxiliary power failure.

Setting *Synch Source* determines the method how the real-time clock is synchronized. If set to "None", the clock is free-running and the settings *Date* and *Time* can be used to set the time manually. Other setting values activate a communication protocol that provides the time synchronization. Only one synchronization method can be active at a time but SNTP provides time master redundancy.

The IED supports SNTP, IRIG-B, DNP3 and Modbus to update the real-time clock. IRIG-B with GPS provides the best accuracy.

When Modbus TCP or DNP3 over TCP/IP is used, SNTP time synchronization should be used for better synchronization accuracy.

DNP3 can be used as a time synchronization source.

When the SNTP server IP setting is changed, the IED must be rebooted to activate the new IP address. The SNTP server IP settings are normally defined in the engineering phase via the SCL file.

The IED can use one of two SNTP servers, the primary or the secondary server. The primary server is mainly in use, whereas the secondary server is used if the primary server cannot be reached. While using the secondary SNTP server, the IED tries to switch back to the primary server on every third SNTP request attempt. If both the SNTP servers are offline, event time stamps have the time invalid status. The time is requested from the SNTP server every 60 seconds.

IRIG-B time synchronization requires the IRIG-B format B004/B005 according to the 200-04 IRIG-B standard. Older IRIG-B standards refer to these as B000/B001 with IEEE-1344 extensions. The synchronization time can be either UTC time or local time. As no reboot is necessary, the time synchronization starts immediately after the IRIG-B sync source is selected and the IRIG-B signal source is connected.

ABB has tested the IRIG-B with the following clock masters:

- Tekron TTM01 GPS clock with IRIG-B output
- Meinberg TCG511 controlled by GPS167
- Datum ET6000L
- Arbiter Systems 1088B

IRIG-B time synchronization requires a COM card with an IRIG-B input. Available only with some models.

3.5 Parameter setting groups

3.5.1 Function block

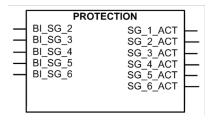


Figure 7: Function block

3.5.2 Functionality

The IED supports six setting groups. Each setting group contains parameters categorized as group settings inside application functions. The customer can change the active setting group at run time.

The active setting group can be changed by a parameter or via binary inputs depending on the mode selected with the Configuration/Setting Group/SG operation mode setting.

The default value of all inputs is FALSE, which makes it possible to use only the required number of inputs and leave the rest disconnected. The setting group selection is not dependent on the SG_x_ACT outputs.

Table 37: Optional operation modes for setting group selection

SG operation mode	Description
Operator (Default)	Setting group can be changed with the setting Settings/Setting group/Active group.
Logic mode 1	Setting group can be changed with binary inputs (SG_1_ACTSG_6_ACT). The highest TRUE binary input defines the active setting group.
Logic mode 2	Setting group can be changed with binary inputs where BI_SG_4 is used for selecting setting groups 1-3 or 4-6. When binary input BI_SG_4 is FALSE, setting groups 1-3 are selected with binary inputs BI_SG_2 and BI_SG_3. When binary input BI_SG_4 is TRUE, setting groups 4-6 are selected with binary inputs BI_SG_5 and BI_SG_6.

For example, six setting groups can be controlled with three binary inputs. Set $SGoperation\ mode = \text{``Logic mode 2''}\ and\ connect\ together\ BI_SG_2\ and\ BI_SG_5 same$ as BI SG 3 and BI SG 6.

Table 38: SG operation mode = "Logic mode 1"

BI_SG_2	BI_SG_3	BI_SG_4	BI_SG_5	BI_SG_6	Active group
FALSE	FALSE	FALSE	FALSE	FALSE	1
TRUE	FALSE	FALSE	FALSE	FALSE	2
any	TRUE	FALSE	FALSE	FALSE	3
any	any	TRUE	FALSE	FALSE	4
any	any	any	TRUE	FALSE	5
any	any	any	any	TRUE	6

Table 39: SG operation mode = "Logic mode 2"

BI_SG_2	BI_SG_3	BI_SG_4	BI_SG_5	BI_SG_6	Active group
FALSE	FALSE	FALSE	any	any	1
TRUE	FALSE	FALSE	any	any	2
any	TRUE	FALSE	any	any	3
any	any	TRUE	FALSE	FALSE	4
any	any	TRUE	TRUE	FALSE	5
any	any	TRUE	any	TRUE	6

The setting group 1 can be copied to any other or all groups from HMI (Copy group 1).

3.6 Fault records

The fault recording period begins from the pickup event of any protection function and ends if any protection function trips or the pickup(s) is restored before the trip event. If a pick-up is restored without an trip event, the pick-up duration shows the protection function that has picked-up first.

Pick-up duration that has the value of 100% indicates that a protection function has tripped during the fault and if none of the protection functions has been tripped, Pick-up duration shows always values less than 100%.

The Fault recorded data Protection and Pick-up duration is from the same protection function. The Fault recorded data trip time shows the time of the actual fault period.

If some functions in relay application are sensitive to start frequently it might be advisable to set the setting parameter *Trig mode* to "Fromoperate". Then only faults that cause an operate event trigger a newfault recording.

The fault-related current, voltage, frequency, angle values, shot pointer and the active setting group number are taken from the moment of the operate event, or from the beginning of the fault if only a start event occurs during the fault. The maximum current value collects the maximum fault currents during the fault. In case frequency cannot be measured, nominal frequency is used for frequency and zero for Frequency gradient and validity is set accordingly.

Measuring mode for phase current and residual current values can be selected with the *A Measurement mode* setting parameter

Table 40: FR Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Off / On
Trig mode	0=Trip or Pickup 1=Trip only 2=Pickup only			0=Trip or Pickup	Triggering mode
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measurement mode

Table 41: FR Monitored data

Name	Туре	Values (Range)	Unit	Description			
Fault number	INT32	0999999		Fault record number			
Time and date	Timestamp			Fault record time stamp			
Protection	Enum	0=Unknown		Protection function			
		1=PHLPTOC1					
		2=PHLPTOC2					
		6=PHHPTOC1					
		7=PHHPTOC2					
		8=РННРТОС3					
		9=PHHPTOC4					
		12=PHIPTOC1					
		13=PHIPTOC2					
		17=EFLPTOC1					
		18=EFLPTOC2					
		19=EFLPTOC3					
		22=EFHPTOC1					
		23=EFHPTOC2					
		24=EFHPTOC3					
		25=EFHPTOC4					
		30=EFIPTOC1					
		31=EFIPTOC2					
		32=EFIPTOC3					
		35=NSPTOC1					
		36=NSPTOC2					
		-7=INTRPTEF1					
		-5=STTPMSU1					
		-3=JAMPTOC1					
		41=PDNSPTOC1					
		44=T1PTTR1					
		46=T2PTTR1					
		48=MPTTR1					
Table continued on next page							

Name	Туре	Values (Range)	Unit	Description		
		50=DEFLPDEF1				
		51=DEFLPDEF2				
		53=DEFHPDEF1				
		56=EFPADM1				
		57=EFPADM2				
		58=EFPADM3				
		59=FRPFRQ1				
		60=FRPFRQ2				
		61=FRPFRQ3				
		62=FRPFRQ4				
		63=FRPFRQ5				
		64=FRPFRQ6				
		65=LSHDPFRQ1				
		66=LSHDPFRQ2				
		67=LSHDPFRQ3				
		68=LSHDPFRQ4				
		69=LSHDPFRQ5				
		71=DPHLPDOC1				
		72=DPHLPDOC2				
		74=DPHHPDOC1				
		77=MAPGAPC1				
		78=MAPGAPC2				
		79=MAPGAPC3				
		85=MNSPTOC1				
		86=MNSPTOC2				
		88=LOFLPTUC1				
		90=TR2PTDF1				
		91=LNPLDF1				
		92=LREFPNDF1				
		94=MPDIF1				
		96=HREFPDIF1				
		100=ROVPTOV1				
		101=ROVPTOV2				
		102=ROVPTOV3				
		104=PHPTOV1				
		105=PHPTOV2				
		106=PHPTOV3				
		108=PHPTUV1				
		109=PHPTUV2				
		110=PHPTUV3				
Table continued on next page						

Name	Туре	Values (Range)	Unit	Description
		112=NSPTOV1		
		113=NSPTOV2		
		116=PSPTUV1		
		118=ARCSARC1		
		119=ARCSARC2		
		120=ARCSARC3		
		-96=SPHIPTOC1		
		-93=SPHLPTOC2		
		-92=SPHLPTOC1		
		-89=SPHHPTOC2		
		-88=SPHHPTOC1		
		-86=SPHPTUV3		
		-85=SPHPTUV2		
		-84=SPHPTUV1		
		-82=SPHPTOV3		
		-81=SPHPTOV2		
		-80=SPHPTOV1		
		-25=OEPVPH4		
		-24=OEPVPH3		
		-23=OEPVPH2		
		-22=OEPVPH1		
		-19=PSPTOV2		
		-18=PSPTOV1		
		-15=PREVPTOC1		
		-12=PHPTUC2		
		-11=PHPTUC1		
		-9=PHIZ1		
		5=PHLTPTOC1		
		20=EFLPTOC4		
		26=EFHPTOC5		
		27=EFHPTOC6		
		37=NSPTOC3		
		38=NSPTOC4		
		45=T1PTTR2		
		54=DEFHPDEF2		
		75=DPHHPDOC2		
		89=LOFLPTUC2		
		103=ROVPTOV4		
		117=PSPTUV2		
Table continued on	next page			

Name	Туре	Values (Range)	Unit	Description
Pickup duration	FLOAT32	0.00100.00	%	Maximum start duration of all stages during the fault
Trip time	FLOAT32	0.000999999.999	s	Operate time
Fault distance	FLOAT32	0.009999.99	pu	Distance to fault measured in pu
Fault resistance	FLOAT32	0.00999.99	ohm	Fault resistance
Setting group	INT32	16		Active setting group
Shot pointer	INT32	07		Autoreclosing shot pointer value
Max diff current IA	FLOAT32	0.00080.000	pu	Maximum phase A differential current
Max diff current IB	FLOAT32	0.00080.000	pu	Maximum phase B differential current
Max diff current IC	FLOAT32	0.00080.000	pu	Maximum phase C differential current
Diff current IA	FLOAT32	0.00080.000	pu	Differential current phase A
Diff current IB	FLOAT32	0.00080.000	pu	Differential current phase B
Diff current IC	FLOAT32	0.00080.000	pu	Differential current phase C
Max bias current IA	FLOAT32	0.00050.000	pu	Maximum phase A bias current
Max bias current IB	FLOAT32	0.00050.000	pu	Maximum phase B bias current
Max bias current IC	FLOAT32	0.00050.000	pu	Maximum phase C bias current
Bias current IA	FLOAT32	0.00050.000	pu	Bias current phase A
Bias current IB	FLOAT32	0.00050.000	pu	Bias current phase B
Bias current IC	FLOAT32	0.00050.000	pu	Bias current phase C
Diff current IG	FLOAT32	0.00080.000	pu	Differential current residual
Bias current IG	FLOAT32	0.00050.000	pu	Bias current residual
Max current IA	FLOAT32	0.00050.000	xln	Maximum phase A current
Max current IB	FLOAT32	0.00050.000	xln	Maximum phase B current
Max current IC	FLOAT32	0.00050.000	xln	Maximum phase C current
Max current IG	FLOAT32	0.00050.000	xln	Maximum residual current
Current IA	FLOAT32	0.00050.000	xln	Phase A current
Current IB	FLOAT32	0.00050.000	xln	Phase B current
Current IC	FLOAT32	0.00050.000	xln	Phase C current
Current IG	FLOAT32	0.00050.000	xln	Residual current
Current I0	FLOAT32	0.00050.000	xln	Calculated residual current
Current I1	FLOAT32	0.00050.000	xln	Positive sequence current
Current I2	FLOAT32	0.00050.000	xln	Negative sequence current
Max current IA2	FLOAT32	0.00050.000	xln	Maximum phase A current (b)
Max current IB2	FLOAT32	0.00050.000	xln	Maximum phase B current (b)
Max current IC2	FLOAT32	0.00050.000	xln	Maximum phase C current (b)
Max current IG2	FLOAT32	0.00050.000	xln	Maximum residual current (b)
Current IA2	FLOAT32	0.00050.000	xln	Maximum phase A current (b)
Current IB2	FLOAT32	0.00050.000	xln	Maximum phase B current (b)
Table continued on next page				

Name	Туре	Values (Range)	Unit	Description
Current IC2	FLOAT32	0.00050.000	xln	Maximum phase C current (b)
Current IG2	FLOAT32	0.00050.000	xln	Residual current (b)
Current I0B	FLOAT32	0.00050.000	xln	Calculated residual current (b)
Current I1B	FLOAT32	0.00050.000	xln	Positive sequence current (b)
Current I2B	FLOAT32	0.00050.000	xln	Negative sequence current (b)
Max current IAIAC	FLOAT32	0.00050.000		Maximum phase A current (c)
Max current IBIBC	FLOAT32	0.00050.000		Maximum phase B current (c)
Max current ICC	FLOAT32	0.00050.000		Maximum phase C current (c)
Max current IoC	FLOAT32	0.00050.000		Maximum residual current (c)
Current IAC	FLOAT32	0.00050.000		Phase A current (c)
Current IBC	FLOAT32	0.00050.000		Phase B current (c)
Current ICC	FLOAT32	0.00050.000		Phase C current (c)
Current IoC	FLOAT32	0.00050.000		Residual current (c)
Current Io-CalcC	FLOAT32	0.00050.000		Calculated residual current (c)
Current Ps-SeqC	FLOAT32	0.00050.000		Positive sequence current (c)
Current Ng-SeqC	FLOAT32	0.00050.000		Negative sequence current (c)
Voltage VA	FLOAT32	0.0004.000	xVn	Phase A voltage
Voltage VB	FLOAT32	0.0004.000	xVn	Phase B voltage
Voltage VC	FLOAT32	0.0004.000	xVn	Phase C voltage
Voltage VAB	FLOAT32	0.0004.000	xVn	Phase A to phase B voltage
Voltage VCA	FLOAT32	0.0004.000	xVn	Phase B to phase C voltage
Voltage VAB	FLOAT32	0.0004.000	xVn	Phase C to phase A voltage
Voltage VG	FLOAT32	0.0004.000	xVn	Residual voltage
Voltage V0	FLOAT32	0.0004.000	xVn	Zero sequence voltage
Voltage V1	FLOAT32	0.0004.000	xVn	Positive sequence voltage
Voltage V2	FLOAT32	0.0004.000	xVn	Negative sequence voltage
Voltage VA2	FLOAT32	0.0004.000	xVn	Phase A voltage (b)
Voltage VB2	FLOAT32	0.0004.000	xVn	Phase B voltage (b)
Voltage VC2	FLOAT32	0.0004.000	xVn	Phase B voltage (b)
Voltage VAB2	FLOAT32	0.0004.000	xVn	Phase A to phase B voltage (b)
Voltage VBC2	FLOAT32	0.0004.000	xVn	Phase B to phase C voltage (b)
Voltage VAC2	FLOAT32	0.0004.000	xVn	Phase C to phase A voltage (b)
Voltage VG2	FLOAT32	0.0004.000	xVn	Residual voltage (b)
Voltage Zro-SeqB	FLOAT32	0.0004.000	xVn	Zero sequence voltage (b)
Voltage Ps-SeqB	FLOAT32	0.0004.000	xVn	Positive sequence voltage (b)
Voltage Ng-SeqB	FLOAT32	0.0004.000	xVn	Negative sequence voltage (b)
PTTR thermal level	FLOAT32	0.0099.99		PTTR calculated temperature of the protected object relative to the operate level
46PD rat. I2/I1	FLOAT32	0.00999.99	%	Phase discontinuity protection
Frequency	FLOAT32	30.0080.00	Hz	Frequency
Table continued on next page				

Name	Туре	Values (Range)	Unit	Description
Frequency gradient	FLOAT32	-10.0010.00	Hz/s	Frequency gradient
Conductance Yo	FLOAT32	-1000.001000.00	mS	Conductance Yo
Susceptance Yo	FLOAT32	-1000.001000.00	mS	Susceptance Yo
Angle VG - IG	FLOAT32	-180.00180.00	deg	Angle residual voltage - residual current
Angle VBC - IA	FLOAT32	-180.00180.00	deg	Angle phase B to phase C voltage - phase A current
Angle VCA - IB	FLOAT32	-180.00180.00	deg	Angle phase C to phase A voltage - phase B current
Angle VAB - IC	FLOAT32	-180.00180.00	deg	Angle phase A to phase B voltage - phase C current
Angle UoB - IoB	FLOAT32	-180.00180.00	deg	Angle residual voltage - residual current (b)
Angle VBC2 - IB2	FLOAT32	-180.00180.00	deg	Angle phase B to phase C voltage - phase A current (b)
Angle VAC2 - IB2	FLOAT32	-180.00180.00	deg	Angle phase C to phase A voltage - phase B current (b)
Angle VAB2 - IC2	FLOAT32	-180.00180.00	deg	Angle phase A to phase B voltage - phase C current (b)

3.7 Non-volatile memory

In addition to the setting values, the IED can store some data in the non-volatile memory.

- Up to 1024 events are stored. The stored events are visible in LHMI and WHMI only.
- Recorded data
 - Fault records (up to 128)
 - Maximum demands
- · Circuit breaker condition monitoring
- Latched alarm and trip LEDs' status
- Trip circuit lockout
- Counter values

3.8 Binary input

3.8.1 Binary input filter time

The filter time eliminates debounces and short disturbances on a binary input. The filter time is set for each binary input of the IED.

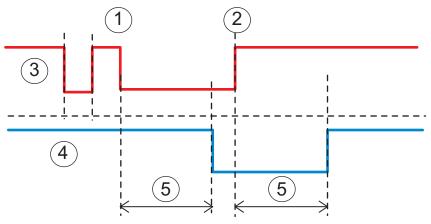


Figure 8: Binary input filtering

- 1 t₀
- 2 t
- 3 Input signal
- 4 Filtered input signal
- 5 Filter time

At the beginning, the input signal is at the high state, the short low state is filtered and no input state change is detected. The low state starting from the time t_0 exceeds the filter time, which means that the change in the input state is detected and the time tag attached to the input change is t_0 . The high state starting from t_1 is detected and the time tag t_1 is attached.

Each binary input has a filter time parameter *Input # filter*, where # is the number of the binary input of the module in question (for example *Input 1 filter*).

Table 42: Input filter parameter values

Parameter	Values	Default
Input # filter time	51000 ms	5 ms

3.8.2 Binary input inversion

The parameter *Input* # *invert* is used to invert a binary input.

Table 43: Binary input states

Control voltage	Input # invert	State of binary input
No	0	False (0)
Yes	0	True (1)
No	1	True (0)
Yes	1	False (0)

When a binary input is inverted, the state of the input is TRUE (1) when no control voltage is applied to its terminals. Accordingly, the input state is FALSE (0) when a control voltage is applied to the terminals of the binary input.

3.8.3 Oscillation suppression

Oscillation suppression is used to reduce the load from the system when a binary input starts oscillating. A binary input is regarded as oscillating if the number of valid state changes (= number of events after filtering) during one second is equal to or greater than the set oscillation level value. During oscillation, the binary input is blocked (the status is invalid) and an event is generated. The state of the input will not change when it is blocked, that is, its state depends on the condition before blocking.

The binary input is regarded as non-oscillating if the number of valid state changes during one second is less than the set oscillation level value minus the set oscillation hysteresis value. Note that the oscillation hysteresis must be set lower than the oscillation level to enable the input to be restored from oscillation. When the input returns to a non-oscillating state, the binary input is deblocked (the status is valid) and an event is generated.

Table 44: Oscillation parameter values

Parameter	Values	Default
Input osc. level	250 events/s	50 events/s
Input osc. hyst.	250 events/s	10 events/s

3.9 Binary output

3.9.1 High-speed outputs HSO

High-speed outputs are normally used in applications which require fast IED output contact activation time to reach fast opening of a breaker. Applications like arc protection or breaker failure protection are example cases where fast operation is desired either to minimize fault effects to equipment or to avoid a fault to expand to a larger area. With high-speed outputs the total time from application to IED output contact activation is typically 5-6 ms shorter than when using output contacts with conventional mechanical output relays. It should be noticed that high-speed outputs also have a trade-off to reach fast contact activation. Reset time of high-speed output contacts is typically longer than with conventional output contacts.

3.10 RTD/mA inputs

3.10.1 Functionality

RTD and mA analog input module is used for monitoring and metering milli-ampere (mA), temperature (°C) and resistance (Ω). Each input can be linearly scaled for various applications, for example, transformer's tap changer position indication. Each input has independent limit value supervision and deadband supervision functions, including warning and alarm signals.

3.10.2 Operation principle

All the inputs of the module are independent RTD and mA channels with individual protection, reference and optical isolation for each input, making them galvanically isolated from each other and from the rest of the module. However, the RTD inputs share a common ground.

3.10.3 Selection of input signal type

The function module inputs accept current or resistance type signals. The inputs are configured for a particular type of input type by the channel specific *Input mode* setting. The default value for all inputs is "Not in use", which means that the channel is not sampled at all, and the output value quality is set accordingly.

Table 45:	RTD/mA settings
-----------	-----------------

Input mode	Description
Not in use	Default selection. Used when the corresponding input is not used.
020 mA	Selection for analog DC milli-ampere current inputs in the input range of 0 – 20 mA.
Resistance	Selection for RTD inputs in the input range of 0 – 2000 Ω .
Pt100 Pt250 Ni100 Ni120 Ni250 Cu10	Selection for RTD inputs, when temperature sensor is used. All the selectable sensor types have their resistance vs. temperature characteristics stored in the module; default measuring range is -40 – 200 °C.

3.10.4 Selection of output value format

Each input has independent *Value unit* settings that are used to select the unit for the channel output. The default value for the *Value unit* setting is "Dimensionless". *Input minimum* respective, *Input maximum* and *Value maximum* respective, *Value minimum* settings have to be adjusted according to the input channel. The default values for these settings are set to their maximum respective minimum setting values.

When the channel is used for temperature sensor type, set the *Value unit* setting to "Degrees celsius". When *Value unit* is set to "Degrees celsius", the linear scaling is not possible, but the default range (-40...200 °C) can be set smaller with the *Value maximum* and *Value minimum* settings.

When the channel is used for DC milli-ampere signal and the application requires linear scaling of the input range, set the *Value unit* setting to "Dimensionless", where the input range can be linearly scaled with settings *Input minimum* and *Input maximum* to *Value minimum* and *Value maximum*. When milli-ampere is used as an output unit, set the *Value unit* setting to "Ampere". When *Value unit* is set to "Ampere", the linear scaling is not possible, but the default range (0...20 mA) can be set smaller with *Value maximum* and *Value minimum* settings.

When the channel is used for resistance type signals and the application requires linear scaling of the input range, set the *Value unit* setting to "Dimensionless", where the input range can be linearly scaled with the setting *Input minimum* and *Input maximum* to *Value minimum* and *Value maximum*. When resistance is used as an output unit, set the *Value unit*

setting to "Ohm". When *Value unit* is set to "Ohm", the linear scaling is not possible, but the default range $(0...2000 \ \Omega)$ can be set smaller with the *Value maximum* and *Value minimum* settings.

3.10.5 Input linear scaling

Each RTD/mA input can be scaled linearly by the construction of a linear output function in respect to the input. The curve consists of two points, where the y-axis (*Input minimum* and *Input maximum*) defines the input range and the x-axis (*Value minimum* and *Value maximum*) is the range of the scaled value of the input.

The input scaling can be bypassed by selecting *Value unit* = "Ohm" when *Input mode* = "Resistance" is used and by selecting *Value unit* = "Ampere" when *Input mode* = "0...20 mA" is used.

Example for linear scaling

Milli-ampere input is used as tap changer position information. The sensor information is from 4 mA to 20 mA that is equivalent to the tap changer position from -36 to 36, respectively.

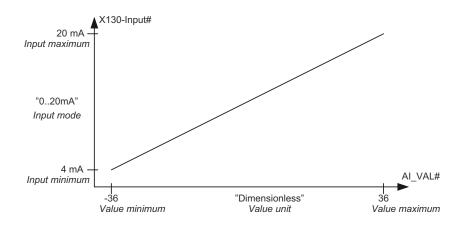


Figure 9: Milli-ampere input scaled to tap changer position information

3.10.6 Measurement chain supervision

Each input contains functionality to monitor the input measurement chain. The circuitry monitors the RTD channels continuously and reports a circuitry break of any enabled input channel. If the measured input value is outside the limits, minimum/maximum value is shown in the corresponding output. The quality of the corresponding output is set accordingly to indicate misbehavior in the RTD/mA input.

Table 46: Function identification, limits for the RTD/mA inputs

Input	Limit value
RTD temperature, high	> 200 °C
RTD temperature, low	< -40 °C
mA current, high	> 23 mA
Resistance, high	> 2000 Ω

3.10.7 Selfsupervision

Each input sample is validated before it is fed into the filter algorithm. The samples are validated by measuring an internally set reference current immediately after the inputs are sampled. Each RTD sensor type has expected current based on the sensor type. If the measured offset current deviates from the reference current more than 20%, the sample is discarded and the output is set to invalid. The invalid measure status deactivates as soon as the measured input signal is within the measurement offset.

3.10.8 Calibration

RTD and mA inputs are calibrated at the factory. The calibration circuitry monitors the RTD channels continuously and reports a circuitry break of any channel.

3.10.9 Limit value supervision

The limit value supervision function indicates whether the measured value of AI_INST# exceeds or falls below the set limits. All the measuring channels have an individual limit value supervision function. The measured value contains the corresponding range information AI_RANGE# and has a value in the range of 0 to 4:

- 0: "normal"
- 1: "high"
- 2: "low"
- 3: "high-high"
- 4: "low-low"

The range information changes and the new values are reported.

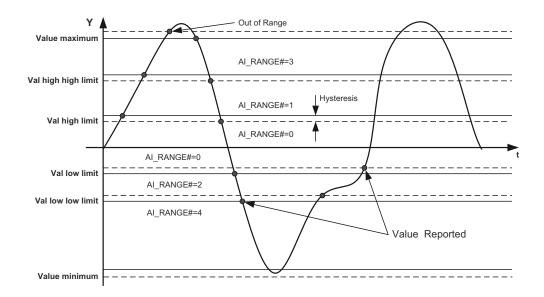


Figure 10: Limit value supervision for RTD (130)

The range information of "High-high limit" and "Low-low limit" is combined from all measurement channels to the Boolean ALARM output. The range information of "High limit" and "Low limit" is combined from all measurement channels to Boolean WARNING output.

Table 47: Settings for X130 (RTD) analog input limit value supervision

Function	Settings for limit value supervision	
X130 (RTD) analog input	Out of range	Value maximum
	High-high limit	Val high high limit
	Hight limit	Val high limit
	Low limit	Val low limit
	Low-low limit	Val low low limit
	Out of range	Value minimum

When the measured value exceeds either the *Value maximum* setting or the *Value minimum* setting, the corresponding quality is set to out of range and a maximum or minimum value is shown when the measured value exceeds the added hysteresis, respectively. The hysteresis is added to the extreme value of the range limit to allow the measurement slightly to exceed the limit value before it is considered as out of range.

3.10.10 Deadband supervision

Each input has an independent deadband supervision. The deadband supervision function reports the measured value according to integrated changes over a time period.

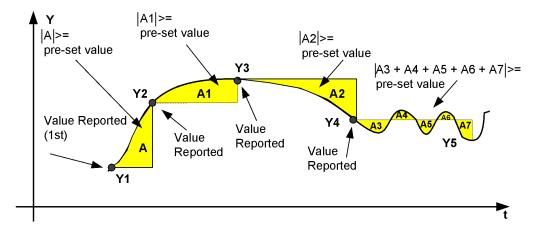


Figure 11: Integral deadband supervision

The deadband value used in the integral calculation is configured with the *Value deadband* setting. The value represents the percentage of the difference between the maximum and minimum limits in the units of 0.001 percent * seconds. The reporting delay of the integral algorithms in seconds is calculated with the formula:

$$t(s) = \frac{(\text{Value maximum - Value minimum}) \times \text{deadband/1000}}{\left| \Delta Y \right| \times 100\%}$$

Example of X130 (RTD) analog input deadband supervision

Temperature sensor Pt100 is used in the temperature range of 15 - 180 °C. *Value unit* "Degrees celsius" is used and the set values *Value minimum* and *Value maximum* areset to 15 and 180, respectively.

Value deadband = 7500 (7.5% of the total measuring range 165)

AI
$$VAL\# = AI DB\# = 85$$

If AI VAL# changes to 90, the reporting delay is:

$$t(s) = \frac{(180 - 15) \times 7500/1000}{|90 - 85| \times 100\%} = 2,5s$$

Table 48: Settings for X130 (RTD) analog input deadband supervision

Function	Setting	Maximum/minimum (=range)
X130 (RTD) analog input	Value deadband	Value maximum / Value minimum(=20000)

Since the function can be utilized in various measurement modes, thedefault values are set to the extremes; thus, it is very important to setcorrect limit values to suit the application before the deadbandsupervision works properly.

3.10.11 RTD temperature vs. resistance

Table 49: Temperature vs. resistance

Temp °C	Platinum 1	TCR 0.00385	ı	Nickel TCR 0.	00618	CVopper TCR 0.00427
٠.	PT 100	Pt 250	Ni 100	Ni 120	Ni 250	Cu 10
-40	84.27	210.675	79.1	94.92	197.75	7.49
-30	88.22	220.55	84.1	100.92	210.25	-
-20	92.16	230.4	89.3	107.16	223.25	8.263
-10	96.09	240.225	94.6	113.52	236.5	-
0	100	250	100	120	250	9.035
10	103.9	259.75	105.6	126.72	264	-
20	107.79	269.475	111.2	133.44	278	9.807
30	111.67	279.175	117.1	140.52	292.75	-
40	115.54	288.85	123	147.6	307.5	10.58
50	119.4	298.5	129.1	154.92	322.75	-
60	123.24	308.1	135.3	162.36	338.25	11.352
70	127.07	317.675	141.7	170.04	354.25	-
80	130.89	327.225	148.3	177.96	370.75	12.124
90	134.7	336.75	154.9	185.88	387.25	-
100	138.5	346.25	161.8	194.16	404.5	12.897
120	146.06	365.15	176	211.2	440	13.669
140	153.58	383.95	190.9	229.08	477.25	14.442
150	-	-	198.6	238.32	496.5	-
160	161.04	402.6	206.6	247.92	516.5	15.217
180	168.46	421.15	223.2	267.84	558	-
200	175.84	439.6	240.7	288.84	601.75	-

3.10.12 RTD/mA input connection

RTD inputs can be used with 2-wire or 3-wire connection with common ground. Whenusing the 3-wire connection, it is important that all three wires connecting the sensorare symmetrical, that is, the wires are of same type and length. The graphical representation of the RTD and milli-ampere input connections can be found under the section "RTD/mA card variants".

3.10.13 RTD/mA card variants

The two variants of RTD cards available are, 6RTD/2mA card and 2RTD/1mA card. The features are similar in both the cards.

3.10.13.1 6RTD/2mA card

This card accepts 2 milli ampere inputs and 6 inputs from the RTD sensors. The inputs 1 and 2 are used for current measurement, whereas inputs from 3 to 8 are used for resistance type of measurements.

RTD/mA input connections

The examples of three-wire and two-wire connections of resistance and temperature sensors to the 6RTD/2mA board are shown:

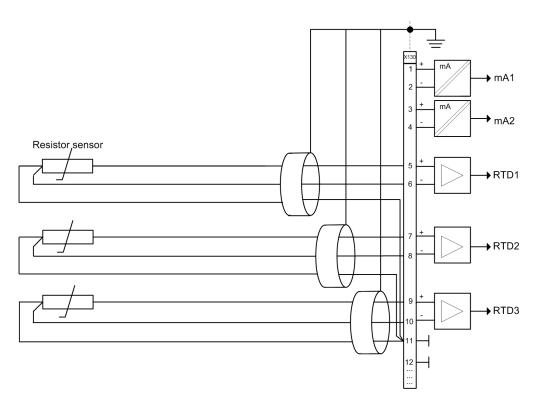


Figure 12: Three RTD and resistance sensors connected according to the three-wire connection for 6RTD/2mA card

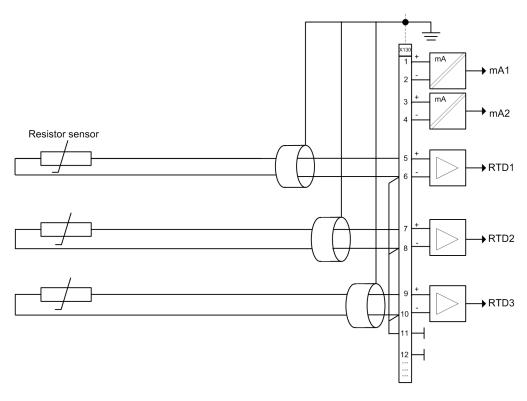
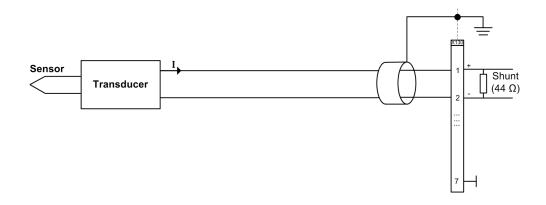
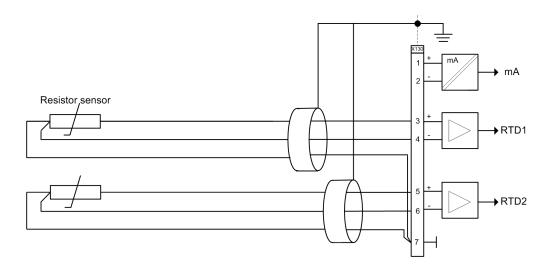


Figure 13: Three RTD and resistance sensors connected according to the two wire connection for 6RTD/2mA card




Figure 14: mA wiring connection for 6RTD/2mA card

3.10.13.2 2RTD/1mA card

This type of card accepts 1 milli ampere input, 2 inputs from RTD sensors and 5 inputs from VTs. The Input 1 is assigned for current measurements, inputs 2 and 3 are for RTD sensors and inputs 4 to 8 are used for measuring input data from VT.

RTD/mA input connection

The examples of three-wire and two-wire connections of resistance and temperature sensors to the 6RTD/2mA board are as shown:

Figure 15: Three RTD and resistance sensors connected according to the three-wire connection for 2 RTD/1mA card

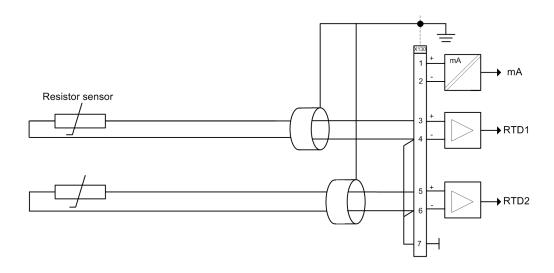


Figure 16: Three RTD and resistance sensors connected according to the two-wire connection for 2RTD/1mA card

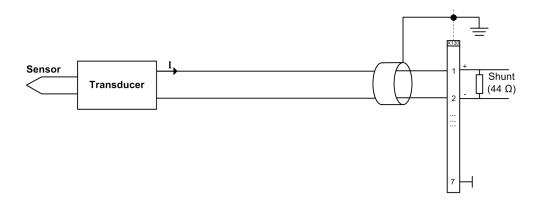


Figure 17: mA wiring connection for 2RTD/1mA card

3.10.14 Signals

Table 50: X130 (RTD/mA) analog input signals

Name	Type	Description
ALARM	BOOLEAN	General alarm
WARNING	BOOLEAN	General warning
AI_VAL1	FLOAT32	mA input, Connectors 1-2, instantaneous value
AI_VAL2	FLOAT32	mA input, Connectors 3-4, instantaneous value
AI_VAL3	FLOAT32	RTD input, Connectors 5-6-11c, instantaneous value
AI_VAL4	FLOAT32	RTD input, Connectors 7-8-11c, instantaneous value
AI_VAL5	FLOAT32	RTD input, Connectors 9-10-11c, instantaneous value
AI_VAL6	FLOAT32	RTD input, Connectors 13-14-12c, instantaneous value
AI_VAL7	FLOAT32	RTD input, Connectors 15-16-12c, instantaneous value
AI_VAL8	FLOAT32	RTD input, Connectors 17-18-12c, instantaneous value

3.10.15 Settings

Table 51: RTD input settings

Parameter	Values (Range)	Unit	Step	Default	Description
Input mode	1=Not in use 2=Resistance 10=Pt100 11=Pt250 20=Ni100 21=Ni120 22=Ni250 30=Cu10			l=Not in use	Analogue input mode
Input maximum	02000		1	2000	Maximum analogue input value for mA or resistance scaling
Input minimum	02000		1	0	Minimum analogue input value for mA or resistance scaling
Value unit	1=Dimensionless 5=Ampere 23=Degrees celsius 30=Ohm			1=Dimensionless	Selected unit for output value format
Value maximum	-10000.010000.0			10000.0	Maximum output value for scaling and supervision
Value minimum	-10000.010000.0			-10000.0	Minimum output value for scaling and supervision
Val high high limit	-10000.010000.0			10000.0	Output value high alarm limit for supervision
Value high limit	-10000.010000.0			10000.0	Output value high warning limit for supervision
Value low limit	-10000.010000.0			-10000.0	Output value low warning limit for supervision
Value low low limit	-10000.010000.0			-10000.0	Output value low alarm limit for Supervision
Value deadband	100100000			1000	Deadband configuration value for integral calculation. (percentage of difference between min and max as 0,001 % s)

Table 52: mA input settings

Parameter	Values (Range)	Unit	Step	Default	Description
Input mode	1=Not in use 5=020mA			1=Not in use	Analogue input mode
Input maximum	020		1	20	Maximum analogue input value for mA or resistance scaling
Input minimum	020		1	0	Minimum analogue input value for mA or resistance scaling
Value unit	1=Dimensionless 5=Ampere 23=Degrees celsius 0=Ohm			1=Dimensionless	Selected unit for output value format
Value maximum	-10000.010000.0			10000.0	Maximum output value for scaling and supervision
Value minimum	-10000.010000.0			-10000.0	Minimum output value for scaling and supervision
Val high high limit	-10000.010000.0			10000.0	Output value high alarm limit for supervision
Value high limit	-10000.010000.0			10000.0	Output value high warning limit for supervision
Value low limit	-10000.010000.0			-10000.0	Output value low warning limit for supervision
Value low low limit	-10000.010000.0			-10000.0	Output value low alarm limit for supervision
Value deadband	100100000			1000	Deadband configuration value for integral calculation. (percentage of difference between min and max as 0,001 % s)

3.10.16 Monitored data

Table 53: X130 (RTD/mA) monitored data

Name	Туре	Values (Range)	Unit	Description	
AI_DB1	FLOAT32	-10000.010000 .0		mA input, Connectors 1-2, reported value	
AI_RANGE1	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		mA input, Connectors 1-2, range	
AI_DB2	FLOAT32	-10000.010000 .0		mA input, Connectors 3-4, reported value	
AI_RANGE2	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		mA input, Connectors 3-4, range	
AI_DB3	FLOAT32	-10000.010000 .0		RTD input, Connectors 5-6-11c, reported value	
Table continues on n	Table continues on next page				

Name	Туре	Values (Range)	Unit	Description
AI_RANGE3	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		RTD input, Connectors 5-6-11c, range
AI_DB4	FLOAT32	-10000.010000 .0		RTD input, Connectors 7-8-11c, reported value
AI_RANGE4	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		RTD input, Connectors 7-8-11c, range
AI_DB5	FLOAT32	-10000.010000 .0		RTD input, Connectors 9-10-11c, reported value
AI_RANGE5	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		RTD input, Connectors 9-10-11c, range
AI_DB6	FLOAT32	-10000.010000 .0		RTD input, Connectors 13-14-12c, reported value
AI_RANGE6	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		RTD input, Connectors 13-14-12c, range
AI_DB7	FLOAT32	-10000.010000 .0		RTD input, Connectors 15-16-12c, reported value
AI_RANGE7	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		RTD input, Connectors 15-16-12c, range
AI_DB8	FLOAT32	-10000.010000 .0		RTD input, Connectors 17-18-12c, reported value
AI_RANGE8	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		RTD input, Connectors 17-18-12c, range

3.11 **GOOSE function blocks**

84

GOOSE function blocks are used for connecting incoming GOOSE data to application. They support BOOLEAN, Dbpos, Enum, FLOAT32, INT8 and INT32 data types.

Common signals

The VALID output indicates the validity of received GOOSE data, which means in case of valid, that the GOOSE communication is working and received data quality bits (if

configured) indicate good process data. Invalid status is caused either by bad data quality bits or GOOSE communication failure. See IEC 61850 engineering guide for details.

The OUT output passes the received GOOSE value for the application. Default value (0) is used if VALID output indicates invalid status. The IN input is defined in the GOOSE configuration and can always be seen in SMT sheet.

Settings

The GOOSE function blocks do not have any parameters available in LHMI or PCM600.

3.11.1 GOOSERCV_BIN function block

3.11.1.1 Function block

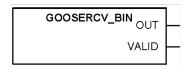


Figure 18: Function block

3.11.1.2 Functionality

The GOOSERCV_BIN function is used to connect the GOOSE binary inputs to the application.

3.11.1.3 Signals

Table 54: GOOSERCV_BIN Input signals

Name	Type	Default	Description
IN	BOOLEAN	0	Input signal

Table 55: GOOSERCV_BIN Output signals

Name	Type	Description
OUT	BOOLEAN	Output signal
VALID	BOOLEAN	Output signal

3.11.2 GOOSERCV_DP function block

3.11.2.1 Function block

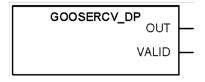


Figure 19: Function block

3.11.2.2 Functionality

The GOOSERCV_DP function is used to connect the GOOSE double binary inputs to the application.

3.11.2.3 Signals

Table 56: GOOSERCV_DP Input signals

Name	Type	Default	Description
IN	Dbpos	00	Input signal

Table 57: GOOSERCV_DP Output signals

Name	Type	Description
OUT	Dbpos	Output signal
VALID	BOOLEAN	Output signal

3.11.3 GOOSERCV_MV function block

3.11.3.1 Function block

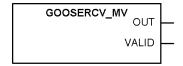


Figure 20: Function block

3.11.3.2 Functionality

The GOOSERCV_MV function is used to connect the GOOSE measured value inputs to the application.

3.11.3.3 Signals

Table 58: GOOSERCV_MV Input signals

Name	Type	Default	Description
IN	FLOAT32	0	Input signal

Table 59: GOOSERCV_MV Output signals

Name	Type	Description
OUT	FLOAT32	Output signal
VALID	BOOLEAN	Output signal

3.11.4 GOOSERCV_INT8 function block

3.11.4.1 Function block

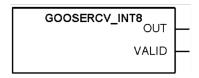


Figure 21: Function block

3.11.4.2 Functionality

The GOOSERCV_INT8 function is used to connect the GOOSE 8 bit integer inputs to the application.

3.11.4.3 Signals

Table 60: GOOSERCV_INT8 Input signals

Name	Type	Description
IN	INT8	Input signal

Table 61: GOOSERCV_INT8 Output signals

ı	Name	Type	Description
	OUT	INT8	Output signal
	VALID	BOOLEAN	Output signal

3.11.5 GOOSERCV_INTL function block

3.11.5.1 Function block

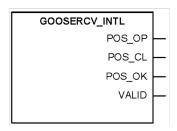


Figure 22: Function block

3.11.5.2 Functionality

The GOOSERCV_INTL function is used to connect the GOOSE double binary input to the application and extracting single binary position signals from the double binary position signal.

The OP output signal indicates that the position is open. Default value (0) is used if VALID output indicates invalid status.

The CL output signal indicates that the position is closed. Default value (0) is used if VALID output indicates invalid status.

The OK output signal indicates that the position is neither in faulty or intermediate state. The default value (0) is used if VALID output indicates invalid status.

3.11.5.3 Signals

Table 62: GOOSERCV_INTL Input signals

Name	Type	Default	Description
IN	Dbpos	00	Input signal

Table 63: GOOSERCV_INTL Output signals

Name	Type	Description
OP	BOOLEAN	Position open output signal
CL	BOOLEAN	Position closed output signal
OK	BOOLEAN	Position OK output signal
VALID	BOOLEAN	Output signal

3.11.6 GOOSERCV_CMV function block

3.11.6.1 Function block

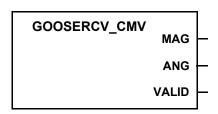


Figure 23: function block

3.11.6.2 Functionality

The GOOSERCV_CMV function is used to connect GOOSE measured value inputs to the application. The MAG_IN (amplitude) and ANG_IN (angle) inputs are defined in the GOOSE configuration (PCM600).

The MAG output passes the received GOOSE (amplitude) value for the application. Default value (0) is used if VALID output indicates invalid status.

The ANG output passes the received GOOSE (angle) value for the application. Default value (0) is used if VALID output indicates invalid status.

3.11.6.3 Signals

Table 64: GOOSERCV_CMV Input signals

Name	Туре	Default	Description
MAG_IN	FLOAT32	0	Input signal (amplitude)
ANG_IN	FLOAT32	0	Input signal (angle)

Table 65: GOOSERCV_CMV Output signals

Name	Туре	Description
MAG	FLOAT32	Output signal (amplitude)
ANG	FLOAT32	Output signal (angle)
VALID	BOOLEAN	Output signal

3.11.7 GOOSERCV_ENUM function block

3.11.7.1 Function block

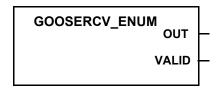


Figure 24: Function block

3.11.7.2 Functionality

The GOOSERCV_ENUM function block is used to connect GOOSE enumerator inputs to the application.

3.11.7.3 Signals

Table 66: GOOSERCV_ENUM Input signals

Name	Туре	Default	Description
IN	Enum	0	Input signal

Table 67: GOOSERCV_ENUM Output signals

Name	Туре	Description
OUT	Enum	Output signal
VALID	BOOLEAN	Output signal

3.11.8 GOOSERCV_INT32 function block

3.11.8.1 Function block

Figure 25: Function block

3.11.8.2 Functionality

The GOOSERCV_INT32 function block is used to connect GOOSE 32 bit integer inputs to the application.

3.11.8.3 Signals

Table 68: GOOSERCV_INT32 Input signals

Name	Туре	Default	Description
IN	INT32	0	Input signal

Table 69: GOOSERCV_INT32 Output signals

Name	Туре	Description
OUT	INT32	Output signal
VALID	BOOLEAN	Output signal

3.12 Type conversion function blocks

3.12.1 QTY_GOOD function block

3.12.1.1 Functionality

The QTY_GOOD function block evaluates the quality bits of the input signal and passes it as a Boolean signal for the application.

The IN input can be connected to any logic application signal (logic function output, binary input, application function output or received GOOSE signal). Due to application logic quality bit propagation, each (simple and even combined) signal has quality which can be evaluated.

The OUT output indicates quality good of the input signal. Input signals that have no quality bits set or only test bit is set, will indicate quality good status.

3.12.1.2 Signals

Table 70: QTY_GOOD Input signals

Name	Туре	Default	Description
IN	Any	0	Input signal

Table 71: QTY_GOOD Output signals

Name	Туре	Description
OUT	BOOLEAN	Output signal

3.12.2 QTY_BAD function block

3.12.2.1 Functionality

The QTY_BAD function block evaluates the quality bits of the input signal and passes it as a Boolean signal for the application.

The IN input can be connected to any logic application signal (logic function output, binary input, application function output or received GOOSE signal). Due to application logic quality bit propagation, each (simple and even combined) signal has quality which can be evaluated.

The OUT output indicates quality bad of the input signal. Input signals that have any other than test bit set, will indicate quality bad status.

3.12.2.2 Signals

Table 72: QTY_BAD Input signals

Name	Туре	Default	Description
IN	Any	0	Input signal

Table 73: QTY_BAD Output signals

Name	Туре	Description
OUT	BOOLEAN	Output signal

3.12.3 T_HEALTH function block

3.12.3.1 Functionality

The T_HEALTH function evaluates enumerated data of "Health" data attribute. This function block can only be used with GOOSE.

The IN input can be connected to GOOSERCV_ENUM function block, which is receiving the LD0.LLN0.Health.stVal data attribute sent by another IED.

The outputs OK, WARNING and ALARM are extracted from the enumerated input value. Only one of the outputs can be active at a time. In case the GOOSERCV_ENUM function block doesn't receive the value from the sending IED, the default value (0) is used and the ALARM is activated in the T HEALTH function block.

3.12.3.2 Signals

Table 74: T_HEALTH Input signals

Name	Туре	Default	Description
IN	Any	0	Input signal

Table 75: T_HEALTH Output signals

Name	Туре	Description	
OK	BOOLEAN	Output signal	
WARNING	BOOLEAN	Output signal	
ALARM	BOOLEAN	Output signal	

3.12.4 T_F32_INT8 function block

3.12.4.1 Functionality

T_F32_INT8 is a type conversion function.

The function converts 32-bit floating type values to 8-bit integer type. The rounding operation is included. Output value saturates if the input value is below the minimum or above the maximum value.

3.12.4.2 Function block

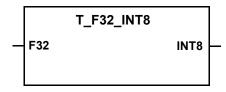


Figure 26: Function block

3.12.4.3 Settings

The function does not have any parameters available in LHMI or Protection and Control IED Manager (PCM600).

3.13 Configurable logic blocks

3.13.1 Standard configurable logic blocks

3.13.1.1 OR function block

Functionality

OR and OR6 are used to form general combinatory expressions with Boolean variables.

The O output is activated when at least one input has the value TRUE. The default value of all inputs is FALSE, which makes it possible to use only the required number of inputs and leave the rest disconnected.

OR has two inputs and OR6 has six inputs.

Function block

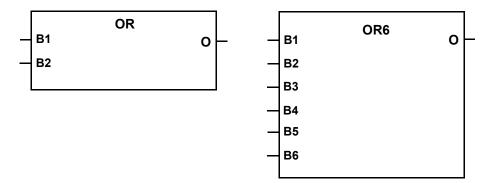


Figure 27: Function blocks

Settings

The function does not have any parameters available in LHMI or Protection and Control IED Manager (PCM600).

3.13.1.2 AND function block

Functionality

AND and AND6 are used to form general combinatory expressions with Boolean variables.

The default value in all inputs is logical true, which makes it possible to use only the required number of inputs and leave the rest disconnected.

AND has two inputs and AND6 has six inputs. Function block

Function block

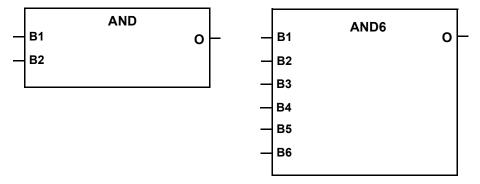


Figure 28: Function blocks

Settings

The function does not have any parameters available in LHMI or Protection and Control IED Manager (PCM600).

3.13.1.3 XOR function block

Functionality

The exclusive OR function XOR is used to generate combinatory expressions with Boolean variables.

The output signal is TRUE if the input signals are different and FALSE if they are equal.

Function block

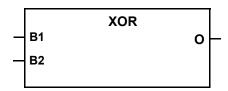


Figure 29: Function block

Settings

The function does not have any parameters available in LHMI or Protection and Control IED Manager (PCM600).

3.13.1.4 NOT function block

Functionality

NOT is used to generate combinatory expressions with Boolean variables.

NOT inverts the input signal.

Function block

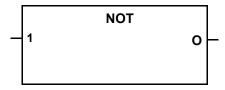


Figure 30: Function block

Settings

The function does not have any parameters available in LHMI or Protection and Control IED Manager (PCM600).

3.13.1.5 MAX3 function block

Functionality

The maximum function MAX3 selects the maximum value from three analog values.

The disconnected inputs have the value 0.

Function block

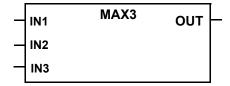


Figure 31: Function block

Settings

The function does not have any parameters available in LHMI or Protection and Control IED Manager (PCM600).

3.13.1.6 MIN3 function block

Functionality

The minimum function MIN3 selects the minimum value from three analog values.

If the minimum value is counted from two signals, connecting one of the inputs to two in MIN3 makes all the inputs to be connected.

Function block

Figure 32: Function block

Settings

The function does not have any parameters available in LHMI or Protection and Control IED Manager (PCM600).

3.13.1.7 R_TRIG function block

Functionality

R Trig is used as a rising edge detector.

R_Trig detects the transition from FALSE to TRUE at the CLK input. When the rising edge is detected, the element assigns the output to TRUE. At the next execution round, the output is returned to FALSE despite the state of the input.

Function block

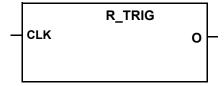


Figure 33: Function block

Settings

The function does not have any parameters available in LHMI or Protection and Control IED Manager (PCM600).

3.13.1.8 F_TRIG function block

Functionality

F Trig is used as a falling edge detector.

The function detects the transition from TRUE to FALSE at the CLK input. When the falling edge is detected, the element assigns the Q output to TRUE. At the next execution round, the output is returned to FALSE despite the state of the input.

Function block

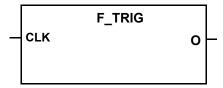


Figure 34: Function block

Settings

The function does not have any parameters available in LHMI or Protection and Control IED Manager (PCM600).

3.13.1.9 T_POS_XX function blocks

Functionality

The circuit breaker position information can be communicated with the IEC 61850 GOOSE messages. The position information is a double binary data type which is fed to the POS input.

T_POS_CL and T_POS_OP are used for extracting the circuit breaker status information. Respectively, T_POS_OK is used to validate the intermediate or faulty breaker position.

Table 76: Cross reference between circuit breaker position and the output of the function block

Circuit brooker position	Output of the function block			
Circuit breaker position	T_POS_CL	T_POS_OP	T_POS_OK	
Intermediate '00'	FALSE	FALSE	FALSE	
Close '01'	TRUE	FALSE	TRUE	
Open '10'	FALSE	TRUE	TRUE	
Faulty '11'	TRUE	TRUE	FALSE	

Function block



Figure 35: Function blocks

Settings

The function does not have any parameters available in LHMI or Protection and Control IED Manager (PCM600).

3.13.2 Minimum pulse timer

3.13.2.1 Minimum pulse timer TP

Identification

Functional description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Minimum pulse timer	TPGAPC	TPGAPC	TP

Function block

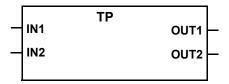
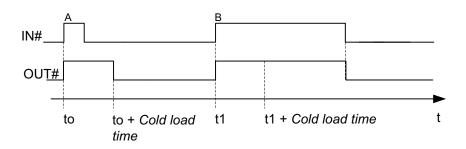


Figure 36: Function block

Functionality


The Minimum pulse timer function TP block contains two independent timers **running in milliseconds**. The function has a settable pulse length (in milliseconds). The timers are used for setting the minimum pulse length for example, the signal outputs. Once the input is activated the function gives out a pulse (Cold load time setting). But if the input remains

active longer than the set Cold load time, also the output remains active until the input is deactivated

Settings

Table 77: PT Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pulse delay time 1	03600000	ms	10	0	Pulse delay time
Pulse delay time 2	03600000	ms	10	0	Pulse delay time
Pulse delay time 3	03600000	ms	10	0	Pulse delay time
Pulse delay time 4	03600000	ms	10	0	Pulse delay time
Pulse delay time 5	03600000	ms	10	0	Pulse delay time
Pulse delay time 6	03600000	ms	10	0	Pulse delay time
Pulse delay time 7	03600000	ms	10	0	Pulse delay time
Pulse delay time 8	03600000	ms	10	0	Pulse delay time

Figure 37: A = Trip pulse is shorter than Cold load time setting, B = Trip pulse is longer than Cold load time setting

3.13.2.2 Minimum second pulse timer 62CLD-1

Identification

Functional description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Minimum second pulse timer	TPSGAPC	TPS (1)	62CLD-1

Function block

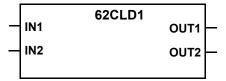
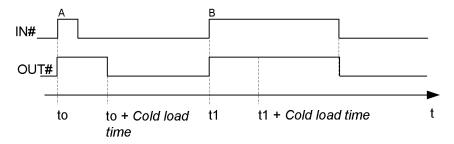



Figure 38: Function block

Functionality

The Minimum minute pulse timer function 62CLD-2 contains two independent timers. The function has a settable pulse length (in minutes). The timers are used for setting the minimum pulse length for example, the signal outputs. Once the input is activated the function gives out a pulse (Pulse time setting). But if the input remains active longer than the set Pulse time, also the output remains active until the input is deactivated.

Figure 39: A = Trip pulse is shorter than Cold load time setting, B = Trip pulse is longer than Cold load time setting

3.13.2.3 Minimum minute pulse timer 62CLD-2

Identification

Functional description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Minimum minute pulse timer	TPMGAPC	TPM (1)	62CLD-2

Function block

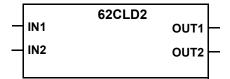
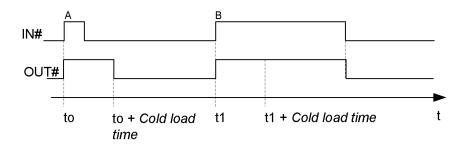



Figure 40: Function block

Functionality

The Minimum minute pulse timer function 62CLD-2 contains two independent timers. The function has a settable pulse length (in minutes). The timers are used for setting the minimum pulse length for example, the signal outputs. Once the input is activated the function gives out a pulse (Cold load time setting). But if the input remains active longer than the set Cold load time, also the output remains active until the input is deactivated

Figure 41: A = Trip pulse is shorter than Cold load time setting, B = Trip pulse is longer than Cold load time setting

3.13.3 Local/remote control function block CONTROL

3.13.3.1 Function block

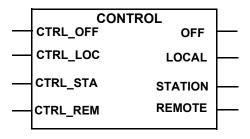


Figure 42: Function block

3.13.3.2 Functionality

Local/Remote control is by default realized through the R/L button on the front panel. The control via binary input can enabled by setting the value of the *LR control* setting to "Binary input".

The actual Local/Remote control state is evaluated by the priority scheme on the function block inputs. If more than one input is active, the input with the highest priority is selected.

The actual state is reflected on the CONTROL function outputs. Only one output is active at a time.

Table 78: Truth table for CONTROL

CTRL_OFF	CTRL_LOC	CTRL_STA 1)	CTRL_RE	Output
TRUE	any	any	any	OFF = TRUE
FALSE	TRUE	any	any	LOCAL = TRUE
FALSE	FALSE	TRUE	any	STATION = TRUE
FALSE	FALSE	FALSE	TRUE	REMOTE = TRUE
FALSE	FALSE	FALSE	FALSE	OFF = TRUE

¹⁾ If station authority is not in use, the $CTRL_STA$ input is interpreted as $CTRL_REM$.

The station authority check based on the command originator category can be enabled by setting the value of the *Station authority* setting to "Station, Remote" (The command originator validation is performed only if the *LR control* setting is set to "Binary input"). The station authority check is not in use by default.

3.13.3.3 Signals

Table 79: CONTROL input signals

Name	Туре	Default	Description
CTRL_OFF	BOOLEAN	0	Control input OFF
CTRL_LOC	BOOLEAN	0	Control input Local
CTRL_STA	BOOLEAN	0	Control input Station
CTRL_REM	BOOLEAN	0	Control input Remote

Output signals

Table 80: CONTROL output signals

Name	Туре	Description
OFF	BOOLEAN	Control output OFF
LOCAL	BOOLEAN	Control output Local
STATION	BOOLEAN	Control output Station
REMOTE	BOOLEAN	Control output Remote

3.13.3.4 Settings

Table 81: CONTROL settings

Parameter	Values (Range)	Unit	Step	Default Description	
LR control	1 = "LR key" 2 = "Binary input"			1 = "LR key"	LR control through LR key or binary input
Station authority	1 = "Not used" 2 = "Station Remote"			1 = "Not used"	Control command originator category usage

3.13.3.5 Monitored data

Table 82: CONTROL Monitored data

Parameter	Type	Values (Range)	Unit	Description
Command response	ENUM	1 = "Select open" 2 = "Select close" 3 = "Operate open" 4 = "Operate close" 5 = "Direct open" 6 = "Direct close" 7 = "Cancel" 8 = "Position reached" 9 = "Position timeout" 10 = "Object status only" 11 = "Object direct" 12 = "Object select" 13 = "RL local allowed" 14 = "RL remote allowed" 15 = "RL off" 16 = "Function off" 17 = "Function blocked" 18 = "Command progress" 19 = "Select timeout" 20 = "Missing authority" 21 = "Close not enabled" 22 = "Open not enabled" 23 = "Internal fault" 24 = "Already close" 25 = "Wrong client" 26 = "RL station allowed" 27 = "RL change"		Latest command response
LR state	ENUM	1 = "OFF" 2 = "Local" 3 = "Remote" 4 = "Station"		LR state monitoring for PCM

3.14 Factory settings restoration

In case of configuration data loss or any other file system error that prevents the IED from working properly, the whole file system can be restored to the original factory state. All default settings and configuration files stored in the factory are restored. For further information on restoring factory settings, see the operation manual.

3.15 Load profile record LDPMSTA

3.15.1 Functionality

The IED is provided with a load profile recorder. The load profile feature stores the historical load data captured at a periodical time interval (demand interval). Up to 12 load quantities can be selected for recording and storing in a nonvolatile memory. The value range for the recorded load quantities is about eight times the nominal value, and values larger than that saturate. The recording time depends on a settable demand interval

parameter and the amount of quantities selected. The record output is in the COMTRADE format.

3.15.1.1 Quantities

Selectable quantities are product-dependent.

Table 83: Quantity

Quantity	Description			
Disabled	Quantity not selected			
IA	Phase A Current Primary Side			
IB	Phase B Current Primary Side			
IC	Phase C Current Primary Side			
IG	Neutral/ground/residual current Primary Side			
IA2	Phase A Current Secondary Side			
IB2	Phase B Current Secondary Side			
IC2	Phase C Current Secondary Side			
IG2	Neutral/ground/residual current Secondary Side			
VAB	Phase A to phase B voltage Primary Side			
VBC	Phase B to phase C voltage Primary Side			
VCA	Phase C to phase A voltage Primary Side			
VA	Phase A voltage Primary Side			
VB	Phase B voltage Primary Side			
VC	Phase C voltage Primary Side			
VAB2	Phase A to phase B voltage Secondary Side			
VBC2	Phase B to phase C voltage Secondary Side			
VCA2	Phase C to phase A voltage Secondary Side			
VA2	Phase A voltage Secondary Side			
VB2	Phase B voltage Secondary Side			
VC2	Phase C voltage Secondary Side			
S	Apparent power			
Р	Real power			
Q	Reactive power			
PF	Power factor			
S2	Apparent power, Secondary side			
P2	Real power Secondary side			
Q2	Reactive power Secondary side			
PF2	Power factor Secondary side			
SA	Apparent power, Phase A			
SB	Apparent power, Phase B			
SC	Apparent power, Phase C			
PA	Real power, Phase A			
Table continue	Table continues on next page			

Quantity	Description	
PB	Real power, Phase B	
PC	Real power, Phase C	
QA	Reactive power, Phase A	
QB	Reactive power, Phase B	
QC	Reactive power, Phase C	
PFA	Power Factor, Phase A	
PFB	Power Factor, Phase B	
PFC	Power Factor, Phase C	
SA2	Apparent power, Phase A Secondary Side	
SB2	Apparent power, Phase B Secondary Side	
SC2	Apparent power, Phase C Secondary Side	
PA2	Real power, Phase A Secondary Side	
PB2	Real power, Phase B Secondary Side	
PC2	Real power, Phase C Secondary Side	
QA2	Reactive power, Phase A Secondary Side	
QB2	Reactive power, Phase B Secondary Side	
QC2	Reactive power, Phase C Secondary Side	
PFA2	Power Factor, Phase A Secondary Side	
PFB2	Power Factor, Phase B Secondary Side	
PFC2	Power Factor, Phase C Secondary Side	

If the data source for the selected quantity is removed, for example, with Application Configuration ACT in PCM600, the load profile recorder stops recording and the previously collected data are cleared.

3.15.1.2 Length of record

The recording capability is about 7.4 years when one quantity is recorded and the demand interval is set to 180 minutes. The recording time scales down proportionally when a shorter demand time is selected or more quantities are recorded. The recording lengths in days with different settings used are presented in Table 84. When the recording buffer is fully occupied, the oldest data are overwritten by the newest data.

Demand interval 30 180 5 60 minute minutes minutes minutes minutes minutes minutes Amount Recording capability in days quantities 15.2 75.8 151.6 227.4 454.9 909.7 2729.2 2 11.4 56.9 113.7 170.6 341.1 682.3 2046.9 91.0 3 9.1 45.5 136.5 272.9 545.8 1637.5 4 7.6 37.9 75.8 113.7 227.4 454.9 1364.6 5 97.5 6.5 32.5 65.0 194.9 389.9 1169.6 6 5.7 28.4 56.9 85.3 170.6 341.1 1023.4 5.1 25.3 50.5 75.8 151.6 303.2 909.7 8 4.5 22.7 45.5 136.5 272.9 818.8 68.2 9 4.1 20.7 41.4 124.1 248.1 744.3 62.0 10 3.8 19.0 37.9 56.9 113.7 227.4 682.3 11 3.5 17.5 35.0 105.0 52.5 209.9 629.8 12 3.2 32.5 97.5 16.2 48.7 194.9 584.8

Table 84: Recording capability in days with different settings

3.15.1.3 Uploading of record

The IED stores the load profile COMTRADE files to the C:\LDP\COMTRADE folder. The files can be uploaded with the PCM600 tool or any appropriate computer software that can access the C:\LDP\COMTRADE folder.

The load profile record consists of two COMTRADE file types: the configuration file (.CFG) and the data file (.DAT). The file name is same for both file types.

To ensure that both the uploaded file types are generated from the same data content, the files need to be uploaded successively. Once either of the files is uploaded, the recording buffer is halted to give time to upload the other file.

Data content of the load profile record is sequentially updated. Therefore, the size attribute for both COMTRADE files is "0".

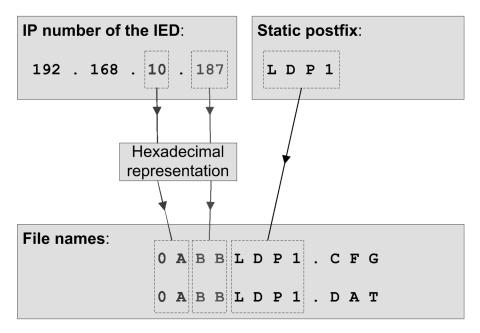


Figure 43: Load profile record file naming

3.15.1.4 Clearing of record

The load profile record can be cleared with *Reset load profile rec* via HMI, communication or the ACT input in PCM600. Clearing of the record is allowed only on the engineer and administrator authorization levels.

The load profile record is automatically cleared if the quantity selection parameters are changed or any other parameter which affects the content of the COMTRADE configuration file is changed. Also, if data source for selected quantity is removed, for example, with ACT, the load profile recorder stops recording and previously collected data are cleared.

3.15.2 Configuration

The load profile record can be configured with the PCM600 tool or any tool supporting the IEC 61850 standard

The load profile record can be enabled or disabled with the *Operation* setting under the **Configuration/Load Profile Record** menu.

The mapping is done with the *Quantity selection* setting of the corresponding quantity channel.

The recording buffer is filled in FIFO manner, meaning that oldest data is overwritten by newest data. If oldest data is considered important, *Mem. warning level* and *Mem. alarm level* parameters can be set to get notification about memory consumtion reaching certain level. Therefore the data can be uploaded before oldest data gets overwritten. To re-enable notifications via *Mem. warning level* and *Mem. alarm level* parameters, the load profile record should be cleared after uploading. State change of *Mem. warning level* or *Mem. alarm level* parameters generates an event.

The IP number of the IED and the content of the Bay name setting are both included in the COMTRADE configuration file for identification purposes.

3.15.3 Signals.

Table 85: LoadProf Output signals

Name Type		Description	
Rec. memory warning	BOOLEAN	Recording memory warning status	
Rec. memory alarm	BOOLEAN	Recording memory alarm status	

3.15.4 Settings

Table 86: LoadProf Non - Group Settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=enable			1=enable	Operation Off / On
	5=disable				
Quantity Sel 1	Refer Table 82			0=Disabled	Select quantity to be recorded
Quantity Sel 2	Refer Table 82			0=Disabled	Select quantity to be recorded
Quantity Sel 3	Refer Table 82			0=Disabled	Select quantity to be recorded
Quantity Sel 4	Refer Table 82			0=Disabled	Select quantity to be recorded
Quantity Sel 5	Refer Table 82			0=Disabled	Select quantity to be recorded
Quantity Sel 6	Refer Table 82			0=Disabled	Select quantity to be recorded
Quantity Sel 7	Refer Table 82			0=Disabled	Select quantity to be recorded
Quantity Sel 8	Refer Table 82			0=Disabled	Select quantity to be recorded
Quantity Sel 9	Refer Table 82			0=Disabled	Select quantity to be recorded
Quantity Sel 10	Refer Table 82			0=Disabled	Select quantity to be recorded
Quantity Sel 11	Refer Table 82			0=Disabled	Select quantity to be recorded
Quantity Sel 12	Refer Table 82			0=Disabled	Select quantity to be recorded
Mem. warning level	0100	%	1	0	Set memory warning level
Mem. alarm level	0100	%	1	0	Set memory alarm level

Section 4 Protection functions

4.1 Current protection

4.1.1 Three-phase non-directional overcurrent protection 51P/50P

4.1.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase non-directional overcurrent protection - Low stage	PHLPTOC	3I>	51P
Three-phase non-directional overcurrent protection - High stage	PHHPTOC	3l>>	50P-1/50P-2
Three-phase non-directional overcurrent protection - Instantaneous stage	PHIPTOC	3l>>>	50P-3

4.1.1.2 Function block

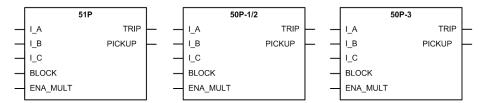


Figure 44: Function block

4.1.1.3 Functionality

The three-phase overcurrent protection 51P/50P is used as one-phase, two-phase or three-phase non-directional overcurrent and short-circuit protection for feeders.

The function picks up when the current exceeds the set limit. The trip time characteristics for low stage 51P and high stage 50P-1/2 can be selected to be either definite time (DT) or inverse definite minimum time (IDMT). The instantaneous stage 50P-3 always trips with the DT characteristic.

In the DT mode, the function trips after a predefined trip time and resets when the fault current disappears. The IDMT mode provides current-dependent timer characteristics.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.1.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of three-phase non-directional overcurrent protection can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

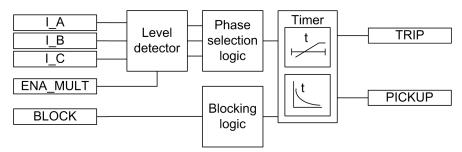


Figure 45: Functional module diagram. I_A, I_B and I_C represent phase currents.

Level detector

The measured phase currents are compared phase-wise with the set *Pickup value*. If the measured value exceeds the set *Pickup value*, the level detector reports the exceeding of the value to the phase selection logic. If the ENA_MULT input is active, the *Pickup value* setting is multiplied by the *Pickup value Mult* setting.

Do not set the multiplier setting *Pickup value Mult* higher than necessary. If the value is too high, the function may not trip at all during an inrush followed by a fault, no matter how severe the fault is.

The pickup value multiplication is normally done when the inrush detection function (INR) is connected to the ENA MULT input.

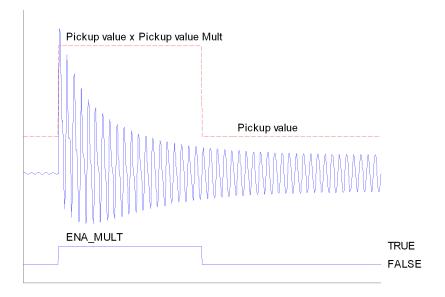


Figure 46: Pickup value behavior with ENA MULT input activated

Phase selection logic

If the fault criteria are fulfilled in the level detector, the phase selection logic detects the phase or phases in which the measured current exceeds the setting. If the phase information matches the *Num of pickup phases* setting, the phase selection logic activates the timer module.

Timer

Once activated, the timer activates the PICKUP output. Depending on the value of the *Operating curve type* setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of *Trip delay time* in the DT mode or the maximum value defined by the inverse time curve, the TRIP output is activated.

When the user programmable IDMT curve is selected, the operate time characteristics are defined by the parameters *Curve parameter A*, *Curve parameter B*, *Curve parameter C*, *Curve parameter D* and *Curve parameter E*.

If a drop-off situation happens, that is, a fault suddenly disappears before the trip delay is exceeded, the timer reset state is activated. The functionality of the timer in the reset state depends on the combination of the *Operating curve type*, *Type of reset curve* and *Reset delay time* settings. When the DT characteristic is selected, the reset timer runs until the set *Reset delay time* value is exceeded. When the IDMT curves are selected, the *Type of reset curve* setting can be set to "Immediate", "Def time reset" or "Inverse reset". The reset curve type "Immediate" causes an immediate reset. With the reset curve type "Def time reset", the reset time depends on the *Reset delay time* setting. With the reset curve type "Inverse reset", the reset time depends on the current during the drop-off situation. If the drop-off situation continues, the reset timer is reset and the PICKUP output is deactivated.

The "Inverse reset" selection is only supported with ANSI or user programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.

The setting *Time multiplier* is used for scaling the IDMT trip and reset times.

The setting parameter *Minimum trip time* defines the minimum desired trip time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum trip time* setting should be used with great care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see the General function block features section in this manual

The timer calculates the pickup duration (PICKUP_DUR) value which indicates the percentual ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/*Blocking mode*" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the relay program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.1.1.5 Measurement modes

The function operates on four alternative measurement modes: "RMS", "DFT", "Peak-to-Peak" and "P-to-P + backup". The measurement mode is selected with the setting *Measurement mode*.

Table 87: Measurement modes supported by 51P/50P stages

Measurement mode	Supported measurement modes				
	51P	50P-1/2	50P-3		
RMS	х	х			
DFT	х	х			
Peak-to-Peak	х	х			
P-to-P + backup			х		

For a detailed description of the measurement modes, see the General function block features section in this manual.

4.1.1.6 Timer characteristics

51P/50P supports both DT and IDMT characteristics. The user can select the timer characteristics with the *Operating curve type* and *Type of reset curve* settings. When the DT characteristic is selected, it is only affected by the *Trip delay time* and *Reset delay time* settings.

The IED provides 16 IDMT characteristics curves, of which seven comply with the IEEE C37.112 and six with the IEC 60255-3 standard. Two curves follow the special characteristics of ABB praxis and are referred to as RI and RD. In addition to this, a user programmable curve can be used if none of the standard curves are applicable. The user can choose the DT characteristic by selecting the *Operating curve type* values "ANSI Def. Time" or "IEC Def. Time". The functionality is identical in both cases.

The following characteristics, which comply with the list in the IEC 61850-7-4 specification, indicate the characteristics supported by different stages:

Table 88: Timer characteristics supported by different stages

Operating ourse type	Suppo	orted by
Operating curve type	51P	50P-1/2
(1) ANSI Extremely Inverse	x	х
(2) ANSI Very Inverse	Х	
(3) ANSI Normal Inverse	Х	х
(4) ANSI Moderately Inverse	Х	
(5) ANSI Definite Time	х	х
(6) Long Time Extremely Inverse	х	
(7) Long Time Very Inverse	х	
(8) Long Time Inverse	Х	
(9) IEC Normal Inverse	Х	х
(10) IEC Very Inverse	Х	х
(11) IEC Inverse	Х	
(12) IEC Extremely Inverse	Х	х
(13) IEC Short Time Inverse	Х	
(14) IEC Long Time Inverse	х	
(15) IEC Definite Time	Х	х
(17) User programmable	Х	х
(18) RI type	Х	
(19) RD type	Х	

50P-3 supports only definite time characteristic.

For a detailed description of timers, see the General function block features section in this manual.

Table 89: Reset time characteristics supported by different stages

Decet cum is time	Suppo		
Reset curve type	51P	50P-1/2	Note
(1) Immediate	х	х	Available for all reset time curves
(2) Def time reset	х	x	Available for all reset time curves
(3) Inverse reset	х	х	Available only for ANSI and user programmable curves

The *Type of reset curve* setting does not apply to 50P-3 or when the DT operation is selected. The reset is purely defined by the *Reset delay time* setting.

4.1.1.7 Application

51P/50P is used in several applications in the power system. The applications include but are not limited to:

- Selective overcurrent and short-circuit protection of feeders in distribution and subtransmission systems
- Backup overcurrent and short-circuit protection of power transformers and generators
- Overcurrent and short-circuit protection of various devices connected to the power system, for example shunt capacitor banks, shunt reactors and motors
- General backup protection

51P/50P is used for single-phase, two-phase and three-phase non-directional overcurrent and short-circuit protection. Typically, overcurrent protection is used for clearing two and three-phase short circuits. Therefore, the user can choose how many phases, at minimum, must have currents above the pickup level for the function to trip. When the number of pickup-phase settings is set to "1 out of 3", the operation of 51P/50P is enabled with the presence of high current in one-phase.

When the setting is "2 out of 3" or "3 out of 3", single-phase faults are not detected. The setting "3 out of 3" requires the fault to be present in all three phases.

Many applications require several steps using different current pickup levels and time delays. 51P/50P consists of three protection stages:

- Low 51P
- High 50P-1/2
- Instantaneous 50P-3.

51P is used for overcurrent protection. The function contains several types of time-delay characteristics. 50P-1/2 and 50P-3 are used for fast clearance of very high overcurrent situations.

Transformer and busbar overcurrent protection with reverse blocking principle

By implementing a full set of overcurrent protection stages and blocking channels between the protection stages of the incoming feeders, bus-tie and outgoing feeders, it is possible to speed up the operation of overcurrent protection in the busbar and transformer LV-side faults without impairing the selectivity. Also, the security degree of busbar protection is increased, because there is now a dedicated, selective and fast busbar protection functionality which is based on the blockable overcurrent protection principle. The additional time selective stages on the transformer HV and LV-sides provide increased security of backup protection for the transformer, busbar and also for the outgoing feeders.

Depending on the overcurrent stage in question, the selectivity of the scheme in Figure 47 is based on the operating current, operating time or blockings between successive overcurrent stages. With blocking channels, the operating time of the protection can be drastically shortened if compared to the simple time selective protection. In addition to the busbar protection, this blocking principle is applicable for the protection of transformer LV terminals and short lines. The functionality and performance of the proposed overcurrent protections can be summarized as seen in the table.

Table 90: Proposed functionality of numerical transformer and busbar overcurrent protection. DT = definite time, IDMT = inverse definite minimum time

O/C-stage	Operating char.	Selectivity mode	Operation speed	Sensitivity
HV/51P	DT/IDMT	time selective	low	very high
HV/50P-1/2	DT	blockable/time selective	high/low	high
HV/50P-3	DT	current selective	very high	low
LV/51P	DT/IDMT	time selective	low	very high
LV/50P-1/2	DT	time selective	low	high
LV/50P-3	DT	blockable	high	high

In case the bus-tie breaker is open, the operating time of the blockable overcurrent protection is approximately 100 ms (relaying time). When the bus-tie breaker is closed, that is, the fault current flows to the faulted section of the busbar from two directions, the operation time becomes as follows: first the bus-tie relay unit trips the tie breaker in the above 100 ms, which reduces the fault current to a half. After this the incoming feeder relay unit of the faulted bus section trips the breaker in approximately 250 ms (relaying time), which becomes the total fault clearing time in this case.

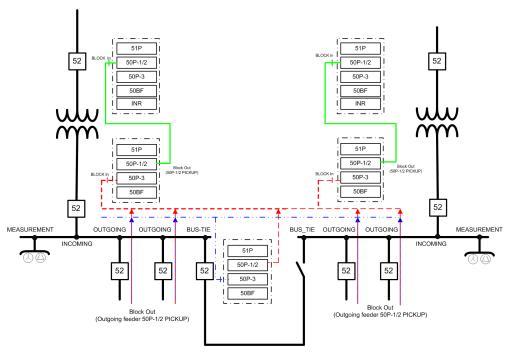


Figure 47: Numerical overcurrent protection functionality for a typical sub-transmission/distribution substation (feeder protection not shown).

Blocking output = digital output signal from the start of a protection stage, Blocking in = digital input signal to block the operation of a protection stage

The operating times of the time selective stages are very short, because the grading margins between successive protection stages can be kept short. This is mainly due to the advanced measuring principle allowing a certain degree of CT saturation, good operating accuracy and short retardation times of the numerical units. So, for example, a grading margin of 150 ms in the DT mode of operation can be used, provided that the circuit breaker interrupting time is shorter than 60 ms.

The sensitivity and speed of the current-selective stages become as good as possible due to the fact that the transient overreach is practically zero. Also, the effects of switching inrush currents on the setting values can be reduced by using the IED logic, which recognizes the transformer energizing inrush current and blocks the operation or multiplies the current pickup value setting of the selected overcurrent stage with a predefined multiplier setting.

Finally, a dependable trip of the overcurrent protection is secured by both a proper selection of the settings and an adequate ability of the measuring transformers to reproduce the fault current. This is important in order to maintain selectivity and also for the protection to operate without additional time delays. For additional information about available measuring modes and current transformer requirements, see the General function block features section in this manual.

Radial outgoing feeder overcurrent protection

The basic requirements for feeder overcurrent protection are adequate sensitivity and operation speed taking into account the minimum and maximum fault current levels along the protected line, selectivity requirements, inrush currents and the thermal and mechanical withstand of the lines to be protected.

In many cases the above requirements can be best fulfilled by using multiple-stage overcurrent units. Figure 48 shows an example of this. A brief coordination study has been carried out between the incoming and outgoing feeders.

The protection scheme is implemented with three-stage numerical overcurrent protection where the low-set stage 51P operates in IDMT-mode and the two higher stages 50P-1/2 and 50P-3 in DT-mode. Also the thermal withstand of the line types along the feeder and maximum expected inrush currents of the feeders are shown. Faults occurring near the station, where the fault current levels are the highest, are cleared rapidly by the instantaneous stage in order to minimize the effects of severe short circuit faults. The influence of the inrush current is taken into consideration by connecting the inrush current detector to the pickup value multiplying input of the instantaneous stage. In this way, the pickup value is multiplied with a predefined setting during the inrush situation and nuisance tripping can be avoided.

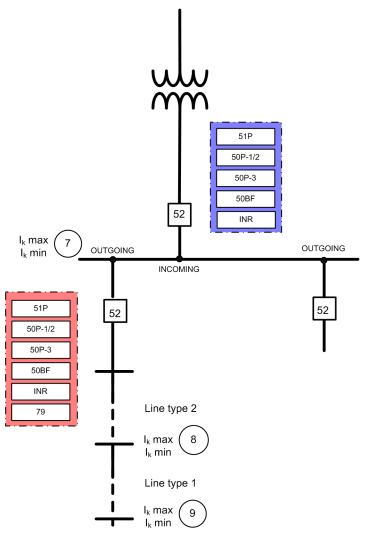


Figure 48: Functionality of numerical multiple-stage overcurrent protection

The coordination plan is an effective tool to study the operation of time selective operation characteristics. All the points mentioned earlier, required to define the overcurrent protection parameters, can be expressed simultaneously in a coordination plan. In Figure 49, the coordination plan shows an example of operation characteristics in the LV-side incoming feeder and radial outgoing feeder.

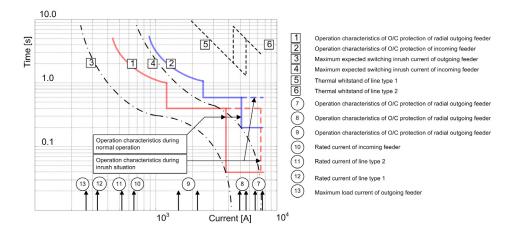


Figure 49: Example coordination of numerical multiple-stage overcurrent protection

4.1.1.8 Signals

Table 91: 51P Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for current multiplier

Table 92: 50P-1/2 Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for current multiplier

Table 93: 50P-3 Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for current multiplier

Table 94: 51P Output signals

Name	Туре	Description		
TRIP	BOOLEAN	Trip		
PICKUP	BOOLEAN	Pickup		

Table 95: 50P-1/2 Output signals

Name	Туре	Description	
TRIP	BOOLEAN	Trip	
PICKUP	BOOLEAN	Pickup	

Table 96: 50P-3 Output signals

Name	Туре	Description			
TRIP	BOOLEAN	Trip			
PICKUP	BOOLEAN	Pickup			

4.1.1.9 Settings

Table 97: 51P Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.055.00	xln	0.01	1.00	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Time multiplier	0.0515.00		0.05	1.00	Time multiplier in IEC/ANSI IDMT curves
Trip delay time	40200000	ms	10	40	Trip delay time
Operating curve type	1=ANSI Ext Inv 2=ANSI Very Inv 3=ANSI Norm Inv 4=ANSI Mod Inv 5=ANSI DT 6=LT Ext Inv 7=LT Very Inv 8=LT Inv 9=IEC Norm Inv 10=IEC Very Inv 11=IEC Inv 12=IEC Ext Inv 13=IEC ST Inv 14=IEC LT Inv 15=IEC DT 17=Programmable 18=RI Type 19=RD Type			5=ANSI DT	Selection of time delay curve type
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type

Table 98: 51P Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Disable / Enable
Num of pickup phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for trip activation
Minimum trip time	2060000	ms	1	20	Minimum trip time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measurement mode
Curve parameter A	0.0086120.0000			28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120			0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00			2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00			29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0			1.0	Parameter E for customer programmable curve

Table 99: 50P-1/2 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.1040.00	xln	0.01	0.10	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Time multiplier	0.0515.00		0.05	1.00	Time multiplier in IEC/ANSI IDMT curves
Trip delay time	40200000	ms	10	40	Trip delay time
Operating curve type	1=ANSI Ext Inv 3=ANSI Norm Inv 5=ANSI DT 9=IEC Norm Inv 10=IEC Very Inv 12=IEC Ext Inv 15=IEC DT 17=Programmable			5=ANSI DT	Selection of time delay curve type
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type

Table 100: 50P-1/2 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Num of pickup phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for trip activation
Minimum trip time	2060000	ms	1	20	Minimum trip time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measurement mode
Curve parameter A	0.0086120.0000			28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120			0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00			2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00			29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0			1.0	Parameter E for customer programmable curve

Table 101: 50P-3 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	1.0040.00	xln	0.01	1.00	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Trip delay time	20200000	ms	10	20	Trip delay time

Table 102: 50P-3 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Num of pickup phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for trip activation
Reset delay time	060000	ms	1	20	Reset delay time

4.1.1.10 Monitored data

Table 103: 51P Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
51P	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

Table 104: 50P-1/2 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
50P-1/2	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

Table 105: 50P-3 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
50P-3	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.1.1.11 Technical data

Table 106: 51P/50P Technical data

Pickup accuracy	Depending on the frequency of	f the current measu	ured: f _n ±2Hz		
51P		±1.5% of the set value or ±0.002 x I _n			
	50P-1/2 and 50P-3	±5.0% of the set	e range of 0.110	117	
Pickup time ¹²		Minimum	Typical	Maximum	
	50P-3: I _{Fault} = 2 x set <i>Pickup value</i> I _{Fault} = 10 x set <i>Pickup value</i>	16 ms 11 ms	19 ms 12 ms	23 ms 14 ms	
	51P and 50P-1/2: I _{Fault} = 2 x set <i>Pickup value</i>	22 ms	24 ms	25 ms	
Reset time		< 40 ms			
Reset ratio		Typical 0.96			
Retardation time		< 30 ms			
Trip time accuracy i	Trip time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Trip time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³			
Suppression of harmonics		RMS: No suppression DFT: -50dB at f = n x f _n , where n = 2, 3, 4, 5, Peak-to-Peak: No suppression P-to-P+backup: No suppression			

Measurement mode = default (depends on stage), current before fault = 0.0 x I_n, f_n = 60 Hz, fault current in
one phase with nominal frequency injected from random phase angle, results based on statistical distribution
of 1000 measurements

^{2.} Includes the delay of the signal output contact

^{3.} Maximum *Pickup value* = $2.5 \times I_n$, *Pickup value* multiples in range of 1.5 to 20

4.1.1.12 Technical revision history

Table 107: 50P-3 Technical revision history

Technical revision	Change
С	Minimum and default values changed to 20 ms for the <i>Trip delay time</i> setting. Minimum value changed to 1.00 x I _n for the <i>Pickup value</i> setting.

Table 108: 50P-1/2 Technical revision history

Technical revision	Change
С	Measurement mode "P-to-P + backup" replaced with "Peak-to-Peak"

Table 109: 51P Technical revision history

Technical revision	Change
В	Minimum and default values changed to 40 ms for the <i>Trip delay time</i> setting

4.1.2 Three-phase non-directional long-time overcurrent protection 51LT

4.1.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase non-directional long time overcurrent protection	PHLTPTOC	3I>	51LT

4.1.2.2 Function block

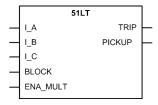


Figure 50: Function block

4.1.2.3 Functionality

The three-phase long-time overcurrent protection 51LT is used as one-phase, two-phase or three-phase non-directional overcurrent and short-circuit protection for feeders.

The operation of this function is very similar to the 51P function except that inverse curves operating times are 10 times that of 51P.

The function also contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.1.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of three-phase long-time overcurrent protection can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

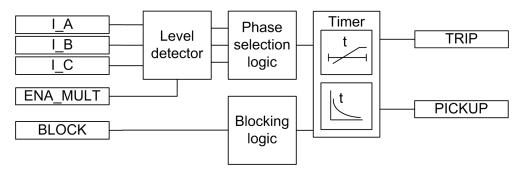


Figure 51: Functional module diagram. I_A, I_B and I_C represent phase currents.

Level detector

The measured phase currents are compared phase-wise to the set *Pickup value*. If the measured value exceeds the set *Pickup value*, the level detector reports the exceeding of the value to the phase selection logic. If the ENA_MULT input is active, the *Pickup value* setting is multiplied by the *Pickup value Mult* setting.

Do not set the multiplier setting *Pickup value Mult* higher than necessary. If the value is too high, the function may not trip at all during an inrush followed by a fault, no matter how severe the fault is.

The pickup value multiplication is normally done when the inrush detection function (INR) is connected to the ENA MULT input.

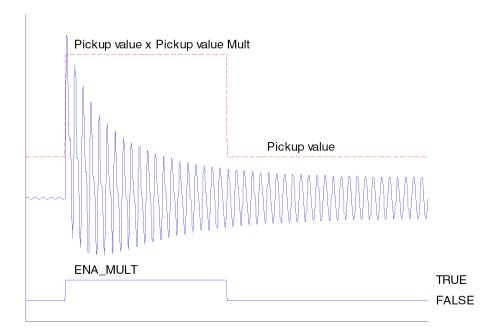


Figure 52: Pickup value behavior with ENA_MULT input activated

Phase selection logic

If the fault criteria are fulfilled in the level detector, the phase selection logic detects the phase or phases in which the measured current exceeds the setting. If the phase information matches the *Num of pickup phases* setting, the phase selection logic activates the timer module.

Timer

Once activated, the timer activates the PICKUP output. Depending on the value of the *Operating curve type* setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of *Trip delay time* in the DT mode or the maximum value defined by the inverse time curve, the TRIP output is activated.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the IED program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is

blocked and the timers are reset. In the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.1.2.5 Timer characteristics

51LT supports both DT and IDMT characteristics. The user can select the timer characteristics with the *Operating curve type* and *Type of reset curve* settings. When the DT characteristic is selected, it is only affected by the *Trip delay time* and *Reset delay time* settings.

The relay provides 9 IDMT characteristics curves, of which seven comply with the IEEE C37.112 and two with the IEC 60255-3 standard. In addition to this, a user programmable curve can be used if none of the standard curves are applicable. The user can choose the DT characteristic by selecting the *Operating curve type* value "Long Definite Time".

Table 110: Timer characteristics supported

Operating curve type	51LT
(1) Long Time Extremely Inverse	х
(2) Long Time Very Inverse	х
(3) Long Time Inverse	х
(4) Long Time Moderately Inverse	х
(5) Long Definite Time	х
(6) Very Long Time Extremely Inverse	х
(7) Very Long Time Very Inverse	х
(8) Very Long Time Inverse	х
(9) Long Time Normal Inverse	х
(14) IEC Long Time Inverse	х
(17) Prorammable	x

For a detailed description of timers, refer to section General function block features in this manual.

Table 111: Reset time characteristics supported by different stages

Reset curve type	51LT
(1) Intermediate	х
(2) Def time reset	х
(3) Inverse reset	х

4.1.2.6 Application

The long time overcurrent protection is used in special feeder protection application where operating time provided by 51P is not good enough for coordination purpose.

4.1.2.7 Signals

Table 112: 51LT Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=false	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0-false	Enable signal for current multiplier

Table 113: 51LT Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup

4.1.2.8 Settings

Table 114: 51LT Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.055.00	xln	0.01	1.00	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Time multiplier	1.015.0		0.1	1.0	Time multiplier in IEC/ANSI IDMT curves
Trip delay time	40200000	ms	10	40	Trip delay time
Operating curve type	1=LT Ext Inv 2=LT Very Inv 3=LT Inv 4=LT Mod Inv 5=Long DT 6=Very LT Ext Inv 7=Very LT Very Inv 8=Very LT Inv 9=LT Normal Inv 14=IEC LT Inv 17=Programmable			5=Long DT	Selection of time delay curve type
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type

Table 115: 51LT Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Num of pickup phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for trip activation
Minimum trip time	2060000	ms	1	20	Minimum trip time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measurement mode
Curve parameter A	0.0086120.0000			28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120			0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00			2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00			29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0			1.0	Parameter E for customer programmable curve

4.1.2.9 Monitored data

Table 116: 51LT Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
51LT	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.1.3 Three-phase directional overcurrent protection 67/51P and 67/50P

4.1.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase directional overcurrent protection - Low stage 1	DPHLPDOC1	3l> ->(1)	67/51P
Three-phase directional overcurrent protection - Low stage 2	DPHLPDOC2	3l> ->(2)	67/50P-1
Three-phase directional overcurrent protection - High stage	DPHHPDOC1	3l>> ->(1)	67/50P-2

4.1.3.2 Function block

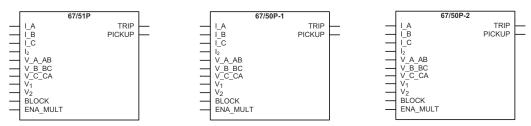


Figure 53: Function block

4.1.3.3 Functionality

The three-phase overcurrent protection 67/51P and 67/50P is used as one-phase, two-phase or three-phase directional overcurrent and short-circuit protection for feeders.

67/51P and 67/50P picks up when the value of the current exceeds the set limit and directional criterion is fulfilled. The trip time characteristics for low stage 67/51P and 67/50P-1 and high stage 67/50P-2 can be selected to be either definite time (DT) or inverse definite minimum time (IDMT).

In the DT mode, the function trips after a predefined trip time and resets when the fault current disappears. The IDMT mode provides current-dependent timer characteristics.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.1.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of directional overcurrent protection can be described using a module diagram. All the blocks in the diagram are explained in the next sections.

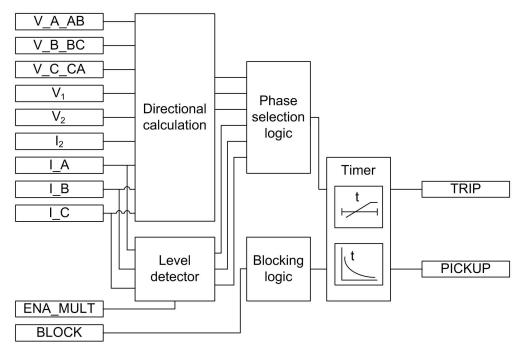


Figure 54: Functional module diagram

Directional calculation

The directional calculation compares the current phasors to the polarizing phasor. The user can select the suitable one from different polarization quantities which are the positive sequence voltage, negative sequence voltage, self polarizing (faulted) voltage and cross polarizing voltages (healthy voltages). The polarizing method is defined with the *Pol quantity* setting.

Table 117: Polarizing quantities

Polarizing quantity	Description
Pos. seq. volt	Positive sequence voltage
Neg. seq. volt	Negative sequence voltage
Self pol	Self polarization
Cross pol	Cross polarization

The directional operation can be selected with the *Directional mode* setting. The user can select either "Non-directional", "Forward" or "Reverse" operation. By setting the value of *Allow Non Dir* to "True", the non-directional operation is allowed when the directional information is invalid.

The *Characteristic angle* setting is used to turn the directional characteristic. The value of *Characteristic angle* should be chosen in such a way that all the faults in the operating direction are seen in the operating zone and all the faults in the opposite direction are seen in the non-operating zone. The value of *Characteristic angle* depends on the network configuration.

Reliable operation requires both the operating and polarizing quantities to exceed certain minimum amplitude levels. The minimum amplitude level for the operating quantity (current) is set with the *Min trip current* setting. The minimum amplitude level for the polarizing quantity (voltage) is set with the *Min trip voltage* setting. If the amplitude level of the operating quantity or polarizing quantity is below the set level, the direction information of the corresponding phase is set to "Unknown".

The polarizing quantity validity can remain valid even if the amplitude of the polarizing quantity falls below the value of the *Min trip voltage* setting. In this case, the directional information is provided by a special memory function for a time defined with the *Voltage Mem time* setting.

The three phase directional over current protection functions is provided with a memory function to secure a reliable and correct directional IED operation in case of a close short circuit or an ground fault characterized by an extremely low voltage. At sudden loss of the polarization quantity, the angle difference is calculated on the basis of a fictive voltage. The fictive voltage is calculated using the positive phase sequence voltage measured before the fault occurred, assuming that the voltage is not affected by the fault. The memory function enables the function to operate up to a maximum of three seconds after a total loss of voltage. This time can be set with the *Voltage Mem time* setting. The voltage memory cannot be used for the "Negative sequence voltage" polarization because it is not possible to substitute the positive sequence voltage for negative sequence voltage without knowing the network unsymmetry level. This is the reason why the fictive voltage angle and corresponding direction information are frozen immediately for this polarization mode when the need for voltage memory arises and these are kept frozen until the time set with *Voltage Mem time* elapses.

When the voltage falls below *Min trip voltage* at a close fault, the fictive voltage is used to determine the phase angle. The measured voltage is applied again as soon as the voltage rises above *Min trip voltage* and hysteresis. The fictive voltage is also discarded if the measured voltage stays below *Min trip voltage* and hysteresis for longer than *Voltage Mem time* or if the fault current disappears while the fictive voltage is in use. When the voltage is below *Min trip voltage* and hysteresis and the fictive voltage is unusable, the fault direction cannot be determined. The fictive voltage can be unusable for two reasons:

- The fictive voltage is discarded after *Voltage Mem time*
- The phase angle cannot be reliably measured before the fault situation.

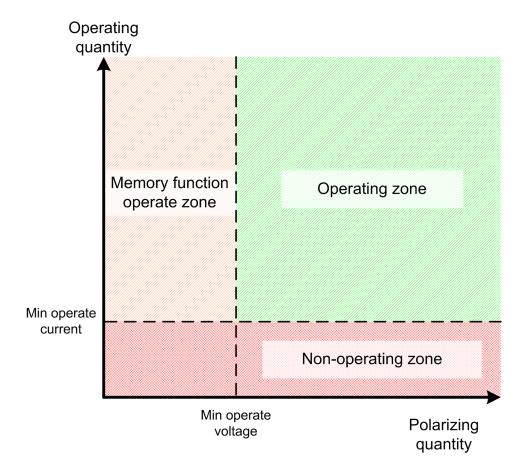


Figure 55: Operating zones at minimum magnitude levels

Level detector

The measured phase currents are compared phase-wise with the set *Pickup value*. If the measured value exceeds the set *Pickup value*, the level detector reports the exceeding of the value to the phase selection logic. If the ENA_MULT input is active, the *Pickup value* setting is multiplied by the *Pickup value Mult* setting.

Do not set the multiplier setting *Pickup value Mult* higher than necessary. If the value is too high, the function may not trip at all during an inrush followed by a fault, no matter how severe the fault is.

The pickup value multiplication is normally done when the inrush detection function (INR) is connected to the ENA_MULT input.

GUID-718D61B4-DAD0-4F43-8108-86F7B44E7E2D V1 EN

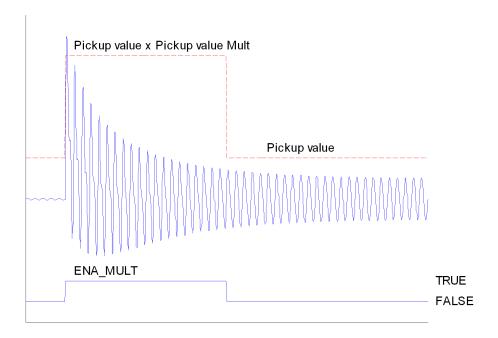


Figure 56: Pickup value behavior with ENA MULT input activated

Phase selection logic

If the fault criteria are fulfilled in the level detector and the directional calculation, the phase selection logic detects the phase or phases in which the measured current exceeds the setting. If the phase information matches the *Num of pickup phases* setting, the phase selection logic activates the timer module.

Timer

Once activated, the timer activates the PICKUP output. Depending on the value of the *Operating curve type* setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of *Trip delay time* in the DT mode or the maximum value defined by the inverse time curve, the TRIP output is activated.

When the user programmable IDMT curve is selected, the operate time characteristics are defined by the parameters *Curve parameter A*, *Curve parameter B*, *Curve parameter C*, *Curve parameter D* and *Curve parameter E*.

If a drop-off situation happens, that is, a fault suddenly disappears before the trip delay is exceeded, the timer reset state is activated. The functionality of the timer in the reset state depends on the combination of the *Operating curve type*, *Type of reset curve* and *Reset delay time* settings. When the DT characteristic is selected, the reset timer runs until the set *Reset delay time* value is exceeded. When the IDMT curves are selected, the *Type of reset curve* setting can be set to "Immediate", "Def time reset" or "Inverse reset". The reset curve type "Immediate" causes an immediate reset. With the reset curve type "Def time

reset", the reset time depends on the *Reset delay time* setting. With the reset curve type "Inverse reset", the reset time depends on the current during the drop-off situation. If the drop-off situation continues, the reset timer is reset and the PICKUP output is deactivated.

The "Inverse reset" selection is only supported with ANSI or user programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.

The setting *Time multiplier* is used for scaling the IDMT trip and reset times.

The setting parameter *Minimum trip time* defines the minimum desired trip time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum trip time* setting should be used with great care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see the General function block features section in this manual.

The timer calculates the pickup duration (PICKUP_DUR) value which indicates the percentage ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the relay program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.1.3.5 Measuring modes

The function operates on three alternative measurement modes: "RMS", "DFT" and "Peak-to-Peak". The measurement mode is selected with the *Measurement mode* setting.

Table 118: Measurement modes supported by 67/51P and 67/50P stages

Management made	Supported measurement modes				
Measurement mode	67/51P and 67/50P-1	67/50P-2			
RMS	Х	х			
DFT	Х	х			
Peak-to-Peak	х	x			

4.1.3.6 Directional overcurrent characteristics

The forward and reverse sectors are defined separately. The forward operation area is limited with the *Min forward angle* and *Max forward angle* settings. The reverse operation area is limited with the *Min reverse angle* and *Max reverse angle* settings.

The sector limits are always given as positive degree values.

In the forward operation area, the *Max forward angle* setting gives the counterclockwise sector and the *Min forward angle* setting gives the corresponding clockwise sector, measured from the *Characteristic angle* setting.

In the backward operation area, the *Max reverse angle* setting gives the counterclockwise sector and the *Min reverse angle* setting gives the corresponding clockwise sector, a measurement from the *Characteristic angle* setting that has been rotated 180 degrees.

Relay characteristic angle (RCA) is set positive if the operating current lags the polarizing quantity and negative if the operating current leads the polarizing quantity.

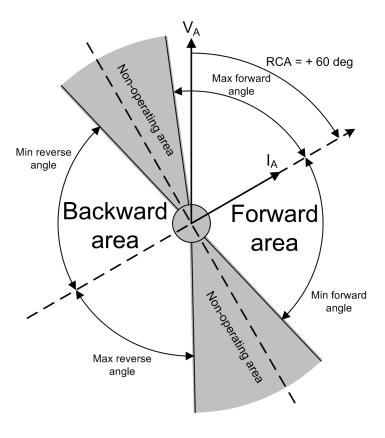


Figure 57: Configurable operating sectors

Table 119: Momentary per phase direction value for monitored data view

Criterion for per phase direction information	The value for DIR_A/_B/_C	
The ANGLE_X is not in any of the defined sectors, or the direction cannot be defined due too low amplitude	0 = unknown	
The ANGLE_X is in the forward sector	1 = forward	
The ANGLE_X is in the reverse sector	2 = backward	
(The ANGLE_X is in both forward and reverse sectors, that is, when the sectors are overlapping)	3 = both	

Table 120: Momentary phase combined direction value for monitored data view

Criterion for phase combined direction information	The value for DIRECTION
The direction information (DIR_X) for all phases is unknown	0 = unknown
The direction information (DIR_X) for at least one phase is forward, none being in reverse	1 = forward
The direction information (DIR_X) for at least one phase is reverse, none being in forward	2 = backward
The direction information (DIR_X) for some phase is forward and for some phase is reverse	3 = both

FAULT_DIR gives the detected direction of the fault during fault situations, that is, when the PICKUP output is active.

Self-polarizing as polarizing method

Table 121: E	Equations for calculating	angle difference fo	r self-polarizing method
--------------	---------------------------	---------------------	--------------------------

Faulted phases	Used fault current	Used polarizing voltage	Angle difference
А	<u>l</u> A	<u>V</u> _A	$ANGLE_A = \varphi(\underline{V}_A) - \varphi(\underline{I}_A) - \varphi_{RCA}$
В	<u>l</u> B	<u>V</u> B	$ANGLE_B = \varphi(\underline{V}_B) - \varphi(\underline{I}_B) - \varphi_{RCA}$
С	<u>l</u> c	<u>V</u> C	$ANGLE_C = \varphi(\underline{V}_C) - \varphi(\underline{I}_C) - \varphi_{RCA}$
A - B	<u>l</u> _A - <u>l</u> _B	<u>V</u> _{AB}	$ANGLE_A = \varphi(\underline{V}_{AB}) - \varphi(\underline{I}_A - \underline{I}_B) - \varphi_{RCA}$
B - C	<u>I_B - I_C</u>	<u>V</u> _{BC}	$ANGLE_B = \varphi(\underline{V}_{BC}) - \varphi(\underline{I}_B - \underline{I}_C) - \varphi_{RCA}$
C - A	<u>I</u> _C - <u>I</u> _A	<u>V</u> CA	$ANGLE_C = \varphi(\underline{V}_{CA}) - \varphi(\underline{I}_C - \underline{I}_A) - \varphi_{RCA}$

In an example case of the phasors in a single-phase ground fault where the faulted phase is phase A, the angle difference between the polarizing quantity V_A and operating quantity I_A is marked as ϕ . In the self-polarization method, there is no need to rotate the polarizing quantity.

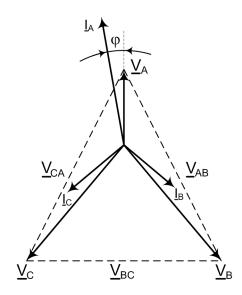


Figure 58: Single-phase ground fault, phase A

In an example case of a two-phase short-circuit failure where the fault is between phases B and C, the angle difference is measured between the polarizing quantity V_{BC} and operating quantity \underline{I}_B - \underline{I}_C in the self-polarizing method.

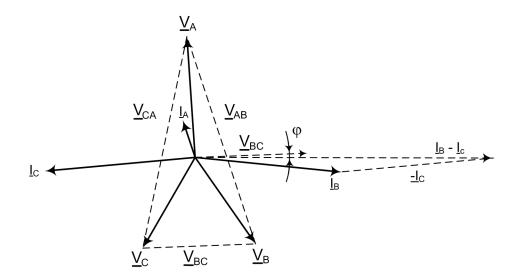


Figure 59: Two-phase short circuit, short circuit is between phases B and C

Cross-polarizing as polarizing quantity

Table 122: Equations for calculating angle difference for cross-polarizing method

Faulted phases	Used fault current	Used polarizing voltage	Angle difference
Α	<u>l</u> _A	<u>V</u> BC	$ANGLE_A = \varphi(\underline{V}_{BC}) - \varphi(\underline{I}_A) - \varphi_{RCA} + 90^o$
В	<u>l</u> _B	<u>V</u> _{CA}	$ANGLE_B = \varphi(\underline{V}_{CA}) - \varphi(\underline{I}_B) - \varphi_{RCA} + 90^{\circ}$
С	<u>l</u> c	<u>V</u> _{AB}	$ANGLE_C = \varphi(\underline{V}_{AB}) - \varphi(\underline{I}_C) - \varphi_{RCA} + 90^o$
A - B	<u>l</u> _A - <u>l</u> _B	<u>V</u> _{BC} - <u>V</u> _{CA}	$ANGLE_A = \varphi(\underline{V}_{BC} - \underline{V}_{CA}) - \varphi(\underline{I}_A - \underline{I}_B) - \varphi_{RCA} + 90^o$
B - C	<u>l</u> _B - <u>l</u> _C	<u>V</u> _{CA} - <u>V</u> _{AB}	$ANGLE_B = \varphi(\underline{V}_{CA} - \underline{V}_{AB}) - \varphi(\underline{I}_B - \underline{I}_C) - \varphi_{RCA} + 90^o$
C - A	<u>l</u> _C - <u>l</u> _A	<u>V</u> _{AB} - <u>V</u> _{BC}	$ANGLE_C = \varphi(\underline{V}_{AB} - \underline{V}_{BC}) - \varphi(\underline{I}_C - \underline{I}_A) - \varphi_{RCA} + 90^o$

The polarizing quantity is rotated with 90 degrees. The characteristic angle is assumed to be ~ 0 degrees.

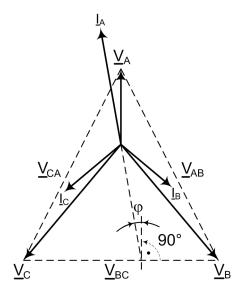


Figure 60: Single-phase ground fault, phase A

In an example of the phasors in a two-phase short-circuit failure where the fault is between the phases B and C, the angle difference is measured between the polarizing quantity \underline{V}_{AB} and operating quantity \underline{I}_B - \underline{I}_C marked as $\phi.$

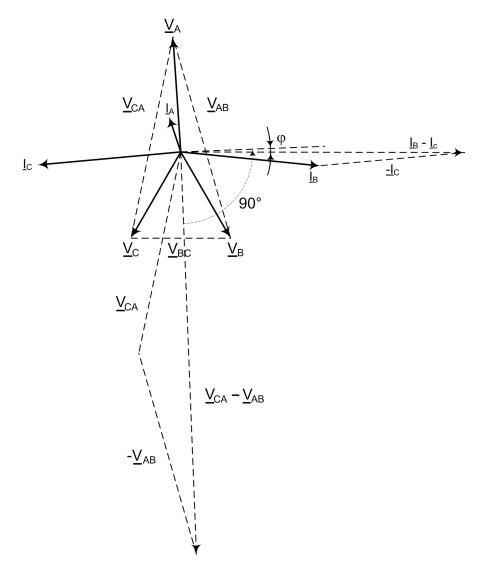


Figure 61: Two-phase short circuit, short circuit is between phases B and C

The equations are valid when network rotating direction is counterclockwise, that is, ABC. If the network rotating direction is reversed, 180 degrees is added to the calculated angle difference. This is done automatically with a system parameter *Phase rotation*.

Negative-sequence voltage as polarizing quantity

When the negative voltage is used as the polarizing quantity, the angle difference between the operating and polarizing quantity is calculated with the same formula for all fault types:

$$ANGLE _X = \varphi(-\underline{V2}) - \varphi(\underline{I2}) - \varphi_{RCA}$$
 (Equation 1)

This means that the actuating polarizing quantity is $-\underline{V2}$.

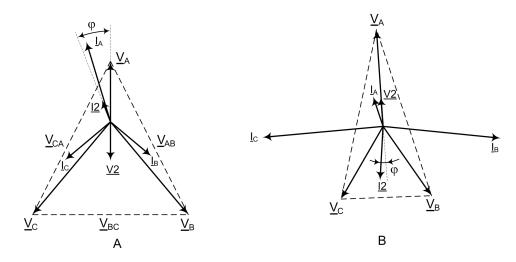


Figure 62: Phasors in a single-phase ground fault, phases A-N, and two-phase short circuit, phases B and C, when the actuating polarizing quantity is the negative-sequence voltage -V2

Positive-sequence voltage as polarizing quantity

Table 123: Equations for calculating angle difference for positive-sequence quantity polarizing method

Faulted phases	Used fault current	Used polarizing voltage	Angle difference
A	<u>l</u> A	<u>V1</u>	$ANGLE _A = \varphi(\underline{V1}) - \varphi(\underline{I}_A) - \varphi_{RCA}$
В	<u>l</u> B	<u>V1</u>	$ANGLE_B = \varphi(\underline{V1}) - \varphi(\underline{I}_B) - \varphi_{RCA} - 120^{\circ}$
С	<u>l</u> c	<u>V1</u>	$ANGLE_C = \varphi(\underline{V1}) - \varphi(\underline{I}_C) - \varphi_{RCA} + 120^{\circ}$
A - B	<u>I</u> A - <u>I</u> B	<u>V1</u>	$ANGLE _A = \varphi(\underline{V1}) - \varphi(\underline{I}_A - \underline{I}_B) - \varphi_{RCA} + 30^{\circ}$
B - C	<u>l</u> _B - <u>l</u> _C	<u>V1</u>	$ANGLE_B = \varphi(\underline{V1}) - \varphi(\underline{I}_B - \underline{I}_C) - \varphi_{RCA} - 90^{\circ}$
C - A	<u>I</u> _C - <u>I</u> _A	<u>V1</u>	$ANGLE_C = \varphi(\underline{V1}) - \varphi(\underline{I}_C - \underline{I}_A) - \varphi_{RCA} + 150^{\circ}$

NETWORK ROTATION ABC

NETWORK ROTATION ACB



Figure 63: Phasors in a single-phase ground fault, phase A to ground, and a two-phase short circuit, phases B-C, are short-circuited when the polarizing quantity is the positive-sequence voltage V1

Network rotating direction

Typically, the network rotating direction is counterclockwise and defined as "ABC". If the network rotating direction is reversed, meaning clockwise, that is, "ACB", the equations for calculating the angle difference need to be changed. The network rotating direction is defined with a system parameter *Phase rotation*. The change in the network rotating direction affects the phase-to-phase voltages polarization method where the calculated angle difference needs to be rotated 180 degrees. Also, when the sequence components are used, which are the positive-sequence voltage or negative-sequence voltage components, the calculation of the components is affected but the angle difference calculation remains the same. When the phase-to-ground voltages are used as the polarizing method, the network rotating direction change has no effect on the direction calculation.

The network rotating direction is set in the IED using the parameter in the HMI menu: **Configuration > System > Phase rotation**. The default parameter value is "ABC".

NETWORK ROTATION ABC

NETWORK ROTATION ACB

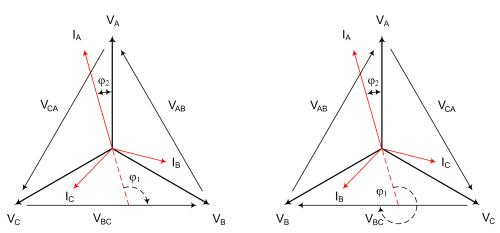


Figure 64: Examples of network rotating direction

4.1.3.7 Application

67/51P and 67/50P is used as short-circuit protection in three-phase distribution or sub transmission networks operating at 50 or 60 Hz.

In radial networks, phase overcurrent IEDs are often sufficient for the short circuit protection of lines, transformers and other equipment. The current-time characteristic should be chosen according to the common practice in the network. It is recommended to use the same current-time characteristic for all overcurrent IEDs in the network. This includes the overcurrent protection of transformers and other equipment.

The phase overcurrent protection can also be used in closed ring systems as short circuit protection. Because the setting of a phase overcurrent protection system in closed ring networks can be complicated, a large number of fault current calculations are needed. There are situations with no possibility to have the selectivity with a protection system based on overcurrent IEDs in a closed ring system.

In some applications, the possibility of obtaining the selectivity can be improved significantly if 67/51P and 67/50P is used. This can also be done in the closed ring networks and radial networks with the generation connected to the remote in the system thus giving fault current infeed in reverse direction. Directional overcurrent IEDs are also used to have a selective protection scheme, for example in case of parallel distribution lines or power transformers fed by the same single source. In ring connected supply feeders between substations or feeders with two feeding sources, 67/51P and 67/50P is also used.

Parallel lines or transformers

When the lines are connected in parallel and if a fault occurs in one of the lines, it is practical to have 67/51P and 67/50P to detect the direction of the fault. Otherwise, there is a risk that the fault situation in one part of the feeding system can de-energize the whole system connected to the LV side.

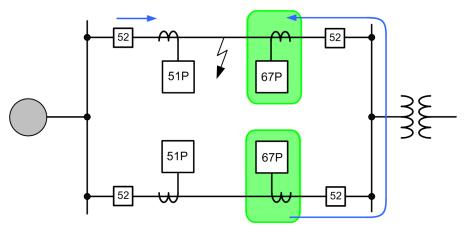


Figure 65: Overcurrent protection of parallel lines using directional IEDs

67/51P and 67/50P can be used for parallel operating transformer applications. In these applications, there is a possibility that the fault current can also be fed from the LV-side up to the HV-side. Therefore, the transformer is also equipped with directional overcurrent protection.

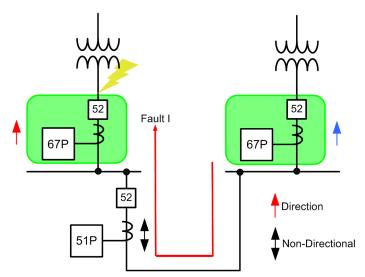


Figure 66: Overcurrent protection of parallel operating transformers

Closed ring network topology

The closed ring network topology is used in applications where electricity distribution for the consumers is secured during network fault situations. The power is fed at least from two directions which means that the current direction can be varied. The time grading between the network level stages is challenging without unnecessary delays in the time settings. In this case, it is practical to use the directional overcurrent IEDs to achieve a selective protection scheme. Directional overcurrent functions can be used in closed ring applications. The arrows define the operating direction of the directional functionality. The double arrows define the non-directional functionality where faults can be detected in both directions.

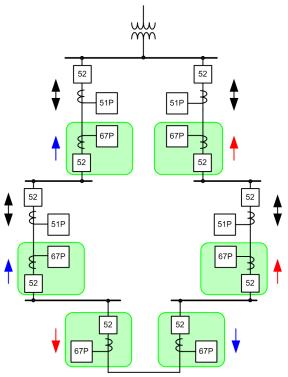


Figure 67: Closed ring network topology where feeding lines are protected with directional overcurrent IEDs

4.1.3.8 Signals

Table 124: 67/51P-1 and 67/50P-1 Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
l ₂	SIGNAL	0	Negative phase sequence current
V_A_AB	SIGNAL	0	Phase to ground voltage A or phase to phase voltage AB
V_B_BC	SIGNAL	0	Phase to ground voltage B or phase to phase voltage BC
V_C_CA	SIGNAL	0	Phase to ground voltage C or phase to phase voltage CA
V ₁	SIGNAL	0	Positive phase sequence voltage
V ₂	SIGNAL	0	Negative phase sequence voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for current multiplier

Table 125: 67/50P-2 Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
l ₂	SIGNAL	0	Negative phase sequence current
V_A_AB	SIGNAL	0	Phase to ground voltage A or phase to phase voltage AB
V_B_BC	SIGNAL	0	Phase to ground voltage B or phase to phase voltage BC
V_C_CA	SIGNAL	0	Phase to ground voltage C or phase to phase voltage CA
V ₁	SIGNAL	0	Positive phase sequence voltage
V ₂	SIGNAL	0	Negative phase sequence voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for current multiplier

Table 126: 67/51P-1 and 67/50P-1 Output signals

Name	Туре	Description	
TRIP	BOOLEAN	Trip	
PICKUP	BOOLEAN	Pickup	

Table 127: 67/50P-2 Output signals

Name	Туре	Description	
PICKUP	BOOLEAN	Pickup	
TRIP	BOOLEAN	Trip	

4.1.3.9 Settings

Table 128: 67/51P-1 and 67/50P-1 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.055.00	xln	0.01	1.00	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Time multiplier	0.0515.00		0.05	1.00	Time multiplier in IEC/ANSI IDMT curves
Trip delay time	40200000	ms	10	40	Trip delay time
Operating curve type	1=ANSI Ext Inv 2=ANSI Very Inv 3=ANSI Norm Inv 4=ANSI Mod Inv 5=ANSI DT 6=LT Ext Inv 7=LT Very Inv 8=LT Inv 9=IEC Norm Inv 10=IEC Very Inv 11=IEC Inv 12=IEC Ext Inv 13=IEC ST Inv 14=IEC LT Inv 15=IEC DT 17=Programmable 18=RI Type 19=RD Type			5=ANSI DT	Selection of time delay curve type
Table continued on next	page			•	

Parameter	Values (Range)	Unit	Step	Default	Description
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type
Voltage Mem time	03000	ms	1	40	Voltage memory time
Directional mode	1=Non-directional 2=Forward 3=Reverse			2=Forward	Directional mode
Characteristic angle	-179180	deg	1	60	Characteristic angle
Max forward angle	090	deg	1	80	Maximum phase angle in forward direction
Max reverse angle	090	deg	1	80	Maximum phase angle in reverse direction
Min forward angle	090	deg	1	80	Minimum phase angle in forward direction
Min reverse angle	090	deg	1	80	Minimum phase angle in reverse direction
Pol quantity	-2=Pos. seq. volt. 1=Self pol 4=Neg. seq. volt. 5=Cross pol			5=Cross pol	Reference quantity used to determine fault direction

Table 129: 67/51P-1 and 67/50P-1 Non group settings

148

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Num of pickup phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for trip activation
Minimum trip time	2060000	ms	1	20	Minimum trip time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measurement mode
Curve parameter A	0.0086120.0000			28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120			0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00			2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00			29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0			1.0	Parameter E for customer programmable curve
Allow Non Dir	0=False 1=True			0=False	Allows prot activation as non-dir when dir info is invalid
Min trip current	0.011.00	xln	0.01	0.01	Minimum trip current
Min trip voltage	0.011.00	xVn	0.01	0.01	Minimum trip voltage

Table 130: 67/50P-2 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.1040.00	xln	0.01	1.00	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Directional mode	1=Non-directional 2=Forward 3=Reverse			2=Forward	Directional mode
Time multiplier	0.0515.00		0.05	1.00	Time multiplier in IEC/ANSI IDMT curves
Operating curve type	1=ANSI Ext Inv 3=ANSI Norm Inv 5=ANSI DT 9=IEC Norm Inv 10=IEC Very Inv 12=IEC Ext Inv 15=IEC DT 17=Programmable			5=ANSI DT	Selection of time delay curve type
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type
Trip delay time	40200000	ms	10	40	Trip delay time
Characteristic angle	-179180	deg	1	60	Characteristic angle
Max forward angle	090	deg	1	80	Maximum phase angle in forward direction
Max reverse angle	090	deg	1	80	Maximum phase angle in reverse direction
Min forward angle	090	deg	1	80	Minimum phase angle in forward direction
Min reverse angle	090	deg	1	80	Minimum phase angle in reverse direction
Voltage Mem time	03000	ms	1	40	Voltage memory time
Pol quantity	-2=Pos. seq. volt. 1=Self pol 4=Neg. seq. volt. 5=Cross pol			5=Cross pol	Reference quantity used to determine fault direction

Table 131: 67/50P-2 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Reset delay time	060000	ms	1	20	Reset delay time
Minimum trip time	2060000	ms	1	20	Minimum trip time for IDMT curves
Allow Non Dir	0=False 1=True			0=False	Allows prot activation as non-dir when dir info is invalid
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measurement mode
Min trip current	0.011.00	xln	0.01	0.01	Minimum trip current
Min trip voltage	0.011.00	xVn	0.01	0.01	Minimum trip voltage
Curve parameter A	0.0086120.0000			28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120			0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00			2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00			29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0			1.0	Parameter E for customer programmable curve
Num of pickup phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for trip activation

4.1.3.10 Monitored data

Table 132: 67/51P-1 and 67/50P-1 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
FAULT_DIR	Enum	0=unknown 1=forward 2=backward 3=both		Detected fault direction
DIRECTION	Enum	0=unknown 1=forward 2=backward 3=both		Direction information
DIR_A	Enum	0=unknown 1=forward 2=backward 3=both		Direction phase A
DIR_B	Enum	0=unknown 1=forward 2=backward 3=both		Direction phase B
DIR_C	Enum	0=unknown 1=forward 2=backward 3=both		Direction phase C
ANGLE_A	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase A
ANGLE_B	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase B
ANGLE_C	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase C
67/51P-1 and 67/50P-1	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

Table 133: 67/50P-2 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00 %		Ratio of pickup time / trip time
FAULT_DIR	Enum	0=unknown 1=forward 2=backward 3=both		Detected fault direction
DIRECTION	Enum	0=unknown 1=forward 2=backward 3=both		Direction information
DIR_A	Enum	0=unknown 1=forward 2=backward 3=both		Direction phase A
DIR_B	Enum	0=unknown 1=forward 2=backward 3=both		Direction phase B
DIR_C	Enum	0=unknown 1=forward 2=backward 3=both		Direction phase C
ANGLE_A	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase A
ANGLE_B	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase B
ANGLE_C	FLOAT32	-180.00180.00	deg	Calculated angle difference, Phase C
67/50P-2	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.1.3.11 Technical data

Table 134: 67/51P and 67/50P Technical data

Characteristic	Value					
Pickup accuracy		Depending on the frequency of the current/voltage measured: f _n ±2Hz				
	67/51P and 67/50P-1	Current: ±1.5% of the set value or ±0.002 x I _n Voltage: ±1.5% of the set value or ±0.002 x V _n Phase angle: ±2°				
	67/50P-2	Current: ±1.5% of the set value or ±0.002 x I _n (at currents in the range of 0.110 x I _n) ±5.0% of the set value (at currents in the range of 1040 x I _n) Voltage: ±1.5% of the set value or ±0.002 x V _n Phase angle: ±2°				
Pickup time ¹²		Minimum	Typical	Maximum		
	I _{Fault} = 2.0 x set <i>Pickup</i> value	37 ms	40 ms	42 ms		
Reset time		< 40 ms				
Reset ratio	Reset ratio			Typical 0.96		
Retardation time	< 35 ms					
Trip time accuracy in defin	±1.0% of the set value or ±20 ms					
Trip time accuracy in inve	rse time mode	±5.0% of the theoretical value or ±20 ms ³				
Suppression of harmonics	3	DFT: -50 dB at f = n x f_n , where n = 2, 3, 4, 5,				

^{1.} Measurement mode and Pol quantity = default, current before fault = $0.0 \times I_n$, voltage before fault = $1.0 \times V_n$, f_n = 60 Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

4.1.4 Non-directional neutral overcurrent protection 51N/50N and Non-directional ground fault protection 51G/50G

4.1.4.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Non-directional ground-fault protection - Low stage	EFLPTOC	10>	51N/G
Non-directional ground-fault protection - High stage	EFHPTOC	10>>	50N/G-1/2
Non-directional ground-fault protection - Instantaneous stage	EFIPTOC	10>>>	50N/G-3

^{2.} Includes the delay of the signal output contact

^{3.} Maximum *Pickup value* = 2.5 x I_n, *Pickup value* multiples in range of 1.5 to 20

4.1.4.2 Function block

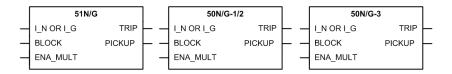
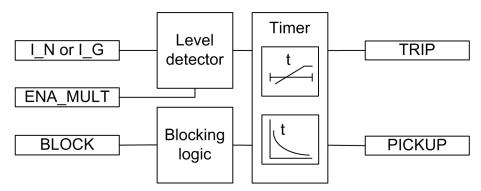


Figure 68: Function block

4.1.4.3 Functionality

The ground-fault function 51N/50N or 51G/50G is used as non-directional ground-fault protection for feeders.

The function picks up and trips when the measured (IG) or calculated (IN) ground current exceeds the set limit. The trip time characteristic for low stage 51N/G and high stage 50N/G-1/2 can be selected to be either definite time (DT) or inverse definite minimum time (IDMT). The instantaneous stage 50N/G-3 always trips with the DT characteristic.


In the DT mode, the function trips after a predefined trip time and resets when the fault current disappears. The IDMT mode provides current-dependent timer characteristics.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.1.4.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of non-directional ground-fault protection can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

Figure 69: Functional module diagram. I_0 represents the residual current.

Level detector

The measured ground current is compared with the set *Pickup value*. If the measured value exceeds the set *Pickup value*, the level detector sends an enable-signal to the timer module. If the ENA_MULT input is active, the *Pickup value* setting is multiplied by the *Pickup value Mult* setting.

Do not set the multiplier setting *Pickup value Mult* higher than necessary. If the value is too high, the function may not trip at all during an inrush followed by a fault, no matter how severe the fault is.

The pickup value multiplication is normally done when the inrush detection function (INR) is connected to the ENA MULT input.

Timer

Once activated, the timer activates the PICKUP output. Depending on the value of the *Operating curve type* setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of *Trip delay time* in the DT mode or the maximum value defined by the inverse time curve, the TRIP output is activated.

When the user programmable IDMT curve is selected, the operate time characteristics are defined by the parameters *Curve parameter A*, *Curve parameter B*, *Curve parameter C*, *Curve parameter D* and *Curve parameter E*.

If a drop-off situation happens, that is, a fault suddenly disappears before the trip delay is exceeded, the timer reset state is activated. The functionality of the timer in the reset state depends on the combination of the *Operating curve type, Type of reset curve* and *Reset delay time* settings. When the DT characteristic is selected, the reset timer runs until the set *Reset delay time* value is exceeded. When the IDMT curves are selected, the *Type of reset curve* setting can be set to "Immediate", "Def time reset" or "Inverse reset". The reset curve type "Immediate" causes an immediate reset. With the reset curve type "Def time reset", the reset time depends on the *Reset delay time* setting. With the reset curve type "Inverse reset", the reset time depends on the current during the drop-off situation. If the drop-off situation continues, the reset timer is reset and the PICKUP output is deactivated.

The "Inverse reset" selection is only supported with ANSI or user programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.

The setting *Time multiplier* is used for scaling the IDMT trip and reset times.

The setting parameter *Minimum trip time* defines the minimum desired trip time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum trip time* setting should be used with great care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see the General function block features section in this manual

The timer calculates the pickup duration (PICKUP_DUR) value which indicates the percentual ratio of the pickup situation and the set trip time. The value is available through the Monitored data view

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the relay program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.1.4.5 Measurement modes

The function operates on three alternative measurement modes: "RMS", "DFT" and "Peak-to-Peak". The measurement mode is selected with the *Measurement mode* setting.

Table 135: Measurement modes supported by 51N/50N or 51G/50G stages

Measurement	Supported measurement modes					
mode	51N/G 50N/G-1/2 50N/G-3					
RMS	х	х				
DFT	х	х				
Peak-to-Peak	х	х	х			

For a detailed description of the measurement modes, see the General function block features section in this manual.

4.1.4.6 Timer characteristics

51N/50N or 51G/50G supports both DT and IDMT characteristics. The user can select the timer characteristics with the *Operating curve type* and *Type of reset curve* settings. When the DT characteristic is selected, it is only affected by the *Trip delay time* and *Reset delay time* settings.

The IED provides 16 IDMT characteristics curves, of which seven comply with the IEEE C37.112 and six with the IEC 60255-3 standard. Two curves follow the special characteristics of ABB praxis and are referred to as RI and RD. In addition to this, a user programmable curve can be used if none of the standard curves are applicable. The user can choose the DT characteristic by selecting the *Operating curve type* values "ANSI Def. Time" or "IEC Def. Time". The functionality is identical in both cases.

The following characteristics, which comply with the list in the IEC 61850-7-4 specification, indicate the characteristics supported by different stages:

Table 136: Timer characteristics supported by different stages

	Supp	orted by
Operating curve type	51N/G	50N/G-1/2
(1) ANSI Extremely Inverse	X	x
(2) ANSI Very Inverse	х	
(3) ANSI Normal Inverse	х	x
(4) ANSI Moderately Inverse	х	
(5) ANSI Definite Time	х	x
(6) Long Time Extremely Inverse	х	
(7) Long Time Very Inverse	х	
(8) Long Time Inverse	х	
(9) IEC Normal Inverse	х	x
(10) IEC Very Inverse	х	x
(11) IEC Inverse	х	
(12) IEC Extremely Inverse	х	x
(13) IEC Short Time Inverse	х	
(14) IEC Long Time Inverse	х	
(15) IEC Definite Time	х	х
(17) User programmable curve	х	х
(18) RI type	х	
(19) RD type	Х	

50N/G-3 supports only definite time characteristics.

For a detailed description of timers, see the General function block features section in this manual.

Table 137: Reset time characteristics supported by different stages

Ponet aumie time	Suppo		
Reset curve type	51N/G	50N/G-1/2	Note
(1) Immediate	х	х	Available for all reset time curves
(2) Def time reset	х	х	Available for all reset time curves
(3) Inverse reset	х	х	Available only for ANSI and user programmable curves

The *Type of reset curve* setting does not apply to 50N/G-3 or when the DT operation is selected. The reset is purely defined by the *Reset delay time* setting.

4.1.4.7 Application

51N/50N or 51G/50G is designed for protection and clearance of ground faults in distribution and sub-transmission networks where the neutral point is isolated or grounded via a resonance coil or through low resistance. It also applies to solidly grounded networks and ground-fault protection of different equipment connected to the power systems, such as shunt capacitor bank or shunt reactors and for backup ground-fault protection of power transformers.

Many applications require several steps using different current pickup levels and time delays. 51N/50N or 51G/50G consists of three different protection stages:

- Low 51N/G
- High 50N/G-1/2
- Instantaneous 50N/G-3.

51N/G contains several types of time-delay characteristics. 50N/G-1/2 and 50N/G-3 are used for fast clearance of serious ground faults.

4.1.4.8 Signals

Table 138: 51N/G and 50SEF Input signals

Name	Туре	Default	Description
I_G or I_N	SIGNAL	0	Ground current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for current multiplier

Table 139: 50N/G-1/2 Input signals

Name	Туре	Default	Description
I_G or I_N	SIGNAL	0	Ground current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for current multiplier

Table 140: 50N/G-3 Input signals

Name	Туре	Default	Description
I_G or I_N	SIGNAL	0	Ground current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for current multiplier

Table 141: 51N/G and 50SEF Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup

Table 142: 50N/G-1/2 Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup

Table 143: 50N/G-3 Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup

4.1.4.9 Settings

Table 144: 51N/G and 50SEF Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.0105.000	xln	0.005	0.500	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Time multiplier	0.0515.00		0.05	1.00	Time multiplier in IEC/ANSI IDMT curves
Trip delay time	40200000	ms	10	40	Trip delay time
Operating curve type	1=ANSI Ext Inv 2=ANSI Very Inv 3=ANSI Norm Inv 4=ANSI Mod Inv 5=ANSI DT 6=LT Ext Inv 7=LT Very Inv 8=LT Inv 9=IEC Norm Inv 10=IEC Very Inv 11=IEC Inv 12=IEC Ext Inv 13=IEC ST Inv 14=IEC LT Inv 15=IEC DT 17=Programmable 18=RI Type 19=RD Type			5=ANSI DT	Selection of time delay curve type
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type

Table 145: 51N/G and 50SEF Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Minimum trip time	2060000	ms	1	20	Minimum trip time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measurement mode
Curve parameter A	0.0086120.0000			28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120			0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00			2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00			29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0			1.0	Parameter E for customer programmable curve

Table 146: 50N/G-1/2 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.1040.00	xln	0.01	0.50	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Time multiplier	0.0515.00		0.05	1.00	Time multiplier in IEC/ANSI IDMT curves
Trip delay time	40200000	ms	10	40	Trip delay time
Operating curve type	1=ANSI Ext Inv 3=ANSI Norm Inv 5=ANSI DT 9=IEC Norm Inv 10=IEC Very Inv 12=IEC Ext Inv 15=IEC DT 17=Programmable			5=ANSI DT	Selection of time delay curve type
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type

Table 147: 50N/G-1/2 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Minimum trip time	2060000	ms	1	20	Minimum trip time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measurement mode
Curve parameter A	0.0086120.0000			28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120			0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00			2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00			29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0			1.0	Parameter E for customer programmable curve

Table 148: 50N/G-3 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	1.0040.00	xln	0.01	1.00	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Trip delay time	20200000	ms	10	20	Trip delay time

Table 149: 50N/G-3 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Reset delay time	060000	ms	1	20	Reset delay time

4.1.4.10 Monitored data

Table 150: 51N/G and 50SEF Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
51N/G and 50SEF	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

Table 151: 50N/G-1/2 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
50N/G-1/2	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

Table 152: 50N/G-3 Monitored data

Name	Type	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
50N/G-3	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.1.4.11 Technical data

Table 153: 51N/G, 50N/G-1/2 & 50N/G-3 Technical data

Pickup accuracy	Depending on the frequency of	the current measu	ıred: f _n ±2Hz				
	51N/G	±1.5% of the set value or ±0.002 x I _n					
	50N-1/2 & 50G-1/2 and 50N/G-3	±1.5% of set value or ±0.002 x I _n (at currents in the range of 0.110 x I _n) ±5.0% of the set value (at currents in the range of 1040 x I _n)					
Pickup time ¹²		Minimum	Typical	Maximum			
	50N/G-3: I _{Fault} = 2 x set Pickup value I _{Fault} = 10 x set Pickup value	16 ms 11 ms	19 ms 12 ms	23 ms 14 ms			
	50N-1/2 & 50G-1/2 and 51N/G: I _{Fault} = 2 x set Pickup value	22 ms	24 ms	25 ms			
Reset time		< 40 ms					
Reset ratio		Typical 0.96					
Retardation time		< 30 ms					
Trip time accuracy in	Trip time accuracy in definite time mode		±1.0% of the set value or ±20 ms				
Trip time accuracy in	n inverse time mode	±5.0% of the theoretical value or ±20 ms ³					
Suppression of harn	nonics	RMS: No suppression DFT: -50dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ Peak-to-Peak: No suppression					

Measurement mode = default (depends on stage), current before fault = 0.0 x I_n, f_n = 60 Hz, ground-fault current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

- 2. Includes the delay of the signal output contact
- 3. Maximum Pickup value = $2.5 \times I_n$, Pickup value multiples in range of 1.5×20

4.1.4.12 Technical revision history

Table 154: 50N/G-3 Technical revision history

Technical revision	Change
С	Minimum and default values changed to 20 ms for the <i>Trip delay time</i> setting Minimum value changed to 1.00 x I _n for the <i>Pickup value</i> setting.

Table 155: 50G-1/2 & 50N-1/2Technical revision history

Technical revision	Change	
В	Minimum and default values changed to 40 ms for the <i>Trip delay time</i> setting	

Table 156: 51N/G Technical revision history

Technical revision	Change	
С	Pickup value step changed to 0.005	

4.1.5 Sensitive ground-fault protection 50SEF

4.1.5.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Non-directional sensitive ground-fault protection	EFLPTOC	I ₀ >	50SEF

4.1.5.2 Function block

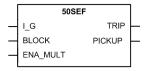


Figure 70: Function block

4.1.5.3 Functionality

A small percentage of the ground faults have very large impedance. It is possible to detect these faults by using a very sensitive ground-fault protection. It is applicable for networks where normal unbalance current level is low enough to allow for sensitive setting of 50SEF.

The function also contains a blocking functionality. It is possible to block function outputs.

4.1.5.4 Operation principle

Same as 51N as described in 4.1.4.4 above.

4.1.5.5 Measurement modes

Same as 51N as described in 4.1.4.5 above.

4.1.5.6 Timer characteristics

Same as 51N as described in 4.1.4.6 above.

4.1.5.7 Application

Electric power lines experience faults for many reasons. In most cases, electrical faults manifest in mechanical damage, which must be repaired before returning the line to service.

Most of these faults are ground faults. A small percentage of the ground faults have a very large impedance. They are comparable to load impedance and consequently have very little fault current. These high impedance faults do not pose imminent danger to power system equipment. However, they are a considerable threat to people and property. If the natural unbalance in the system is low, the sensitive ground-fault protection can be used to detect the ground fault.

4.1.5.8 Signals

Same as 51N as described in 4.1.4.8 above.

4.1.5.9 Settings

Same as 51N as described in 4.1.4.9 above.

4.1.5.10 Monitored data

Same as 51N as described in 4.1.4.10 above.

4.1.5.11 Technical data

Same as 50N as described in 4.1.4.11 above.

4.1.6 Directional ground-fault protection 67/51N and 67/50N

4.1.6.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Directional ground-fault protection - Low stage 1	DEFLPDEF1	10>->(1)	67/51N
Directional ground-fault protection - Low stage 2	DEFLPDEF2	10>->(2)	67/50N-1
Directional ground-fault protection - High stage	DEFHPDEF1	10>>->(1)	67/50N-2

4.1.6.2 Function block

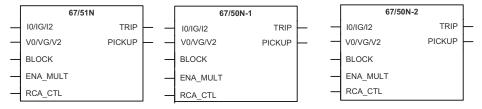
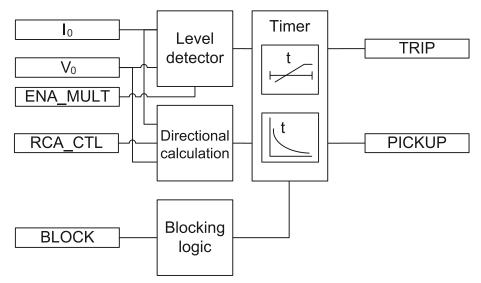


Figure 71: Function block

4.1.6.3 Functionality

The ground-fault function 67/51N and 67/50N is used as directional ground-fault protection for feeders.

There are three different polarization signals - measured zero sequence voltage, calculated zero sequence voltage and negative sequence voltage. The function picks up and trips when the zero sequence current (I_0) and zero sequence voltage (- V_0) exceed the set limits and the angle between them is inside the set operating sector. The function also picks up and trips when the negative sequence current (I_2) and negative sequence voltage (- V_2) exceed the set limits and the angle between them is inside the set operating sector. The trip time characteristic for low stage (67/51N and 67/50N-1) and high stage (67/50N-2) can be selected to be either definite time (DT) or inverse definite minimum time (IDMT).


In the DT mode, the function trips after a predefined trip time and resets when the fault current disappears. The IDMT mode provides current-dependent timer characteristics.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.1.6.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of directional ground-fault protection can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

Figure 72: Functional module diagram. I_0 and V_0 represent the zero sequence current and zero sequence voltage.

Level detector

The measured ground current is compared with the set *Pickup value*. For directional operation, the residual voltage (-Uo) also needs to be compared with the set *Voltage pickup value*. If both limits are exceeded, the level detector sends an enable-signal to the timer module. When the *Enable voltage limit* setting is set to "False", the *Voltage pickup* value has no effect and the level detection is purely based on the ground current. If the ENA_MULT input is active, the *Pickup value* setting is multiplied by the *Pickup value Mult* setting.

Do not set the multiplier setting *Pickup value Mult* higher than necessary. If the value is too high, the function may not trip at all during an inrush followed by a fault, no matter how severe the fault is.

The pickup value multiplication is normally done when the inrush detection function (INR) is connected to the ENA_MULT input.

Directional calculation

The directional calculation module monitors the angle between the operating current and polarizing voltage. When the angle is in the operation sector, the module sends the enable signal to the timer module.

For defining the operation sector, there are five modes available through the *Operation mode* setting.

Table 157: Operation modes

Operation mode	Description	
Phase angle	The operating sectors for forward and reverse are defined with the settings <i>Min forward angle</i> , <i>Max forward angle</i> , <i>Min reverse angle</i> and <i>Max reverse angle</i> .	
loSin	The operating sectors are defined as "forward" when the mathematical expression has a positive value and "reverse" when the value is negative	
loCos	As "loSin" mode. Only cosine is used for calculating the operation current.	
Phase angle 80	The sector maximum values are frozen to 80 degrees, respectively. Only Min forward angle and <i>Min reverse angle</i> are settable.	
Phase angle 88	The sector maximum values are frozen to 88 degrees. Otherwise as "Phase angle 80" mode.	

The directional operation can be selected with the *Directional mode* setting. The user can select either "Non-directional", "Forward" or "Reverse" operation. The operation criterion is selected with the *Operation mode* setting. By setting *Allow Non Dir* to "True", non-directional operation is allowed when directional information is invalid.

The *Characteristic angle* setting is used in "Phase angle" mode to adjust the operation according to the method of neutral point grounding so that in an isolated network the *Characteristic angle* (ϕ_{RCA}) = -90° and in a compensated network ϕ_{RCA} = 0°. In addition, the characteristic angle can be changed via the control signal RCA_CTL, in which case the alternatives are -90° and 0°. The operation of RCA_CTL depends on the *Characteristic angle* setting.

The *Correction angle* setting can be used to improve selectivity when there are inaccuracies due to measurement transformers. The setting decreases the operation sector. The correction can only be used with the "IoCos" or "IoSin" modes.

The minimum signal level which allows directional operation can be set by using the *Min trip current* and *Min trip voltage* settings.

When polarizing quantity (residual voltage (-Uo)) is inverted because of switched voltage measurement cables, the correction can be done by setting the *Pol reversal* to "True" which turns polarizing quantity by 180 degrees.

For definitions of different directional ground-fault characteristics, see the Directional ground-fault characteristics section in this manual.

The directional calculation module calculates several values which are presented in the monitored data.

Table 158: Monitored data values

Monitored data values	Description
FAULT_DIR	The detected direction of fault during fault situations, that is, when START output is active.
DIRECTION	The momentary operating direction indication output.
ANGLE	Also called operating angle, shows the angle difference between the VG (polarizing quantity) and lo (operating quantity).
ANGLE_RCA	The angle difference between the operating angle and <i>Characteristic angle</i> , that is, ANGLE_RCA = ANGLE – <i>Characteristic angle</i> .
I_OPER	The current that is used for fault detection. If the Operation mode setting is "Phase angle", "Phase angle 80" or "Phase angle 88", I_OPER is the measured or calculated residual current. If the Operation mode setting is "IoSin", I_OPER is calculated as follows I_OPER = Io x sin(ANGLE). If the Operation mode setting is "IoCos", I_OPER is calculated as follows I_OPER = Io x cos(ANGLE).

Monitored data values are accessible on the LHMI or through tools via communications.

Timer

Once activated, the timer activates the PICKUP output. Depending on the value of the *Operating curve type* setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of *Trip delay time* in the DT mode or the maximum value defined by the inverse time curve, the TRIP output is activated.

When the user programmable IDMT curve is selected, the operate time characteristics are defined by the parameters *Curve parameter A*, *Curve parameter B*, *Curve parameter C*, *Curve parameter D* and *Curve parameter E*.

If a drop-off situation happens, that is, a fault suddenly disappears before the trip delay is exceeded, the timer reset state is activated. The functionality of the timer in the reset state depends on the combination of the *Operating curve type*, *Type of reset curve* and *Reset delay time* settings. When the DT characteristic is selected, the reset timer runs until the set *Reset delay time* value is exceeded. When the IDMT curves are selected, the *Type of reset curve* setting can be set to "Immediate", "Def time reset" or "Inverse reset". The reset curve type "Immediate" causes an immediate reset. With the reset curve type "Def time reset", the reset time depends on the *Reset delay time* setting. With the reset curve type "Inverse reset", the reset time depends on the current during the drop-off situation. If the drop-off situation continues, the reset timer is reset and the PICKUP output is deactivated.

The "Inverse reset" selection is only supported with ANSI or user programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.

The setting *Time multiplier* is used for scaling the IDMT trip and reset times.

The setting parameter *Minimum trip time* defines the minimum desired trip time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum trip time* setting should be used with great care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see the General function block features section in this manual.

The timer calculates the pickup duration (PICKUP_DUR) value which indicates the percentage ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the IED program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.1.6.5 Directional ground-fault principles

In many cases it is difficult to achieve selective ground-fault protection based on the magnitude of zero sequence current only. To obtain a selective ground-fault protection scheme, it is necessary to take the phase angle of I_0 into account. This is done by comparing the phase angle of I_0 to that of the zero sequence voltage (- V_0).

Relay characteristic angle

The *Characteristic angle*, also known as Relay Characteristic Angle (RCA), Relay Base Angle or Maximum Torque Angle (MTA), is used in the "Phase angle" mode to turn the directional characteristic, if the expected fault current angle does not coincide with the polarizing quantity to produce the maximum torque. That is, RCA is the angle between the maximum torque line and polarizing quantity. If the polarizing quantity is in phase with the maximum torque line, RCA is 0 degrees. The angle is positive if operating current lags the polarizing quantity and negative if it leads the polarizing quantity.

Example 1.

The "Phase angle" mode is selected, compensated network (φ RCA = 0 deg)

=> Characteristic angle = 0 deg

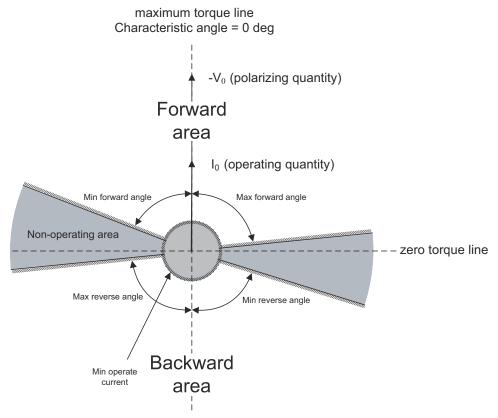
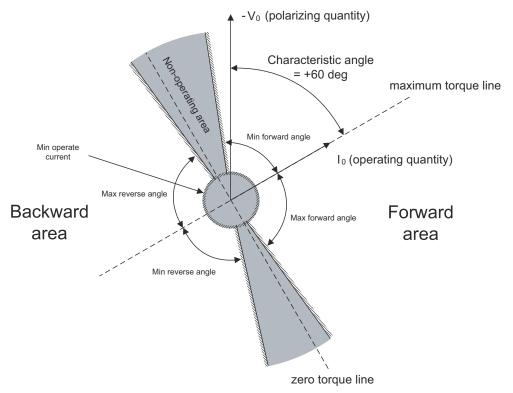



Figure 73: Definition of the relay characteristic angle, RCA=0 degrees in a compensated network

Example 2.

The "Phase angle" mode is selected, solidly grounded network (φ RCA = +60 deg)

=> *Characteristic angle* = +60 deg

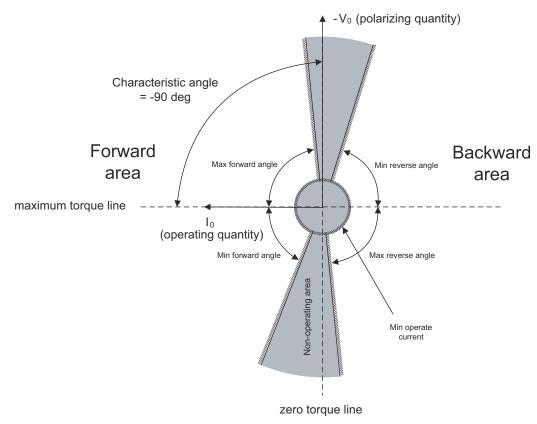


Figure 74: Definition of the relay characteristic angle, RCA=+60 degrees in a solidly grounded network

Example 3.

The "Phase angle" mode is selected, isolated network (φ RCA = -90 deg)

=> Characteristic angle = -90 deg

Figure 75: Definition of the relay characteristic angle, RCA=-90 degrees in an isolated network

Directional ground-fault protection in an isolated neutral network

In isolated networks, there is no intentional connection between the system neutral point and ground. The only connection is through the line-to-ground capacitances (C_0) of phases and leakage resistances (R_0). This means that the zero sequence current is mainly capacitive and has a phase shift of -90 degrees compared to the residual voltage ($-V_0$). Consequently, the relay characteristic angle (RCA) should be set to -90 degrees and the operation criteria to $I_0 \sin(\phi)$ or phase angle. The width of the operating sector in the phase angle criteria can be selected with the settings Min forward angle, Max forward angle, Min reverse angle or Max reverse angle. The figure below describes how ground fault current is defined in isolated neutral networks.

For definitions of different directional ground-fault characteristics, see *Directional ground-fault principles*.

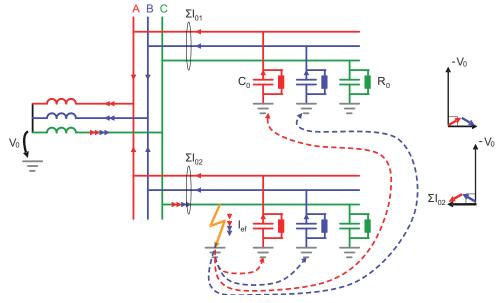


Figure 76: Ground-fault situation in an isolated network

Directional ground-fault protection in a compensated network

In compensated networks, the capacitive fault current and the inductive resonance coil current compensate each other. The protection cannot be based on the reactive current measurement, since the current of the compensation coil would disturb the operation of the relays. In this case, the selectivity is based on the measurement of the active current component. The magnitude of this component is often small and must be increased by means of a parallel resistor in the compensation equipment. When measuring the resistive part of the zero sequence current, the relay characteristic angle (RCA) should be set to 0 degrees and the operation criteria to $I_0 cos(\phi)$ or phase angle. The figure below describes how ground fault current is defined in compensated neutral networks.

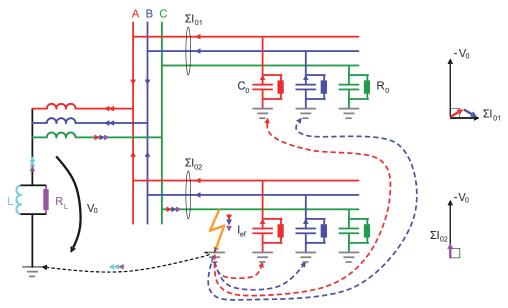


Figure 77: Ground-fault situation in a compensated network

The Petersen coil or the grounding resistor may be temporarily out of operation. To keep the protection scheme selective, it is necessary to update the characteristic angle setting accordingly. This is done with an auxiliary input in the relay which receives a signal from an auxiliary switch of the disconnector of the Petersen coil in compensated networks or of the grounding resistor in grounded networks. As a result the characteristic angle is set automatically to suit the grounding method used. The RCA_CTL input can be used to change the I_0 characteristic:

Table 159: Relay characteristic angle control in $I_0 sin(\varphi)$ and $I_0 cos(\varphi)$ operation criteria

Operation criteria setting:	RCA_CTL = FALSE	RCA_CTL = TRUE
$I_0 sin(\phi)$	Actual operation criteria: I ₀ sin(φ)	Actual operation criteria: I ₀ cos(φ)
$I_0 cos(\phi)$	Actual operation criteria:I ₀ cos(φ)	Actual operation criteria: I ₀ sin(φ)

Table 160: Characteristic angle control in phase angle operation mode

Characteristic angle setting	RCA_CTL = FALSE	RCA_CTL = TRUE
-90°	φRCA = -90°	φRCA = 0°
0°	φRCA = 0°	φRCA = -90°

Usage of the extended phase angle characteristic

In addition to the RCA_CTL input, the extended phase angle characteristic can be used when the compensation coil is temporarily disconnected in compensated networks. When the extended operation area is used, the operation area is wide enough to detect ground faults selectively in compensated networks regardless of whether the compensation coil is connected or not. Therefore, the RCA_CTL input is not required if the extended operation area is used.

Sometimes the distance between the start point and the IED is long which makes it impractical to apply the scheme based on signal wiring between the relay and the Petersen

coil or the grounding resistor. This is the case for instance, when a directional ground-fault relay is used in an MV-switching substation some kilometers from the HV/MV -substation in which the grounding facilities are located. Another example is when HV/MV-substations are connected in parallel but located far from each other.

It is easy to give the tripping sector such a width that all possible directions of the I_0 -phasors of a faulty line are covered by one and the same sector. Thus, the problem of setting the characteristic angle according to the grounding status of the network is easily solved. There is no need to change any settings when a Petersen coil or a grounding resistor is switched on or off. Auxiliary switches and other pieces of extra hardware are no longer required for ensuring the selectivity of the directional ground-fault protection.

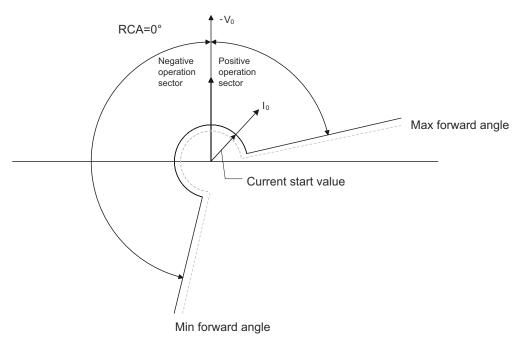


Figure 78: Extended operation area in directional ground-fault protection

4.1.6.6 Measurement modes

The function operates on three alternative measurement modes: "RMS", "DFT" and "Peak-to-Peak". The measurement mode is selected with the *Measurement mode* setting.

Table 161: Measurement modes supported by 67/51N and 67/50N stages

Measurement mode	Supported measurement modes				
Measurement mode	67/51N and 67/50N-1	67/50N-2			
RMS	Х	x			
DFT	х	x			
Peak-to-Peak	X	x			

For a detailed description of the measurement modes, see the General function block features section in this manual.

4.1.6.7 Timer characteristics

67/51N and 67/50N supports both DT and IDMT characteristics. The user can select the timer characteristics with the *Operating curve type* setting.

The IED provides 16 IDMT characteristics curves, of which seven comply with the IEEE C37.112 and six with the IEC 60255-3 standard. Two curves follow the special characteristics of ABB praxis and are referred to as RI and RD. In addition to this, a user programmable curve can be used if none of the standard curves are applicable. The user can choose the DT characteristic by selecting the *Operating curve type* values "ANSI Def. Time" or "IEC Def. Time". The functionality is identical in both cases.

The following characteristics, which comply with the list in the IEC 61850-7-4 specification, indicate the characteristics supported by different stages:

Table 162: Timer characteristics supported by different stages

Operating curve type	Supported by					
Operating curve type	67/51N and 67/50N-1	67/50N-2				
(1) ANSI Extremely Inverse	x	x				
(2) ANSI Very Inverse	Х					
(3) ANSI Normal Inverse	Х	х				
(4) ANSI Moderately Inverse	x					
(5) ANSI Definite Time	х	х				
(6) Long Time Extremely Inverse	х					
(7) Long Time Very Inverse	х					
(8) Long Time Inverse	х					
(9) IEC Normal Inverse	х					
(10) IEC Very Inverse	х					
(11) IEC Inverse	х					
(12) IEC Extremely Inverse	х					
(13) IEC Short Time Inverse	х					
(14) IEC Long Time Inverse	x					
(15) IEC Definite Time	Х	х				
(17) User programmable curve	х	х				
(18) RI type	Х					
(19) RD type	х					

For a detailed description of the timers, see the General function block features section in this manual.

Table 163: Reset time characteristics supported by different stages

Poort ourse type	Suppo		
Reset curve type	67/51N and 67/50N-1	67/50N-2	Note
(1) Immediate	х	х	Available for all operate time curves
(2) Def time reset	х	x	Available for all operate time curves
(3) Inverse reset	х	х	Available only for ANSI and user programmable curves

4.1.6.8 Directional ground-fault characteristics

Phase angle characteristic

The operation criterion phase angle is selected with the *Operation mode* setting using the value "Phase angle".

When the phase angle criterion is used, the function indicates whether the operating quantity is within the forward or reverse operation sector or within the non-directional sector.

The forward and reverse sectors are defined separately. The forward operation area is limited with the *Min forward angle* and *Max forward angle* settings. The reverse operation area is limited with the *Min reverse angle* and *Max reverse angle* settings.

The sector limits are always given as positive degree values.

In the forward operation area, the *Max forward angle* setting gives the clockwise sector and the *Min forward angle* setting correspondingly the anti-clockwise sector, measured from the *Characteristic angle* setting.

In the reverse operation area, the *Max reverse angle* setting gives the clockwise sector and the *Min reverse angle* setting correspondingly the anti-clockwise sector, measured from the complement of the *Characteristic angle* setting (180 degrees phase shift).

The relay characteristic angle (RCA) is set to positive if the operating current lags the polarizing quantity. It is set to negative if it leads the polarizing quantity.

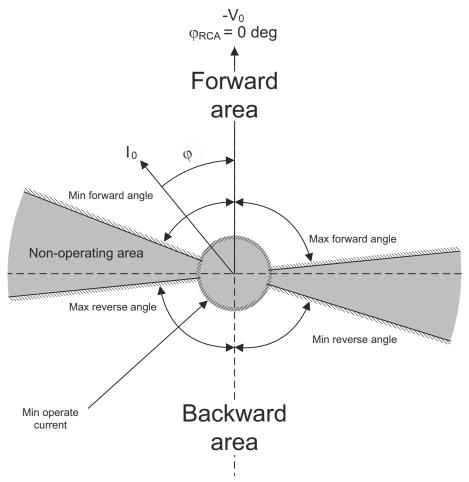


Figure 79: Configurable operating sectors in phase angle characteristic

Table 164: Momentary operating direction

Fault direction	The value for DIRECTION
Angle between the polarizing and operating quantity is not in any of the defined sectors.	0 = unknown
Angle between the polarizing and operating quantity is in the forward sector.	1= forward
Angle between the polarizing and operating quantity is in the reverse sector.	2 = backward
Angle between the polarizing and operating quantity is in both the forward and the reverse sectors, that is, the sectors are overlapping.	3 = both

Directional operation is not allowed (the setting *Allow non dir* is "False") when the measured polarizing or operating quantities are not valid, that is, their magnitude is below the set minimum values. The minimum values can be defined with the settings *Min trip current* and *Min trip voltage*. In case of low magnitudes, the FAULT_DIR and DIRECTION outputs are set to 0 = unknown, except when the *Allow non dir* setting is "True". In that case, the function is allowed to operate in the directional mode as non-directional, since the directional information is invalid.

The RCA_CTL input is used in compensated networks where the compensation coil sometimes can be disconnected. When the coil is disconnected, the compensated network becomes isolated and the *Characteristic angle* setting (ϕ RCA) must be changed. This can be done automatically with the RCA_CTL input. Note that the RCA_CTL input only works when the *Characteristic angle* setting is set to exactly -90 degrees or 0 degrees. The value of the input affects the *Characteristic angle* setting in the following way:

Table 165: Characteristic angle control in phase angle operation mode

Characteristic angle setting	RCA_CTL = "False"	RCA_CTL = "True"
-90°	φRCA = -90°	φRCA = 0°
0°	φRCA = 0°	φRCA = -90°

$I_0 \sin(\varphi)$ and $I_0 \cos(\varphi)$ criteria

A more modern approach to directional protection is the active or reactive current measurement. The operating characteristic of the directional operation depends on the grounding principle of the network. The $I_0 sin(\phi)$ characteristic is used in an isolated network, measuring the reactive component of the fault current caused by the ground capacitance. The $I_0 cos(\phi)$ characteristic is used in a compensated network, measuring the active component of the fault current.

The operation criteria $I_0 \sin(\varphi)$ and $I_0 \cos(\varphi)$ are selected with the *Operation mode* setting using the values "IoSin" or "IoCos", respectively.

In isolated networks, $I_0 sin(\phi)$ does not differ from the phase angle criterion, since the phase angle of the operating quantity is fairly close to -90 degrees. Furthermore, in completely compensated networks the fault current is usually mostly resistive. Therefore, the phase angle and $I_0 cos(\phi)$ criteria are equally sensitive. However, if the fault is in the background network, the fault current of a sound and healthy line is almost fully capacitive and its phase angle is close to the operation area of the component. Therefore, the $I_0 cos(\phi)$ characteristic is recommended, since the risk of faulty operation is smaller than with the phase angle criterion.

The angle correction setting can be used to improve selectivity. The setting decreases the operation sector. The correction can only be used with the $I_0 sin(\phi)$ or $I_0 cos(\phi)$ criterion. The RCA CTL input is used to change the I_0 characteristic:

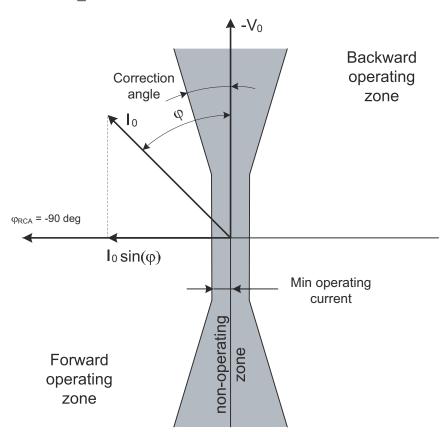
Table 166: Relay characteristic angle control in I_0 sin(φ) and I_0 cos(φ) operation criterion

Operation criteria:	RCA_CTL = "False"	RCA_CTL = "True"
$I_0 sin(\phi)$	Actual operation criterion: $I_0 sin(\phi)$	Actual operation criterion: $I_0 cos(\phi)$
I ₀ cos(φ)	Actual operation criterion: I ₀ cos(φ)	Actual operation criterion: $I_0 sin(\phi)$

When the $I_0 sin(\phi)$ or $I_0 cos(\phi)$ criterion is used, the component indicates a forward or reverse-type fault through the FAULT_DIR and DIRECTION outputs, in which 1 equals a forward fault and 2 equals a reverse fault. Directional operation is not allowed (the *Allow non dir* setting is "False") when the measured polarizing or operating quantities are not valid, that is, when their magnitude is below the set minimum values. The minimum values can be defined with the *Min trip current* and *Min trip voltage* settings. In case of low

magnitude, the FAULT_DIR and DIRECTION outputs are set to 0 = unknown, except when the *Allow non dir* setting is "True". In that case, the function is allowed to operate in the directional mode as non-directional, since the directional information is invalid.

The calculated $I_0 sin(\phi)$ or $I_0 cos(\phi)$ current used in direction determination can be read through the I_OPER monitored data. The value can be passed directly to a decisive element, which provides the final pickup and trip signals.



The I_OPER monitored data gives an absolute value of the calculated current. Otherwise, the value of a current in a reverse area is negative.

The following examples show the characteristics of the different operation criteria:

Example 1.

 $I_0 \sin(\varphi)$ criterion selected, forward-type fault

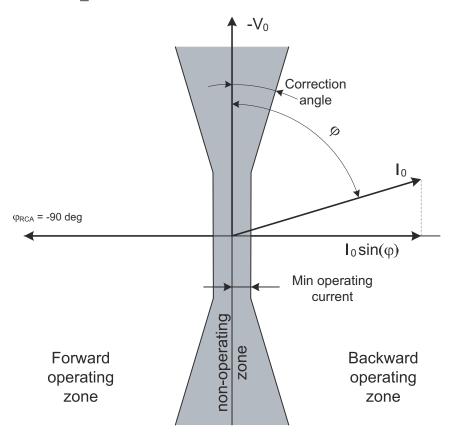


Figure 80: Operating characteristic I_0 sin(φ) in forward fault

The operating sector is limited by Angle correction, that is, the operating sector is 180 degrees - 2*(Angle correction).

Example 2.

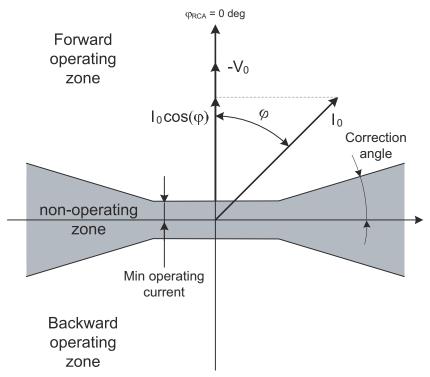

 $I_0 sin(\phi)$ criterion selected, reverse-type fault

Figure 81: Operating characteristic $I_0 sin(\varphi)$ in reverse fault

Example 3.

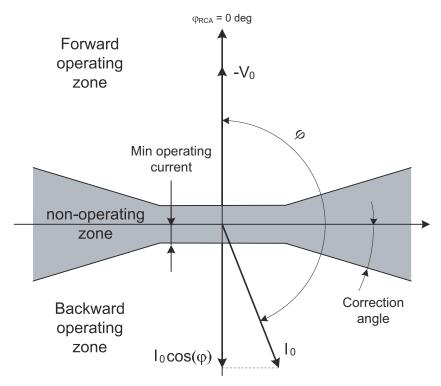

 $I_0 \text{cos}(\phi)$ criterion selected, forward-type fault

Figure 82: Operating characteristic $I_0 cos(\varphi)$ in forward fault

Example 4.

 $I_0 cos(\phi)$ criterion selected, reverse-type fault

Figure 83: Operating characteristic I_0 cos(φ) in reverse fault

Phase angle, classic 80

The operation criterion phase angle classic 80 is selected with the *Operation mode* setting using the value "Phase angle 80".

Phase angle classic 80 implements the same functionality as the phase angle, but with the following differences:

- The *Max forward angle* and *Max reverse angle* settings are not settable but have a fixed value of 80 degrees
- The sector limits of the fixed sectors are rounded.

The sector rounding is used for cancelling the CT measurement errors at low current amplitudes. When the current amplitude falls below three percent of the nominal current, the sector is reduced to 70 degrees at the fixed sector side. This makes the protection more selective, which means that the phase angle measurement errors do not cause faulty operation.

There is no sector rounding on the other side of the sector.

If the current amplitude falls below one percent of the nominal current, the direction enters the non-directional area.

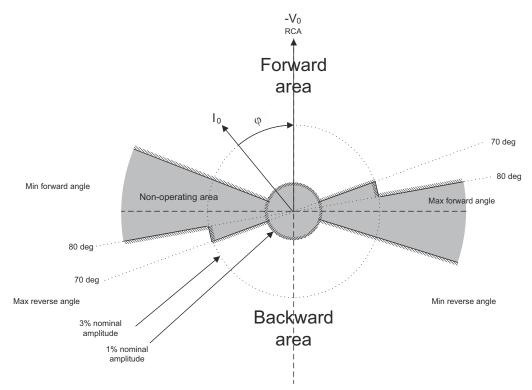


Figure 84: Operating characteristic for phase angle classic 80

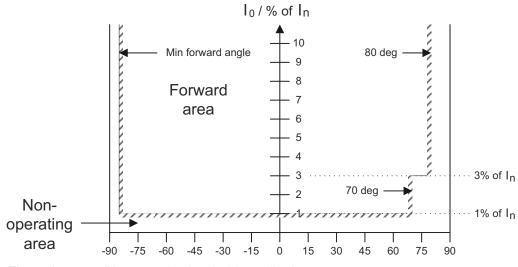


Figure 85: Phase angle classic 80 amplitude

Phase angle, classic 88

The operation criterion phase angle classic 88 is selected with the *Operation mode* setting using the value "Phase angle 88".

Phase angle classic 88 implements the same functionality as the phase angle, but with the following differences:

- The *Max forward angle* and *Max reverse angle* settings are not settable, but have a fixed value of 88 degrees
- The sector limits of the fixed sectors are rounded.

Sector rounding in the phase angle classic 88 consists of three parts:

- If the current amplitude is between 1...20 percent of the nominal current, the sector limit increases linearly from 73 degrees to 85 degrees
- If the current amplitude is between 1...100 percent of the nominal current, the sector limit increases linearly from 85 degrees to 88 degrees
- If the current amplitude is more than 100 percent of the nominal current, the sector limit is 88 degrees.

There is no sector rounding on the other side of the sector.

If the current amplitude falls below one percent of the nominal current, the direction enters the non-directional area.

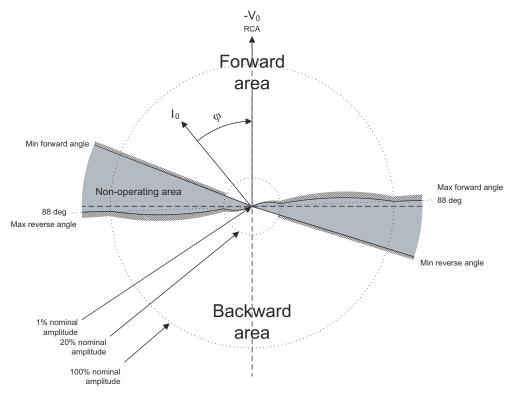


Figure 86: Operating characteristic for phase angle classic 88

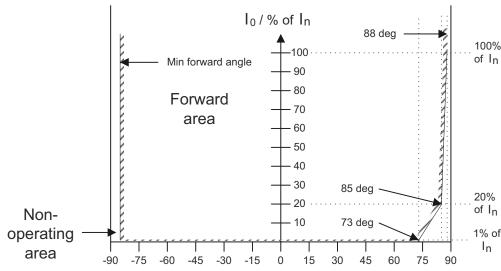


Figure 87: Phase angle classic 88 amplitude

4.1.6.9 Application

The directional ground-fault protection (67/51N and 67/50N) is designed for protection and clearance of ground faults and for ground-fault protection of different equipment connected to the power systems, such as shunt capacitor banks or shunt reactors, and for backup ground-fault protection of power transformers.

Many applications require several steps using different current start levels and time delays. 67/51N and 67/50N consists of two different stages:

- low (67/51N and 67/50N-1)
- high (67/50N-2)

67/51N and 67/50N-1 contains several types of time delay characteristics. 67/50N-2 is used for fast clearance of serious ground faults.

The protection can be based on the phase angle criterion with extended operating sector. It can also be based on measuring either the reactive part $I_0 \sin(\phi)$ or the active part $I_0 \cos(\phi)$ of the zero sequence current. In isolated networks or in networks with high impedance grounding, the phase-to-ground fault current is significantly smaller than the short-circuit currents. In addition, the magnitude of the fault current is almost independent of the fault location in the network.

The function uses the zero sequence current components $I_0\cos(\varphi)$ or $I_0\sin(\varphi)$ according to the grounding method, where φ is the angle between the zero sequence current and the reference zero sequence voltage (-V₀). In compensated networks, the phase angle criterion with extended operating sector can also be used. When the relay characteristic angle RCA is 0 degrees, the negative quadrant of the operation sector can be extended with the *Min forward angle* setting. The operation sector can be set between 0 and -180 degrees, so that the total operation sector is from +90 to -180 degrees. In other words, the sector can be up to 270 degrees wide. This allows the protection settings to stay the same when the resonance coil is disconnected from between the neutral point and ground.

System neutral grounding is meant to protect personnel and equipment and to reduce interference for example in telecommunication systems. The neutral grounding sets challenges for protection systems, especially for ground-fault protection.

In isolated networks, there is no intentional connection between the system neutral point and ground. The only connection is through the line-to-ground capacitances (C_0) of phases and leakage resistances (R_0). This means that the zero sequence current is mainly capacitive and has -90 degrees phase shift compared to the zero sequence voltage ($-V_0$). The characteristic angle is -90 degrees.

In resonance-grounded networks, the capacitive fault current and the inductive resonance coil current compensate each other. The protection cannot be based on the reactive current measurement, since the current of the compensation coil would disturb the operation of the relays. In this case, the selectivity is based on the measurement of the active current component. This means that the zero sequence current is mainly resistive and has zero phase shift compared to the zero sequence voltage $(-V_0)$ and the characteristic angle is 0 degrees. Often the magnitude of this component is small, and must be increased by means of a parallel resistor in the compensation equipment.

In networks where the neutral point is grounded through low resistance, the characteristic angle is also 0 degrees (for phase angle). Alternatively, $I_0\cos(\varphi)$ operation can be used.

In solidly grounded networks, the *Characteristic angle* is typically set to +60 degrees for the phase angle. Alternatively, $I_0 \sin(\phi)$ operation can be used with a reversal polarizing quantity. The polarizing quantity can be rotated 180 degrees by setting the *Pol reversal* parameter to "True" or by switching the polarity of the zero sequence voltage measurement wires. Although the $I_0 \sin(\phi)$ operation can be used in solidly grounded networks, the phase angle is recommended. In some applications, negative sequence polarization is preferred over zero sequence polarization. The IED also offers negative sequence polarization option where users can set the angle between V_2 and I_2 based on their application and practice.

Connection of measuring transformers in directional ground fault applications

The zero sequence current I₀ can be measured with a core balance current transformer or the residual connection of the phase current signals. If the neutral of the network is either isolated or grounded with high impedance, a core balance current transformer is recommended to be used in ground-fault protection. To ensure sufficient accuracy of zero sequence current measurements and consequently the selectivity of the scheme, the core balance current transformers should have a transformation ratio of at least 70:1. Lower transformation ratios such as 50:1 or 50:5 are not recommended.

Attention should be paid to make sure the measuring transformers are connected correctly so that 67/51N and 67/50N is able to detect the fault current direction without failure. As directional ground fault uses zero sequence current and zero sequence voltage $(-V_0)$, the polarities of the measuring transformers must match each other and also the fault current direction. Also the grounding of the cable sheath must be taken into consideration when using core balance current transformers. The following figure describes how measuring transformers can be connected to the IED.

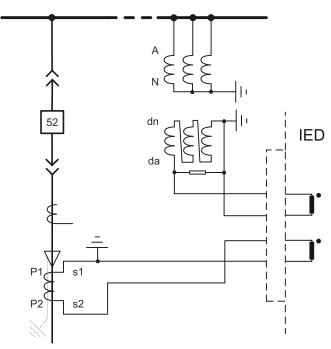


Figure 88: Connection of measuring transformers

4.1.6.10

Signals

Table 167: 67/51N and 67/50N-1 Input signals

Name	Туре	Default	Description
10 or IG or I2	SIGNAL	0	Zero Sequence current / Negative sequence current
V0 or VG or V2	SIGNAL	0	Zero Sequence voltage / Negative sequence voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False Enable signal for current multiplier	
RCA_CTL	BOOLEAN	0=False	Relay characteristic angle control

Table 168: 67/50N-2 Input signals

Name	Туре	Default	Description
I0 or IG or I2	SIGNAL	0	Zero Sequence current / Negative sequence current
V0 or VG or V2	SIGNAL	0	Zero Sequence voltage / Negative sequence voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False Enable signal for current multiplier	
RCA_CTL	BOOLEAN	0=False	Relay characteristic angle control

Table 169: 67/51N and 67/50N-1 Output signals

Name	Туре	Description		
TRIP	BOOLEAN	Trip		
PICKUP	BOOLEAN	Pickup		

Table 170: 67/50N-2 Output signals

Name	Туре	Description			
TRIP	BOOLEAN	Trip			
PICKUP	BOOLEAN	Pickup			

4.1.6.11 Settings

188

Table 171: 67/51N and 67/50N-1 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.0105.000	xln	0.005	0.010	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Directional mode	1=Non-directional 2=Forward 3=Reverse			2=Forward	Directional mode
Time multiplier	0.0515.00		0.05	1.00	Time multiplier in IEC/ANSI IDMT curves
Operating curve type	1=ANSI Ext Inv 2=ANSI Very Inv 3=ANSI Norm Inv 4=ANSI Mod Inv 5=ANSI DT 6=LT Ext Inv 7=LT Very Inv 8=LT Inv 9=IEC Norm Inv 10=IEC Very Inv 11=IEC Inv 12=IEC Ext Inv 13=IEC ST Inv 14=IEC LT Inv 15=IEC DT 17=Programmable 18=RI Type 19=RD Type			5=ANSI DT	Selection of time delay curve type
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type
Trip delay time	60200000	ms	10	60	Trip delay time
Operation mode	1=Phase angle 2=loSin 3=loCos 4=Phase angle 80 5=Phase angle 88			1=Phase angle	Operation criteria
Characteristic angle	-179180	deg	1	-90	Characteristic angle
Max forward angle	0180	deg	1	88	Maximum phase angle in forward direction
Max reverse angle	0180	deg	1	88	Maximum phase angle in reverse direction
Min forward angle	0180	deg	1	88	Minimum phase angle in forward direction
Min reverse angle	0180	deg	1	88	Minimum phase angle in reverse direction
Voltage pickup value	0.0101.000	xVn	0.001	0.010	Voltage pickup value
Enable voltage limit	0=False 1=True			1=True	Enable voltage limit

Table 172: 67/51N and 67/50N-1 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Reset delay time	060000	ms	1	20	Reset delay time
Minimum trip time	6060000	ms	1	60	Minimum trip time for IDMT curves
Allow Non Dir	0=False 1=True			0=False	Allows prot activation as non-dir when dir info is invalid
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measurement mode
Min trip current	0.0051.000	xln	0.001	0.005	Minimum trip current
Min trip voltage	0.011.00	xVn	0.01	0.01	Minimum trip voltage
Correction angle	0.010.0	deg	0.1	0.0	Angle correction
Pol reversal	0=False 1=True			0=False	Rotate polarizing quantity
Curve parameter A	0.0086120.0000			28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120			0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00			2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00			29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0			1.0	Parameter E for customer programmable curve
lo signal Sel	1=IG 2=I0			1=IG	Selection for used lo signal
Pol signal Sel	1=Measured VG 2=Calculated V0 3=Neg. seq. volt.			2=Calculated V0	Selection for used polarization signal

Table 173: 67/50N-2 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.1040.00	xln	0.01	0.10	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Directional mode	1=Non-directional 2=Forward 3=Reverse			2=Forward	Directional mode
Time multiplier	0.0515.00		0.05	1.00	Time multiplier in IEC/ANSI IDMT curves
Operating curve type	1=ANSI Ext Inv 3=ANSI Norm Inv 5=ANSI DT 15=IEC DT 17=Programmable			5=ANSI DT	Selection of time delay curve type
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type
Trip delay time	40200000	ms	10	40	Trip delay time
Operation mode	1=Phase angle 2=IoSin 3=IoCos 4=Phase angle 80 5=Phase angle 88			1=Phase angle	Operation criteria
Characteristic angle	-179180	deg	1	-90	Characteristic angle
Max forward angle	0180	deg	1	88	Maximum phase angle in forward direction
Max reverse angle	0180	deg	1	88	Maximum phase angle in reverse direction
Min forward angle	0180	deg	1	88	Minimum phase angle in forward direction
Min reverse angle	0180	deg	1	88	Minimum phase angle in reverse direction
Voltage pickup value	0.0101.000	xVn	0.001	0.010	Voltage pickup value
Enable voltage limit	0=False 1=True			1=True	Enable voltage limit

Table 174: 67/50N-2 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Reset delay time	060000	ms	1	20	Reset delay time
Minimum trip time	4060000	ms	1	40	Minimum trip time for IDMT curves
Allow Non Dir	0=False 1=True			0=False	Allows prot activation as non-dir when dir info is invalid
Measurement mode	1=RMS 2=DFT 3=Peak-to-Peak			2=DFT	Selects used measurement mode
Min trip current	0.0051.000	xln	0.001	0.005	Minimum trip current
Min trip voltage	0.011.00	xVn	0.01	0.01	Minimum trip voltage
Correction angle	0.010.0	deg	0.1	0.0	Angle correction
Pol reversal	0=False 1=True			0=False	Rotate polarizing quantity
Curve parameter A	0.0086120.0000			28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120			0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00			2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00			29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0			1.0	Parameter E for customer programmable curve
lo signal Sel	1=IG 2=I0			1=IG	Selection for used lo signal
Pol signal Sel	1=Measured VG 2=Calculated V0 3=Neg. seq. volt.			2=Calculated V0	Selection for used polarization signal

4.1.6.12 Monitored data

Table 175: 67/51N and 67/50N-1 Monitored data

Name	Туре	Values (Range)	Unit	Description
FAULT_DIR	Enum	0=unknown 1=forward 2=backward 3=both		Detected fault direction
PICKUP_DUR	FLOAT 32	0.00100.00	%	Ratio of pickup time / trip time
DIRECTION	Enum	0=unknown 1=forward 2=backward 3=both		Direction information
ANGLE	FLOAT 32	-180.00180. 00	de g	Angle between polarizing and operating quantity
ANGLE_RCA	FLOAT 32	-180.00180. 00	de g	Angle between operating angle and characteristic angle
I_OPER	FLOAT 32	0.0040.00		Calculated operating current
67/51N and 67/50N-1	Enum	1=enabled 2=blocked 3=test 4=test/blocke d 5=disabled		Status

Table 176: 67/50N-2 Monitored data

Name	Туре	Values (Range)	Unit	Description
FAULT_DIR	Enum	0=unknown 1=forward 2=backward 3=both		Detected fault direction
PICKUP_DU R	FLOAT3 2	0.00100.00	%	Ratio of pickup time / trip time
DIRECTION	Enum	0=unknown 1=forward 2=backward 3=both		Direction information
ANGLE	FLOAT3 2	-180.00180.0 0	de g	Angle between polarizing and operating quantity
ANGLE_RC A	FLOAT3 2	-180.00180.0 0	de g	Angle between operating angle and characteristic angle
I_OPER	FLOAT3 2	0.0040.00		Calculated operating current
67/50N-2	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.1.6.13 Technical data

Table 177: 67/51N and 67/50N Technical data

Characteristic		Value				
Pickup accuracy		Depending on th measured: f _n ±2l	e frequency of the Hz	current		
	67/51N and 67/50N-1	Current: ±1.5% of the set value or ±0.002 x I _n Voltage ±1.5% of the set value or ±0.002 x V _n Phase angle: ±2°				
	67/50N-2	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$) $\pm 5.0\%$ of the set value (at currents in the range of $1040 \times I_n$) Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times V_n$ Phase angle: $\pm 2^\circ$				
Pickup time ¹²		Minimum	Typical	Maximum		
	67/50N-2 and 67/51N and 67/50N-1: I _{Fault} = 2 x set <i>Pickup</i> <i>value</i>	61 ms	64 ms	66 ms		
Reset time		< 40 ms				
Reset ratio		Typical 0.96				
Retardation time	< 30 ms					
Trip time accuracy in defin	±1.0% of the set value or ±20 ms					
Trip time accuracy in inve	±5.0% of the theoretical value or ±20 ms ³					
Suppression of harmonics	5	RMS: No suppression DFT: -50dB at f = n x f _n , where n = 2, 3, 4, 5, Peak-to-Peak: No suppression				

Measurement mode = default (depends on stage), current before fault = 0.0 x I_n, f_n = 60 Hz, ground-fault current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

- 2. Includes the delay of the signal output contact
- 3. Maximum *Pickup value* = $2.5 \times I_n$, *Pickup value* multiples in range of 1.5 to 20

4.1.6.14 Technical revision history

Table 178: 67/50N Technical revision history

Technical revision	Change
В	Maximum value changed to 180 deg for the <i>Max</i> forward angle setting

Table 179: 67/51N Technical revision history

Technical revision	Change
В	Maximum value changed to 180 deg for the <i>Max forward angle</i> setting. <i>Pickup value</i> step changed to 0.005

4.1.7 Negative-sequence overcurrent protection 46

4.1.7.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Negative sequence current protection	NSPTOC	12>	46

4.1.7.2 Function block

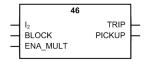
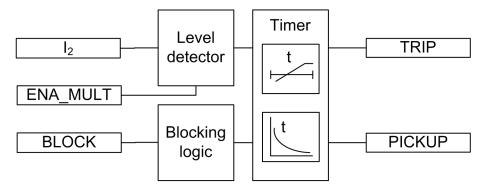


Figure 89: Function block

4.1.7.3 Functionality

The negative sequence current protection 46 is used for increasing sensitivity to detect single phasing situations, unbalanced loads due to, for example, unsymmetrical feeder voltages.

46 can also be used for detecting broken conductors.


The function is based on the measurement of the negative sequence current. In a fault situation, the function picks up when the negative sequence current exceeds the set limit. The trip time characteristics can be selected to be either definite time (DT) or inverse definite minimum time (IDMT). In the DT mode, the function trips after a predefined trip time and resets when the fault current disappears. The IDMT mode provides current dependent timer characteristics.

The function contains a blocking functionality. It is possible to block function outputs, timers, or the function itself, if desired.

4.1.7.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of negative phase-sequence current protection can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

Figure 90: Functional module diagram. I₂ represents negative phase sequence current.

Level detector

The measured negative phase-sequence current is compared with the set *Pickup value*. If the measured value exceeds the set *Pickup value*, the level detector activates the timer module. If the ENA_MULT input is active, the set *Pickup value* is multiplied by the set *Pickup value Mult*.

Do not set the multiplier setting *Pickup value Mult* higher than necessary. If the value is too high, the function may not trip at all during an inrush followed by a fault, no matter how severe the fault is.

Timer

Once activated, the timer activates the PICKUP output. Depending on the value of the *Operating curve type* setting, the time characteristics are according to DT or IDMT. When the operation timer has reached the value of *Trip delay time* in the DT mode or the maximum value defined by the inverse time curve, the TRIP output is activated.

When the user programmable IDMT curve is selected, the operate time characteristics are defined by the parameters *Curve parameter A*, *Curve parameter B*, *Curve parameter C*, *Curve parameter D* and *Curve parameter E*.

If a drop-off situation happens, that is, a fault suddenly disappears before the trip delay is exceeded, the timer reset state is activated. The functionality of the timer in the reset state depends on the combination of the *Operating curve type, Type of reset curve* and *Reset delay time* settings. When the DT characteristic is selected, the reset timer runs until the set *Reset delay time* value is exceeded. When the IDMT curves are selected, the *Type of reset curve* setting can be set to "Immediate", "Def time reset" or "Inverse reset". The reset curve type "Immediate" causes an immediate reset. With the reset curve type "Def time reset", the reset time depends on the *Reset delay time* setting. With the reset curve type "Inverse reset", the reset time depends on the current during the drop-off situation. If the drop-off situation continues, the reset timer is reset and the PICKUP output is deactivated.

The "Inverse reset" selection is only supported with ANSI or user programmable types of the IDMT operating curves. If another operating curve type is selected, an immediate reset occurs during the drop-off situation.

The setting *Time multiplier* is used for scaling the IDMT trip and reset times.

The setting parameter *Minimum trip time* defines the minimum desired trip time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum trip time* setting should be used with great care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum operate time* setting. For more information, see the General function block features section in this manual

The timer calculates the pickup duration (PICKUP_DUR) value which indicates the percentual ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the relay program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.1.7.5 Application

Since the negative sequence current quantities are not present during normal, balanced load conditions, the negative sequence overcurrent protection elements can be set for faster and more sensitive operation than the normal phase-overcurrent protection for fault conditions occurring between two phases. The negative sequence overcurrent protection also provides a back-up protection functionality for the feeder ground-fault protection in solid and low resistance grounded networks.

The negative sequence overcurrent protection provides the back-up ground-fault protection on the high voltage side of a delta-wye connected power transformer for ground faults taking place on the wye-connected low voltage side. If a ground fault occurs on the wye-connected side of the power transformer, negative sequence current quantities appear on the delta-connected side of the power transformer.

Multiple time curves and time multiplier settings are also available for coordinating with other devices in the system.

4.1.7.6 Signals

Table 180: 46 Input signals

Name	Туре	Default	Description
l ₂	SIGNAL	0	Negative phase sequence current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ENA_MULT	BOOLEAN	0=False	Enable signal for current multiplier

Table 181: 46 Output signals

Name	Туре	Description	
TRIP	BOOLEAN	Trip	
PICKUP	BOOLEAN	Pickup	

4.1.7.7 Settings

Table 182: 46 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.015.00	xln	0.01	0.30	Pickup value
Pickup value mult	0.810.0		0.1	1.0	Multiplier for scaling the pickup value
Time multiplier	0.0515.00		0.05	1.00	Time multiplier in IEC/ANSI IDMT curves
Trip delay time	40200000	ms	10	40	Trip delay time
Operating curve type	1=ANSI Ext Inv 2=ANSI Very Inv 3=ANSI Norm Inv 4=ANSI Mod Inv 5=ANSI DT 6=LT Ext Inv 7=LT Very Inv 8=LT Inv 9=IEC Norm Inv 10=IEC Very Inv 11=IEC Inv 12=IEC Ext Inv 13=IEC ST Inv 14=IEC LT Inv 15=IEC DT 17=Programmable 18=RI Type 19=RD Type			5=ANSI DT	Selection of time delay curve type
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset			1=Immediate	Selection of reset curve type

Table 183: 46 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Minimum trip time	2060000	ms	1	20	Minimum trip time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Curve parameter A	0.0086120.0000			28.2000	Parameter A for customer programmable curve
Curve parameter B	0.00000.7120			0.1217	Parameter B for customer programmable curve
Curve parameter C	0.022.00			2.00	Parameter C for customer programmable curve
Curve parameter D	0.4630.00			29.10	Parameter D for customer programmable curve
Curve parameter E	0.01.0			1.0	Parameter E for customer programmable curve

4.1.7.8 Monitored data

Table 184: 46 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
46	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.1.7.9 Technical data

Table 185: 46 Technical data

Pickup accuracy		Depending on the frequency of the current measured: f _n ±2Hz				
		±1.5% of the set	value or ±0.002 x	I _n		
Pickup time ¹²		Minimum	Typical	Maximum		
	I _{Fault} = 2 x set <i>Pickup value</i> I _{Fault} = 10 x set <i>Pickup value</i>	22 ms 14 ms	24 ms 16 ms	25 ms 17 ms		
Reset time	Reset time		< 40 ms			
Reset ratio		Typical 0.96				
Retardation time		< 35 ms				
Trip time accuracy in definite time mode		±1.0% of the set value or ±20 ms				
Trip time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms ³				
Suppression of harn	Suppression of harmonics		DFT: -50dB at f = n x f_n , where n = 2, 3, 4, 5,			

^{1.} Negative sequence current before fault = 0.0, f_n = 60 Hz, results based on statistical distribution of 1000 measurements

^{2.} Includes the delay of the signal output contact

^{3.} Maximum $Pickup\ value = 2.5\ x\ I_n$, $Pickup\ value\ multiples\ in\ range\ of\ 1.5\ to\ 20$

4.1.7.10 Technical revision history

Table 186: 46 Technical revision history

Technical revision	Change
В	Minimum and default values changed to 40 ms for the <i>Trip delay time</i> setting

4.1.8 Phase discontinuity protection 46PD

4.1.8.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Phase discontinuity protection	PDNSPTOC	12/11>	46PD

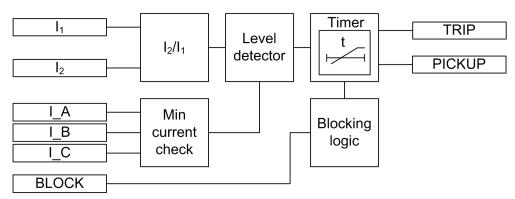
4.1.8.2 Function block



Figure 91: Function block

4.1.8.3 Functionality

The phase discontinuity protection 46PD is used for detecting unbalance situations caused by broken conductors.


The function picks up and trips when the unbalance current I_2/I_1 exceeds the set limit. To prevent faulty operation at least one phase current needs to be above the minimum level. 46PD trips with DT characteristic.

The function contains a blocking functionality. It is possible to block the function output, timer or the function itself, if desired.

4.1.8.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of phase discontinuity protection can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

Figure 92: Functional module diagram. I_1 and I_2 represent positive and negative phase sequence currents. I_2 , I_3 and I_4 represent phase currents.

$|_{2}/|_{1}$

The I_2/I_1 module calculates the ratio of the negative and positive phase sequence current. It reports the calculated value to the level detector.

Level detector

The level detector compares the calculated ratio of negative and positive phase sequence currents with the set *Pickup value*. If the calculated value exceeds the set *Pickup value* and the min current check module has exceeded the minimum phase current limit, the level detector reports the exceeding of the value to the timer.

Min current check

The min current check module checks whether the measured phase currents are above the set *Min phase current*. At least one of the phase currents needs to be above the set limit to enable the level detector module.

Timer

Once activated, the timer activates the PICKUP output. The time characteristic is according to DT. When the trip timer has reached the value set by *Trip delay time*, the TRIP output is activated. If the fault disappears before the module trips, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the trip timer resets and the PICKUP output is deactivated.

The timer calculates the pickup duration (PICKUP_DUR) value which indicates the ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary

input, a horizontal communication input or an internal signal of the relay program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.1.8.5 Application

In three-phase distribution and subtransmission network applications the phase discontinuity in one phase can cause increase of zero sequence voltage and short overvoltage peaks and also oscillation in the corresponding phase.

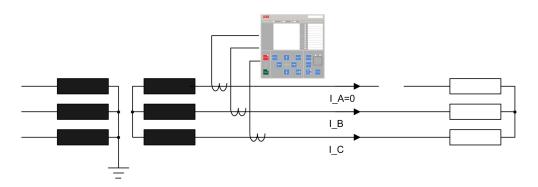
46PD is a three-phase protection with DT characteristic, designed for detecting broken conductors in distribution and subtransmission networks. The function is applicable for both overhead lines and underground cables.

The operation of 46PD is based on the ratio of positive and negative sequence currents. This gives better sensitivity and stability compared to plain negative sequence current protection since the calculated ratio of positive and negative sequence currents is relatively constant during load variations.

When the three phase currents are measured, the positive sequence current is calculated:

$$\overline{I}_1 = \frac{1}{3} \left(\overline{I}_a + \overline{a} \overline{I}_b + \overline{a}^2 \overline{I}_c \right)$$
 (Equation 2)

The negative sequence current is calculated:


$$\overline{I}_2 = \frac{1}{3} \left(\overline{I}_a + \overline{a}^2 \overline{I}_b + \overline{a} \overline{I}_c \right)$$
 (Equation 3)

$$ar{Ia}, ar{Ib}, ar{Ic}$$
 phase current vectors phase rotation operator (defined to rotate a phasor component forward by 120 degrees)

The unbalance of the network is detected by monitoring the negative and positive sequence current ratio, where the negative sequence current value is I_2 and I_1 is the positive sequence current value. The unbalance is calculated:

$$Iratio = \frac{I_2}{I_1}$$
 (Equation 4)

Broken conductor fault situation can occur in phase A in a feeder.

Figure 93: Broken conductor fault in phase A in a distribution or subtransmission feeder

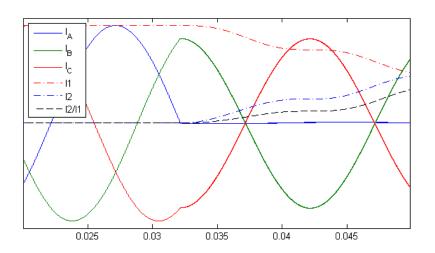


Figure 94: Three-phase current quantities during the broken conductor fault in phase A with the ratio of negative and positive sequence currents

4.1.8.6 Signals

Table 187: 46PD Input signals

Name	Туре	Default	Description
I ₁	SIGNAL	0	Positive phase sequence current
l ₂	SIGNAL	0	Negative phase sequence current
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 188: 46PD Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup

4.1.8.7 Settings

Table 189: 46PD Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	10100	%	1	10	Pickup value
Trip delay time	10030000	ms	1	100	Trip delay time

Table 190: 46PD Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Reset delay time	060000	ms	1	20	Reset delay time
Min phase current	0.050.30	xln	0.01	0.10	Minimum phase current

4.1.8.8 Monitored data

Table 191: 46PD Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
RATIO_I2_I1	FLOAT32	0.00999.99	%	Measured current ratio I2 / I1
46PD	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.1.8.9 Technical data

Table 192: 46PD Technical data

Characteristic	Value	
Pickup accuracy	Depending on the frequency of the current measured: $f_n \pm 2Hz$	
	±2% of the set value	
Pickup time	< 70 ms	
Reset time	< 40 ms	
Reset ratio	Typical 0.96	
Retardation time	< 35 ms	
Trip time accuracy in definite time mode	±1.0% of the set value or ±20 ms	
Suppression of harmonics	DFT: -50dB at f = n x f_n , where n = 2, 3, 4, 5,	

4.1.9 Negative-sequence overcurrent protection for motors, 46M

4.1.9.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Negative sequence time overcurrent protection	MNSPTOC	12>M	46M

4.1.9.2 Function block

Figure 95: Function block

4.1.9.3 Functionality

The unbalance protection based on negative sequence current function 46M protects electric motors from phase unbalance. A small voltage unbalance can produce a large negative sequence current flow in the motor. For example, a 5 percent voltage unbalance produces a stator negative sequence current of 30 percent of the full load current, which can severely heat the motor. 46M detects the large negative sequence current and disconnects the motor.

The function contains a blocking functionality. It is possible to block the function outputs, timers or the function itself, if desired.

4.1.9.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of unbalance protection based on negative sequence current can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

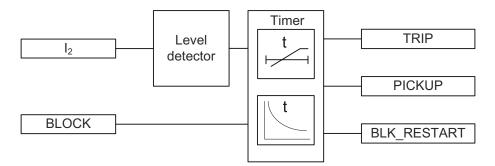


Figure 96: Functional module diagram

Level detector

The calculated negative-sequence current is compared to the *Pickup value* setting. If the measured value exceeds the *Pickup value* setting, the function activates the timer module.

Timer

Once activated, the timer activates the PICKUP output. Depending on the value of the set *Operating curve type*, the time characteristics are according to DT or IDMT. When the operation timer has reached the value set by *Trip delay time* in the DT mode or the maximum value defined by the inverse time curve, the TRIP output is activated.

In a drop-off situation, that is, when the value of the negative-sequence current drops below the *Pickup value* setting, the reset timer is activated and the PICKUP output resets after the time delay of *Reset delay time* for the DT characteristics. For IDMT, the reset time depends on the curve type selected.

For the IDMT curves, it is possible to define minimum and maximum trip times with the *Minimum trip time* and *Maximum trip time* settings. The *Machine time Mult* setting parameter corresponds to the machine constant, equal to the I_2^2 t constant of the machine, as stated by the machine manufacturer. In case there is a mismatch between the used CT and the protected motor's nominal current values, it is possible to fit the IDMT curves for the protected motor using the *Rated current* setting.

The activation of the TRIP output activates the BLK_RESTART output. The deactivation of the TRIP output activates the cooling timer. The timer is set to the value entered in the *Cooling time* setting. The BLK_RESTART output is kept active until the cooling timer is exceeded. If the negative-sequence current increases above the set value during this period, the TRIP output is activated immediately.

The operation timer counting can be frozen to the prevailing value by activating the FR TIMER input.

The T_ENARESTART output indicates the duration for which the BLK_RESTART output remains active, that is, it indicates the remaining time of the cooling timer. The value is available through the Monitored data view.

The timer calculates the pickup duration value PICKUP_DUR which indicates the percentage ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

4.1.9.5 Timer characteristics

46M supports both DT and IDMT characteristics. The user can select the DT timer characteristics by selecting the "ANSI Def. Time" or "IEC Def. Time" in the *Operating curve* type setting. The functionality is identical in both cases. When the DT characteristics are selected, the functionality is only affected by the *Trip delay time* and *Reset delay time* settings.

The IED provides two user-programmable IDMT characteristics curves, the "Inverse Curve Type A" and "Inverse Curve Type B."

Current-based inverse definite minimum type curve (IDMT)

In inverse-time modes, the trip time depends on the momentary value of the current: the higher the current, the faster the trip time. The trip time calculation or integration starts immediately when the current exceeds the set *Pickup value* and the PICKUP output is activated.

The TRIP output of the component is activated when the cumulative sum of the integrator calculating the overcurrent situation exceeds the value set by the inverse time mode. The set value depends on the selected curve type and the setting values used.

The *Minimum trip time* and *Maximum trip time* settings define the minimum trip time and maximum trip time possible for the IDMT mode. For setting these parameters, a careful study of the particular IDMT curves is recommended.

Inverse Curve Type A

The inverse time equation for curve type A is:

$$t[s] = \frac{k}{\left(\frac{I_2}{I_r}\right)^2}$$

(Equation 5)

t[s] Trip time in seconds

Set Machine time Mult

I₂ Negative-sequence current

Ir Rated current

If the negative-sequence current drops below the *Pickup value* setting, the reset time is defined as:

$$t[s] = a \times \left(\frac{b}{100}\right)$$

t[s] Reset time in seconds

a set Cooling time

b percentage of pickup time elapse (PICKUP DUR)

When the reset period is initiated, the time for which PICKUP has been active is saved. Now, if the fault reoccurs, that is, the negative-sequence current rises above the set value during the reset period, the trip calculations are continued using the saved values. However, if the reset period elapses without a fault being detected, the trip timer is reset and the saved values of pickup time and integration are cleared.

Inverse Curve Type B

The inverse time equation for curve type B is:

$$t[s] = \frac{k}{\left(\frac{I_2}{I_r}\right)^2 - \left(\frac{I_S}{I_r}\right)^2}$$

t[s] Trip time in seconds

k Machine time Mult

I₂ Negative-sequence current

I_S Set Pickup value

I_r Rated current

If the fault disappears, the negative-sequence current drops below the *Pickup value* setting and the PICKUP output is deactivated. However, the function does not reset instantaneously, but instead it depends on the equation or the *Cooling time* setting.

The timer can be reset in two ways:

- With a drop in the negative-sequence current below pickup value, the subtraction in
 the denominator becomes negative and the cumulative sum starts to decrease. The
 decrease in the sum indicates the cooling of the machine and the cooling speed
 depends on the value of the negative-sequence current. If the sum reaches zero
 without a fault being detected, the accumulation stops and the timer is reset.
- If the reset time set through the *Cooling time* setting elapses without a fault being detected, the timer is reset.

The reset period thus continues for a time equal to the *Cooling time* setting or until the operate time decreases to zero, whichever is less.

4.1.9.6 Application

In a three-phase motor, the conditions that can lead to unbalance are single phasing, voltage unbalance from the supply and single-phase fault. The negative sequence current damages the motor during the unbalanced voltage condition, and therefore the negative sequence current is monitored to check the unbalance condition.

When the voltages supplied to an operating motor become unbalanced, the positive-sequence current remains substantially unchanged, but the negative-sequence current flows due to the unbalance. For example, if the unbalance is caused by an open circuit in any phase, a negative-sequence current flows and it is equal and opposite to the previous load current in a healthy phase. The combination of positive and negative-sequence currents produces phase currents approximately 1.7 times the previous load in each healthy phase and zero current in the open phase.

The negative-sequence currents flow through the stator windings inducing negative-sequence voltage in the rotor windings. This can result in a high rotor current that damages the rotor winding. The frequency of the induced current is approximately twice the supply frequency. Due to skin effect, the induced current with a frequency double the supply frequency encounters high rotor resistance which leads to excessive heating even with phase currents with value less than the rated current of the motor.

The negative-sequence impedance of induction or a synchronous motor is approximately equal to the locked rotor impedance, which is approximately one-sixth of the normal motor impedance, considering that the motor has a locked-rotor current of six times the rated current. Therefore, even a three percent voltage unbalance can lead to 18 percent stator negative sequence current in windings. The severity of this is indicated by a 30-40 percent increase in the motor temperature due to the extra current.

4.1.9.7 Signals

Table 193: 46M Input signals

Name	Туре	Default Description	
12	SIGNAL	0	Negative phase sequence current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 194: 46M Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup
BLK_RESTART	BOOLEAN	Overheated machine reconnection blocking

4.1.9.8 Settings

Table 195: 46M Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.010.50	xln	0.01	0.20	Pickup value
Operating curve type	5=ANSI DT 15=IEC DT 17=Inv. Curve A 18=Inv. Curve B			5=ANSI DT	Selection of time delay curve type
Machine time Mult	5.0100.0		0.1	5.0	Machine related time constant
Trip delay time	100120000	ms	10	1000	Trip delay time

Table 196: 46M Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Rated current	0.302.00	xln	0.01	1.00	Rated current (Ir) of the machine (used only in the IDMT)
Maximum trip time	5000007200000	ms	1000	1000000	Max trip time regardless of the inverse characteristic
Minimum trip time	100120000	ms	1	100	Minimum trip time for IDMT curves
Cooling time	57200	s	1	50	Time required to cool the machine
Reset delay time	060000	ms	1	20	Reset delay time

4.1.9.9 Monitored data

Table 197: 46M Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
T_ENARESTART	FLOAT32	0.007200.00	s	Estimated time to reset of block restart
46M	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.1.9.10 Technical data

Table 198: 46M Technical data

Pickup accuracy		Depending on the frequency of the current measured: f _n ±2Hz			
		±1.5% of the set value or ±0.002 x l _n			
Pickup time ¹²		Minimum	Typical	Maximum	
	I _{Fault} = 2.0 x set <i>Pickup value</i>	22 ms	24 ms	25 ms	
Reset time		< 40 ms			
Reset ratio		Typical 0.96			
Retardation time		< 35 ms			
Trip time accuracy in	n definite time mode	±1.0% of the set value or ±20 ms			
Trip time accuracy in	n inverse time mode	±5.0% of the theoretical value or ±20 ms ³			
Suppression of harm	nonics	DFT: -50dB at f = n x f _n , where n = 2, 3, 4, 5,			

- Negative sequence current before fault = 0.0, f_n = 60 Hz, results based on statistical distribution of 1000 measurements
- 2. Includes the delay of the signal output contact
- 3. Pickup value multiples in range of 1.10 to 5.00

4.1.10 Phase reversal protection, 46R

4.1.10.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Phase reversal protection	PREVPTOC	12>>	46R

4.1.10.2 Function block

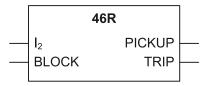


Figure 97: Function block

4.1.10.3 Functionality

The phase-reversal protection 46R is used to detect the reversed connection of the phases to a three-phase motor by monitoring the negative phase-sequence current I_2 of the motor.

46R picks up and trips when I_2 exceeds the set limit. 46R operates on definite time (DT) characteristics. 46R is based on the calculated I_2 , and the function detects too high I_2 values during the motor startup. The excessive I_2 values are caused by incorrectly connected phases, which in turn makes the motor rotate in the opposite direction.

The function contains a blocking functionality. It is possible to block function outputs, timer or the function itself, if desired.

4.1.10.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of phase-reversal protection can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

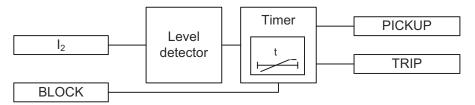


Figure 98: Functional module diagram

Level detector

The level detector compares the negative sequence current to the set *Pickup value*. If the I_2 value exceeds the set *Pickup value*, the level detector sends an enable signal to the timer module.

Timer

Once activated, the timer activates the PICKUP output. When the operation timer has reached the set *Trip delay time* value, the TRIP output is activated. If the fault disappears before the module trips, the reset timer is activated. If the reset timer reaches the value of 200 ms, the trip timer resets and the PICKUP output is deactivated.

The timer calculates the pickup duration value PICKUP_DUR which indicates the ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

4.1.10.5 Application

The rotation of a motor in the reverse direction is not a desirable operating condition. When the motor drives fans and pumps, for example, and the rotation direction is reversed due to a wrong phase sequence, the driven process can be disturbed and the flow of the cooling air of the motor can become reversed too. With a motor designed only for a particular rotation direction, the reversed rotation direction can lead to an inefficient cooling of the motor due to the fan design.

In a motor, the value of the negative sequence component of the phase currents is very negligible when compared to the positive-sequence component of the current during a healthy operating condition of the motor. But when the motor is started with the phase connections in the reverse order, the magnitude of I_2 is very high. So whenever the value of I_2 exceeds the pickup value, the function detects the reverse rotation direction and provides an trip signal that disconnects the motor from the supply.

4.1.10.6 Signals

Table 199: 46R Input signals

Name	Туре	Default	Description
12	SIGNAL	0	Negative phase sequence current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 200: 46R Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup

4.1.10.7 Settings

Table 201: 46R Group settings

Parameter	Values (Range)	Unit	Step	Default	Description	
Pickup value	0.051.00	xln	0.01	0.75	Pickup value	
Trip delay time	10060000	ms	10	100	Trip delay time	

Table 202: 46R Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable

4.1.10.8 Monitored data

Table 203: 46R Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
46R	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.1.10.9 Technical data

Table 204: 46R Technical data

Pickup accuracy		Depending on the frequency of the current measured: f _n ±2Hz			
		±1.5% of the set value or ±0.002 x I _n			
Pickup time ¹²		Minimum	Typical	Maximum	
	I _{Fault} = 2.0 x set <i>Pickup value</i>	22 ms	24 ms	25 ms	
Reset time		< 40 ms			
Reset ratio		Typical 0.96			
Retardation time		< 35 ms			
Trip time accuracy in	n definite time mode	±1.0% of the set value or ±20 ms			
Suppression of harm	nonics	DFT: -50dB at f = n x f_n , where n = 2, 3, 4, 5,			

^{1.} Negative sequence current before fault = 0.0, f_n = 60 Hz, results based on statistical distribution of 1000 measurements

4.1.11 Loss of load protection 37

4.1.11.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Loss of load protection	LOFLPTUC	3I<	37

4.1.11.2 Function block

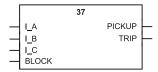


Figure 99: Function block

4.1.11.3 Functionality

The loss of load protection 37 is used to detect a sudden load loss which is considered as a fault condition.

37 picks up when the current is less than the set limit. It operates with the definite time (DT) characteristics, which means that the function operates after a predefined trip time and resets when the fault current disappears.

The function contains a blocking functionality. It is possible to block function outputs, the definite timer or the function itself, if desired.

4.1.11.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

^{2.} Includes the delay of the signal output contact

The operation of loss of load protection can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

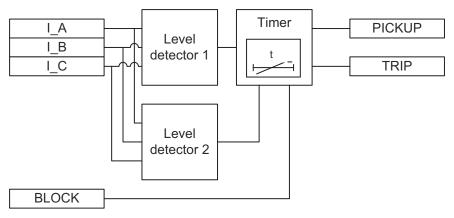


Figure 100: Functional module diagram

Level detector 1

This module compares the phase currents (RMS value) to the set *Pickup value high* setting. If all the phase current values are less than the set *Pickup value high* value, the loss of load condition is detected and an enable signal is sent to the timer. This signal is disabled after one or several phase currents have exceeded the set *Pickup value high* value of the element.

Level detector 2

This is a low-current detection module, which monitors the de-energized condition of the motor. It compares the phase currents (RMS value) to the set *Pickup value low* setting. If any of the phase current values is less than the set *Pickup value low*, a signal is sent to block the operation of the timer.

Timer

Once activated, the timer activates the PICKUP output. The time characteristic is according to DT. When the trip timer has reached the value set by *Trip delay time*, the TRIP output is activated. If the fault disappears before the module trips, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the trip timer resets and the PICKUP output is deactivated.

The timer calculates the pickup duration value PICKUP_DUR which indicates the percentual ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

The BLOCK signal blocks the operation of the function and resets the timer.

4.1.11.5 Application

When a motor runs with a load connected, it draws a current equal to a value between the no-load value and the rated current of the motor. The minimum load current can be determined by studying the characteristics of the connected load. When the current drawn

by the motor is less than the minimum load current drawn, it can be inferred that the motor is either disconnected from the load or the coupling mechanism is faulty. If the motor is allowed to run in this condition, it may aggravate the fault in the coupling mechanism or harm the personnel handling the machine. Therefore, the motor has to be disconnected from the power supply as soon as the above condition is detected.

37 detects the condition by monitoring the current values and helps disconnect the motor from the power supply instantaneously or after a delay according to the requirement.

When the motor is at standstill, the current will be zero and it is not recommended to activate the trip during this time. The minimum current drawn by the motor when it is connected to the power supply is the no load current, that is, the higher pickup value current. If the current drawn is below the lower pickup value current, the motor is disconnected from the power supply. 37 detects this condition and interprets that the motor is de-energized and disables the function to prevent unnecessary trip events.

4.1.11.6 Signals

Table 205: 37 Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block all binary outputs by resetting timers

Table 206: 37 Output signals

Name	Туре	Description	
TRIP	BOOLEAN	Trip	
PICKUP	BOOLEAN	Pickup	

4.1.11.7 Settings

Table 207: 37 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value low	0.010.50	xln	0.01	0.10	Current setting/Pickup value low
Pickup value high	0.011.00	xln	0.01	0.50	Current setting/Pickup value high
Trip delay time	400600000	ms	10	2000	Trip delay time

Table 208: 37 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Reset delay time	060000	ms	1	20	Reset delay time

4.1.11.8 Monitored data

Table 209: 37 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
37	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.1.11.9 Technical data

Table 210: 37 Technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the current measured: f _n ±2Hz
	±1.5% of the set value or ±0.002 x I _n
Pickup time	Typical 300 ms
Reset time	< 40 ms
Reset ratio	Typical 0.96
Retardation time	< 35 ms
Trip time accuracy in definite time mode	±1.0% of the set value or ±20 ms

4.1.12 Motor stall protection 51LR

4.1.12.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Motor stall protection	JAMPTOC	lst>	51LR

4.1.12.2 Function block

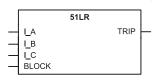


Figure 101: Function block

4.1.12.3 Functionality

The stalled motor protection 51LR is used for protecting the motor in stall or mechanical jam situations during the running state.

When the motor is started, a separate function is used for the startup protection and 51LR is normally blocked during the startup period. When the motor has passed the starting phase, 51LR monitors the magnitude of phase currents. The function starts when the

measured current exceeds the breakdown torque level, that is, above the set limit. The operation characteristic is definite time.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired.

4.1.12.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the stalled motor protection can be described using a module diagram. All the modules in the diagram are explained in the next sections.

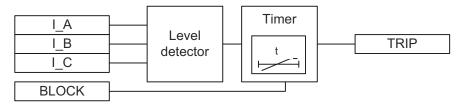


Figure 102: Functional module diagram

Level detector

The measured phase currents are compared to the set *Pickup value*. The TRMS values of the phase currents are considered for the level detection. The timer module is enabled if at least two of the measured phase currents exceed the set *Pickup value*.

Timer

Once activated, the internal PICKUP signal is activated. The value is available only through the Monitored data view. The time characteristic is according to DT. When the operation timer has reached the *Trip delay time* value, the TRIP output is activated.

When the timer has elapsed but the motor stall condition still exists, the TRIP output remains active until the phase currents values drop below the *Pickup value*, that is, until the stall condition persists. If the drop-off situation occurs while the trip time is still counting, the reset timer is activated. If the drop-off time exceeds the set *Reset delay time*, the trip timer is reset.

The timer calculates the pickup duration value PICKUP_DUR which indicates the percentual ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

4.1.12.5 Application

The motor protection during stall is primarily needed to protect the motor from excessive temperature rise, as the motor draws large currents during the stall phase. This condition causes a temperature rise in the stator windings. Due to reduced speed, the temperature also rises in the rotor. The rotor temperature rise is more critical when the motor stops.

The physical and dielectric insulations of the system deteriorate with age and the deterioration is accelerated by the temperature increase. Insulation life is related to the time interval during which the insulation is maintained at a given temperature.

An induction motor stalls when the load torque value exceeds the breakdown torque value, causing the speed to decrease to zero or to some stable operating point well below the rated speed. This occurs, for example, when the applied shaft load is suddenly increased and is greater than the producing motor torque due to the bearing failures. This condition develops a motor current almost equal to the value of the locked-rotor current.

51LR is designed to protect the motor in stall or mechanical jam situations during the running state. To provide a good and reliable protection for motors in a stall situation, the temperature effects on the motor have to be kept within the allowed limits.

4.1.12.6 Signals

Table 211: 51LR Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 212: 51LR Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip

4.1.12.7 Settings

Table 213: 51LR Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Disable / Enable
Pickup value	0.1010.00	xln	0,01	2.50	Pickup value
Trip delay time	100120000	ms	10	2000	Trip delay time
Reset delay time	060000	ms	1	100	Reset delay time

4.1.12.8 Monitored data

Table 214: 51LR Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP	BOOLEA N	0=False 1=True		Pickup
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
51LR	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.1.12.9 Technical data

Table 215: 51LR Technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the current measured: f _n ±2Hz
	±1.5% of the set value or ±0.002 x I _n
Reset time	< 40 ms
Reset ratio	Typical 0.96
Retardation time	< 35 ms
Trip time accuracy in definite time mode	±1.0% of the set value or ±20 ms

4.1.13 Loss of Phase, 37

4.1.13.1 Identification

Table 216: Function identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Phase undercurrent protection	PHPTUC1	31<	37

4.1.13.2 Function block

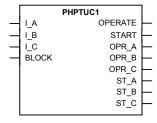


Figure 103: Function block symbol

4.1.13.3 Functionality

The phase undercurrent protection 37 is used to detect an undercurrent which is considered as a fault condition.

37 starts when the current is less than the set limit. Operation time characteristics are according to definite time (DT).

The function contains a blocking functionality. It is possible to block function outputs and reset the definite timer if desired.

4.1.13.4 Operation Principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the phase undercurrent protection can be described with a module diagram. All the modules in the diagram are explained in the next sections.

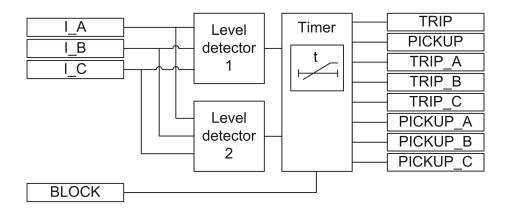


Figure 104: Functional module diagram

Level detector 1

The IED does not accept the *Pickup value* to be smaller than *Current block value*.

This module compares the phase currents (RMS value) to the *Pickup value* setting. The *Operation mode* setting can be used to select the "Three Phase" or "Single Phase" mode.

If in the "Three Phase" mode all the phase current values are less than the value of the *Pickup value* setting, the condition is detected and an enabling signal is sent to the timer. This signal is disabled after one or several phase currents have exceeded the set *Pickup value* value of the element.

If in the "Single Phase" mode any of the phase current values are less than the value of the *Pickup value* setting, the condition is detected and an enabling signal is sent to the timer. This signal is disabled after all the phase currents have exceeded the set *Pickup value* value of the element.

The IED does not accept the Pickup value to be smaller than Current block value.

Level detector 2

This is a low-current detection module that monitors the de-energized condition of the protected object. The module compares the phase currents (RMS value) to the *Current block value* setting. If all the phase current values are less than the *Current block value* setting, a signal is sent to block the operation of the timer.

Timer

Once activated, the timer activates the PICKUP output and the phase-specific PICKUP_X output. The time characteristic is according to DT. When the operation timer has reached the value set by *Trip delay time*, the TRIP output and the phase-specific TRIP_X output are activated. If the fault disappears before the module trips, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the trip timer resets and the PICKUP output is deactivated.

The timer calculates the pickup duration value PICKUP_DUR, which indicates the percentage ratio of the pickup situation and the set trip time. The value is available through the monitored data view.

The BLOCK signal blocks the operation of the function and resets the timer.

4.1.13.5 Signals

Table 217: 37 Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
TRIP_A	BOOLEAN	Trip phase A
TRIP_B	BOOLEAN	Trip phase B
TRIP_C	BOOLEAN	Trip phase C
PICKUP	BOOLEAN	Pickup
PICKUP_A	BOOLEAN	Pickup phase A
PICKUP_B	BOOLEAN	Pickup phase B
PICKUP_C	BOOLEAN	Pickup phase C

4.1.13.6 Settings

Table 218: 37 Group settings

Parameter	Values(Range)	Unit	Step	Default	Description
Current block value	0.000.50	xln	0.01	0.10	Low current setting to block internally.
Pickup value	0.011.00	xln	0.01	0.50	Current setting to pickup
Trip delay time	50200000	ms	10	2000	Trip delay time

Table 219: 37 Non group settings

Parameter	Values(Range)	Unit	Step	Default	Description
Operation	1=enable 5=disable			1=enable	Operation Disable / Enable
Operation mode	1=Three Phase 2=Single Phase			1=Three Phase	Number of phases needed to pickup
Reset delay time	060000	Ms	1	20	Reset delay time

4.1.13.7 Monitored data

Table 220: 37 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of start time / operate time
37	Enum	1 = on 2 = blocked 3 = test 4 = test/blocked 5 = off		Status

4.2 Voltage protection

4.2.1 Three-phase overvoltage protection 59

4.2.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase overvoltage protection	PHPTOV	3U>	59

4.2.1.2 Function block

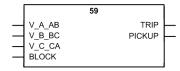


Figure 105: Function block

4.2.1.3 Functionality

The three-phase overvoltage protection 59 is applied on power system elements, such as generators, transformers, motors and power lines, to protect the system from excessive voltages that could damage the insulation and cause insulation breakdown. The three-phase overvoltage function includes a settable value for the detection of overvoltage either in a single phase, two phases or three phases.

59 includes both definite time (DT) and inverse definite minimum time (IDMT) characteristics for the delay of the trip.

The function contains a blocking functionality. It is possible to block function outputs, timer or the function itself, if desired.

4.2.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the three-phase overvoltage protection can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

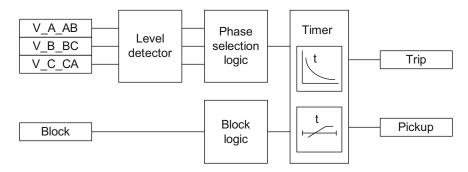


Figure 106: Functional module diagram.

Level detector

The fundamental frequency component of the measured three-phase voltages are compared phase-wise to the set value of the *Pickup value* setting. If the measured value is higher than the set value of the *Pickup value* setting, the level detector enables the phase selection logic module. The *Relative hysteresis* setting can be used for preventing unnecessary oscillations if the input signal slightly differs from the *Pickup value* setting. After leaving the hysteresis area, the pickup condition has to be fulfilled again and it is not sufficient for the signal to only return to the hysteresis area.

The *Voltage selection* setting is used for selecting phase-to-ground or phase-to-phase voltages for protection.

For the voltage IDMT operation mode, the used IDMT curve equations contain discontinuity characteristics. The *Curve Sat relative* setting is used for preventing undesired operation.

For a more detailed description of the IDMT curves and the use of the *Curve Sat Relative* setting, see the General function block features section in this manual.

Phase selection logic

If the fault criteria are fulfilled in the level detector, the phase selection logic detects the phase or phases in which the fault level is detected. If the number of faulty phases match with the set *Num of pickup phases*, the phase selection logic activates the timer.

Timer

Once activated, the timer activates the PICKUP output. Depending on the value of the set *Operating curve type*, the time characteristics are selected according to DT or IDMT.

For a detailed description of the voltage IDMT curves, see the General function block features section in this manual.

When the operation timer has reached the value set by *Trip delay time* in the DT mode or the maximum value defined by the IDMT, the TRIP output is activated.

When the user-programmable IDMT curve is selected, the trip time characteristics are defined by the parameters *Curve parameter A*, *Curve parameter B*, *Curve parameter C*, *Curve parameter D* and *Curve parameter E*.

If a drop-off situation occurs, that is, a fault suddenly disappears before the trip delay is exceeded, the reset state is activated. The behavior in the drop-off situation depends on the selected trip time characteristics. If the DT characteristics are selected, the reset timer runs until the set *Reset delay time* value is exceeded. If the drop-off situation exceeds the set *Reset delay time*, the timer is reset and the PICKUP output is deactivated.

When the IDMT trip time curve is selected, the functionality of the timer in the drop-off state depends on the combination of the *Type of reset curve* and *Reset delay time* settings.

Table 221: The reset time functionality when the IDMT trip time curve is selected

Type of reset curve	Description of operation
"Immediate"	The trip timer is reset instantaneously when drop-off occurs
"Def time reset"	The trip timer is frozen during drop-off. The trip timer is reset after the set <i>Reset delay time</i> is exceeded
"DT Lin decr rst"	The trip timer value linearly decreases during the drop-off situation. The trip timer is reset after the set <i>Reset delay time</i> is exceeded

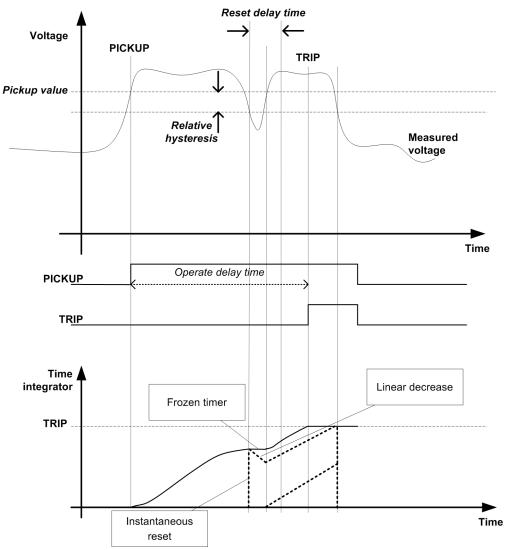


Figure 107: Behavior of different IDMT reset modes. The value for Type of reset curve is "Def time reset". Also other reset modes are presented for the time integrator.

The *Time multiplier* setting is used for scaling the IDMT trip times.

The *Minimum trip time* setting parameter defines the minimum desired trip time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum trip time* setting should be used with care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum trip time* setting. For more information, see the General function block features section in this manual.

The timer calculates the pickup duration value PICKUP_DUR which indicates the percentage ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting **Configuration > System > Blocking mode** which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the IED program. The influence of the BLOCK input signal activation is preselected with the global *Blocking mode* setting.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operate timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

The "Freeze timers" mode of blocking has no effect during the "Inverse reset" mode.

4.2.1.5 Timer characteristics

The operating curve types supported by 59 are:

Table 222: Timer characteristics supported by IDMT operate curve types

Operating curve type
(5) ANSI Def. Time
(15) IEC Def. Time
(17) Inv. Curve A
(18) Inv. Curve B
(19) Inv. Curve C
(20) Programmable

4.2.1.6 Application

Overvoltage in a network occurs either due to the transient surges on the network or due to prolonged power frequency overvoltages. Surge arresters are used to protect the network against the transient overvoltages, but the IED protection function is used to protect against power frequency overvoltages.

The power frequency overvoltage may occur in the network due to the contingencies such as:

- The defective operation of the automatic voltage regulator when the generator is in isolated operation.
- Operation under manual control with the voltage regulator out of service. A sudden variation of load, in particular the reactive power component, gives rise to a substantial change in voltage because of the inherent large voltage regulation of a typical alternator.
- Sudden loss of load due to the tripping of outgoing feeders, leaving the generator
 isolated or feeding a very small load. This causes a sudden rise in the terminal voltage
 due to the trapped field flux and overspeed.

If a load sensitive to overvoltage remains connected, it leads to equipment damage.

It is essential to provide power frequency overvoltage protection, in the form of time delayed element, either IDMT or DT to prevent equipment damage.

4.2.1.7 Signals

Table 223: 59-1/2 Input signals

Name	Туре	Default	Description
V_A_AB	SIGNAL	0	Phase to ground voltage A or phase to phase voltage AB
V_B_BC	SIGNAL	0	Phase to ground voltage B or phase to phase voltage BC
V_C_CA	SIGNAL	0	Phase to ground voltage C or phase to phase voltage CA
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 224: 59-1/2 Output signals

Name	Туре	Description	
TRIP	BOOLEAN	Trip	
PICKUP	BOOLEAN	Pickup	

4.2.1.8 Settings

Table 225: 59-1/2 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.051.60	xVn	0.01	1.10	Pickup value
Time multiplier	0.0515.00		0.05	1.00	Time multiplier in IEC/ANSI IDMT curves
Trip delay time	40300000	ms	10	40	Trip delay time
Operating curve type	5=ANSI DT 15=IEC DT 17=Inv. Curve A 18=Inv. Curve B 19=Inv. Curve C 20=Programmable			5=ANSI DT	Selection of time delay curve type
Type of reset curve	1=Immediate 2=Def time reset -1=DT Lin decr rst			1=Immediate	Selection of reset curve type

Table 226: 59-1/2 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Num of pickup phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for trip activation
Minimum trip time	4060000	ms	1	40	Minimum trip time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Curve parameter A	0.005200.000			1.000	Parameter A for customer programmable curve
Curve parameter B	0.50100.00			1.00	Parameter B for customer programmable curve
Curve parameter C	0.01.0			0.0	Parameter C for customer programmable curve
Curve parameter D	0.00060.000			0.000	Parameter D for customer programmable curve
Curve parameter E	0.0003.000			1.000	Parameter E for customer programmable curve
Curve Sat Relative	0.03.0		0.1	2.0	Tuning parameter to avoid curve discontinuities
Voltage selection	1=phase-to-ground 2=phase-to-phase			2=phase-to-phase	Parameter to select phase or phase-to-phase voltages
Relative hysteresis	1.05.0	%	0.1	4.0	Relative hysteresis for operation

4.2.1.9 Monitored data

Table 227: 59-1/2 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
59-1/2	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.2.1.10 Technical data

Table 228: 59 Technical data

Characteristic	Value				
Pickup accuracy	Depending on the frequency of the voltage measured: f _n ±2Hz				
				∢ V _n	
Pickup time ¹²		Minimum	Typical	Maximum	
	V _{Fault} = 1.1 x set <i>Pickup</i> value		24 ms	26 ms	
Reset time		< 40 ms			
Reset ratio		Depends of the set Relative hysteresis			
Retardation time		< 35 ms			
Operate time accuracy in	±1.0% of the set value or ±20 ms				
Operate time accuracy in	±5.0% of the theoretical value or ±20 ms ³				
Suppression of harmonics	3	DFT: -50 dB at f	= n x f _n , where n	= 2, 3, 4, 5,	

- Pickup value = 1.0 x V_n, Voltage before fault = 0.9 x V_n, f_n = 60 Hz, overvoltage in one phase-to-phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements
- 2. Includes the delay of the signal output contact
- 3. Maximum Pickup value = 1.20 x V_n, Pickup value multiples in range of 1.10 to 2.00

4.2.2 Three-phase undervoltage protection 27

4.2.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase undervoltage protection	PHPTUV	3U<	27

4.2.2.2 Function block

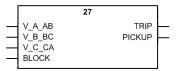


Figure 108: Function block

4.2.2.3 Functionality

The three-phase undervoltage protection 27 is used to disconnect from the network devices, for example electric motors, which are damaged when subjected to service under low voltage conditions. 27 includes a settable value for the detection of undervoltage either in a single phase, two phases or three phases.

The function contains a blocking functionality. It is possible to block function outputs, timer or the function itself, if desired.

4.2.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the three-phase undervoltage protection can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

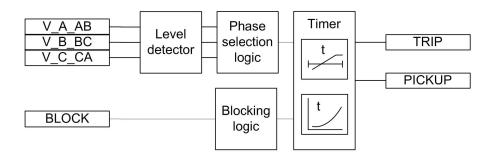


Figure 109: Functional module diagram

Level detector

The fundamental frequency component of the measured three phase voltages are compared phase-wise to the set *Pickup value*. If the measured value is lower than the set value of the *Pickup value* setting, the level detector enables the phase selection logic module. The *Relative hysteresis* setting can be used for preventing unnecessary oscillations if the input signal slightly varies above or below the *Pickup value* setting. After leaving the hysteresis area, the pickup condition has to be fulfilled again and it is not sufficient for the signal to only return back to the hysteresis area.

The *Voltage selection* setting is used for selecting the phase-to-ground or phase-to-phase voltages for protection.

For the voltage IDMT mode of operation, the used IDMT curve equations contain discontinuity characteristics. The *Curve Sat relative* setting is used for preventing unwanted operation.

For more detailed description on IDMT curves and usage of *Curve Sat Relative* setting, see the *General function block features* section in this manual.

The level detector contains a low-level blocking functionality for cases where one of the measured voltages is below the desired level. This feature is useful when unnecessary pickups and trips are wanted to avoid during, for example, an autoreclose sequence. The low-level blocking is activated by default (*Enable block value* is set to "True") and the blocking level can be set with the *Voltage block value* setting.

Phase selection logic

If the fault criteria are fulfilled in the level detector, the phase selection logic detects the phase or phases in which the fault level is detected. If the number of faulty phases match with the set *Num of pickup phases*, the phase selection logic activates the timer.

Timer

Once activated, the timer activates the PICKUP output. Depending on the value of the set *Operating curve type*, the time characteristics are selected according to DT or IDMT.

For a detailed description of the voltage IDMT curves, see the General function block features section in this manual.

When the operation timer has reached the value set by *Trip delay time* in the DT mode or the maximum value defined by the IDMT, the TRIP output is activated.

When the user-programmable IDMT curve is selected, the trip time characteristics are defined by the parameters *Curve parameter A*, *Curve parameter B*, *Curve parameter C*, *Curve parameter D* and *Curve parameter E*.

If a drop-off situation occurs, that is, a fault suddenly disappears before the trip delay is exceeded, the reset state is activated. The behavior in the drop-off situation depends on the selected trip time characteristics. If the DT characteristics are selected, the reset timer runs until the set *Reset delay time* value is exceeded. If the drop-off situation exceeds the set *Reset delay time*, the timer is reset and the PICKUP output is deactivated.

When the IDMT trip time curve is selected, the functionality of the timer in the drop-off state depends on the combination of the *Type of reset curve* and *Reset delay time* settings.

Table 229: The reset time functionality when the IDMT trip time curve is selected

Type of reset curve	Description of operation
"Immediate"	The trip timer is reset instantaneously when drop-off occurs
"Def time reset"	The trip timer is frozen during drop-off. The trip timer is reset after the set <i>Reset delay time</i> is exceeded
"DT Lin decr rst"	The trip timer value linearly decreases during the drop-off situation. The trip timer is reset after the set <i>Reset delay time</i> is exceeded

Example

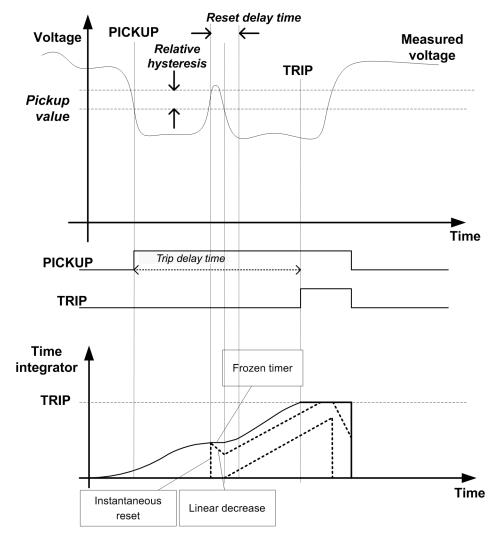


Figure 110: Behavior of different IDMT reset modes. The value for Type of reset curve is "Def time reset". Also other reset modes are presented for the time integrator.

The *Time multiplier* setting is used for scaling the IDMT trip times.

The *Minimum trip time* setting parameter defines the minimum desired trip time for IDMT. The setting is applicable only when the IDMT curves are used.

The *Minimum trip time* setting should be used with care because the operation time is according to the IDMT curve, but always at least the value of the *Minimum trip time* setting. For more information, see the *General function block features* section in this manual.

The timer calculates the pickup duration value PICKUP_DUR which indicates the percentage ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting **Configuration > System > Blocking mode** which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the IED program. The influence of the BLOCK input signal activation is preselected with the global *Blocking mode* setting.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operate timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

The "Freeze timers" mode of blocking has no effect during the "Inverse reset" mode.

4.2.2.5 Timer characteristics

The operating curve types supported by 27 are:

Table 230: Supported IDMT operate curve types

Operating curve type
(5) ANSI Def. Time
(15) IEC Def. Time
(21) Inv. Curve A
(22) Inv. Curve B
(23) Programmable

4.2.2.6 Application

27 is applied to power system elements, such as generators, transformers, motors and power lines, to detect low voltage conditions. Low voltage conditions are caused by abnormal operation or a fault in the power system. 27 can be used in combination with overcurrent protections. Other applications are the detection of a no-voltage condition, for example before the energization of a high voltage line, or an automatic breaker trip in case of a blackout. 27 is also used to initiate voltage correction measures, such as insertion of shunt capacitor banks, to compensate for a reactive load and thereby to increase the voltage.

27 can be used to disconnect from the network devices, such as electric motors, which are damaged when subjected to service under low voltage conditions. 27 deals with low voltage conditions at power system frequency. Low voltage conditions can be caused by:

- Malfunctioning of a voltage regulator or incorrect settings under manual control (symmetrical voltage decrease)
- Overload (symmetrical voltage decrease)
- Short circuits, often as phase-to-ground faults (unsymmetrical voltage increase).

27 prevents sensitive equipment from running under conditions that could cause overheating and thus shorten their life time expectancy. In many cases, 27 is a useful function in circuits for local or remote automation processes in the power system.

4.2.2.7 Signals

Table 231: 27-1/2 Input signals

Name	Туре	Default	Description
V_A_AB	SIGNAL	0	Phase to ground voltage A or phase to phase voltage AB
V_B_BC	SIGNAL	0	Phase to ground voltage B or phase to phase voltage BC
V_C_CA	SIGNAL	0	Phase to ground voltage C or phase to phase voltage CA
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 232: 27-1/2 Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup

4.2.2.8 Settings

Table 233: 27-1/2 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.051.20	xVn	0.01	0.90	Pickup value
Time multiplier	0.0515.00		0.05	1.00	Time multiplier in IEC/ANSI IDMT curves
Trip delay time	60300000	ms	10	60	Trip delay time
Operating curve type	5=ANSI DT 15=IEC DT 21=Inv. Curve A 22=Inv. Curve B 23=Programmable			5=ANSI DT	Selection of time delay curve type
Type of reset curve	1=Immediate 2=Def time reset -1=DT Lin decr rst			1=Immediate	Selection of reset curve type

Table 234: 27-1/2 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Num of pickup phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required for trip activation
Minimum trip time	6060000	ms	1	60	Minimum trip time for IDMT curves
Reset delay time	060000	ms	1	20	Reset delay time
Curve parameter A	0.005200.000			1.000	Parameter A for customer programmable curve
Curve parameter B	0.50100.00			1.00	Parameter B for customer programmable curve
Curve parameter C	0.01.0			0.0	Parameter C for customer programmable curve
Curve parameter D	0.00060.000			0.000	Parameter D for customer programmable curve
Curve parameter E	0.0003.000			1.000	Parameter E for customer programmable curve
Curve Sat Relative	0.03.0		0.1	2.0	Tuning parameter to avoid curve discontinuities
Voltage block value	0.051.00	xVn	0.01	0.20	Low level blocking for undervoltage mode
Enable block value	0=False 1=True			1=True	Enable internal blocking
Voltage selection	1=phase-to-groun d 2=phase-to-phase			2=phase-to-phase	Parameter to select phase or phase-to-phase voltages
Relative hysteresis	1.05.0	%	0.1	4.0	Relative hysteresis for operation

4.2.2.9 Monitored data

Table 235: 27-1/2 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
27-1/2	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.2.2.10 Technical data

Table 236: 27 Technical data

Characteristic	Characteristic			Value			
Pickup accuracy	Depending on the frequency of the voltage measured: fn ±2Hz						
		±1.5% of the set value or ±0.002 x V _n					
Pickup time ¹²		Minimum	Typical	Maximum			
	V _{Fault} = 0.9 x set <i>Pickup</i> value	62 ms	64 ms	66 ms			
Reset time		< 40 ms					
Reset ratio		Depends on the set Relative hysteresis					
Retardation time		< 35 ms					
Operate time accuracy in	±1.0% of the set value or ±20 ms						
Operate time accuracy in	±5.0% of the theoretical value or ±20 ms ³						
Suppression of harmonics	;	DFT: -50 dB at f = n x f _n , where n = 2, 3, 4, 5,					

Pickup value = 1.0 x V_n, Voltage before fault = 1.1 x V_n, f_n = 60 Hz, undervoltage in one phase-to-phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

- 2. Includes the delay of the signal output contact
- 3. Minimum Pickup value = 0.50, Pickup value multiples in range of 0.90 to 0.20

4.2.3 Residual overvoltage protection 59G/59N

4.2.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Residual overvoltage protection	ROVPTOV	Uo>	59G

4.2.3.2 Function block

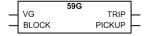


Figure 111: Function block

4.2.3.3 Functionality

The residual overvoltage protection 59G is used in distribution networks where the ground overvoltage can reach non-acceptable levels in, for example, high impedance grounding.

The function picks up when the ground voltage exceeds the set limit. 59G operates with the definite time (DT) characteristic.

The function contains a blocking functionality. It is possible to block function outputs, the definite timer or the function itself, if desired.

4.2.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of residual overvoltage protection can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

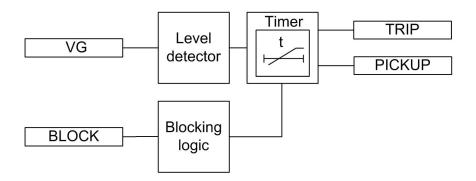


Figure 112: Functional module diagram. VG/VN represents the residual voltage.

Level detector

The measured or calculated residual voltage is compared with the set *Pickup value*. If the value exceeds the set *Pickup value*, the level detector sends an enable-signal to the timer.

Timer

Once activated, the timer activates the PICKUP output. The time characteristic is according to DT. When the trip timer has reached the value set by *Trip delay time*, the TRIP output is activated. If the fault disappears before the module trips, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the trip timer resets and the PICKUP output is deactivated.

The timer calculates the pickup duration (PICKUP_DUR) value which indicates the ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the relay program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is

blocked and the timers are reset. the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.2.3.5 Application

59G is designed to be used for ground-fault protection in isolated neutral, resistance grounded or reactance grounded systems. In compensated networks, the pickup of the function can be used to control the switching device of the neutral resistor. The function can also be used for the back-up protection of feeders for busbar protection when a more dedicated busbar protection would not be justified.

In compensated and isolated neutral systems, the system neutral voltage, that is, the ground voltage, increases in case of any fault connected to ground. Depending on the type of the fault and the fault resistance, the ground voltage reaches different values. The highest ground voltage, equal to the phase-to-ground voltage, is achieved for a single-phase ground fault. The ground voltage increases approximately the same amount in the whole system and does not provide any guidance in finding the faulty component. Therefore, this function is often used as a back-up protection or as a release signal for the feeder ground-fault protection.

The protection can also be used for the ground-fault protection of generators and motors and for the unbalance protection of capacitor banks.

The ground voltage can be calculated internally based on the measurement of the three-phase voltage. This voltage can also be measured by a single-phase voltage transformer, located between a transformer star point and ground, or by using an open-delta connection of three single-phase voltage transformers.

4.2.3.6 Signals

Table 237: 59G Input signals

Name	Туре	Default	Description		
VG	SIGNAL	0	Ground voltage		
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode		

Table 238: 59G Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup

4.2.3.7 Settings

Table 239: 59G Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.0101.000	xVn	0.001	0.030	Pickup value
Trip delay time	40300000	ms	1	40	Trip delay time

Table 240: 59G Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Reset delay time	060000	ms	1	20	Reset delay time

4.2.3.8 Monitored data

Table 241: 59G Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
59G	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

Table 242: 59G Technical data

Characteristic		Value			
Pickup accuracy		Depending on the frequency of the voltage measured: f _n ±2Hz			
		±1.5% of the set value or ±0.002 x V _n			
Pickup time ¹²		Minimum	Typical	Maximum	
	V _{Fault} = 1.1 x set <i>Pickup</i> value	29 ms	31 ms	32 ms	
Reset time		< 40 ms			
Reset ratio		Typical 0.96			
Retardation time		< 35 ms			
Trip time accuracy in definite time mode		±1.0% of the set value or ±20 ms			
Suppression of harmonics	;	DFT: -50 dB at f	= n x f _n , where n =	= 2, 3, 4, 5,	

^{1.} Ground voltage before fault = $0.0 \times V_n$, $f_n = 60 Hz$, ground voltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

^{2.} Includes the delay of the signal output contact

4.2.4 Negative-sequence overvoltage protection 47

4.2.4.1 Identification

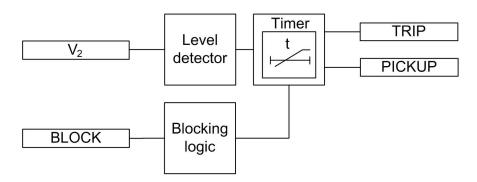
Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Negative sequence overvoltage protection	NSPTOV	U2>	47

4.2.4.2 Function block

Figure 113: Function block

4.2.4.3 Functionality

The negative-sequence overvoltage protection 47 is used to detect negative-sequence overvoltage conditions. 47 is used for the protection of machines.


The function picks up when the negative-sequence voltage exceeds the set limit. 47 operates with the definite time (DT) characteristics.

The function contains a blocking functionality. It is possible to block function outputs, the definite timer or the function itself, if desired.

4.2.4.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of negative sequence overvoltage protection can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

Figure 114: Functional module diagram. V_2 is used for representing negative phase sequence voltage.

Level detector

The calculated negative-sequence voltage is compared to the set *Pickup value* setting. If the value exceeds the set *Pickup value*, the level detector enables the timer..

Timer

Once activated, the timer activates the PICKUP output. The time characteristic is according to DT. When the operation timer has reached the value set by Trip delay time, the TRIP output is activated if the overvoltage condition persists. If the negativesequence voltage normalizes before the module trips, the reset timer is activated. If the reset timer reaches the value set by Reset delay time, the trip timer resets and the PICKUP output is deactivated.

The timer calculates the pickup duration value PICKUP_DUR which indicates the ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/ Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the IED.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.2.4.5 Application

A continuous or temporary voltage unbalance can appear in the network for various reasons. The voltage unbalance mainly occurs due to broken conductors or asymmetrical loads and is characterized by the appearance of a negative-sequence component of the voltage. In rotating machines, the voltage unbalance results in a current unbalance, which heats the rotors of the machines. The rotating machines, therefore, do not tolerate a continuous negative-sequence voltage higher than typically 1-2 percent x V_n .

The negative-sequence component current I_2 , drawn by an asynchronous or a synchronous machine, is linearly proportional to the negative-sequence component voltage V_2 . When V_2 is P% of V_n , I_2 is typically about 5 x P% x I_n .

The negative-sequence overcurrent 46 blocks are used to accomplish a selective protection against the voltage and current unbalance for each machine separately. Alternatively, the protection can be implemented with the 47 function, monitoring the voltage unbalance of the busbar.

If the machines have an unbalance protection of their own, the 47 operation can be applied as a backup protection or it can be used as an alarm. The latter can be applied when it is not required to trip loads tolerating voltage unbalance better than the rotating machines.

If there is a considerable degree of voltage unbalance in the network, the rotating machines should not be connected to the network at all. This logic can be implemented by inhibiting the closure of the circuit breaker if the 47 operation has started. This scheme also prevents connecting the machine to the network if the phase sequence of the network is not correct.

An appropriate value for the setting parameter *Voltage pickup value* is approximately 3 percent of V_n . A suitable value for the setting parameter *Trip delay time* depends on the application. If the 47 operation is used as a backup protection, the trip time should be set in accordance with the trip time of 46 used as the main protection. If the 47 operation is used as the main protection, the trip time should be approximately one second.

4.2.4.6 Signals

Table 243: 47 Input signals

Name	Туре	Default	Description
V ₂	SIGNAL	0	Negative phase sequence voltage
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 244: 47 Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup

4.2.4.7 Settings

Table 245: 47 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.0101.000	xVn	0.001	0.030	Pickup value
Trip delay time	40120000	ms	1	40	Trip delay time

Table 246: 47 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Reset delay time	060000	ms	1	20	Reset delay time

4.2.4.8 Monitored data

Table 247: 47 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
47	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.2.4.9 Technical data

Table 248: 47 Technical data

Characteristic	Characteristic				
Pickup accuracy		Depending on the frequency of the voltage measured: fn ±2Hz			
		±1.5% of the set	value or ±0.002 ×	V_n	
Pickup time ¹²		Minimum	Typical	Maximum	
	V _{Fault} = 1.1 × set <i>Pickup</i>	33 ms	35 ms	37 ms	
	value V _{Fault} = 2.0 × set <i>Pickup</i> value	24 ms	26 ms	28 ms	
Reset time		< 40 ms			
Reset ratio		Typical 0.96			
Retardation time		< 35 ms			
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms			
Suppression of harmonics	;	DFT: -50 dB at f	= n × f _n , where n =	= 2, 3, 4, 5,	

Negative-sequence voltage before fault = 0.0 × V_n, f_n = 60 Hz, negative-sequence overvoltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

4.2.5 Positive-sequence undervoltage protection 27PS

4.2.5.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Positive sequence undervoltage protection function	PSPTUV	U1	27PS

4.2.5.2 Function block

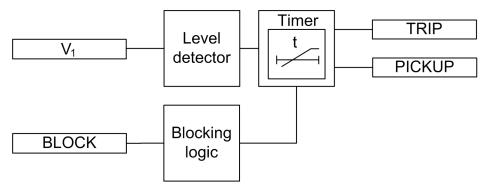


Figure 115: Function block

4.2.5.3 Functionality

The positive-sequence undervoltage protection 27PS is used to detect positive-sequence undervoltage conditions. 27PS is used for the protection of small power generation plants. The function helps in isolating an embedded plant from a fault line when the fault current fed by the plant is too low to cause an overcurrent function to pickup but high enough to maintain the arc. Fast isolation of all the fault current sources is necessary for a successful autoreclosure from the network-end circuit breaker.

The function picks up when the positive-sequence voltage drops below the set limit. 27PS operates with the definite time (DT) characteristics.


^{2.} Includes the delay of the signal output contact

The function contains a blocking functionality. It is possible to block function outputs, the definite timer or the function itself, if desired.

4.2.5.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of positive sequence undervoltage protection can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

Figure 116: Functional module diagram. V_1 is used for representing positive phase sequence voltage.

Level detector

The calculated positive-sequence voltage is compared to the set Pickup value setting. If the value goes below the set Pickup value, the level detector enables the timer. The Relative hysteresis setting can be used for preventing unnecessary oscillations if the input signal slightly varies from the Pickup value setting. After leaving the hysteresis area, the pickup condition has to be fulfilled again and it is not sufficient for the signal to only return to the hysteresis area.

The level detector contains a low level blocking functionality for cases where the positive sequence voltage is below the desired level. This feature is useful when it is wanted to avoid unnecessary starts and operates during, for example, an auto-reclose sequence. The low level blocking is activated by default (*Enable block value* is set to "True") and the blocking level can be set with the *Voltage block value* setting.

Timer

Once activated, the timer activates the PICKUP output. The time characteristic is according to DT. When the operation timer has reached the value set by *Trip delay* time, the TRIP output is activated if the undervoltage condition persists. If the positivesequence voltage normalizes before the module trips, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the trip timer resets and the PICKUP output is deactivated.

The timer calculates the pickup duration (PICKUP_DUR) value which indicates the ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the relay program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.2.5.5 Application

27PS can be applied for protecting a power station used for embedded generation when network faults like short circuits or phase-to-ground faults in a transmission or a distribution line cause a potentially dangerous situations for the power station. A network fault can be dangerous for the power station for various reasons. The operation of the protection can cause an islanding condition, also called a loss-of-mains condition, in which a part of the network, that is, an island fed by the power station, is isolated from the rest of the network. There is then a risk of an autoreclosure taking place when the voltages of different parts of the network do not synchronize, which is a straining incident for the power station. Another risk is that the generator can lose synchronism during the network fault. A sufficiently fast trip of the utility circuit breaker of the power station can avoid these risks.

The lower the three-phase symmetrical voltage of the network is, the higher is the probability that the generator loses the synchronism. The positive-sequence voltage is also available during asymmetrical faults. It is a more appropriate criterion for detecting the risk of loss of synchronism than, for example, the lowest phase-to-phase voltage.

Analyzing the loss of synchronism of a generator is rather complicated and requires a model of the generator with its prime mover and controllers. The generator can be able to trip synchronously even if the voltage drops by a few tens of percent for some hundreds of milliseconds. The setting of 27PS is thus determined by the need to protect the power station from the risks of the islanding conditions since that requires a higher setting value.

The loss of synchronism of a generator means that the generator is unable to operate as a generator with the network frequency but enters into an unstable condition in which it operates by turns as a generator and a motor. Such a condition stresses the generator thermally and mechanically. This kind of loss of synchronism should not be mixed with the one between an island and the utility network. In the islanding situation, the condition of the generator itself is normal but the phase angle and the frequency of the phase-to-phase voltage can be different from the corresponding voltage in the rest of the network. The island can have a frequency of its own relatively fast when fed by a small power station with a low inertia.

27PS complements other loss-of-grid protection principles based on the frequency and voltage operation.

Motor stalling and failure to start can lead to a continuous undervoltage. The positive-sequence undervoltage is used as a backup protection against the motor stall condition.

4.2.5.6 Signals

Table 249: 27PS Input signals

Name	Туре	Default	Description		
V ₁	SIGNAL	0	Positive phase sequence voltage		
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode		

Table 250: 27PS Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup

4.2.5.7 Settings

Table 251: 27PS Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Pickup value	0.0101.200	xVn	0.001	0.500	Pickup value
Trip delay time	40120000	ms	10	40	Trip delay time
Voltage block value	0.011.00	xVn	0.01	0.20	Internal blocking level
Enable block value	0=False 1=True			1=True	Enable Internal Blocking

Table 252: 27PS Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Off / On
Reset delay time	060000	ms	1	20	Reset delay time
Relative hysteresis	1.05.0	%	0.1	4.0	Relative hysteresis for operation

4.2.5.8 Monitored data

Table 253: 27PS Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
27PS	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.2.5.9 Technical data

Table 254: 27PS Technical data

Characteristic	Value			
Pickup accuracy		Depending on the frequency of the voltage measured: f _n ±2Hz		
		±1.5% of the set	value or ±0.002 x	V_n
Pickup time ¹²			Typical	Maximum
	V _{Fault} = 0.99 x set <i>Pickup value</i> V _{Fault} = 0.9 x set <i>Pickup</i> <i>value</i>	51 ms 43 ms	53 ms 45 ms	54 ms 46 ms
Reset time		< 40 ms		
Reset ratio		Depends of the set Relative hysteresis		
Retardation time	< 35 ms			
Trip time accuracy in defir	±1.0% of the set value or ±20 ms			
Suppression of harmonics	,	DFT: -50 dB at f	= n x f _n , where n	= 2, 3, 4, 5,

Pickup value = 1.0 x V_n, Positive sequence voltage before fault = 1.1 x V_n, f_n = 60 Hz, positive sequence undervoltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

4.2.6 Voltage per Hertz Protection, 24

4.2.6.1 Identification

Function Description	IEC 61850 Identification	IEC 60617 Identification	ANSI/IEEE C37.2 device number
Overexcitation protection	OEPVPH	U/f>	24

4.2.6.2 Function Block

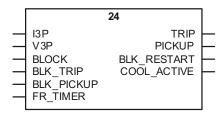


Figure 117: Function Block

4.2.6.3 Functionality

The overexcitation protection 24 is used to protect the generators and power transformers against an excessive flux density and saturation of the magnetic core.

The function calculates the V/f ratio (volts/hertz) proportional to the excitation level of the generator or transformer and compares this value to the setting limit. The function picks

^{2.} Includes the delay of the signal output contact

up when the excitation level exceeds the set limit and trips when the set tripping time has elapsed. The tripping time characteristic can be selected to be either definite time (DT) or overexcitation inverse definite minimum time (overexcitation type IDMT).

This function contains a blocking functionality. It is possible to block the function outputs, reset timer or the function itself, if desired.

4.2.6.4 Operation Principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the overexcitation protection can be described with a module diagram. All the modules in the diagram are explained in the next sections.

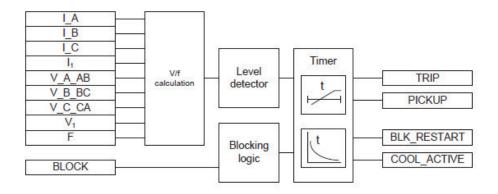


Figure 118: Functional Module Diagram

V/f calculation

This module calculates the V/f ratio, that is, the excitation level from the internal induced voltage (E) and frequency. The actual measured voltage (Vm) deviates from the internal induced voltage (emf) E, a value the equipment has to withstand. This voltage compensation is based on the load current (IL) and the leakage reactance (Xleak) of the equipment. The leakage reactance of the transformer or generator is set through the *Leakage React* setting in percentage of the Z base.

The internal induced voltage (E) is calculated from the measured voltage. The settings *Voltage selection* and *Phase supervision* determine which voltages and currents are to be used. If the *Voltage selection* setting is set to "phase-to-ground" or "phase-to-phase", the *Phase supervision* setting is used for determining which phases or phase-to-phase voltages ("A or AB", "B or BC" and "C or CA") and currents are to be used for the calculation of the induced voltage.

Setting Voltage selection	Setting Phase supervision	Calculation of internal induced voltage (emf) E
phase-to-ground	A or AB	$\overline{E} = \sqrt{3} * \left(\overline{V_A} + \overline{I_A} * (j * X_{leak}) \right)$
phase-to-ground	B or BC	$\overline{E} = \sqrt{3} * \left(\overline{V_B} + \overline{I_B} * (j * X_{leak}) \right)$
phase-to-ground	C or CA	$\overline{E} = \sqrt{3} * \left(\overline{V_C} + \overline{I_C} * (j * X_{leak}) \right)$
phase-to-phase	A or AB	$\overline{E} = \overline{V_{AB}} + (\overline{I_A} - \overline{I_B}) * (j * X_{leak})$
phase-to-phase	B or BC	$\overline{E} = \overline{V_{BC}} + (\overline{I_B} - \overline{I_C}) * (j * X_{leak})$
phase-to-phase	C or CA	$\overline{E} = \overline{V_{CA}} + (\overline{I_C} - \overline{I_A}) * (j * X_{leak})$
Pos sequence	N/A	$\overline{E} = \sqrt{3} * \left(\overline{V_1} + \overline{I_1} * (j * X_{leak}) \right)$
Voltages, currents and the leaf	kage reactance X _{leak} in the	calculations are given in volts, amps and ohms.

If all three phase or phase-to-phase voltages and phase currents are fed to the IED, the positive-sequence alternative is recommended.

If the leakage reactance of the protected equipment is unknown or if the measured voltage (Vm) is to be used in the excitation level calculation, then by setting the leakage reactance value to zero the calculated induced voltage (E) is equal to the measured voltage.

The calculated V/f ratio is scaled to a value based on the nominal Vn/fn ratio. However, the highest allowed continuous voltage (in % Vn) can be defined by setting the parameter *Voltage Max Cont* to change the basis of the voltage. The measured voltage is compared to the new base value to obtain the excitation level.

The excitation level (M) can be calculated:

$$M = \frac{\frac{E}{f_m}}{\frac{V_n}{f_n} \times \frac{Volt\ Max\ continuous}{100}}$$

Equation 6

M the excitation level (V/f ratio or volts/hertz) in pu

E the internal induced voltage (emf)

fm the measured frequency

Vn the nominal phase-to-phase voltage

fn the nominal frequency

If the input frequency (f_m) is less than 20 percent of the nominal frequency (f_n) , the calculation of the excitation level is disabled and forced to zero value. This means that the function is blocked from picking up and tripping during a low-frequency condition.

The calculated excitation level (V/f ratio or volts/hertz) VOLTPERHZ is available in the monitored data view.

Level detector

The level detector compares the calculated excitation level to the *Pickup value* setting. If the excitation level exceeds the set limit, the module sends an enabling signal to start the timer.

Timer

Once activated, the timer activates the PICKUP output. Depending on the value of the *Operating curve type* setting, the time characteristics are according to DT or IDMT. When the trip timer has reached the value set by *Trip delay time* in the DT mode or the value defined by the inverse time curve, the TRIP output is activated.

In a drop-off situation, that is, when the excitation level drops below *Pickup value* before the function trips, the reset timer is activated and the PICKUP output resets after the time delay of *Reset delay time* for the DT characteristics. For the IDMT curves, the reset operation is as described in the Timer characteristics chapter.

For the IDMT curves, it is possible to define the maximum and minimum trip times via the *Minimum trip time* and *Maximum trip time* settings. The *Maximum trip time* setting is used to prevent infinite pickup situations at low degrees of overexcitation. The *Time multiplier* setting is used for scaling the IDMT trip times.

The activation of the TRIP output activates the BLK RESTART output.

The beginning of the cooling process deactivates the TRIP output and activates the COOL_ACTIVE output. COOL_ACTIVE is kept active during the cooling process. If a new overexcitation pickup ceases cooling, COOL_ACTIVE is deactivated during that pickup time. BLK_RESTART is kept active until the set total cooling time has elapsed. It means that even during the new overexcitation pickup ceases cooling, BLK_RESTART is kept active. Due to the updated cooling time, the BLK_RESTART activation time is prolonged with these new starts during cooling. A new overexcitation pickup during cooling does not immediately reactivate TRIP, but PICKUP is first activated and a new TRIP activation depends on the already run cooling time. If, for example, 60 percent of the set cooling time has run before a new pickup, 40 percent of the operating time is needed to reactivate TRIP.

The T_ENARESTART output indicates the duration in seconds for which the BLK_RESTART output still remains active. The value is available in the monitored data view.

The timer calculates the pickup duration value PICKUP_DUR, which indicates the percentage ratio of the pickup situation and the set trip time. The value is available in the monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the IED program. The influence of the BLOCK signal activation is preselected with the global setting Blocking mode.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.2.6.5 Timer Characteristics

24 supports both DT and IDMT characteristics. The DT timer characteristics can be selected as "ANSI Def. Time" or "IEC Def. Time" in the *Operating curve type* setting. The functionality is identical in both cases. When the DT characteristics are selected, the functionality is only affected by the *Trip delay time* and *Reset delay time* settings.

24 also supports four overexcitation IDMT characteristic curves: "OvExt IDMT Crv1", "OvExt IDMT Crv2", "OvExt IDMT Crv3" and "OvExt IDMT Crv4".

Overexcitation inverse definite minimum time curve (IDMT)

In the inverse time modes, the trip time depends on the momentary value of the excitation: the higher the excitation level, the shorter the trip time. The trip time calculation or integration starts immediately when the excitation level exceeds the set *Pickup value* and the PICKUP output is activated.

The TRIP output is activated when the cumulative sum of the integrator calculating the overexcitation situation exceeds the value set by the inverse time mode. The set value depends on the selected curve type and the setting values used.

The *Minimum trip time* and *Maximum trip time* settings define the minimum trip time and maximum trip time possible for the IDMT mode. For setting these parameters, a careful study of the particular IDMT curves is recommended.

The tripping time of the function block can vary much between different operating curve types even if other setting parameters for the curves were not changed.

Once activated, the timer activates the PICKUP output for the IDMT curves. If the excitation level drops below the *Pickup value* setting before the function trips, the reset timer is activated. If the fault reoccurs during the reset time, the tripping calculation is made based on the effects of the period when PICKUP was previously active. This is intended to allow a tripping condition to occur in less time to account for the heating effects from the previous active pickup period.

When the fault disappears, the reset time can be calculated:

$$reset\ time = \left(\frac{PICKUP_DUR}{100}\right) \times Cooling\ time$$

Equation 7

For the IDMT curves, when the fault disappears, the integral value calculated during PICKUP is continuously decremented by a constant that causes its value to become zero when the reset time elapses during the reset period. If a fault reoccurs, the integration continues from the current integral value and the pickup time is adjusted, as shown in Figure 119 The pickup time becomes the value at the time when the fault dropped off minus the amount of reset time that occurred. If the reset period elapses without a fault being detected, the saved values of the pickup time and integration are cleared.

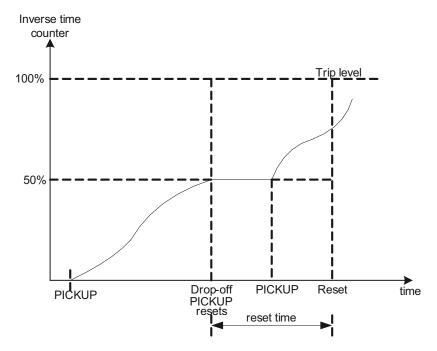


Figure 119: An example of a delayed reset in the inverse time characteristics. When the pickup becomes active during the reset period, the trip time counter continues from the level corresponding to the drop-off (reset time = 0.50 · Cooling time).

Overexcitation IDMT curves 1, 2 and 3

The base equation for the IDMT curves "OvExt IDMT Crv1", "OvExt IDMT Crv2" and "OvExt IDMT Crv3" is:

$$t(s) = 60 \cdot e^{\left(\frac{ak + b - 100 M}{c}\right)}$$

Equation 8

t(s) the Trip time in seconds

M the excitation level ('V/f ratio' or 'Volts/Hertz') in pu

k the setting *Time multiplier*

The constant "60" in converts time from minutes to seconds...

The IDMT curve parameters a, b and c are according to the following.

Table 255: Parameters a, b and c for different IDMT curves

Operating curve type Setting	а	b	С
OvExt IDMT Crv1	2.5	115.00	4.886
OvExt IDMT Crv2	2.5	113.50	3.040
OvExt IDMT Crv3	2.5	108.75	2.443

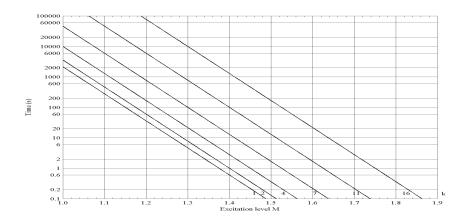


Figure 120: Trip time curves for the overexcitation IDMT curve ("OvExt IDMT Crv1") for parameters a = 2.5, b = 115.0 and c = 4.886.

Overexcitation IDMT curve 4

The base equation for the IDMT curve "OvExt IDMT Crv4" is:

$$t(s) = \frac{d}{1000} + \frac{0.18k}{(M-1)^2}$$

Equation 9

t(s) the trip time in seconds

d the Constant delay setting in milliseconds

M the excitation value (V/f ratio or volts/hertz) in pu

k the Time multiplier setting

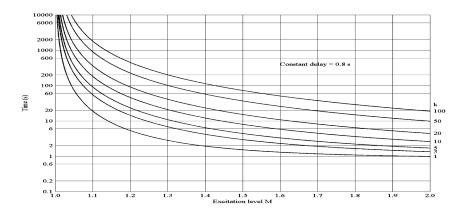


Figure 121: Trip time curves for the overexcitation IDMT curve 4 ("OvExt IDMT Crv4") for different values of the Time multiplier setting when the Constant delay is 800 milliseconds.

The activation of the TRIP output activates the BLK RESTART output.

For the IDMT curves, the deactivation of the TRIP output activates the cooling timer. The timer is set to the value entered in the *Cooling time* setting. The COOL_ACTIVE output is kept active until the cooling timer is reset, whereas the BLK_RESTART output remains active until the timer exceeds the value to enable the restart time, given in Equation 10. The *Restart Ena level* setting determines the level when BLK_RESTART should be released.

enable restart time =
$$\left(\frac{100 - Ena\ restart\ level}{100}\right) \times Cooling\ time$$
 Equation 10

If the excitation level increases above the set value when BLK_RESTART is active, the TRIP output is activated immediately.

If the excitation level increases above the set value when BLK_RESTART is not active but COOL_ACTIVE is active, the TRIP output is not activated instantly. In this case, the remaining part of the cooling timer affects the calculation of the trip timer as shown in Figure 122. This compensates for the heating effect and makes the overall trip time shorter.

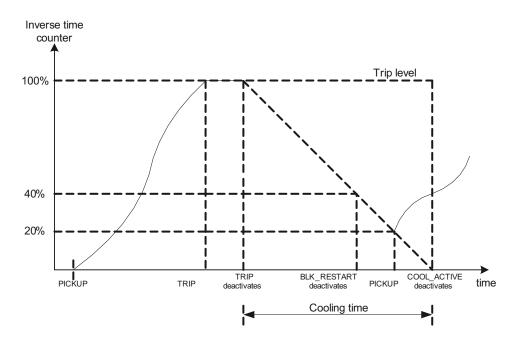


Figure 122: Example of an inverse time counter operation if TRIP occurs when BLK_RESTART is not active but COOL_ACTIVE is active. (The Restart Ena level setting is considered to be 40 percent)

4.2.6.6 Application

If the laminated core of a power transformer or generator is subjected to a magnetic flux density beyond its designed limits, the leakage flux increases. This results in a heavy hysteresis and eddy current losses in the non-laminated parts. These losses can cause excessive heating and severe damage to the insulation and adjacent parts in a relatively short time.

Overvoltage, underfrequency or a combination of the two results in an excessive flux density level. Since the flux density is directly proportional to the voltage and inversely proportional to the frequency, the overexcitation protection calculates the relative V/Hz ratio instead of measuring the flux density directly. The nominal level (nominal voltage at nominal frequency) is usually considered as the 100- percent level, which can be exceeded slightly based on the design.

The greatest risk for overexcitation exists in a thermal power station when the generator-transformer unit is disconnected from the rest of the network or in the network islands where high voltages or low frequencies can occur.

Overexcitation can occur during the startup and shutdown of the generator if the field current is not properly adjusted. The loss-of-load or load shedding can also result in overexcitation if the voltage control and frequency governor do not function properly. The

low frequency in a system isolated from the main network can result in overexcitation if the voltage-regulating system maintains a normal voltage.

Overexcitation protection for the transformer is generally provided by the generator overexcitation protection, which uses the VTs connected to the generator terminals. The curves that define the generator and transformer V/Hz limits must be coordinated properly to protect both equipments.

If the generator can be operated with a leading power factor, the high-side voltage of the transformer can have a higher pu V/Hz than the generator V/Hz. This needs to be considered in a proper overexcitation protection of the transformer. Also, measurement for the voltage must not be taken from any winding where OLTC is located.

It is assumed that overexcitation is a symmetrical phenomenon caused by events such as loss-of-load. A high phase-to-ground voltage does not mean overexcitation. For example, in an ungrounded power system, a single-phase-to-ground fault means high voltages of the healthy two phases to ground but no overexcitation on any winding. The phase-to-phase voltages remain essentially unchanged. An important voltage to be considered for the overexcitation is the voltage between the two ends of each winding.

Example calculations for overexcitation protection

Example 1

Consider the nominal values of the machine as:

Nominal phase-to-phase voltage $(V_n) = 11000 \text{ V}$

Nominal phase current $(I_n) = 7455 \text{ A}$

Nominal frequency $(f_n) = 60 \text{ Hz}$

Leakage reactance (X_{leak}) = 20% or 0.2 pu

Assume that the measured voltage and load currents of the machine as:

Phase A-to-phase B voltage $(V_{AB}) = 11500 \angle 0^{\circ} V$

Phase A current $(I_A) = 5600 \angle -63.57^{\circ} A$

Phase B current (I_B) = 5600 \angle 176.42°A

Measured frequency $(f_m) = 59.98 \text{ Hz}.$

The setting Volt Max continuous = 100%

The setting Voltage selection = phase-to-phase

The setting Phase supervision = A or AB

The pu leakage reactance (X_{leakPU}) is converted to Ohms as per Equation 11.

$$X_{leak\Omega} = X_{leakPU} \times \left(\frac{V_n}{I_n \times \sqrt{3}} \right) = 0.2 \times \left(\frac{11000}{7455 \times \sqrt{3}} \right) = 0.170378 \ Ohms$$

Equation 11

The internal induced voltage (E) of the machine is calculated as per Equation 12

$$\overline{E} = \overline{V_{AB}} + (\overline{I_A} - \overline{I_B}) \times (jX_{leak})$$

Equation 12

$$E = 11500 \angle 0^{\circ} + (5600 \angle -63.57^{\circ} - 5600 \angle 176.42^{\circ}) \times (0.170378 \angle 90^{\circ}) = 12490 \text{ V}.$$

The excitation level M of the machine is calculated as below:

$$M = \frac{12490/59.98}{11000/60 \times 1.00} = 1.1358$$

Excitation level

Example 2

The situation and the data are equal to the example 1. In this case, manufacturer of the machine allows the continuous operation 105 % of the nominal voltage at the rated load and this value to be used as the base for overexcitation.

Usually the V/f characteristics are specified so that the ratio is 1.00 at the nominal voltage and the nominal frequency, therefore the value 100% for setting Volt Max continuous is recommended.

The setting Volt Max continuous is equal to 105%, then the excitation level M of the machine is calculated as below:

$$M = \frac{12490/59.98}{11000/60 \times 1.05} = 1.0817$$

Excitation level

In the definite time operation, if the calculated excitation level M is greater than the setting *Pickup value*, PICKUP output is activated. If the excitation level M stays above the set value for the time equal to set *Trip delay time*, TRIP output is activated. The definite time operation is as shown in Figure 123.

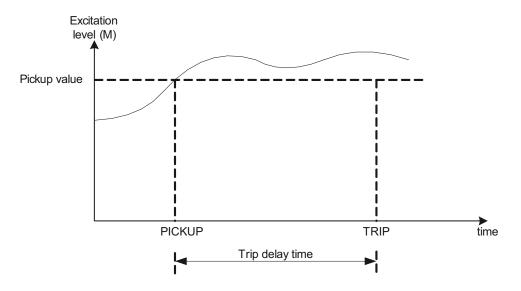


Figure 123: Definite time operation when the excitation level M, stays above the Pickup value for the set Trip delay time.

4.2.6.7 Signals

Table 256: 24 Input Signals

Name	Туре	Default	Description
I_A	SIGNAL	0	0 Phase A current
I_B	SIGNAL	0	0 Phase B current
I_C	SIGNAL	0	0 Phase C current
l1	SIGNAL	0	0 Positive-phase sequence current
V_A_AB	SIGNAL	0	0 Phase-to-ground voltage A or phase-to-phase voltage AB
V_B_BC	SIGNAL	0	0 Phase-to-ground voltage B or phase-to-phase voltage BC
V_C_CA	SIGNAL	0	0 Phase-to-ground voltage C or phase-to-phase voltage CA
V1	SIGNAL	0	0 Positive-phase sequence voltage
F	SIGNAL	0	0 Measured frequency
BLOCK	BOOLEAN	0=False	Block signal

Table 257: 24 Output Signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup
BLK_RESTART	BOOLEAN	Signal for blocking reconnection of an overheated machine
COOL_ACTIVE	BOOLEAN	Signal to indicate machine is in cooling process

4.2.6.8 Settings

Table 258: 24 Group Settings

Parameter	Values (Range)	Un it	Ste p	Default	Description
Pickup value	100200	%	1	110	Over excitation pickup value
Operating curve type	5=ANSI DT			5=ANSI DT	Selection of time delay curve
	15=IEC DT				type
	17=OvExt IDMT Crv1				
	18=OvExt IDMT Crv2				
	19=OvExt IDMT Crv3				
	20=OvExt IDMT Crv4				
Time multiplier	0.1100.0		0.1	3	Time multiplier for Overexcitation IDMT curves
Trip delay time	200200000	ms	10	500	Trip delay time in definite – time mode

Table 259: 24 Non Group Settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=enable			1=enable	Operation Mode Disable/Enable
	5=disable				
Cooling time	510000	S	1	600	Time required to cool the machine
Constant delay	100120000	ms	10	800	Parameter constant delay
Reset delay time	060000	ms	10	100	Resetting time of the trip time counter in DT mode
Maximum trip time	50000010000000	ms	10	1000000	Maximum Trip time for IDMT curves
Minimum trip time	20060000	ms	10	200	Minimum trip time for IDMT curves
Restart Ena level	1100	%	1	40	Determines the level in % when block restart is released
Voltage selection	1=phase-to-ground			3=pos	Selection of phase /
	2=phase-to-phase			sequence	phase-to-phase / pos sequence voltages
	3=pos sequence				
Phase selection	1=A or AB			1=A or AB	Parameter for phase selection
	2=B or BC				
	3=C or CA				
Leakage React	0.050.0	%	0.1	0	Leakage reactance of the machine
Voltage Max Cont	80160	%	1	100	Maximum allowed continuous operating voltage ratio

4.2.6.9 Monitored Data

Table 260: 24 Monitored Data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time (in %)
T_ENARESTAR T	INT32	010000	s	Estimated time to reset of block restart
VOLTPERHZ	FLOAT32	0.010.0	pu	Excitation level, i.e V/f ratio or Volts/Hertz
24	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

4.2.6.10 Technical data

Table 261: 24 Technical data

Characteristic	Value		
Pickup accuracy	Depending on the frequency of the current measured: fn ±2Hz		
	±3.0% of the set value		
Pickup time 1) 2)	Frequency change: Typical 200 ms Voltage change: Typical <40 ms		
Reset time	< 50 ms		
Reset ratio	Typical 0.96		
Retardation time	< 35 ms		
Operate time accuracy in definite-time mode	±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse-time mode	±5.0% of the theoretical value or ±50 ms		

4.3 Frequency protection

4.3.1 Frequency protection 81O/81U, 81R

4.3.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Frequency protection	FRPFRQ	f>/f<, df/dt	81O/81U, 81R

4.3.1.2 Function block

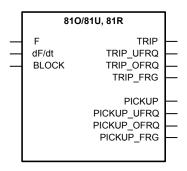


Figure 124: Function block

4.3.1.3 Functionality

The frequency protection functions 81O/81U, 81R are used to protect network components against abnormal frequency conditions.

The function provides basic overfrequency, underfrequency and frequency rate of change protection. Additionally, it is possible to use combined criteria to achieve even more sophisticated protection schemes for the system.

The function contains a blocking functionality. It is possible to block function outputs, timer or the function itself, if desired.

4.3.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are "Enable" and "Disable".

The operation of the frequency protection function can be described using a module diagram. All the modules in the diagram are explained in the next sections.

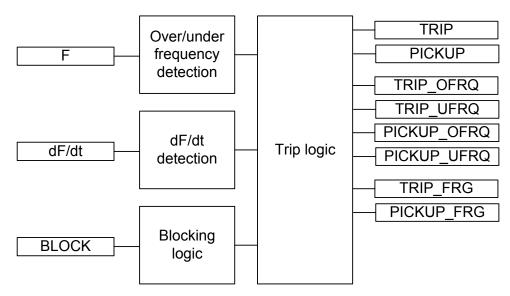


Figure 125: Functional module diagram

Over/under frequency detection

The frequency detection module includes an overfrequency or underfrequency detection based on the *Operation mode* setting.

In the "Freq>" mode, the measured frequency is compared to the set *Pickup value Freq>*. If the measured value exceeds the set value of the *Pickup value Freq>* setting, the module reports the exceeding of the value to the operate logic module.

In the "Freq<" mode, the measured frequency is compared to the set *Pickup value Freq*<. If the measured value is lower than the set value of the *Pickup value Freq*< setting, the module reports the value to the operate logic module.

dF/dt detection

The frequency gradient detection module includes a detection for a positive or negative rate-of-change (gradient) of frequency based on the set *Pickup value df/dt* value. The negative rate-of-change protection is selected when the set value is negative. The positive rate-of-change protection is selected when the set value is positive. When the frequency gradient protection is selected and the gradient exceeds the set *Pickup value df/dt* value, the module reports the exceeding of the value to the operate logic module.

The IED does not accept the set value "0.00" for the Pickup value df/dt setting.

Blocking logic

This module is used for combining different protection criteria based on the frequency and the frequency gradient measurement to achieve a more sophisticated behavior of the function. The criteria are selected with the *Operation mode* setting.

264

Table 262: Operation modes for operation logic

Operation mode	Description
Freq<	The function operates independently as the underfrequency ("Freq<") protection function. When the measured frequency is below the set value of the <i>Pickup value Freq</i> < setting, the module activates the PIC and STR_UFRQ outputs. The time characteristic is according to DT. When the operation timer has reached the value set by the <i>Trip Tm Freq</i> setting, the TRIP and OPR_UFRQ outputs are activated. If the frequency restores before the module operates, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm Freq</i> setting, the trip timer resets and the PICKUP and STR_UFRQ outputs are deactivated.
Freq>	The function trips independently as the overfrequency ("Freq>") protection function. When the measured frequency exceeds the set value of the <i>Pickup value Freq></i> setting, the module activates the <code>PICKUP</code> and <code>STR_OFRQ</code> outputs. The time characteristic is according to DT. When the operation timer has reached the value set by the <i>Trip Tm Freq</i> setting, the <code>TRIP</code> and <code>OPR_OFRQ</code> outputs are activated. If the frequency restores before the module trips, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm Freq</i> setting, the trip timer resets and the <code>PICKUP</code> and <code>STR_OFRQ</code> outputs are deactivated.
df/dt	The function trips independently as the frequency gradient ("df/dt"), rate-of-change, protection function. When the frequency gradient exceeds the set value of the <i>Pickup value df/dt</i> setting, the module activates the PICKUP and STR_FRG outputs. The time characteristic is according to DT. When the operation timer has reached the value set by the <i>Trip Tm df/dt</i> setting, the TRIP and OPR_FRG outputs are activated. If the frequency gradient restores before the module trips, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm df/dt</i> setting, thetrip timer resets and the PICKUP and STR_FRG outputs are deactivated.
Freq< + df/dt	A consecutive operation is enabled between the protection methods. When the measured frequency is below the set value of the <i>Pickup value Freq</i> < setting, the frequency gradient protection is enabled. After the frequency has dropped below the set value, the frequency gradient is compared to the set value of the <i>Pickup value df/dt</i> setting. When the frequency gradient exceeds the set value, the module activates the PICKUP and STR_FRG outputs. The time characteristic is according to DT. When the operation timer has reached the value set by the <i>Trip Tm df/dt</i> setting, the TRIP and OPR_FRG outputs are activated. If the frequency gradient restores before the module trips, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm df/dt</i> setting, the operate timer resets and the PICKUP and STR_FRG outputs are deactivated. The OPR_UFRQ output is not active when this operation mode is used.
Freq> + df/dt	A consecutive operation is enabled between the protection methods. When the measured frequency exceeds the set value of the <i>Pickup value Freq></i> setting, the frequency gradient protection is enabled. After the frequency exceeds the set value, the frequency gradient is compared to the set value of the <i>Pickup value df/dt</i> setting. When the frequency gradient exceeds the set value, the module activates the PICKUP and STR_FRG outputs. The time characteristic is according to DT. When the operation timer has reached the value set by the <i>Trip Tm df/dt</i> setting, the TRIP and OPR_FRG outputs are activated. If the frequency gradient restores before the module trips, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm df/dt</i> setting, the trip timer resets and the PICKUP and STR_FRG outputs are deactivated. The OPR_OFRQ output is not active when this operation mode is used.
Freq< OR df/dt	A parallel operation between the protection methods is enabled. The PICKUP output is activated when either of the measured values of the protection module exceeds its set value. Detailed information about the active module is available at the STR_UFRQ and STR_FRG outputs. The shortest trip delay time from the set <i>Trip Tm Freq</i> or <i>Operate Tm df/dt</i> is dominant regarding the TRIP output. The time characteristic is according to DT. The characteristic that activates the TRIP output can be seen from the OPR_UFRQ or OPR_FRG output. If the frequency gradient restores before the module trips, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm df/dt</i> setting, the trip timer resets and the STR_FRG output is deactivated. If the frequency restores before the module trips, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm Freq</i> setting, the trip timer resets and the STR_UFRQ output is deactivated.

Operation mode	Description
Freq> OR df/dt	A parallel operation between the protection methods is enabled. The PICKUP output is activated when either of the measured values of the protection module exceeds its set value. A detailed information from the active module is available at the STR_OFRQ and STR_FRG outputs. The shortest operate delay time from the set <i>Trip Tm Freq</i> or <i>Trip Tm df/dt</i> is dominant regarding the TRIP output. The time characteristic is according to DT. The characteristic that activates the TRIP output can be seen from the OPR_OFRQ or OPR_FRG output. If the frequency gradient restores before the module trips, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm df/dt</i> setting, the trip timer resets and the STR_FRG output is deactivated. If the frequency restores before the module trips, the reset timer is activated. If the timer reaches the value set by the <i>Reset delay Tm Freq</i> setting, the trip timer resets and the STR_UFRQ output is deactivated.

The module calculates the start duration (PICKUP_DUR) value which indicates the percentage ratio of the start situation and set operate time (DT). The start duration is available according to the selected value of the *Operation mode* setting.

Table 263: Start duration value

Operation mode in use	Available start duration value		
Freq<	ST_DUR_UFRQ		
Freq>	ST_DUR_OFRQ		
df/dt	ST_DUR_FRG		

The combined start duration PICKUP_DUR indicates the maximum percentage ratio of the active protection modes. The values are available via the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the IED program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operate timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

4.3.1.5 Application

The frequency protection function uses the positive phase-sequence voltage to measure the frequency reliably and accurately.

The system frequency stability is one of the main principles in the distribution and transmission network maintenance. To protect all frequency-sensitive electrical apparatus in the network, the departure from the allowed band for a safe operation should be inhibited.

The overfrequency protection is applicable in all situations where high levels of the fundamental frequency of a power system voltage must be reliably detected. The high fundamental frequency in a power system indicates an unbalance between production and

consumption. In this case, the available generation is too large compared to the power demanded by the load connected to the power grid. This can occur due to a sudden loss of a significant amount of load or due to failures in the turbine governor system. If the situation continues and escalates, the power system loses its stability.

The underfrequency is applicable in all situations where a reliable detection of a low fundamental power system voltage frequency is needed. The low fundamental frequency in a power system indicates that the generated power is too low to meet the demands of the load connected to the power grid.

The underfrequency can occur as a result of the overload of generators operating in an isolated system. It can also occur as a result of a serious fault in the power system due to the deficit of generation when compared to the load. This can happen due to a fault in the grid system on the transmission lines that link two parts of the system. As a result, the system splits into two with one part having the excess load and the other part the corresponding deficit.

The frequency gradient is applicable in all the situations where the change of the fundamental power system voltage frequency should be detected reliably. The frequency gradient can be used for both increasing and decreasing the frequencies. This function provides an output signal suitable for load shedding, generator shedding, generator boosting, set point change in sub-transmission DC systems and gas turbine startup. The frequency gradient is often used in combination with a low frequency signal, especially in smaller power systems where the loss of a large generator requires quick remedial actions to secure the power system integrity. In such situations, the load shedding actions are required at a rather high frequency level. However, in combination with a large negative frequency gradient, the underfrequency protection can be used at a high setting.

4.3.1.6 Signals

Table 264: 81 Input signals

Name	Туре	Default	Description
F	SIGNAL	0	Measured frequency
df/dt	SIGNAL	0	Rated of change of frequency
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 265: 81 Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
OPR_OFRQ	BOOLEAN	Trip signal for overfrequency
OPR_UFRQ	BOOLEAN	Trip signal for underfrequency
OPR_FRG	BOOLEAN	Trip signal for frequency gradient
PICKUP	BOOLEAN	Pickup
ST_OFRQ	BOOLEAN	Pickup signal for overfrequency
ST_UFRQ	BOOLEAN	Pickup signal for underfrequency
ST_FRG	BOOLEAN	Pickup signal for frequency gradient

4.3.1.7 Settings

Table 266: 81 Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Trip mode	1=Freq< 2=Freq> 3=df/dt 4=Freq< + df/dt 5=Freq> + df/dt 6=Freq< OR df/dt 7=Freq> OR df/dt			1=Freq<	Frequency protection trip mode selection
Pickup value Freq>	0.9001.200	xFn	0.001	1.05	Frequency pickup value overfrequency
Pickup value Freq<	0.8001.100	xFn	0.001	0.95	Frequency pickup value underfrequency
Pickup value df/dt	-0.2000.200	xFn /s	0.005	0.01	Frequency pickup value rate of change
Trip Tm Freq	80200000	ms	10	200	Trip delay time for frequency
Trip Tm df/dt	120200000	ms	10	400	Trip delay time for frequency rate of change

Table 267: 81 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=enable 5=disable			1=enable	Operation Off / On
Reset delay Tm Freq	060000	ms	1	0	Reset delay time for frequency
Reset delay Tm df/dt	060000	ms	1	0	Reset delay time for rate of change

4.3.1.8 Monitored Data

Table 268: 81 Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Pickup duration
ST_DUR_OFRQ	FLOAT32	0.00100.00	%	Pickup duration
ST_DUR_UFRQ	FLOAT32	0.00100.00	%	Plckup duration
ST_DUR_FRG	FLOAT32	0.00100.00	%	Pickup duration
81	Enum	1=on 2=blocked 3=test 4=test/blocked 5=off		Status

4.3.1.9 Technical data

Table 269: 81 Technical data

Characteristic	Value		
Pickup accuracy	f>/f<	±10 mHz	
	df/dt	±100 mHz/s (in range df/dt < 5 Hz/s) ± 2.0% of the set value (in range 5 Hz/s < df/dt < 15 Hz/s)	
Pickup time	f>/f<	< 80 ms	
	df/dt	< 120 ms	
Reset time	< 150 ms		
Operate time accuracy	±1.0% of the set value or ±30 ms		

4.3.2 Load shedding and restoration, 81LSH

4.3.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Load shedding and restoration	LSHDPFRQ	UFLS/R	81LSH

4.3.2.2 Function block

Figure 126: Function block

4.3.2.3 Functionality

The load shedding and restoration function 81LSH is capable of performing load shedding based on underfrequency and the rate of change of the frequency. The load that is shed during the frequency disturbance can be restored once the frequency has stabilized to the normal level.

The measured system frequency is compared to the set value to detect the underfrequency condition. The measured rate of change of frequency (df/dt) is compared to the set value to detect a high frequency reduction rate. The combination of the detected underfrequency and the high df/dt is used for the activation of the load shedding. There is a definite time delay between the detection of the underfrequency and high df/dt and the activation of 81LSH. This time delay can be set and it is used to prevent unwanted load-shedding actions when the system frequency recovers to the normal level.

Throughout this document, "high df/dt" is used to mean "a high rate of change of the frequency in negative direction."

Once the frequency has stabilized, 81LSH can restore the load that is shed during the frequency disturbance. The restoration is possible manually or automatically.

The function contains a blocking functionality. It is possible to block function outputs, timers or the function itself, if desired..

4.3.2.4 Operation principle

The function can be enabled and disabled with the *Operation setting*. The corresponding parameter values are Enable and Disable.

The operation of the load shedding and restoration function can be described using a module diagram. All the modules are explained in the next sections.

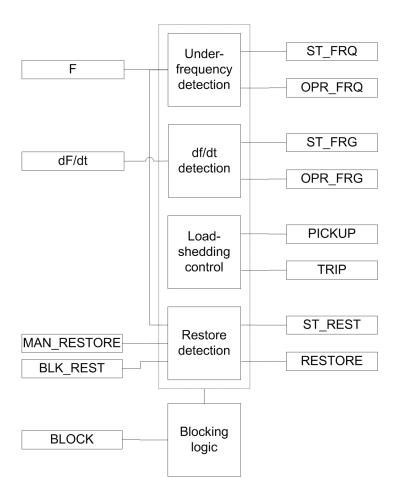


Figure 127: Functional module diagram

Underfrequency detection

The underfrequency detection measures the input frequency calculated from the voltage signal. An underfrequency is detected when the measured frequency drops below the set value of the *Pickup value Freq* setting.

The underfrequency detection module includes a timer with the definite time (DT) characteristics. Upon detection of underfrequency, operation timer activates the ST_FRQ output. When the underfrequency timer has reached the value set by *Trip Tm Freq*, the OPR_FRQ output is activated if the underfrequency condition still persists. If the frequency becomes normal before the module trips, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the timer resets and the ST_FRQ output is deactivated.

df/dt detection

The df/dt detection measures the input frequency calculated from the voltage signal and calculates its gradient. A high df/dt condition is detected by comparing the gradient to the *Pickup value df/dt* setting. The df/dt detection is activated when the frequency gradient decreases at a faster rate than the set value of *Pickup value df/dt*.

The df/dt detection module includes a timer with the DT characteristics. Upon detection of df/dt, operation timer activates the ST_FRG output. When the timer has reached the value set by *Trip Tm df/dt*, the OPR_FRG output is activated if the df/dt condition still persists. If df/dt becomes normal before the module trips, the reset timer is activated. If the reset timer reaches the value of the *Reset delay time* setting, the timer resets and the ST_FRG output is deactivated.

Load-shedding control

The way of load shedding, that is, whether to operate based on underfrequency or high df/dt or both, is defined with the *Load shed mode* user setting. The valid operation modes for the Load shed mode settings are "Freq<", "Freq< AND df/dt" and "Freq< OR df/dt".

Once the selected operation mode conditions are satisfied, the PICKUP and TRIP output signals are activated.

When the PICKUP output is active, the percentage of the elapsed delay time can be monitored through PICKUP DUR which is available as monitored data.

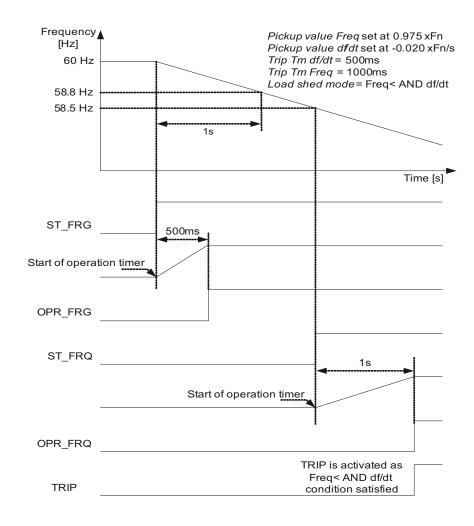


Figure 128: Load-shedding operation in the "Freq< AND df/dt>" mode when both Freq< and df/dt conditions are satisfied (Rated frequency=50 Hz)

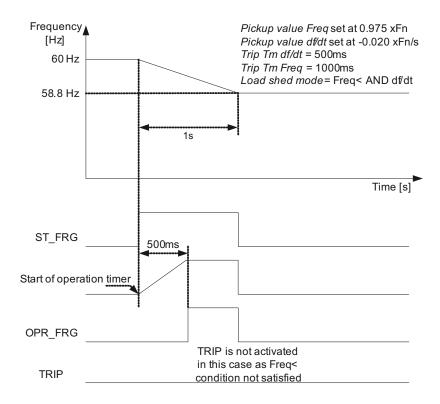


Figure 129: Load-shedding operation in the "Freq< AND df/dt>" mode when only the df/dt condition is satisfied (Rated frequency=50 Hz)

Restore detection

If after the activation of the TRIP input the frequency recovers to a level above the *Restore pickup Val* setting, the RESTORE *signal* output is activated. The RESTORE output remains active for a 100 ms. The *Restore mode setting* is used to select the restoring mode to be "Disabled", "Auto" or "Manual".

Restoring mode	Description
Disabled	Load restoration is disabled.
Auto	In the "Auto"? mode, input frequency is continuously compared to the <i>Restore pickup Val</i> setting. The restore detection module includes a timer with the DT characteristics. Upon detection of restoring, the operation timer activates the ST_REST output. When the timer has reached the value of the <i>Restore delay time</i> setting, the RESTORE output is activated if the restoring condition still persists. If the frequency drops below the Restore pickup Val before the RESTORE output is activated, the reset timer is activated. If the reset timer reaches the value of the <i>Reset delay time</i> setting, the timer resets and the ST_REST start output is deactivated.
Manual	In the "Manual" mode, a manual restoration is possible through the MAN_RESTORE input or via communication. The ST_REST output is activated if the MAN_RESTORE command is available and the frequency has exceeded the <i>Restore pickup Val</i> setting. The manual restoration includes a timer with the DT characteristics. When the timer has reached the set value of the <i>Restore delay time</i> setting, the RESTORE output is activated if the restoring condition still persists. If the frequency drops below the Restore pickup Val setting before the RESTORE output is activated, the reset timer is activated. If the reset timer reaches the value of the <i>Reset delay time</i> setting, the timer resets and the ST_REST start output is deactivated.

A condition can arise where the restoring operation needs to be canceled. Activating the BLK_REST input for the "Auto" or "Manual" modes cancels the restoring operation. In the "Manual" restoring mode, the cancellation happens even if MAN RESTORE is present.

Once the RESTORE output command is cancelled, the reactivation of RESTORE is possible only after the reactivation of the TRI Poutput, that is, when the next load-shedding operation is detected.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the Configuration > System > Blocking mode global setting that selects the blocking mode. The BLOCK input can be controlled with a binary input, a horizontal communication input or an internal signal of the IED program. The influence of the BLOCK input signal activation is preselected with the Blocking mode global setting.

The Blocking mode setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block TRIP output" mode, the function operates normally but the TRIP, OPR FRQ and OPR FRG outputs are not activated.

4.3.2.5 Application

An AC power system operates at a defined rated frequency. The nominal frequency in most systems in the world is 50 Hz or 60 Hz. The system operation is such that the operating frequency remains approximately at the nominal frequency value by a small margin. The safe margin of operation is usually less than ± 0.5 Hz. The system frequency stability is one of the main concerns in the transmission and distribution network operation and control. To protect the frequency-sensitive electrical equipment in the network, departure from the allowed band for safe operation should be inhibited.

Any increase in the connected load requires an increase in the real power generation to maintain the system frequency. Frequency variations form whenever there are system conditions that result in an unbalance between the generation and load. The rate of change of the frequency represents the magnitude of the difference between the load and generation. A reduction in frequency and a negative rate of change of the frequency are observed when the load is greater than the generation, and an increase in the frequency along with a positive rate of change of the frequency are observed if the generation is greater than the load. The rate of change of the frequency is used for a faster decision of load shedding. In an underfrequency situation, the load shedding trips out the unimportant loads to stabilize the network. Thus, loads are normally prioritized so that the less important loads are shed before the important loads.

During the operation of some of the protective schemes or other system emergencies, the power system is divided into small islands. There is always a load - generation imbalance in such islands that leads to a deviation in the operating frequency from the nominal frequency. This off-nominal frequency operation is harmful to power system components like turbines and motors. Therefore, such situation must be prevented from continuing. The frequency-based load-shedding scheme should be applied to restore the operation of the system to normal frequency. This is achieved by quickly creating the load - generation balance by disconnecting the load.

As the formation of the system islands is not always predefined, several load-shedding relays are required to be deployed at various places near the load centers. A quick shedding of a large amount of load from one place can cause a significant disturbance in the system. The load-shedding scheme can be made most effective if the shedding of load feeders is distributed and discrete, that is, the loads are shed at various locations and in distinct steps until the system frequency reaches the acceptable limits.

Due to the action of load-shedding schemes, the system recovers from the disturbance and the operating frequency value recovers towards the nominal frequency. The load that was shed during the disturbance can be restored. The load-restoring operation should be done stepwise in such a way that it does not lead the system back to the emergency condition. This is done through an operator intervention or in case of remote location through an automatic load restoration function. The load restoration function also detects the system frequency and restores the load if the system frequency remains above the value of the set restoration frequency for a predefined duration

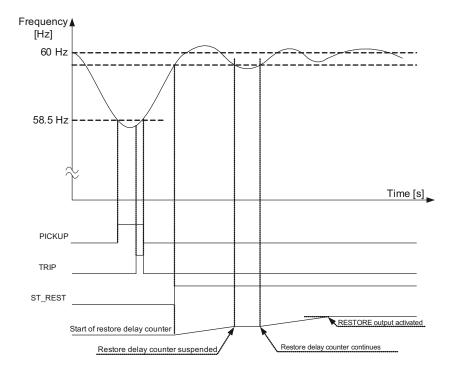


Figure 130: Operation of the load-shedding function

Power system protection by load shedding

The decision on the amount of load that is required to be shed is taken through the measurement of frequency and the rate of change of frequency (df/dt). At a single location, many steps of load shedding can be defined based on different criteria of the frequency and df/dt. Typically, the load shedding is performed in six or four steps with each shedding increasing the portion of load from five to twenty-five percent of full load within a few seconds. After every shedding, the system frequency is read back and further shedding actions are taken only if necessary. In order to take the effect of any transient, a sufficient time delay should be set.

The value of the setting has to be well below the lowest occurring normal frequency and well above the lowest acceptable frequency of the system. The setting level, the number of steps and the distance between two steps (in time or in frequency) depend on the characteristics of the power system under consideration. The size of the largest loss of generation compared to the size of the power system is a critical parameter. In large systems, the load shedding can be set at a high frequency level and the time delay is normally not critical. In small systems, the frequency pickup level has to be set at a low value and the time delay must be short.

If a moderate system operates at 60 Hz, an underfrequency should be set for different steps from 59 Hz to 57 Hz in steps of 0.3 - 0.4 Hz. The operating time for the underfrequency can be set from a few seconds to a few fractions of a second stepwise from a higher frequency value to a lower frequency value.

Table 270:	Setting for a five-ste	p underfrequ	ency ope	ration

Load-shedding steps	Pickup value Freq setting	Trip Tm Freq setting		
1	0.984 · Fn (59 Hz)	45000 ms		
2	0.978 · Fn (58.7 Hz)	30000 ms		
3	0.968 · Fn (58.1 Hz)	15000 ms		
4	0.958 · Fn (57.5 Hz)	5000ms		
5	0.950 · Fn (57 Hz)	500 ms		

The rate of change of frequency function is not instantaneous since the function needs time to supply a stable value. It is recommended to have a time delay long enough to take care of the signal noise.

Small industrial systems can experience the rate of change of frequency as large as 5 Hz/s due to a single event. Even large power systems can form small islands with a large imbalance between the load and generation when severe faults or combinations of faults are cleared. Up to 3 Hz/s has been experienced when a small island becomes isolated from a large system. For normal severe disturbances in large power systems, the rate of change of the frequency is much less, often just a fraction of 1.0 Hz/s.

Similarly, the setting for df/dt can be from 0.1 Hz/s to 1.2 Hz/s in steps of 0.1 Hz/s to 0.3 Hz/s for large distributed power networks, with the operating time varying from a few seconds to a few fractions of a second. Here, the operating time should be kept in minimum for the higher df/dt setting.

Table 271: Setting for a five-step df/dt< operation

Load-shedding steps	Pickup value df/dt setting	Trip Tm df/dt setting
1	-0.005 · Fn /s (-0.3 Hz/s)	8000 ms
2	-0.010 · Fn /s (-0.6 Hz/s)	2000 ms
3	-0.015 · Fn /s (-0.9 Hz/s)	1000 ms
4	-0.020 · Fn /s (-1.2 Hz/s)	500 ms
5	-0.025 · Fn /s (-1.5 Hz/s)	250 ms

Once the frequency has stabilized, the shed load can be restored. The restoring operation should be done stepwise, taking care that it does not lead the system back to the emergency condition.

Table 272: Setting for a five-step restoring operation

Load-shedding steps	Restoring pickup Val setting	Restore delay time setting
1	0.990 · Fn (59.4 Hz)	200000 ms
2	0.990 · Fn (59.4 Hz)	160000 ms
3	0.990 · Fn (59.4 Hz)	100000 ms
4	0.990 · Fn (59.4 Hz)	50000 ms
5	0.990 · Fn (59.4 Hz)	10000 ms

4.3.2.6 Signals

Table 273: 81LS H input signals

Name	Туре	Default	Description
F	SIGNAL	0	Measured frequency
dF/dt	SIGNAL	0	Rate of change of frequency
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
BLK_REST	BOOLEAN	0=False	Block restore
MAN_RESTORE	BOOLEAN	0=False	Manual restore signal

Table 274: 81SH output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip of load shedding
OPR_FRQ	BOOLEAN	Trip signal for under frequency
OPR_FRG	BOOLEAN	Trip signal for high df/dt
PICKUP	BOOLEAN	Pickup
ST_FRQ	BOOLEAN	Pick-Up signal for under frequency detection
ST_FRG	BOOLEAN	Pick-Up signal for high df/dt detection
RESTORE	BOOLEAN	Restore signal for load restoring purposes
ST_REST	BOOLEAN	Restore frequency attained and restore timer started

4.3.2.7 Settings

Table 275: 81SH non-group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=enable 5=disable			1=enabl e	Operation Disable / Enable
Reset delay time	060000	ms	1	50	Time delay after which the definite timers will reset

Table 276: 81SH group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Load shed mode	1=Freq<			1=Freq<	Set the operation mode for load shedding function
	6=Freq< OR df/dt				
	8=Freq< AND df/dt				
Restore mode	1=Disabled			1=Disabled	Mode of operation of restore functionality
	2=Auto				
	3=Manual				
Pickup value Freq	0.8001.200	xFn	0.001	0.975	Frequency setting/pickup value
Pickup value df/dt	-0.2000.005	xFn /s	0.005	-0.01	Setting of frequency gradient for df/dt detection
Trip Tm Freq	80200000	ms	10	200	Time delay to trip for under frequency stage
Trip Tm df/dt	120200000	ms	10	200	Time delay to trip for df/dt stage
Restore pickup Val	0.8001.200	xFn	0.001	0.998	Restore frequency setting value
Restore delay time	80200000	ms	10	300	Time delay to restore

4.3.2.8 Monitored data

Table 277: 81SH monitored data

Name	Туре	Values (Range)	Unit	Description
START_DUR	FLOAT32	0.00100.00	%	pickup duration
81LSH	Enum	1=on 2=blocked 3=test 4=test/blocked 5=off		Status

4.3.2.9 Technical data

Table 278: 81LSH technical data

Characteristic		Value
Pickup accuracy	f<	±10 mHz
df/dt	±100 mHz/s (in range df/dt < 5 Hz/s) ± 2.0% of the set value (in range 5 Hz/s < df/dt < 15 Hz/s)	
Pickup time	f<	< 80 ms
df/dt	< 120 ms	
Reset time		< 150 ms
Trip time accuracy		±1.0% of the set value or ±30 ms

4.4 Power protection

4.4.1 Three phase directional power protection

The directional positive sequence power protection (32P) function detects power direction for phase directional power. Release signal is given if the angle difference polarizing and operating quantity is in predefined direction (forward or reverse direction). The release signal is given with definite time delay.

4.4.1.1 Identification

Functional description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Directional positive sequence power protection	DPSRDIR	P>->	32P

4.4.1.2 Function block

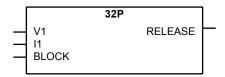


Figure 131: Function block

4.4.1.3 Functionality

The directional positive sequence power protection (32P) function is used to detect positive sequence power direction. The output of the function is used for blocking or releasing other functions in protection scheme.

This function contains a blocking functionality which blocks function output and resets the timer.

4.4.1.4 Operation principle

The function can be enabled and disabled with the Operation setting. The corresponding parameter values are "On" and "Off".

The operation of 32P can be described by using a module diagram (see Figure 132). All the modules in the diagram are explained in the next sections.

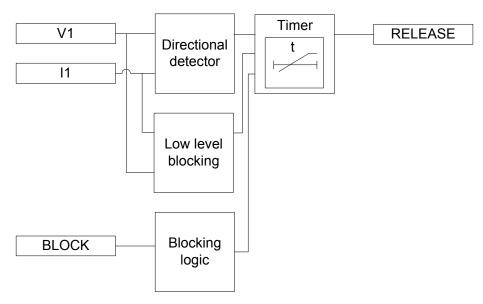


Figure 132: Functional module diagram

Directional detector

The Directional detector module compares the angle of positive sequence current (I_1) to the angle of positive sequence voltage (V_1) . Using the positive sequence voltage angle as the reference the positive sequence current angle is compared to the *Characteristic angle* setting. If the angular difference is within the operating sector selected by the *Directional mode* setting, then enable signal is sent to the Timer.

The operating sector is defined by the setting *Min forward angle*, *Max forward angle*, *Min reverse angle*, and *Max reverse angle* (see Figure 133). The user selectable options for *Directional mode* settings are "Forward" and "Reverse"

The sector limits are always given as positive degree values.

The *Characteristic angle* is also known as Relay Characteristic Angle (RCA), Relay Base Angle or Maximum Torque Line.

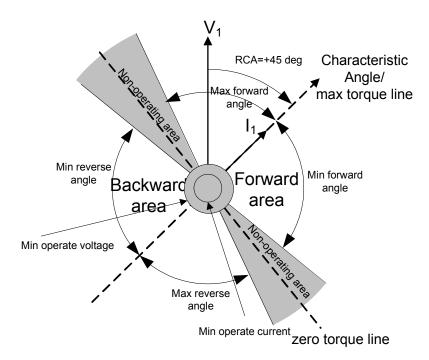


Figure 133: Configurable directional settings

Low level blocking

For reliable operation, signals levels should be greater than minimum level. If they are not greater than minimum level, Timer is blocked. If the amplitude of the positive sequence current amplitude is greater than *Min trip current* value and positive sequence voltage amplitude is greater than *Min trip voltage* value then enable signal is sent to the Timer.

Timer

Once activated the internal operate timer is started. The timer characteristic is according to Definite Time (DT). When the Timer has reached the value of *Release delay time*, the RELEASE output is activated. If a drop-off situation happens, that is if operating current moves outside operating sector or signal amplitudes becomes below the minimum level before *Release delay time* is exceeded, the timer reset state is activated. If drop off continues for more than *Reset delay time* the Timer is deactivated.

Blocking logic

The binary input BLOCK can be used to block the function. The activation of the BLOCK input deactivates RELEASE output and resets the Timer.

4.4.1.5 Application

The 32P function improves the possibility to obtain selective function of the overcurrent protection in meshed networks. The 32P function is used to block or release other overcurrent protection functions.

4.4.1.6 Signals

Table 279: 32P input signals

Name	Туре	Default	Description
V1	REAL	0.0	Positive sequence voltage
l1	REAL	0.0	Positive sequence current
BLOCK	BOOL	FALSE	Block signal for all binary outputs

Table 280: 32P measured values

Name	Туре	Default	Description
I1_AMPL	REAL	0.0	Positive sequence current amplitude
I1_ANGL	REAL	0.0	Positive sequence current phase angle
V1_AMPL	REAL	0.0	Positive sequence voltage amplitude
V1_ANGL	REAL	0.0	Positive sequence voltage phase angle
BLOCK	BOOL	FALSE	Block signal for all binary outputs

Table 281: 32P output signals

Name	Туре	Description
RELEASE	BOOL	Release signal if directional criteria is satisfied

4.4.1.7 Settings

Table 282: 32P group settings

Name	Values (Range)	Unit	Step	Default	Description
Directional mode	1=Non-directional 2=Forward 3=Reverse			2=Forward,	Power direction forward or reverse direction
Max forward angle	090	Deg	1	88	Maximum phase angle in forward direction
Max reverse angle	090	Deg	1	88	Maximum phase angle in reverse direction
Min forward angle	090	Deg	1	88	Minimum phase angle in forward direction
Min reverse angle	090	Deg	1	88	Minimum phase angle in reverse direction
Characteristic angle	-179180	Deg	1	60	Characteristic angle
Release delay time	01000	ms	1	10	Release delay time for the directional criteria

Table 283: 32P non-group settings

Name	Values (Range)	Unit	Step	Default	Description
Operation	0=Off 1=On			1=ON	Operation Off / On
Reset delay time	060000	ms	1	20	Reset delay time
Min trip voltage	0.011.00	pu	0.01	0.3	Minimum operating voltage
Min trip current	0.0051.00	pu	0.001	0.1	Minimum operating current

4.4.1.8 Monitored data

Table 284: 32P Monitored data

Name	Туре	Values (Range)	Unit	Description
DIRECTION	ENUM	0=unknown 1=forward 2=backward		Direction information
ANGLE_RCA	REAL			Angle between operating angle and characteristic angle

4.4.2 Ground directional power protection

Directional negative/zero sequence power protection (32N) is used to detect the direction of negative sequence power or residual power.

Release signal is given if the angle difference between polarizing and operating quantity is in predefined direction (forward or reverse direction). The release signal is given with a definite time delay.

4.4.2.1 Identification

Functional description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Directional negative/zero sequence power protection	DNZSRDIR	Q>->	32N

4.4.2.2 Function block

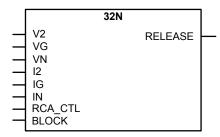


Figure 134: Function block

4.4.2.3 Functionality

Directional negative/zero sequence power protection (32N) is used to detect negative or residual power direction. The output of the function is used for blocking or releasing other functions in protection scheme.

In negative sequence voltage selection, if the angle difference between negative sequence voltage and negative sequence current is in predefined direction (either in forward or reverse direction), 32N gives release signal after a definite time delay.

In residual voltage selection, if the angle difference between residual voltage and residual current is in predefined direction (either in forward or reverse direction), 32N gives release signal after a definite time delay.

This function contains a blocking functionality which blocks the function output and resets the timer.

4.4.2.4 Operation principle

The function can be enabled and disabled with the Operation setting. The corresponding parameter values are "On" and "Off".

The operation of 32N can be described by using a module diagram (see Figure 135). All the modules in the diagram are explained in the next sections.

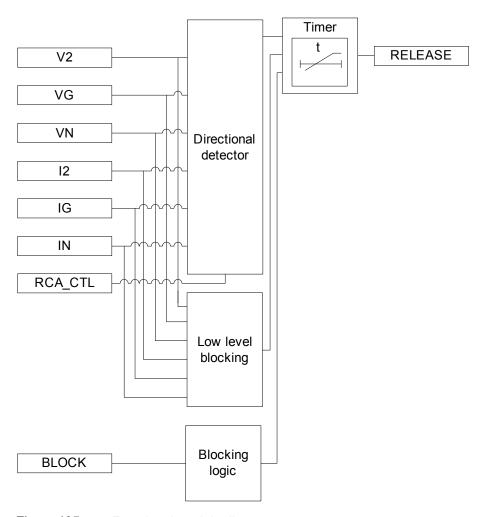
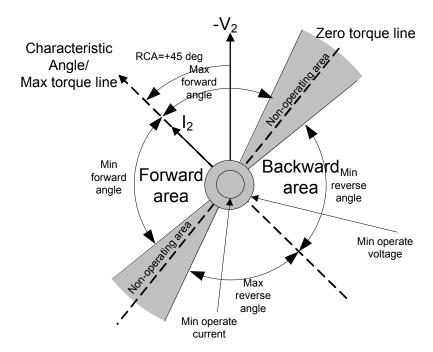


Figure 135: Functional module diagram

Directional detector

When "Neg. seq. volt." selection is made using $Pol\ signal\ Sel$, the directional detector module compares angle of negative sequence current (I_2) to the negative sequence voltage (- V_2). Using the negative sequence voltage angle as the reference the negative sequence current angle is compared to the *Characteristic angle*. If the angle difference is within the operating sector selected by *Direction mode* setting then enable signal is sent to the Timer.



The value of *Characteristic angle* should be chosen in such way that all the faults in the operating direction are seen in the operating zone and all the faults in the opposite direction are seen in the backward zone.

The operating sector is defined by the settings *Max forward angle*, *Max reverse angle*, *Min forward angle* and *Min reverse angle* (see Figure 137). User selectable options for *Directional mode* are "Forward" and "Reverse".

The *Characteristic angle* is also known as Relay Characteristic Angle (RCA), Relay Base Angle or Maximum Torque Line.

Figure 136: Configurable directional setting when "Neg. seq. volt." selection is made using Pol signal Sel

When "Measured V_G " or "Calculated V_N " voltage selection is made using *Pol signal Sel* setting, the Directional detector module compares the angle of the residual current to the residual voltage. Using the residual voltage as reference the residual current angle is compared to the *Characteristic angle* setting. If the angle difference is within the operating sector selected by *Directional mode* setting, then enable signal is sent to the Timer.

The "Measured IG" or "Calculated IN" (residual current) can be selected using *Io signal Sel* setting.

The "Measured VG", "Calculated VN" (residual voltage) can be selected using *Pol signal Sel* setting.

The polarizing quantity (residual voltage) is inverted because of switched voltage measurement cables, the correction can be done by setting the *Pol reversal* setting to "True" which rotates polarizing quantity by 180 degrees.

The operating sector is defined by the settings *Max forward angle*, *Max reverse angle*, *Min forward angle*, and *Min reverse angle* (see Figure 137). User selectable options for *Directional mode* are "Forward" and "Reverse".

The directional characteristic for measured or calculated residual power is same.

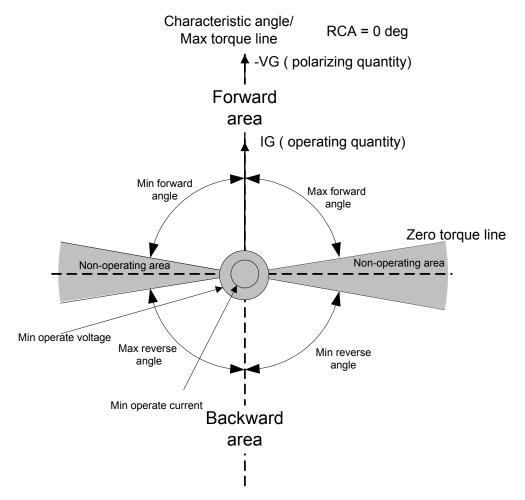


Figure 137: Configurable directional setting for "Measured V_G " or "Calculated V_N " (residual voltage) using Pol signal Sel setting

The *Characteristic angle* setting is done based on method of grounding employed in the network. For example in case of isolated network the *Characteristic angle* is set equal to -90°, in case of compensated network the *Characteristic angle* is set equal to 0° and 60° for solidly grounded systems. In general *Characteristic angle* is selected so that it matches close to the expected fault angle value, which results into maximum sensitivity. The *Characteristic angle* can be set anywhere between -179° to +180°. Figure 138 and Figure 139 show examples of the operating area with RCA set to +60° and -90°, respectively.

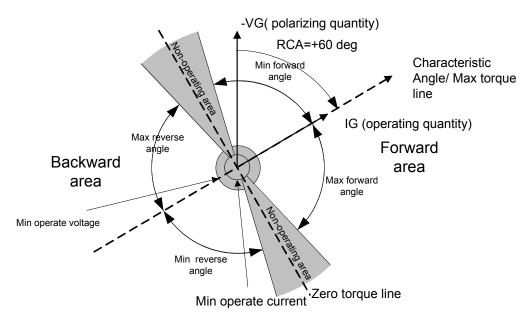
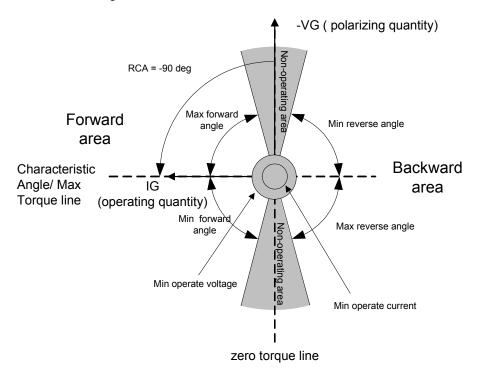



Figure 138: Configurable directional characteristics (RCA =+60°) for a solidly grounded network

Figure 139: Configurable directional characteristics (RCA = -90°) for an isolated network

The *Characteristic angle* should be set to a positive value if the operating signal, IG or IN lags the polarizing quantity –VG or –VN, respectively, and a negative value if operating signal IG or IN leads the polarizing quantity –VG or –VN, respectively.

Table 285: Recommended Characteristic angle setting for different network

Type of network	Characteristic angle recommended
Compensated network	0 °
Solidly grounded network	+60 °
Isolated network	-90 °

The *Characteristic angle* setting is adjusted to the operation according to the method of neutral point grounding so that in an isolated network the *Characteristic angle* = -90° and in a compensated network = 0° . In addition, the *Characteristic angle* can be changed via the control signal RCA_CTL, in which case the alternatives are -90° and 0° . The operation of the RCA_CTL depends on the *Characteristic angle* setting.

The Peterson coil or the grounding resistor may be temporarily out of operation. To keep the protection scheme selective, it is necessary to update the *Characteristic angle* accordingly. This is done with an auxiliary input in the relay which receives a signal from an auxiliary switch of the disconnector of the Peterson coil in compensated networks or of the grounding resistor in grounded network as a result the *Characteristic angle* is set automatically to suit the grounding method. The table below shows the *Characteristic angle* control for RCA CTL condition.

Table 286: Characteristic angle control for RCA_CTL condition

Characteristic angle Setting	RCA_CTL=FALSE	RCA_CTL=TRUE
-90°	Characteristic angle = -90°	Characteristic angle = 0°.
0°.	Characteristic angle = 0°.	Characteristic angle = -90°

Low level blocking

For reliable operation, signals levels should be greater than minimum level. If they are not greater than minimum level, Timer is blocked.

In "Neg. seq. volt." polarization selection using *Pol signal Sel*, if the amplitude of the negative sequence current is greater than *Min trip current* value and negative sequence voltage amplitude is greater than *Min trip voltage* value then enable signal is sent to the Timer.

In "Measured VG" or "Calculated VN" polarization selection using *Pol signal Sel*, if the amplitude of the residual current is greater than the *Min trip current* value and residual voltage amplitude is greater than the *Min trip voltage* value then enable signal is sent to the Timer.

Timer

Once activated the internal operate timer is started. The timer characteristic is according to Definite Time (DT). When the Timer has reached the value of *Release delay time*, the RELEASE output is activated. If a drop-off situation happens, that is, if operating current moves out of the operating sector or signal amplitudes become below the minimum levels, before the *Release delay time* is exceeded, the timer reset state is activated. If drop off continues for more than *Reset delay time* the Timer is deactivated.

Blocking logic

The binary input BLOCK can be used to block the function. The activation of the BLOCK input deactivates RELEASE output and resets the Timer.

4.4.2.5 Application

The directional negative/zero sequence power protection (32N) function improves the possibility to obtain selective function of the over-current protection in meshed networks. The 32N function is used to block or release other over current protection function.

4.4.2.6 Signals

Table 287: 32N input signals

Name	Туре	Default	Description
V2	REAL	0.0	Negative sequence voltage
VG	REAL	0.0	Measured residual voltage or Ground voltage
VN	REAL	0.0	Calculated residual voltage or Neutral voltage
12	REAL	0.0	Negative sequence current
IG	REAL	0.0	Measured residual current or Ground current
IN	REAL	0.0	Calculated residual current or Neutral current
RCA_CTL	BOOL	FALSE	Relay characteristic angle control
BLOCK	BOOL	FALSE	Block signal for all binary outputs

Table 288: 32N measured values

Name	Туре	Default	Description
IG_AMPL	REAL	0.0	Measured residual current or Ground current amplitude
IG_ANGL	REAL	0.0	Measured residual current or Ground current phase angle
IN_AMPL	REAL	0.0	Calculated residual current or Neutral current amplitude
IN_ANGL	REAL	0.0	Calculated residual current or Neutral current phase angle
VG_AMPL	REAL	0.0	Measured residual voltage or Ground voltage amplitude
VG_ANGL	REAL	0.0	Measured residual voltage or Ground voltage phase angle
VN_AMPL	REAL	0.0	Calculated residual voltage or Neutral voltage amplitude
VN_ANGL	REAL	0.0	Calculated residual voltage or Neutral voltage phase angle
I2_AMPL	REAL	0.0	Negative sequence current amplitude
I2_ANGL	REAL	0.0	Negative sequence current phase angle
V2_AMPL	REAL	0.0	Negative sequence voltage amplitude
V2_ANGL	REAL	0.0	Negative sequence voltage phase angle
BLOCK	BOOL	FALSE	Block signal for all binary outputs
RCA_CTL	BOOL	FALSE	Relay characteristic angle control

Table 289: 32N output signals

Name	Туре	Description
RELEASE	BOOL	Release signal if directionality criteria is satisfied

4.4.2.7 Settings

Table 290: 32N group settings

Name	Values (Range)	Step	Unit	Default	Description
Directional mode	1=Non-directional 2=Forward 3=Reverse	1	-	2=Forward	Directional mode of operation
Max forward angle	0180	1	Deg	88	Maximum phase angle in forward direction
Max reverse angle	0180	1	Deg	88	Maximum phase angle in reverse direction
Min forward angle	0180	1	Deg	88	Minimum phase angle in forward direction
Min reverse angle	0180	1	Deg	88	Minimum phase angle in reverse direction
Characteristic angle	-179180	1	Deg	60	Characteristic angle
Release delay time	01000	1	ms	10	Release delay time

Table 291: 32N Non - Group Settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=enable			1=enable	Operation Disable / Enable
	5=disable				
Reset delay time	060000	ms	1	20	Reset delay time
Min trip current	0.011.00	xln	0.01	0.1	Minimum trip current
Min trip voltage	0.011.00	xVn	0.01	0.3	Minimum trip voltage
Pol reversal	0=False			0=False	Rotate polarizing quantity
	1=True				
IG/IN Sel	1=Measured IG			1=Measured IG	IG/IN selection
	2=Calculated IN				
Pol signal Sel	1=Measured VG			1=Measured VG	Selection for used polarization signal
	2=Calculated VN				
	3=Neg. seq. volt.				

4.4.2.8 Monitored data

Table 292: 32N Monitored data

Name	Туре	Values (Range)	Unit	Description
DIRECTION	ENUM	0=unknown 1=forward 2=backward		Direction information
ANGLE_RCA	REAL			Angle between operating angle and characteristic angle

4.5 Thermal protection

4.5.1 Three-phase thermal protection for feeders, cables and distribution transformers, 49F

4.5.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase thermal overload protection for overhead lines and cables	T1PTTR	3lth>	49F

4.5.1.2 Function block

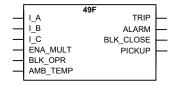


Figure 140: Function block

4.5.1.3 Functionality

The increased utilization of power systems closer to the thermal limits has generated a need for a thermal overload function for power lines as well.

A thermal overload is in some cases not detected by other protection functions, and the introduction of the thermal overload function 49F allows the protected circuit to operate closer to the thermal limits.

An alarm pickup gives an early warning to allow operators to take action before the line trips. The early warning is based on the three-phase current measuring function using a thermal model with first order thermal loss with the settable time constant. If the temperature rise continues the function will operate based on the thermal model of the line.

Re-energizing of the line after a thermal overload operation can be inhibited for a time to allow the line to cool. The time for the line to cool is estimated by the thermal model.

4.5.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of three-phase thermal protection can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

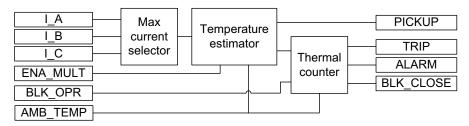


Figure 141: Functional module diagram. I_A, I_B and I_C represent phase currents.

Max current selector

The sampled analog phase currents are pre-processed and the RMS value of each phase current is derived for each phase current. These phase current values are fed to the function.

The max current selector of the function continuously checks the highest phase current value. The selector reports the highest value to the temperature estimator.

Temperature estimator

From the largest of the three-phase currents, a final temperature is calculated according to the expression:

$$\Theta_{final} = \left(\frac{I}{I_{ref}}\right)^2 \cdot T_{ref}$$
 (Equation 13)

I the largest phase current I_{ref} set *Current reference*

T_{ref} set *Temperature rise*

The ambient temperature is added to the calculated final temperature estimation, and the ambient temperature value used in the calculation is also available in the monitored data as TEMP_AMB. If the final temperature estimation is larger than the set *Maximum temperature*, the PICKUP output is activated.

Current reference and Temperature rise setting values are used in the final temperature estimation together with the ambient temperature. It is suggested to set these values to the maximum steady state current allowed for the line or cable under emergency operation for a few hours per years. Current values with the corresponding conductor temperatures are given in cable manuals. These values are given for conditions such as ground temperatures, ambient air temperature, the way of cable laying and ground thermal resistivity.

Thermal counter

The actual temperature at the actual execution cycle is calculated as:

$$\Theta_{n} = \Theta_{n-1} + \left(\Theta_{final} - \Theta_{n-1}\right) \cdot \left(1 - e^{-\frac{\Delta t}{\tau}}\right)$$
(Equation 14)

 Θ_n calculated present temperature

 Θ_{n-1} calculated temperature at previous time step

 Θ_{final} calculated final temperature with actual current

Δt time step between calculation of actual temperature

thermal time constant for the protected device (line or cable), set *Time constant*

The actual temperature of the protected component (line or cable) is calculated by adding the ambient temperature to the calculated temperature, as shown above. The ambient temperature can be given a constant value. The calculated component temperature can be monitored as it is exported from the function as a real figure.

When the component temperature reaches the set alarm level *Alarm value*, the output signal ALARM is set. When the component temperature reaches the set trip level *Maximum temperature*, the TRIP output is activated. The TRIP signal pulse length is fixed to 100 ms

There is also a calculation of the present time to operation with the present current. This calculation is only performed if the final temperature is calculated to be above the operation temperature. The value is available in the monitored data view as T_TRIP in seconds:

$$t_{trip} = -\tau \cdot \ln\!\left(\frac{\Theta_{\mathit{final}} - \Theta_{\mathit{trip}}}{\Theta_{\mathit{final}} - \Theta_{\mathit{n}}}\right) \tag{Equation 15}$$

After operating, caused by the thermal overload protection function, there can be a lockout to reconnect the tripped circuit. The lockout output BLK_CLOSE is activated at the same time when the TRIP output is activated and is not reset until the device temperature has cooled down below the set value of the *Reclose temperature* setting. BLK_CLOSE works also as hysteresis for the TRIP signal preventing a new TRIP signal activation until BLK_CLOSE has reset. The *Maximum temperature* value must be set at least 2 degrees above the set value of *Reclose temperature*.

The time to lockout release is calculated, that is, the calculation of the cooling time to a set value. The calculated temperature can be reset to its initial value (the *Initial temperature* setting) via a control parameter that is located under the clear menu. This is useful during testing when secondary injected current has given a calculated false temperature level.

$$t_{lockout_release} = -\tau \cdot \ln \left(\frac{\Theta_{final} - \Theta_{lockout_release}}{\Theta_{final} - \Theta_{n}} \right)$$

(Equation 16)

Here the final temperature is equal to the set or measured ambient temperature.

In some applications, the measured current can involve a number of parallel lines. This is often used for cable lines where one bay connects several parallel cables. By setting the

Current multiplier parameter to the number of parallel lines (cables), the actual current on one line is used in the protection algorithm. To activate this option, the ENA_MULT input must be activated.

The *Env temperature Set* setting is used to define the ambient temperature.

The Sensor available setting should not be used. This setting is not supported in Ver.1.1.

The temperature calculation is initiated from the value defined with the *Initial temperature* setting parameter. This is done in case the IED is powered up, the function is "disable" and "enable" or reset through the Clear menu. The temperature is also stored in the nonvolatile memory and restored in case the IED is restarted.

The thermal time constant of the protected circuit is given in minutes with the *Time constant* setting. Please see cable manufacturers manuals for further details.

4.5.1.5 Application

The lines and cables in the power system are constructed for a certain maximum load current level. If the current exceeds this level, the losses will be higher than expected. As a consequence, the temperature of the conductors will increase. If the temperature of the lines and cables becomes too high it can cause damage. For example:

- The sag of overhead lines can reach an unacceptable value.
- An aluminum conductor will be destroyed if the temperature becomes too high
- Overheating can damage the insulation on cables which in turn increase the risk of phase-to-phase or phase-to-ground faults.

In stressed situations in the power system, the lines and cables may be required to be overloaded for a limited time. This should be done without any risk for the above-mentioned risks.

The thermal overload protection provides information that makes temporary overloading of cables and lines possible. The thermal overload protection estimates the conductor temperature continuously. This estimation is made by using a thermal model of the line/cable that is based on the current measurement.

If the temperature of the protected object reaches a set warning level, a signal is given to the operator. This enables actions in the power system to be done before dangerous temperatures are reached. If the temperature continues to increase to the maximum allowed temperature value, the protection initiates a trip of the protected line.

4.5.1.6 Signals

Table 293: 49F Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for trip outputs
ENA_MULT	BOOLEAN	0=False	Enable Current multiplier

Table 294: 49F Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup
ALARM	BOOLEAN	Thermal Alarm
BLK_CLOSE	BOOLEAN	Thermal overload indicator. To inhibite reclose.

4.5.1.7 Settings

Table 295: 49F Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Env temperature set	-50100	°C	1	40	Ambient temperature
Current multiplier	15		1	1	Current multiplier when function is used for parallel lines
Current reference	0.054.00	xln	0.01	1.00	The load current leading to Temperature raise temperature
Temperature raise	0.0200.0	°C	0.1	75.0	End temperature rise above ambient
Time constant	6060000	s	1	2700	Time constant of the line in seconds.
Maximum temperature	20.0200.0	°C	0.1	90.0	Temperature level for Tripping
Alarm value	20.0150.0	°C	0.1	80.0	Temperature level for pickup (alarm)
Reclose temperature	20.0150.0	°C	0.1	70.0	Temperature for reset of block reclose after trip

Table 296: 49F Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Initial temperature	-50.0100.0	°C	0.1	0.0	Temperature raise above ambient temperature at startup

4.5.1.8 Monitored data

Table 297: 49F Monitored data

Name	Туре	Values (Range)	Unit	Description
TEMP	FLOAT32	-100.09999.9	°C	The calculated temperature of the protected object
TEMP_RL	FLOAT32	0.0099.99		The calculated temperature of the protected object relative to the trip level
T_TRIP	INT32	0600000	ms	Estimated time to trip
T_ENA_CLOSE	INT32	0600000	ms	Estimated time to deactivate BLK_CLOSE
TEMP_AMB	FLOAT32	-99999	°C	The ambient temperature used in the calculation
49F	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.5.1.9 Technical data

Table 298: 49F Technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the current measured: f _n ±2Hz
	Current measurement: $\pm 1.5\%$ of the set value or ± 0.002 x I _n (at currents in the range of 0.014.00 x I _n)
Trip time accuracy ¹	±2.0% of the theoretical value or ±0.50 s

^{1.} Overload current > 1.2 x Trip level temperature

4.5.2 Three-phase thermal overload protection for power transformers, two time constants 49T

4.5.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase thermal overload protection, two time constants	T2PTTR	3lth>T	49T

4.5.2.2 Function block

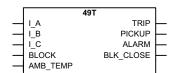


Figure 142: Function block

4.5.2.3 Functionality

The three-phase thermal overload, two time constant protection function 49T protects the transformer mainly from short-time overloads. The transformer is protected from long-time overloads with the oil temperature detector included in its equipment.

The alarm signal gives an early warning to allow the operators to take action before the transformer trips. The early warning is based on the three-phase current measuring function using a thermal model with two settable time constants. If the temperature rise continues, 49T operates based on the thermal model of the transformer.

After a thermal overload operation, the re-energizing of the transformer is inhibited during the transformer cooling time. The transformer cooling is estimated with a thermal model.

4.5.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of three-phase thermal overload, two time constant protection can be described using a module diagram. All the modules in the diagram are explained in the next sections.

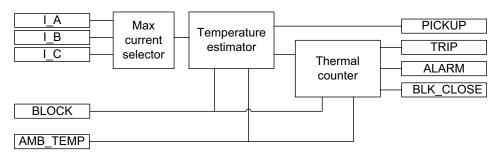


Figure 143: Functional module diagram

Max current selector

The sampled analog phase currents are pre-processed and the TRMS value of the phase current is derived for each phase current. These phase current values are fed to the function. The max current selector of 49T checks continuously the highest phase current value and reports the highest value to the thermal estimator.

Temperature estimator

The final temperature rise is calculated from the highest of the three-phase currents according to the expression:

$$\Theta_{final} = \left(\frac{I}{I_{ref}}\right)^2 \cdot T_{ref}$$
 (Equation 17)

I highest measured phase current

I_{ref} the set value of the *Current reference* setting

 $T_{\rm ref}$ the set value of the *Temperature rise* setting (temperature rise (°C) with the steady-state current $I_{
m ref}$

The ambient temperature value is added to the calculated final temperature rise estimation. If the total value of temperature is higher than the set trip temperature level, the PICKUP output is activated.

The *Current reference* setting is a steady-state current that gives the steady-state end temperature value *Temperature rise*. It gives a setting value corresponding to the rated power of the transformer.

The *Temperature rise* setting is used when the value of the reference temperature rise corresponds to the *Current reference* value. The temperature values with the corresponding transformer load currents are usually given by transformer manufacturers.

Thermal counter

49T applies the thermal model of two time constants for temperature measurement. The temperature rise in degrees Celsius (°C) is calculated from the highest of the three-phase currents according to the expression:

$$\Delta\Theta = \left[p * \left(\frac{I}{I_{ref}}\right)^{2} * T_{ref}\right] \cdot \left(1 - e^{-\frac{\Delta t}{\tau 1}}\right) + \left[(1 - p) \cdot \left(\frac{I}{I_{ref}}\right)^{2} \cdot T_{ref}\right] \cdot \left(1 - e^{-\frac{\Delta t}{\tau 2}}\right)$$
(Equation 18)

ΔΘ calculated temperature rise (°C) in transformer

I measured phase current with the highest TRMS value

I_{ref} the set value of the *Current reference* setting (rated current of the protected object)

 T_{ref} the set value of the *Temperature rise* setting (temperature rise setting (°C) with the steady-state current I_{ref})

p the set value of the *Weighting factor p* setting (weighting factor for the short time constant)

Δt time step between the calculation of the actual temperature

the set value of the *Short time constant* setting (the short heating / cooling time constant)

t₂ the set value of the Long time constant setting (the long heating / cooling time constant)

The warming and cooling following the two time-constant thermal curve is a characteristic of transformers. The thermal time constants of the protected transformer are given in seconds with the *Short time constant* and *Long time constant* settings. The *Short time constant* setting describes the warming of the transformer with respect to windings. The *Long time constant* setting describes the warming of the transformer with respect to the oil. Using the two time-constant model, the IED is able to follow both fast and slow changes in the temperature of the protected object.

The Weighting factor p setting is the weighting factor between Short time constant τ_1 and Long time constant τ_2 . The higher the value of the Weighting factor p setting, the larger is

the share of the steep part of the heating curve. When Weighting factor p = 1, only Short-time constant is used. When Weighting factor p = 0, only Long time constant is used.

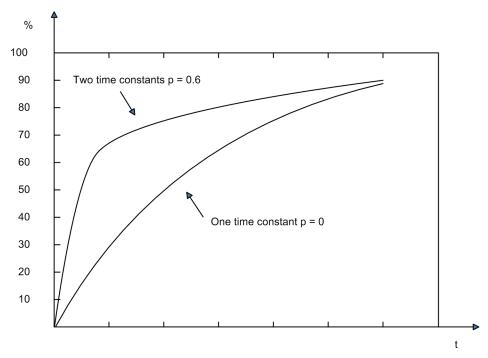


Figure 144: Effect of the Weighting factor p factor and the difference between the two time constant and one time constant models

The actual temperature of the transformer is calculated by adding the ambient temperature to the calculated temperature.

$$\Theta = \Delta\Theta + \Theta_{amb} \tag{Equation 19}$$

$$\Theta \qquad \text{temperature in transformer (°C)}$$

$$\Delta\Theta \qquad \text{calculated temperature rise (°C) in transformer}$$

$$\Theta_{amb} \text{ set } \textit{Env temperature Set}$$

The *Env temperature Set* setting is used to define the ambient temperature.

The temperature calculation is initiated from the value defined with the *Initial temperature* setting. This is done when the IED is powered up or the function is "disabled" and "enable" or reset through the Clear menu. The temperature is stored in a non-volatile memory and restored if the IED is restarted.

The *Max temperature* setting defines the maximum temperature of the transformer in degrees Celsius (°C). The value of the *Max temperature* setting is usually given by transformer manufacturers. The actual alarm, operating and lock-out temperatures for 49T are given as a percentage value of the *Max temperature* setting.

When the transformer temperature reaches the alarm level defined with the *Alarm temperature* setting, the ALARM output signal is set. When the transformer temperature reaches the trip level value defined with the *Operate temperature* setting, the TRIP output is activated. The TRIP output is deactivated when the value of the measured current falls

below 10 percent of the *Current Reference* value or the calculated temperature value falls below *Operate temperature*.

There is also a calculation of the present time to operation with the present current. T_TRIP is only calculated if the final temperature is calculated to be above the operation temperature. The value is available through the Monitored data view.

After operating, due to the thermal overload protection function, there can be a lockout to reconnect the tripped circuit. The BLK_CLOSE lockout output is activated when the device temperature is above the *Reclose temperature* lock-out release temperature setting value. The time to lock-out release T_ENA_CLOSE is also calculated. The value is available through the Monitored data view.

4.5.2.5 Application

The transformers in a power system are constructed for a certain maximum load current level. If the current exceeds this level, the losses are higher than expected. This results in a rise in transformer temperature. If the temperature rise is too high, the equipment is damaged:

- Insulation within the transformer ages faster, which in turn increases the risk of internal phase-to-phase or phase-to-ground faults.
- Possible hotspots forming within the transformer degrade the quality of the transformer oil.

During stressed situations in power systems, it is required to overload the transformers for a limited time without any risks. The thermal overload protection provides information and makes temporary overloading of transformers possible.

The permissible load level of a power transformer is highly dependent on the transformer cooling system. The two main principles are:

- ONAN: The air is naturally circulated to the coolers without fans, and the oil is naturally circulated without pumps.
- OFAF: The coolers have fans to force air for cooling, and pumps to force the circulation of the transformer oil.

The protection has several parameter sets located in the setting groups, for example one for a non-forced cooling and one for a forced cooling situation. Both the permissive steady-state loading level as well as the thermal time constant are influenced by the transformer cooling system. The active setting group can be changed by a parameter, or through a binary input if the binary input is enabled for it. This feature can be used for transformers where forced cooling is taken out of operation or extra cooling is switched on. The parameters can also be changed when a fan or pump fails to operate.

The thermal overload protection continuously estimates the internal heat content, that is, the temperature of the transformer. This estimation is made by using a thermal model of the transformer which is based on the current measurement.

If the heat content of the protected transformer reaches the set alarm level, a signal is given to the operator. This enables the action that needs to be taken in the power systems before the temperature reaches a high value. If the temperature continues to rise to the trip value, the protection initiates the trip of the protected transformer.

After the trip, the transformer needs to cool down to a temperature level where the transformer can be taken into service again. 49T continues to estimate the heat content of the transformer during this cooling period using a set cooling time constant. The energizing of the transformer is blocked until the heat content is reduced to the set level.

The thermal curve of two time constants is typical for a transformer. The thermal time constants of the protected transformer are given in seconds with the *Short time constant* and *Long time constant* settings. If the manufacturer does not state any other value, the *Long time constant* can be set to 4920 s (82 minutes) for a distribution transformer and 7260 s (121 minutes) for a supply transformer. The corresponding *Short time constants* are 306 s (5.1 minutes) and 456 s (7.6 minutes).

If the manufacturer of the power transformer has stated only one, that is, a single time constant, it can be converted to two time constants. The single time constant is also used by itself if the p-factor *Weighting factor p* setting is set to zero and the time constant value is set to the value of the *Long time constant* setting. The thermal image corresponds to the one time constant model in that case.

Table 299: Conversion table between one and two time constants

Single time constant (min)	Short time constant (min)	Long time constant (min)	Weighting factor p
10	1.1	17	0.4
15	1.6	25	0.4
20	2.1	33	0.4
25	2.6	41	0.4
30	3.1	49	0.4
35	3.6	58	0.4
40	4.1	60	0.4
45	4.8	75	0.4
50	5.1	82	0.4
55	5.6	90	0.4
60	6.1	98	0.4
65	6.7	107	0.4
70	7.2	115	0.4
75	7.8	124	0.4

The default *Max temperature* setting is 105°C. This value is chosen since even though the IEC 60076-7 standard recommends 98°C as the maximum allowable temperature in long-time loading, the standard also states that a transformer can withstand the emergency loading for weeks or even months, which may produce the winding temperature of 140°C. Therefore, 105°C is a safe maximum temperature value for a transformer if the *Max temperature* setting value is not given by the transformer manufacturer.

4.5.2.6 Signals

Table 300: 49T Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLK_OPR	BOOLEAN	0=False	Block signal for trip outputs

Table 301: 49T Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup
ALARM	BOOLEAN	Thermal Alarm
BLK_CLOSE	BOOLEAN	Thermal overload indicator. To inhibite reclose.

4.5.2.7 Settings

Table 302: 49T Group settings

Parameter	Values (Range)	Uni t	Step	Defaul t	Description
Env temperature Set	-50100	°C	1	40	Ambient temperature used when no external temperature measurement available
Current reference	0.054.00	xl n	0.0 1	1.00	The load current leading to Temperature raise temperature
Temperature rise	0.0200.0	°C	0.1	78.0	End temperature rise above ambient
Maximum temperature	0.0200.0	°C	0.1	105.0	Temperature level for trip
Operate temperature	80.0120.0	%	0.1	100.0	Trip temperature, percent value
Alarm temperature	40.0100.0	%	0.1	90.0	Alarm temperature, percent value
Reclose temperature	40.0100.0	%	0.1	60.0	Temperature for reset of block reclose after trip
Short time constant	660000		1	450	Short time constant in seconds
Long time constant	6060000		1	7200	Long time constant in seconds
Weighting factor p	0.001.00		0.0 1	0.40	Weighting factor of the short time constant

Table 303: 49T Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Initial temperature, percent value	0.0100.0	%	0.1	80.0	Temperature raise at startup

4.5.2.8 Monitored data

Table 304: 49T Monitored data

Name	Туре	Values (Range)	Unit	Description
TEMP	FLOAT32	-100.09999.9	°C	The calculated temperature of the protected object
TEMP_RL	FLOAT32	0.0099.99		The calculated temperature of the protected object relative to the operate level
T_TRIP	INT32	060000	s	Estimated time to operate in seconds
T_ENA_CLOSE	INT32	060000	s	Estimated time to deactivate InhRec in seconds
TEMP_AMB	FLOAT32	-99999	°C	The ambient temperature used in the calculation
49T	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

4.5.2.9 Technical data

Table 305: 49T Technical data

Characteristic	Value	
Pickup accuracy	Depending on the frequency of the current measured: f _n ±2Hz	
	Current measurement: $\pm 1.5\%$ of the set value or ± 0.002 x I _n (at currents in the range of 0.014.00 x I _n)	
Trip time accuracy ¹	±2.0% of the theoretical value or ±0.50 s	

^{1.} Overload current > 1.2 x Trip level temperature

4.5.3 Thermal overload protection for motors, 49M

4.5.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase thermal overload protection for motors	MPTTR	3lth>M	49M

4.5.3.2 Function block

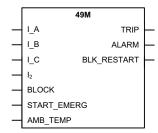


Figure 145: Function block

4.5.3.3 Functionality

The motor thermal overload protection function 49M protects the electric motors from overheating. 49M models the thermal behavior of motor on the basis of the measured load current and disconnects the motor when the thermal content reaches 100 percent. The thermal overload conditions are the most often encountered abnormal conditions in industrial motor applications. The thermal overload conditions are typically the result of an abnormal rise in the motor running current, which produces an increase in the thermal dissipation of the motor and temperature or reduces cooling. 49M prevents an electric motor from drawing excessive current and overheating, which causes the premature insulation failures of the windings and, in worst cases, burning out of the motors.

4.5.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the motor thermal overload protection function can be described using a module diagram. All the modules in the diagram are explained in the next sections.

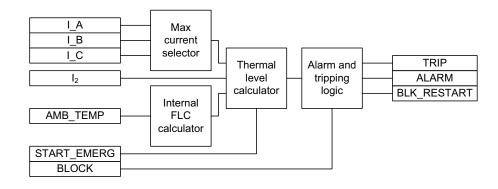


Figure 146: Functional module diagram

Max current selector

The max current selector selects the highest phase current and reports it to the thermal level calculator.

Internal FLC calculator

Full load current (FLC) of the motor is defined by the manufacturer at an ambient temperature of 40°C. Special considerations are required with an application where the ambient temperature of a motor exceeds or remains below 40°C. A motor operating at a higher temperature, even if at or below rated load, can subject the motor windings to excessive temperature similar to that resulting from overload operation at normal ambient temperature. The motor rating has to be appropriately reduced for operation in such high ambient temperatures. Similarly, when the ambient temperature is considerably lower than the nominal 40°C, it appears that the motor is loaded beyond its rating. For calculating thermal level it is better that the FLC values are scaled for different temperatures. The scaled currents are known as internal FLC. An internal FLC is calculated based on the ambient temperature shown in the table. The *Env temperature mode* setting decides whether the thermal level calculations are based on FLC or internal FLC.

When the value of the *Env temperature mode* setting is set to the "FLC Only" mode, no internal FLC is calculated. Instead, the FLC given in the data sheet of the manufacturer is used. When the value of the *Env temperature mode* setting is set to "Set Amb Temp" mode, internal FLC is calculated based on the ambient temperature taken as input through the *Env temperature Set* setting.

Table 306: Modification of internal FLC

Ambient Temperature T _{amb}	Internal FLC
<20°C	FLC x 1.09
20 to <40°C	FLC x (1.18 - T _{amb} x 0.09/20)
40°C	FLC
>40 to 65°C	FLC x (1-[(T _{amb} -40)/100])
>65°C	FLC x 0.75

The ambient temperature is used for calculating thermal level and it is available through the monitored data view from the <code>TEMP_AMB</code> output. The activation of the <code>BLOCK</code> input does not affect the <code>TEMP_AMB</code> output.

When the Env temperature mode setting is on "Use input" mode, the internal FLC is calculated from temperature data available through resistance temperature detectors (RTDs) using the AMB_TEMP input.

The Env temperature Set setting is used,

- If the ambient temperature measurement value is not connected to the AMB_TEMP input in ACT.
- When the ambient temperature measurement connected to MPTTR is set to "Not in use" in the RTD function.
- In case of any errors or malfunctioning in the RTD output.

Thermal level calculator

The module calculates the thermal load considering the TRMS and negative sequence currents. The heating up of the motor is determined by the square value of the load current.

However, in case of unbalanced phase currents, the negative sequence current also causes additional heating. By deploying a protection based on both current components, abnormal heating of the motor is avoided.

The thermal load is calculated based on different situations or operations and it also depends on phase current level. The equations used for the heating up calculations are:

$$\theta_B = \left[\left(\frac{I}{k \times I_r} \right)^2 + K_2 \times \left(\frac{I_2}{k \times I_r} \right)^2 \right] \times \left(1 - e^{-t/\tau} \right) \times p\%$$
 (Equation 20)

$$\theta_A = \left[\left(\frac{I}{k \times I_r} \right)^2 + K_2 \times \left(\frac{I_2}{k \times I_r} \right)^2 \right] \times \left(1 - e^{-t/\tau} \right) \times 100\%$$
 (Equation 21)

- TRMS value of the measured max of phase currents
- Ir set Rated current, FLC or internal FLC
- 12 measured negative sequence current
- k set value of Overload factor
- K2 set value of Negative Seq factor
- p set value of Weighting factor
- τ time constant

The equation Θ_B is used when the values of all the phase currents are below the overload limit, that is, k x I_r. The equation Θ_A is used when the value of any one of the phase currents exceeds the overload limit.

During overload condition, the thermal level calculator calculates the value of Θ_B in background, and when the overload ends the thermal level is brought linearly from Θ_A to Θ_B with a speed of 1.66 percent per second. For the motor at standstill, that is, when the current is below the value of 0.12 x I_r , the cooling is expressed as:

$$\theta = \theta_{02} \times e^{\frac{-t}{\tau}} \tag{Equation 22}$$

 Θ_{02} initial thermal level when cooling begins

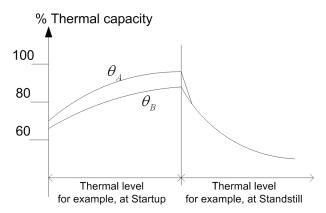


Figure 147: Thermal behavior

The required overload factor and negative sequence current heating effect factor are set by the values of the *Overload factor* and *Negative Seq factor* settings.

In order to accurately calculate the optimal thermal load, different time constants are used in the above equations. These time constants are employed based on different motor running conditions, for example starting, normal or stop, and are set through the *Time constant start*, *Time constant normal* and *Time constant stop* settings. Only one time constant is valid at a time.

Table 307: Time constant and the respective phase current values

Time constant (tau) in use	Phase current
Time constant start	Any current whose value is over 2.5 x I _r
Time constant normal	Any current whose value is over 0.12 x I_r and all currents are below 2.5 x I_r
Time constant stop	All the currents whose values are below 0.12 x I _r

The Weighting factor p setting determines the ratio of the thermal increase of the two curves Θ_A and Θ_B .

The thermal level at the powerup of the IED is defined by the *Initial thermal Val* setting.

The temperature calculation is initiated from the value defined in the *Initial thermal Val* setting. This is done if the IED is powered up or the function is "disable" and "enable" back or reset through the Clear menu.

The calculated temperature of the protected object relative to the operate level, the TEMP_RL output, is available through the monitored data view. The activation of the BLOCK input does not affect the calculated temperature.

The thermal level at the beginning of the startup condition of a motor and at the end of the startup condition is available through the monitored data view at the <code>THERMLEV_ST</code> and <code>THERMLEV_END</code> outputs respectively. The activation of the <code>BLOCK</code> input does not have any effect on these outputs.

Alarm and tripping logic

The module generates alarm, restart inhibit and tripping signals.

When the thermal level exceeds the set value of the *Alarm thermal value* setting, the ALARM output is activated. Sometimes a condition arises when it becomes necessary to inhibit the restarting of a motor, for example in case of some extreme starting condition like long starting time. If the thermal content exceeds the set value of the *Restart thermal val* setting, the BLK_RESTART output is activated. The time for the next possible motor startup is available through the monitored data view from the T_ENARESTART output. The T_ENARESTART output estimates the time for the BLK_RESTAR deactivation considering as if the motor is stopped.

On the rising edge of the emergency start signal START_EMERG increases, the thermal level is set to a value below the thermal restart inhibit level. This allows at least one motor startup, even though the thermal level has exceeded the restart inhibit level.

When the thermal content reaches 100 percent, the TRIP output is activated. The TRIP output is deactivated when the value of the measured current falls below 12 percent of *Rated current* or the thermal content drops below 100 percent.

The activation of the BLOCK input blocks the ALARM, BLK RESTART and TRIP outputs.

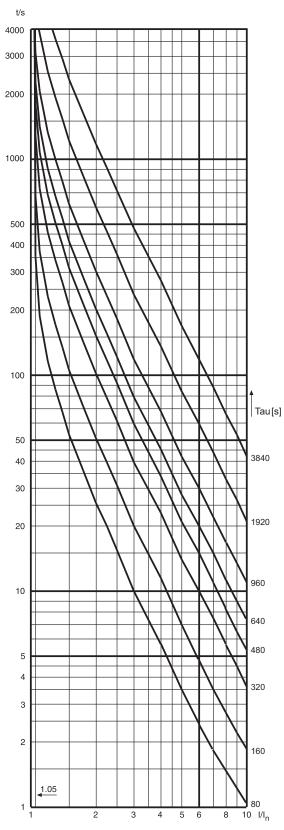


Figure 148: Trip curves when no prior load and p=20...100 %. Overload factor = 1.05.

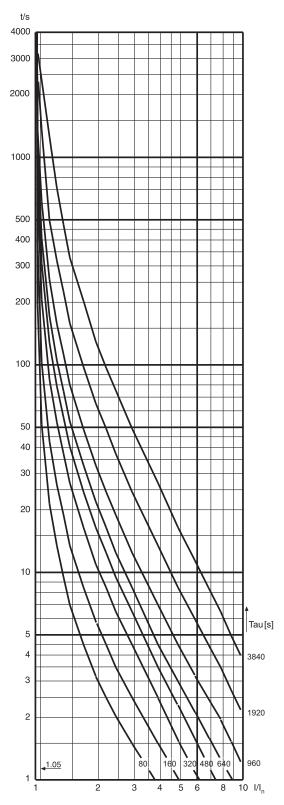


Figure 149: Trip curves at prior load 1 x FLC and p=100 %, Overload factor = 1.05.

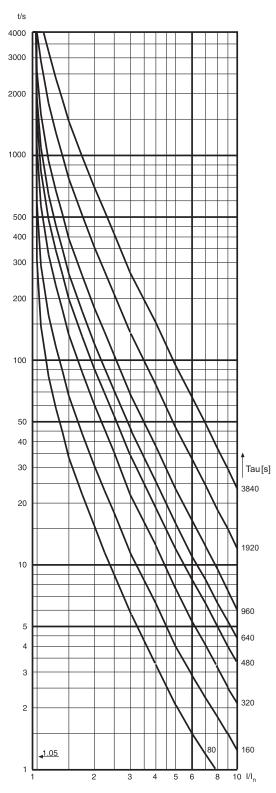


Figure 150: Trip curves at prior load 1 x FLC and p=50 %. Overload factor = 1.05.

4.5.3.5 Application

49M is intended to limit the motor thermal level to predetermined values during the abnormal motor operating conditions. This prevents a premature motor insulation failure.

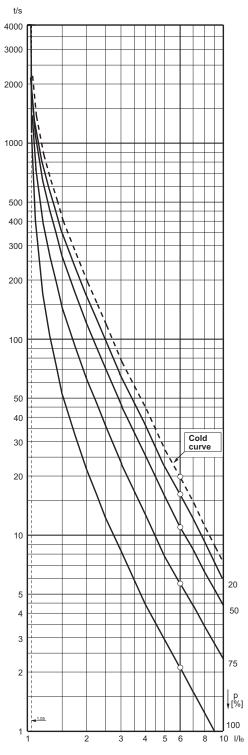
The abnormal conditions result in overheating and include overload, stalling, failure to start, high ambient temperature, restricted motor ventilation, reduced speed operation, frequent starting or jogging, high or low line voltage or frequency, mechanical failure of the driven load, improper installation and unbalanced line voltage or single phasing. The protection of insulation failure by the implementation of current sensing cannot detect some of these conditions, such as restricted ventilation. Similarly, the protection by sensing temperature alone can be inadequate in cases like frequent starting or jogging. The thermal overload protection addresses these deficiencies to a larger extent by deploying a motor thermal model based on load current.

The thermal load is calculated using the true RMS value and negative sequence value of the current. The heating up of the motor is determined by the square value of the load current. However, while calculating the thermal level, the rated current should be re-rated or de-rated depending on the value of the ambient temperature. Apart from current, the rate at which motor heats up or cools is governed by the time constant of the motor.

Setting the weighting factor

There are two thermal curves: one which characterizes the short-time loads and long-time overloads and which is also used for tripping and another which is used for monitoring the thermal condition of the motor. The value of the *Weighting factor p* setting determines the ratio of the thermal increase of the two curves.

The "Weighting factor p = 100 percent", it produces a pure single time constant thermal unit, which is used for application with the cables. As presented in Figure 151, the hot curve with the value of "Weighting factor p = 100 percent" only allows an operate time which is about 10 percent of that with no prior load. For example, when the set time constant is 640 seconds, the operate time with the prior load 1 x FLC (full Load Current) and overload factor 1.05 is only 2 seconds, even if the motor could withstand at least 5 to 6 seconds. To allow the use of the full capacity of the motor, a lower value of Weighting factor p should be used.


Normally, an approximate value of half of the thermal capacity is used when the motor is running at full load. Thus by setting "Weighting factor p = 50 percent", the IED notifies a 45 to 50 percent thermal capacity use at full load.

For direct-on-line started motors with hot spot tendencies, the value of *Weighting factor p* is typically set to "50 percent", which will properly distinguish between short-time thermal stress and long-time thermal history. After a short period of thermal stress, for example a motor startup, the thermal level starts to decrease quite sharply, simulating the leveling out of the hot spots. Consequently, the probability of successive allowed startups increases.

When protecting the objects without hot spot tendencies, for example motors started with soft starters, and cables, the value of *Weighting factor p* is set to "100 percent". With the value of *Weighting factor p* set to "100 percent", the thermal level decreases slowly after a heavy load condition. This makes the protection suitable for applications where no hot spots are expected. Only in special cases where the thermal overload protection is required

to follow the characteristics of the object to be protected more closely and the thermal capacity of the object is very well known, a value between "50" and "100 percent" is required.

For motor applications where, for example, two hot starts are allowed instead of three cold starts, the value of the setting "Weighting factor p = 40 percent" has proved to be useful. Setting the value of Weighting factor p significantly below "50 percent" should be handled carefully as there is a possibility to overload the protected object as a thermal unit might allow too many hot starts or the thermal history of the motor has not sufficiently been taken into account.

Figure 151: The influence of Weighting factor p at prior load 1xFLC, timeconstant = 640 sec, and Overload factor = 1.05

Setting the overload factor

The value of Overload factor defines the highest permissible continuous load. The recommended value is 1.05.

Setting the negative sequence factor

During the unbalance condition, the symmetry of the stator currents is disturbed and a counter-rotating negative sequence component current is set up. An increased stator current causes additional heating in the stator and the negative sequence component current excessive heating in the rotor. Also mechanical problems like rotor vibration can occur.

The most common cause of unbalance for three-phase motors is the loss of phase resulting in an open fuse, connector or conductor. Often mechanical problems can be more severe than the heating effects and therefore a separate unbalance protection is used.

Unbalances in other connected loads in the same busbar can also affect the motor. A voltage unbalance typically produces 5 to 7 times higher current unbalance. Because the thermal overload protection is based on the highest TRMS value of the phase current, the additional heating in stator winding is automatically taken into account. For more accurate thermal modeling, the *Negative Seq factor* setting is used for taking account of the rotor heating effect.

$$Negative Seq \ factor = \frac{R_{R2}}{R_{R1}} \tag{Equation 23}$$

 R_{R2} rotor negative sequence resistance R_{R1} rotor positive sequence resistance

A conservative estimate for the setting can be calculated:

Negative Seq factor =
$$\frac{175}{I_{LR}^2}$$

LR locked rotor current (multiple of set Rated current). The same as the startup current at the beginning of the motor startup.

For example, if the rated current of a motor is 230 A, startup current is 5.7 x I_r,

Negative Seq factor =
$$\frac{175}{5.7^2}$$
 = 5.4

Setting the thermal restart level

The restart disable level can be calculated as follows:

$$\theta_{\hat{l}} = 100\% - \left(\frac{\textit{startup time of the motor}}{\textit{operate time when no prior load}} \times 100\% + \textit{margin}\right) \tag{Equation 24}$$

For instance, if the startup time of the motor is 11 seconds and the calculated operate time of the thermal protection stage with no prior load is 25 seconds, one motor startup uses $11/25 \approx 45$ percent of the thermal capacity of the motor. Therefore, the restart disable level must be set to below 100 percent - 45 percent = 55 percent, for example to 50 percent (100 percent - (45 percent + margin), where margin is 5 percent).

Setting the thermal alarm level

Tripping due to high overload is avoided by reducing the load of the motor on a prior alarm.

The value of *Alarm thermal value* is set to a level which allows the use of the full thermal capacity of the motor without causing a trip due to a long overload time. Generally, the prior alarm level is set to a value of 80 to 90 percent of the trip level.

4.5.3.6 Signals

Table 308: 49M Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
l ₂	SIGNAL	0	Negative phase sequence current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
START_EMERG	BOOLEAN	0=False	Signal for indicating the need for emergency start

Table 309: 49M Output signals

Name	Туре	Description		
TRIP	BOOLEAN	Trip		
ALARM	BOOLEAN	Thrmal Alarm		
BLK_RESTART	BOOLEAN	Thermal overload indicator, to inhibit restart		

4.5.3.7 Settings

Table 310: 49M Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Overload factor	1.001.20		0.01	1.05	Overload factor (k)
Alarm thermal value	50.0100.0	%	0.1	95.0	Thermal level above which function gives an alarm
Restart thermal Val	20.080.0	%	0.1	40.0	Thermal level above which function inhibits motor restarting
Negative Seq factor	0.010.0		0.1	0.0	Heating effect factor for negative sequence current
Weighting factor p	20.0100.0	%	0.1	50.0	Weighting factor (p)
Time constant normal	804000	s	1	320	Motor time constant during the normal operation of motor
Time constant start	804000	s	1	320	Motor time constant during the start of motor
Time constant stop	808000	s	1	500	Motor time constant during the standstill condition of motor
Env temperature mode	1=FLC Only 3=Set Amb Temp			1=FLC Only	Mode of measuring ambient temperature
Env temperature Set	-20.070.0	°C	0.1	40.0	Ambient temperature used when no external temperature measurement available

Table 311: 49M Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Rated current	0.302.00	xln	0.01	1.00	Rated current (FLC) of the motor
Initial thermal Val	0.0100.0	%	0.1	74.0	Initial thermal level of the motor

4.5.3.8 Monitored data

Table 312: 49M Monitored data

Name	Туре	Values (Range)	Unit	Description
TEMP_RL	FLOAT32	0.009.99		The calculated temperature of the protected object relative to the operate level
TEMP_AMB	FLOAT32	-99999	°C	The ambient temperature used in the calculation
THERMLEV_ST	FLOAT32	0.009.99		Thermal level at beginning of motor startup
THERMLEV_END	FLOAT32	0.009.99		Thermal level at the end of motor startup situation
T_ENARESTART	INT32	099999	s	Estimated time to reset of block restart
49M	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status
THERM-LEV	FLOAT32	0.009.99		Thermal level of protected object (1.00 is the operate level)

4.5.3.9 Technical data

Table 313: 49M Technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the current measured: f _n ±2Hz
	Current measurement: $\pm 1.5\%$ of the set value or ± 0.002 x I _n (at currents in the range of 0.014.00 x I _n)
Trip time accuracy ¹	±2.0% of the theoretical value or ±0.50 s

^{1.} Overload current > 1.2 x Operate level temperature

4.6 Differential protection

4.6.1 Motor differential protection, 87M

4.6.1.1 Identification

Table 314: Function and Identification

Function description	IEC 61850 Identification	IEC 60617 Identification	ANSI/IEEE C37.2 device number
Motor winding failure protection	MPDIF	3dI>M	87M

4.6.1.2 Function block symbol

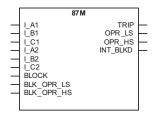


Figure 152: Function Block Symbol

4.6.1.3 Functionality

Motor winding failure protection 87M is a unit protection function. The possibility of internal failures of the motor is relatively low. However, the consequences in terms of cost and production loss are often serious, which makes the differential protection an important protection function.

The security of the differential protection is enhanced by a DC restraint feature. This feature decreases the sensitivity of the differential protection optionally for a temporary time period to avoid an unnecessary disconnection of the motor during the external faults that have a fault current with high DC currents. 87M also includes a CT saturation-based blocking which prevents unnecessary tripping in case of the detection of the magnetizing inrush currents which can be present at the switching operations, overvoltages or external faults.

4.6.1.4 Operation Principle

The function can be enabled and disabled with the Operation setting. The corresponding parameter values are "Enabled" and "Disabled".

The operation of the motor winding failure protection can be described using a module diagram. All the modules in the diagram are explained in the next sections.

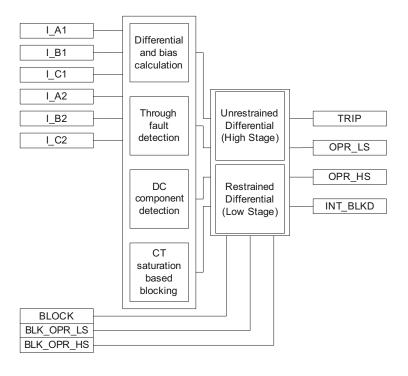


Figure 153: Functional module diagram

Differential and bias calculation

Differential calculation module calculates the differential current. The differential current is the difference in current between the phase and neutral sides of the machine. The phase currents I_1 and I_2 denote the fundamental frequency components on the phase and neutral sides of the current. The amplitude of the differential current Id is obtained using the equation (assuming that the positive direction of the current is towards the machine):

$$I_d = \left| \overline{I_1} - \overline{I_2} \right|$$
 Equation 25

During normal conditions, there is no fault in the area protected by the function block, so the currents I_1 and I_2 are equal and the differential current $I_d = 0$.

However, in practice some differential current exists due to inaccuracies in the current transformer on the phase and neutral sides, but it is very small during normal conditions.

The module calculates the differential current for all three phases.

The restrained differential protection is designed to be secured for an external fault with a restraining current. Restraining means that the differential current required for tripping increases according to the restraining current and the operation characteristics. When an internal fault occurs, the currents on both sides of the protected object are flowing into it. This causes the biasing current to be considerably smaller, which makes the operation more sensitive during internal faults.

The traditional way for calculating the restrained current is:

$$I_b = \left| \frac{\overline{I_1} - \overline{I_2}}{2} \right|$$

Equation 26

The module calculates the bias current for all three phases.

Through-fault detection

Through-fault (TF) detection module is for detecting whether the fault is external, which is, going through, or internal. This information is essential for ensuring the correct operation of the protection in case of the CT saturation:

- In a through-fault situation, CTs can saturate because of a high fault current magnitude. Such AC saturation does not happen immediately when the fault begins. Thus, the TF module sees the fault as external because the bias current is high but the differential current remains low. If the AC saturation then occurs, a CT saturation-based blocking is allowed to work to prevent tripping.
- Normally, the phase angle between the machine neutral and line side CTs is 180 degrees. If an internal fault occurs during a through fault, an angle less than 50 degrees clearly indicates an internal fault and the TF module overrules, that is, deblocks the presence of any blocking due to CT saturation.

CT saturation-based blocking

Higher currents during the motor startup or abnormally high magnetizing currents at an overvoltage (transformer-fed motor) or an external fault may saturate the current transformers. The uneven saturation of the star and line side CTs (for example, due to burden differences) may lead to a differential current which can cause a differential protection to trip. This module blocks the operation of 87M biased low stage internally in case of the CT saturation. Once the blocking is activated, it is held for a certain time after the blocking conditions have ceased to be fulfilled.

DC component detection

On detection of a DC component, the function temporarily desensitizes the differential protection. The functioning of this module depends on the *DC restrain Enable* setting. The DC components are continuously extracted from the three instantaneous differential currents. The highest DC component of all three is taken as a kind of DC restraint in a sense that the highest effective, temporary sensitivity of the protection is temporarily decreased as a function of this highest DC offset. The calculated DC restraint current is not allowed to decay (from its highest ever measured value) faster than with a time constant of one second. The value of the temporarily effective sensitivity limit is limited upwards to the rated current of the machine or 3.3 times that of *Low trip value*, whichever is smaller. The temporary extra limit decays exponentially from its maximum value with a time constant of one second.

This feature should be used in case of networks where very long time constants are expected. The temporary sensitivity limit is higher to the set operating characteristics. In other words, the temporary limit has superposed the unchanged operating characteristics and temporarily determines the highest sensitivity of the protection. The temporary

sensitivity is less than the sensitivity in section 1 of the operating characteristic and is supposed to prevent an unwanted trip during the external faults with lower currents.

Restrained differential (Low Stage)

The current differential protection needs to be biased because of the possible appearance of a differential current which can be due to something else than an actual fault in the motor. In case of motor protection, a false differential current can be caused by:

- CT errors
- CT saturation at high currents passing through the motor

The differential current caused by CT errors increases at the same percent ratio as the load current.

The high currents passing through the protected object can be caused by the through fault. Therefore, the operation of the differential protection is restrained with respect to the load current. In the biased differential protection, the higher the differential current required for the protection of operation, the higher the load current.

Based on the conditions checked from the through-fault module, the DC (component) detection module and the CT saturation-based blocking modules, the restrained differential module decides whether the differential current is due to the internal faults or some false reason. In case of detection of the TF, DC or CT saturation, the internal differential blocking signal is generated, which in turn blocks the operating signal. In case of internal faults, the operation of the differential protection is affected by the bias current.

The *Low trip value* setting for the stabilized stage of the function block is determined with the equation:

Low trip value =
$$\frac{l_{d1}}{l_n}$$
.100% Equation 27

The *Slope section 2* setting is determined correspondingly:

Slope section
$$2 = \frac{I_{d2}}{I_{b2}}$$
. 100% Equation 28

The end of the first section End section I can be set at a desired point within the range of 0 to 100 percent (or % I_n). Accordingly, the end of the second section End section 2 can be set within the range of 100 percent to 300 percent (or % I_n). The slope of the operating characteristic for the function block varies in different parts of the range.

In section 1, where $0.0 < \text{Ib/In} < End\ section\ I$, the differential current required for tripping is constant. The value of the differential current is the same as the *Low trip value* setting selected for the function block. The *Low trip value* setting allows for small inaccuracies of the current transformers but it can also be used to influence the overall level of the operating characteristic.

Section 2, where End section 1 < Ib/In < End section 2, is called the influence area of the setting Slope section 2. In this section, variations in End section 2 affect the slope of the characteristic, that is, how big the change in the differential current required for tripping is

in comparison to the change in the load current. The *End section 2* setting allows for CT errors.

In section 3, where Ib/In > End section 2, the slope of the characteristic is constant.

The slope is 100 percent, which means that an increase in the differential current is equal to the corresponding increase in the stabilizing current.

The required differential current for tripping at a certain stabilizing current level can be calculated using the formulae:

For a stabilizing current lower than End section 1

$$I_{doperate}[\%I_n] = Set Low Trip Value$$

Equation 29

For a stabilizing current higher than End section 1 but lower than End section 2

$$I_{doperate}[\%I_n] = Lowtrip value + (I_b[\%I_n] - End\ Section\ 1). Slopes ection\ 2$$

Equation 30

For higher stabilizing current values exceeding End section 2

 $I_{doperate}[\%I_n] = Lowtripvalue + (End section 2 - End Section 1). Slope Section 2 + (I_b[\%I_n] - End Section 2)$

Equation 31

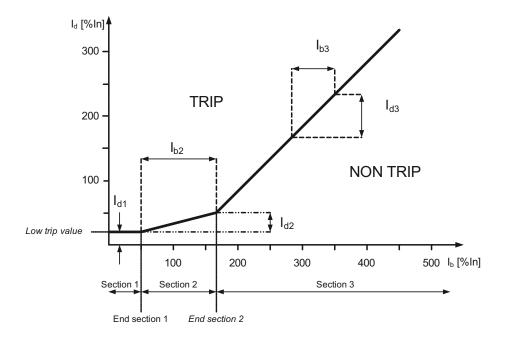


Figure 154: Operating characteristic for the restrained differential protection function

When the differential current exceeds the operating value determined by the operating characteristics, the OPR_LS output is activated. The TRIP output is always activated when the OPR_LS output activates.

The trip signal due to the biased stage can be blocked by the activation of the BLK_OPR_LS or BLOCK input. Also, when the operation of the biased low stage is blocked by the waveform blocking functionality, the INT_BLKD output is activated according to the phase information.

The phase angle difference between the two currents I_A1 and I_A2 is theoretically 180 electrical degrees for the external fault and 0 electrical degrees for the internal fault conditions. If the phase angle difference is less than 50 electrical degrees or if the biasing current drops below 30 percent of the differential current, a fault has most likely occurred in the area protected by 87M. Then the internal blocking signals (CT saturation and DC blocking) of the biased stage are inhibited.

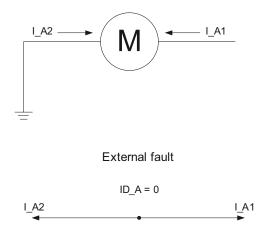


Figure 155: Positive direction of current

Unrestrained Differential (High Stage)

The differential protection includes an Unrestrained Differential high stage. The instantaneous stage operates and the OPR_HS output is activated when the amplitude of the fundamental frequency component of the differential current exceeds the set *High trip value* or when the instantaneous peak values of the differential current exceed 2.5 · *High trip value*. The factor 2.5 (= $1.8 \cdot \sqrt{2}$) is due to the maximum asymmetric short circuit current.

The TRIP output is always activated when the OPR HS output activates.

The internal blocking signals of the function block do not prevent the operation of the instantaneous stage. When required, the trip signal due to instantaneous operation can be blocked by the binary inputs BLK OPR HS or BLOCK.

4.6.1.5 Application

The differential protection, works on the principle of calculating the differential current at two ends of the winding i.e. the current entering the winding is compared with the current going out of the winding. In case of any internal fault the current entering and leaving the winding will be different resulting into differential current, which is use as base for generating trip signal. Due to this principle differential protection do not trip during external faults. However it should be noted that inter-turn faults in the same phase are usually not detected unless they are developed into some other kind of fault.

Short circuit between the phases of the stator windings causes normally very large fault currents. The short circuit gives risk of damages on insulation, windings and stator core. The large short circuit currents cause large current forces, which can damage other components in the machine. The short circuit can also initiate explosion and fire. When a short circuit occurs in a machine there is a damage that has to be repaired. The severity and the repair time are dependent on the degree of damage, which is highly dependent on the fault time. Fast fault clearance of this fault type is therefore of greatest importance to limit the damages and thus the economic loss.

To limit the damages in connection to stator winding short circuits, the fault clearance time must be as fast as possible (instantaneous). Both the fault current contributions from the external power system (via the machine and/or the block circuit breaker) and from the machine itself must be disconnected as fast as possible.

The DC restrain feature should be used in case of application where very long DC time constant in the fault currents. This fault current may be of lesser magnitude (less than rated current) but are unpleasant and tend to saturate the CT and operate the differential protection for external faults. This feature is thus effective at moderate through currents and ineffective at higher through currents.

Although normally the short circuit fault current is very large, i.e. significantly larger than the machine rated current it is possible that a short circuit can occur between phases close to the neutral point of the machine, thus causing a relatively small fault current. The fault current fed from the synchronous machine itself can also be limited due to low excitation of the synchronous generator. This is normally the case at running up of the synchronous machine, before synchronization to the network. Therefore it is desired that the detection of machine phase-to-phase short circuits shall be relatively sensitive, thus detecting small fault currents.

It is also of great importance that the machine short circuit protection does not trip for external faults, when large fault current is fed from the machine. In order to combine fast fault clearance, sensitivity and selectivity the machine current differential protection is normally the best alternative for phase-to-phase short circuits.

The risk of unwanted operation of the differential protection, caused by current transformer saturation, is as universal differential protection problem. If the big synchronous machine is tripped in connection to an external short circuit this will first give an increased risk of power system collapse. Besides that there will be a production loss for every unwanted trip of the machine. There is therefore a great economic value to prevent unwanted disconnection of machines.

Recommendations for current transformers

The more important the object to be protected, the more attention has to be paid to the current transformers. It is not normally possible to dimension the current transformers so that they repeat currents with high DC components without saturating when the residual flux of the current transformer is high. The differential protection function block operates reliably even though the current transformers are partially saturated.

The accuracy class recommended for current transformers to be used with the differential function block is 5P, in which the limit of the current error at the rated primary current is 1 percent and the limit of the phase displacement is 60 minutes. The limit of the composite error at the rated accuracy limit primary current is 5 percent.

The approximate value of the actual accuracy limit factor F_a corresponding to the actual CT burden can be calculated on the basis of the rated accuracy limit factor F_n (ALF) at the rated burden, the rated burden S_n , the internal burden S_{in} and the actual burden S_a of the current transformer as follows:

$$F_a = F_n \times \frac{S_{in} + S_n}{S_{in} + S_a}$$

Equation 32

Example 1:

The rated burden S_n of the current transformer 5P20 is 10 VA, the secondary rated current 5A, the internal resistance R_{in} = 0.07 Ω and the rated accuracy limit factor F_n corresponding to the rated burden is 20 (5P20). Thus the internal burden of the current transformer is S_{in} = $(5A)^2 \times 0.07 \Omega$ = 1.75 VA. The input impedance of the IED at a rated current of 5A is < 20 m Ω . If the measurement conductors have a resistance of 0.113 Ω , the actual burden of the current transformer is S_a =(5A)² × (0.113 + 0.020) Ω = 3.33 VA. Thus the accuracy limit factor F_a corresponding to the actual burden will be about 46.

The CT burden can grow considerably at the rated current 5A. The actual burden of the current transformer decreases at the rated current of 1A while the repeatability simultaneously improves.

At faults occurring in the protected area, the fault currents may be very high compared to the rated currents of the current transformers. Due to the instantaneous stage of the differential function block, it is sufficient that the current transformers are capable of repeating the current required for instantaneous tripping during the first cycle.

Thus the current transformers usually are able to reproduce the asymmetric fault current without saturating within the next 8.33ms after the occurrence of the fault to secure that the trip times of the IED comply with the retardation time.

The accuracy limit factors corresponding to the actual burden of the phase current transformer to be used in differential protection shall fulfill the following requirement:

$$F_a > K_r \times Ik_{\max} \times (T_{dc} \times \omega \times (1 - e^{\frac{-T_m}{T_{dc}}}) + 1)$$
 Equation 33

Ik_{max} The maximum through-going fault current (in I_R) at which the protection is not allowed to operate

T_{dc} The primary DC time constant related to Ik_{max}

ω The angular frequency, that is, 2 x π x f_n

T_m The time to saturate, that is, the duration of the saturation free transformation

K_r The remanence factor 1/(1-r), where r is the maximum remanence flux in p.u. from saturation flux.

The parameter r is the maximum remanence flux density in the CT core in p.u. from saturation flux density. The value of the parameter r depends on the magnetic material used and on the construction of the CT. For instance, if the value r = 0.4, the remanence flux density can be 40 % of the saturation flux density. The manufacturer of the CT has to be contacted when an accurate value for the parameter r is needed. The value r = 0.4 is recommended to be used when an accurate value is not available.

The required minimum time-to-saturate T_m in MPDIF is half fundamental cycle period (8.33 ms when f_n = 60Hz).

Two typical cases are considered for the determination of the sufficient actual accuracy limit factor, F_a :

1. A fault occurring at the substation bus.

The protection must be stable at a fault arising during a normal operating situation. Re-energizing the transformer against a bus fault would lead to very high fault currents and thermal stress, therefore re-energizing is not preferred in this case. Thus the remanence can be neglected.

The maximum through-going fault current Ik_{max} is typically 6 I_R for a motor. At a short circuit fault close to the supply transformer, the DC time constant T_{dc} of the fault current is almost the same as that of the transformer, the typical value being 100 ms.

 $\begin{array}{lll} \text{Ik}_{\text{max}} & \text{6 I}_{\text{R}} \\ \text{T}_{\text{dc}} & \text{100 ms} \\ \omega & \text{120}\pi \text{ Hz} \\ \text{T}_{\text{m}} & \text{8.33 ms} \\ \text{K}_{\text{r}} & \text{1} \end{array}$

Substituting the values in Equation 33 the result is;

$$F_a > K_r \times Ik_{\text{max}} \times (T_{dc} \times \omega \times (1 - e^{\frac{-T_m}{T_{dc}}}) + 1)$$
 ≈ 24

2. Re-energizing against a fault occurring further down in the network.

The protection must be stable also during re-energization against a fault on the line. In this case, existence of remanence is very probable. It is assumted to be 40 percent here.

On the other hand the fault current is now smaller and since the ratio of the resistance and reactance is greater in this location, having a full DC offset is not possible. Furthermore, the DC time constant (T_{dc}) of the fault current is now smaller, assumed to be 50 ms here.

Assuming a maximum fault current being 30 percent lower than in the bus fault and a DC offset 90 percent of the maximum

 $\begin{array}{ll} Ik_{max} & 0.7^{*} \ 6 = 4.2 \ (I_{R}) \\ T_{dc} & 50 \ ms \\ \omega & 120\pi \ Hz \\ T_{m} & 8.33 \ ms \\ K_{r} & 1/(1-0.4) = 1.6667 \end{array}$

Substituting the values in Equation 33 the result is;

$$F_a > K_r \times Ik_{\text{max}} \times 0.9 \times (T_{dc} \times \omega \times (1 - e^{\frac{-T_m}{T_{dc}}}) + 1)$$
 ≈ 24

If the actual burden of the current transformer (S_a) in Equation 32 cannot be reduced low enough to provide a sufficient value for F_a , there are two alternatives to deal with the situation.

1. A current transformer with a higher rated burden S_n can be chosen (which also means a higher rated accurate limit F_n) or

2. A current transformer with a higher nominal primary current I_{1n} (but the same rated burden) can be chosen.

The alternative 2 is more cost effective and therefore often better although the sensitivity of the scheme is slightly reduced.

Example 2:

Assuming that the actions according to alternative two above are taken in order to improve the actual accuracy limit factor

$$F_{a} = \left(\frac{I_{R}CT}{I_{R}Motor}\right) \times F_{n}$$

Equation 34

Where

I_RCT rated primary current of the CT say 1500A

I_RMotor rated current of the motor under protection say 1000A

Fn rated accuracy limit factor of the CT say 30

Fa actual accuracy limit factor due to oversizing the CT, substituting the values in Equation 34, Fa = 45.

In differential protection it is important that the accuracy limit factors F_a of the phase current transformers at both sides correspond with each other, that is, the burdens of the current transformers on both sides are to be as equal as possible. Should high inrush or start currents with high DC components pass through the protected object when it is connected to the network, special attention is required for the performance and the burdens of the current transformers and to the settings of the function block.

Connection of current transformers

The connections of the main current transformers are designated as Type 1 and Type 2. In case the grounding of the current transformers are either inside or outside the area to be protected, the setting *CT connection type* is of "Type 1" as shown in Figure 156. In case the grounding of the current transformers are both inside and outside the area to be protected, the setting *CT connection type* is of "Type 2" as shown in Figure 157.

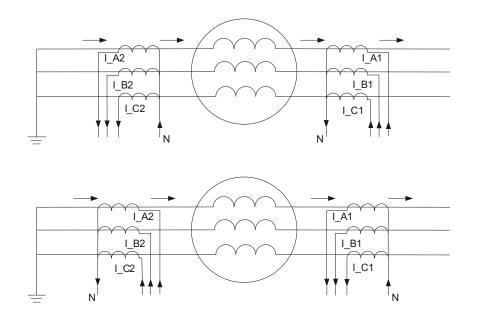


Figure 156: Connection of current transformer of Type 1

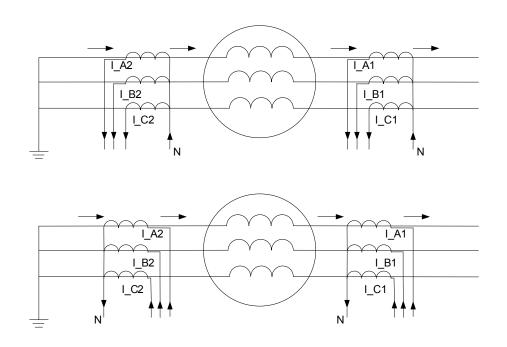


Figure 157: Connection of current transformer of Type 2

Saturation of current transformers

There are basically two types of saturation phenomena that have to be detected; AC saturation and DC saturation. The AC-saturation is caused by high fault current, where the CT magnetic flux exceeds it's maximum value. As a result the secondary current will be distorted as shown in Figure 158. A DC component in the current will also cause the flux to increase until eventually the CT saturates. This is known as DC saturation.

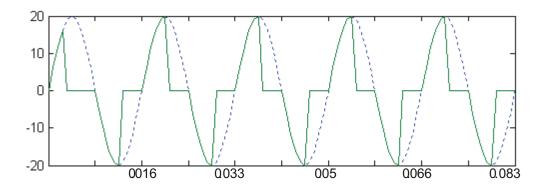


Figure 158: AC- Saturation

When having a short circuit in a power line the short-circuit current contains a DC-component. The magnitude of the DC-component depends on the phase angle when the short-circuit occurs. Figure 159 shows the secondary current of the CT in the fault situation. Because of the DC component , the flux reaches its maximum value at 0.058sec causing saturation. As the DC component decays away, the CT recovers gradually from the saturation.

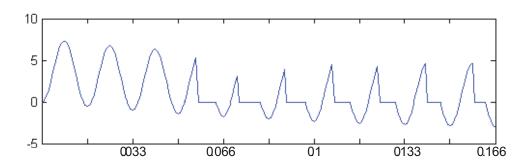


Figure 159: DC- Saturation

4.6.1.6 Signals

Table 315: 87M Input Signals

Name	Туре	Default	Description
I_A1	SIGNAL	0	Phase A Primary Current
I_B1	SIGNAL	0	Phase B Primary Current
I_C1	SIGNAL	0	Phase C Primary Current
I_A2	SIGNAL	0	Phase A Secondary Current
I_B2	SIGNAL	0	Phase B Secondary Current
I_C2	SIGNAL	0	Phase C Secondary Current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
BLK_OPR_LS	BOOLEAN	0=False	Blocks trip outputs from biased stage
BLK_OPR_HS	BOOLEAN	0=False	Blocks trip outputs from instantaneous stage

Table 316: 7M Output Signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
OPR_LS	BOOLEAN	Trip from low set
OPR_HS	BOOLEAN	Trip from high set
INT_BLKD	BOOLEAN	Internal block status

4.6.1.7 Settings

Table 317: 87M Non Group Settings:

Parameter	Values (Range)	Unit	Step	Default	Description
Low trip value	530	%Ir	1	5	Basic setting for the restrained start
High trip value	1001000	%Ir	10	500	Unrestrained trip value
Slope section 2	1050	%	1	30	Slope of the second line of the operating characteristics
End section 1	0100	%lr	1	50	Turn-point between the first and the second line of the operating characteristics
End section 2	100300	%lr	1	150	Turn-point between the second and the third line of the operating characteristics
DC restrain enable	0=False			0=False	Setting for enabling DC restrain
	1=True				feature

Table 318: 87M Group Settings:

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=enable			1=enable	Operation Enable/Disable
	5=disable				
CT connection	1=Type 1			1=Type 1	CT connection type. Determined by the
type	2=Type 2				directions of the connected current transformers
CT ratio Cor Line	0.404.00		0	1	CT ratio correction, line side
CT ratio Cor Neut	0.404.00		0	1	CT ratio correction, neutral side

4.6.1.8 Monitored Data:

Table 319: 87M Monitored data

Name	Туре	Values (Range)	Unit	Description
OPR_A	BOOLEAN	0=False		Trip phase A
		1=True		
OPR_B	BOOLEAN	0=False		Trip phase B
		1=True		
OPR_C	BOOLEAN	0=False		Trip phase C
		1=True		
INT_BLKD_A	BOOLEAN	0=False		Internal block status phase A
		1=True		
INT_BLKD_B	BOOLEAN	0=False		Internal block status phase B
		1=True		
INT_BLKD_C	BOOLEAN	0=False		Internal block status phase C
		1=True		
ID_A	FLOAT32	0.0080.00	xlr	Differential current phase A
ID_B	FLOAT32	0.0080.00	xlr	Differential current phase B
ID_C	FLOAT32	0.0080.00	xlr	Differential current phase C
IB_A	FLOAT32	0.0080.00	xlr	Biasing current phase A
IB_B	FLOAT32	0.0080.00	xlr	Biasing current phase B
IB_C	FLOAT32	0.0080.00	xlr	Biasing current phase C
I_ANGL_A1_B1	FLOAT32	-180.00180.00	deg	Current phase angle Phase A – Phase B, line side
I_ANGL_B1_C1	FLOAT32	-180.00180.00	deg	Current phase angle Phase B – Phase C, line side
I_ANGL_C1_A1	FLOAT32	-180.00180.00	deg	Current phase angle Phase C – Phase A, line side
I_ANGL_A2_B2	FLOAT32	-180.00180.00	deg	Current phase angle Phase A – Phase B, neutral side
I_ANGL_B2_C2	FLOAT32	-180.00180.00	deg	Current phase angle Phase B – Phase C, neutral side
Table continued or	n next page			

Name	Туре	Values (Range)	Unit	it Description	
I_ANGL_C2_A2	FLOAT32	-180.00180.00	deg	Current phase angle Phase C – Phase A, neutral side	
I_ANGL_A1_A2	FLOAT32	-180.00180.00	deg	Current phase angle diff between line and neutral side, Phase A	
I_ANGL_B1_B2	FLOAT32	-180.00180.00	deg	Current phase angle diff between line and neutral side, Phase B	
I_ANGL_C1_C2	FLOAT32	-180.00180.00	deg	Current phase angle diff between line and neutral side, Phase C	
87M	Enum	1=on		Status	
		2=blocked			
		3=test			
		4=test/blocked			
		5=off			
IA-diff	FLOAT32	0.0080.00		Measured differential current amplitude phase IA	
IB-diff	FLOAT32	0.0080.00	Measured differential current amplitude phase IB		
IC-diff	FLOAT32	0.0080.00	Measured differential current amplitude phase IC		
IA-bias	FLOAT32	0.0080.00	Measured bias current amplitude phase IA		
IB-bias	FLOAT32	0.0080.00		Measured bias current amplitude phase IB	
IC-bias	FLOAT32	0.0080.00		Measured bias current amplitude phase IC	

4.6.1.9 Technical Data:

Table 320: 87M Technical Data

Characteristic		Value			
Pickup accuracy		Depending on the frequency of the current measured: fn ±2 Hz			
		±3% of the set value or ±0.002 x In			
Trip time 1) 2)		Minimum	Typical	Maximum	
	Low stage High stage	36ms 12ms	40ms 17ms	42ms 22ms	
Reset time		< 40 ms			
Reset ratio		Typical 0.95			
Retardation time	_	< 20 ms			

4.6.2 Restrained (low stage) and unrestrained (high stage) differential protection for 2W-transformers, 87T

4.6.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Transformer differential protection for two winding transformers	TR2PTDF	3dl>T	87T

4.6.2.2 Function block

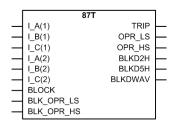


Figure 160: Function block

4.6.2.3 Functionality

The transformer differential protection 87T is designed to protect two-winding transformers and generator-transformer blocks. 87T includes restrained and unrestrained stages.

The restrained differential is designed to sensitively clear internal faults while remaining secure with through current and presence of harmonics due to inrush or overexcitation or CT saturation. The second harmonic restraint, together with the waveform based algorithms, ensures that the restrained differential does not trip due to the transformer inrush currents.

The fifth harmonic restraint ensures that the restrained differential does not trip on apparent differential current caused by a harmless transformer over-excitation.

The unrestrained differential provides a very fast clearance of severe internal faults with a high differential current regardless of their harmonics.

The setting characteristic can be set more sensitive with the aid of tap changer position compensation. The correction of transformation ratio due to the changes in tap position is done automatically based on the tap changer status information.

4.6.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of transformer differential protection can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

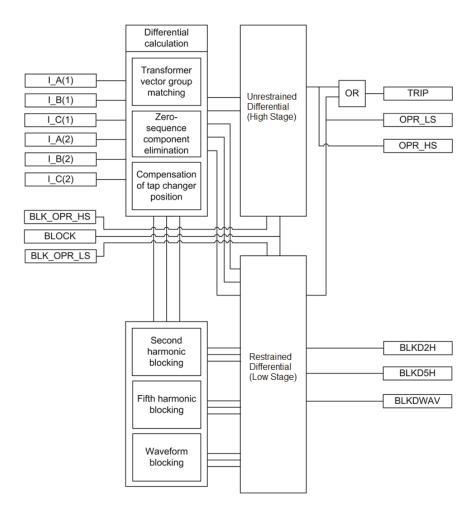


Figure 161: Functional module diagram. I_x1 and I_x2 represent the phase currents of winding 1 and winding 2

Differential calculation

87T operates phase-wise on a difference of incoming and outgoing currents. The positive direction of the currents is towards the protected object.

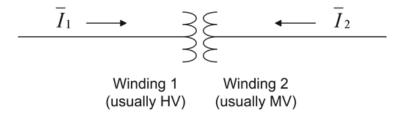


Figure 162: Positive direction of the currents

$$I_d = |\overline{I_1} + \overline{I_2}|$$
 (Equation 35)

In a normal situation, no fault occurs in the area protected by 87T. Then the currents I_1 and \bar{I}_2 are equal and the differential current I_d is zero. In practice, however, the differential current deviates from zero in normal situations. In the power transformer protection, the differential current is caused by CT inaccuracies, variations in tap changer position (if not compensated), transformer no-load current and instantaneous transformer inrush currents. An increase in the load current causes the differential current, caused by the CT inaccuracies and the tap changer position, to grow at the same percentage rate.

In a restrained differential IED in normal operation or during external faults, the higher the load current is the higher is the differential current required for tripping. When an internal fault occurs, the currents on both sides of the protected object are flowing into it. This causes the restraining current to be considerably smaller, which makes the operation more sensitive during internal faults.

$$I_r = \frac{|\overline{I_1} - \overline{I_2}|}{2}$$

(Equation 36)

If the restraining current drops below 30 percent of the differential current or if the phase angle between the winding 1 and winding 2 phase currents is less than 50 degrees, a fault has most certainly occurred in the area protected by the differential IED. Then the trip value set for the unrestrained differential is automatically halved and the internal blocking signals of the restrained differential are inhibited.

Transformer vector group matching

The phase difference of the winding 1 and winding 2 currents that is caused by the vector group of the power transformer is numerically compensated. The matching of the phase difference is based on the phase shifting and the numerical delta connection inside the IED. The *Winding 2 type* parameter determines the connections of the phase windings on the low voltage side ("y," "yn" "d," "z," "zn"). Similarly, the *Winding 1 type* parameter determines the connection on winding 1 ("Y", "YN", "D", "Z", "ZN").

The vector group matching can be implemented either on both, winding 1 and winding 2, or only on winding 1 or winding 2, at intervals of 30° with the *Clock number* setting.

When the vector group matching is Yy0 and the *CT connection type* is according to "Type 2", the phase angle of the phase currents connected to the IED does not change. When the vector group matching is Yy6, the phase currents are turned 180° in the IED.

Example 1

Vector group matching of a Ynd11-connected power transformer on winding 1, *CT* connection type according to type 1. The Winding 1 type setting is "YN", Winding 2 type is "d" and Clock number is "Clk Num 11." This is compensated internally by giving winding 1 internal compensation value +30° and winding 2 internal compensation value 0°;

$$\begin{split} I_{AmHV} &= \frac{\overline{I_A} - \overline{I_B}}{\sqrt{3}} \\ I_{BmHV} &= \frac{\overline{I_B} - \overline{I_C}}{\sqrt{3}} \\ I_{CmHV} &= \frac{\overline{I_C} - \overline{I_A}}{\sqrt{3}} \end{split} \tag{Equation 37}$$

Example 2

But if vector group is Yd11 and *CT connection type* is according to type 1, the compensation is a little different. The *Winding I type* setting is "Y," *Winding 2 type* is "d" and *Clock number* is "Clk Num 11." This is compensated internally by giving winding 1 internal compensation value 0° and winding 2 internal compensation value -30°;

$$\bar{I}_{L1mLV} = \frac{\bar{I}_{L1} - \bar{I}_{L3}}{\sqrt{3}}
\bar{I}_{L2mLV} = \frac{\bar{I}_{L2} - \bar{I}_{L1}}{\sqrt{3}}
\bar{I}_{L3mLV} = \frac{\bar{I}_{L3} - \bar{I}_{L2}}{\sqrt{3}}$$
(Equation 38)

The "Y" side currents stay untouched, while the "d" side currents are compensated to match the currents actually flowing in the windings.

In this example there is no neutral current on either side of the transformer (assuming there are no grounding transformers installed). In the previous example, however, the matching is done differently to have the winding 1 neutral current compensated at the same time.

Zero-sequence component elimination

If *Clock number* is "Clk Num 4", "Clk Num 6", "Clk Num 8" or "Clk Num 10", the vector group matching is always done on both, winding 1 and winding 2. The combination results in the correct compensation. In this case the zero-sequence component is always removed from both sides automatically. The *Zro A elimination* parameter cannot change this.

If Clock number is "Clk Num 1", "Clk Num 5", "Clk Num 7" or "Clk Num 11", the vector group matching is done on one side only. A possible zero-sequence component of the phase currents at ground faults occurring outside the protection area is eliminated in the numerically implemented delta connection before the differential current and the

restraining current are calculated. This is why the vector group matching is almost always made on the star connected side of the "Ynd" and "Dyn" connected transformers.

If *Clock number* is "Clk Num 0" or "Clk Num 6", the zero-sequence component of the phase currents is not eliminated automatically on either side. Therefore the zero-sequence component on the star connected side that is grounded at its star point has to be eliminated by using the *Zro A elimination* parameter.

The same parameter has to be used to eliminate the zero-sequence component if there is, for example, a grounding transformer on the delta-connected side of the "Ynd" power transformer in the area to be protected. In this case, the vector group matching is normally made on the side of the star connection. On the side of the delta connection, the elimination of the zero-sequence component has to be separately selected.

By using the *Zro A elimination* parameter, the zero-sequence component of the phase currents is calculated and reduced for each phase current:

$$\begin{split} \bar{I}_{Am} &= \bar{I}_A - \frac{1}{3} (\bar{I}_A + \bar{I}_B + \bar{I}_C) \\ \bar{I}_{Bm} &= \bar{I}_B - \frac{1}{3} (\bar{I}_A + \bar{I}_B + \bar{I}_C) \\ \bar{I}_{Cm} &= \bar{I}_C - \frac{1}{3} (\bar{I}_A + \bar{I}_B + \bar{I}_C) \end{split}$$

(Equation 39)

In many cases with the grounded neutral of a "wye" winding, it is possible to make the compensation so that a zero-sequence component of the phase currents is automatically eliminated. For example, in a case of a "Ynd" transformer, the compensation is made on the winding 1 side to automatically eliminate the zero-sequence component of the phase currents on that side (and the "d" side does not have them). In those cases, explicit elimination is not needed.

Compensation of tap changer position

The position of the tap changer used for voltage control can be compensated and the position information is provided for the protection function through the tap position indication function 84T.

Typically, the tap changer is located within the high voltage winding, that is, winding 1, of the power transformer. The *Tapped winding* parameter specifies whether the tap changer is connected to the high voltage side winding or the low voltage side winding. This parameter is also used to enable and disable the automatic adaptation to the tap changer position. The possible values are "Not in use"; "Winding 1"; "Winding 2."

The *Tap nominal* parameter tells the number of the tap, which results in the nominal voltage (and current). When the current tap position deviates from this value, the input current values on the side where the tap changer resides are scaled to match the currents on the other side.

342

A correct scaling is determined by the number of steps and the direction of the deviation from the nominal tap and the percentage change in voltage resulting from a deviation of one tap step. The percentage value is set using the *Step of tap* parameter.

The operating range of the tap changer is defined by the Min winding tap and Max winding tap parameters. The Min winding tap parameter tells the tap position number resulting in the minimum effective number of winding turns on the side of the transformer where the tap changer is connected. Correspondingly, the Max winding tap parameter tells the tap position number resulting in the maximum effective number of winding turns.

The Min winding tap and Max winding tap parameters help the tap position compensation algorithm know in which direction the compensation is being made. This ensures also that if the current tap position information is corrupted for some reason, the automatic tap changer position adaptation does not try to adapt to any unrealistic position values.

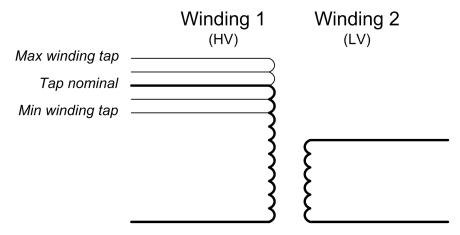


Figure 163: Simplified presentation of the high voltage and medium voltage windings with demonstration of the Max winding tap, Min winding tap and Tap nominal parameters

The position value is available through the Monitored data view on LHMI or through other communication tools in the tap position indication function. When the quality of the TAP POS value is not good, the position information in TAP POS is not used but the last value with the good quality information is used instead. In addition, the minimum sensitivity of the biased stage, set by the Low trip value setting, is automatically desensitized with the total range of the tap position correction. The new acting low trip value is

Desensitized Low trip value = Lowtrip value + ABS(MaxWinding tap - Minwinding tap) · Step of tap (Equation 40)

Second harmonic blocking

The transformer magnetizing inrush currents occur when energizing the transformer after a period of de-energization. The inrush current can be many times the rated current and the halving time can be up to several seconds. To the differential protection, the inrush current represents a differential current, which would cause the differential protection to trip

almost always when the transformer is connected to the network. Typically, the inrush current contains a large amount of second harmonics.

Blocking the operation of the 87T restrained differential at a magnetizing inrush current is based on the ratio of the amplitudes of the second harmonic digitally filtered from the differential current and the fundamental frequency (Id2f/Id1f).

The blocking also prevents unwanted operation at the recovery and sympathetic magnetizing inrushes. At the recovery inrush, the magnetizing current of the transformer to be protected increases momentarily when the voltage returns to normal after the clearance of a fault outside the protected area. The sympathetic inrush is caused by the energization of another transformer running in parallel with the protected transformer already connected to the network

The ratio of the second harmonic to a fundamental component can vary considerably between the phases. Especially when the delta compensation is done for a Ynd1 connected transformer and the two phases of the inrush currents are otherwise equal but opposite in phase angle, the subtraction of the phases in a delta compensation results in a very small second harmonic component.

Some measures have to be taken in order to avoid the false tripping of a phase having too low a ratio of the second harmonic to the fundamental component. One way could be to always block all the phases when the second harmonic blocking conditions are fulfilled in at least one phase. The other way is to calculate the weighted ratios of the second harmonic to the fundamental component for each phase using the original ratios of the phases. The latter option is used here. The second harmonic ratios I_2H_RAT_x are given in monitored data.

The ratio to be used for second harmonic blocking is therefore calculated as a weighted average on the basis of the ratios calculated from the differential currents of the three phases. The ratio of the concerned phase is of most weight compared to the ratios of the other two phases. In this IED, if the weighting factors are four, one and one, four is the factor of the phase concerned. The operation of the restrained differential on the concerned phase is blocked if the weighted ratio of that phase is above the set blocking limit Pickup value 2.H and if blocking is enabled through the Restraint mode parameter.

Using separate blocking for the individual phases and weighted averages calculated for the separate phases provides a blocking scheme that is secure at the connection inrush currents.

If the peak value of the differential current is very high, that is Ir> 12 p.u., the limit for the second harmonic blocking is desensitized (in the phase in question) by increasing it proportionally to the peak value of the differential current.

The connection of the power transformer against a fault inside the protected area does not delay the operation of the tripping, because in such a situation the blocking based on the second harmonic of the differential current is prevented by a separate algorithm based on a different waveform and a different rate of change of the normal inrush current and the inrush current containing the fault current. The algorithm does not eliminate the blocking at inrush currents, unless there is a fault in the protected area.

Normally, there are low current periods in the differential current during inrush. Also the rate of change of the differential current is very low during these periods. If these features

are not present in the differential current, it can be suspected that there is a fault in the transformer. This second harmonic deblocking method is used, for example, in the case of switch on to a fault. This feature can also be enabled and disabled using the Harmonic deblock 2.H parameter.

Fifth harmonic blocking

The inhibition of 87T operation in the situations of overexcitation is based on the ratio of the fifth harmonic and the fundamental component of the differential current (Id5f/Id1f).

The ratio is calculated separately for each phase without weighting. If the ratio exceeds the setting value of Pickup value 5.H and if blocking is enabled through the Restraint mode parameter, the operation of the restrained differential in the concerned phase is blocked. The fifth harmonic ratios I_5H_RAT_x are given in monitored data.

At dangerous levels of overvoltage, which can cause damage to the transformer, the blocking can be automatically eliminated. If the ratio of the fifth harmonic and the fundamental component of the differential current exceeds the Stop value 5.H parameter, the blocking removal is enabled. The enabling and disabling of deblocking feature is also done through the Harmonic deblock 5.H parameter.

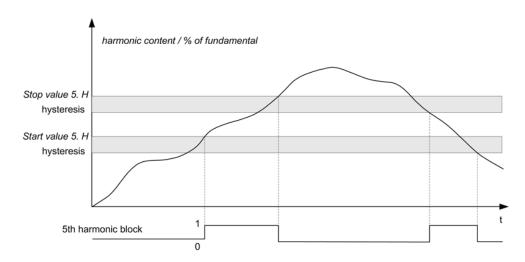


Figure 164: The limits and operation of the fifth harmonic blocking when both blocking and deblocking features are enabled using the Harmonic deblock 5.H control parameter.

The fifth harmonic blocking has a hysteresis to avoid rapid fluctuation between "TRUE" and "FALSE". The blocking also has a counter, which counts the required consecutive fulfillments of the condition. When the condition is not fulfilled, the counter is decreased (if >0).

Also the fifth harmonic deblocking has a hysteresis and a counter which counts the required consecutive fulfillments of the condition. When the condition is not fulfilled, the counter is decreased (if >0).

Waveform blocking

The restrained differential can always be blocked with waveform blocking but it cannot be disabled with the Restraint mode parameter. This algorithm has two parts. The first part is intended for external faults while the second is intended for inrush situations. The algorithm has criteria for a low current period during inrush where also the differential current (not derivative) is checked.

Restrained differential (low set)

The current differential protection needs to be biased because the possible appearance of a differential current can be due to something else than an actual fault in the transformer (or generator).

In the case of transformer protection, a false differential current can be caused by:

- CT errors
- Varying tap changer positions (if not automatically compensated)
- Transformer no-load current
- Transformer inrush currents
- Transformer overexcitation in overvoltage
- Underfrequency situations
- CT saturation at high currents passing through the transformer.

The differential current caused by CT errors or tap changer positions increases at the same percent ratio as the load current.

In the protection of generators, the false differential current can be caused by:

- CT errors
- CT saturation at high currents passing through the generator.

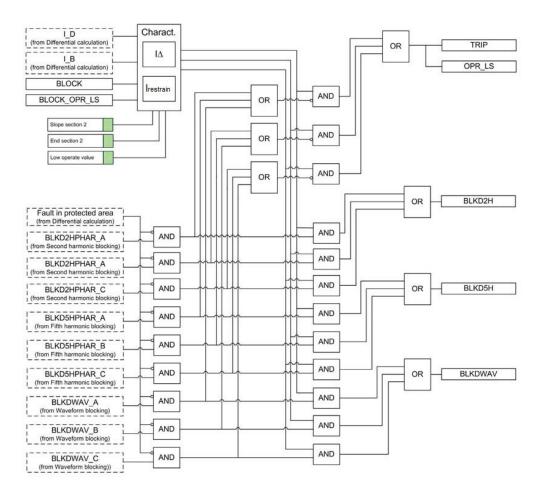


Figure 165: Operation logic of the restrained differential function

The high currents passing through a protected object can be caused by the short circuits outside the protected area, the large currents fed by the transformer in motor startup or the transformer inrush situations. Therefore, the operation of the differential protection is restrained in respect to the load current. In restrained differential protection, the higher the differential current required for the protection to trip, the higher the load current.

The operating characteristic of the restrained differential is determined by Low trip value, Slope section 2 and the setting of the second turning point of the operating characteristic curve, End section 2 (the first turning point and the slope of the last part of the characteristic are fixed). The settings are the same for all the phases. When the differential current exceeds the operating value determined by the operating characteristic, the differential function awakes. If the differential current stays above the operating value continuously for a suitable period, which is 1.1 times the fundamental cycle, the OPR_LS output is activated.

The TRIP output is always activated when the OPR LS output is activated.

The restrained differential function can be blocked internally by the second or fifth harmonic restraint, or by special algorithms detecting inrush and current transformer saturation at external faults. When the operation of the restrained low stage is blocked by the second harmonic blocking functionality, the BLKD2H output is activated.

When operation of the restrained differential is blocked by the fifth harmonic blocking functionality, the BLKD5H output is activated. Correspondingly, when the operation of the restrained differential is blocked by the waveform blocking functionality, the BLKDWAV output is activated according to the phase information.

When required, the trip outputs of the restrained low stage can be blocked by the BLK OPR LS or BLOCK external control signals

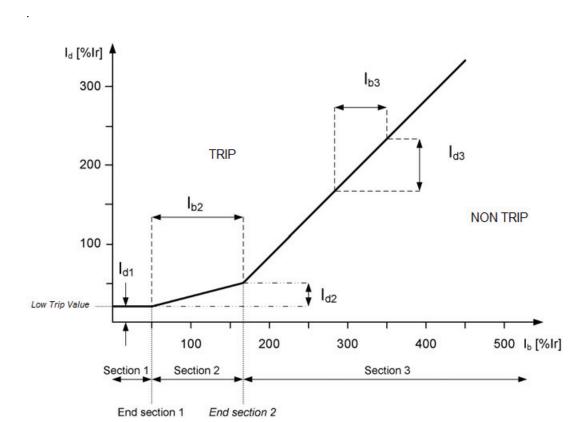


Figure 166: Operation characteristic for restrained operation of 87T

The Low trip value of the restrained differential function is determined according to the operation characteristic:

Low trip value = Id1

Slope section 2 is determined correspondingly:

Slope section 2 =
$$\frac{Id2}{Ib2} \times 100\%$$
 (Equation 41)

The second turning point *End section 2* can be set in the range of 100 percent to 500 percent.

The slope of the differential function's operating characteristic curve varies in the different sections of the range.

- In section 1, where 0 percent Ir < Ib < End section 1, End section 1 being fixed to 50 percent Ir, the differential current required for tripping is constant. The value of the differential current is the same as the Low trip value selected for the function. Low trip value basically allows the no-load current of the power transformer and small inaccuracies of the current transformers, but it can also be used to influence the overall level of the operating characteristic. At the rated current, the no-load losses of the power transformer are about 0.2 percent. If the supply voltage of the power transformer suddenly increases due to operational disturbances, the magnetizing current of the transformer increases as well. In general the magnetic flux density of the transformer is rather high at rated voltage and a rise in voltage by a few percent causes the magnetizing current to increase by tens of percent. This should be considered in Low trip value.
- In section 2, where End section 1 < Ib/In < End section 2, is called the influence area of Slope section 2. In this section, variations in the starting ratio affect the slope of the characteristic, that is, how big a change in the differential current is required for tripping in comparison with the change in the load current. The starting ratio should consider CT errors and variations in the transformer tap changer position (if not compensated). Too high a starting ratio should be avoided, because the sensitivity of the protection for detecting inter-turn faults depends basically on the starting ratio.
- In section 3, where Ib/In > End section 2, the slope of the characteristic is constant. The slope is 100%, which means that the increase in the differential current is equal to the corresponding increase in the restraining current.

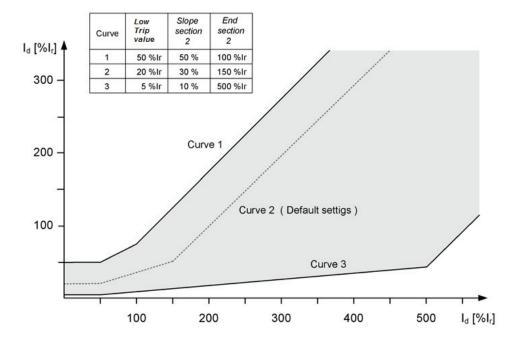


Figure 167: Setting Range for Restrained Differential

If the restraining current drops below 30 percent of the differential current or the phase angle between the winding 1 and winding 2 phase currents is less than 50 degrees, a fault has most likely occurred in the area protected by 87T. Then the internal blocking signals of the restrained differential are inhibited

Unrestrained Differential (High Stage)

The unrestrained differential operation can be enabled and disabled using the Enable high set setting. The corresponding parameter values are "TRUE" and "FALSE."

The unrestrained differential trips and the output OPR_HS is activated when the amplitude of the fundamental frequency component of the differential current exceeds the set High trip value or when the differential current exceeds 2.5 times the value of High trip value. The factor $2.5 \ (=1.8 \ x_2)$ is due to the maximum asymmetric short-circuit current.

If the restraining current drops below 30 percent of the differential current or the phase angle between the winding 1 and winding 2 phase currents is less than 50 degrees, a fault has occurred in the area protected by 87T. Then the trip value set for the unrestrained differential is automatically halved and the internal blocking signals of the restrained differential are inhibited.

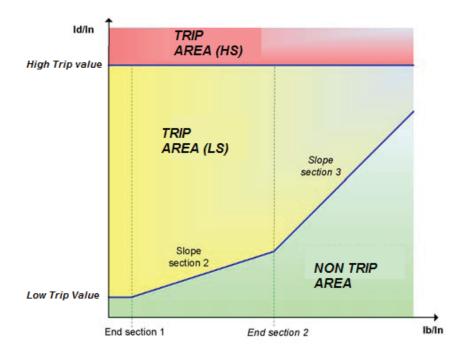


Figure 168: Operating characteristics of the protection. (LS) is referred to the restrained and (HS) to Unrestrained

The TRIP output is activated always when the OPR HS output activates.

The internal blocking signals of the differential function do not prevent the trip signal of the unrestrained differential function. When required, the trip outputs of the unrestrained differential function can be blocked by the BLK_OPR_HS and BLOCK external control signals.

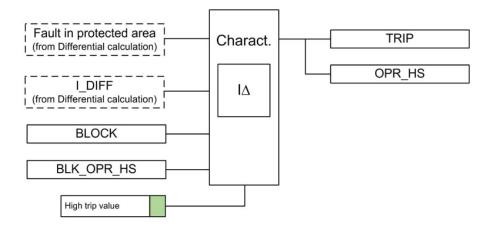


Figure 169: Operational Logic of Unrestrained Differential Function

Reset of the blocking signals (de-block)

All three blocking signals, that is, waveform and second and fifth harmonic have a counter, which holds the blocking on for a certain time after the blocking conditions have ceased to be fulfilled. The deblocking takes place when those counters have elapsed. This is a normal case of deblocking.

The blocking signals can be reset immediately if a very high differential current is measured or if the phase difference of the compared currents (the angle between the compared currents) is over 130 degrees after the automatic vector group matching has been made. This does not, however, reset the counters holding the blockings, so the blocking signals may return when these conditions are not valid anymore.

External blocking functionality

87T has three inputs for blocking.

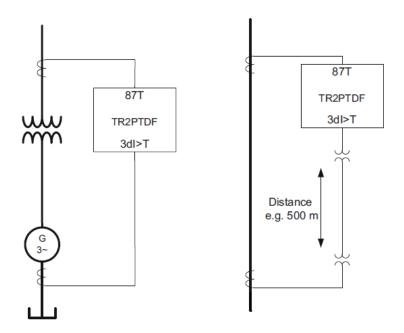
- When the BLOCK input is active ("TRUE"), the operation of the function is blocked but measurement output signals are still updated.
- When the BLK_OPR_LS input is active ("TRUE"), 87T operates normally except that the OPR_LS output is not active or activated in any circumstance. Additionally, the TRIP output can be activated only by the unrestrained differential function (if not blocked as well).
- When the BLK_OPR_HS input is active ("TRUE"), 87T operates normally except that the OPR_HS output is not active or activated in any circumstance. Additionally, the TRIP output can be activated only by the restrained differential function (if not blocked as well).

4.6.2.5 Application

87T is a unit protection function serving as the main protection for transformers in case of winding failure. The protective zone of a differential protection includes the transformer, the bus-work or the cables between the current transformer and the power transformer. When bushing current transformers are used for the differential IED, the protective zone

does not include the bus work or cables between the circuit breaker and the power transformer.

In some substations, there is a current differential protection for the busbar. The busbar protection includes bus work or cables between the circuit breaker and the power transformer. Internal electrical faults are very serious and cause immediate damage. Short circuits and ground faults in windings and terminals are normally detected by the differential protection. If enough turns are short-circuited, the interturn faults, which are flashovers between the conductors within the same physical winding, are also detected. The inter-turn faults are the most difficult transformer-winding faults to detect with electrical protections. A small interturn fault including a few turns' results in an undetectable amount of current until the fault develops into a ground fault. Therefore, it is important that the differential protection has a high level of sensitivity and that it is possible to use a sensitive setting without causing unwanted operations for external faults.

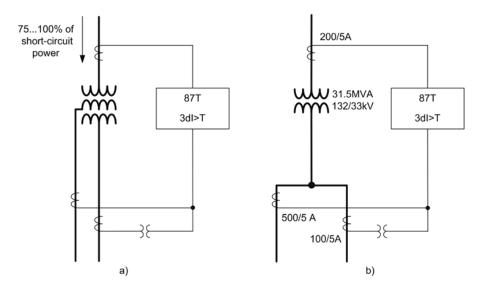

It is important that the faulty transformer is disconnected as fast as possible. As 87T is a unit protection function, it can be designed for fast tripping, thus providing a selective disconnection of the faulty transformer. 87T should never trip to faults outside the protective zone.

87T compares the current flowing into the transformer to the current leaving the transformer. A correct analysis of fault conditions by 87T must consider the changes to voltages, currents and phase angles. The traditional transformer differential protection functions required auxiliary transformers for the correction of the phase shift and turns ratio. The numerical microprocessor based differential algorithm implemented in 87T compensates for both the turns ratio and the phase shift internally in the software.

The differential current should theoretically be zero during normal load or external faults if the turns ratio and the phase shift are correctly compensated. However, there are several different phenomena other than internal faults that cause unwanted and false differential currents. The main reasons for unwanted differential currents are:

- Mismatch due to varying tap changer positions
- Different characteristics, loads and operating conditions of the current transformers
- Zero sequence currents that only flow on one side of the power transformer
- Normal magnetizing currents
- Magnetizing inrush currents
- Overexcitation magnetizing currents.

87T is designed mainly for the protection of two-winding transformers. 87T can also be utilized for the protection of generator-transformer blocks as well as short cables and overhead lines. If the distance between the measuring points is relatively long in line protection, interposing CTs can be required to reduce the burden of the CTs.


Figure 170: Differential protection of a generator-transformer block and short cable/line

87T can also be used in three-winding transformer applications or two-winding transformer applications with two output feeders.

On the double-feeder side of the power transformer, the current of the two CTs per phase must be summed by connecting the two CTs of each phase in parallel. Generally this requires the interposing CTs to handle the vector group and/or ratio mismatch between the two windings/feeders.

The accuracy limit factor for the interposing CT must fulfill the same requirements as the main CTs. Please note that the interposing CT imposes an additional burden to the main CTs.

The most important rule in these applications is that at least 75 percent of the short-circuit power has to be fed on the side of the power transformer with only one connection to the IED.

Figure 171: Differential protection of a three-winding transformer and a transformer with two output feeders

Transforming ratio correction of CTs

First, the rated load of the power transformer must be calculated on both sides when the apparent power and phase-to-phase voltage are known.

$$I_{nT} = \frac{S_n}{\sqrt{3} \cdot V_n}$$
 (Equation 42)

I_{nT} rated load of the power transformer

S_n rated power of the power transformer

V_n rated phase-to-phase voltage

Next, the settings for the CT ratio correction can be calculated.

$$CT \ ratio \ correction \ = \frac{I_{1n}}{I_{nT}}$$
 (Equation 43)

After the CT ratio correction, the measured currents and corresponding setting values of 87T are expressed in multiples of the rated power transformer current Ir (xIn) or percentage value of Ir (%Ir).

Example

The rated power of the transformer is 25 MVA, the ratio of the CTs on the 110 kV side is 300/1 and that on the 21 kV side is 1000/1.

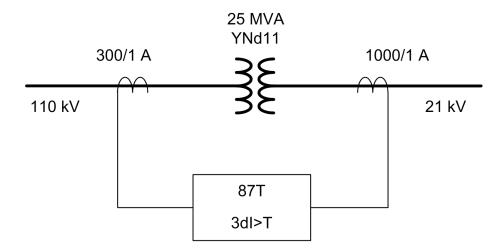


Figure 172: : Example of two winding power transformer differential Protection

The rated load of the transformer is calculated:

HV side:
$$I_{nT_Wnd1} = 25 \text{ MVA} / (1.732 \text{ x } 110 \text{ kV}) = 131.2 \text{ A}$$

LV side: $I_{nT_Wnd2} = 25 \text{ MVA} / (1.732 \text{ x } 21 \text{ kV}) = 687.3 \text{ A}$

Settings:

Vector group matching and elimination of the zero-sequence component

The vector group of the power transformer is numerically matched on the high voltage and low voltage sides by means of the Winding 1 type, Winding 2 type and Clock number settings. Thus no interposing CTs are needed if there is only a power transformer inside the protected zone. The matching is based on phase shifting and a numerical delta connection in the IED. If the neutral of a star-connected power transformer is grounded, any ground fault in the network is perceived by the IED as a differential current. The elimination of the zero-sequence component can be selected for that winding by setting the Zro A elimination parameter

Table 321: settings corresponding to the power transformer vector groups and zero-sequence elimination

Vector group of the transformer	Winding 1 type	Winding 2 type	Clock number	Zro A Elimination	
Yy0	Υ	у	Clk Num 0	Not needed	
YNy0	YN	у	Clk Num 0	HV side	
YNyn0	YN	yn	Clk Num 0	HV & LV side	
Yyn0	Υ	yn	Clk Num 0	LV side	
Yy2	Υ	у	Clk Num 2	Not needed	
YNy2	YN	у	Clk Num 2	Not needed	
YNyn2	YN	yn	Clk Num 2	Not needed	
Yyn2	Υ	yn	Clk Num 2	Not needed	
Yy4	Υ	у	Clk Num 4	Not needed	
YNy4	YN	у	Clk Num 4	Not needed	
YNyn4	YN	yn	Clk Num 4	Not needed	
Yyn4	Υ	yn	Clk Num 4	Not needed	
Yy6	Υ	у	Clk Num 6	Not needed	
YNy6	YN	у	Clk Num 6	HV side	
YNyn6	YN	yn	Clk Num 6	HV & LV side	
Yyn6	Υ	yn	Clk Num 6	LV side	
Yy8	Υ	у	Clk Num 8	Not needed	
YNy8	YN	у	Clk Num 8	Not needed Not needed Not needed	
YNyn8	YN	yn	Clk Num 8		
Yyn8	Υ	yn	Clk Num 8		
Yy10	Υ	у	Clk Num 10	Not needed	
YNy10	YN	у	Clk Num 10	Not needed	
YNyn10	YN	yn	Clk Num 10	Not needed	
Yyn10	Y	yn	Clk Num 10	Not needed	
Yd1	Υ	d	Clk Num 1	Not needed	
YNd1	YN	d	Clk Num 1	Not needed	
Yd5	Y	d	Clk Num 5	Not needed	
YNd5	YN	d	Clk Num 5	Not needed	
Yd7	Υ	d	Clk Num 7	Not needed	
YNd7	YN	d	Clk Num 7	Not needed	
Yd11	Υ	d	Clk Num 11	Not needed	
YNd11	YN	d	Clk Num 11	Num 11 Not needed	
Dd0	D	d	Clk Num 0	Not needed	
Dd2	D	d	Clk Num 2	Not needed	
Dd4	D	d	Clk Num 4	Not needed	
Dd6	D	d	Clk Num 6	Not needed	
Dd8	D	d	Clk Num 8	Not needed	
Dd10	D	d	Clk Num 10	Not needed	

Vector group of the transformer	Winding 1 type	Winding 2 type	Clock number	Zro A Elimination
Dy1	D	у	Clk Num 1	Not needed
Dyn1	D	yn	Clk Num 1	Not needed
Dy5	D	у	Clk Num 5	Not needed
Dyn5	D	yn	Clk Num 5	Not needed
Dy7	D	у	Clk Num 7	Not needed
Dyn7	D	yn	Clk Num 7	Not needed
Dy11	D	у	Clk Num 11	Not needed
Dyn11	D	yn	Clk Num 11	Not needed
Yz1	Y	z	Clk Num 1	Not needed
YNz1	YN	z	Clk Num 1	Not needed
YNzn1	YN	zn	Clk Num 1	LV side
Yzn1	Y	zn	Clk Num 1	Not needed
Yz5	Υ	z	Clk Num 5	Not needed
YNz5	YN	z	Clk Num 5	Not needed
YNzn5	YN	zn	Clk Num 5	LV side
Yzn5	Y	zn	Clk Num 5	Not needed
Yz7	Y	z	Clk Num 7	Not needed
YNz7	YN	z	Clk Num 7	Not needed
YNzn7	YN	zn	Clk Num 7	LV side
Yzn7	Υ	zn	Clk Num 7	Not needed
Yz11	Υ	z	Clk Num 11	Not needed
YNz11	YN	Z	Clk Num 11	Not needed
YNzn11	YN	zn	Clk Num 11	LV side
Yzn11	Y	zn	Clk Num 11	Not needed
Zy1	Z	у	Clk Num 1	Not needed
Zyn1	Z	yn	Clk Num 1	Not needed
ZNyn1	ZN	yn	Clk Num 1	HV side
ZNy1	ZN	у	Clk Num 1	Not needed
Zy5	Z	у	Clk Num 5	Not needed
Zyn5	Z	yn	Clk Num 5	Not needed
ZNyn5	ZN	yn	Clk Num 5	HV side
ZNy5	ZN	у	Clk Num 5	Not needed
Zy7	Z	у	Clk Num 7	Not needed
Zyn7	Z	yn	Clk Num 7	Not needed
ZNyn7	ZN	yn	Clk Num 7	HV side
ZNy7	ZN	у	Clk Num 7	Not needed
Zy11	Z	у	Clk Num 11	Not needed
Zyn11	Z	yn	Clk Num 11	Not needed
ZNyn11	ZN	yn	Clk Num 11	HV side
Table continued on	next page	L	1	

Vector group of the transformer	Winding 1 type	Winding 2 type	Clock number	Zro A Elimination
ZNy11	ZN	у	Clk Num 11	Not needed
Dz0	D	z	Clk Num 0	Not needed
Dzn0	D	zn	Clk Num 0	LV side
Dz2	D	z	Clk Num 2	Not needed
Dzn2	D	zn	Clk Num 2	Not needed
Dz4	D	Z	Clk Num 4	Not needed
Dzn4	D	zn	Clk Num 4	Not needed
Dz6	D	z	Clk Num 6	Not needed
Dzn6	D	zn	Clk Num 6	LV side
Dz8	D	z	Clk Num 8	Not needed
Dzn8	D	zn	Clk Num 8	Not needed
Dz10	D	z	Clk Num 10	Not needed
Dzn10	D	zn	Clk Num 10	Not needed
Zd0	Z	d	Clk Num 0	Not needed
ZNd0	ZN	d	Clk Num 0	HV side
Zd2	Z	d	Clk Num 2	Not needed
ZNd2	ZN	d	Clk Num 2	Not needed
Zd4	Z	d	Clk Num 4	Not needed
ZNd4	ZN	d	Clk Num 4	Not needed
Zd6	Z	d	Clk Num 6	Not needed
ZNd6	ZN	d	Clk Num 6	HV side
Zd8	Z	d	Clk Num 8	Not needed
ZNd8	ZN	d	Clk Num 8	Not needed
Zd10	Z	d	Clk Num 10	Not needed
ZNd10	ZN	d	Clk Num 10	Not needed
Zz0	Z	Z	Clk Num 0	Not needed
ZNz0	ZN	z	Clk Num 0	HV side
ZNzn0	ZN	zn	Clk Num 0	HV & LV side
Zzn0	Z	zn	Clk Num 0	LV side
Zz2	Z	Z	Clk Num 2	Not needed
ZNz2	ZN	z	Clk Num 2	Not needed
ZNzn2	ZN	zn	Clk Num 2	Not needed
Zzn2	Z	zn	Clk Num 2	Not needed
Zz4	Z	Z	Clk Num 4	Not needed
ZNz4	ZN	Z	Clk Num 4	Not needed
ZNzn4	ZN	zn	Clk Num 4	Not needed
Zzn4	Z	zn	Clk Num 4	Not needed
Zz6	Z	z	Clk Num 6	Not needed
ZNz6	ZN	z	Clk Num 6	HV side
Table continued on i	next page			

Vector group of the transformer	Winding 1 type	Winding 2 type	Clock number	Zro A Elimination
ZNzn6	ZN	zn	Clk Num 6	HV & LV side
Zzn6	Z	zn	Clk Num 6	LV side
Zz8	Z	Z	Clk Num 8	Not needed
ZNz8	ZN	z	Clk Num 8	Not needed
ZNzn8	ZN	zn	Clk Num 8	Not needed
Zzn8	Z	zn	Clk Num 8	Not needed
Zz10	Z	z	Clk Num 10	Not needed
ZNz10	ZN	z	Clk Num 10	Not needed
ZNzn10	ZN	zn	Clk Num 10	Not needed
Zzn10	Z	zn	Clk Num 10	Not needed
Yy0	Υ	у	Clk Num 0	Not needed
YNy0	YN	у	Clk Num 0	HV side
YNyn0	YN	yn	Clk Num 0	HV & LV side
Yyn0	Υ	yn	Clk Num 0	LV side
Yy2	Υ	у	Clk Num 2	Not needed
YNy2	YN	у	Clk Num 2	Not needed
YNyn2	YN	yn	Clk Num 2	Not needed
Yyn2	Υ	yn	Clk Num 2	Not needed
Yy4	Υ	у	Clk Num 4	Not needed
YNy4	YN	у	Clk Num 4	Not needed
YNyn4	YN	yn	Clk Num 4	Not needed
Yyn4	Υ	yn	Clk Num 4	Not needed
Yy6	Υ	у	Clk Num 6	Not needed
YNy6	YN	у	Clk Num 6	HV side
YNyn6	YN	yn	Clk Num 6	HV & LV side
Yyn6	Υ	yn	Clk Num 6	LV side
Yy8	Υ	у	Clk Num 8	Not needed
YNy8	YN	у	Clk Num 8	Not needed
YNyn8	YN	yn	Clk Num 8	Not needed
Yyn8	Υ	yn	Clk Num 8	Not needed
Yy10	Υ	у	Clk Num 10	Not needed
YNy10	YN	у	Clk Num 10	Not needed
YNyn10	YN	yn	Clk Num 10	Not needed
Yyn10	Υ	yn	Clk Num 10	Not needed
Yd1	Υ	d	Clk Num 1	Not needed
YNd1	YN	d	Clk Num 1	Not needed
Yd5	Υ	d	Clk Num 5	Not needed
YNd5	YN	d	Clk Num 5	Not needed
Yd7	Y	d	Clk Num 7	Not needed
Table continued on r	next page		1	

Vector group of the transformer	Winding 1 type	Winding 2 type	Clock number	Zro A Elimination
YNd7	YN	d	Clk Num 7	Not needed
Yd11	Υ	d	Clk Num 11	Not needed
YNd11	YN	d	Clk Num 11	Not needed
Dd0	D	d	Clk Num 0	Not needed
Dd2	D	d	Clk Num 2	Not needed
Dd4	D	d	Clk Num 4	Not needed
Dd6	D	d	Clk Num 6	Not needed
Dd8	D	d	Clk Num 8	Not needed
Dd10	D	d	Clk Num 10	Not needed
Dy1	D	у	Clk Num 1	Not needed
Dyn1	D	yn	Clk Num 1	Not needed
Dy5	D	у	Clk Num 5	Not needed
Dyn5	D	yn	Clk Num 5	Not needed
Dy7	D	у	Clk Num 7	Not needed
Dyn7	D	yn	Clk Num 7	Not needed
Dy11	D	у	Clk Num 11	Not needed
Dyn11	D	yn	Clk Num 11	Not needed
Yz1	Υ	Z	Clk Num 1	Not needed
YNz1	YN	z	Clk Num 1	Not needed
YNzn1	YN	zn	Clk Num 1	LV side
Yzn1	Υ	zn	Clk Num 1	Not needed
Yz5	Υ	Z	Clk Num 5	Not needed
YNz5	YN	Z	Clk Num 5	Not needed
YNzn5	YN	zn	Clk Num 5	LV side
Yzn5	Υ	zn	Clk Num 5	Not needed
Yz7	Υ	Z	Clk Num 7	Not needed
YNz7	YN	Z	Clk Num 7	Not needed
YNzn7	YN	zn	Clk Num 7	LV side
Yzn7	Υ	zn	Clk Num 7	Not needed
Yz11	Υ	z	Clk Num 11	Not needed
YNz11	YN	z	Clk Num 11	Not needed
YNzn11	YN	zn	Clk Num 11	LV side
Yzn11	Υ	zn	Clk Num 11	Not needed
Zy1	Z	у	Clk Num 1	Not needed
Zyn1	Z	yn	Clk Num 1	Not needed
ZNyn1	ZN	yn	Clk Num 1	HV side
ZNy1	ZN	у	Clk Num 1	Not needed
Zy5	Z	у	Clk Num 5	Not needed
Zyn5	Z	yn	Clk Num 5	Not needed
Table continued on i	next page			

Vector group of the transformer	Winding 1 type	Winding 2 type	Clock number	Zro A Elimination
ZNyn5	ZN	yn	Clk Num 5	HV side
ZNy5	ZN	у	Clk Num 5	Not needed
Zy7	Z	у	Clk Num 7	Not needed
Zyn7	Z	yn	Clk Num 7	Not needed
ZNyn7	ZN	yn	Clk Num 7	HV side
ZNy7	ZN	у	Clk Num 7	Not needed
Yy0	Υ	у	Clk Num 0	Not needed

Commissioning

The correct settings, which are CT connection type, Winding 1 type, Winding 2 type and Clock number, for the connection group compensation can be verified by monitoring the angle values I_ANGL_A1_B1, I_ANGL_B1_C1, I_ANGL_C1_A1, I_ANGL_A2_B2, I_ANGL_B2_C2, I_ANGL_C2_A2, I_ANGL_A1_A2, I_ANGL_B1_B2 and I_ANGL_C1_C2 while injecting the current into the transformer. These angle values are calculated from the compensated currents. See signal description from Monitored data table.

When a station service transformer is available, it can be used to provide current to the high voltage side windings while the low voltage side windings are short-circuited. This way the current can flow in both the high voltage and low voltage windings. The commissioning signals can be provided by other means as well. The minimum current to allow for phase current and angle monitoring is 0.015 Ir.

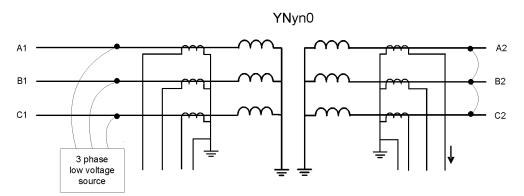


Figure 173: Low voltage test arrangement. The three-phase low voltage source can be the station service transformer.

The Tapped winding control setting parameter has to be set to "Not in use" to make sure that the monitored current values are not scaled by the automatic adaptation to the tap changer position. When only the angle values are required, the setting of Tapped winding is not needed since angle values are not affected by the tap changer position adaptation.

When injecting the currents in the high voltage winding, the angle values I_ANGL_A1_B1, I_ANGL_B1_C1, I_ANGL_C1_A1, I_ANGL_A2_B2, I_ANGL_B2_C2 and I_ANGL_C2_A2 have to show +120 deg. Otherwise the phase order can be wrong or the polarity of a current transformer differs from the polarities of the other current transformers on the same side.

If the angle values <code>I_ANGL_A1_B1</code>, <code>I_ANGL_B1_C1</code> and <code>I_ANGL_C1_A1</code> show -120 deg, the phase order is wrong on the high voltage side. If the angle values <code>I_ANGL_A2_B2</code>, <code>I_ANGL_B2_C2</code> and <code>I_ANGL_C2_A2</code> show -120 deg, the phase order is wrong on the low voltage side. If the angle values <code>I_ANGL_A1_B1</code>, <code>I_ANGL_B1_C1</code> and <code>I_ANGL_C1_A1</code> do not show the same value of +120, the polarity of one current transformer can be wrong. For instance, if the polarity of the current transformer measuring <code>IL2</code> is wrong, <code>I_ANGL_A1_B1</code> shows -60 deg, <code>I_ANGL_B1_C1</code> shows -60 deg and <code>I_ANGL_C1_A1</code> shows +120 deg.

When the phase order and the angle values are correct, the angle values I_ANGL_A1_A2, I_ANGL_B1_B2 and I_ANGL_C1_C2 usually show 0 deg. There can be several reasons if the angle values are not 0 deg. If the values are ± 180 deg, the value given for CT connection type is probably wrong. If the angle values are something else, the value for Clock number can be wrong. Another reason is that the combination of Winding 1 type and Winding 2 type does not match Clock number. This means that the resulting connection group is not supported.

Example

IIf Winding 1 type is set to "Y", Winding 2 type is set to "y" and Clock number is set to "Clk num 1", the resulting connection group "Yy1" is not a supported combination. Similarly if Winding 1 type is set to "Y", Winding 2 type is set to "d" and Clock number is set to "Clk num 0", the resulting connection group "Yd0" is not a supported combination. All the non-supported combinations of Winding 1 type, Winding 2 type and Clock number settings result in the default connection group compensation that is "Yy0".

Recommendations for current transformers

The more important the object to be protected, the more attention has to be paid to the current transformers. It is not normally possible to dimension the current transformer so that they repeat the currents with high DC components without saturating when the residual flux of the current transformer is high. 87T operates reliably even though the current transformers are partially saturated.

The accuracy class recommended for current transformers to be used with 87T is 5P, in which the limit of the current error at the rated primary current is 1 percent and the limit of the phase displacement is 60 minutes. The limit of the composite error at the rated accuracy limit primary current is 5 percent.

The approximate value of the accuracy limit factor Fa corresponding to the actual current transformer burden can be calculated on the basis of the rated accuracy limit factor Fn at the rated burden, the rated burden Sn, the internal burden Sin and the actual burden Sa of the current transformer.

$$F_a = F_n \times \frac{S_{in} + S_n}{S_{in} + S_a} \tag{Equation 44}$$

F_a The approximate value of the accuracy limit factor (ALF) corresponding to the actual CT burden

F_n The rated accuracy limit factor at the rated burden of the current transformer

S_n The rated burden of the current transformer

 S_{in} The internal burden of the current transformer

Sa The actual burden of the current transformer

Example 1

The rated burden S_n of the current transformer 5P20 is 10 VA, the secondary rated current is 5A, the internal resistance R_{in} = 0.07 Ω and the accuracy limit factor F_n corresponding to the rated burden is 20 (5P20). Thus the internal burden of the current transformer is S_{in} = $(5A)^2*0.07~\Omega=1.75~VA$. The input impedance of the IED at a rated current of 5A is < 20 m Ω . If the measurement conductors have a resistance of 0.113 Ω , the actual burden of the current transformer is S_a = $(5A)^2*(0.113+0.020)~\Omega=3.33~VA$. Thus the accuracy limit factor F_a corresponding to the actual burden is approximately 46.

The CT burden can grow considerably at the rated current 5A. The actual burden of the current transformer decreases at the rated current of 1A while the repeatability simultaneously improves.

At faults occurring in the protected area, the currents may be very high compared to the rated currents of the current transformers. Due to the instantaneous stage of the differential function block, it is sufficient that the current transformers are capable of repeating the current required for instantaneous tripping during the first cycle.

Thus the current transformers usually are able to reproduce the asymmetric fault current without saturating within the next 10 ms after the occurrence of the fault to secure that the trip times of the IED comply with the retardation time.

The accuracy limit factors corresponding to the actual burden of the phase current transformer to be used in differential protection fulfill the requirement.

$$F_a > K_r \times Ik_{max} \times \left(T_{dc} \times \omega \times \left(1 - \mathrm{e}^{-\frac{T_m}{T_{dc}}}\right) + 1\right) \tag{Equation 45}$$

Ik_{max} The maximum through-going fault current (in I_R) at which the protection is not allowed to trip

T_{dc} The primary DC time constant related to Ik_{max}

ω The angular frequency, that is, 2*π*fn

T_m The time-to-saturate, that is, the duration of the saturation free transformation

K_r The remanence factor 1/(1-r), where r is the maximum remanence flux in p.u. from saturation flux

The accuracy limit factors corresponding to the actual burden of the phase current transformer is used in differential protection.

The parameter r is the maximum remanence flux density in the CT core in p.u. from saturation flux density. The value of the parameter r depends on the magnetic material used and on the construction of the CT. For instance, if the value of r = 0.4, the remanence flux density can be 40 percent of the saturation flux density. The manufacturer of the CT has to be contacted when an accurate value for the parameter r is needed. The value r = 0.4 is recommended to be used when an accurate value is not available.

The required minimum time-to-saturate Tm in 87T is half fundamental cycle period (10 ms when fn = 50Hz).

Two typical cases are considered for the determination of the sufficient accuracy limit factor (Fa):

1. A fault occurring at the substation bus:

The protection must be stable at a fault arising during a normal operating situation. Re-energizing the transformer against a bus fault leads to very high fault currents and thermal stress and therefore re-energizing is not preferred in this case. Thus, the remanence can be neglected.

The maximum through-going fault current Ikmax is typically 10 IR for a substation main transformer. At a short circuit fault close to the supply transformer, the DC time constant (Tdc) of the fault current is almost the same as that of the transformer, the typical value being 100 ms

$$\begin{array}{lll} \text{Ik}_{\text{max}} & \text{10 IR} \\ \text{T}_{\text{dc}} & \text{100 ms} \\ \omega & \text{100\"i} \in \text{Hz} \\ \text{T}_{\text{m}} & \text{10 ms} \\ \text{K}_{\text{r}} & \text{1} \end{array}$$

When the values are substituted in (Equation 45), the result is:

$$F_a > K_r \times Ik_{max} \times \left(T_{dc} \times \omega \times \left(1 - e^{-\frac{T_m}{T_{dc}}}\right) + 1\right) = 40$$

2. Re-energizing against a fault occurring further down in the network:

The protection must be stable also during re-energization against a fault on the line.

In this case, the existence of remanence is very probable. It is assumed to be 40 percent here.

On the other hand, the fault current is now smaller and since the ratio of the resistance and reactance is greater in this location, having a full DC offset is not possible. Furthermore, the DC time constant (Tdc) of the fault current is now smaller, assumed to be 50 ms here.

Assuming a maximum fault current being 30 percent lower than in the bus fault and a DC offset 90 percent of the maximum.

```
Ik_{max} 0.7* 10 = 7 (I_R)

T_{dc} 50 ms

ω 100\ddot{I} ∈ Hz

T_m 10 ms

K_r 1/(1-0.4) = 1.6667
```

When the values are substituted in the equation, the result is:

$$F_a > K_r \times Ik_{max} \times 0.9 \times \left(T_{dc} \times \omega \times \left(1 - e^{-\frac{T_m}{T_{dc}}}\right) + 1\right) = 40$$

If the actual burden of the current transformer (S_a) in (Equation 44) cannot be reduced low enough to provide a sufficient value for F_a , there are two alternatives to deal with the situation:

- a CT with a higher rated burden Sn can be chosen (which also means a higher rated accuracy limit Fn)
- a CT with a higher nominal primary current I1n (but the same rated burden) can be chosen

Example 2

Assuming that the actions according to alternative two above are taken in order to improve the actual accuracy limit factor:

$$F_a = \frac{IrCT}{IrTR} * F_n \tag{Equation 46}$$

IrTR 1000 A (rated secondary side current of the power transformer)

IrCT 1500 A (rated primary current of the CT on the transformer secondary side)

F_n 30 (rated accuracy limit factor of the CT)

 F_a (IrCT / IrTR) * Fn (actual accuracy limit factor due to oversizing the CT) = (1500/1000) * 30 = 45

In 87T, it is important that the accuracy limit factors Fa of the phase current transformers at both sides correspond with each other, that is, the burdens of the current transformers on both sides are to be as equal as possible. If high inrush or pickup currents with high DC components pass through the protected object when it is connected to the network, special attention is required for the performance and the burdens of the current transformers and for the settings of the function block.

CT connections and transformation ratio correction

The connections of the primary current transformers are designated as "Type 1" and "Type 2". If the positive directions of the winding 1 and winding 2 IED currents are opposite, the CT connection type setting parameter is "Type 1". If the positive directions of the winding 1 and winding 2 IED currents equate, the CT connection type setting parameter is "Type 2". The default is "Type 1".

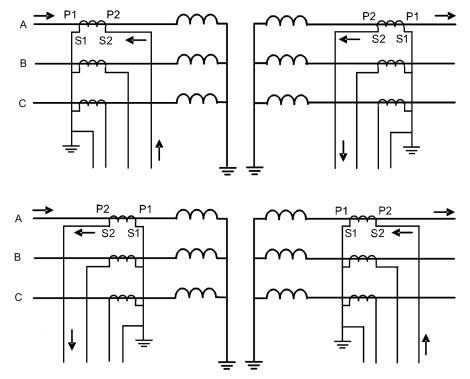


Figure 174: Connection of current transformers of Type 1 and example of the currents during an external fault

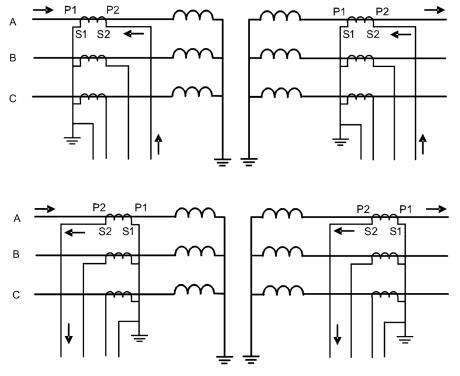


Figure 175: Connection of current transformers of Type 2 and example of the currents during an external fault

The CT secondary currents often differ from the rated current at the rated load of the power

transformer. The CT transforming ratios can be corrected on both sides of the power transformer with the CT ratio Cor Wnd 1 and CT ratio Cor Wnd 2 settings.

4.6.2.6 Signals

Table 322: 87T Input signals

Name	Туре	Default	Description
I_A1	SIGNAL	0	Phase A primary current
I_B1	SIGNAL	0	Phase B primary current
I_C1	SIGNAL	0	Phase C primary current
I_A2	SIGNAL	0	Phase A secondary current
I_B2	SIGNAL	0	Phase B secondary current
I_C2	SIGNAL	0	Phase C secondary current
BLOCK	BOOLEAN	0=False	Block
BLK_OPR_LS	BOOLEAN	0=False	Blocks trip outputs from Restrained stage
BLK_OPR_HS	BOOLEAN	0=False	Blocks trip outputs from Unrestrained stage

Table 323: 87T Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip combined
OPR_LS	BOOLEAN	Trip from low set
OPR_HS	BOOLEAN	Trip from high set
BLKD2H	BOOLEAN	2nd harmonic restraint block status
BLKD5H	BOOLEAN	5th harmonic restraint block status
BLKDWAV	BOOLEAN	Waveform blocking status

4.6.2.7 Settings

Table 324: 87T Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
High trip value	5003000	%I n	10	1000	Unrestrained stage setting
Enable high set	0=False 1=True			1=True	Enable high set stage
Low trip value	550	%l n	1	20	Basic setting for biased operation
Slope section 2	1050	%	1	30	Slope of the second line of the operating characteristics
End section 2	100500	%I n	1	150	Turn-point between the second and the third line of the operating characteristics
Restraint Mode	-1=2.h + 5.h + wav 5=Waveform 6=2.h + waveform 7=5.h + waveform			-1=2.h + 5.h + wav	Restraint Mode
Harmonic deblock 2.H	0=False 1=True			1=True	Selects if the 2. harmonic deblocking is allowed in case of switch on to a fault (Allow / Do not allow)
Pickup value 2.H	720	%	1	15	The ratio of the 2. harmonic to fundamental component required for blocking
Pickup value 5.H	1050	%	1	35	The ratio of the 5. harmonic to fundamental component required for blocking
Stop value 5.H	1050	%	1	35	The ratio of the 5. harmonic to fundamental component required to remove 5. harmonic blocking
Harmonic deblock 5.H	0=False 1=True			0=False	Selects if the 5. harmonic deblocking is allowed in case ofsevere overvoltage situation (Allow / Do not allow)

Table 325: 87T Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
CT connection type	1=Type 12=Type 2			1=Type 1	CT connection type. Determined by the directions of the connected current transformers
Winding 1 type	1=Y 2=YN 3=D 4=Z 5=ZN			1=Y	Connection of the HV side windings. Determined by the transformer connection group (e.g. Dyn11 → "D")
Winding 2 type	1=y2=yn3=d 4=z 5=zn			1=y	Connection of the LV side windings. Determined by the transformer connection group (e.g. Dyn11 →"yn")
Clock number	0=Clk Num 0 1=Clk Num 1 2=Clk Num 2 4=Clk Num 4 5=Clk Num 5 6=Clk Num 6 7=Clk Num 7 8=Clk Num 8 10=Clk Num 10 11=Clk Num 11			0=Clk Num 0	Setting the phase shift between HV and LV with clock number for connection group compensation (e.g. Dyn11 → 11)
Zro A elimination	1=Not eliminated 2=Winding 13=Winding 24=Winding 1 and 2			1=Not eliminated	Elimination of the zero-sequence current: 1→ not eliminated, 2→on HV only, 3→ on LV only, 4 -→ both on HV and LV
Min winding tap	-3636		1	36	The tap position number resulting the minimum number of effective winding turns on the side of the transformer where the tap changer is.
Max winding tap	-3636		1	0	The tap position number resulting the maximum number of effective winding turns on the side of the transformer where the tap changer is.
Tap nominal	-3636		1	18	The nominal position of the tap changer resulting the default transformation ratio of the transformer (as if there was no tap changer)
Tapped winding	1=Not in use 2=Winding 13=Winding 2			1=Not in use	The winding where the tap changer is connected to. Also used to enable/disable the automatic compensation of the tap changer position (1 = Not in use; 2 = HV winding; 3 = LV winding)
Step of tap	0.609.00	%	0.01	1.5	The percentage change in voltage corresponding one step of the tap changer
CT ratio Cor Wnd 1	0.404.00		0.01	1	CT ratio correction, winding 1
CT ratio Cor Wnd 2	0.404.00		0.01	1	CT ratio correction, winding 2

4.6.2.8 Monitored data

Table 326: 87T Monitored data

Name	Туре	Values (Range)	Unit	Description
OPR_A	BOOLEAN	0=False 1=True		Trip phase A
OPR_B	BOOLEAN	0=False 1=True		Trip phase B
OPR_C	BOOLEAN	0=False 1=True		Trip phase C
BLKD2H_A	BOOLEAN	0=False 1=True		2nd harmonic restraint block phase A status
BLKD2H_B	BOOLEAN	0=False 1=True		2nd harmonic restraint block phase B status
BLKD2H_C	BOOLEAN	0=False 1=True		2nd harmonic restraint block phase C status
BLKD5H_A	BOOLEAN	0=False 1=True		5th harmonic restraint block phase A status
BLKD5H_B	BOOLEAN	0=False 1=True		5th harmonic restraint block phase B status
BLKD5H_C	BOOLEAN	0=False 1=True		5th harmonic restraint block phase C status
BLKDWAV_A	BOOLEAN	0=False 1=True		Waveform blocking phase A status
BLKDWAV_B	BOOLEAN	0=False 1=True		Waveform blocking phase B status
BLKDWAV_C	BOOLEAN	0=False 1=True		Waveform blocking phase C status
2nd harmonic block	BOOLEAN	0=False 1=True		2nd harmonic restraint block
2nd harmonic block phaseA	BOOLEAN	0=False 1=True		2nd harmonic restraint block phase A
2nd harmonic block phaseB	BOOLEAN	0=False 1=True		2nd harmonic restraint block phase B
2nd harmonic block phaseC	BOOLEAN	0=False 1=True		2nd harmonic restraint block phase C
5th harmonic block	BOOLEAN	0=False 1=True		5th harmonic restraint block
5th harmonic block phase A	BOOLEAN	0=False 1=True		5th harmonic restraint block phase A
5th harmonic block phase B	BOOLEAN	0=False 1=True		5th harmonic restraint block phase B
5th harmonic block phase C	BOOLEAN	0=False 1=True		5th harmonic restraint block phase C
Connection group compensated primary current phase A	FLOAT32	0.0040.00	xln	Connection group compensated primary current phase A
Connection group compensated primary current phase B	FLOAT32	0.0040.00	xln	Connection group compensated primary current phase B
Connection group compensated primary current phase C	FLOAT32	0.0040.00	xln	Connection group compensated primary current phase C
Connection group compensated secondary current phase A	FLOAT32	0.0040.00	xln	Connection group compensated secondary current phase A
Table continues on next page	 ge			

Name	Туре	Values (Range)	Unit	Description
Connection group compensated secondary current phase B	FLOAT32	0.0040.00	xIn	Connection group compensated secondary current phase B
Connection group compensated secondary current phase C	FLOAT32	0.0040.00	xln	Connection group compensated secondary current phase C
Differential Current phase A	FLOAT32	0.0080.00	xln	Differential Current phase A
Differential Current phase B	FLOAT32	0.0080.00	xln	Differential Current phase B
Differential Current phase C	FLOAT32	0.0080.00	xln	Differential Current phase C
Restraint Current phase A	FLOAT32	0.0080.00	xln	Restraint Current phase A
Restraint Current phase B	FLOAT32	0.0080.00	xln	Restraint Current phase B
Restraint Current phase C	FLOAT32	0.0080.00	xln	Restraint Current phase C
I_2H_RAT_A	FLOAT32	0.001.00		Differential current second harmonic ratio, phase A
I_2H_RAT_B	FLOAT32	0.001.00		Differential current second harmonic ratio, phase B
I_2H_RAT_C	FLOAT32	0.001.00		Differential current second harmonic ratio, phase C
Angle difference between HV Ph1Ph2	FLOAT32	-180.00180.00	deg	Angle difference between HV Ph1Ph2
Angle difference between HV Ph2Ph3	FLOAT32	-180.00180.00	deg	Angle difference between HV Ph2Ph3
Angle difference between HV Ph3Ph1	FLOAT32	-180.00180.00	deg	Angle difference between HV Ph3Ph1
Angle diff betw LV Ph1Ph2	FLOAT32	-180.00180.00	deg	Angle difference between LV Ph1Ph2
Angle diff betw LV Ph2Ph3	FLOAT32	-180.00180.00	deg	Angle difference between LV Ph2Ph3
Angle diff betw LV Ph3Ph1	FLOAT32	-180.00180.00	deg	Angle difference between LV Ph3Ph1
Angle diff betw HVLV Ph1	FLOAT32	-180.00180.00	deg	Angle difference between HVLV Ph1
Angle diff betw HVLV Ph2	FLOAT32	-180.00180.00	deg	Angle difference between HVLV Ph2
Angle diff betw HVLV Ph3	FLOAT32	-180.00180.00	deg	Angle difference between HVLV Ph3
I_5H_RAT_A	FLOAT32	0.001.00		Differential current fifth harmonic ratio, phase A
I_5H_RAT_B	FLOAT32	0.001.00		Differential current fifth harmonic ratio, phase B
I_5H_RAT_C	FLOAT32	0.001.00		Differential current fifth harmonic ratio, phase C
87T	Enum	1=enabled 2=blocked 3=test 4=test/blocked5 =disabled		Status
Table continues on next page	ge			

Name	Туре	Values (Range)	Unit	Description
IA-diff	FLOAT32	0.0080.00		Measured differential current amplitude phase IL1
IB-diff	FLOAT32	0.0080.00		Measured differential current amplitude phase IL2
IC-diff	FLOAT32	0.0080.00		Measured differential current amplitude phase IL3
IA-bias	FLOAT32	0.0080.00		Measured bias current amplitude phase IL1
IB-bias	FLOAT32	0.0080.00		Measured bias current amplitude phase IL2
IC-bias	FLOAT32	0.0080.00		Measured bias current amplitude phase IL3

4.6.2.9 Technical data

Table 327: 87TTechnical data

Characteristic		Value	Value			
Pickup accuracy			Depending on the frequency of the current measured: f _n ±2Hz			
		±3.0% of the set	±3.0% of the set value or ±0.002 x I _n			
Pickup time ^{1,2}		Minimum	Typical	Maximum		
	Low srage High stage	34 ms 21 ms	40 ms 22 ms	44 ms 24 ms		
Reset time		< 40 ms				
Reset ratio		Typical 0.96				
Suppression of harmonic	s	DFT: -50dB at f =	DFT: -50dB at f = n x f _n , where n = 2, 3, 4, 5,			

- 1. Current before fault = 0.0, f_n = 60Hz, results based on statistical distribution of 1000 measurements.
- 2. Includes the delay of the output contact. When differential current = $2 \times 8 \times 10^{-5}$ x set trip value and fn = 60×10^{-5} Hz.

4.6.3 Low impedance restricted ground-fault protection 87L0ZREF 4.6.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Low impedance restricted ground-fault protection	LREFPNDF	dloLo>	87LOZREF

4.6.3.2 Function block

Figure 176: Function block

4.6.3.3 Functionality

The restrained restricted low-impendence ground-fault protection 87LOZREF for a two winding transformer is based on the numerically restrained differential current principle. No external stabilizing resistor or non-linear resistor are required.

The fundamental components of the currents are used for calculating the residual current of the phase currents, the neutral current, differential currents and stabilizing currents. The operating characteristics are according to the definite time.

87LOZREF contains a blocking functionality. The neutral-current second harmonic is used for blocking during the transformer inrush situation. It is also possible to block function outputs, timers or the function itself, if desired.

4.6.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the restrained restricted low impedance ground-fault protection can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

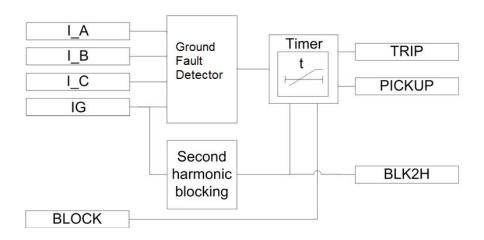


Figure 177: Functional module diagram

Ground-fault detector

The operation is based on comparing the amplitude and the phase difference between the sum of the fundamental frequency component of the phase currents (ΣI , residual current)

and the fundamental frequency component of the neutral current (IG) flowing in the conductor between the transformer or generator's neutral point and ground. The differential current is calculated as the absolute value of the difference between the residual current (the sum of the fundamental frequency components of the phase currents I_A, I_B and I_C) and the neutral current. The directional differential current ID_COSPHI is the product of the differential current and cosφ. The value is available through the Monitored data view.

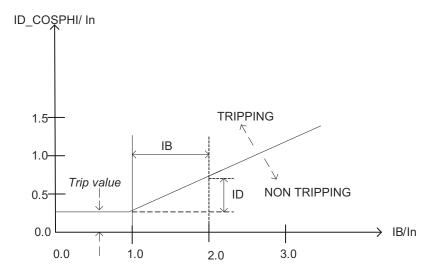
$$ID COSPHI = (|\overline{\Sigma I} - \overline{I_0}|) \times \cos \varphi$$
 (Equation 47)

 $\overline{\Sigma I}$ Residual current

φ Phase difference between the residual and neutral currents

I₀ Neutral current

A ground fault occurring in the protected area, that is, between the phase CTs and the neutral connection CT, causes a differential current. The directions, that is, the phase difference of the residual current and the neutral current, are considered in the operation criteria to maintain selectivity. A correct value for *CT connection type* is determined by the connection polarities of the current transformer.



The current transformer ratio mismatch between the phase current transformer and neutral current transformer (residual current in the analog input settings) is taken into account by the function with the properly set analog input setting values.

During a ground fault in the protected area, the currents ΣI and IG are directed towards the protected area. The factor $\cos \phi$ is 1 when the phase difference of the residual current and the neutral current is 180 degrees, that is, when the currents are in opposite direction at the ground faults within the protected area. Similarly, ID_COSPHI is specified to be 0 when the phase difference between the residual current and the neutral current is less than 90 degrees in situations where there is no ground fault in the protected area. Thus tripping is possible only when the phase difference between the residual current and the neutral current is above 90 degrees.

The stabilizing current IB used by the stabilizing current principle is calculated as an average of the phase currents in the windings to be protected. The value is available through the Monitored data view.

$$IB = \frac{\left|\overline{I}_{A}\right| + \left|\overline{I}_{B}\right| + \left|\overline{I}_{C}\right|}{3}$$
(Equation 48)

Figure 178: Operating characteristics of the restrained ground-fault protection function

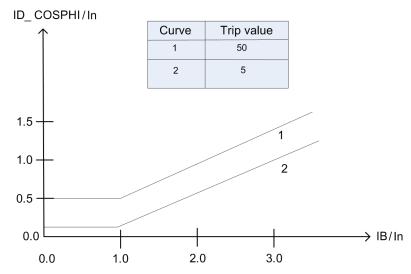


Figure 179: Setting range of the operating characteristics for the restrained differential current principle of the ground-fault protection function

The *Trip value* setting is used for defining the characteristics of the function. The differential current value required for tripping is constant at the stabilizing current values $0.0 < \mathrm{IB/In} < 1.0$, where In is the nominal current, and the In in this context refers to the nominal of the phase current inputs. When the stabilizing current is higher than 1.0, the slope of the operation characteristic (ID/IB) is constant at 50 percent. Different operating characteristics are possible based on the *Trip value* setting.

To calculate the directional differential current ID_COSPHI, the fundamental frequency amplitude of both the residual and neutral currents has to be above 4 percent of In. If neither or only one condition is fulfilled at a time, the $\cos \varphi$ term is forced to 1. After the conditions are fulfilled, both currents must stay above 2 percent of In to allow the continuous calculation of the $\cos \varphi$ term.

Second harmonic blocking

This module compares the ratio of the current second harmonic (IG_2H) and IG to the set value $Pickup\ value\ 2.H$. If the ratio (IG_2H / IG) value exceeds the set value, the BLK2H output is activated.

The blocking also prevents unwanted operation at the recovery and sympathetic magnetizing inrushes. At the recovery inrush, the magnetizing current of the transformer to be protected increases momentarily when the voltage returns to normal after the clearance of a fault outside the protected area. The sympathetic inrush is caused by the energization of a transformer running in parallel with the protected transformer connected to the network.

The second harmonic blocking is disabled when *Restraint mode* is set to "None" and enabled when set to "2nd harmonic".

Timer

Once activated, the timer activates the PICKUP output. The time characteristic is according to DT. When the operation timer has reached the value set by *Minimum trip time*, the TRIP output is activated. If the fault disappears before the module trips, the reset timer is activated. If the reset timer reaches the value set by *Reset delay time*, the reset timer resets and the PICKUP output is deactivated.

The timer calculates the pickup duration value PICKUP_DUR which indicates the percentage ratio of the pickup situation and the set trip time. The value is available through the Monitored data view.

Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the IED program. The influence of the BLOCK signal activation is preselected with the global setting *Blocking mode*.

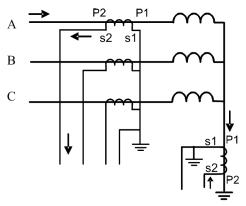
The *Blocking mode* setting has three blocking methods. In the "Freeze timers" mode, the operate timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

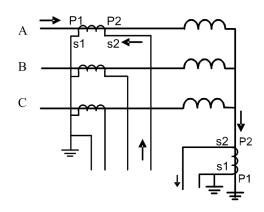
The activation of the output of the second harmonic blocking signal BLK2H deactivates the TRIP output.

4.6.3.5 Application

A ground-fault protection using an overcurrent element does not adequately protect the transformer winding in general and the 87LOZREF winding in particular.

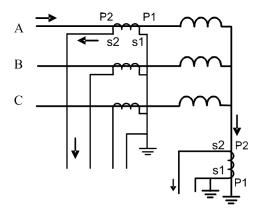
The restricted ground-fault protection is mainly used as a unit protection for the transformer windings. 80LOZREF is a sensitive protection applied to protect the

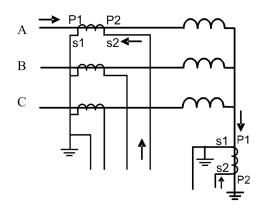

87LOZREF winding of a transformer. This protection system remains stable for all the faults outside the protected zone.


87LOZREF provides a higher sensitivity for the detection of ground faults than the overall transformer differential protection. This is a high speed unit protection scheme applied to the 87LOZREF winding of the transformer. In 87LOZREF, the difference of the fundamental component of all three phase currents and the neutral current is provided to the differential element to detect the ground fault in the transformer winding based on the numerical restrained differential current principle.

Connection of current transformers

The connections of the main CTs are designated as "Type 1" and "Type 2". In case the groundings of the current transformers on the phase side and the neutral side are both either inside or outside the area to be protected, the setting parameter *CT connection type* is "Type 1".


If the grounding of the current transformers on the phase side is inside the area to be protected and the neutral side is outside the area to be protected or vice versa, the setting parameter CT connection type is "Type 2".



- a. Both groundings are inside area to be protected
- b. Both groundings are outside area to be protected

Figure 180: Connection of the current transformers of Type 1. The connected phase currents and the neutral current have opposite directions at an external ground-fault situation.

- a. Phase grounding is inside and neutral grounding is outside area to be protected
- b. Phase grounding is outside and neutral grounding is inside area to be protected

Figure 181: Connection of the current transformers of Type 2. The phase currents and the neutral current have equal directions at an external ground-fault situation.

Internal and external faults

87LOZREF does not respond to any faults outside the protected zone. An external fault is detected by checking the phase angle difference of the neutral current and the sum of the phase currents. When the difference is less than 90 degrees, the operation is internally restrained or blocked. Hence the protection is not sensitive to an external fault.

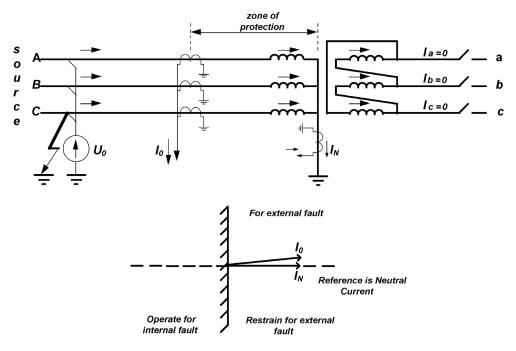


Figure 182: Current flow in all the CTs for an external fault

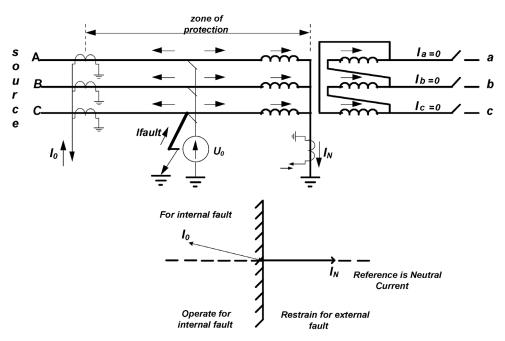


Figure 183: Current flow in all the CTs for an internal fault

87LOZREF does not respond to phase-to-phase faults either, as in this case the fault current flows between the two line CTs and so the neutral CT does not experience this fault current.

87LOZREF is normally applied when the transformer is solidly grounded because in this case the fault current is high enough and the ground fault can be detected easily.

Blocking based on the second harmonic of the neutral current

The transformer magnetizing inrush currents occur when the transformer is energized after a period of de-energization. The inrush current can be many times the rated current, and the halving time can be up to several seconds. For the differential IED, the inrush current represents the differential current, which causes the IED to trip almost always when the transformer is connected to the network. Typically, the inrush current contains a large amount of second harmonics.

The blocking also prevents unwanted operation at the recovery and sympathetic magnetizing inrushes. At the recovery inrush, the magnetizing current of the transformer to be protected increases momentarily when the voltage returns to normal after the clearance of a fault outside the protected area. The sympathetic inrush is caused by the energization of a transformer running in parallel with the protected transformer already connected to the network.

Blocking the starting of the restricted ground-fault protection at the magnetizing inrush is based on the ratio of the second harmonic and the fundamental frequency amplitudes of the neutral current IG_2H / IG. Typically, the second harmonic content of the neutral current at the magnetizing inrush is higher than that of the phase currents.

4.6.3.6 Signals

Table 328: 87LOZREF Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
10	SIGNAL	0	Zero-sequence current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 329: 87LOZREF Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup
BLK2H	BOOLEAN	2nd harmonic block

4.6.3.7 Settings

Table 330: 87LOZREF Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Trip value	550	%In	1	5	TRip value
Minimum trip time	40300000	ms	1	40	Minimum trip time
Restraint mode	1=None 2=Harmonic2			1=None	Restraint mode
Pickup value 2.H	1050	%In	1	50	The ratio of the 2. harmonic to fundamental component required for blocking

Table 331: 87LOZREF Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Reset delay time	060000	ms	1	20	Reset delay time
CT connection type	1=Type 1 2=Type 2			2=Type 2	CT connection type

4.6.3.8 Monitored data

Table 332: 87LOZREF Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
RES2H	BOOLEAN	0=False 1=True		2nd harmonic restraint
IDIFF	FLOAT32	0.0080.00	xln	Differential current
IBIAS	FLOAT32	0.0080.00	xln	Stabilization current
87LOZREF	Enum	1=enabled 2=blocke 3=test 4=test/blocked 5=disabled		Status

4.6.3.9 Technical data

Table 333: 87LOZREFTechnical data

Characteristic		Value			
Pickup accuracy		Depending on the frequency of the current measured: f _n ±2Hz			
		±2.5% of the set	value or ±0.002 x	l _n	
Pickup time ^{1,2}		Minimum	Typical	Maximum	
	I _{fault} = 2.0 x set <i>Trip</i> value	38 ms	40 ms	43 ms	
Reset time		< 40 ms			
Reset ratio		Typical 0.96			
Retardation time		< 35 ms			
Trip time accuracy in definite time mode		±1.0% of the set value or ±20 ms			
Suppression of harmonics	3	DFT: -50dB at f = n x f_n , where n = 2, 3, 4, 5,			

^{1.} Current before fault = 0.0, f_n = 60Hz, results based on statistical distribution of 1000 measurements. 2. Includes the delay of the signal output contact.

Section 5 Protection related functions

5.1 Three-phase transformer inrush detector INR

5.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase inrush detector	INRPHAR	3l2f>	INR

5.1.2 Function block

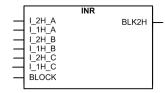
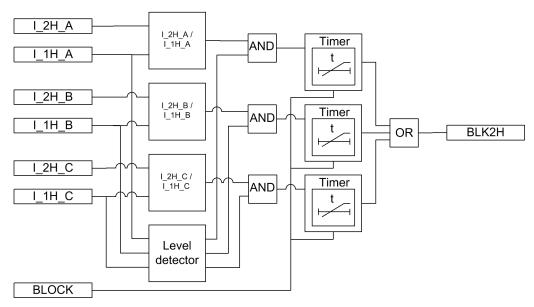


Figure 184: Function block

5.1.3 Functionality

The transformer inrush detection INR is used to coordinate transformer inrush situations in distribution networks.

Transformer inrush detection is based on the following principle: the output signal BLK2H is activated once the numerically derived ratio of second harmonic current I_2H and the fundamental frequency current I_3H exceeds the set value.


The trip time characteristic for the function is of definite time (DT) type.

The function contains a blocking functionality. Blocking deactivates all outputs and resets timers.

5.1.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of an inrush current detection function can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

Figure 185: Functional module diagram. I_1H and I_2H represent fundamental and second harmonic values of phase currents.

I_2H/I_1H

This module calculates the ratio of the second harmonic (I_2H) and fundamental frequency (I_1H) phase currents. The calculated value is compared with the set *Pickup value*. If the calculated value exceeds the set *Pickup value*, the module output is activated.

Level detector

The output of the phase specific level detector is activated when the fundamental frequency current I 1H exceeds five percent of the nominal current.

Timer

Once activated, the timer runs until the set *Trip delay time* value. The time characteristic is according to DT. When the trip timer has reached the *Trip delay time* value, the BLK2H output is activated. After the timer has elapsed and the inrush situation still exists, the BLK2H signal remains active until the I_2H/I_1H ratio drops below the value set for the ratio in all phases, that is, until the inrush situation is over. If the drop-off situation occurs within the trip time up counting, the reset timer is activated. If the drop-off time exceeds *Reset delay time*, the trip timer is reset.

The BLOCK input can be controlled with a binary input, a horizontal communication input or an internal signal of the relay program. The activation of the BLOCK input prevents the BLK2H output from being activated.

5.1.5 Application

Transformer protections require high stability to avoid tripping during magnetizing inrush conditions. A typical example of an inrush detector application is doubling the pickup value of an overcurrent protection during inrush detection.

The inrush detection function can be used to selectively block overcurrent and ground-fault function stages when the ratio of second harmonic component over the fundamental component exceeds the set value.

Other applications of this function include the detection of inrush in lines connected to a transformer.

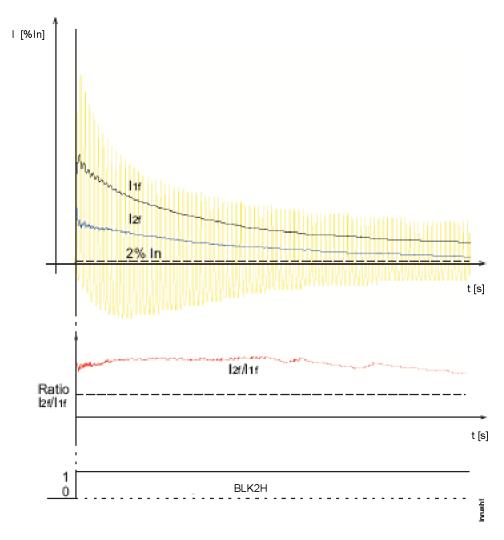


Figure 186: Inrush current in transformer

It is recommended to use the second harmonic and the waveform based inrush blocking from the transformer differential protection function 87T if available.

5.1.6 Signals

Table 334: INR Input signals

Name	Туре	Default	Description
I_2H_A	SIGNAL	0	Second harmonic phase A current
I_1H_A	SIGNAL	0	Fundamental frequency phase A current
I_2H_B	SIGNAL	0	Second harmonic phase B current
I_1H_B	SIGNAL	0	Fundamental frequency phase B current
I_2H_C	SIGNAL	0	Second harmonic phase C current
I_1H_C	SIGNAL	0	Fundamental frequency phase C current
BLOCK	BOOLEAN	0=False	Block input status

Table 335: INR Output signals

Name	Туре	Description
BLK2H	BOOLEAN	Second harmonic based block

5.1.7 Settings

Table 336: INR Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Plckup value	5100	%	1	20	Ratio of the 2. to the 1. harmonic leading to restraint
Operate delay time	2060000	ms	1	20	Operate delay time

Table 337: INR Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Off / On
Reset delay time	060000	ms	1	20	Reset delay time

5.1.8 Monitored data

Table 338: INR Monitored data

Name	Туре	Values (Range)	Unit	Description
INR	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

5.1.9 Technical data

Table 339: INR Technical data

Characteristic	Value	
Pickup accuracy	At the frequency f=f _n	
	Current measurement: ±1.5% of the set value or ±0.002 x I _n Ratio I2f/I1f measurement: ±5.0% of the set value	
Reset time	+35 ms / -0 ms	
Reset ratio	Typical 0.96	
Trip time accuracy	+35 ms / -0 ms	

5.2 Circuit breaker failure protection 50BF

5.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Circuit breaker failure protection	CCBRBRF	3I>/Io>BF	50BF

5.2.2 Function block

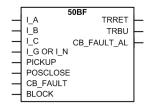
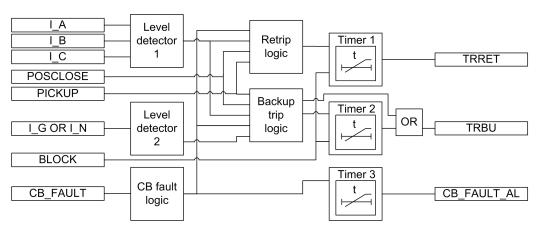


Figure 187: Function block

5.2.3 Functionality

The breaker failure function 50BF is activated by trip commands from the protection functions. The commands are either internal commands to the terminal or external commands through binary inputs. The pickup command is always a default for three-phase operation. 50BF includes a three-phase conditional or unconditional re-trip function, and also a three-phase conditional back-up trip function.


50BF uses the same levels of current detection for both re-trip and back-up trip. The operating values of the current measuring elements can be set within a predefined setting range. The function has two independent timers for trip purposes: a re-trip timer for the repeated tripping of its own breaker and a back-up timer for the trip logic operation for upstream breakers. A minimum trip pulse length can be set independently for the trip output.

The function contains a blocking functionality. It is possible to block the function outputs, if desired.

5.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of breaker failure protection can be described by using a module diagram. All the blocks in the diagram are explained in the next sections. Also further information on retrip and back-up trip logics is given in sub-module diagrams.

Figure 188: Functional module diagram. I_A, I_B and I_C represent phase currents and I₀ residual current.

Level detector 1

The measured phase currents are compared phase-wise with the set *Current value*. If the measured value exceeds the set *Current value*, the level detector reports the exceeding of the value to the retrip and back-up trip logics. The parameter should be set low enough so that situations with small fault current or high load current can be detected. The setting can be chosen in accordance with the most sensitive protection function to start the breaker failure protection.

Level detector 2

The measured ground current is compared with the set *Current value Res*. If the measured value exceeds the set *Current value Res*, the level detector reports the exceeding of the value to the back-up trip logic. In high impedance grounded systems, the ground current at phase to ground faults are normally much smaller than the short circuit currents. To detect a breaker failure at single-phase ground faults in these systems, it is necessary to measure the ground current separately. In effectively grounded systems, also the setting of the ground-fault current protection can be chosen at a relatively low current level. The *CB failure trip mode* is set "1 out of 4". The current setting should be chosen in accordance with the setting of the sensitive ground-fault protection.

Retrip logic

The operation of the retrip logic can be described by using a module diagram:

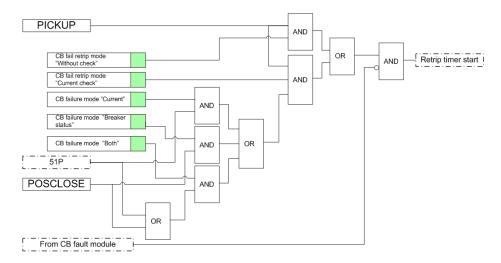


Figure 189: Retrip logic internal design

The retrip function operates with or without a current check selected with the *CB fail retrip mode* setting. In "Current check" mode, the retrip is only performed if the current through the circuit breaker exceeds the *Current value* level. In "Without check" mode, the retrip is done without checking the phase currents.

The *CB failure mode* setting is used to select the mode the breaker fault is detected with. In "Current" mode, the detection is based on the current level exceeding. In "Breaker status" mode, the detection is based on the closed position of the circuit breaker after a trip signal is issued, that is, after a long duration of the trip signal. In "Both" mode, the detection is based either on the exceeding of *Current value* level or on the long duration of the trip signal. When external information of a circuit breaker fault is connected to the active CB_FAULT input, the retrip function is not allowed to trip.. The blocking is used to disable the whole function.

Back-up trip logic

The operation of the back-up trip logic can be described by using a module diagram:

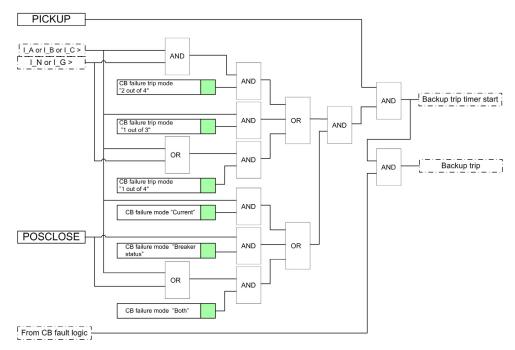


Figure 190: Back-up trip logic internal design

The current detection characteristics can be selected with the *CB failure trip mode* setting in three following options:

- "1 out of 3" in which detecting opening failure (high current) in one phase only is sufficient
- "1 out of 4" in which detecting opening failure (high current) or high ground current in one phase only is sufficient
- "2 out of 4" in which at least two high currents (phase current and/or ground current) are required for breaker failure detection.

In most applications, "1 out of 3" is sufficient. In the "Breaker status" mode, the back-up trip is done when the status inputs indicate that the circuit breaker is in closed state.

The setting *CB failure mode* is used to select the mode the breaker fault is detected with. In "Current" mode, the detection is based on the current level exceeding. In "Breaker status" mode, the detection is based on the closed position of the circuit breaker after a trip signal is issued, that is, after a long duration of the trip signal. In "Both" mode, the detection is based either on the exceeding of the *Current value Res* level, depending on the current detection mode, or on the long duration of the trip signal. When external information on a circuit breaker fault is connected to the active CB_FAULT input, the back-up trip function is issued to the upstream breaker without delay. The blocking is used for disabling the whole function.

Timer 1

Once activated, the timer runs until the set *Retrip time* value has elapsed. The time characteristic is according to DT. When the operation timer has reached the maximum time value, the TRRET output is activated. A typical setting is 0 - 50 ms.

Timer 2

Once activated, the timer runs until the set *CB failure delay* value is elapsed. The time characteristic is according to DT. When the operation timer has reached the set maximum time value *CB failure delay*, the TRBU output is activated. The value of this setting is made as low as possible at the same time as any unwanted operation is avoided. A typical setting is 90 - 150 ms which is also dependent on the retrip timer.

The minimum time delay for the retrip can be estimated as:

$$CBfailure delay \geq Retriptime + t_{cbopen} + t_{BFP_reset} + t_{margin} \tag{Equation 49}$$

$$t_{cbopen} \qquad \text{maximum opening time for the circuit breaker}$$

$$t_{BFP_reset} \qquad \text{is the maximum time for the breaker failure protection to detect the correct breaker function (the current criteria reset)}$$

$$t_{margin} \qquad \text{safety margin}$$

It is often required that the total fault clearance time is less than the given critical time. This time is often dependent on the ability to maintain transient stability in case of a fault close to a power plant.

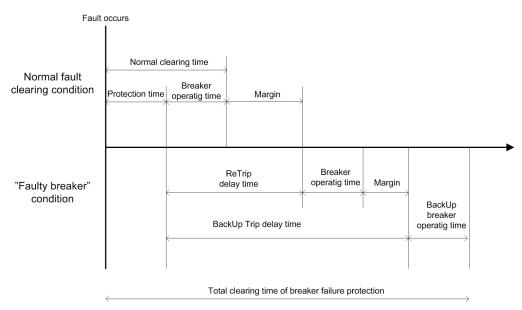


Figure 191: Time line of breaker failure protection

Timer 3

This module is activated by the CB_FAULT signal. Once activated, the timer runs until the set *CB fault delay* value is elapsed. The time characteristic is according to DT. When the operation timer has reached the maximum time value, the CB_FAULT_AL output is activated. After the set time an alarm is given so that actions can be done to repair the circuit breaker. A typical value is 5 s.

5.2.5 Application

The n-1 criterion is often used in the design of a fault clearance system. This means that the fault is cleared even if some component in the fault clearance system is faulty. A circuit breaker is a necessary component in the fault clearance system. For practical and economical reasons, it is not feasible to duplicate the circuit breaker for the protected component, but breaker failure protection is used instead.

The breaker failure function issues a back-up trip command to adjacent circuit breakers in case the original circuit breaker fails to trip for the protected component. The detection of a failure to break the current through the breaker is made by measuring the current or by detecting the remaining trip signal (unconditional).

50BF can also retrip. This means that a second trip signal is sent to the protected circuit breaker. The retrip function is used to increase the operational reliability of the breaker. The function can also be used to avoid back-up tripping of several breakers in case mistakes occur during IED maintenance and tests.

50BF is initiated by operating different protection functions or digital logics inside the IED. It is also possible to initiate the function externally through a binary input.

50BF can be blocked by using an internally assigned signal or an external signal from a binary input. This signal blocks the function of the breaker failure protection even when the timers have started or the timers are reset.

The retrip timer is initiated after the pickup input is set to true. When the pre-defined time setting is exceeded, 50BF issues the retrip and sends a trip command, for example, to the circuit breaker's second trip coil. Both a retrip with current check and an unconditional retrip are available. When a retrip with current check is chosen, the retrip is performed only if there is a current flow through the circuit breaker.

The backup trip timer is also initiated at the same time as the retrip timer. If 50BF detects a failure in tripping the fault within the set backup delay time, which is longer than the retrip time, it sends a backup trip signal to the chosen backup breakers. The circuit breakers are normally upstream breakers which feed fault current to a faulty feeder.

The backup trip always includes a current check criterion. This means that the criterion for a breaker failure is that there is a current flow through the circuit breaker after the set backup delay time.

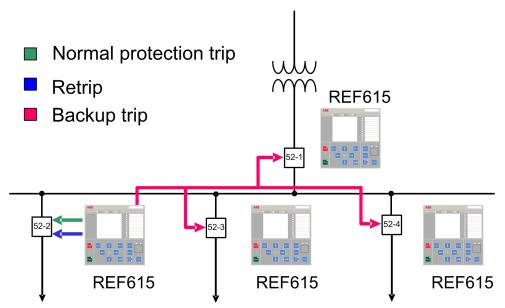


Figure 192: Typical breaker failure protection scheme in distribution substations

5.2.6 Signals

Table 340: 50BF Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
I_N	SIGNAL	0	Ground current
BLOCK	BOOLEAN	0=False	Block CBFP operation
PICKUP	BOOLEAN	0=False	CBFP pickup command
POSCLOSE	BOOLEAN	0=False	CB in closed position
CB_FAULT	BOOLEAN	0=False	CB faulty and unable to trip

Table 341: 50BF Output signals

Name	Туре	Description
CB_FAULT_AL	BOOLEAN	Delayed CB failure alarm
TRBU	BOOLEAN	Backup trip
TRRET	BOOLEAN	Retrip

5.2.7 Settings

Table 342: 50BF Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Off / On
Current value	0.051.00	xln	0.05	0.30	Operating phase current
Current value Gnd	0.051.00	xln	0.05	0.30	Operating ground current
CB failure trip mode	1=2 out of 4 2=1 out of 3 3=1 out of 4			1=2 out of 4	Backup trip current check mode
CB failure mode	1=Current 2=Breaker status 3=Both			1=Current	Operating mode of function
CB fail retrip mode	1=Disabled 2=Without Check 3=Current check			1=Disabled	Operating mode of retrip logic
Retrip time	060000	ms	10	20	Delay timer for retrip
CB failure delay	060000	ms	10	150	Delay timer for backup trip
CB fault delay	060000	ms	10	5000	Circuit breaker faulty delay
Measurement mode	2=DFT 3=Peak-to-Peak			2=DFT	Phase current measurement mode of function
Trip pulse time	060000	ms	10	20	Pulse length of retrip and backup trip outputs

5.2.8 Monitored data

Table 343: 50BF Monitored data

Name	Туре	Values (Range)	Unit	Description
50BF	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

5.2.9 Technical data

Table 344: 50BF Technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the current measured: f _n ±2Hz
	±1.5% of the set value or ±0.002 x I _n
Trip time accuracy	±1.0% of the set value or ±20 ms

5.3 Protection trip conditioning 86/94

5.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Protection trip conditioning	TRPPTRC	Master Trip	86/94

5.3.2 Function block

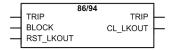


Figure 193: Function block

5.3.3 Functionality

The protection trip conditioning function 86/94 is intended to be used as a trip command collector and handler after the protection functions. The features of this function influence the trip signal behavior of the circuit breaker. The user can set the minimum trip pulse length when the non-latched mode is selected. It is also possible to select the latched or lockout mode for the trip signal.

5.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

When the 86/94 function is disabled, all trip outputs which are intended to go through the function to the circuit breaker trip coil are blocked!

The operation of a trip logic function can be described by using a module diagram. All the blocks in the diagram are explained in the next sections:

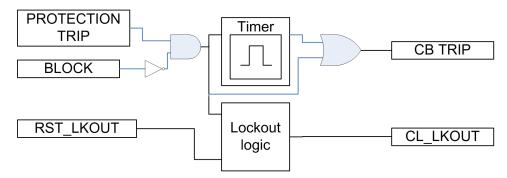


Figure 194: Functional module diagram

Timer

The user can adjust the duration of a trip output signal from the 86/94 function with the *Trip pulse time* setting. The pulse length should be long enough to secure the opening of the breaker. For three-pole tripping, 86/94 has a single input TRIP, through which all trip output signals are routed from the protection functions within the IED, or from external protection functions via one or more of the IED's binary inputs. The function has a single trip output CB TRIP for connecting the function to one or more of the IED's binary outputs, as well as to other functions within the IED requiring this signal.

The BLOCK input blocks the CB TRIP output and resets the timer.

Lockout logic

The user can select the behavior of 86/94 in trip situation with the *Trip output mode* setting. The user can select between three different modes: "Non-latched", "Latched" and "Lockout". When using the "Latched" mode, the RST_LKOUT input can be used to reset the CB_TRIP output. The output can be reset also via communication or LHMI. The CL_LKOUT output is activated only in the "Lockout" mode.

The CL LKOUT can be blocked with the BLOCK input.

Table 345: Operation modes for the 86/94 trip output

Mode	Operation
Non-latched	The <i>Trip pulse length</i> parameter gives the minimum pulse length for the CB TRIP
Latched	The CB TRIP is latched; both local and remote clearing is possible.
Lockout	The CB TRIP is locked and can be cleared only locally via menu or the RST_LKOUT input.

5.3.5 Application

All trip signals from different protection functions are routed through the trip logic. The most simplified application of the logic function is linking the trip signal and ensuring that the signal is long enough.

The tripping logic in the protection relay is intended to be used in the three-phase tripping for all fault types (3ph operating). To prevent the closing of a circuit breaker after a trip, the function can block the 52 closing.

The 86/94 function is intended to be connected to one trip coil of the corresponding circuit breaker. If tripping is needed for another trip coil or another circuit breaker which needs, for example, different trip pulse time, another trip logic function can be used. The two instances of the PTRC function are identical, only the names of the functions, 86/94-1 and 86/94-2, are different. Therefore all references made to only 86/94-1 apply to 86/94-2 as well.

The inputs from the protection functions are connected to the TRIP input. Usually, a logic block OR is required to combine the different function outputs to this input. The CB TRIP output is connected to the digital outputs on the IO board. This signal can also be used for other purposes within the IED, for example when starting the breaker failure protection.

86/94 is used for simple three-phase tripping applications.

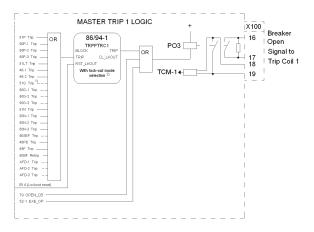


Figure 195: Typical 86/94 connection

Lock-out

86/94 is provided with possibilities to activate a lockout. When activated, the lockout can be manually reset after checking the primary fault by activating the RST_LKOUT input or from the LHMI clear menu parameter. When using the "Latched" mode, the resetting of the TRIP output can done similarly as when using the "Lockout" mode. It is also possible to reset the "Latched" mode remotely through a separate communication parameter.

The minimum pulse trip pulse function is not active when using the "Lockout" or "Latched" modes but only when the "Non-latched" mode is selected.

5.3.6 Signals

Table 346: 86/94 Input signals

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Block of function
TRIP	BOOLEAN	0=False	Trip
RST_LKOUT	BOOLEAN	0=False	Input for resetting the circuit breaker lockout function

Table 347: 86/94 Output signals

Name	Туре	Description	
TRIP	BOOLEAN	General trip output signal	
CL_LKOUT	BOOLEAN	Circuit breaker lockout output (set until reset)	

5.3.7 Settings

Table 348: 86/94 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Disable / Enable
Trip pulse time	2060000	ms	1	150	Minimum duration of trip output signal
Trip output mode	1=Non-latched 2=Latched 3=Lockout			1=Non-latched	Select the operation mode for trip output

5.3.8 Monitored data

Table 349: 86/94 Monitored data

Name	Туре	Values (Range)	Unit	Description
86/94	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

5.4 High impedance fault detector HIZ

5.4.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
High impedance fault detector	PHIZ	HIF	HIZ

5.4.2 Function block symbol

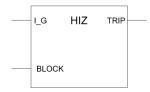


Figure 196: Function block symbol

5.4.3 Functionality

A small percentage of ground faults have a very large impedance. They are comparable to load impedance and consequently have very little fault current. These high impedance faults do not pose imminent danger to power system equipment. However, they are a substantial threat to humans and properties; people can touch or get close to conductors carrying large amounts of energy.

ABB has developed a patented technology (US Patent 7,069,116 B2 June 27, 2006, US Patent 7,085,659 B2 August 1, 2006) to detect high impedance fault.

The high impedance fault-detector function HIZ also contains a blocking functionality. It is possible to block function outputs, if desired.

5.4.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

HIZ uses a multi-algorithm approach. Each algorithm uses various features of ground currents to detect a high impedance fault.

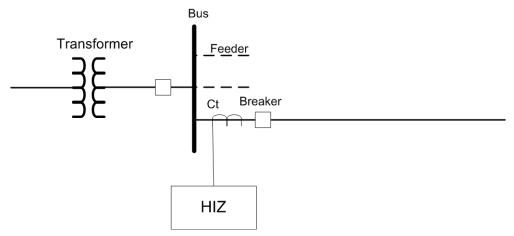


Figure 197: Electrical power system equipped with HIZ

Power system signals are acquired, filtered, and then processed by individual high impedance fault detection algorithm. The results of these individual algorithms are further processed by decision logic to provide the detection decision. The decision logic can be modified depending on the application requirement.

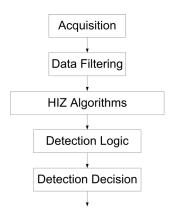


Figure 198: Block diagram of HIZ

HIZ is based on algorithms that use ground current signatures which are considered non stationary, temporally volatile, and of various burst duration. All harmonic and non-harmonic components within the available data window can play a vital role in the high impedance fault detection. A major challenge is to develop a data model that acknowledges that high impedance faults could take place at any time within the observation window of the signal and could be delayed randomly and attenuated substantially. The model is motivated by extensive research, actual experimental observations in the laboratory, field testing, and what traditionally represents an accurate depiction of a non stationary signal with a time dependent spectrum.

Figure 199: Validation of HIZ on gravel

Figure 201: Validation of HIZ on sand

Figure 200: Validation of HIZ on concrete

Figure 202: Validation of HIZ on grass

5.4.5 Application

Electric power lines experience faults for many reasons. In most cases, electrical faults manifest in mechanical damage, which must be repaired before returning the line to service.

Most of these faults are ground faults. Conventional protection systems based on overcurrent, impedance, or other principles are suitable for detecting relatively low impedance faults, which have a relatively large fault current.

However, a small percentage of the ground faults have a very large impedance. They are comparable to load impedance and consequently have very little fault current. These high impedance faults do not pose imminent danger to power system equipment. However, they are a considerable threat to people and property. The IEEE Power System Relay Committee working group on High Impedance Fault Detection Technology defines High Impedance Faults as those that 'do not produce enough fault current to be detectable by conventional overcurrent relays or fuses'.

High impedance fault (HIZ) detection requires a different approach than that for conventional low impedance faults. Reliable detection of HIZ provides safety to humans and animals. HIZ detection can also prevent fire and minimize property damage. ABB has developed innovative technology for high impedance fault detection with over seven years of research resulting in many successful field tests.

5.4.6 Signals

Table 350: HIZ Input signals

Name	Туре	Default	Description		
IG	SIGNAL	0	Ground current measured using SEF CT		
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode		

Table 351: HIZ Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip

5.4.7 Settings

Table 352: HIZ Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Security level	110		1	5	Security Level

Table 353: HIZ Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
System type	1=Grounded 2=Ungrounded			1=Grounded	System Type

5.4.8 Monitored data

Table 354: HIZ Monitored data

Name	Туре	Values (Range)	Unit	Description
Position	Enum	0=intermediate 1=open 2=closed 3=faulty		Position
HIZ	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

5.5 Arc protection, AFD

5.5.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Arc protection	ARCSARC	ARC	AFD

5.5.2 Function block

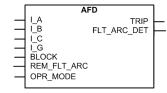


Figure 203: Function block

5.5.3 Functionality

The arc flash detector AFD detects arc situations in air insulated metal-clad switchgears caused by, for example, human errors during maintenance or insulation breakdown during operation.

The function detects light from an arc either locally or via a remote light signal. The function also monitors phase and ground currents to be able to make accurate decisions on ongoing arcing situations.

The function contains a blocking functionality. Blocking deactivates all outputs and resets timers.

5.5.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the arc flash detector can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

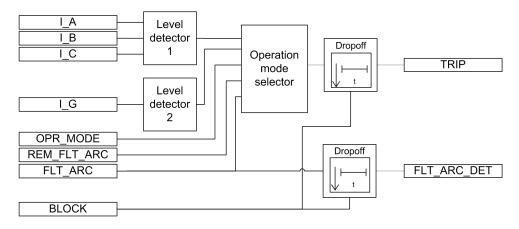


Figure 204: Functional module diagram. I_A, I_B and I_C represent phase currents.

Level detector 1

The measured phase currents are compared phase-wise with the set *Phase pickup value*. If the measured value exceeds the set *Phase pickup value*, the level detector reports the exceeding of the value to the operation mode selector.

Level detector 2

The measured ground currents are compared with the set *Ground pickup value*. If the measured value exceeds the set *Ground pickup value*, the level detector reports the exceeding of the value to the operation mode selector.

Operation mode selector

Depending on the *Operation mode* setting, the operation mode selector makes sure that all required criteria are fulfilled for a reliable decision of an arc fault situation. The user can select either "Light+current", "Light only" or "BI controlled" operation mode. The operation is based on both current and light information in "Light+current" mode, on light information only in "Light only" mode or on remotely controlled information in "BI controlled" mode. When the "BI controlled" mode is in use and the OPR_MODE input is activated, the operation of the function is based on light information only. When the OPR_MODE input is deactivated, the operation of the function is based on both light and current information. When the required criteria are met, the drop-off timer is activated.

Drop-off timer

Once activated, the drop-off timer remains active until the input is deactivated or at least during the drop-off time. The BLOCK signal can be used to block the TRIP signal or the light signal output FLT ARC DET.

5.5.5 Application

The arc flash detector can be realized as a stand-alone function in a single relay or as a station-wide arc flash detector, including several protection relays. If realized as a station-wide arc flash detector, different tripping schemes can be selected for the operation of the circuit breakers of the incoming and outgoing feeders. Consequently, the relays in the station can, for example, be set to trip the circuit breaker of either the incoming or the outgoing feeder, depending on the fault location in the switchgear. For maximum safety, the relays can be set to always trip both the circuit breaker of the incoming feeder and that of the outgoing feeder.

The arc flash detector consists of:

- Optional arc light detection hardware with automatic backlight compensation for lens type sensors
- Light signal output FLT_ARC_DET for routing indication of locally detected light signal to another relay
- Protection stage with phase- and ground-fault current measurement.

The function detects light from an arc either locally or via a remote light signal. Locally, the light is detected by lens sensors connected to the inputs Light sensor 1, Light sensor 2, or Light sensor 3 on the communication module of the relay. The lens sensors can be placed, for example, in the busbar compartment, the breaker compartment, and the cable compartment of the metal-clad cubicle.

The light detected by the lens sensors is compared to an automatically adjusted reference level. Light sensor 1, Light sensor 2, and Light sensor 3 inputs have their own reference

levels. When the light exceeds the reference level of one of the inputs, the light is detected locally. When the light has been detected locally or remotely and, depending on the operation mode, if one or several phase currents exceed the set *Phase pickup value* limit, or the ground-fault current the set *Ground pickup value* limit, the arc flash detector stage generates a trip signal. The stage is reset in 30 ms, after all three-phase currents and the ground-fault current have fallen below the set current limits.

The light signal output from an arc flash detector stage FLT_ARC_DET is activated immediately in the detection of light in all situations. A station-wide arc flash detector is realized by routing the light signal output to an output contact connected to a binary input of another relay, or by routing the light signal output through the communication to an input of another relay.

It is possible to block the tripping and the light signal output of the arc flash detector stage with a binary input or a signal from another function block.

Cover unused inputs with dust caps.

Arc flash detector with one IED

In installations, with limited possibilities to realize signalling between IEDs protecting incoming and outgoing feeders, or if only the IED for the incoming feeder is to be exchanged, an arc flash detector with a lower protective level can be achieved with one protection relay. An arc flash detector with one IED only is realized by installing two arc lens sensors connected to the IED protecting the incoming feeder to detect an arc on the busbar. In arc detection, the arc flash detector stage trips the circuit breaker of the incoming feeder. The maximum recommended installation distance between the two lens sensors in the busbar area is six meters and the maximum distance from a lens sensor to the end of the busbar is three meters.

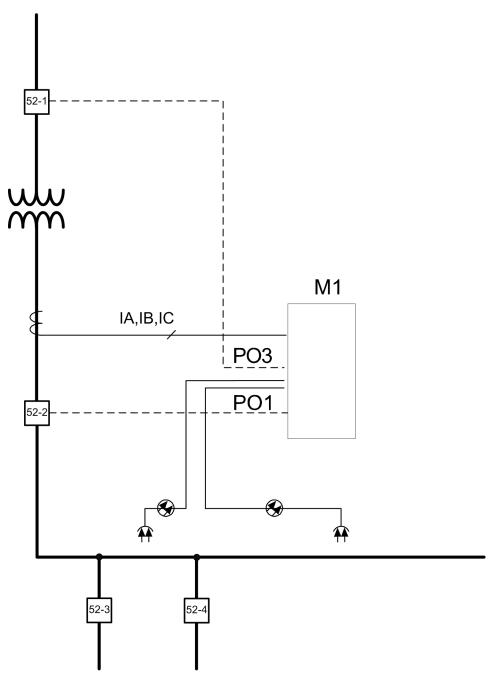


Figure 205: Arc flash detector with one IED

Arc flash detector with several IEDs

When using several IEDs, the IED protecting the outgoing feeder trips the circuit breaker of the outgoing feeder when detecting an arc at the cable terminations. If the IED protecting the outgoing feeder detects an arc on the busbar or in the breaker compartment via one of the other lens sensors, it will generate a signal to the IED protecting the incoming feeder. When detecting the signal, the IED protecting the incoming feeder trips the circuit breaker of the incoming feeder and generates an external trip signal to all IEDs

protecting the outgoing feeders, which in turn results in tripping of all circuit breakers of the outgoing feeders. For maximum safety, the IEDs can be configured to trip all the circuit breakers regardless of where the arc is detected.

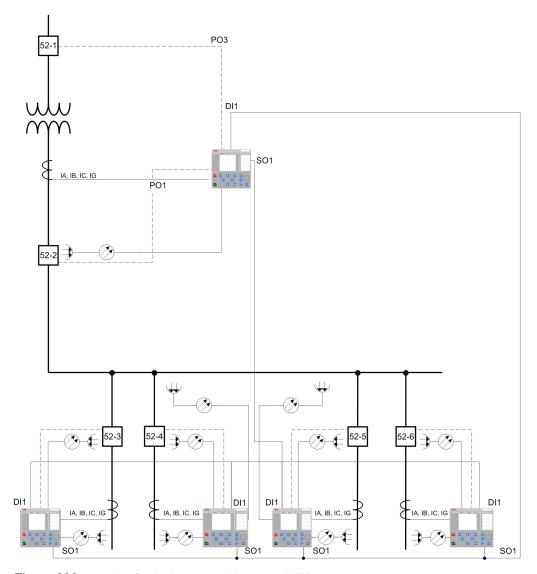


Figure 206: Arc flash detector with several IEDs

Arc flash detector with several IEDs and a separate arc flash detector system

When realizing an arc flash detector with both IEDs and a separate arc flash detector system, the cable terminations of the outgoing feeders are protected by IEDs using one lens sensor for each IED. The busbar and the incoming feeder are protected by the sensor loop of the separate arc flash detector system. With arc detection at the cable terminations, an IED trips the circuit breaker of the outgoing feeder. However, when detecting an arc on the busbar, the separate arc flash detector system trips the circuit breaker of the incoming

feeder and generates an external trip signal to all IEDs protecting the outgoing feeders, which in turn results in tripping of all circuit breakers of the outgoing feeders.

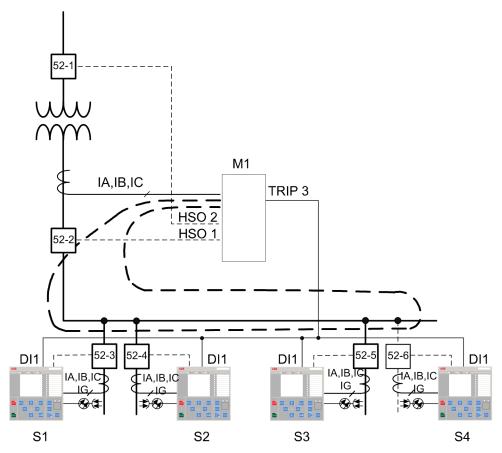


Figure 207: Arc flash detector with several IEDs and a separate arc flash detector system

5.5.6 Signals

Table 355: AFD Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
I_G	SIGNAL	0	Ground current
BLOCK	BOOLEAN	0=False	Block signal for all binary outputs
REM_FLT_ARC	BOOLEAN	0=False	Remote Fault arc detected
OPR_MODE	BOOLEAN	0=False	Operation mode input

Table 356: AFD Output signals

Name Type		Description		
TRIP	BOOLEAN	Trip		
ARC_FLT_DET	BOOLEAN	Fault arc detected=light signal output		

5.5.7 Settings

Table 357: AFD Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Phase pickup value	0.5040.00	xln	0.01	2.50	Operating phase current
Ground pickup value	0.058.00	xln	0.01	0.20	Operating ground current
Operation mode	1=Light+current 2=Light only 3=BI controlled			1=Light+current	Operation mode

Table 358: AFD Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable

5.5.8 Monitored data

Table 359: AFD Monitored data

Name	Туре	Values (Range)	Unit	Description
AFD	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

5.5.9 Technical data

Table 360: AFD Technical data

Characteristic		Value			
Pickup accuracy	±3% of the set value or ±0.01 x I _n				
Trip time		Minimum	Typical	Maximum	
	Operation mode = "Light +current" 1,2		12 ms	15 ms	
Operation mode = "Light only" ³		9 ms	10 ms	12 ms	
Reset time		< 40 ms			
Reset ratio		Typical 0.96			

^{1.} Phase pickup value = $1.0 \times I_n$, current before fault = $2.0 \times set$. Phase pickup value, f_n = 60 Hz, fault with nominal frequency, results based on statistical distribution of 200 measurements.

^{2.} Includes the delay of the heavy-duty output contact.

^{3.} Includes the delay of the heavy-duty output contact.

5.6 Multi-purpose protection, MAP

5.6.1 Identification

Table 361: Function identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Multipurpose protection	MAPGAPC	MAPGAPC	MAP

5.6.2 Function Block

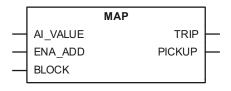


Figure 208: Function block

5.6.3 Functionality

The multipurpose protection function MAP is used as a general protection with many possible application areas as it has flexible measuring and setting facilities. The function can be used as an under- or overprotection with a settable absolute hysteresis limit. The function operates with the definite time (DT) characteristics.

The function contains a blocking functionality. It is possible to block function outputs, the definite timer or the function itself, if desired

5.6.4 Operation principle

The function can be enabled and disabled with the Operation setting. The corresponding parameter values are Enable and Disable.

The operation of the multipurpose protection function can be described using a module diagram. All the modules in the diagram are explained in the next sections.

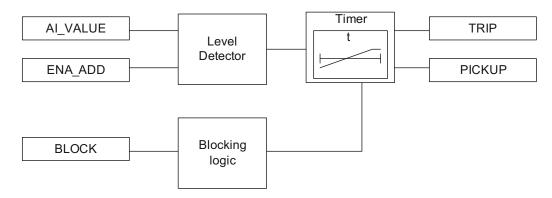


Figure 209: Functional module diagram

5.6.4.1 Level detector

The level detector compares AI_VALUE to the *Pickup Value* setting. The *Operation mode* setting defines the direction of the level detector..

Table 362: Operation mode types

Operation mode	Description
"Under"	If the input signal Al_VALUE is lower than the set value of the <i>Pickup Value</i> setting, the level detector enables the timer module
"Over"	If the input signal AI_VALUE exceeds the set value of the <i>Pickup Value</i> setting, the level detector enables the timer module.

The Absolute hysteresis setting can be used for preventing unnecessary oscillations if the input signal is slightly above or below the *Pickup Value* setting. After leaving the hysteresis area, the start condition has to be fulfilled again and it is not sufficient for the signal to only return to the hysteresis area. If the ENA_ADD input is activated, the threshold value of the internal comparator is the sum of the *Pickup Value Add* and *Pickup Value* settings. The resulting threshold value for the comparator can be increased or decreased depending on the sign and value of the *Pickup Value Add* setting.

5.6.4.2 Timer

Once activated, the timer activates the PICKUP output. The time characteristic is according to DT. When the operation timer has reached the value set by *Trip delay time*, the TRIP output is activated. If the pickup condition disappears before the module trips, the reset timer is activated. If the reset timer reaches the value set by Reset delay time, the operation timer resets and the PICKUP output is deactivated.

The timer calculates the pickup duration value PICKUP_DUR, which indicates the ratio of the pickup situation and the set trip time. The value is available in the monitored data view.

5.6.4.3 Blocking logic

There are three operation modes in the blocking functionality. The operation modes are controlled by the BLOCK input and the global setting "Configuration/System/Blocking mode" which selects the blocking mode. The BLOCK input can be controlled by a binary input, a horizontal communication input or an internal signal of the IED program. The

influence of the BLOCK signal activation is preselected with the global setting Blocking mode.

The Blocking mode setting has three blocking methods. In the "Freeze timers" mode, the trip timer is frozen to the prevailing value. In the "Block all" mode, the whole function is blocked and the timers are reset. In the "Block TRIP output" mode, the function operates normally but the TRIP output is not activated.

5.6.5 Application

The function block can be used for any general analog signal protection, either underprotection or overprotection. The setting range is wide, allowing various protection schemes for the function. Thus, the absolute hysteresis can be set to a value that suits the application.

The temperature protection using the RTD sensors can be done using the function block. The measured temperature can be fed from the RTD sensor to the function input that detects too high temperatures in the motor bearings or windings, for example. When the ENA_ADD input is enabled, the threshold value of the internal comparator is the sum of the *Pickup Value Add* and *Pickup Value* settings. This allows a temporal increase or decrease of the level detector depending on the sign and value of the *Pickup Value Add* setting, for example, when the emergency start is activated. If, for example, *Pickup Value* is 100, *Pickup Value Add* is 20 and the ENA_ADD input is active, the input signal needs to rise above 120 before MAP trips.

5.6.6 Signals

Table 363: MAP Input Signals

Name	Туре	Default	Description	
AI_VALUE	FLOAT32	0	Analogue input value	
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode	
ENA_ADD	BOOLEAN	0=False	Enable start added	

Table 364: MAP Output Signals:

Name	Туре	Description
TRIP	BOOLEAN	Trip Signal
PICKUP	BOOLEAN	Pickup Indicator

5.6.7 Settings

Table 365: MAP Group Settings

Parameter	Values (Range)		Step	Default	Description
Pickup value	-10000.010000.0		0.1	0	Pickup value
Pickup value Add	-100.0100.0		0.1	0	Pickup value Add
Trip delay time	0200000	ms	100	0	Trip delay time

Table 366: MAP Non Group Settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=enable			1=enable	Operation Enable/Disable
	5=disable				
Operation mode	1=Over			1=Over	Operation mode
	2=Under				
Reset delay time	060000	ms	100	0	Reset delay time
Absolute hysteresis	0.01100.00		0	0.1	Absolute hysteresis for operation

5.6.8 Monitored Data

Table 367: MAP Monitored Data

Name	Туре	Values (Range)	Unit	Description
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time / trip time
MAP	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

Technical data

Table 368: MAP Technical data

Characteristic	Value
Pickup accuracy	
, ,	±1.0% of the set value or ±20 ms

5.6.9 Function data

5.6.9.1 Inputs

IEC name	ANSI Name	Туре	Default	Description	
AI_VALUE		FLOAT32	0	Analogue input value	
ENA_ADD		BOOL	0	Enable start using added start value	
BLOCK		BOOL	0	Block signal for activating the blocking modeactivting	

5.6.9.2 Outputs

IEC name	ANSI Name	Туре	Description
OPERATE		BOOL	Operate
START		BOOL	Start

5.6.10 Settings

5.6.10.1 Group setting (Basic)

Table 369: Group settings

IEC name	ANSI Name	Value (Range)	Unit	Default	Description
Start value		-10000.0 10000.0	FLOAT32	0.0	Start value
Start value Add		-100.0 100.0	FLOAT32	0.0	Added value to start value
Operate delay time		0200000	FLOAT32	0	Operate delay time

5.6.10.2 Non-group settings (Basic)

Table 370: Non-group settings

IEC name	ANSI Name	Value (Range)	Unit	Default	Description
Operation		15	Enum	1	Operation Off / On
Operation mode		12	Enum	1	Operation mode
Reset delay time		060000	FLOAT32	0	Reset delay mode
Absolute hysteresis		0.10100.00		0.10	Absolute hysteresis

Table 371: Enumeration values for non-group settings

Setting name	Enum name	Value
Operation mode	Over	1
	Under	2

5.6.11 Monitored Data

IEC name	ANSI name	Туре	Description
START_DUR		FLOAT32	Ratio of start / operate time

Section 6 Supervision functions

6.1 Circuit-breaker condition monitoring 52CM

6.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Circuit breaker condition monitoring	SSCBR	CBCM	52CM

6.1.2 Function block

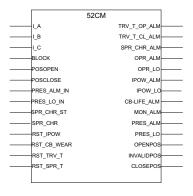


Figure 210: Function block

6.1.3 Functionality

The circuit breaker condition monitoring function 52CM is used to monitor different parameters of the circuit breaker. The breaker requires maintenance when the number of operations has reached a predefined value. For proper functioning of the circuit breaker, it is essential to monitor the circuit breaker operation, spring charge indication, breaker wear, travel time, number of operation cycles and accumulated energy. The energy is calculated from the measured input currents as a sum of I^yt values. Alarms are generated when the calculated values exceed the threshold settings.

The function contains a blocking functionality. It is possible to block the function outputs, if desired.

6.1.4 Operation principle

The circuit breaker condition monitoring function includes different metering and monitoring subfunctions. The functions can be enabled and disabled with the *Operation*

setting. The corresponding parameter values are Enable and Disable. The operation counters are cleared when *Operation* is set to Disable.

The operation of the functions can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

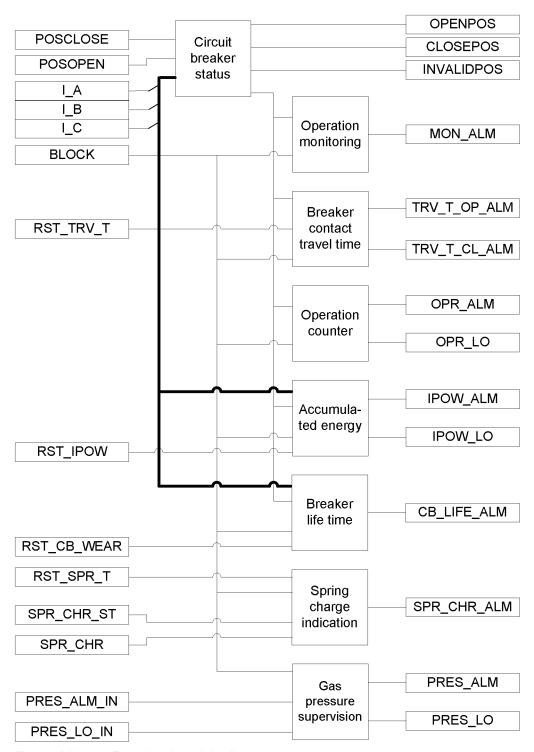


Figure 211: Functional module diagram

6.1.4.1 Circuit breaker status

The circuit breaker status subfunction monitors the position of the circuit breaker, that is, whether the breaker is in an open, closed or intermediate position. The operation of the

breaker status monitoring can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

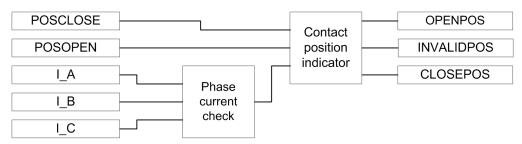


Figure 212: Functional module diagram for monitoring circuit breaker status

Phase current check

This module compares the three phase currents with the setting. If the current in a phase exceeds the set level, information about phase is reported to the contact position indicator module.

Contact position indicator

The circuit breaker status is open if the auxiliary input contact POSCLOSE is low, the POSOPEN input is high and the current is zero. The circuit breaker is closed when the POSOPEN input is low and the POSCLOSE input is high. The breaker is in the intermediate position if both the auxiliary contacts have the same value, that is, both are in the logical level "0", or if the auxiliary input contact POSCLOSE is low and the POSOPEN input is high, but the current is not zero.

The status of the breaker is indicated with the binary outputs OPENPOS, INTERMPOS, and CLOSEPOS for open, intermediate, and closed position respectively.

6.1.4.2 Circuit breaker operation monitoring

The purpose of the circuit breaker operation monitoring subfunction is to indicate if the circuit breaker has not been operated for a long time.

The operation of the circuit breaker operation monitoring can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

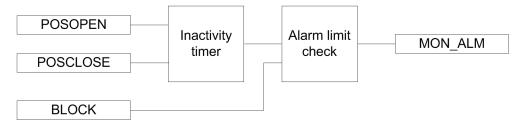


Figure 213: Functional module diagram for calculating inactive days and alarm for circuit breaker operation monitoring

Inactivity timer

The module calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state. The calculation is done by monitoring the states of the POSOPEN and POSCLOSE auxiliary contacts.

The inactive days is available through the Monitored data view. It is also possible to set the initial inactive days by using the parameter.

Alarm limit check

When the inactive days exceed the limit value defined with the setting, the alarm is initiated. The time in hours at which this alarm is activated can be set with the parameter as coordinates of UTC. The alarm signal can be blocked by activating the binary input BLOCK.

6.1.4.3 Breaker contact travel time

The breaker contact travel time module calculates the breaker contact travel time for the closing and opening operation. The operation of the breaker contact travel time measurement can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

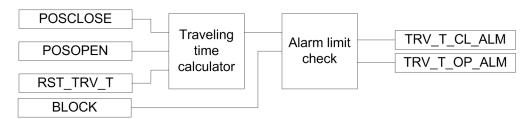


Figure 214: Functional module diagram for breaker contact travel time

Traveling time calculator

The contact travel time of the breaker is calculated from the time between auxiliary contacts' state change. The open travel time is measured between the opening of the POSCLOSE auxiliary contact and the closing of the POSOPEN auxiliary contact. Travel time is also measured between the opening of the POSOPEN auxiliary contact and the closing of the POSCLOSE auxiliary contact.

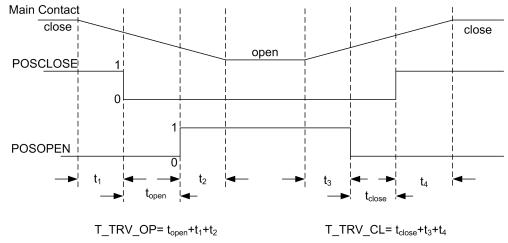


Figure 215: Travel time calculation

There is a time difference t_1 between the start of the main contact opening and the opening of the POSCLOSE auxiliary contact. Similarly, there is a time gap t_2 between the time when the POSOPEN auxiliary contact opens and the main contact is completely open. Therefore, in order to incorporate the time t_1+t_2 , a correction factor needs to be added with t_{open} to get the actual opening time. This factor is added with the *Opening time Cor* (= t_1+t_2). The closing time is calculated by adding the value set with the *Closing time Cor* (t_3+t_4) setting to the measured closing time.

The last measured opening travel time T_TRV_OP and the closing travel time T_TRV_CL are available through the Monitored data view on the LHMI or through tools via communications.

Alarm limit check

When the measured open travel time is longer than the value set with the *Open alarm time* setting, the $TRV_T_OP_ALM$ output is activated. Respectively, when the measured close travel time is longer than the value set with the *Close alarm time* setting, the , the $TRV_T_OL_ALM$ output is activated.

It is also possible to block the $TRV_T_CL_ALM$ and $TRV_T_OP_ALM$ alarm signals by activating the BLOCK input.

6.1.4.4 Operation counter

The operation counter subfunction calculates the number of breaker operation cycles. Both open and close operations are included in one operation cycle. The operation counter value is updated after each open operation.

The operation of the subfunction can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

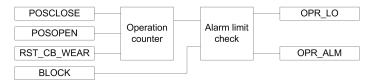


Figure 216: Functional module diagram for counting circuit breaker operations

Operation counter

The operation counter counts the number of operations based on the state change of the binary auxiliary contacts inputs POSCLOSE and POSOPEN.

The number of operations NO_OPR is available through the Monitored data view on the LHMI or through tools via communications. The old circuit breaker operation counter value can be taken into use by writing the value to the parameter and in the clear menu from WHMI or LHMI.

Alarm limit check

The operation alarm is generated when the number of operations exceeds the value set with the threshold setting. However, if the number of operations increases further and exceeds the limit value set with the setting, the output is activated.

The binary outputs and are deactivated when the BLOCK input is activated.

6.1.4.5 Accumulation of I^yt

Accumulation of the I^yt module calculates the accumulated energy.

The operation of the module can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

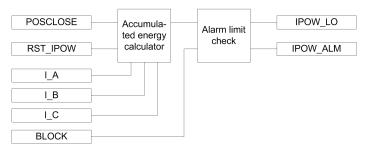


Figure 217: Functional module diagram for calculating accumulative energy and alarm

Accumulated energy calculator

This module calculates the accumulated energy I^yt. The factor y is set with the *Current exponent* setting.

The calculation is initiated with the POSCLOSE input open events. It ends when the RMS current becomes lower than the *Acc stop current* setting value.

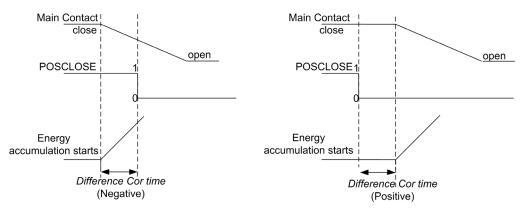


Figure 218: Significance of the Difference Cor time setting

The *Difference Cor time* setting is used instead of the auxiliary contact to accumulate the energy from the time the main contact opens. If the setting is positive, the calculation of energy starts after the auxiliary contact has opened and when the delay is equal to the value set with the *Difference Cor time* setting. When the setting is negative, the calculation starts in advance by the correction time before the auxiliary contact opens.

The accumulated energy outputs IPOW_A (_B, _C) are available through the Monitored data view on the LHMI or through tools via communications. The values can be reset by setting the parameter *52CMx.acc.Energy* setting to true in the clear menu from WHMI or LHMI.

Alarm limit check

The IPOW_ALM alarm is activated when the accumulated energy exceeds the value set with the *Alm Acc currents Pwr* threshold setting. However, when the energy exceeds the limit value set with the *LO Acc currents Pwr* threshold setting, the IPOW_LO output is activated.

The IPOW_ALM and IPOW_LO outputs can be blocked by activating the binary input BLOCK.

6.1.4.6 Remaining life of the circuit breaker

Every time the breaker operates, the life of the circuit breaker reduces due to wearing. The wearing in the breaker depends on the tripping current, and the remaining life of the breaker is estimated from the circuit breaker trip curve provided by the manufacturer. The remaining life is decremented at least with one when the circuit breaker is opened.

The operation of the remaining life of the circuit breaker subfunction can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

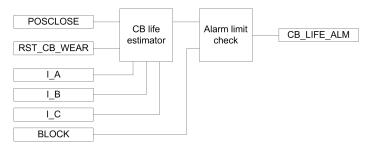


Figure 219: Functional module diagram for estimating the life of the circuit breaker

Circuit breaker life estimator

The circuit breaker life estimator module calculates the remaining life of the circuit breaker. If the tripping current is less than the rated operating current set with the *Rated Op current* setting, the remaining operation of the breaker reduces by one operation. If the tripping current is more than the rated fault current set with the *Rated fault current* setting, the possible operations are zero. The remaining life of the tripping current in between these two values is calculated based on the trip curve given by the manufacturer. The *Op number rated* and *Op number fault* parameters set the number of operations the breaker can perform at the rated current and at the rated fault current, respectively.

The remaining life is calculated separately for all three phases and it is available as a monitored data value CB_LIFE_A (_B,_C). The values can be cleared by setting the parameter *CB wear values* in the clear menu from WHMI or LHMI.

Clearing *CB* wear values also resets the operation counter.

Alarm limit check

When the remaining life of any phase drops below the *Life alarm level* threshold setting, the corresponding circuit breaker life alarm CB_LIFE_ALM is activated.

It is possible to deactivate the CB_LIFE_ALM alarm signal by activating the binary input BLOCK. The old circuit breaker operation counter value can be taken into use by writing the value to the *Initial CB Rmn life* parameter and resetting the value via the clear menu 52 CMx.rem.life from WHMI or LHMI under the Clear CB wear values menu.

6.1.4.7 Circuit breaker spring charged indication

The circuit breaker spring charged indication subfunction calculates the spring charging time.

The operation of the subfunction can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

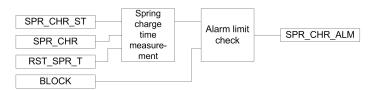


Figure 220: Functional module diagram for circuit breaker spring charged indication and alarm

Spring charge time measurement

Two binary inputs, SPR_CHR_ST and SPR_CHR, indicate spring charging started and spring charged, respectively. The spring charging time is calculated from the difference of these two signal timings.

The spring charging time T_SPR_CHR is available through the Monitored data view on the LHMI or through tools via communications.

Alarm limit check

If the time taken by the spring to charge is more than the value set with the *Spring charge time* setting, the subfunction generates the SPR CHR ALM alarm.

It is possible to block the SPR_CHR_ALM alarm signal by activating the BLOCK binary input.

6.1.4.8 Gas pressure supervision

The gas pressure supervision subfunction monitors the gas pressure inside the arc chamber.

The operation of the subfunction can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

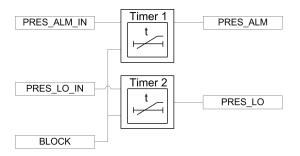


Figure 221: Functional module diagram for circuit breaker gas pressure alarm

The gas pressure is monitored through the binary input signals $PRES_LO_IN$ and $PRES_ALM_IN$.

Timer 1

When the PRES_ALM_IN binary input is activated, the PRES_ALM alarm is activated after a time delay set with the *Pressure alarm time* setting. The PRES_ALM alarm can be blocked by activating the BLOCK input.

Timer 2

If the pressure drops further to a very low level, the PRES_LO_IN binary input becomes high, activating the lockout alarm PRES_LO after a time delay set with the *Pres lockout time* setting. The PRES_LO alarm can be blocked by activating the BLOCK input.

6.1.5 Application

52CM includes different metering and monitoring subfunctions.

Circuit breaker status

Circuit breaker status monitors the position of the circuit breaker, that is, whether the breaker is in an open, closed or intermediate position.

Circuit breaker operation monitoring

The purpose of the circuit breaker operation monitoring is to indicate that the circuit breaker has not been operated for a long time. The function calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state. There is also the possibility to set an initial inactive day.

Breaker contact travel time

High travelling times indicate the need for maintenance of the circuit breaker mechanism. Therefore, detecting excessive travelling time is needed. During the opening cycle operation, the main contact starts opening. The auxiliary contact A opens, the auxiliary contact B closes, and the main contact reaches its opening position. During the closing cycle, the first main contact starts closing. The auxiliary contact B opens, the auxiliary contact A closes, and the main contact reaches its close position. The travel times are calculated based on the state changes of the auxiliary contacts and the adding correction factor to consider the time difference of the main contact's and the auxiliary contact's position change.

Operation counter

Routine maintenance of the breaker, such as lubricating breaker mechanism, is generally based on a number of operations. A suitable threshold setting, to raise an alarm when the number of operation cycle exceeds the set limit, helps preventive maintenance. This can also be used to indicate the requirement for oil sampling for dielectric testing in case of an oil circuit breaker.

The change of state can be detected from the binary input of the auxiliary contact. There is a possibility to set an initial value for the counter which can be used to initialize this functionality after a period of operation or in case of refurbished primary equipment.

Accumulation of Iyt

Accumulation of I^y t calculates the accumulated energy ΣI^y t where the factor y is known as the current exponent. The factor y depends on the type of the circuit breaker. For oil

circuit breakers the factor y is normally 2. In case of a high-voltage system, the factor y can be 1.4...1.5.

Remaining life of the breaker

Every time the breaker operates, the life of the circuit breaker reduces due to wearing. The wearing in the breaker depends on the tripping current, and the remaining life of the breaker is estimated from the circuit breaker trip curve provided by the manufacturer.

Example for estimating the remaining life of a circuit breaker

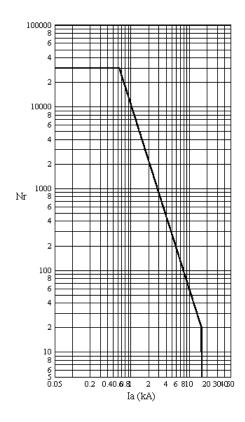


Figure 222: Trip Curves for a typical 12 kV, 630 A, 16 kA vacuum interrupter

- Nr the number of closing-opening operations allowed for the circuit breaker
- la the current at the time of tripping of the circuit breaker

Calculation of Directional Coef

The directional coefficient is calculated according to the formula:

Directional Coef =
$$\frac{\log\left(\frac{B}{A}\right)}{\log\left(\frac{I_f}{I_r}\right)} = -2.2609$$

(Equation 50)

- I_r Rated operating current = 630 A
- I_f Rated fault current = 16 kA
- A Op number rated = 30000
- B Op number fault = 20

Calculation for estimating the remaining life

The equation shows that there are 30,000 possible operations at the rated operating current of 630 A and 20 operations at the rated fault current 16 kA. Therefore, if the tripping current is 10 kA, one operation at 10 kA is equivalent to 30,000/500=60 operations at the rated current. It is also assumed that prior to this tripping, the remaining life of the circuit breaker is 15,000 operations. Therefore, after one operation of 10 kA, the remaining life of the circuit breaker is 15,000-60=14,940 at the rated operating current.

Spring charged indication

For normal operation of the circuit breaker, the circuit breaker spring should be charged within a specified time. Therefore, detecting long spring charging time indicates that it is time for the circuit breaker maintenance. The last value of the spring charging time can be used as a service value.

Gas pressure supervision

The gas pressure supervision monitors the gas pressure inside the arc chamber. When the pressure becomes too low compared to the required value, the circuit breaker operations are locked. A binary input is available based on the pressure levels in the function, and alarms are generated based on these inputs.

6.1.6 Signals

Table 372: 52CM Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block input status
POSOPEN	BOOLEAN	0=False	Signal for open position of apparatus from I/O
POSCLOSE	BOOLEAN	0=False	Signal for closeposition of apparatus from I/O
PRES_ALM_IN	BOOLEAN	0=False	Binary pressure alarm input
PRES_LO_IN	BOOLEAN	0=False	Binary pressure input for lockout indication
SPR_CHR_ST	BOOLEAN	0=False	CB spring charging started input
SPR_CHR	BOOLEAN	0=False	CB spring charged input
RST_IPOW	BOOLEAN	0=False	Reset accumulation energy
RST_CB_WEAR	BOOLEAN	0=False	Reset input for CB remaining life and operation counter
RST_TRV_T	BOOLEAN	0=False	Reset input for CB closing and opening travel times
RST_SPR_T	BOOLEAN	0=False	Reset input for the charging time of the CB spring

Table 373: 52CM Output signals

Name	Туре	Description
TRV_T_OP_ALM	BOOLEAN	CB open travel time exceeded set value
TRV_T_CL_ALM	BOOLEAN	CB close travel time exceeded set value
SPR_CHR_ALM	BOOLEAN	Spring charging time has crossed the set value
OPR_ALM	BOOLEAN	Number of CB operations exceeds alarm limit
OPR_LO	BOOLEAN	Number of CB operations exceeds lockout limit
IPOW_ALM	BOOLEAN	Accumulated currents power (lyt),exceeded alarm limit
IPOW_LO	BOOLEAN	Accumulated currents power (lyt),exceeded lockout limit
CB_LIFE_ALM	BOOLEAN	Remaining life of CB exceeded alarm limit
MON_ALM	BOOLEAN	CB 'not operated for long time' alarm
PRES_ALM	BOOLEAN	Pressure below alarm level
PRES_LO	BOOLEAN	Pressure below lockout level
OPENPOS	BOOLEAN	CB is in open position
INVALIDPOS	BOOLEAN	CB is in invalid position (not positively open or closed)
CLOSEPOS	BOOLEAN	CB is in closed position

6.1.7 Settings

Table 374: 52CM Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Disable / Enable
Acc stop current	5.00500.00	Α	0.01	10.00	RMS current setting below which engy acm stops
Open alarm time	0200	ms	1	40	Alarm level setting for open travel time in ms
Close alarm time	0200	ms	1	40	Alarm level Setting for close travel time in ms
Opening time Cor	0100	ms	1	10	Correction factor for open travel time in ms
Closing time Cor	0100	ms	1	10	Correction factor for CB close travel time in ms
Spring charge time	060000	ms	10	1000	Setting of alarm for spring charging time of CB in ms
Counter initial Val	09999		1	0	The operation numbers counter initialization value
Alarm Op number	09999		1	200	Alarm limit for number of operations
Lockout Op number	09999		1	300	Lock out limit for number of operations
Current exponent	0.002.00		0.01	2.00	Current exponent setting for energy calculation
Difference Cor time	-1010	ms	1	5	Corr. factor for time dif in aux. and main contacts open time
Alm Acc currents Pwr	0.0020000.00		0.01	2500.00	Setting of alarm level for accumulated currents power
LO Acc currents Pwr	0.0020000.00		0.01	2500.00	Lockout limit setting for accumulated currents power
Ini Acc currents Pwr	0.0020000.00		0.01	0.00	Initial value for accumulation energy (lyt)
Directional Coef	-3.000.50		0.01	-1.50	Directional coefficient for CB life calculation
Operation cycle	09999		1	5000	Operation cycle at rated current
Rated Op current	100.005000.00	Α	0.01	1000.00	Rated operating current of the breaker
Rated fault current	500.0075000.00	Α	0.01	5000.00	Rated fault current of the breaker
Op number rated	199999		1	10000	Number of operations possible at rated current
Op number fault	110000		1	1000	Number of operations possible at rated fault current
Life alarm level	099999		1	500	Alarm level for CB remaining life
Pressure alarm time	060000	ms	1	10	Time delay for gas pressure alarm in ms
Pres lockout time	060000	ms	10	10	Time delay for gas pressure lockout in ms
Inactive Alm days	09999		1	2000	Alarm limit value of the inactive days counter
Ini inactive days	09999		1	0	Initial value of the inactive days counter
Inactive Alm hours	023	h	1	0	Alarm time of the inactive days counter in hours

6.1.8 Monitored data

Table 375: 52CM Monitored data

Name	Туре	Values (Range)	Unit	Description
T_TRV_OP	FLOAT32	060000	ms	Travel time of the CB during opening operation
T_TRV_CL	FLOAT32	060000	ms	Travel time of the CB during closing operation
T_SPR_CHR	FLOAT32	0.0099.99	s	The charging time of the CB spring
NO_OPR	INT32	099999		Number of CB operation cycle
INA_DAYS	INT32	09999		The number of days CB has been inactive
CB_LIFE_A	INT32	-99999999		CB Remaining life phase A
CB_LIFE_B	INT32	-99999999		CB Remaining life phase B
CB_LIFE_C	INT32	-99999999		CB Remaining life phase C
IPOW_A	FLOAT32	0.0030000.00		Accumulated currents power (lyt), phase A
IPOW_B	FLOAT32	0.0030000.00		Accumulated currents power (lyt), phase B
IPOW_C	FLOAT32	0.0030000.00		Accumulated currents power (lyt), phase C
52CM	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

6.1.9 Technical data

Table 376: 52CM Technical data

Current measuring accuracy	±1.5% or ±0.002 x I _n (at currents in the range of 0.110 x In) ±5.0% (at currents in the range of 1040 x In)
Operate time accuracy	±1.0% of the set value or ±20 ms
Travelling time measurement	+10 ms / -0 ms

6.2 Trip circuit supervision, TCM

6.2.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Trip circuit supervision	TCSSCBR	TCS	TCM

6.2.2 Function block

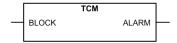


Figure 223: Function block

6.2.3 Functionality

The trip circuit monitoring function TCM is designed for supervision of control circuits. A fault in a control circuit is detected by using a dedicated output contact that contains the monitoring functionality. The failure of a circuit is reported to the corresponding function block in the IED configuration.

The function pickups and trips when TCM detects a trip circuit failure. The trip time characteristic for the function is of definite time (DT) type. The function trips after a predefined operating time and resets when the fault disappears.

The function contains a blocking functionality. Blocking deactivates the ALARM output and resets the timer.

6.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of trip circuit monitoring can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

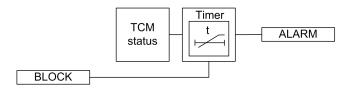


Figure 224: Functional module diagram

TCM status

This module receives the trip circuit status from the hardware. A detected failure in the trip circuit activates the timer.

Timer

Once activated, the timer runs until the set value *Trip delay time* is elapsed. The time characteristic is according to DT. When the operation timer has reached the maximum time value, the ALARM output is activated. If a drop-off situation occurs during the trip time up counting, the reset timer is activated. If the drop-off time exceeds *Reset delay time*, the trip timer is reset.

The BLOCK input can be controlled with a binary input, a horizontal communication input or an internal signal of the relay program. The activation of the BLOCK input prevents the ALARM output to be activated.

6.2.5 Application

TCM detects faults in the electrical control circuit of the circuit breaker. The function can supervise both open and closed coil circuits. This kind of monitoring is necessary to find out the vitality of the control circuits continuously.

The following figure shows an application of the trip-circuit monitoring function usage. The best solution is to connect an external R_{ext} shunt resistor in parallel with the circuit breaker internal contact. Although the circuit breaker internal contact is open, TCM can see the trip circuit through R_{ext} . The R_{ext} resistor should have such a resistance that the current through the resistance remains small, that is, it does not harm or overload the circuit breaker's trip coil.

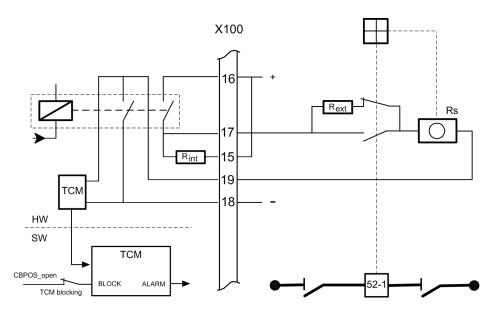


Figure 225: Operating principle of the trip-circuit supervision with an external resistor.

The TCM blocking switch is not required since the external resistor is used.

If the TCM is required only in a closed position, the external shunt resistance may be omitted. When the circuit breaker is in the open position, the TCM sees the situation as a faulty circuit. One way to avoid TCM operation in this situation would be to block the monitoring function whenever the circuit breaker is open.

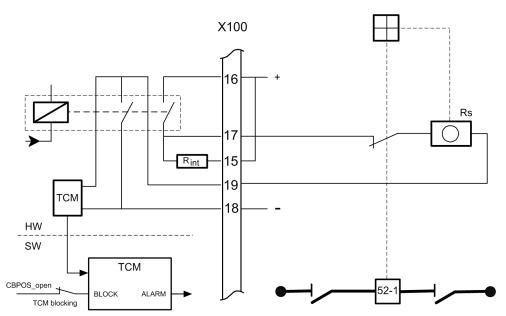


Figure 226: Operating principle of the trip-circuit supervision without an external resistor. The circuit breaker open indication is set to block TCM when the circuit breaker is open.

Trip-circuit monitoring and other trip contacts

It is typical that the trip circuit contains more than one trip contact in parallel, for example in transformer feeders where the trip of a Buchholz relay is connected in parallel with the feeder terminal and other relays involved. The supervising current cannot detect if one or all the other contacts connected in parallel are not connected properly.

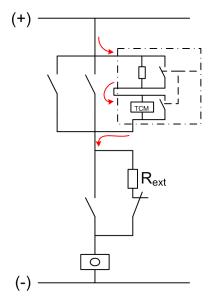


Figure 227: Constant test current flow in parallel trip contacts and trip-circuit monitoring

In case of parallel trip contacts, the recommended way to do the wiring is that the TCM test current flows through all wires and joints as shown in the following figure.

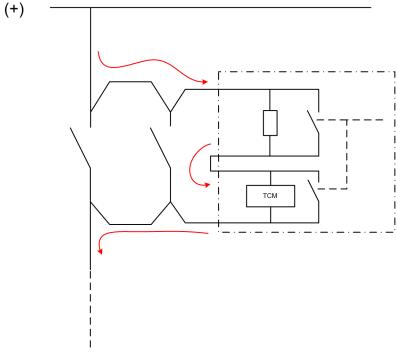


Figure 228: Improved connection for parallel trip contacts

Several trip-circuit monitoring functions parallel in circuit

Not only the trip circuit often have parallel trip contacts, it is also possible that the circuit has multiple TCM circuits in parallel. Each TCM circuit causes its own supervising current

to flow through the monitored coil and the actual coil current is a sum of all TCM currents. This must be taken into consideration when determining the resistance of R_{ext} .

Setting the TCM function in a protection IED not-in-use does not typically affect the supervising current injection.

Trip-circuit monitoring with auxiliary relays

Many retrofit projects are carried out partially, that is, the old electromechanical relays are replaced with new ones but the circuit breaker is not replaced. This creates a problem that the coil current of an old type circuit breaker can be too high for the protection IED trip contact to break.

The circuit breaker coil current is normally cut by an internal contact of the circuit breaker. In case of a circuit breaker failure, there is a risk that the protection IED trip contact is destroyed since the contact is obliged to disconnect high level of electromagnetic energy accumulated in the trip coil.

An auxiliary relay can be used between the protection IED trip contact and the circuit breaker coil. This way the breaking capacity question is solved, but the TCM circuit in the protection IED monitors the healthy auxiliary relay coil, not the circuit breaker coil. The separate trip circuit monitoring relay is applicable for this to supervise the trip coil of the circuit breaker.

Dimensioning of the external resistor

Under normal operating conditions, the applied external voltage is divided between the relay's internal circuit and the external trip circuit so that at the minimum 10 V (3...10 V) remains over the relay's internal circuit. Should the external circuit's resistance be too high or the internal circuit's too low, for example due to welded relay contacts, the fault is detected.

Mathematically, the operation condition can be expressed as:

$$V_C - (R_{ext} + R_{int} + R_s) \times I_c \ge 20V \quad AC/DC$$
 (Equation 51)

$$V_c - (R_{ext} + R_s) \times I_c \ge 10V DC$$
 (Equation 52)

 V_{c} Operating voltage over the supervised trip circuit

I_c Measuring current through the trip circuit, appr. 1.0 mA (0.85...1.20 mA)

R_{ext} external shunt resistance

R_s trip coil resistance

If the external shunt resistance is used, it has to be calculated not to interfere with the functionality of the supervision or the trip coil. Too high a resistance causes too high a voltage drop, jeopardizing the requirement of at least 20 V over the internal circuit, while a resistance too low can enable false operations of the trip coil.

Table 377: Values recommended for the external resistor	·R _{ext}
---	-------------------

Operating voltage U _c	Shunt resistor R _{ext}
48 V DC	10 kΩ, 5 W
60 V DC	22 kΩ, 5 W
110 V DC	33 kΩ, 5 W
220 V DC	68 kΩ, 5 W

Due to the requirement that the voltage over the TCM contact must be 20V or higher, the correct operation is not guaranteed with auxiliary operating voltages lower than 48V DC because of the voltage drop in the $R_{\rm ext}$ and operating coil or even voltage drop of the feeding auxiliary voltage system which can cause too low voltage values over the TCM contact. In this case, erroneous alarming can occur.

At lower (<48V DC) auxiliary circuit operating voltages, it is recommended to use the circuit breaker position to block unintentional operation of TCM. The use of the position indication is described earlier in this chapter.

Using power output contacts without trip-circuit monitoring

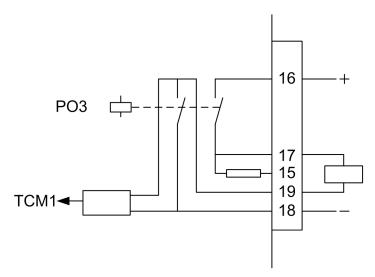


Figure 229: Connection of a power output in a case when TCM is not used and the internal resistor is disconnected

Incorrect connections and usage of trip-circuit monitoring

Although the TCM circuit consists of two separate contacts, it must be noted that those are designed to be used as series connected to guarantee the breaking capacity given in the technical manual of the IED. In addition to the weak breaking capacity, the internal resistor is not dimensioned to withstand current without a TCM circuit. As a result, this kind of incorrect connection causes immediate burning of the internal resistor when the circuit breaker is in the close position and the voltage is applied to the trip circuit. The following picture shows incorrect usage of a TCM circuit when only one of the contacts is used.

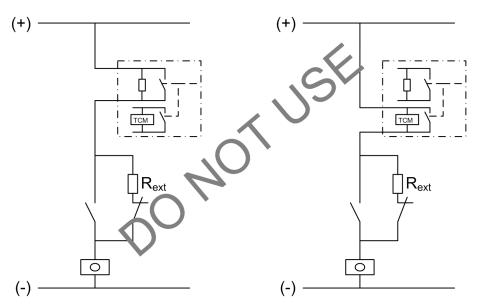


Figure 230: Incorrect connection of trip-circuit monitoring

A connection of three protection IEDs with a double pole trip circuit is shown in the following figure. Only the IED R3 has an internal TCM circuit. In order to test the operation of the IED R2, but not to trip the circuit breaker, the upper trip contact of the IED R2 is disconnected, as shown in the figure, while the lower contact is still connected. When the IED R2 operates, the coil current starts to flow through the internal resistor of the IED R3 and the resistor burns immediately. As proven with the previous examples, both trip contacts must operate together. Attention should also be paid for correct usage of the trip-circuit monitoring while, for example, testing the IED.

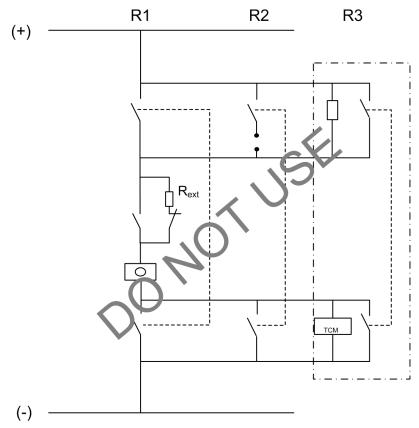


Figure 231: Incorrect testing of IEDs

6.2.6 Signals

Table 378: TCM Input signals

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Block input status

Table 379: TCM Output signals

Name	Туре	Description
ALARM	BOOLEAN	Alarm output

6.2.7 Settings

Table 380: TCM Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Disable / Enable
Trip delay time	20300000	ms	1	3000	Operate delay time
Reset delay time	2060000	ms	1	1000	Reset delay time

6.2.8 Monitored data

Table 381: TCM Monitored data

Name	Туре	Values (Range)	Unit	Description
тсм	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

6.3 Current circuit supervision CCM

6.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Current circuit supervision	CCRDIF	MCS 3I	CCM

6.3.2 Function block

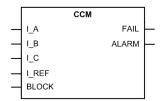


Figure 232: Function block

6.3.3 Functionality

The current circuit supervision function CCM is used for monitoring current transformers.

CCM calculates internally the sum of phase currents (I_A, I_B and I_C) and compares the sum against the measured single reference current (I_REF). The reference current must originate from other three-phase CT cores than the phase currents (I_A, I_B and I_C) and it is to be externally summated, that is, outside the IED.

CCM detects a fault in the measurement circuit and issues an alarm or blocks the protection functions to avoid unwanted tripping.

It must be remembered that the blocking of protection functions at an occurring open CT circuit means that the situation remains unchanged and extremely high voltages stress the secondary circuit.

6.3.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of current circuit supervision can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

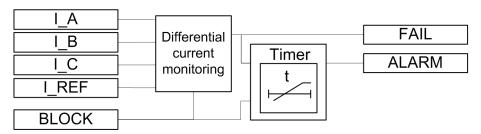


Figure 233: Functional module diagram

Differential current monitoring

Differential current monitoring supervises the difference between the summed phase currents I_A , I_B and I_C and the reference current I_REF .

The current operating characteristics can be selected with the *Pickup value* setting. When the highest phase current is less than 1.0 xIn, the differential current limit is defined with *Pickup value*. When the highest phase current is more that 1.0 xIn, the differential current limit is calculated with the formula:

$$MAX(I_A,I_B,I_C) \times Pickupvalue$$

(Equation 53)

The differential current is limited to 1.0 xIn.

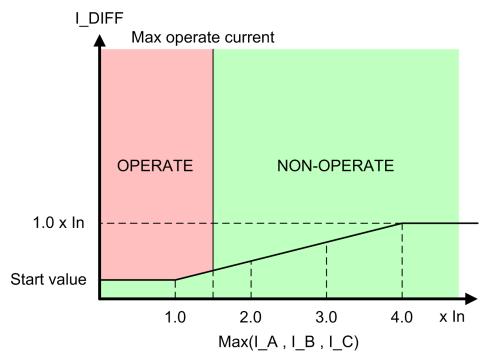


Figure 234: CCM operating characteristics

When the differential current I_DIFF is in the operating region, the FAIL output is activated.

The function is internally blocked if any phase current is higher than the set *Max trip current*. When the internal blocking activates, the FAIL output is deactivated immediately. The internal blocking is used for avoiding false operation during a fault situation when the current transformers are saturated due to high fault currents.

The value of the differential current is available through the Monitored data view on the LHMI or through other communication tools. The value is calculated with the formula:

$$I_DIFF = \left| \overline{I_A} + \overline{I_B} + \overline{I_C} \right| - \left| \overline{I_REF} \right|$$
 (Equation 54)

The *Pickup value* setting is given in units of xIn of the phase current transformer. The possible difference in the phase and reference current transformer ratios is internally compensated by scaling I_REF with the value derived from the *Primary current* setting values. These setting parameters can be found in the Basic functions section.

The activation of the BLOCK input activates the FAIL output immediately.

Timer

The timer is activated with the FAIL signal. The ALARM output is activated after a fixed 200 ms delay. FAIL needs to be active during the delay.

When the internal blocking is activated, the FAIL output is deactivated immediately. The ALARM output is deactivated after a fixed 3 s delay, and the FAIL is deactivated.

The deactivation happens only when the highest phase current is more than 5 percent of the nominal current (0.05 xIn).

When the line is de-energized, the deactivation of the ALARM output is prevented.

The activation of the BLOCK input deactivates the ALARM output.

6.3.5 Application

Open or short-circuited current transformer cores can cause unwanted operation in many protection functions such as differential, ground-fault current and negative sequence current functions. When currents from two independent three-phase sets of CTs or CT cores measuring the same primary currents are available, reliable current circuit supervision can be arranged by comparing the currents from the two sets. When an error in any CT circuit is detected, the protection functions concerned can be blocked and an alarm given.

In case of high currents, the unequal transient saturation of CT cores with a different remanence or saturation factor may result in differences in the secondary currents from the two CT cores. Unwanted blocking of protection functions during the transient stage must then be avoided.

The supervision function must be sensitive and have a short trip time in order to prevent unwanted tripping from fast-acting, sensitive numerical protections in case of faulty CT secondary circuits.

Open CT circuits create extremely high voltages in the circuits which may damage the insulation and cause further problems. This must be taken into consideration especially when the protection functions are blocked.

When the reference current is not connected to the IED, the function should be turned off. Otherwise, the FAIL output is activated when unbalance occurs in the phase currents even if there was nothing wrong with the measurement circuit.

Reference current measured with core-balanced current transformer

The function compares the sum of phase currents to the current measured with the core-balanced CT.

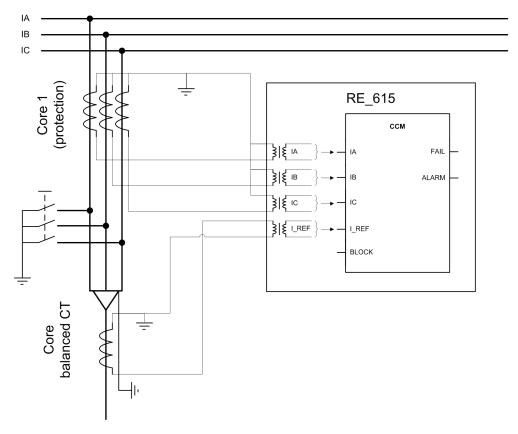


Figure 235: Connection diagram for reference current measurement with core balanced current transformer

Current measurement with two independent three-phase sets of CT cores

The figures show diagrams of connections where the reference current is measured with two independent three-phase sets of CT cores.

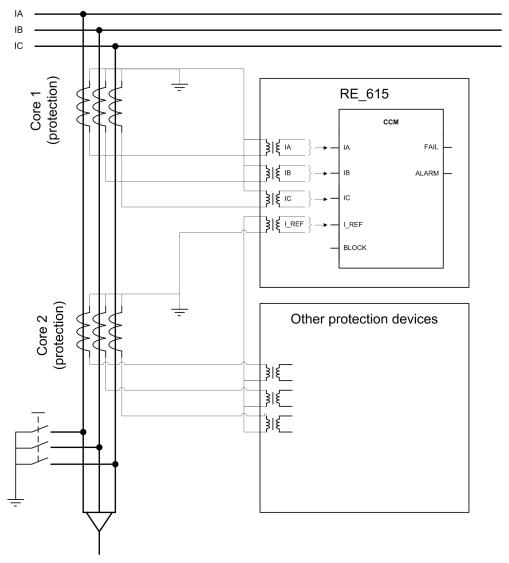


Figure 236: Connection diagram for current circuit supervision with two sets of three-phase current transformer protection cores

When using the measurement core for reference current measurement, it should be noted that the saturation level of the measurement core is much lower than with the protection core. This should be taken into account when setting the current circuit supervision function.

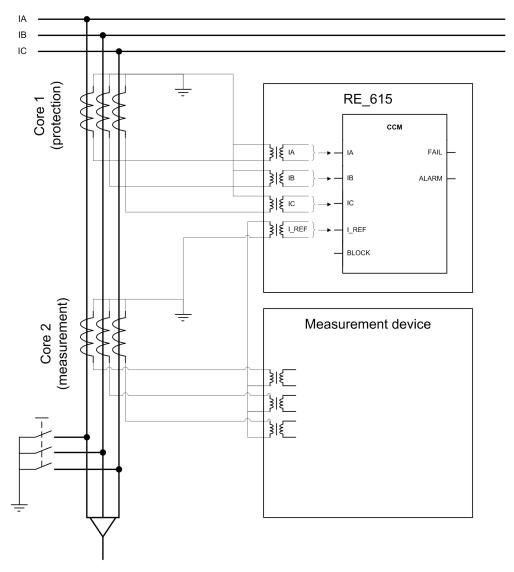


Figure 237: Connection diagram for current circuit supervision with two sets of three-phase current transformer cores (protection and measurement)

Example of incorrect connection

The currents must be measured with two independent cores, that is, the phase currents must be measured with a different core than the reference current. A connection diagram shows an example of a case where the phase currents and the reference currents are measured from the same core.

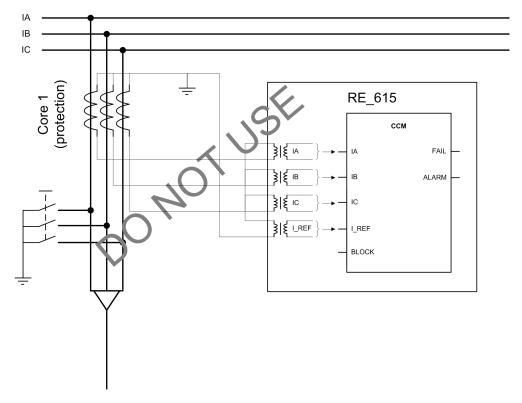


Figure 238: Example of incorrect reference current connection

6.3.6 Signals

Table 382: CCM Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
I_REF	SIGNAL	0	Reference current
BLOCK	BOOLEAN	0=False	Block signal for all binary outputs

Table 383: CCM Output signals

Name	Туре	Description
FAIL	BOOLEAN	Fail output
ALARM	BOOLEAN	Alarm output

6.3.7 Settings

Table 384: CCM Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Enable / Disable
Pickup value	0.050.20	xln	0.01	0.05	Minimum trip current differential level
Max trip current	1.005.00	xln	0.01	1.50	Block of the function at high phase current

6.3.8 Monitored data

Table 385: CCM Monitored data

Name	Туре	Values (Range)	Unit	Description
I_DIFF	FLOAT32	0.0040.00	xln	Differential current
ССМ	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

6.3.9 Technical data

Table 386: CCM Technical data

Characteristic	Value
Trip time ¹	< 30 ms

^{1.} Including the delay of the output contact.

6.4 Advanced current circuit supervision for transformers, MCS 3I, I2

6.4.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
CT secondary circuit supervision	MCS 3I, I2	MCS 31,12	MCS 31,12

6.4.2 Function block

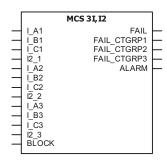


Figure 239: Function block

6.4.3 Functionality

The CT secondary circuit supervision function MCS 3I, I2 is used for monitoring the current transformer secondary circuit where a separate reference current transformer input for comparison is not available or where a separate voltage channel for calculating or measuring the zero-sequence voltage is not available.

MCS 3I, I2 can be used for detecting the single-phase failure on the current transformer secondary for protection application involving two or three sets of the three-phase current transformers.

MCS 3I, I2 detects a fault in the measurement circuit and issues an alarm which can be used for blocking the protection functions, for example, differential protection, to avoid unwanted tripping.

MCS 3I, I2 is internally blocked in case of a transformer under no-load condition or if a current in any one phase exceeds the set maximum limit.

6.4.4 Operation principle

The function can be enabled and disabled with the Operation setting. The corresponding parameter values are "Enabled" and "Disabled".

The operation of the CT secondary circuit supervision function can be described with a module diagram. All the modules in the diagram are explained in the next sections.

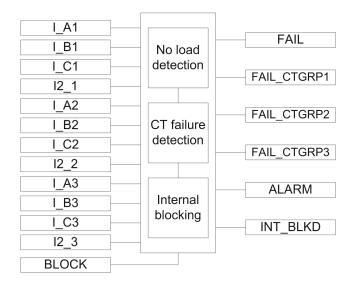


Figure 240: Functional module diagram

6.4.4.1 No-load detection

No-load detection module detects the loading condition. If all the three-phase currents of any two sets of current transformer are zero, the protected equipment is considered to be in the no-load condition and the function is internally blocked by activating the INT BLKD output.

To avoid any false operation, the function is also internally blocked if any two-phase currents of any set of current transformers are below Min alarm current. This activates INT_BLKD. The value of the Min alarm current setting depends on the type of equipment to be protected. For example, in case of transformer protection, Min alarm current depends on the no-load current rating. Typically, it can be set equal to the transformer no-load current rating.

6.4.4.2 CT failure detection

This module detects the CT secondary failure in any sets of current transformers. The module continuously scans the value of all the three-phase currents in all groups of current transformers to detect any sudden drop in the current value to zero. The detection of a zero current should not be the only criterion for considering a fault in the current transformer secondary. Two other criteria are evaluated to confirm the CT failure:

• A zero current due to the CT failure does not result in a negative-sequence current on healthy CT sets.

On the detection of a zero current in any phase on either group of CT, the negative-sequence current I2 is further evaluated. For a genuine CT secondary failure, the magnitude of I2 changes only on the side where zero current has been

detected. The change in the magnitude of I2 (Δ I2) on the other sets of the current transformer (other than where zero current is detected) is calculated. If the change is detected on the healthy sets of CT, it is an indication of system failure.

• A zero current due to the CT failure does not result in a phase angle difference between the healthy phases.

If a system faults happens on the phase A, it results in a change in the phase angle difference between phase B and phase C. This change in the phase angle difference between the healthy phases is evaluated in all three sets of current transformer, and if the change is detected in any set of CT, it is an indication of the system failure.

If both conditions are satisfied at zero current, the FAIL output is activated immediately. The ALARM output is activated after a fixed 200 ms delay. FAIL needs to be active during the delay. The outputs FAIL, CTGRP1, FAIL_CTGRP2 and FAIL_CTGRP3 are activated according to the CT group where the secondary failure is detected.

Activation of the BLOCK input deactivates the FAIL and ALARM outputs

It is not possible to detect the CT secondary failure happening simultaneously with the system faults or failures or two simultaneous failures in the secondary circuit. The function resets if the zero current does not exist longer than 200 ms.

6.4.4.3 Internal blocking

This module blocks the function internally under specific condition to avoid any false operation during a system fault situation. When any of the following condition is satisfied, the function is internally blocked and the FAIL output is deactivated immediately

- Magnitude of any phase current for any group of current transformers exceeds the Max alarm current setting. The magnitude of phase current is calculated from the peak-to-peak value.
- Magnitude of the negative-sequence current I2 on the healthy set of current transformer exceeds the Max Nq Seq current setting.

The INT_BLKD output is activated when FAIL is deactivated if any of the above conditions is satisfied. The ALARM output is also deactivated after a fixed three-second delay after the FAIL output is deactivated.

6.4.5 Application

Open or short-circuited current transformer secondary can cause unwanted operation in many protection functions, such as ground-fault current and differential. The simplest method for detecting the current transformer secondary failure is by comparing currents from two independent three-phase sets of CTs or the CT cores measuring the same primary currents. Another widely used method is the detection of a zero-sequence current and zero-sequence voltage. The detection of a zero-sequence current in the absence of a zero-sequence voltage is an indication of the current transformer secondary failure.

However, both methods have disadvantages as they require an additional set of current transformer, or a voltage channel is needed for detecting a zero-sequence voltage.

The methods may not be applicable where additional current channels or voltage channels are not available. This CT secondary circuit supervision presents an algorithm that can be used as an example for detecting the CT secondary failure used for the unit protection of a two-winding or three-winding transformer. However, the function has a limitation that it cannot detect failure in case of equipment under protection in no-load condition or when two simultaneous secondary CT failures occur.

The detection of a zero current in any one phase is a partial indication of failure in the current transformer secondary. Furthermore, if this current zero is due to the failure in the current transformer secondary, it results in a change in the magnitude of the negative-sequence current in the group only where current zero has been detected. However, changes in the negative-sequence current in other groups of three-phase current transformers at the instance of zero-current detection is an indication of a system problem. Also, it may happen that after the detection of a failure in the current transformer secondary, a fault may occur in the system. During such condition, functions are internally blocked.

Phase discontinuity

A zero current detected due to the phase discontinuity results in an asymmetry in all the sets of the current transformer, which then results in a change in the negative-sequence current (?12) in the healthy set. This change in the negative-sequence current on the healthy sides, that is, other than where a zero current has been detected, blocks the function.

In case of a lightly loaded transformer (up to 30%) the change in the negative-sequence current may be very negligible. However, a phase discontinuity results in a change in the phase angle difference between two healthy phases in the set of CTs where a zero current has been detected as well as on the primary side of the transformer. This change in the value of the angle blocks the function internally.

Overload / System short circuit condition

It is required that any overload or short circuit conditions after a CT failure should block the function. During overload or short circuit condition, the phase current increases beyond its rated value; if any phase current on any set of current transformer exceeds the set limit, the function is blocked internally. Also in case of an unsymmetrical fault, the negative-sequence current increases. If the negative-sequence current increases beyond the set limit, the function is blocked internally. The overcurrent and negative-sequence current setting both can be set equal to the overcurrent and negative-sequence protection function pickup value.

The internal blocking is thus useful for avoiding false operation during a fault situation.

6.4.6 Signals

Table 387: MCS 3I, I2 Input signals

Name	Туре	Default	Description
I_A1	SIGNAL	0	Phase A current from set 1
I_B1	SIGNAL	0	Phase B current from set 1
I_C1	SIGNAL	0	Phase C current from set 1
I2_1	SIGNAL	0	Negative-sequence current from set 1
I_A2	SIGNAL	0	Phase A current from set 2
I_B2	SIGNAL	0	Phase B current from set 2
I_C2	SIGNAL	0	Phase C current from set 2
12_2	SIGNAL	0	Negative-sequence current from set 2
I_A3	SIGNAL	0	Phase A current from set 3
I_B3	SIGNAL	0	Phase B current from set 3
I_C3	SIGNAL	0	Phase C current from set 3
12_3	SIGNAL	0	Negative-sequence current from set 3
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 388: MCS 3I, I2 Output signals

Name	Туре	Description
FAIL	BOOLEAN	CT secondary failure
FAIL_CTGRP1	BOOLEAN	CT secondary failure group 1
FAIL_CTGRP2	BOOLEAN	CT secondary failure group 2
FAIL_CTGRP3	BOOLEAN	CT secondary failure group3
ALARM	BOOLEAN	Alarm

6.4.7 Settings

Table 389: : MCS 3I, I2 Non-group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1 = on 5 = off			1 = on	Operation Off / On
Min alarm current	0.010.50	xln	0.01	0.02	Minimum alarm current
Max alarm current	1.005.00	xln	0.01	1.30	Maximum alarm current
Max Ng Seq current	0.011.00	xln	0.01	0.10	Maximum I2 current in healthy set

6.4.8 Monitored data

Table 390: MCS 3I, I2 Monitored data

Name	Туре	Values (Range)	Unit	Description
INT_BLKD	BOOLEAN	0=False 1=True		Function blocked internally
MCS 3I, I2	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

6.5 Fuse failure supervision 60

6.5.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Fuse failure supervision	SEQRFUF	FUSEF	60

6.5.2 Function block

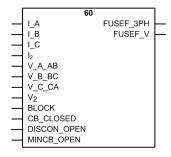


Figure 241: Function block

6.5.3 Functionality

The fuse failure supervision function SEQRFUF is used to block the voltage measuring functions at a failure in the secondary circuits between the voltage transformer and IED to avoid misoperations of the voltage protection functions.

SEQRFUF has two algorithms, a negative sequence-based algorithm and a delta current and delta voltage algorithm.

A criterion based on the delta current and the delta voltage measurements can be activated to detect three-phase fuse failures which usually are more associated with the voltage transformer switching during station operations.

6.5.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the fuse failure supervision function can be described by using a module diagram. All the blocks in the diagram are explained in the next sections.

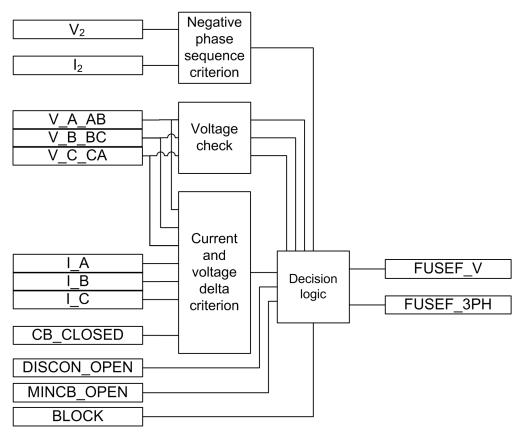


Figure 242: Functional module diagram

Negative phase-sequence criterion

A fuse failure based on negative phase-sequence criterion is detected if the measured negative phase-sequence voltage exceeds the set *Neg Seq voltage Lev* value and the measured negative phase-sequence current is below the set *Neg Seq current Lev* value. The detected fuse failure is reported to the decision logic module.

Voltage check

The phase voltage magnitude is checked when deciding whether the fuse failure is a three, two or a single-phase fault.

The module makes a phase-specific comparison between each voltage input and the *Seal in voltage* setting. In case the input voltage is lower than the setting, the corresponding phase is reported to the decision logic module.

Current and voltage delta criterion

The delta function can be activated by setting the *Change rate enable* parameter to "True". Once the function is activated, it operates in parallel with the negative phase-sequence based algorithm. The current and voltage are continuously measured in all three phases to calculate:

- Change of voltage dV/dt
- Change of current dI/dt

The calculated delta quantities are compared to the respective set values of the *Current change rate* and *Voltage change rate* settings.

The delta current and delta voltage algorithms detect a fuse failure if there is a sufficient negative change in the voltage amplitude without a sufficient change in the current amplitude in each phase separately. This is performed when the circuit breaker is closed. Information about the circuit breaker position is connected to the CB CLOSED input.

There are two conditions for activating the current and voltage delta function:

- The magnitude of ΔV exceeds the corresponding value of the Min Op voltage delta setting and the magnitude of ΔI is below the value of the Min Op current delta setting in any phase at the same time due to the closure of the circuit breaker, that is,
 CB CLOSED = TRUE.
- The magnitude of ΔV exceeds the value of the *Min Op voltage delta* setting and the magnitude of ΔI is below the *Min Op current delta* setting in any phase at the same time since the magnitude of the phase current in the same phase exceeds the *Current level* setting.

The first condition requires the delta criterion to be fulfilled in any phase at the same time as the circuit breaker is closed. Opening the circuit breaker at one end and energizing the line from the other end onto a fault could lead to an improper operation of 60 with an open breaker. If this is considered to be an important disadvantage, the CB_CLOSED input is to be connected to FALSE.

The second condition requires the delta criterion to be fulfilled in one phase together with high current for the same phase. The measured phase current is used to reduce the risk of a false fuse-failure detection. If the current on the protected line is low, a voltage drop in the system (not caused by the fuse failure) is not followed by a current change and a false fuse failure can occur. To prevent this, the minimum phase current criterion is checked.

The fuse-failure detection is active until the voltages return above the *Min Op voltage delta* setting. If a voltage in a phase is below the *Min Op voltage delta* setting, a new fuse failure detection for that phase is not possible until the voltage returns above the setting value.

Decision logic

The fuse-failure detection outputs FUSEF_V and FUSEF_3PH are controlled according to the detection criteria or external signals.

Table 391: Fuse failure output control

Fuse-failure detection criterion	Conditions and function response	
Negative phase sequence criterion	If a fuse failure is detected based on the negative phase-sequence criterion, the <code>FUSEF_U</code> output is activated.	
	If the fuse-failure detection is active for more than five seconds and at the same time all the phase voltage values are below the set value of the <i>Seal in voltage</i> setting with <i>Enable seal in</i> turned to "Yes", the function activates the FUSE_3PH output signal.	
	The FUSEF_U output signal is also activated if all the phase voltages are above the <i>Seal in voltage</i> setting for more than 60 seconds and at the same time the negative sequence voltage is above <i>Neg Seq voltage Lev</i> for more than 5 seconds, all the phase currents are below the <i>Current dead Lin Val</i> setting and the circuit breaker is closed, that is,CB_CLOSED is TRUE.	
Current and voltage delta function criterion	If the current and voltage delta criterion detects a fuse failure condition, but all the voltages are not below the <i>Seal in voltage</i> setting, only the <code>FUSEF_U</code> output is activated.	
	If the fuse-failure detection is active for more than five seconds and at the same time all the phase voltage values are below the set value of the <i>Seal in voltage</i> setting with <i>Enable seal in</i> turned to "Yes", the function activates the FUSE_3PH output signal.	
External fuse-failure detection	The MINCB_OPEN input signal is supposed to be connected through an IED binary input to the N.C. auxiliary contact of the miniature circuit breaker protecting the VT secondary circuit. The MINCB_OPEN signal sets the FUSEF_U output signal to block all the voltage-related functions when MCB is in the open state.	
	The DISCON_OPEN input signal is supposed to be connected through an IED binary input to the N.C. auxiliary contact of the line disconnector. The DISCON_OPEN signal sets the FUSEF_U output signal to block the voltage-related functions when the line disconnector is in the open state.	

It is recommended to always set *Enable seal in* to "Yes". This secures that the blocked protection functions remain blocked until normal voltage conditions are restored if the fuse-failure has been active for 5 seconds, that is, the fuse failure outputs are deactivated when the normal voltage conditions are restored.

The activation of the BLOCK input deactivates both FUSEF U and FUSEF 3PH outputs.

6.5.5 Application

Some protection functions operate on the basis of the measured voltage value in the IED point. These functions can fail if there is a fault in the measuring circuits between the voltage transformers and the IED.

A fault in the voltage measuring circuit is referred to as a fuse failure. This term is misleading since a blown fuse is just one of the many possible reasons for a broken circuit.

Since incorrectly measured voltage can result in a misoperation of some of the protection functions, fast failure detection is one of the means to block voltage-based functions before they operate.

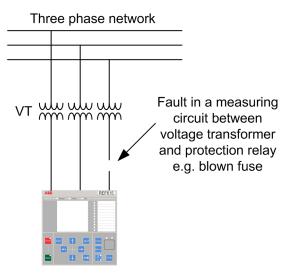


Figure 243: Fault in a circuit from the voltage transformer to the IED

A fuse failure occurs due to blown fuses, broken wires or intended substation operations. The negative sequence component-based function can be used to detect different types of single-phase or two-phase fuse failures. However, at least one of the three circuits from the voltage transformers must not be broken. The supporting delta-based function can also detect a fuse failure due to three-phase interruptions.

In the negative sequence component-based part of the function, a fuse failure is detected by comparing the calculated value of the negative sequence component voltage to the negative sequence component current. The sequence entities are calculated from the measured current and voltage data for all three phases. The purpose of this function is to block voltage-dependent functions when a fuse failure is detected. Since the voltage dependence differs between these functions, 60 has two outputs for this purpose.

6.5.6 Signals

Table 392: 60 Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
l ₂	SIGNAL	0	Negative sequence current
V_A_AB	SIGNAL	0	Phase A voltage
V_B_BC	SIGNAL	0	Phase B voltage
V_C_CA	SIGNAL	0	Phase C voltage
V ₂	SIGNAL	0	Negative phase sequence voltage
BLOCK	BOOLEAN	0=False	Block of function
CB_CLOSED	BOOLEAN	0=False	Active when circuit breaker is closed
DISCON_OPEN	BOOLEAN	0=False	Active when line disconnector is open
MINCB_OPEN	BOOLEAN	0=False	Active when external MCB opens protected voltage circuit

Table 393: 60 Output signals

Name	Type	Description	
FUSEF_3PH	BOOLEAN	Three-phase pickup of function	
FUSEF_V	BOOLEAN	General pickup of function	

6.5.7 Settings

Table 394: 60 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description	
Operation	1=Enable 5=Disable			1=Enable	=Enable Operation Disable / Enable	
Neg Seq current Lev	0.030.20	xln	0.01	0.03	Operate level of neg seq undercurrent element	
Neg Seq voltage Lev	0.030.20	xVn	0.01	0.10	Operate level of neg seq overvoltage element	
Current change rate	0.010.50	xln	0.01	0.15	Operate level of change in phase current	
Voltage change rate	0.500.90	xVn	0.01	0.60	Operate level of change in phase voltage	
Change rate enable	0=False 1=True			0=False	Enabling operation of change based function	
Min Op voltage delta	0.011.00	xVn	0.01	0.70	Minimum operate level of phase voltage for delta calculation	
Min Op current delta	0.011.00	xln	0.01	0.10	Minimum operate level of phase current for delta calculation	
Seal in voltage	0.011.00	xVn	0.01	0.70	Operate level of seal-in phase voltage	
Enable seal in	0=False 1=True			0=False	Enabling seal in functionality	
Current dead Lin Val	0.051.00	xln	0.01	0.05	Operate level for open phase current detection	

6.5.8 Monitored data

Table 395: 60 Monitored data

Name	Туре	Values (Range)	Unit	Description
60	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

6.5.9 Technical data

Table 396: 60 Technical data

Characteristic	Value		
Trip time ¹			
NPS function	V _{Fault} = 1.1 x set <i>Neg</i> Seq voltage Lev	< 33 ms	
	V _{Fault} = 5.0 x set <i>Neg</i> Seq voltage Lev	< 18 ms	
Delta function	ΔV = 1.1 x set <i>Voltage</i> change rate	< 30 ms	
	ΔV = 2.0 x set <i>Voltage</i> change rate	< 24 ms	

^{1.} Includes the delay of the signal output contact, $f_n = 60$ Hz, fault voltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

6.6 Motor startup supervision 66/51LRS

6.6.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Motor startup supervision	STTPMSU	Is2tn<	66/51LRS

6.6.2 Function block

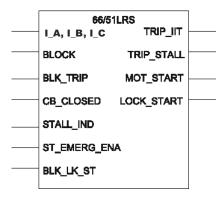


Figure 244: Function block

6.6.3 Functionality

The motor startup supervision function 66/51LRS is designed for protection against excessive starting time and locked rotor conditions of the motor during starting. For the reliable operation of the motor, the thermal stress during the motor starting is maintained within the allowed limits.

The starting of the motor is supervised by monitoring the TRMS magnitude of all the phase currents or by monitoring the status of the circuit breaker connected to the motor.

During the startup period of the motor, 66/51LRS calculates the integral of the I²t value. If the calculated value exceeds the set value, the trip signal is activated.

66/51LRS has the provision to check the locked rotor condition of the motor using the speed switch, which means checking if the rotor is able to rotate or not. This feature trips after a predefined operating time.

66/51LRS also protects the motor from an excessive number of startups. Upon exceeding the specified number of startups within certain duration, 66/51LRS blocks further starts. The restart of the motor is also inhibited after each start and continues to be inhibited for a set duration. When the lock of startup of motor is enabled, 66/51LRS gives the time remaining until the restart of the motor.

66/51LRS contains a blocking functionality. It is possible to block function outputs, timer or the function itself, if desired.

6.6.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the motor startup supervision function can be described using a module diagram. All the modules in the diagram are explained in the next sections.

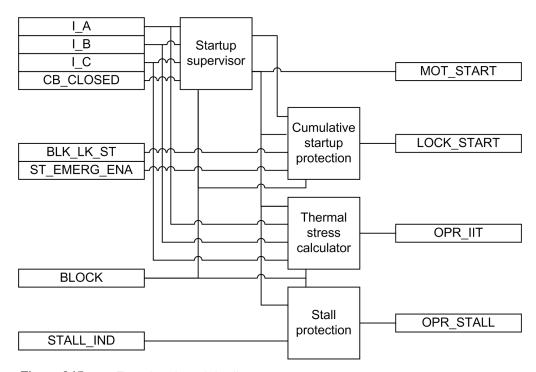


Figure 245: Functional module diagram

Startup supervisor

This module detects the starting of the motor. The starting and stalling motor conditions are detected in four different modes of operation. This is done through the *Operation mode* setting.

When the *Operation mode* setting is operated in the "IIt" mode, the function calculates the value of the thermal stress of the motor during the startup condition. In this mode, the startup condition is detected by monitoring the TRMS currents.

The *Operation mode* setting in the "IIt, CB" mode enables the function to calculate the value of the thermal stress when a startup is monitored in addition to the CB_CLOSED input.

In the "IIt & stall" mode, the function calculates the thermal stress of the motor during the startup condition. In this mode, the startup condition is detected by monitoring the TRMS currents. In the "IIt & stall" mode, the function also checks for motor stalling by monitoring the speed switch.

In the "IIt & stall, CB" mode, the function calculates the thermal stresses of the motor during the startup condition. The startup condition is monitored in addition to the circuit breaker status. In the "IIt & stall, CB" mode, the function also checks for motor stalling by monitoring the speed switch.

When the measured current value is used for startup supervision in the "IIt" and "IIt & stall" modes, the module initially recognizes the de-energized condition of the motor when the values of all three phase currents are less than *Motor standstill A* for longer than 100 milliseconds. If any of the phase currents of the de-energized condition rises to a value

equal or greater than the *Motor standstill A*, the MOT_START output signal is activated indicating that the motor startup is in progress. The MOT_START output remains active until the values of all three phase currents drop below 90 percent of the set value of *Start detection A* and remain below that level for a time of *Str over delay time*, that is, until the startup situation is over.

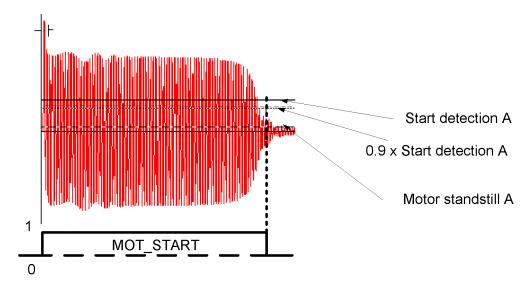


Figure 246: Functionality of startup supervision in "Ilt and Ilt&stall" mode

In case of the "IIt, CB" or "IIt & stall, CB" modes, the function initially recognizes the de-energized condition of the motor when the value of all three phase currents is below the value of the *Motor standstill A* setting for 100 milliseconds. The beginning of the motor startup is recognized when CB is closed, that is, when the CB_CLOSED input is activated and at least one phase current value exceeds the *Motor standstill A* setting.

But in normal practice, these two events do not take place at the same instant, that is, the CB main contact is closed first, in which case the phase current value rises above 0.1 pu and after some delay the CB auxiliary contact gives the information of the CB_CLOSED input. In some cases, the CB_CLOSED input can be active but the value of current may not be greater than the value of the *Motor standstill A* setting. To allow both possibilities, a time slot of 200 milliseconds is provided for current and the CB_CLOSED input. If both events occur during this time, the motor startup is recognized.

The motor startup ends either within the value of the *Str over delay time* setting from the beginning of the startup or the opening of CB or when the CB_CLOSED input is deactivated. The operation of the MOT_START output signal in this operation mode is as illustrated

This CB mode can be used in soft-started or slip ring motors for protection against a large starting current, that is, a problem in starting and so on.

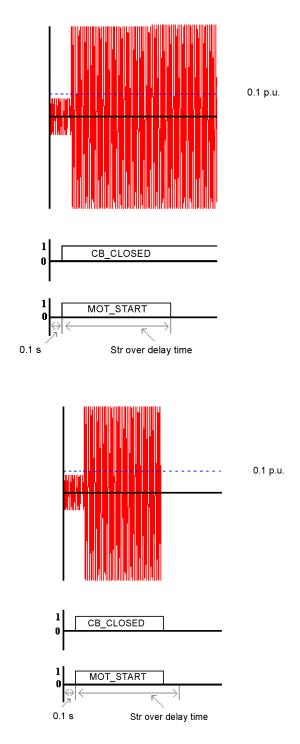


Figure 247: Functionality of startup supervision in "Ilt, CB" mode and "Ilt and stall, CB" mode

The Str over delay time setting has different purposes in different modes of operation:

- In the "IIt" or "IIt & stall" modes, the aim of this setting is to check for the completion of the motor startup period. The purpose of this time delay setting is to allow for short interruptions in the current without changing the state of the MOT_START output. In this mode of operation, the value of the setting is in the range of around 100 milliseconds.
- In the "IIt, CB" or "IIt & stall, CB" modes, the purpose of this setting is to check for the life of the protection scheme after the CB_CLOSED input has been activated. Based on the values of the phase currents, the completion of the startup period cannot be judged. So in this mode of operation, the value of the time delay setting can even be as high as within the range of seconds, for example around 30 seconds.

The BLOCK input signal is used to block the operation of the MOT_START output. The activation of the BLOCK input signal deactivates the MOT_START output.

Thermal stress calculator

Because of the high current surges during the startup period, a thermal stress is imposed on the rotor. With less air circulation in the ventilation of the rotor before it reaches its full speed, the situation becomes even worse. Consequently, a long startup causes a rapid heating of the rotor.

This module calculates the thermal stress developed in the motor during startup. The heat developed during the starting can be calculated using the formula,

$$W = R_s \int_0^t i_s^2(t) dt$$
 (Equation 55)

R_s combined rotor and stator resistance

is starting current of the motor

t starting time of the motor

This equation is normally represented as the integral of I²t. It is a commonly used method in protective relays to protect the motor from thermal stress during starting. The advantage of this method over the traditional definite time overcurrent protection is that when the motor is started with a reduced voltage as in the star-delta starting method, the starting current is lower. This allows more starting time for the motor since the module is monitoring the integral of I²t.

The module calculates the accumulated heat continuously and compares it to the limiting value obtained from the product of the square of the values of the *Motor start-up A* and *Motor start-up time* settings. When the calculated value of the thermal stress exceeds this limit, the OPR_IIT output is activated.

The module also measures the time START_TIME required by the motor to attain the rated speed and the relative thermal stress IIT_RL. The values are available through the monitored data view.

The BLOCK input is used to reset the operation of thermal stress calculator. The activation of the BLOCK input signal blocks the operation of the OPR IIT output.

Stall protection

This module is activated only when the selected *Operation mode* setting value is "IIt & stall" or "IIt & stall, CB".

The startup current is specific to each motor and depends on the startup method used, like direct on-line, autotransformer and rotor resistance insertion, and so on. The startup time is dependent of the load connected to the motor.

Based on the motor characteristics supplied by the manufacturer, this module is required if the stalling time is shorter than or too close to the starting time. In such cases, a speed switch must be used to indicate whether a motor is accelerating during startup or not.

At motor standstill, the STALL_IND input is active. It indicates that the motor is not running. When the motor is started, at certain revolution the STALL_IND input is deactivated by the speed switch that indicates the motor is running. If the input is not deactivated within *Lock rotor time*, the OPR_STALL output is activated.

The module calculates the duration of the motor in stalling condition, the STALL_RL output indicating the percent ratio of the start situation and the set value of *Lock rotor time*. The value is available through the monitored data view.

The BLOCK input signal is used to block the operation of the OPR_STALL output. The activation of the BLOCK input resets the operate timer.

Cumulative startup protection

This module protects the motor from an excessive number of startups.

Whenever the motor is started, the latest value of START_TIME is added to the existing value of T_ST_CNT and the updated cumulative startup time is available at T_ST_CNT. If the value of T_ST_CNT is greater than the value of *Cumulative time Lim*, the LOCK_START output, that is, the lockout condition for the restart of motor, is enabled. The LOCK_START output remains high until the T_ST_CNT value reduces to a value less than the value of *Cumulative time Lim*. The start time counter reduces at the rate of the value of *Counter Red rate*.

The LOCK_START output becomes activated at the start of MOT_START. The output remains active for a period of *Restart inhibit time*.

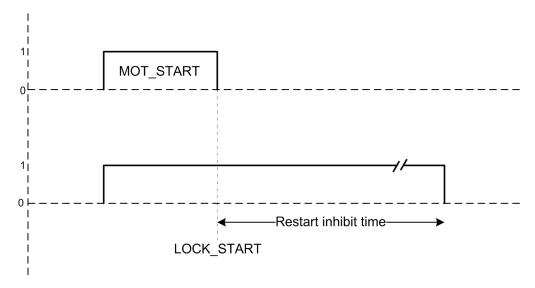


Figure 248: Time delay for cumulative start

This module also protects the motor from consecutive startups. When the LOCK_START output is active, T_RST_ENA shows the possible time for next restart. The value of T_RST_ENA is calculated by the difference of *Restart inhibit time* and the elapsed time from the instant LOCK_START is enabled.

When the ST_EMERG_ENA emergency start is set high, the value of the cumulative startup time counter is set to *Cumulative time Lim* - 60s x *Emg start Red rate*. This disables LOCK_START and in turn makes the restart of the motor possible.

This module also calculates the total number of startups occurred, START_CNT. The value can be reset from the clear menu.

The calculated values of T_RST_ENA, T_ST_CNT and START_CNT are available through the monitored data view.

The BLK_LK_ST input signal is used to block the operation of the LOCK_START output. The activation of the BLOCK input resets the complete operation of the cumulative startup counter module.

6.6.5 Application

When a motor is started, it draws a current well in excess of the motor's full load rating throughout the period it takes for the motor to run up to the rated speed. The motor starting current decreases as the motor speed increases and the value of current remains close to the rotor locked value for most of the acceleration period.

The full voltage starting or the direct-on-line starting method is used out of the many methods used for starting the induction motor. If there is either an electrical or mechanical constraint, this starting method is not suitable. The full voltage starting produces the highest starting torque. A high starting torque is generally required to start a high-inertia load to limit the acceleration time. In this method, full voltage is applied to the motor when the switch is in the "On" position. This method of starting results in a large initial current surge, which is typically four to eight times that of the full-load current drawn by the

motor. If a star-delta starter is used, the value of the line current will only be about one-third of the direct-on-line starting current.

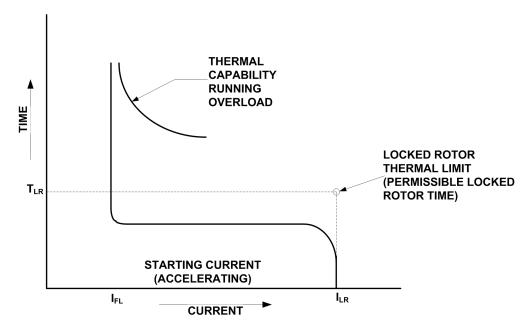


Figure 249: Typical motor starting and capability curves

The startup supervision of a motor is an important function because of the higher thermal stress developed during starting. During the startup, the current surge imposes a thermal strain on the rotor. This is exaggerated as the air flow for cooling is less because the fans do not rotate in their full speed. Moreover, the difference of speed between the rotating magnetic field and the rotor during the startup time induces a high magnitude of slip current in the rotor at frequencies higher than when the motor is at full speed. The skin effect is stronger at higher frequencies and all these factors increase the losses and the generated heat. This is worse when the rotor is locked.

The starting current for slip-ring motors is less than the full load current and therefore it is advisable to use the circuit breaker in the closed position to indicate the starting for such type of motors.

The starting times vary depending on motor design and load-torque characteristics. The time taken may vary from less than two seconds to more than 60 seconds. The starting time is determined for each application.

When the permissible stall time is less than the starting time of the motor, the stalling protection is used and the value of the time delay setting should be set slightly less than the permissible stall time. The speed switch on the motor shaft must be used for detecting whether the motor begins to accelerate or not. However, if the safe stall time is longer than the startup time of the motor, the speed switch is not required.

The failure of a motor to accelerate or to reach its full nominal speed in an acceptable time when the stator is energized is caused by several types of abnormal conditions, including a mechanical failure of the motor or load bearings, low supply voltage, open circuit in one phase of a three-phase voltage supply or too high starting voltage. All these abnormal conditions result in overheating.

Repeated starts increase the temperature to a high value in the stator or rotor windings, or both, unless enough time is allowed for the heat to dissipate. To ensure a safe operation it is necessary to provide a fixed-time interval between starts or limit the number of starts within a period of time. This is why the motor manufacturers have restrictions on how many starts are allowed in a defined time interval. This function does not allow starting of the motor if the number of starts exceeds the set level in the register that calculates them. This insures that the thermal effects on the motor for consecutive starts stay within permissible levels.

For example, the motor manufacturer may state that three starts at the maximum are allowed within 4 hours and the startup situation time is 60 seconds. By initiating three successive starts we reach the situation as illustrated. As a result, the value of the register adds up to a total of 180 seconds. Right after the third start has been initiated, the output lock of start of motor is activated and the fourth start will not be allowed, provided the time limit has been set to 121 seconds.

Furthermore, a maximum of three starts in 4 hours means that the value of the register should reach the set start time counter limit within 4 hours to allow a new start. Accordingly, the start time counter reduction should be 60 seconds in 4 hours and should thus be set to 60 s / 4 h = 15 s / h.

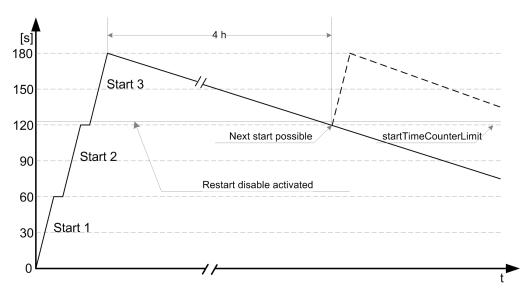


Figure 250: Typical motor-starting and capability curves

Setting of Cumulative time Lim

Cumulative time Lim is calculated by

$$\sum t_{si} = (n-1) \times t + margin \tag{Equation 56}$$

$$\text{n} \qquad \text{specified maximum allowed number of motor startups}$$

$$\text{t} \qquad \text{startup time of the motor (in seconds)}$$

$$\text{margin} \qquad \text{safety margin (\sim10...20 percent)}$$

Setting of Counter Red rate

Counter Red rate is calculated by

$$\Delta \sum t_{\rm S} = \frac{t}{t_{\rm reset}} \tag{Equation 57}$$

t specified start time of the motor in seconds

 t_{reset} duration during which the maximum number of motor startups stated by the manufacturer can be made; time in hours

6.6.6 Signals

Table 397: 66/51LRS Input signals

Name	Туре	Default Description	
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block of function
BLK_LK_ST	BOOLEAN	0=False Blocks lock out condition for restart of motor	
CB_CLOSED	BOOLEAN	0=False	Input showing the status of motor circuit breaker
STALL_IND	BOOLEAN	0=False	Input signal for showing the motor is not stalling
ST_EMERG_ENA	BOOLEAN	0=False	Enable emergency start to disable lock of start of motor

Table 398: 66/51LRS Output signals

Name	Туре	Description			
OPR_IIT	BOOLEAN	Trip signal for thermal stress.			
OPR_STALL	BOOLEAN	Trip signal for stalling protection.			
MOT_START	BOOLEAN	Signal to show that motor startup is in progress			
LOCK_START	BOOLEAN	Lock out condition for restart of motor.			

6.6.7 Settings

Table 399: 66/51LRS Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Start detection A	0.110.0	xln	0.1	1.5 Current value for detecting starting of motor.	
Motor start-up A	1.010.0	xln	0.1	2.0	Motor starting current
Motor start-up time	180	S	1	5	Motor starting time
Lock rotor time	2120	s	1	10	Permitted stalling time
Str over delay time	060000	ms	1	100	Time delay to check for completion of motor startup period

Table 400: 66/51LRS Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Disable / Enable
Operation mode	1=IIt 2=IIt, CB 3=IIt + stall 4=IIt + stall, CB			1=llt	Motor start-up operation mode
Counter Red rate	2.0250.0	s/h	0.1	60.0	Start time counter reduction rate
Cumulative time Lim	1500	s	1	10	Cumulative time based restart inhibit limit
Emg start Red rate	0.00100.00	%	0.01	20.00	Start time reduction factor when emergency start is On
Restart inhibit time	0250	min	1	30	Time delay between consecutive startups
Motor standstill A	0.050.20	xln	0.01	0.12	Current limit to check for motor standstill condition

6.6.8 Monitored data

Table 401: 66/51LRS Monitored data

Name	Туре	Values (Range)	Unit	Description
START_CNT	INT32	0999999		Number of motor start-ups occurred
START_TIME	FLOAT32	0.0999.9	s	Measured motor latest startup time in sec
T_ST_CNT	FLOAT32	0.099999.9	s	Cumulated start-up time in sec
T_RST_ENA	INT32	0999	min	Time left for restart when lockstart is enabled in minutes
IIT_RL	FLOAT32	0.00100.00	%	Thermal stress relative to set maximum thermal stress
STALL_RL	FLOAT32	0.00100.00	%	Pickup time relative to the trip time for stall condition
66/51LRS	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

6.6.9 Technical data

Table 402: 27PS Technical data

Characteristic	Value			
Pickup accuracy	Depending on the frequency of the current measured: f _n ±2Hz			
	±1.5% of the set value or ±0.002 x I _n			
Pickup time ¹ , ²		Minimum	Typical	Maximum
	I _{Fault} = 1.1 x set <i>Pickup</i> detection A	27 ms	30 ms	34 ms
Trip time accuracy	±1.0% of the set value or ±20 ms			
Reset ratio		Typical 0.90		

^{1.} Current before = 0.0 x I_n, f_n = 60 Hz, overcurrent in one phase, results based on statistical distribution of 1000 measurements.

^{2.} Includes the delay of the signal output contact.

6.7 Cable fault detection, CFD

6.7.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Phase discontinuity protection	RCFD	RCFD	CFD

6.7.2 Function block

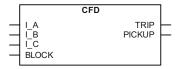


Figure 251: Function block

6.7.3 Functionality

The self-clearing fault detection function (CFD) calculates half cycle DFT of the current signal for all the three phases and uses it to detect a self clearing fault pronounced primarily in underground circuits.

The function provides individual counter values for number of times a self-clearing fault is observed in each phase. The function also determines whether the self-clearing fault is observed in all the three phases or not.

This function contains a blocking functionality. It is possible to block the function outputs, or the function itself, if desired.

6.7.4 Operation principle

The *Operation* setting is used to enable or disable the function. When selected "On" the function is enabled and respectively "Off" means function is disabled.

The operation of CFD can be described by using a module diagram (see Figure 252 below). All the modules in the diagram are explained in the next sections.

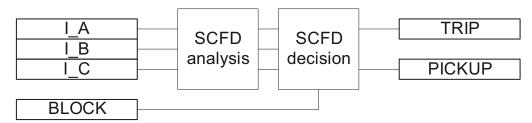


Figure 252: Functional module diagram.

SCFD analysis

The SCFD (Self Clearing Fault Detection) Analysis module detects the self clearing fault in each phase by comparing the corresponding phase current magnitude with the set value *PhPu*.

If the phase current I_A magnitude goes above 2 times the set value PhPu, the module calculates the time duration for which the current I_A is continuously stays above 2 times the set value PhPu. If the calculated time duration is greater than ½ cycles, and less than the number of cycles set by CyMulit, it regards that the self clearing fault is observed in phase A and DetectfaultPhA in monitored data is set to TRUE. If the time duration criterion fails, the PickUpNoTripA in monitored data is set to TRUE. Once the self clearing fault is detected in phase A, function increments the count SCA in monitored data, which keeps record of the number of times the fault has been detected.

Self clearing faults in phase B and phase C are detected similarly as explained for phase A in above paragraph, by comparing I_B and I_C magnitudes with the set value *PhPu* and by checking the time duration. If the fault is detected in phase B or phase C the DetectfaultPhB or respectively DetectfaultPhC in monitored data are set to TRUE. If the time duration criterion fails for phase B or phase C, the corresponding PickUpNoTripB or PickUpNoTripC in monitored data is set to TRUE. Once the fault is detected in phase B or phase C, the corresponding fault counts SCB or SCC is incremented.

If the setting AdapPhPu is set to TRUE, the threshold setting value PhPu is adaptively calculated for each phase separately. The adaptive threshold value set equal to the average of the phase current over the 2^{nd} and 3^{rd} cycle after the setting AdapPhPu is set to TRUE. Until the 3^{rd} cycle the set value PhPu is used for detecting the self clearing fault. After the 3^{rd} cycle adaptively calculated threshold value for each phase is used for detecting the self clearing fault.

This adaptive threshold implementation for each phase is considered only if the average of the phase current over the 2^{nd} and 3^{rd} cycle is greater than setting *AbsMinLoad*. Otherwise the set value *PhPu* is considered for corresponding phase fault detection.

SCFD decision

If the self clearing fault is detected in at least one phase, the PICKUP and TRIP outputs are set to TRUE. Also SCDetect in monitored data is set to TRUE.

When one phase detects a fault, the algorithm waits for 1 cycle time and during this period if other two phases have detected a fault, the event is considered as three phase event and the Event3Ph in monitored data is set to TRUE.

Activation of the BLOCK input deactivates all the binary outputs.

6.7.5 Signals

Table 403: CFD Input signals

Name	Туре	Default	Description	
I_A	SIGNAL	0	Phase A current	
I_B	SIGNAL	0	Phase B current	
I_C	SIGNAL	0	Phase C current	
BLOCK	BOOL	0=FALSE	Block overall function.	

Table 404: CFD Output signals

Name	Туре	Description
TRIP	BOOLEAN	Trip
PICKUP	BOOLEAN	Pickup

6.7.6 Settings

Table 405: CFD Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
PhPu	0 100000		1	500	Fault Pickup parameter Threshold
CyMulit	1 20		1	5	Fault detect threshold parameter cycles
AbsMinLoad	0300		1	100	Absolute min loading on the feeder
AdapPhPu	01		1	1	Adaptive phase pickup

Table 406: CFD Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation				5=Disable	Operation Disable / Enable
	1=Enable				•
	5=Disable				

6.7.7 Monitored data

Table 407: CFD Monitored data

Name	Туре	Values (Range)	Unit	Description
PICKUP	BOOLEAN	0=False 1=True		Pickup
TRIP	BOOLEAN	0=False 1=True		Trip
PICKUP_DUR	FLOAT32	0.00100.00	%	Ratio of pickup time/trip time
SCDetect	BOOLEAN	0=False 1=True		SC Fault detect
Event3Ph	BOOLEAN	0=False 1=True		Three phase event
PickUpNoTripA	BOOLEAN	0=False 1=True		Pick up no trip Phase A
PickUpNoTripB	BOOLEAN	0=False 1=True		Pick up no trip Phase B
PickUpNoTripC	BOOLEAN	0=False 1=True		Pick up no trip Phase C
SCA				Number of faults in Phase A
SCB				Number of faults in Phase B
SCC				Number of faults in Phase C
DetectfaultPhA	BOOLEAN	0=False 1=True		Fault detected in Phase A
DetectfaultPhB	BOOLEAN	0=False 1=True		Fault detected in Phase B
DetectfaultPhC	BOOLEAN	0=False 1=True		Fault detected in Phase C

6.8 Runtime counter for machines and devices, OPTM

6.8.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Operation time counter	MDSOPT	OPTS	OPTM

6.8.2 Function block

Figure 253: Function block

6.8.3 Functionality

The generic operation time counter function OPTM calculates and presents the accumulated operation time of a machine or device as the output. The unit of time for accumulation is hour. The function generates a warning and an alarm when the accumulated operation time exceeds the set limits. It utilizes a binary input to indicate the active operation condition.

The accumulated operation time is one of the parameters for scheduling a service on the equipment like motors. It indicates the use of the machine and hence the mechanical wear and tear. Generally, the equipment manufacturers provide a maintenance schedule based on the number of hours of service.

6.8.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the generic operation time counter can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

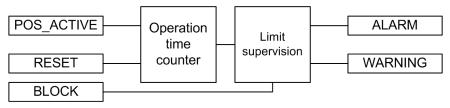


Figure 254: Functional module diagram

Operation time counter

This module counts the operation time. When POS_ACTIVE is active, the count is continuously added to the time duration until it is deactivated. At any time the OPR_TIME

output is the total duration for which POS_ACTIVE is active. The unit of time duration count for OPR_TIME is hour. The value is available through the Monitored data view.

The OPR_TIME output is a continuously increasing value and it is stored in a non-volatile memory. When POS_ACTIVE is active, the OPR_TIME count starts increasing from the previous value. The count of OPR_TIME saturates at the final value of 299999, that is, no further increment is possible. The activation of RESET can reset the count to the *Initial value* setting.

Limit Supervision

This module compares the motor run-time count to the set values of *Warning value* and *Alarm value* to generate the WARNING and ALARM outputs respectively when the counts exceed the levels.

The activation of the WARNING and ALARM outputs depends on the *Operating time mode* setting. Both WARNING and ALARM occur immediately after the conditions are met if *Operating time mode* is set to "Immediate". If *Operating time mode* is set to "Timed Warn", WARNING is activated within the next 24 hours at the time of the day set using the *Operating time hour* setting. If *Operating time mode* is set to "Timed Warn Alm", the WARNING and ALARM outputs are activated at the time of day set using *Operating time hour*.

The *Operating time hour* setting is used to set the hour of day in Coordinated Universal Time (UTC). The setting has to be adjusted according to the local time and local daylight-saving time.

The function contains a blocking functionality. Activation of the BLOCK input blocks both WARNING and ALARM.

6.8.5 Application

The machine operating time since commissioning indicates the use of the machine. For example, the mechanical wear and lubrication requirement for the shaft bearing of the motors depend on the use hours.

If some motor is used for long duration runs, it might require frequent servicing, while for a motor that is not used regularly the maintenance and service are scheduled less frequently. The accumulated operating time of a motor together with the appropriate settings for warning can be utilized to trigger the condition based maintenance of the motor.

The operating time counter combined with the subsequent reset of the operating-time count can be used to monitor the motor's run time for a single run.

Both the long term accumulated operating time and the short term single run duration provide valuable information about the condition of the machine and device. The information can be co-related to other process data to provide diagnoses for the process where the machine or device is applied.

6.8.6 Signals

Table 408: OPTM Input signals

Name	Туре	Default	Description
BLOCK	BOOLEAN	0=False	Block input status
POS_ACTIVE	BOOLEAN	0=False	When active indicates the equipment is running
RESET	BOOLEAN	0=False	Resets the accumulated operation time to initial value

Table 409: OPTM Output signals

Name	Туре	Description		
ALARM	BOOLEAN	Alarm accumulated operation time exceeds Alarm value		
WARNING	BOOLEAN	Warning accumulated operation time exceeds Warning value		

6.8.7 Settings

Table 410: OPTM Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Off / On
Warning value	0299999	h	1	8000	Warning value for operation time supervision
Alarm value	0299999	h	1	10000	Alarm value for operation time supervision
Initial value	0299999	h	1	0	Initial value for operation time supervision
Operating time hour	023	h	1	0	Time of day when alarm and warning will occur
Operating time mode	1=Immediate 2=Timed Warn 3=Timed Warn Alm			1=Immediate	Operating time mode for warning and alarm

6.8.8 Monitored data

Table 411: OPTM Monitored data

Name	Туре	Values (Range)	Unit	Description
ОРТМ	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status
OPR_TIME	INT32	0299999	h	Total operation time in hours

6.8.9 Technical data

Table 412: OPTM Technical data

Description	Value
Motor run-time measurement accuracy ¹	±0.5%

^{1.} Of the reading, for a stand-alone IED, without time synchronization.

Section 7 Control functions

7.1 Circuit-breaker control, 52

7.1.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Circuit breaker control	CBXCBR	I<->0 CB	52

7.1.2 Function block

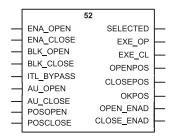


Figure 255: Function block

7.1.3 Functionality

The circuit breaker control function 52 is intended for circuit breaker control and status information purposes. This function executes commands and evaluates block conditions and different time supervision conditions. The function performs an execution command only if all conditions indicate that a switch operation is allowed. If erroneous conditions occur, the function indicates an appropriate cause value. The function is designed according to the IEC 61850-7-4 standard with logical nodes CILO, CSWI and XCBR.

The circuit breaker control function has an operation counter for closing and opening cycles. The operator can read and write the counter value remotely from an operator place or via LHMI.

7.1.4 Operation principle

Status indication and validity check

The object state is defined by two digital inputs POSOPEN and POSCLOSE which are also available as outputs OPENPOS and CLOSEPOS together with the OKPOS information. The debouncing and short disturbances in an input are eliminated by filtering. The binary input filtering time can be adjusted separately for each digital input used by the function block. The validity of the digital inputs that indicate the object state is used as additional

information in indications and event logging. The reporting of faulty or intermediate position circuit breaker contacts occurs after the *Event delay* setting, assuming that the circuit breaker is still in a corresponding state.

Table 413: Status indication

Status (POSITION)	POSOPEN/OPENPOS	POSCLOSE/CLOSEPOS	OKPOS
1=Open	1=True	0=False	1=True
2=Closed	0=False	1=True	1=True
3=Faulty/Bad (11)	1=True	1=True	0=False
0=Intermediate (00)	0=False	0=False	0=False

Blocking

52 has a blocking functionality to prevent human errors that can cause serious injuries for the operator and damages for the system components.

The basic principle for all blocking signals is that they affect the commands of other clients: the operator place and protection and autoreclose functions, for example. The blocking principles are the following:

- Enabling the open command: the function is used to block the operation of the open command. Note that this block signal also affects the OPEN input of immediate command
- Enabling the close command: the function is used to block the operation of the close command. Note that this block signal also affects the CLOSE input of immediate command.

The ITL_BYPASS input is used if the interlocking functionality needs to be bypassed. When INT_BYPASS is TRUE, the circuit breaker control is made possible by discarding the ENA_OPEN and ENA_CLOSE input states. However, the BLK_OPEN and BLK_CLOSE input signals are not bypassed with the interlocking bypass functionality since they always have higher priority.

Open and close operations

The corresponding open and close operations are available via communication, binary inputs or LHMI commands. As a prerequisite for control commands, there are enable and block functionalities for both the close and open commands. If the control command is executed against the blocking, or if the enabling of the corresponding command is not valid, CBXCBR generates an error message.

Open and close pulse widths

The pulse width type can be defined with the *Adaptive pulse* setting. The function provides two modes to characterize the opening and closing pulse widths. When the *Adaptive pulse* is set to TRUE, it causes a variable pulse width, which means that the output pulse is deactivated when the object state shows that the circuit breaker has entered the correct state. When the *Adaptive pulse* is set to FALSE, the function always uses the maximum pulse width, defined by the user-configurable *Pulse length* setting. The *Pulse length* setting is the same for both the opening and closing commands. When the circuit breaker

already is in the right position, the maximum pulse length is given. Note that the *Pulse length* setting does not affect the length of the trip pulse.

Control methods

The command execution mode can be set with the *Control model* setting. The alternatives for command execution are direct control and secured object control, which can be used to secure controlling.

The secured object control SBO is an important feature of the communication protocols that support horizontal communication, because the command reservation and interlocking signals can be transferred with a bus. All secured control operations require two-step commands: a selection step and an execution step. The secured object control is responsible for the following tasks:

- Command authority: ensures that the command source is authorized to operate the object
- Mutual exclusion: ensures that only one command source at a time can control the object
- Interlocking: allows only safe commands
- Execution: supervises the command execution
- Command cancelling: cancels the controlling of a selected object.

In direct operate, a single message is used to initiate the control action of a physical device. The direct operate method uses less communication network capacity and bandwidth than the SBO method, because the procedure needs fewer messages for accurate operation.

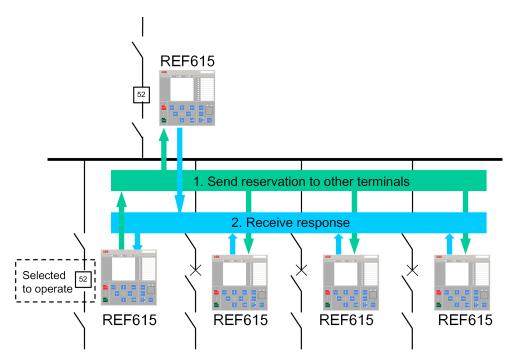


Figure 256: Control procedure in SBO method

7.1.5 Application

In the field of distribution and sub-transmission automation, reliable control and status indication of primary switching components both locally and remotely is in a significant role. They are needed especially in modern remotely controlled substations.

Control and status indication facilities are implemented in the same package with 52. When primary components are controlled in the energizing phase, for example, the user must ensure that the control commands are executed in a correct sequence. This can be achieved, for example, with interlocking based on the status indication of the related primary components. An example of how the interlocking on substation level can be applied by using the IEC61850 GOOSE messages between feeders is as follows:

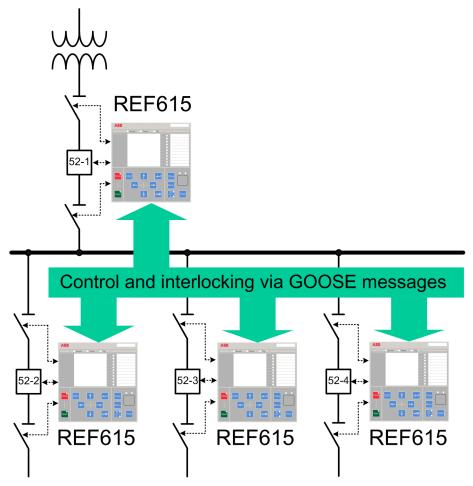


Figure 257: Status indication based interlocking via GOOSE messaging

7.1.6 Signals

Table 414: 52 Input signals

Name	Туре	Default	Description
ENA_OPEN	BOOLEAN	1=True	Enables opening
ENA_CLOSE	BOOLEAN	1=True	Enables closing
BLK_OPEN	BOOLEAN	0=False	Blocks opening
BLK_CLOSE	BOOLEAN	0=False	Blocks opening
ITL_BYPASS	BOOLEAN	0=False	Discards ENA_OPEN and ENA_CLOSE interlocking when TRUE
AU_OPEN	BOOLEAN	0=False	Input signal used to open the breaker ¹
AU_CLOSE	BOOLEAN	0=False	Input signal used to close the breaker
POSOPEN	BOOLEAN	0=False	Signal for open position of apparatus from I/O
POSCLOSE	BOOLEAN	0=False	Signal for closed position of apparatus from I/O

^{1.} Not available for monitoring

Table 415: 52 Output signals

Name	Туре	Description			
SELECTED	BOOLEAN	Object selected			
EXE_OP	BOOLEAN	Executes the command for open direction			
EXE_CL	BOOLEAN	Executes the command for close direction			
OPENPOS	BOOLEAN	Apparatus open position			
CLOSEPOS	BOOLEAN	Apparatus closed position			
OKPOS	BOOLEAN	Apparatus position is ok			
OPEN_ENAD	BOOLEAN	Opening is enabled based on the input status			
CLOSE_ENAD	BOOLEAN	Closing is enabled based on the input status			

7.1.7 Settings

Table 416: 52 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Select timeout	10000300000	ms	10000	60000	Select timeout in ms
Pulse length	1060000	ms	1	100	Open and close pulse length
Operation	1=Enable 5=Disable			1=Enable	Operation mode on/off/test
Operation counter	010000			0	Breaker operation cycles
Control model	0=status-only 1=direct-with-normal-security 4=sbo-with-enhanced-security			4=sbo-with-enhanced-security	Select control model
Adaptive pulse	0=False 1=True			1=True	Stop in rigth position
Event delay	010000	ms	1	100	Event delay of the intermediate position
Operation timeout	1060000	ms		500	Timeout for negative termination

7.1.8 Monitored data

Table 417: 52 Monitored data

Name	Туре	Values (Range)	Unit	Description
POSITION	Dbpos	0=intermediate 1=open 2=closed 3=faulty		Apparatus position indication

7.1.9 Technical revision history

Table 418: CBXCBR Technical revision history

Technical revision	Change			
В	Interlocking bypass input (ITL BYPASS) and			
	opening enabled (OPEN ENAD)/closing enabled			
	(CLOSE_ENAD) outputs added. ITL_BYPASS			
	bypasses the ENA_OPEN and ENA_CLOSE states.			

7.2 Auto-reclosing 79

7.2.1 Identification

Function description	IEC 61850 logical node name	IEC 60617 identification	ANSI/IEEE C37.2 device number	
Auto-recloser	DARREC	O>I	79	

7.2.2 Function block

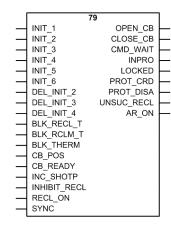


Figure 258: Function block

7.2.3 Functionality

About 80 to 85 percent of faults in the MV overhead lines are transient and automatically cleared with a momentary de-energization of the line. The rest of the faults, 15 to 20 percent, can be cleared by longer interruptions. The de-energization of the fault location for a selected time period is implemented through automatic reclosing, during which most of the faults can be cleared.

In case of a permanent fault, the automatic reclosing is followed by final tripping. A permanent fault must be located and cleared before the fault location can be re-energized.

The autoreclose function AR can be used with any circuit breaker suitable for autoreclosing. The function provides five programmable autoreclose shots which can perform one to five successive autoreclosing of desired type and duration, for instance one high-speed and one delayed autoreclosing.

When the reclosing is initiated with pickup of the protection function, the autoreclose function can execute the final trip of the circuit breaker in a short trip time, provided that the fault still persists when the last selected reclosing has been carried out.

7.2.3.1 Protection signal definition

The *Control line* setting defines which of the initiation signals are protection pickup and trip signals and which are not. With this setting, the user can distinguish the blocking

signals from the protection signals. The *Control line* setting is a bit mask, that is, the lowest bit controls the INIT_1 line and the highest bit the INIT_6 line. Some example combinations of the *Control line* setting are as follows:

Table 419: Control line setting definition

Control line setting	INIT_1	INIT_2 DEL_INIT_2	INIT_3 DEL_INIT_3	INIT_4 DEL_INIT_4	INIT_5	INIT_6
0	other	other	other	other	other	other
1	prot	other	other	other	other	other
2	other	prot	other	other	other	other
3	prot	prot	other	other	other	other
4	other	other	prot	other	other	other
5	prot	other	prot	other	other	other
63	prot	prot	prot	prot	prot	prot

prot = protection signal other = non-protection signal

When the corresponding bit or bits in both the *Control line* setting and the INIT_X line are TRUE:

- The CLOSE CB output is blocked until the protection is reset
- If the INIT_X line defined as the protection signal is activated during the discrimination time, the AR function goes to lockout
- If the INIT_X line defined as the protection signal stays active longer than the time set by the *Max trip time* setting, the AR function goes to lockout (long trip)
- The UNSUC_RECL output is activated after a pre-defined two minutes (alarming ground-fault).

7.2.3.2 Zone coordination

Zone coordination is used in the zone sequence between local protection units and downstream devices. At the falling edge of the <code>INC_SHOTP</code> line, the value of the shot pointer is increased by one, unless a shot is in progress or the shot pointer already has the maximum value.

The falling edge of the INC SHOTP line is not accepted if any of the shots are in progress.

7.2.3.3 Master and slave scheme

With the co-operation between the AR units in the same IED or between IEDs, the user can achieve sequential reclosings of two breakers at a line end in a 1½-breaker, double breaker or ring-bus arrangement. One unit is defined as a master and it executes the reclosing first. If the reclosing is successful and no trip takes place, the second unit, that is the slave, is released to complete the reclose shot. With persistent faults, the breaker reclosing is limited to the first breaker.

Figure 259: Master and slave scheme

If the AR unit is defined as a master by setting its terminal priority to high:

- The unit activates the CMD_WAIT output to the low priority slave unit whenever a shot is in progress, a reclosing is unsuccessful or the BLK RCLM T input is active
- The CMD_WAIT output is reset one second after the reclose command is given or if
 the sequence is unsuccessful when the reclaim time elapses.

If the AR unit is defined as a slave by setting its terminal priority to low:

- The unit waits until the master releases the BLK_RECL_T input (the CMD_WAIT output in the master). Only after this signal has been deactivated, the reclose time for the slave unit can be started.
- The slave unit is set to a lockout state if the BLK_RECL_T input is not released within the time defined by the *Max wait time* setting, which follows the initiation of an autoreclose shot.

If the terminal priority of the AR unit is set to "none", the AR unit skips all these actions.

7.2.3.4 Thermal overload blocking

An alarm or pickup signal from the thermal overload protection 49F can be routed to the input BLK_THERM to block and hold the reclose sequence. The BLK_THERM signal does not affect the starting of the sequence. When the reclose time has elapsed and the BLK_THERM input is active, the shot is not ready until the BLK_THERM input deactivates. Should the BLK_THERM input remain active longer than the time set by the setting *Max block time*, the AR function goes to lockout.

If the BLK_THERM input is activated when the auto wait timer is running, the auto wait timer is reset and the timer restarted when the BLK_THERM input deactivates.

7.2.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The reclosing operation can be enabled and disabled with the *Reclosing operation* setting. This setting does not disable the function, only the reclosing functionality. The setting has three parameter values: "Enable", "External Ctl" and "Disable". When the setting value "External Ctl" is selected, the reclosing operation is controlled with the RECL_ON input.

The operation of the autoreclosing function can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

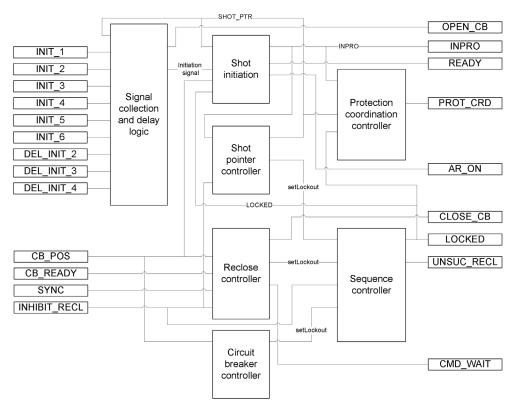


Figure 260: Functional module diagram

7.2.4.1 Signal collection and delay logic

When the protection trips, the initiation of autoreclose shots is in most applications executed with the <code>INIT_1...6</code> inputs. The <code>DEL_INIT2...4</code> inputs are not used. In some situations, pickup of the protection stage is also used for the shot initiation. This is the only time when the <code>DEL_INIT</code> inputs are used.

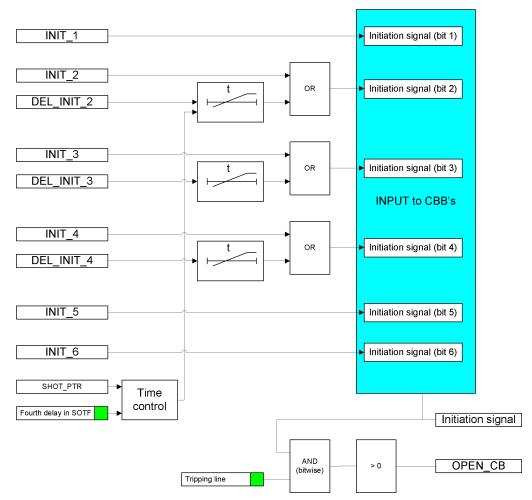


Figure 261: Schematic diagram of delayed initiation input signals

In total, the AR function contains six separate initiation lines used for the initiation or blocking of the autoreclose shots. These lines are divided into two types of channels. In three of these channels, the signal to the AR function can be delayed, whereas the other three channels do not have any delaying capability.

Each channel that is capable of delaying a pickup signal has four time delays. The time delay is selected based on the shot pointer in the AR function. For the first reclose attempt, the first time delay is selected; for the second attempt, the second time delay and so on. For the fourth and fifth attempts, the time delays are the same.

Time delay settings for the DEL INIT 2 signal are as follows:

- Str 2 delay shot 1
- Str 2 delay shot 2
- Str 2 delay shot 3
- Str 2 delay shot 4

Time delay settings for the DEL INIT 3 signal are as follows:

• Str 3 delay shot 1

- Str 3 delay shot 2
- Str 3 delay shot 3
- Str 3 delay shot 4

Time delay settings for the DEL_INIT_4 signal are as follows:

- Str 4 delay shot 1
- Str 4 delay shot 2
- Str 4 delay shot 3
- Str 4 delay shot 4

Normally, only two or three reclose attempts are made. The third and fourth times are used to provide the so called fast final trip to lockout.

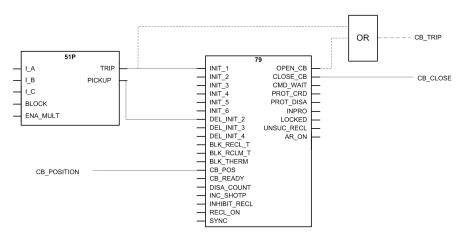


Figure 262: Autoreclose configuration example

Delayed DEL_INIT_2...4 signals are used only when the autoreclose shot is initiated with the pickup signal of a protection stage. After a pickup delay, the AR function opens the circuit breaker and an autoreclose shot is initiated. When the shot is initiated with the trip signal of the protection, the protection function trips the circuit breaker and simultaneously initiates the autoreclose shot.

If the circuit breaker is manually closed against the fault, that is, if SOTF is used, the fourth time delay can automatically be taken into use. This is controlled with the internal logic of the AR function and the *Fourth delay in SOTF* parameter.

A typical autoreclose situation is where one autoreclose shot has been performed after the fault was detected. There are two types of such cases: operation initiated with protection pickup signal and operation initiated with protection trip signal. In both cases, the autoreclose sequence is successful: the reclaim time elapses and no new sequence is started.

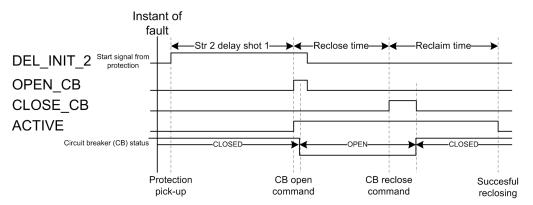


Figure 263: Signal scheme of autoreclose operation initiated with protection pickup signal

The autoreclose shot is initiated with a trip signal of the protection function after the pickup delay time has elapsed. The autoreclose picks up when the *Str 2 delay shot 1* setting elapses.

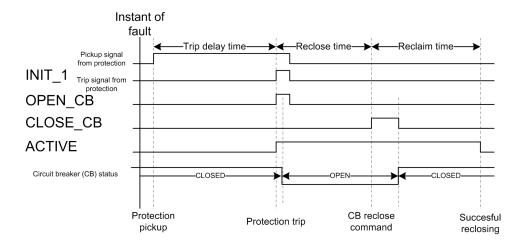


Figure 264: Signal scheme of autoreclose operation initiated with protection trip signal

The autoreclose shot is initiated with a trip signal of the protection function. The autoreclose picks up when the protection trip delay time elapses.

Normally, all trip and pickup signals are used to initiate an autoreclose shot and trip the circuit breaker. If any of the input signals <code>INIT_X</code> or <code>DEL_INIT_X</code> are used for blocking, the corresponding bit in the *Tripping line* setting must be FALSE. This is to ensure that the circuit breaker does not trip from that signal, that is, the signal does not activate the <code>OPEN_CB</code> output. The default value for the setting is "63", which means that all initiation signals activate the <code>OPEN_CB</code> output. The lowest bit in the *Tripping line* setting corresponds to the <code>INIT_1</code> input, the highest bit to the <code>INIT_6</code> line.

7.2.4.2 Shot initiation

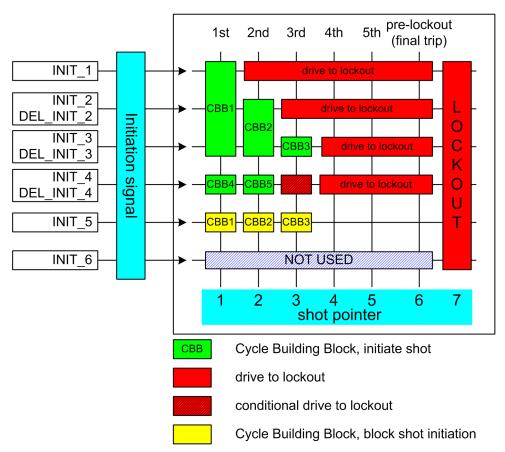


Figure 265: Example of an autoreclose program with a reclose scheme matrix

In the AR function, each shot can be programmed to locate anywhere in the reclose scheme matrix. The shots are like building blocks used to design the reclose program. The building blocks are called CBBs. All blocks are alike and have settings which give the attempt number (columns in the matrix), the initiation or blocking signals (rows in the matrix) and the reclose time of the shot.

The settings related to CBB configuration are:

- First...Seventh reclose time
- Init signals CBB1...CBB7
- Blk signals CBB1...CBB7
- Shot number CBB1...CBB7

The reclose time defines the open and dead times, that is, the time between the OPEN_CB and the CLOSE_CB commands. The *Init signals CBBx* setting defines the initiation signals. The *Blk signals CBBx* setting defines the blocking signals that are related to the CBB (rows in the matrix). The *Shot number CBB1*...*CBB7* setting defines which shot is related to the CBB (columns in the matrix). For example, CBB1 settings are:

- $First\ reclose\ time = 1.0s$
- Init signals CBB1 = 7 (three lowest bits: 000111 = 7)

- Blk signals CBBI = 16 (the fifth bit: 010000 = 16)
- *Shot number CBB1* = 1

CBB2 settings are:

- $Second\ reclose\ time = 10s$
- Init signals CBB2 = 6 (the second and third bits: 000110 = 6)
- Blk signals CBB2 = 16 (the fifth bit: 010000 = 16)
- *Shot number CBB2* = 2

CBB3 settings are:

- Third reclose time = 30s
- Init signals CBB3 = 4 (the third bit: 000100 = 4)
- Blk signals CBB3 = 16 (the fifth bit: 010000 = 16)
- *Shot number CBB3* = 3

CBB4 settings are:

- Fourth reclose time = 0.5s
- Init signals CBB4 = 8 (the fourth bit: 001000 = 8)
- Blk signals CBB4 = 0 (no blocking signals related to this CBB)
- Shot number CBB4 = 1

If a shot is initiated from the INIT_1 line, only one shot is allowed before lockout. If a shot is initiated from the INIT_3 line, three shots are allowed before lockout.

A sequence initiation from the <code>INIT_4</code> line leads to a lockout after two shots. In a situation where the initiation is made from both the <code>INIT_3</code> and <code>INIT_4</code> lines, a third shot is allowed, that is, CBB3 is allowed to start. This is called conditional lockout. If the initiation is made from the <code>INIT_2</code> and <code>INIT_3</code> lines, an immediate lockout occurs.

The INIT_5 line is used for blocking purposes. If the INIT_5 line is active during a sequence start, the reclose attempt is blocked and the AR function goes to lockout.

If more than one CBBs are started with the shot pointer, the CBB with the smallest individual number is always selected. For example, if the <code>INIT_2</code> and <code>INIT_4</code> lines are active for the second shot, that is, the shot pointer is 2, CBB2 is started instead of CBB5.

Even if the initiation signals are not received from the protection functions, the AR function can be set to continue from the second to the fifth reclose shot. The AR function can, for example, be requested to automatically continue with the sequence when the circuit breaker fails to close when requested. In such a case, the AR function issues a CLOSE_CB command. When the wait close time elapses, that is, the closing of the circuit breaker fails, the next shot is automatically started. Another example is the embedded generation on the power line, which can make the synchronism check fail and prevent the reclosing. If the autoreclose sequence is continued to the second shot, a successful synchronous reclosing is more likely than with the first shot, since the second shot lasts longer than the first one.

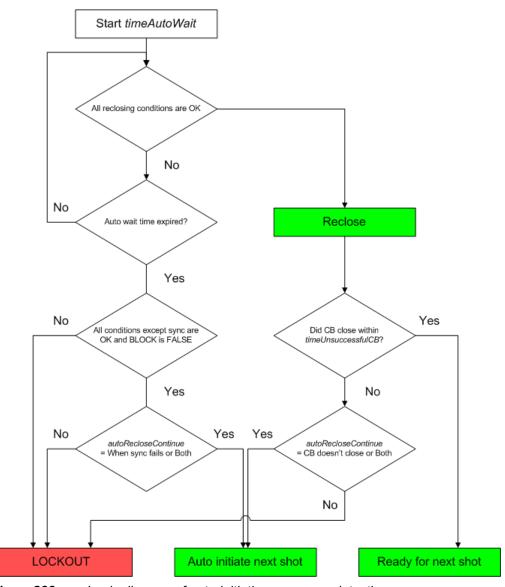


Figure 266: Logic diagram of auto-initiation sequence detection

Automatic initiation can be selected with the *Auto initiation Cnd* setting to be the following:

- Not allowed: no automatic initiation is allowed
- When the synchronization fails, the automatic initiation is carried out when the auto wait time elapses and the reclosing is prevented due to a failure during the synchronism check
- When the circuit breaker does not close, the automatic initiation is carried out if the circuit breaker does not close within the wait close time after issuing the reclose command
- Both: the automatic initiation is allowed when synchronization fails or the circuit breaker does not close.

The *Auto init* parameter defines which <code>INIT_X</code> lines are activated in the auto-initiation. The default value for this parameter is "0", which means that no auto-initiation is selected.

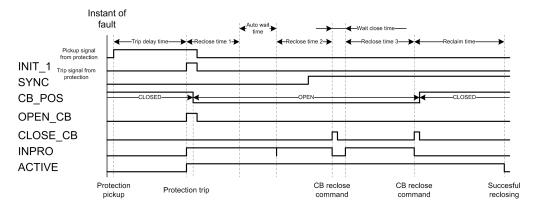


Figure 267: Example of an auto-initiation sequence with synchronization failure in the first shot and circuit breaker closing failure in the second shot

In the first shot, the synchronization condition is not fulfilled (SYNC is FALSE). When the auto wait timer elapses, the sequence continues to the second shot. During the second reclosing, the synchronization condition is fulfilled and the close command is given to the circuit breaker after the second reclose time has elapsed.

After the second shot, the circuit breaker fails to close when the wait close time has elapsed. The third shot is started and a new close command is given after the third reclose time has elapsed. The circuit breaker closes normally and the reclaim time starts. When the reclaim time has elapsed, the sequence is concluded successful.

7.2.4.3 Shot pointer controller

The execution of a reclose sequence is controlled by a shot pointer. It can be adjusted with the SHOT PTR monitored data.

The shot pointer starts from an initial value "1" and determines according to the settings whether or not a certain shot is allowed to be initiated. After every shot, the shot pointer value increases. This is carried out until a successful reclosing or lockout takes place after a complete shot sequence containing a total of five shots.

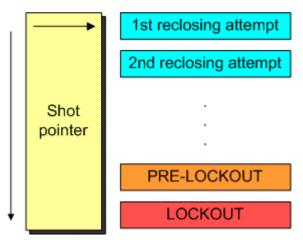


Figure 268: Shot pointer function

Every time the shot pointer increases, the reclaim time starts. When the reclaim time ends, the shot pointer sets to its initial value, unless no new shot is initiated. The shot pointer increases when the reclose time elapses or at the falling edge of the INC SHOTP signal.

When SHOT_PTR has the value six, the AR function is in a so called pre-lockout state. If a new initiation occurs during the pre-lockout state, the AR function goes to lockout. Therefore, a new sequence initiation during the pre-lockout state is not possible.

The AR function goes to the pre-lockout state in the following cases:

- During SOTF
- When the AR function is active, it stays in a pre-lockout state for the time defined by the reclaim time
- When all five shots have been executed
- When the frequent operation counter limit is reached. A new sequence initiation forces the AR function to lockout

7.2.4.4 Reclose controller

The reclose controller calculates the reclose, discrimination and reclaim times. The reclose time is started when the INPRO signal is activated, that is, when the sequence starts and the activated CBB defines the reclose time.

When the reclose time has elapsed, the CLOSE_CB output is not activated until the following conditions are fulfilled:

- The SYNC input must be TRUE if the particular CBB requires information about the synchronism
- All AR initiation inputs that are defined protection lines (using the *Control line* setting) are inactive
- The circuit breaker is open
- The circuit breaker is ready for the close command, that is, the CB_READY input is TRUE.

If at least one of the conditions is not fulfilled within the time set with the *Auto wait time* parameter, the autoreclose sequence is locked.

The synchronism requirement for the CBBs can be defined with the *Synchronisation set* setting, which is a bit mask. The lowest bit in the *Synchronisation set* setting is related to CBB1 and the highest bit to CBB7. For example, if the setting is set to "1", only CBB1 requires synchronism. If the setting is it set to "7", CBB1, CBB2 and CBB3 require the SYNC input to be TRUE before the reclosing command can be given.



Figure 269: Initiation during discrimination time - AR function goes to lockout

The discrimination time starts when the close command CLOSE_CB has been given. If a pickup input is activated before the discrimination time has elapsed, the AR function goes to lockout. The default value for each discrimination time is zero. The discrimination time can be adjusted with the *Dsr time shot 1...4* parameter.

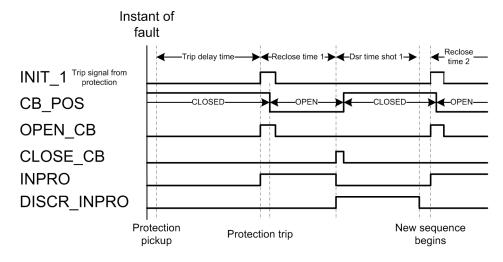


Figure 270: Initiation after elapsed discrimination time - new shot begins

7.2.4.5 Sequence controller

When the LOCKED output is active, the AR function is in lockout. This means that new sequences cannot be initialized, because AR is insensitive to initiation commands. It can be released from the lockout state in the following ways:

- The function is reset through communication with the RsRec parameter
- The lockout is automatically reset after the reclaim time, if the *Auto lockout reset* setting is in use.

If the *Auto lockout reset* setting is not in use, the lockout can be released only with the *RsRec* parameter.

The AR function can go to lockout for many reasons:

- The INHIBIT RECL input is active
- All shots have been executed and a new initiation is made (final trip)
- The time set with the *Auto wait time* parameter expires and the automatic sequence initiation is not allowed because of a synchronization failure
- The time set with the *Wait close time* parameter expires, that is, the circuit breaker does not close or the automatic sequence initiation is not allowed due to a closing failure of the circuit breaker
- A new shot is initiated during the discrimination time
- The time set with the *Max wait time* parameter expires, that is, the master unit does not release the slave unit
- The frequent operation counter limit is reached and new sequence is initiated. The lockout is released when the recovery timer elapses
- The protection trip signal has been active longer than the time set with the *Max wait time* parameter since the shot initiation
- The circuit breaker is closed manually during an autoreclose sequence and the manual close mode is FALSE.

7.2.4.6 Protection coordination controller

The PROT_CRD output is used for controlling the protection functions. In several applications, such as fuse-saving applications involving down-stream fuses, tripping and initiation of shot 1 should be fast (instantaneous or short-time delayed). The tripping and initiation of shots 2, 3 and definite tripping time should be delayed.

In this example, two overcurrent elements 51P and 50P-2 are used. 50P-2 is given an instantaneous characteristic and 51P is given a time delay.

The PROT_CRD output is activated, if the SHOT_PTR value is higher than the value defined with the *Protection crd limit* setting and all initialization signals have been reset. The PROT_CRD output is reset under the following conditions:

- If the cut-out time elapses
- If the reclaim time elapses and the AR function is ready for a new sequence
- If the AR function is in lockout or disabled, that is, if the value of the *Protection crd mode* setting is "AR inoperative" or "AR inop, CB man".

The PROT_CRD output can also be controlled with the *Protection crd mode* setting. The setting has the following modes:

• "no condition": the PROT_CRD output is controlled only with the *Protection crd limit* setting

- "AR inoperative": the PROT_CRD output is active, if the AR function is disabled or in the lockout state, or if the INHIBIT RECL input is active
- "CB close manual": the PROT_CRD output is active for the reclaim time if the circuit breaker has been manually closed, that is, the AR function has not issued a close command
- "AR inop, CB man": both the modes "AR inoperative" and "CB close manual" are effective
- "always": the PROT CRD output is constantly active

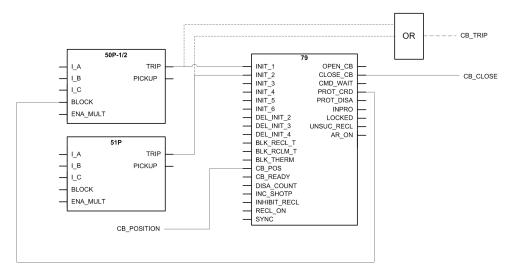


Figure 271: Configuration example of using the PROT_CRD output for protection blocking

If the *Protection crd limit* setting has the value "1", the instantaneous three-phase overcurrent protection function 50P-3 is disabled or blocked after the first shot.

7.2.4.7 Circuit breaker controller

Circuit breaker controller contains two features: SOTF and frequent-operation counter. SOTF protects the AR function in permanent faults.

The circuit breaker position information is controlled with the *CB closed Pos status* setting. The setting value "TRUE" means that when the circuit breaker is closed, the CB_POS input is TRUE. When the setting value is "FALSE", the CB_POS input is FALSE, provided that the circuit breaker is closed. The reclose command pulse time can be controlled with the *Close pulse time* setting: the CLOSE_CB output is active for the time set with the *Close pulse time* setting. The CLOSE_CB output is deactivated also when the circuit breaker is detected to be closed, that is, when the CB_POS input changes from open state to closed state. The *Wait close time* setting defines the time after the CLOSE_CB command activation, during which the circuit breaker should be closed. If the closing of circuit breaker does not happen during this time, the autoreclose function is driven to lockout or, if allowed, an auto-initiation is activated.

The main motivation for autoreclosing to begin with is the assumption that the fault is temporary by nature, and that a momentary de-energizing of the power line and an automatic reclosing restores the power supply. However, when the power line is manually

energized and an immediate protection trip is detected, it is very likely that the fault is of a permanent type. An example of a permanent fault is, for example, energizing a power line into a forgotten grounding after a maintenance work along the power line. In such cases, SOTF is activated, but only for the reclaim time after energizing the power line and only when the circuit breaker is closed manually and not by the AR function.

SOTF disables any initiation of an autoreclose shot. The energizing of the power line is detected from the CB POS information.

SOTF is activated when the AR function is enabled or when the AR function is started and the SOTF should remain active for the reclaim time.

When SOTF is detected, the parameter *SOTF* is active.

If the *Manual close mode* setting is set to FALSE and the circuit breaker has been manually closed during an autoreclose shot, the AR unit goes to an immediate lockout.

If the *Manual close mode* setting is set to TRUE and the circuit breaker has been manually closed during an autoreclose shot (the INPRO is active), the shot is considered as completed.

When SOTF starts, reclaim time is restarted, provided that it is running.

The frequent-operation counter is intended for blocking the autoreclose function in cases where the fault causes repetitive autoreclose sequences during a short period of time. For instance, if a tree causes a short circuit and, as a result, there are autoreclose shots within a few minutes interval during a stormy night. These types of faults can easily damage the circuit breaker if the AR function is not locked by a frequent-operation counter.

The frequent-operation counter has three settings:

- Frq Op counter limit
- Frq Op counter time
- Frq Op recovery time

The Frq Op counter limit setting defines the number of reclose attempts that are allowed during the time defined with the Frq Op counter time setting. If the set value is reached within a pre-defined period defined with the Frq Op counter time setting, the AR function goes to lockout when a new shot begins, provided that the counter is still above the set limit. The lockout is released after the recovery time has elapsed. The recovery time can be defined with the Frq Op recovery time setting.

If the circuit breaker is manually closed during the recovery time, the reclaim time is activated after the recovery timer has elapsed.

7.2.5 Counters

The AR function contains six counters. Their values are stored in a semi-retain memory. The counters are increased at the rising edge of the reclose command. The counters count the following situations:

- COUNTER: counts every reclose command activation
- CNT SHOT1: counts reclose commands that are executed from shot 1
- CNT SHOT2: counts reclose commands that are executed from shot 2
- CNT SHOT3: counts reclose commands that are executed from shot 3
- CNT SHOT4: counts reclose commands that are executed from shot 4
- CNT SHOT5: counts reclose commands that are executed from shot 5

The counters are disabled through communication with the *DsaCnt* parameter. When the counters are disabled, the values are not updated.

The counters are reset through communication with the *RsCnt* parameter.

7.2.6 Application

Modern electric power systems can deliver energy to users very reliably. However, different kind of faults can occur. Protection relays play an important role in detecting failures or abnormalities in the system. They detect faults and give commands for corresponding circuit breakers to isolate the defective element before excessive damage or a possible power system collapse occurs. A fast isolation also limits the disturbances caused for the healthy parts of the power system.

The faults can be transient, semi-transient or permanent. For example, a permanent fault in power cables means that there is a physical damage in the fault location that must first be located and repaired before the network voltage can be restored.

In overhead lines, the insulating material between phase conductors is air. The majority of the faults are flash-over arcing faults caused by lightning, for example. Only a short interruption is needed for extinguishing the arc. These faults are transient by nature.

A semi-transient fault can be caused for example by a bird or a tree branch falling on the overhead line. The fault disappears on its own if the fault current burns the branch or the wind blows it away.

Transient and semi-transient faults can be cleared by momentarily de-energizing the power line. Using the autoreclose function minimizes interruptions in the power system service and brings the power back on-line quickly and effortlessly.

The basic idea of the autoreclose function is simple. In overhead lines, where the possibility of self-clearing faults is high, the autoreclose function tries to restore the power by reclosing the breaker. This is a method to get the power system back into normal operation by removing the transient or semi-transient faults. Several trials, that is, autoreclose shots are allowed. If none of the trials is successful and the fault persists, definite final tripping follows.

The autoreclose function can be used with every circuit breaker that has the ability for a reclosing sequence. In 79 autoreclose function the implementing method of autoreclose sequences is patented by ABB

Table 420: Important definitions related to autoreclosing

autoreclose shot	an operation where after a preset time the breaker is closed from the breaker tripping caused by protection
autoreclose seguence	a predefined method to do reclose attempts (shots) to restore the power system
SOTF	If the protection detects a fault immediately after an open circuit breaker has been closed, it indicates that the fault was already there. It can be, for example, a forgotten grounding after maintenance work. Such closing of the circuit breaker is known as switch on to fault. Autoreclosing in such conditions is prohibited.
final trip	Occurs in case of a permanent fault, when the circuit breaker is opened for the last time after all programmed autoreclose operations. Since no autoreclosing follows, the circuit breaker remains open. This is called final trip or definite trip.

7.2.6.1 Shot initiation

In some applications, the PICKUP signal is used for initiating or blocking autoreclose shots, in other applications the TRIP command is needed. In its simplest, the autoreclose function is initiated after the protection has detected a fault, issued a trip and opened the breaker. One input is enough for initiating the function.

The function consists of six individual initiation lines INIT_1, INIT_2... INIT 6 and delayed initiation lines DEL_INIT_x. The user can use as many of the initiation lines as required. Using only one line makes setting easier, whereas by using multiple lines, higher functionality can be achieved. Basically, there are no differences between the initiation lines, except that the lines 2, 3 and 4 have the delayed initiation DEL_INIT inputs, and lines 1, 5 and 6 do not.

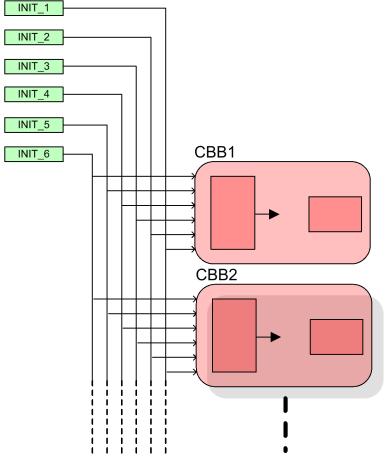


Figure 272: Simplified CBB initiation diagram

INIT_1... 6initiation lines

CBB1...CBB2 first two cycle building blocks

The operation of a CBB consists of two parts: initiation and execution. In the initiation part, the status of the initiation lines is compared to the CBB settings. In order to allow the initiation at any of the initiation line activation, the corresponding switch in the *Init signals CBB* parameter must be set to TRUE. In order to block the initiation, the corresponding switch in the *Blk signals CBB* parameter must be set to TRUE.

If any of the initiation lines set with the *Init signals CBB*_ parameter is active and no initiation line causes blocking, the CBB requests for execution.

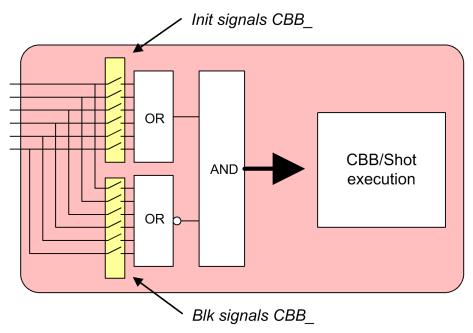


Figure 273: Simplified CBB diagram

Each CBB has individual *Init signals CBB*_ and *Blk signals CBB*_ settings. Therefore, each initiation line can be used for both initiating and blocking any or all autoreclose shots.

Other conditions that must be fulfilled before any CBB can be initiated are, for example, the closed position of the circuit breaker.

7.2.6.2 Sequence

The autoreclose sequence is implemented by using up to seven CBBs. For example, if the user wants a sequence of three shots then only the first three CBBs are needed. Using building blocks instead of fixed shots gives enhanced flexibility, allowing multiple and adaptive sequences.

Each CBB is identical. The *Shot number CBB*_ setting defines at which point in the autoreclose sequence the CBB should be performed, that is, whether the particular CBB is going to be the first, second, third, fourth or fifth shot.

During the initiation of a CBB, the conditions of initiation and blocking are checked. This is done for all CBBs simultaneously. Each CBB that fulfils the initiation conditions requests an execution.

The function also keeps track of shots already performed. That is, at which point the autoreclose sequence is from shot 1 to lockout. For example, if shots 1 and 2 have already been performed, only shots 3 to 5 are allowed.

Additionally, the *Enable shot jump* setting gives two possibilities:

- Only such CBBs that are set for the next shot in the sequence can be accepted for execution. For example, if the next shot in the sequence should be shot 2, a request from CBB set for shot 3 is rejected.
- Any CBB that is set for the next shot or any of the following shots can be accepted for execution. For example, if the next shot in the sequence should be shot 2, also

CBBs that are set for shots 3, 4 and 5 are accepted. In other words, shot 2 can be ignored.

In case there are multiple CBBs allowed for execution, the CBB with the smallest number is chosen. For example, if CBB2 and CBB4 request an execution, CBB2 is allowed to execute the shot.

The autoreclose function can perform up to five autoreclose shots or cycles.

7.2.6.3 Configuration examples

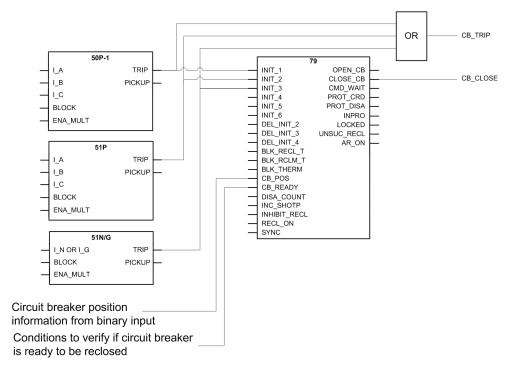


Figure 274: Example connection between protection and autoreclose functions in IED configuration

It is possible to create several sequences for a configuration.

Autoreclose sequences for overcurrent and non-directional ground-fault protection applications where high speed and delayed autoreclosings are needed can be as follows:

Example 1

The sequence is implemented by two shots which have the same reclose time for all protection functions, namely 50P-1, 51P and 51N/G. The initiation of the shots is done by activating the trip signals of the protection functions.

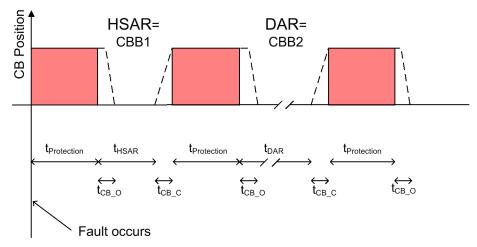


Figure 275: Autoreclose sequence with two shots

 $\begin{array}{lll} t_{HSAR} & \text{Time delay of high-speed autoreclosing, here: } \textit{First reclose time} \\ t_{DAR} & \text{Time delay of delayed autoreclosing, here: } \textit{Second reclose time} \\ t_{Protection} & \text{Operating time for the protection stage to clear the fault} \\ t_{CB_O} & \text{Operating time for opening the circuit breaker} \\ t_{CB_C} & \text{Operating time for closing the circuit breaker} \end{array}$

In this case, the sequence needs two CBBs. The reclosing times for shot 1 and shot 2 are different, but each protection function initiates the same sequence. The CBB sequence is as follows:

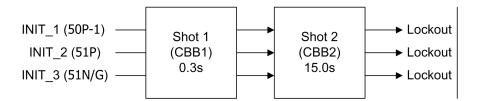


Figure 276: Two shots with three initiation lines

Table 421: Settings for configuration example 1

Setting name	Setting value
Shot number CBB1	1
Init signals CBB1	7 (lines 1,2 and 3 = 1+2+4 = 7)
First reclose time	0.3s (an example)
Shot number CBB2	2
Init signals CBB2	7 (lines 1,2 and 3 = 1+2+4 = 7)
Second reclose time	15.0s (an example)

Example 2

There are two separate sequences implemented with three shots. Shot 1 is implemented by CBB1 and it is initiated with the high stage of the overcurrent protection (50P-1). Shot 1 is set as a high-speed autoreclosing with a short time delay. Shot 2 is implemented with

CBB2 and meant to be the first shot of the autoreclose sequence initiated by the low stage of the overcurrent protection (51P) and the low stage of the non-directional ground-fault protection (51N/G). It has the same reclose time in both situations. It is set as a high-speed autoreclosing for corresponding faults. The third shot, which is the second shot in the autoreclose sequence initiated by 51P or 51N/G, is set as a delayed autoreclosing and executed after an unsuccessful high-speed autoreclosing of a corresponding sequence.

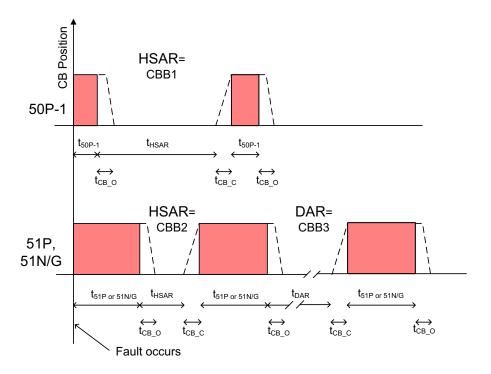


Figure 277: Autoreclose sequence with two shots with different shot settings according to initiation signal

t _{HSAR}	Time delay of high-speed autoreclosing, here: First reclose time
t _{DAR}	Time delay of delayed autoreclosing, here: Second reclose time
$t_{l>>}$	Operating time for the 50P-1 protection stage to clear the fault
t _{l>} or _{lo>}	Operating time for the 51P or 51N/G protection stage to clear the fault
t _{CB_O}	Operating time for opening the circuit breaker
t _{CB,C}	Operating time for closing the circuit breaker

In this case, the number of needed CBBs is three, that is, the first shot's reclosing time depends on the initiation signal. The CBB sequence is as follows:

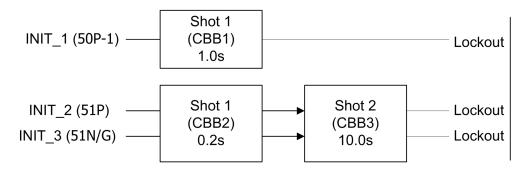


Figure 278: Three shots with three initiation lines

If the sequence is initiated from the INIT_1 line, that is, the overcurrent protection high stage, the sequence is one shot long. On the other hand, if the sequence is initiated from the INIT 2 or INIT 3 lines, the sequence is two shots long.

Table 422: Settings for configuration example 2

Setting name	Setting value
Shot number CBB1	1
Init signals CBB1	1 (line 1)
First reclose time	0.0s (an example)
Shot number CBB2	1
Init signals CBB2	6 (lines 2 and 3 = 2+4 = 6)
Second reclose time	0.2s (an example)
Shot number CBB3	2
Init signals CBB3	6 (lines 2 and 3 = 2+4 = 6)
Third reclose time	10.0s

7.2.6.4 Delayed initiation lines

The autoreclose function consists of six individual autoreclose initiation lines INIT 1...INIT 6 and three delayed initiation lines:

- DEL_INIT_2
- DEL_INIT_3
- DEL INIT 4

DEL_INIT_2 and INIT_2 are connected together with an OR-gate, as are inputs 3 and 4. Inputs 1, 5 and 6 do not have any delayed input. From the autoreclosing point of view, it does not matter whether INIT_x or DEL_INIT_x line is used for shot initiation or blocking.

The autoreclose function can also open the circuit breaker from any of the initiation lines. It is selected with the *Tripping line* setting. As a default, all initiation lines activate the OPEN CB output.

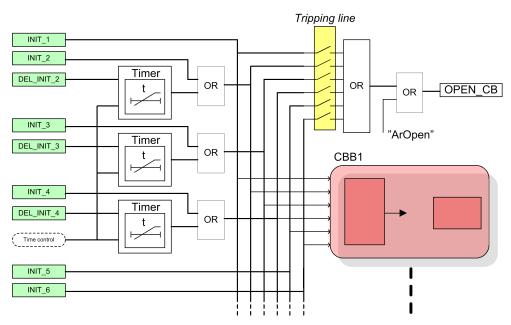


Figure 279: Simplified logic diagram of initiation lines

Each delayed initiation line has four different time settings:

Table 423: Settings for delayed initiation lines

Setting name	Description and purpose
Str x delay shot 1	Time delay for the DEL_INIT_x line, where x is the number of the line 2, 3 or 4. Used for shot 1.
Str x delay shot 2	Time delay for the DEL_INIT_x line, used for shot 2.
Str x delay shot 3	Time delay for the $\mathtt{DEL_INIT_x}$ line, used for shot 3.
Str x delay shot 4	Time delay for the DEL_INIT_x line, used for shots 4 and 5. Optionally, can also be used with SOTF.

7.2.6.5 Shot initiation from protection pickup signal

All autoreclose shots are initiated by protection trips. As a result, all trip times in the sequence are the same. This is why using protection trips may not be the optimal solution. Using protection pickup signals instead of protection trips for initiating shots shortens the trip times.

Example 1

When a two-shot-sequence is used, the pickup information from the protection function is routed to the DEL_INIT 2 input and the trip information to the INIT_2 input. The following conditions have to apply:

- protection trip time = 0.5s
- $Str\ 2\ delay\ shot\ 1 = 0.05s$
- $Str\ 2\ delay\ shot\ 2 = 60s$
- $Str\ 2\ delay\ shot\ 3 = 60s$

Operation in a permanent fault:

- 1. Protection picks up and activates the DEL INIT 2 input.
- 2. After 0.05 seconds, the first autoreclose shot is initiated. The function opens the circuit breaker: the OPEN_CB output activates. The total trip time is the protection pickup delay + 0.05 seconds + the time it takes to open the circuit breaker.
- 3. After the first shot, the circuit breaker is reclosed and the protection picks up again.
- 4. Because the delay of the second shot is 60 seconds, the protection is faster and trips after the set operation time, activating the INIT 2 input. The second shot is initiated.
- 5. After the second shot, the circuit breaker is reclosed and the protection picks up again.
- 6. Because the delay of the second shot is 60 seconds, the protection is faster and trips after the set operation time. No further shots are programmed after the final trip. The function is in lockout and the sequence is considered unsuccessful.

Example 2

The delays can be used also for fast final trip. The conditions are the same as in Example 1, with the exception of $Str\ 2$ delay shot 3 = 0.10 seconds.

The operation in a permanent fault is the same as in Example 1, except that after the second shot when the protection picks up again, $Str\ 2$ delay shot 3 elapses before the protection trip time and the final trip follows. The total trip time is the protection pickup delay $+\ 0.10$ seconds + the time it takes to open the circuit breaker.

7.2.6.6 Fast trip in Switch on to fault

The Str_delay shot 4 parameter delays can also be used to achieve a fast and accelerated trip with SOTF. This is done by setting the Fourth delay in SOTF parameter to "1" and connecting the protection pickup information to the corresponding DEL INIT input.

When the function detects a closing of the circuit breaker, that is, any other closing except the reclosing done by the function itself, it always prohibits shot initiation for the time set with the *Reclaim time* parameter. Furthermore, if the *Fourth delay in SOTF* parameter is "1", the *Str delay shot 4* parameter delays are also activated.

Example 1

The protection operation time is 0.5 seconds, the *Fourth delay in SOTF* parameter is set to "1" and the *Str 2 delay shot 4* parameter is 0.05 seconds. The protection pickup signal is connected to the DEL_INIT_2 input.

If the protection picks up after the circuit breaker closes, the fast trip follows after the set 0.05 seconds. The total trip time is the protection pickup delay + 0.05 seconds + the time it takes to open the circuit breaker.

7.2.7 Signals

Table 424: 79 Input signals

Name	Туре	Default	Description
INIT_1	BOOLEAN	0=False	AR initialization / blocking signal 1
INIT_2	BOOLEAN	0=False	AR initialization / blocking signal 2
INIT_3	BOOLEAN	0=False	AR initialization / blocking signal 3
INIT_4	BOOLEAN	0=False	AR initialization / blocking signal 4
INIT_5	BOOLEAN	0=False	AR initialization / blocking signal 5
INIT_6	BOOLEAN	0=False	AR initialization / blocking signal 6
DEL_INIT_2	BOOLEAN	0=False	Delayed AR initialization / blocking signal 2
DEL_INIT_3	BOOLEAN	0=False	Delayed AR initialization / blocking signal 3
DEL_INIT_4	BOOLEAN	0=False	Delayed AR initialization / blocking signal 4
BLK_RECL_T	BOOLEAN	0=False	Blocks and resets reclose time
BLK_RCLM_T	BOOLEAN	0=False	Blocks and resets reclaim time
BLK_THERM	BOOLEAN	0=False	Blocks and holds the reclose shot from the thermal overload
CB_POS	BOOLEAN	0=False	Circuit breaker position input
CB_READY	BOOLEAN	1=True	Circuit breaker status signal
INC_SHOTP	BOOLEAN	0=False	A zone sequence coordination signal
INHIBIT_RECL	BOOLEAN	0=False	Interrupts and inhibits reclosing sequence
RECL_ON	BOOLEAN	0=False	Level sensitive signal for allowing (high) / not allowing (low) reclosing
SYNC	BOOLEAN	0=False	Synchronizing check fulfilled

Table 425: 79 Output signals

Name	Туре	Description
OPEN_CB	BOOLEAN	Open command for circuit breaker
CLOSE_CB	BOOLEAN	Close (reclose) command for circuit breaker
CMD_WAIT	BOOLEAN	Wait for master command
INPRO	BOOLEAN	Reclosing shot in progress, activated during dead time
LOCKED	BOOLEAN	Signal indicating that AR is locked out
PROT_CRD	BOOLEAN	A signal for coordination between the AR and the protection
UNSUC_RECL	BOOLEAN	Indicates an unsuccessful reclosing sequence
AR_ON	BOOLEAN	Autoreclosing allowed
READY	BOOLEAN	Indicates that the AR is ready for a new sequence

7.2.8 Settings

Table 426: 79 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			5=Disable	Operation Off/On
Reclosing operation	1=Off 2=External Ctl 3=On			1=Off	Reclosing operation (Off, External Ctl / On)
Manual close mode	0=False 1=True			0=False	Manual close mode
Wait close time	5010000	ms	50	250	Allowed CB closing time after reclose command
Max wait time	1001800000	ms	100	10000	Maximum wait time for haltDeadTime release
Max trip time	10010000	ms	100	10000	Maximum wait time for deactivation of protection signals
Close pulse time	1010000	ms	10	200	CB close pulse time
Max Thm block time	1001800000	ms	100	10000	Maximum wait time for thermal blocking signal deactivation
Cut-out time	01800000	ms	100	10000	Cutout time for protection coordination
Reclaim time	1001800000	ms	100	10000	Reclaim time
Dsr time shot 1	010000	ms	100	0	Discrimination time for first reclosing
Dsr time shot 2	010000	ms	100	0	Discrimination time for second reclosing
Dsr time shot 3	010000	ms	100	0	Discrimination time for third reclosing
Dsr time shot 4	010000	ms	100	0	Discrimination time for fourth reclosing
Terminal priority	1=None 2=Low (follower) 3=High (master)			1=None	Terminal priority
Synchronisation set	0127			0	Selection for synchronizing requirement for reclosing
Auto wait time	060000	ms	10	2000	Wait time for reclosing condition fullfilling
Auto lockout reset	0=False 1=True			1=True	Automatic lockout reset
Protection crd limit	15			1	Protection coordination shot limit
Protection crd mode	1=No condition 2=AR inoperative 3=CB close manual 4=AR inop, CB man 5=Always			4=AR inop, CB man	Protection coordination mode
Auto initiation cnd	1=Not allowed 2=When sync fails 3=CB doesn't close 4=Both			2=When sync fails	Auto initiation condition
Tripping line	063			0	Tripping line, defines INIT inputs which cause OPEN_CB activation
Control line	063			63	Control line, defines INIT inputs which are protection signals
Enable shot jump	0=False 1=True			1=True	Enable shot jumping
CB closed Pos status	0=False 1=True			1=True	Circuit breaker closed position status

Parameter	Values (Range)	Unit	Step	Default	Description
Fourth delay in SOTF	0=False 1=True			0=False	Sets 4th delay into use for all DEL_INIT signals during SOTF
First reclose time	0300000	ms	10	5000	Dead time for CBB1
Second reclose time	0300000	ms	10	5000	Dead time for CBB2
Third reclose time	0300000	ms	10	5000	Dead time for CBB3
Fourth reclose time	0300000	ms	10	5000	Dead time for CBB4
Fifth reclose time	0300000	ms	10	5000	Dead time for CBB5
Sixth reclose time	0300000	ms	10	5000	Dead time for CBB6
Seventh reclose time	0300000	ms	10	5000	Dead time for CBB7
Init signals CBB1	063			0	Initiation lines for CBB1
Init signals CBB2	063			0	Initiation lines for CBB2
Init signals CBB3	063			0	Initiation lines for CBB3
Init signals CBB4	063			0	Initiation lines for CBB4
Init signals CBB5	063			0	Initiation lines for CBB5
Init signals CBB6	063			0	Initiation lines for CBB6
Init signals CBB7	063			0	Initiation lines for CBB7
Blk signals CBB1	063			0	Blocking lines for CBB1
Blk signals CBB2	063			0	Blocking lines for CBB2
Blk signals CBB3	063			0	Blocking lines for CBB3
Blk signals CBB4	063			0	Blocking lines for CBB4
Blk signals CBB5	063			0	Blocking lines for CBB5
Blk signals CBB6	063			0	Blocking lines for CBB6
Blk signals CBB7	063			0	Blocking lines for CBB7
Shot number CBB1	05			0	Shot number for CBB1
Shot number CBB2	05			0	Shot number for CBB2
Shot number CBB3	05			0	Shot number for CBB3
Shot number CBB4	05			0	Shot number for CBB4
Shot number CBB5	05			0	Shot number for CBB5
Shot number CBB6	05			0	Shot number for CBB6
Shot number CBB7	05			0	Shot number for CBB7
Str 2 delay shot 1	0300000	ms	10	0	Delay time for start2, 1st reclose
Str 2 delay shot 2	0300000	ms	10	0	Delay time for start2 2nd reclose
Str 2 delay shot 3	0300000	ms	10	0	Delay time for start2 3rd reclose
Str 2 delay shot 4	0300000	ms	10	0	Delay time for start2, 4th reclose
Str 3 delay shot 1	0300000	ms	10	0	Delay time for start3, 1st reclose
Str 3 delay shot 2	0300000	ms	10	0	Delay time for start3 2nd reclose
Str 3 delay shot 3	0300000	ms	10	0	Delay time for start3 3rd reclose
Str 3 delay shot 4	0300000	ms	10	0	Delay time for start3, 4th reclose
Str 4 delay shot 1	0300000	ms	10	0	Delay time for start4, 1st reclose
Str 4 delay shot 2	0300000	ms	10	0	Delay time for start4 2nd reclose
Str 4 delay shot 3	0300000	ms	10	0	Delay time for start4 3rd reclose

Section 7 Control functions

Parameter	Values (Range)	Unit	Step	Default	Description
Str 4 delay shot 4	0300000	ms	10	0	Delay time for start4, 4th reclose
Frq Op counter limit	0250			0	Frequent operation counter lockout limit
Frq Op counter time	1250	min		1	Frequent operation counter time
Frq Op recovery time	1250	min		1	Frequent operation counter recovery time
Auto init	063			0	Defines INIT lines that are activated at auto initiation

7.2.9 Monitored data

Table 427: 79 Monitored data

Name	Туре	Values (Range)	Unit	Description
DISA_COUNT	BOOLEAN	0=False 1=True		Signal for counter disabling
FRQ_OPR_CNT	INT32	02147483647		Frequent operation counter
FRQ_OPR_AL	BOOLEAN	0=False 1=True		Frequent operation counter alarm
STATUS	Enum	-2=Unsuccessful -1=Not defined 1=Ready 2=In progress 3=Successful		AR status signal for IEC61850
ACTIVE	BOOLEAN	0=False 1=True		Reclosing sequence is in progress
INPRO_1	BOOLEAN	0=False 1=True		Reclosing shot in progress, shot 1
INPRO_2	BOOLEAN	0=False 1=True		Reclosing shot in progress, shot 2
INPRO_3	BOOLEAN	0=False 1=True		Reclosing shot in progress, shot 3
INPRO_4	BOOLEAN	0=False 1=True		Reclosing shot in progress, shot 4
INPRO_5	BOOLEAN	0=False 1=True		Reclosing shot in progress, shot 5
DISCR_INPRO	BOOLEAN	0=False 1=True		Signal indicating that discrimination time is in progress
CUTOUT_INPRO	BOOLEAN	0=False 1=True		Signal indicating that cut-out time is in progress
SUC_RECL	BOOLEAN	0=False 1=True		Indicates a successful reclosing sequence
UNSUC_CB	BOOLEAN	0=False 1=True		Indicates an unsuccessful CB closing
CNT_SHOT1	INT32	02147483647		Resetable operation counter, shot 1
CNT_SHOT2	INT32	02147483647		Resetable operation counter, shot 2
CNT_SHOT3	INT32	02147483647		Resetable operation counter, shot 3
CNT_SHOT4	INT32	02147483647		Resetable operation counter, shot 4
CNT_SHOT5	INT32	02147483647		Resetable operation counter, shot 5
COUNTER	INT32	02147483647		Resetable operation counter, all shots
SHOT_PTR	INT32	06		Shot pointer value
MAN_CB_CL	BOOLEAN	0=False 1=True		Indicates CB manual closing during reclosing sequence
SOTF	BOOLEAN	0=False 1=True		Switch-onto-fault
79	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

7.2.10 Technical data

Table 428: 79 Technical data

Characteristic	Value
Trip time accuracy	±1.0% of the set value or ±20 ms

7.3 Synchronism and energizing check, 25

7.3.1 Identification

Functional description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Synchronism and energizing check	SECRSYN	SYNC	25

7.3.2 Function block

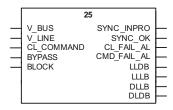


Figure 280: Function block

7.3.3 Functionality

The synchrocheck function 25 checks the condition across the circuit breaker from separate power system parts and gives the permission to close the circuit breaker. 25 function includes the functionality of synchrocheck and energizing check.

Asynchronous operation mode is provided for asynchronously running systems. The main purpose of the asynchronous operation mode is to provide a controlled closing of circuit breakers when two asynchronous systems are connected.

The synchrocheck operation mode checks that the voltages on both sides of the circuit breaker are perfectly synchronized. It is used to perform a controlled reconnection of two systems which are divided after islanding and it is also used to perform a controlled reconnection of the system after reclosing.

The energizing check function checks that at least one side is dead to ensure that closing can be done safely.

The function contains a blocking functionality. It is possible to block function outputs and timers if desired.

7.3.4 Operation principle

The function can be enabled and disabled with the Operation setting. The corresponding parameter values are Enable and Disable.

The synchrocheck function has two parallel functionalities, the synchrocheck and energizing check functionality. The operation of the synchronism and energizing check function can be described using a module diagram. All the modules in the diagram are explained in the next sections.

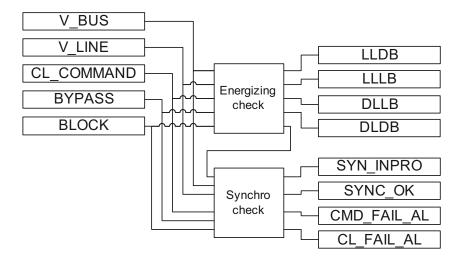


Figure 281: Functional module diagram

The synchrocheck function can operate either with V_AB or V_A voltages. The selection of used voltages is defined with the VT connection setting of the line voltage general parameters.

Energizing check

The energizing check function checks the energizing direction. Energizing is defined as a situation where a dead network part is connected to an energized section of the network. The conditions of the network sections to be controlled by the circuit breaker, that is, which side has to be live and which side dead, are determined by the setting. A situation where both sides are dead is possible as well. The actual value for defining the dead line or bus is given with the *Dead bus value* and *Dead line value* settings. Similarly, the actual values of live line or bus are defined with the *Live bus value* and *Live line value* settings.

Live dead mode	Description
Both Dead	Both Line and Bus de-energized
Live L, Dead B	Bus de-energized and Line energized
Dead L, Live B	Line de-energized and Bus energized
Dead Bus, L Any	Both Line and Bus de-energized or Bus de-energized and Line energized
Dead L, Bus Any	Both Line and Bus de-energized or Line de-energized and bus energized
One Live, Dead	Bus de-energized and Line energized or Line de-energized and Bus energized
Not Both Live	Both Line and Bus de-energized or Bus de-energized and Line energized or Line de-energized and Bus energized

Table 429: Live dead mode of operation under which switching can be carried out

When the energizing direction corresponds to the settings, the situation has to be constant for a time set with the *Energizing time* setting, before the circuit breaker closing is permitted. The purpose of this time delay is to make sure that the dead side remains de-energized and also that the situation is not caused by a temporary interference. If the conditions do not persist for a specified operate time, timer is reset and the procedure is restarted when the conditions allow again. The circuit breaker closing is not permitted, if the measured voltage on the live side is greater than the set value of *Max energizing V*.

The measured energized state is available as monitored data value ENERG_STATE and as four function outputs LLDB (live line / dead bus), LLLB (live line / live bus), DLLB (dead line / live bus) and DLDB (dead line / dead bus) of which only one can be active at a time. It is also possible that the measured energized state indicates "Unknown", if at least one of the measured voltages is between the limits set with the dead and live settings parameters.

Synchro check

The synchrocheck function measures the difference between the line voltage and bus voltage. The function trips and issues a closing command to the circuit breaker when the calculated closing angle is equal to the measured phase angle and if the following conditions are simultaneously fulfilled.

- The measured line and bus voltages are higher than set values of Live bus value and Live line value (ENERG_STATE equals to "Both Live").
- The measured bus and line frequency are both within the range of 95 to 105 percent of the value of fn.
- The measured voltages for the line and bus are less than set value of Max energizing V.

In case *Syncro check mode* is set to "Synchronous", the additional conditions must be fulfilled:

- In the synchronous mode, the closing is attempted so that the phase difference at closing is close to zero.
- The synchronous mode is only possible when the frequency slip is below 0.1 percent of the value of fn.
- The voltage difference must not exceed the 1 percent of the value of U_n.

In case *Syncro check mode* is set to "Asynchronous", the additional conditions must be fulfilled

- The measured difference of the voltages is less than the set value of *Difference* voltage.
- The measured difference of the phase angles is less than the set value of *Difference angle*.
- The measured difference in frequency is less than the set value of *Frequency difference*.
- The estimated breaker closing angle is decided to be less than the set value of *Difference angle*.

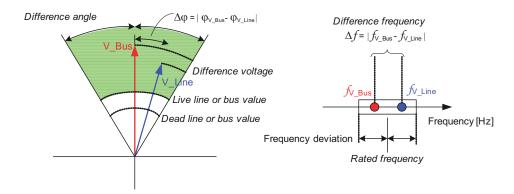


Figure 282: Conditions to be fulfilled when detecting synchronism between systems

When the frequency, phase angle and voltage conditions are fulfilled, the duration of the synchronism conditions is checked so as to ensure that they are still met when the condition is determined on the basis of the measured frequency and phase difference. Depending on the circuit breaker and the closing system, the delay from the moment the closing signal is given until the circuit breaker finally closes is about 50 - 250 ms. The selected *Closing time* of CB informs the function how long, the conditions have to persist. The synchrocheck function compensates for the measured slip frequency and the circuit breaker closing delay. The phase angle advance is calculated continuously with the formula:

ΦV_BUS	Measured bus voltage phase angle
ϕ_{V_LINE}	Measured line voltage phase angle
fv_Bus	Measured bus frequency
f _{V_LINE}	Measured line frequency
ТСВ	Total circuit breaker closing delay, including the delay of the relay output contacts defined with the Closing time of CB setting parameter value

The closing angle is the estimated angle difference after the breaker closing delay.

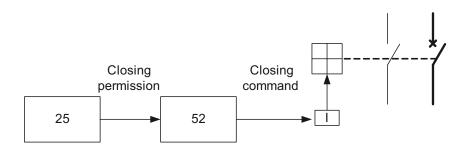
The *Minimum Syn time* setting time can be set, if required, to demand the minimum time within which conditions must be simultaneously fulfilled before the SYNC_OK output is activated.

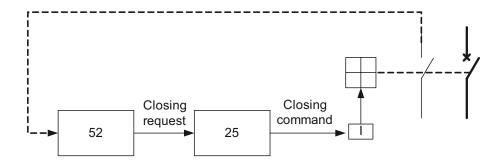
The measured voltage, frequency and phase angle difference values between the two sides of the circuit breaker are available as monitored data values V_DIFF_MEAS, FR_DIFF_MEAS and PH_DIFF_MEAS. Also, the indications of the conditions that are not fulfilled and thus preventing the breaker closing permission, are available as monitored data values V_DIFF_SYNC, PH_DIF_SYNC and FR_DIFF_SYNC. These monitored data values are updated only when the synchrocheck enabled with the *Synchro check mode* setting and the measured ENERG_STATE is "Both Live".

Continuous mode

The synchrocheck functionality can be selected with the *Control mode* setting. The "Continuous" mode can be used for two different operating conditions, the most typical of which is where both sides of the circuit breaker to be closed are live. The synchronism is always checked before the circuit breaker is given the permission to close. The other situation is where one or both sides of the circuit breaker to be closed are dead and, consequently, the frequency and phase difference cannot be measured. In this case, the function checks the energizing direction. The user is able to define the voltage range within which the measured voltage is determined to be "live" or "dead".

The continuous control mode is selected with the *Control mode* setting. In the continuous control mode, the synchrocheck is continuously checking the synchronism. When the synchronism conditions or the energizing check conditions are fulfilled, the SYNC_OK output is activated and it remains activated as long as the conditions remain fulfilled. The command input is ignored in the continuous control mode. The mode is used for situations where the synchrocheck only gives the permission to the control block that executes the CB closing.




Figure 283: A simplified block diagram of the synchrocheck function in the continuous mode operation

Command mode

If *Control mode* is set to "Command", the purpose of the synchrocheck functionality in the command mode is to find the instant when the voltages on both sides of the circuit breaker are in synchronism. The conditions for synchronism are met when the voltages on both

sides of the circuit breaker have the same frequency and are in phase with a magnitude that makes the concerned busbars or lines can be regarded as live.

In the command control mode operation, an external command signal CL_COMMAND, besides the normal closing conditions, is needed for delivering the closing signal. In the command control mode operation, the synchrocheck function itself closes the breaker via the SYNC_OK output when the conditions are fulfilled. In this case, the control function block delivers the command signal to close the synchrocheck function for the releasing of a closing signal pulse to the circuit breaker. If the closing conditions are fulfilled during a permitted check time set with *Maximum Syn time*, after the command signal is delivered for closing, the synchrocheck function delivers a closing signal to the circuit breaker.

Figure 284: A simplified block diagram of the synchrocheck function in the command mode operation

The closing signal is delivered only once for each activated external closing command signal. The pulse length of the delivered closing is set with the Close pulse setting.

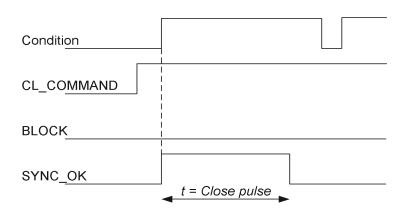


Figure 285: Determination of the pulse length of the closing signal

In the command control mode operation, there are alarms for a failed closing attempt (CL_FAIL_AL) and for a command signal that remains active too long (CMD_FAIL_AL).

If the conditions for closing are not fulfilled within set time of Maximum Syn time, a failed closing attempt alarm is given. The CL_FAIL_AL alarm output signal is pulse shaped and the pulse length is 500 ms. If the external command signal is removed too early, that is, before conditions are fulfilled and close pulse is given, the alarm timer is reset.

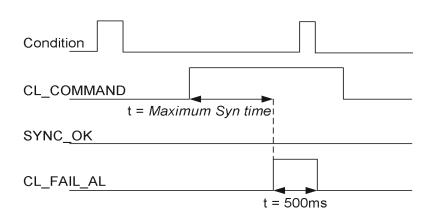


Figure 286: Determination of the checking time for closing

The control module receives information about the circuit breaker status and thus is able to adjust the command signal to be delivered to the synchrocheck function. If the external command signal $CL_COMMAND$ is kept active longer than necessary, CMD_FAIL_AL alarm output is activated. The alarm indicates that the control module has not removed the external command signal after the closing operation. To avoid unnecessary alarms, the duration of the command signal should be set in such a way that the maximum length of the signal is always below Maximum Syn time + 5s.

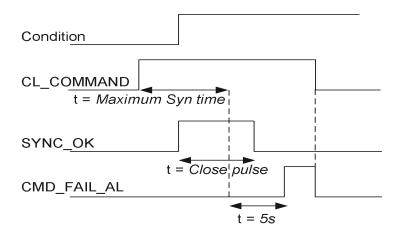


Figure 287: Determination of the alarm limit for a still-active command signal

Closing is permitted during Maximum Syn time, starting from the moment the external command signal CL_COMMAND is activated. The CL_COMMAND input must be kept active for the whole time that the closing conditions are waited to be fulfilled. Otherwise, the procedure is cancelled. If the closing command conditions are fulfilled during Maximum Syn time, a closing pulse is delivered to the circuit breaker. If the closing conditions are not fulfilled during the checking time, the alarm CL_FAIL_AL is activated as an indication of a failed closing attempt. The closing pulse is not delivered if the closing conditions become valid after Maximum Syn time has elapsed. The closing pulse is delivered only once for each activated external command signal and new closing command sequence cannot be started until the external command signal is reset and then activated again. The SYNC_INPRO output is active when the closing command sequence is in progress and it is reset when the CL_COMMAND input is reset or Maximum Syn time has elapsed.

Bypass mode

25 can be set into bypass mode by setting the parameters Synchro check mode and Energizing check mode to "Off" or alternatively, by activating the BYPASS input.

In bypass mode, the closing conditions are always considered to be fulfilled by the 25 function. Otherwise, the operation is similar to the normal mode.

Voltage angle difference adjustment

In application where the power transformer is located between the voltage measurement and the vector group connection gives phase difference to the voltages between the high and low-voltage sides, the angle adjustment can be used to meet synchronism.

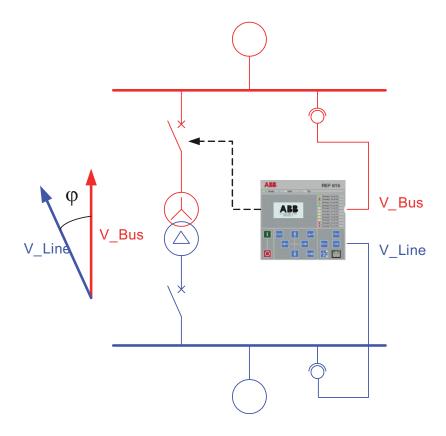


Figure 288: Angle difference when power transformer is in sychrocheck zone

The vector group of the power transformer is defined with clock numbers, where the value of the hour pointer defines the low voltage-side phasor and the high voltage-side phasor is always fixed to the clock number 12 which is same as zero. The angle between clock numbers is 30 degrees. When comparing phase angles, the V_BUS input is always the reference. This means that when the Yd11 power transformer is used, the low voltage-side voltage phasor leads by 30 degrees or lags by 330 degrees the high voltage-side phasor. The rotation of the phasors is counterclockwise.

The generic rule is that a low voltage-side phasor lags the high voltage-side phasor by clock number * 30°. This is called angle difference adjustment and can be set for the function with the Phase shift setting.

7.3.5 Application

The main purpose of the synchrocheck function is to provide control over the closing of the circuit breakers in power networks to prevent the closing if the conditions for synchronism are not detected. This function is also used to prevent the reconnection of two systems which are divided after islanding and a three-pole reclosing.

The synchrocheck function block includes both the synchronism check function and the energizing function to allow closing when one side of the breaker is dead.

Network and the generator running in parallel with the network are connected through the line AB. When a fault occurs between A and B, the IED protection opens the circuit breakers A and B, thus isolating the faulty section from the network and making the arc that caused the fault extinguish. The first attempt to recover is a delayed autoreclosure made a few seconds later. Then, the autoreclose function DARREC gives a command signal to the synchrocheck function to close the circuit breaker A. 25 performs an energizing check, as the line AB is de-energized (V_BUS> Live bus value, V_LINE< Dead line value). After verifying the line AB is dead and the energizing direction is correct, the IED energizes the line (V_BUS -> V_LINE) by closing the circuit breaker A. The PLC of the power plant discovers that the line has been energized and sends a signal to the other synchrocheck function to close the circuit breaker B. Since both sides of the circuit breaker B are live (V_BUS > Live bus value, V_LINE > Live bus value), the synchrocheck function controlling the circuit breaker B performs a synchrocheck and, if the network and the generator are in synchronism, closes the circuit breaker.

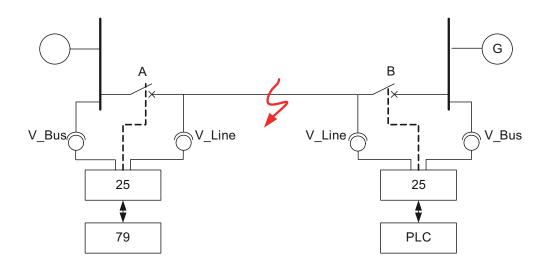


Figure 289: Synchrocheck function 25 checking energizing conditions and synchronism

Connections

A special attention is paid to the connection of the relay. Further, it is checked that the primary side wiring is correct.

A faulty wiring of the voltage inputs of the IED causes a malfunction in the synchrocheck function. If the wires of an energizing input have changed places, the polarity of the input voltage is reversed (180°). In this case, the IED permits the circuit breaker closing in a situation where the voltages are in opposite phases. This can damage the electrical devices in the primary circuit. Therefore, it is extremely important that the wiring from the voltage transformers to the terminals on the rear of the IED is consistent regarding the energizing inputs V_BUS (bus voltage) and V_LINE (line voltage).

The wiring should be verified by checking the reading of the phase difference measured between the V_BUS and V_LINE voltages. The phase difference measured by the IED has to be close to zero within the permitted accuracy tolerances. The measured phase differences are indicated in the LHMI. At the same time, it is recommended to check the voltage difference and the frequency differences presented in the Monitored data view. These values should be within the permitted tolerances, that is, close to zero.

Figure 290 shows an example where the synchrocheck is used for the circuit breaker closing between a busbar and a line. The phase-to-phase voltages are measured from the busbar and also one phase-to-phase voltage from the line is measured.

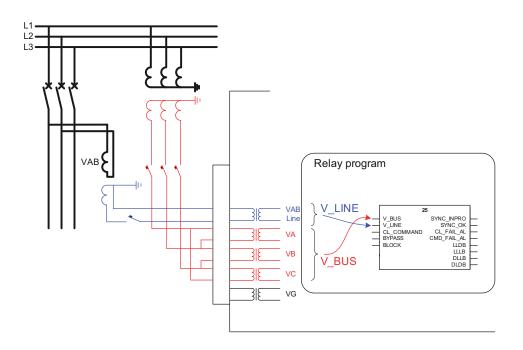


Figure 290: Connection of voltages for the IED and signals used in synchrocheck

7.3.6 Signals

Table 430: 25 input signals

Name	Туре	Default	Description
V_BUS	SIGNAL	0=False	Busbar Voltage
V_LINE	SIGNAL	0=False	Line Voltage
CL_COMMAND	BOOLEAN	0=False	External closing request
BLOCK	BOOLEAN	0=False	Blocking signal of the synchro check and voltage check function
BYPASS	BOOLEAN	0=False	Request to bypass synchronism check and voltage check

Table 431: 25 output signals

Name	Туре	Description
SYNC_INPRO	BOOLEAN	Synchronizing in progress
SYNC_OK	BOOLEAN	Systems in synchronism
CL_FAIL_AL	BOOLEAN	CB closing failed
CMD_FAIL_AL	BOOLEAN	CB closing request failed
LLDB	BOOLEAN	Live Line, Dead Bus
LLLB	BOOLEAN	Live Line, Live Bus
DLLB	BOOLEAN	Dead Line, Live Bus
DLDB	BOOLEAN	Dead Line, Dead Bus

7.3.7 Settings

Table 432: 25 group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Live dead mode	-1=Off			1=Both Dead	Energizing check mode
	1=Both Dead				
	2=Live L, Dead B				
	3=Dead L, Live B				
	4=Dead Bus, L Any				
	5=Dead L, Bus Any				
	6=One Live, Dead				
	7=Not Both Live				
Difference voltage	0.010.50	xVn	0.01	0.05	Maximum voltage difference limit
Difference frequency	0.0010.100	xFn	0	0.001	Maximum frequency difference limit
Difference angle	590	deg	1	5	Maximum angle difference limit

Table 433: 25 non-group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=enable			1=enable	Operation Off / On
	5=disable				
Synchro check mode	1=Off			2=Synchronous	Synchro check operation mode
	2=Synchronous				
	3=Asynchronous				
Control mode	1=Continuous			1=Continuous	Selection of synchro check command or Continuous control
	2=Command				mode
Dead line value	0.10.8	xVn	0.1	0.2	Voltage low limit line for energizing check
Live line value	0.21.0	xVn	0.1	0.5	Voltage high limit line for energizing check
Dead bus value	0.10.8	xVn	0.1	0.2	Voltage low limit bus for energizing check
Live bus value	0.21.0	xVn	0.1	0.5	Voltage high limit bus for energizing check
Close pulse	20060000	ms	10	200	Breaker closing pulse duration
Max energizing V	0.501.15	xVn	0.01	1.05	Maximum voltage for energizing
Phase shift	-180180	deg	1	180	Correction of phase difference between measured U_BUS and U_LINE
Minimum Syn time	060000	ms	10	0	Minimum time to accept synchronizing
Maximum Syn time	1006000000	ms	10	2000	Maximum time to accept synchronizing
Energizing time	10060000	ms	10	100	Time delay for energizing check
Closing time of CB	40250	ms	10	60	Closing time of the breaker

7.3.8 Monitored data

Table 434: 25 monitored data

Name	Туре	Values (Range)	Unit	Description
ENERG_STATE	Enum	0=Unknown		Energization state of Line and Bus
		1=Both Live		
		2=Live L, Dead B		
		3=Dead L, Live B		
		4=Both Dead		
U_DIFF_MEAS	FLOAT32	0.001.00	xVn	Calculated voltage amplitude difference
FR_DIFF_MEAS	FLOAT32	0.0000.100	xFn	Calculated voltage frequency difference
PH_DIFF_MEAS	FLOAT32	0.00180.00	deg	Calculated voltage phase angle difference
U_DIFF_SYNC	BOOLEAN	0=False		Voltage difference out of limit for synchronizing
		1=True		
PH_DIF_SYNC	BOOLEAN	0=False		Phase angle difference out of limit for synchronizing
		1=True		
FR_DIFF_SYNC	BOOLEAN	0=False		Frequency difference out of limit for synchronizing
		1=True		
25	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		

7.3.9 Technical data

Table 435: 25 technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the voltage measured: f _n ±1 Hz
	Voltage: ±3.0% of the set value or ±0.01 xV _n Frequency: ±10 mHz
	Phase angle: ±3°
Reset time	< 50 ms
Reset ratio	Typical 0.96
Trip time accuracy in definite time mode	±1.0% of the set value or ±20 ms

7.4 Emergency startup 62EST

7.4.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Emergency start function	ESMGAPC	ESTART	62EST

7.4.2 Function block symbol

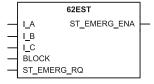


Figure 291: Function block

7.4.3 Functionality

An emergency condition can arise in cases where the motor needs to be started despite knowing that this can increase the temperature above limits or cause a thermal overload that can damage the motor. The emergency start function 62EST allows motor startups during such emergency conditions. 62EST is only to force the IED to allow the restarting of the motor. After the emergency start input is activated, the motor can be started normally. 62EST itself does not actually restart the motor.

The function contains a blocking functionality. It is possible to block function outputs, timer or the function itself, if desired.

7.4.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

The operation of the emergency start function can be described using a module diagram. All the modules in the diagram are explained in the next sections.

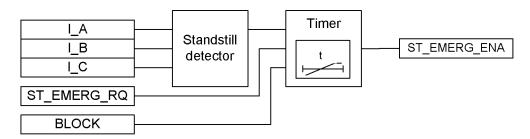


Figure 292: Functional module diagram

Standstill detector

The module detects if the motor is in a standstill condition. The standstill condition can be detected based on the phase current values. If all three phase currents are below the set value of *Motor standstill A*, the motor is considered to be in a standstill condition.

Timer

The timer is a fixed 10 minute timer which is activated when the ST_EMERG_RQ input is activated and motor standstill condition is fulfilled. Thus, the activation of the ST_EMERG_RQ input activates the ST_EMERG_ENA output, provided that the motor is in a standstill condition. The ST_EMERG_ENA output remains active for 10 minutes or as long as the ST_EMERG_RQ input is high, whichever takes longer.

The activation of the BLOCK input blocks and also resets the timer.

The function also provides the ST_EMERG_ENA output change date and time, T ST EMERG. The information is available through the Monitored data view.

7.4.5 Application

If the motor needs to be started in an emergency condition at the risk of damaging the motor, all the external restart inhibits are ignored, allowing the motor to be restarted. Furthermore, if the calculated thermal level is higher than the restart inhibit level at an emergency start condition, the calculated thermal level is set slightly below the restart inhibit level. Also, if the register value of the cumulative startup time counter exceeds the restart inhibit level, the value is set slightly below the restart disable value to allow at least one motor startup.

The activation of the ST_EMERG_RQ digital input allows to perform emergency start. The IED is forced to a state which allows the restart of motor, and the operator can now restart the motor. A new emergency start cannot be made until the 10 minute time-out has passed or until the emergency start is released, whichever takes longer.

The last change of the emergency start output signal is recorded.

7.4.6 Signals

Table 436: 62EST Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode
ST_EMERG_RQ	BOOLEAN	0=False	Emergency start input

Table 437: 62EST Output signals

Name	Туре	Description	
ST_EMERG_ENA	BOOLEAN	Emergency start	

7.4.7 Settings

Table 438: 62EST Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Motor standstill A	0.050.20	xln	0.01	0.12	Current limit to check for motor standstill condition

Table 439: 62EST Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable5=Disable			1=Enable	Operation Disable / Enable

7.4.8 Monitored data

Table 440: 62EST Monitored data

Name	Туре	Values (Range)	Unit	Description
T_ST_EMERG	Timestamp			Emergency start activation timestamp
62EST	Enum	1=enabled 2=blocked 3=test 4=test/blocked 5=disabled		Status

Section 8 Measurement functions

8.1 Basic measurements

8.1.1 Functions

The single-phase power and energy measurement SPEMMXU and the three-phase power and energy measurement PEMMXU are used for monitoring and metering the active power (P), reactive power (Q), apparent power (S), power factor (PF) and for calculating the accumulated energy separately as forward active, reversed active, forward reactive and reversed reactive. PEMMXU calculates these quantities by using the fundamental frequency phasors, that is, the DFT values of the measured phase current and phase voltage signals.

The three-phase current measurement function, IA, IB, IC, is used for monitoring and metering the phase currents of the power system.

The three-phase voltage measurement function, VA, VB, VC, is used for monitoring and metering the phase-to-phase voltages of the power system. The phase-to-ground voltages are also available in VA, VB, VC.

The ground current measurement function, IG, is used for monitoring and metering the ground current of the power system.

The ground voltage measurement function, VG, is used for monitoring and metering the ground voltage of the power system.

The sequence current measurement, I1, I2, I0, is used for monitoring and metering the phase sequence currents.

The sequence voltage measurement, V1, V2, V0, is used for monitoring and metering the phase sequence voltages.

The frequency measurement, FMMXU, is used for monitoring and metering the power system frequency.

The three-phase power and energy measurement P, E is used for monitoring and metering the active power P, reactive power Q, apparent power S, power factor PF and for calculating the accumulated energy separately as forward active, reverse active, forward reactive and reverse reactive. P, E calculates these quantities with the fundamental frequency phasors, that is, the DFT values of the measured phase current and phase voltage signals.

The information of the measured quantity is available for the operator both locally in LHMI and remotely to a network control center with communication.

8.1.2 Measurement functionality

The functions can be enabled or disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable.

Some of the measurement functions operate on two alternative measurement modes: "DFT" and "RMS". The measurement mode is selected with the *X Measurement mode* setting. Depending on the measuring function if the measurement mode cannot be selected, the measuring mode is "DFT".

Table 441: Zero point clamping limits

Function	Zero clamping limit
Three-phase current measurement (CMMXU)	1% of nominal (In)
Three-phase voltage measurement (VMMXU)	1% of nominal (Un)
Residual current measurement (RESCMMXU)	1% of nominal (In)
Residual voltage measurement (RESVMMXU)	1% of nominal (Un)
Phase sequence current measurement (CSMSQI)	1% of the nominal (In)
Phase sequence voltage measurement (VSMSQI)	1% of the nominal (Un)
The single-phase power and energy measurement (SPEMMXU)	1.5% of the nominal (Sn)
Three-phase power and energy measurement (PEMMXU)	1.5% of the nominal (Sn)

Demand value calculation

The demand value is calculated separately for each phase. The demand function is implemented by means of a function that calculates the linear average of the signal measured over a settable demand time interval. A new demand value is obtained once in a minute, indicating the analog signal demand over the demand time interval preceding the update time. The actual rolling demand values are stored in the memory until the value is updated at the end of the next time interval. The switching of the demand interval without the loss of data is done by storing the one minute demand values in the memory until the longest demand interval is available. The maximum demand values for each phase are recorded with time stamps. The recorded values are reset with a command.

The demand value calculation is only available in the three-phase current measurement function, IA, IB, IC.

Value reporting

The measurement functions are capable to report new values for network control center (SCADA system) based on the following functions:

- Zero point clamping
- Deadband supervision
- Limit value supervision

In the three-phase voltage measurement function, VA, VB, VC, the supervision functions are based on the phase-to-phase voltages. However, the phase-to-ground voltage values are also reported together with the phase-to-phase voltages.

Zero point clamping

A measured value under zero point clamping limit is forced to zero. This allows the noise in the input signal to be ignored. The active clamping function forces both the actual measurement value and the angle value of the measured signal to zero. In the three-phase or sequence measuring functions, each phase or sequence component has a separate zero point clamping function. The zero value detection operates so that, once the measured value exceeds or falls below the value of zero clamping limit, new values are reported.

Table 442: Zero point clamping limits

Function	Zero clamping limit
Three-phase current measurement (IA, IB, IC)	1%of nominal (ln)
Three-phase voltage measurement (VA, VB, VC)	1% of nominal (Vn)
Ground current measurement (IG)	1% of nominal (In)
Ground voltage measurement (VG)	1% of nominal (Vn)
Phase sequence current measurement (I1, I2, I0)	1% of the nominal (In)
Phase sequence voltage measurement (V1, V2, V0)	1% of the nominal (Vn)
Three-phase power and energy measurement (P, E)	1.5% of the nominal (Sn)

Limit value supervision

The limit value supervision function indicates whether the measured value of X_{INST} exceeds or falls below the set limits. The measured value has the corresponding range information X_{RANGE} and has a value in the range of 0 to 4:

- 0: "normal"
- 1: "high"
- 2: "low"
- 3: "high-high"
- 4: "low-low"

The range information changes and the new values are reported.

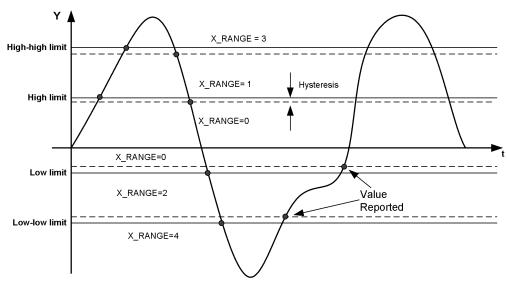


Figure 293: Presentation of operating limits

The range information can also be decoded into boolean output signals on some of the measuring functions and the number of phases required to exceed or undershoot the limit before activating the outputs and can be set with the *Num of phases* setting in the three-phase measurement functions, IA, IB, IC and VA, VB, VC. The limit supervision boolean alarm and warning outputs can be blocked. The settings involved for limit value supervision are:

Table 443: Settings for limit value supervision

Function	Settings for limit value su	pervision
Three-phase current measurement (IA, IB,	High limit	A high limit
IC)	Low limit	A low limit
	High-high limit	A high high limit
	Low-low limit	A low low limit
Three-phase voltage measurement (VA,	High limit	V high limit
VB, VC)	Low limit	V low limit
	High-high limit	V high high limit
	Low-low limit	V low low limit
Ground current measurement (IG)	High limit	A high limit res
	Low limit	-
	High-high limit	A Hi high limit res
	Low-low limit	-
Ground voltage measurement (VG)	High limit	V high limit res
	Low limit	-
	High-high limit	V Hi high limit res
	Low-low limit	-
Phase sequence current measurement (I1, I2, I0)	High limit	Ps Seq A high limit, Ng Seq A high limit, Zro A high limit
	Low limit	Ps Seq A low limit, Ng Seq A low limit, Zro A low limit
	High-high limit	Ps Seq A Hi high Lim, Ng Seq A Hi high Lim, Zro A Hi high Lim
	Low-low limit	Ps Seq A low low Lim, Ng Seq A low low Lim, Zro A low low Lim
Phase sequence voltage measurement (V1, V2, V0)	High limit	Ps Seq V high limit, Ng Seq V high limit, Zro V high limit
	Low limit	Ps Seq V low limit, Ng Seq V low limit, Zro V low limit
	High-high limit	Ps Seq V Hi high Lim, Ng Seq V Hi high Lim, Zro V Hi high Lim
	Low-low limit	Ps Seq V low low Lim, Ng Seq V low low Lim,
Three-phase power and energy	High limit	-
measurement (P, E)	Low limit	-
	High-high limit	-
	Low-low limit	-

Deadband supervision

The deadband supervision function reports the measured value according to integrated changes over a time period.

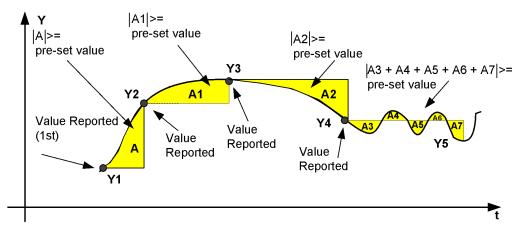


Figure 294: Integral deadband supervision

The deadband value used in the integral calculation is configured with the *X deadband* setting. The value represents the percentage of the difference between the maximum and minimum limit in the units of 0.001 percent * seconds.

The reporting delay of the integral algorithms in seconds is calculated with the formula:

$$t(s) = \frac{(\text{max} - \text{min}) \times deadband / 1000}{\left| \Delta Y \right| \times 100\%}$$
 (Equation 60)

Example for IA, IB, IC:

A deadband = 2500 (2.5% of the total measuring range of 40)

I INST
$$A=I$$
 DB $A=0.30$

If I INST A changes to 0.40, the reporting delay is:

$$t(s) = \frac{(40-0) \times 2500/1000}{|0.40-0.30| \times 100\%} = 10s$$

Function	Settings	Maximum/minimum (=range)
Three-phase current measurement (IA, IB, IC)	A deadband	40 / 0 (=40xln)
Three-phase voltage measurement (VA, VB, VC)	V Deadband	4 / 0 (=4xVn)
Ground current measurement (IG)	A deadband res	40 / 0 (=40xln)
Ground voltage measurement (VG)	V deadband res	4 / 0 (=4xVn)
Phase sequence current measurement (I1, I2, I0)	Ps Seq A deadband, Ng Seq A deadband, Zro A deadband	40 / 0 (=40xln)
Phase sequence voltage measurement (V1, V2, V0)	Ps Seq V deadband, Ng Seq V deadband, Zro V deadband	4/0 (=4xVn)
Three-phase power and energy measurement (P, E)	-	

Table 444: Parameters for deadband calculation

In the three-phase power and energy measurement function, P, E, the deadband supervision is done separately for apparent power S, with the pre-set value of fixed 10 percent of the Sn and the power factor PF, with the pre-set values fixed at 0.10. All the power measurement related values P, Q, S and PF are reported simultaneously when either one of the S or PF values exceeds the pre-set limit.

Power and energy calculation

The three-phase power is calculated from the phase-to-ground voltages and phase-to-ground currents. The power measurement function is capable of calculating complex power based on the fundamental frequency component phasors (DFT).

$$\overline{S} = (\overline{V}_A \cdot \overline{I}_A^* + \overline{V}_B \cdot \overline{I}_B^* + \overline{V}_C \cdot \overline{I}_C^*)$$
(Equation 61)

Once the complex apparent power is calculated, P, Q, S and PF are calculated with the equations:

$$Q = \operatorname{Im}(\overline{S})$$
 (Equation 62)

$$Q = \operatorname{Im}(\overline{S})$$
 (Equation 63)

$$S = \left| \overline{S} \right| = \sqrt{P^2 + Q^2}$$
 (Equation 64)

$$Cos\varphi = \frac{P}{S}$$
 (Equation 65)

Depending on the unit multiplier selected with *Power unit Mult*, the calculated power values are presented in units of kVA/kW/kVAr or in units of MVA/MW/MVAr.

PF 0.00 P + P -Q + Q + Rev active energy Fwd active energy (+ind) (-cap) Q2 Q1 PF 1.00 PF -1.00 Q3 | Q4 P -P + Q-Q -(-ind) (+cap) Rev reactive energy

Fwd reactive energy

Figure 295: Complex power and power quadrants

Table 445: Power quadrants

Quadrant	Current	Р	Q	PF	Power
Q1	Lagging	+	+	0+1.00	+ind
Q2	Lagging	-	+	01.00	-cap
Q3	Leading	-	-	01.00	-ind
Q4	Leading	+	-	0+1.00	+cap

The active power P direction can be selected between forward and reverse with *Active* power Dir and correspondingly the reactive power Q direction can be selected with *Reactive power Dir*. This affects also the accumulated energy directions.

The accumulated energy is calculated separately as forward active (EA_FWD_ACM), reverse active (EA_RV_ACM), forward reactive (ER_FWD_ACM) and reverse active (ER_RV_ACM). Depending on the value of the unit multiplier selected with *Energy unit Mult*, the calculated power values are presented in units of kWh/kVArh or in units of MWh/MVArh.

When the energy counter reaches its maximum value defined, the counter value is reset and restarted from the zero. Changing the value of the *Energy unit Mult* setting resets the accumulated energy values to the initial values, that is, EA_FWD_ACM to *Forward Wh Initial*, EA_RV_ACM to *Reverse Wh Initial*, ER_FWD_ACM to *Forward WArh Initial* and ER_RV_ACM to *Reverse WArh Initial*. It is also possible to reset the accumulated energy to initial values through a parameter or with the RSTACM input.

Sequence components

The phase-sequence current components are calculated from the phase currents according to:

$$\overline{I}_0 = (\overline{I}_A + \overline{I}_B + \overline{I}_C)/3$$
 (Equation 66)

$$\bar{I}_1 = (\bar{I}_A + a \cdot \bar{I}_B + a^2 \cdot \bar{I}_C)/3$$
 (Equation 67)

$$\overline{I}_2 = (\overline{I}_A + a^2 \cdot \overline{I}_B + a \cdot \overline{I}_C)/3$$
 (Equation 78)

The phase-sequence voltage components are calculated from the phase-to-ground voltages when *VT connection* is selected as "Wye" with the formulae:

$$\overline{V}_0 = (\overline{V}_A + \overline{V}_B + \overline{V}_C)/3$$
 (Equation69)

$$\overline{V}_1 = (\overline{V}_A + a \cdot \overline{V}_B + a^2 \cdot \overline{V}_C)/3$$
 (Equation70)

$$\overline{V}_2 = (\overline{V}_A + a^2 \cdot \overline{V}_B + a \cdot \overline{V}_C)/3$$
 (Equation 71)

When *VT connection* is selected as "Delta", the positive and negative phase sequence voltage components are calculated from the phase-to-phase voltages according to the formulae:

$$\overline{V}_1 = (\overline{V}_{AB} - a^2 \cdot \overline{V}_{BC})/3$$
 (Equation 72)

$$\overline{V}_2 = (\overline{V}_{AB} - a \cdot \overline{V}_{BC})/3$$
 (Equation 73)

8.1.2.1 Limit value supervision

Table 446: Settings for limit value supervision

Function	Settings for limit value supervision				
Three-phase current measurement	High limit	A high limit			
(CMMXU)	Low limit	A low limit			
	High-high limit	A high high limit			
	Low-low limit	A low low limit			
Three-phase voltage measurement	High limit	V high limit			
(VMMXU)	Low limit	V low limit			
	High-high limit	V high high limit			
	Low-low limit	V low low limit			
Residual current measurement	High limit	A high limit res			
(RESCMMXU)	Low limit	-			
	High-high limit	A Hi high limit res			
	Low-low limit	-			
The frequency measurement (FMMXU)	High limit	F high limit			
	Low limit	F low limit			
	High-high limit	F high high limit			
	Low-low limit	F low low limit			
Residual voltage measurement (RESVMMXU)	High limit	V high limit res			
	Low limit	-			
	High-high limit	V Hi high limit res			
	Low-low limit	-			
Phase sequence current measurement	High limit	Ps Seq A high limit, Ng Seq A high limit, Zro A high limit			
(CSMSQI)	Low limit	Ps Seq A low limit, Ng Seq A low limit, Zro A low limit			
	High-high limit	Ps Seq A Hi high Lim, Ng Seq A Hi high Lim, Zro A Hi high Lim			
	Low-low limit	Ps Seq A low low Lim, Ng Seq A low low Lim, Zro A low low Lim			
Phase sequence voltage measurement	High limit	Ps Seq V high limit, Ng Seq V high limit, Zro V high limit			
(VSMSQI)	Low limit	Ps Seq V low limit, Ng Seq V low limit, Zro V low limit			
	High-high limit	Ps Seq V Hi high Lim, Ng Seq V Hi high Lim, Zro V Hi high Lim			
	Low-low limit	Ps Seq V low low Lim, Ng Seq V low low Lim, Zro V low low Lim			
Single-phase power and energy	High limit	-			
measurement (SPEMMXU)	Low limit	-			
	High-high limit	-			
	Low-low limit	-			
Three-phase power and energy	High limit	-			
measurement (PEMMXU)	Low limit	-			
	High-high limit	-			
	Low-low limit	-			

8.1.2.2 Deadband supervision

Table 447: Parameters for deadband calculation

Function	Settings	Maximum/minimum (=range)
Three-phase current measurement (CMMXU)	A deadband	40 / 0 (=40xln)
Three-phase voltage measurement (VMMXU)	V Deadband	4 / 0 (=4xVn)
Residual current measurement (RESCMMXU)	A deadband res	40 / 0 (=40xln)
Residual voltage measurement (RESVMMXU)	V deadband res	4 / 0 (=4xVn)
The frequency measurement (FMMXU)	F deadband	75 / 35 (=40Hz)
Phase sequence current measurement (CSMSQI)	Ps Seq A deadband, Ng Seq A deadband, Zro A deadband	40 / 0 (=40xln)
Phase sequence voltage measurement (VSMSQI)	Ps Seq V deadband, Ng Seq V deadband, Zro V deadband	4/0 (=4xVn)
Single-phase power and energy measurement (SPEMMXU)	-	
Three-phase power and energy measurement (PEMMXU)	-	

In the power and energy measurement functions, SPEMMXU and PEMMXU, the deadband supervision is done separately for apparent power (S, with the pre-set value of fixed 10% of the Sn) and the power factor (PF, with the pre-set values of fixed 0.10). All of the power measurement related values: P, Q, S and PF are reported simultaneously when either one of the S or PF values exceed the pre-set limit.

8.1.2.3 Power and energy calculation

The single- and three-phase power is calculated from the phase-to-ground voltages and phase-to-ground currents. Power measurement function is capable of calculating complex power based on the fundamental frequency component phasors (DFT) as following:

$$\overline{S} = (\overline{U}_A \cdot \overline{I}_A^* + \overline{U}_B \cdot \overline{I}_B^* + \overline{U}_C \cdot \overline{I}_C^*)$$

8.1.3 Measurement function applications

The measurement functions are used for power system measurement, supervision and reporting to LHMI, a monitoring tool within PCM600, or to the station level, for example, with IEC 61850. The possibility to continuously monitor the measured values of active power, reactive power, currents, voltages, power factors and so on, is vital for efficient production, transmission, and distribution of electrical energy. It provides a fast and easy overview of the present status of the power system to the system operator. Additionally, it

can be used during testing and commissioning of protection and control IEDs to verify the proper operation and connection of instrument transformers, that is, the current transformers (CTs) and voltage transformers (VTs). The proper operation of the IED analog measurement chain can be verified during normal service by a periodic comparison of the measured value from the IED to other independent meters.

When the zero signal is measured, the noise in the input signal can still produce small measurement values. The zero point clamping function can be used to ignore the noise in the input signal and, hence, prevent the noise to be shown in the user display. The zero clamping is done for the measured analog signals and angle values.

The demand values are used to neglect sudden changes in the measured analog signals when monitoring long time values for the input signal. The demand values are linear average values of the measured signal over a settable demand interval. The demand values are calculated for the measured analog three-phase current signals.

The limit supervision indicates, if the measured signal exceeds or goes below the set limits. Depending on the measured signal type, up to two high limits and up to two low limits can be set for the limit supervision.

The deadband supervision reports a new measurement value if the input signal has gone out of the deadband state. The deadband supervision can be used in value reporting between the measurement point and operation control. When the deadband supervision is properly configured, it helps in keeping the communication load in minimum and yet measurement values are reported frequently enough.

8.2 Three-phase current measurement, IA, IB, IC

8.2.0.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase current	CMMXU	31	IA, IB, IC

8.2.0.2 Function block

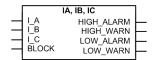


Figure 296: Function block

8.2.0.3 Signals

Table 448: IA,IB,IC Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0 Phase C current	
BLOCK	BOOLEAN	0=False	Block signal for all binary outputs

Table 449: IA,IB,IC Output signals

Name	Туре	Description
HIGH_ALARM	BOOLEAN	High alarm
HIGH_WARN	BOOLEAN	High warning
LOW_WARN	BOOLEAN	Low warning
LOW_ALARM	BOOLEAN	Low alarm

8.2.0.4 Settings

Table 450: IA,IB,IC Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Off / On
Measurement mode	1=RMS 2=DFT			2=DFT	Selects used measurement mode
Num of phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required by limit supervision
Demand interval	0=1 minute 1=5 minutes 2=10 minutes 3=15 minutes 4=30 minutes 5=60 minutes 6=180 minutes			0=1 minute	Time interval for demand calculation
A high high limit	0.0040.00	xln		1.40	High alarm current limit
A high limit	0.0040.00	xln		1.20	High warning current limit
A low limit	0.0040.00	xln		0.00	Low warning current limit
A low low limit	0.0040.00	xln		0.00 Low alarm current limit	
A deadband	100100000			2500	Deadband configuration value for integral calculation. (percentage of difference between min and max as 0,001 % s)

8.2.0.5 Monitored data

Table 451: IA,IB,IC Monitored data

Name	Туре	Values (Range)	Unit	Description
IA-A	FLOAT32	0.0040.00	xln	Measured current amplitude phase A
IB-A	FLOAT32	0.0040.00	xln	Measured current amplitude phase B
IC-A	FLOAT32	0.0040.00	xln	Measured current amplitude phase C
Max demand phA	FLOAT32	0.0040.00	xln	Maximum demand for Phase A
Max demand phB	FLOAT32	0.0040.00	xln	Maximum demand for Phase B
Max demand phC	FLOAT32	0.0040.00	xln	Maximum demand for Phase C
Time max demand phA	Timestamp			Time of maximum demand phase A
Time max demand phB	Timestamp			Time of maximum demand phase B
Time max demand phC	Timestamp			Time of maximum demand phase C
I_INST_A	FLOAT32	0.0040.00	xln	IA Amplitude, magnitude of instantaneous value
I_DB_A	FLOAT32	0.0040.00	xln	IA Amplitude, magnitude of reported value
I_DMD_A	FLOAT32	0.0040.00	xln	Demand value of IA current
I_RANGE_A	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		IA Amplitude range
I_INST_B	FLOAT32	0.0040.00	xln	IB Amplitude, magnitude of instantaneous value
I_DB_B	FLOAT32	0.0040.00	xln	IB Amplitude, magnitude of reported value
I_DMD_B	FLOAT32	0.0040.00	xln	Demand value of IB current
I_RANGE_B	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		IB Amplitude range
I_INST_C	FLOAT32	0.0040.00	xln	IC Amplitude, magnitude of instantaneous value
I_DB_C	FLOAT32	0.0040.00	xln	IC Amplitude, magnitude of reported value
I_DMD_C	FLOAT32	0.0040.00	xln	Demand value of IC current
I_RANGE_C	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		IC Amplitude range

8.2.0.6 Technical data

Table 452: IA, IB, IC Technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the current measured: f _n ±2Hz
	$\pm 0.5\%$ or $\pm 0.002 \times I_n$ (at currents in the range of 0.014.00 $\times I_n$)
Suppression of harmonics	DFT: -50dB at f = n x f _n , where n = 2, 3, 4, 5, RMS: No suppression

8.3 Sequence current measurement, I1, I2, I0

8.3.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Phase sequence current	CSMSQI	11, 12, 10	11, 12, 10

8.3.2 Function block

Figure 297: Function block

8.3.3 Signals

Table 453: 11, 12, 10 Input signals

Name	Туре	Default	Description
I ₀	SIGNAL	0	Zero sequence current
I ₁	SIGNAL	0	Positive sequence current
I ₂	SIGNAL	0	Negative sequence current

8.3.4 Settings

Table 454: 11, I2, I0 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Off / On
Ps Seq A Hi high Lim	0.0040.00	xln		1.40	High alarm current limit for positive sequence current
Ps Seq A high limit	0.0040.00	xln		1.20	High warning current limit for positive sequence current
Ps Seq A low limit	0.0040.00	xln		0.00	Low warning current limit for positive sequence current
Ps Seq A low low Lim	0.0040.00	xln		0.00	Low alarm current limit for positive sequence current
Ps Seq A deadband	100100000			2500	Deadband configuration value for positive sequence current for integral calculation. (percentage of difference between min and max as 0,001 % s)
Ng Seq A Hi high Lim	0.0040.00	xln		0.20	High alarm current limit for negative sequence current
Ng Seq A High limit	0.0040.00	xln		0.05	High warning current limit for negative sequence current
Ng Seq A low limit	0.0040.00	xln		0.00	Low warning current limit for negative sequence current
Ng Seq A low low Lim	0.0040.00	xln		0.00	Low alarm current limit for negative sequence current
Ng Seq A deadband	100100000			2500	Deadband configuration value for negative sequence current for integral calculation. (percentage of difference between min and max as 0,001 % s)
Zro A Hi high Lim	0.0040.00	xln		0.20	High alarm current limit for zero sequence current
Zro A High limit	0.0040.00	xln		0.05	High warning current limit for zero sequence current
Zro A low limit	0.0040.00	xln		0.00	Low warning current limit for zero sequence current
Zro A low low Lim	0.0040.00	xln		0.00	Low alarm current limit for zero sequence current
Zro A deadband	100100000			2500	Deadband configuration value for zero sequence current for integral calculation. (percentage of difference between min and max as 0,001 % s)

8.3.5 Monitored data

Table 455: 11, I2, I0 Monitored data

Name	Туре	Values (Range)	Unit	Description
I2-A	FLOAT32	0.0040.00	xln	Measured negative sequence current
I1-A	FLOAT32	0.0040.00	xln	Measured positive sequence current
10-A	FLOAT32	0.0040.00	xln	Measured zero sequence current
I2_INST	FLOAT32	0.0040.00	xln	Negative sequence current amplitude, instantaneous value
I2_DB	FLOAT32	0.0040.00	xln	Negative sequence current amplitude, reported value
I2_RANGE	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		Negative sequence current amplitude range
I1_INST	FLOAT32	0.0040.00	xln	Positive sequence current amplitude, instantaneous value
I1_DB	FLOAT32	0.0040.00	xln	Positive sequence current amplitude, reported value
I1_RANGE	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		Positive sequence current amplitude range
I0_INST	FLOAT32	0.0040.00	xln	Zero sequence current amplitude, instantaneous value
I0_DB	FLOAT32	0.0040.00	xln	Zero sequence current amplitude, reported value
I0_RANGE	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		Zero sequence current amplitude range

8.3.6 Technical data

Table 456: 11, 12, 10 Technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the current measured: f/f _n = ±2Hz
	$\pm 1.0\%$ or ± 0.002 x I _n at currents in the range of 0.014.00 x I _n
Suppression of harmonics	DFT: -50dB at f = n x f_n , where n = 2, 3, 4, 5,

8.4 Residual current measurement, IG

8.4.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Neutral current	RESCMMXU	10	IG

8.4.2 Function block

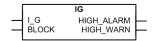


Figure 298: Function block

8.4.3 Signals

Table 457: IG Input signals

Name	Туре	Default	Description
IG	SIGNAL	0	Ground current
BLOCK	BOOLEAN	0=False	Block signal for all binary outputs

Table 458: IG Output signals

Name	Туре	Description
HIGH_ALARM	BOOLEAN	High alarm
HIGH_WARN	BOOLEAN	High warning

8.4.4 Settings

Table 459: IG Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Off / On
Measurement mode	1=RMS 2=DFT			2=DFT	Selects used measurement mode
A Hi high limit res	0.0040.00	xln		0.20	High alarm current limit
A high limit res	0.0040.00	xln		0.05	High warning current limit
A deadband res	100100000			2500	Deadband configuration value for integral calculation. (percentage of difference between min and max as 0,001 % s)

8.4.5 Monitored data

Table 460: IG Monitored data

Name	Туре	Values (Range)	Unit	Description
IG-A	FLOAT32	0.0040.00	xln	Measured ground current
IG_INST	FLOAT32	0.0040.00	xln	Ground current Amplitude, magnitude of instantaneous value
IG_DB	FLOAT32	0.0040.00	xln	Ground current Amplitude, magnitude of reported value
IG_RANGE	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		Ground current Amplitude range

8.4.6 Technical data

Table 461: IG Technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the current measured: f/f _n = ±2Hz
	$\pm 0.5\%$ or ± 0.002 x I _n at currents in the range of 0.014.00 x I _n
Suppression of harmonics	DFT: -50dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ RMS: No suppression

8.5 Three-phase voltage measurement, VA, VB, VC

8.5.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase voltage	VMMXU	3U	VA, VB, VC

8.5.2 Function block

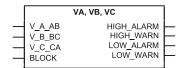


Figure 299: Function block

8.5.3 Signals

Table 462: VA, VB, VC Input signals

Name	Туре	Default	Description
V_A_AB	SIGNAL	0	Phase A voltage
V_B_BC	SIGNAL	0	Phase B voltage
V_C_CA	SIGNAL	0	Phase C voltage
BLOCK	BOOLEAN	0=False	Block signal for all binary outputs

Table 463: VA, VB, VC Output signals

Name	Туре	Description
HIGH_ALARM	BOOLEAN	High alarm
HIGH_WARN	BOOLEAN	High warning
LOW_WARN	BOOLEAN	Low warning
LOW_ALARM	BOOLEAN	Low alarm

8.5.4 Settings

Table 464: VA, VB, VC Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Off / On
Measurement mode	1=RMS 2=DFT			2=DFT	Selects used measurement mode
Num of phases	1=1 out of 3 2=2 out of 3 3=3 out of 3			1=1 out of 3	Number of phases required by limit supervision
V high high limit	0.004.00	xVn		1.40	High alarm voltage limit
V high limit	0.004.00	xVn		1.20	High warning voltage limit
V low limit	0.004.00	xVn		0.00	Low warning voltage limit
V low low limit	0.004.00	xVn		0.00	Low alarm voltage limit
V deadband	100100000			10000	Deadband configuration value for integral calculation. (percentage of difference between min and max as 0,001 % s)

8.5.5 Monitored data

Table 465: VA, VB, VC Monitored data

Name	Туре	Values (Range)	Unit	Description
VAB-kV	FLOAT32	0.004.00	xVn	Measured phase to phase voltage amplitude phase AB
VBC-kV	FLOAT32	0.004.00	xVn	Measured phase to phase voltage amplitude phase B
VCA-kV	FLOAT32	0.004.00	xVn	Measured phase to phase voltage amplitude phase C
V_INST_AB	FLOAT32	0.004.00	xVn	VAB Amplitude, magnitude of instantaneous value
V_DB_AB	FLOAT32	0.004.00	xVn	VAB Amplitude, magnitude of reported value
V_RANGE_AB	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		VAB Amplitude range
V_INST_BC	FLOAT32	0.004.00	xVn	VBC Amplitude, magnitude of instantaneous value
V_DB_BC	FLOAT32	0.004.00	xVn	VBC Amplitude, magnitude of reported value
V_RANGE_BC	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		VBC Amplitude range
V_INST_CA	FLOAT32	0.004.00	xVn	VCA Amplitude, magnitude of instantaneous value
V_DB_CA	FLOAT32	0.004.00	xVn	VCA Amplitude, magnitude of reported value
V_RANGE_CA	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		VCA Amplitude range
V_INST_A	FLOAT32	0.004.00	xVn	VA Amplitude, magnitude of instantaneous value
V_INST_B	FLOAT32	0.004.00	xVn	VB Amplitude, magnitude of instantaneous value
V_INST_C	FLOAT32	0.004.00	xVn	VC Amplitude, magnitude of instantaneous value

8.5.6 Technical data

Table 466: VA, VB, VC Technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the voltage measured: f _n ±2Hz At voltages in range 0.011.15 x V _n
	±0.5% or ±0.002 x V _n
Suppression of harmonics	DFT: -50 dB at f = n x f_n , where n = 2, 3, 4, 5, RMS: No suppression

8.6 Sequence voltage measurement, V1, V2, V0

8.6.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Phase sequence voltage	VSMSQI	U1, U2, U0	V1, V2, V0

8.6.2 Function block

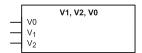


Figure 300: Function block

8.6.3 Signals

Table 467: V1, V2, V0 Input signals

Name	Туре	Default	Description
V ₀	SIGNAL	0	Zero sequence voltage
V ₁	SIGNAL	0	Positive phase sequence voltage
V ₂	SIGNAL	0	Negative phase sequence voltage

8.6.4 Settings

Table 468: V1, V2, V0 Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Off / On
Ps Seq V Hi high Lim	0.004.00	xVn		1.40	High alarm voltage limit for positive sequence voltage
Ps Seq V high limit	0.004.00	xVn		1.20	High warning voltage limit for positive sequence voltage
Ps Seq V low limit	0.004.00	xVn		0.00	Low warning voltage limit for positive sequence voltage
Ps Seq V low low Lim	0.004.00	xVn		0.00	Low alarm voltage limit for positive sequence voltage
Ps Seq V deadband	100100000			10000	Deadband configuration value for positive sequence voltage for integral calculation. (percentage of difference between min and max as 0,001 % s)
Ng Seq V Hi high Lim	0.004.00	xVn		0.20	High alarm voltage limit for negative sequence voltage
Ng Seq V High limit	0.004.00	xVn		0.05	High warning voltage limit for negative sequence voltage
Ng Seq V low limit	0.004.00	xVn		0.00	Low warning voltage limit for negative sequence voltage
Ng Seq V low low Lim	0.004.00	xVn		0.00	Low alarm voltage limit for negative sequence voltage
Ng Seq V deadband	100100000			10000	Deadband configuration value for negative sequence voltage for integral calculation. (percentage of difference between min and max as 0,001 % s)
Zro V Hi high Lim	0.004.00	xVn		0.20	High alarm voltage limit for zero sequence voltage
Zro V High limit	0.004.00	xVn		0.05	High warning voltage limit for zero sequence voltage
Zro V low limit	0.004.00	xVn		0.00	Low warning voltage limit for zero sequence voltage
Zro V low low Lim	0.004.00	xVn		0.00	Low alarm voltage limit for zero sequence voltage
Zro V deadband	100100000			10000	Deadband configuration value for zero sequence voltage for integral calculation. (percentage of difference between min and max as 0,001 % s)

8.6.5 Monitored data

Table 469: V1, V2, V0 Monitored data

Name	Туре	Values (Range)	Unit	Description
V2-kV	FLOAT32	0.004.00	xVn	Measured negative sequence voltage
V1-kV	FLOAT32	0.004.00	xVn	Measured positive sequence voltage
V0-kV	FLOAT32	0.004.00	xVn	Measured zero sequence voltage
V2_INST	FLOAT32	0.004.00	xVn	Negative sequence voltage amplitude, instantaneous value
V2_DB	FLOAT32	0.004.00	xVn	Negative sequence voltage amplitude, reported value
V2_RANGE	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		Negative sequence voltage amplitude range
V1_INST	FLOAT32	0.004.00	xVn	Positive sequence voltage amplitude, instantaneous value
V1_DB	FLOAT32	0.004.00	xVn	Positive sequence voltage amplitude, reported value
V1_RANGE	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		Positive sequence voltage amplitude range
V0_INST	FLOAT32	0.004.00	xVn	Zero sequence voltage amplitude, instantaneous value
V0_DB	FLOAT32	0.004.00	xVn	Zero sequence voltage amplitude, reported value
V0_RANGE	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		Zero sequence voltage amplitude range

8.6.6 Technical data

Table 470: V1, V2, V0 Technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the voltage measured: f _n ±2Hz At voltages in range 0.011.15 x V _n
	±1.0% or ±0.002 x V _n
Suppression of harmonics	DFT: -50 dB at f = n x f_n , where n = 2, 3, 4, 5,

8.7 Residule voltage measurement, VG

8.7.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Ground voltage	RESVMMXU	U0	VG

8.7.2 Function block

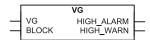


Figure 301: Function block

8.7.3 Signals

Table 471: VG Input signals

Name	Туре	Default	Description
VG	SIGNAL	0	Ground voltage
BLOCK	BOOLEAN	0=False	Block signal for all binary outputs

Table 472: VG Output signals

Name	Туре	Description	
HIGH_ALARM	BOOLEAN	High alarm	
HIGH_WARN	BOOLEAN	High warning	

8.7.4 Settings

Table 473: VG Non group settings

Parameter	Values (Range)	Unit	Step	Default Description	
Operation	1=Enable 5=Disable			1=Enable Operation Off / On	
Measurement mode	1=RMS 2=DFT			2=DFT	Selects used measurement mode
V Hi high limit res	0.004.00	xVn		0.20	High alarm voltage limit
V high limit res	0.004.00	xVn		0.05	High warning voltage limit
V deadband res	100100000			10000	Deadband configuration value for integral calculation. (percentage of difference between min and max as 0,001 % s)

8.7.5 Monitored data

Table 474: VG Monitored data

Name	Туре	Values (Range)	Unit	Description
VG-kV	FLOAT32	0.004.00	xVn	Measured ground voltage
VG_INST	FLOAT32	0.004.00	xVn	Ground voltage Amplitude, magnitude of instantaneous value
VG_DB	FLOAT32	0.004.00	xVn	xVnGround voltage Amplitude, magnitude of reported value
VG_RANGE	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		Ground voltage Amplitude range

8.7.6 Technical data

Table 475: VG Technical data

Characteristic	Value
Pickup accuracy	Depending on the frequency of the current measured: f/f _n = ±2Hz
	±0.5% or ±0.002 x V _n
Suppression of harmonics	DFT: -50dB at $f = n \times f_n$, where $n = 2, 3, 4, 5,$ RMS: No suppression

8.8 Three-phase power and energy measurement, P.E

8.8.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Three-phase power and energy measurement	PEMMXU	P, E	P, E

8.8.2 Function block

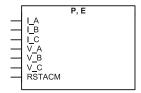


Figure 302: Function block

8.8.3 Signals

Table 476: P,E Input signals

Name	Туре	Default Description	
I_A	SIGNAL	0 Phase A current	
I_B	SIGNAL	0 Phase B current	
I_C	SIGNAL	0	Phase C current
V_A	SIGNAL	0	Phase A voltage
V_B	SIGNAL	0	Phase B voltage
V_C	SIGNAL	0	Phase C voltage
RSTACM	BOOLEAN	0=False	Reset of accumulated energy reading

8.8.4 Settings

Table 477: P,E Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Off / On
Power unit Mult	3=Kilo 6=Mega			3=Kilo	Unit multiplier for presentation of the power related values
Energy unit Mult	3=Kilo 6=Mega			3=Kilo	Unit multiplier for presentation of the energy related values
Active power Dir	1=Forward 2=Reverse			1=Forward	Direction of active power flow: Forward, Reverse
Reactive power Dir	1=Forward 2=Reverse			1=Forward	Direction of reactive power flow: Forward, Reverse
Forward Wh Initial	0999999999		1	0	Preset Initial value for forward active energy
Reverse Wh Initial	0999999999		1	0	Preset Initial value for reverse active energy
Forward WArh Initial	0999999999		1	0	Preset Initial value for forward reactive energy
Reverse WArh Initial	0999999999		1	0	Preset Initial value for reverse reactive energy

8.8.5 Monitored data

Table 478: P,E Monitored data

Name	Туре	Values (Range)	Unit	Description
S-kVA	FLOAT32	-999999.9999999.9	kVA	Total Apparent Power
P-kW	FLOAT32	-999999.9999999.9	kW	Total Active Power
Q-kVAr	FLOAT32	-999999.9999999.9	kVAr	Total Reactive Power
PF	FLOAT32	-1.001.00		Average Power factor
S_INST	FLOAT32	-999999.99999999.9	kVA	Apparent power, magnitude of instantaneous value
S_DB	FLOAT32	-999999.9999999.9	kVA	Apparent power, magnitude of reported value
P_INST	FLOAT32	-999999.99999999.9	kW	Active power, magnitude of instantaneous value
P_DB	FLOAT32	-999999.99999999.9	kW	Active power, magnitude of reported value
Q_INST	FLOAT32	-999999.99999999.9	kVAr	Reactive power, magnitude of instantaneous value
Q_DB	FLOAT32	-999999.99999999.9	kVAr	Reactive power, magnitude of reported value
PF_INST	FLOAT32	-1.001.00		Power factor, magnitude of instantaneous value
PF_DB	FLOAT32	-1.001.00		Power factor, magnitude of reported value
EA_RV_ACM	INT128	0999999999	kWh	Accumulated reverse active energy value
ER_RV_ACM	INT128	0999999999	kVArh	Accumulated reverse reactive energy value
EA_FWD_ACM	INT128	0999999999	kWh	Accumulated forward active energy value
ER_FWD_ACM	INT128	099999999	kVArh	Accumulated forward reactive energy value

8.8.6 Technical data

Table 479: P, E Technical data

Characteristic	Value
Pickup accuracy	At all three currents in range $0.101.20 \times I_n$ At all three voltages in range $0.501.15 \times V_n$ At the frequency $f_n \pm 1Hz$ Active power and energy in range $ PF > 0.71$ Reactive power and energy in range $ PF < 0.71$
	±1.5% for power (S, P and Q) ±0.015 for power factor ±1.5% for energy
Suppression of harmonics	DFT: -50 dB at f = n x f_n , where n = 2, 3, 4, 5,

8.9 Single-phase power and energy measurement

8.9.1 Identification

Function description	IEC 61850 Identification	IEC 60617 Identification	ANSI/IEEE C37.2 device number
Single-phase power and energy measurement	SPEMMXU	SP, SE	SP, SE

8.9.2 Function block

Figure 303: Function block

8.9.3 Signals

Table 480: SP, SE Input signals

Name	Туре	Default	Description
I_A	SIGNAL	0	Phase A current
I_B	SIGNAL	0	Phase B current
I_C	SIGNAL	0	Phase C current
V_A	SIGNAL	0	Phase A voltage
V_B	SIGNAL	0	Phase B voltage
V_C	SIGNAL	0	Phase C voltage
RSTACM	BOOLEAN	0=False	Reset of accumulated energy reading

8.9.4 Settings

Table 481: SP, SE Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1= enable 5= disable			1=enable	Operation Disable / Enable
Power unit Mult	3=Kilo 6=Mega			3=Kilo	Unit multiplier for presentation of the power related values.
Energy unit Mult	3=Kilo 6=Mega			3=Kilo	Unit multiplier for presentation of the energy related values.
Active power Dir	1=Forward 2=Reverse			1=Forward	Direction of active power flow: Forward, Reverse
Reactive power Dir	1=Forward 2=Reverse			1=Forward	Direction of reactive power flow: Forward, Reverse
Forward Wh Initial	0999999999		1	0	Preset Initial value for forward active energy
Reverse Wh Initial	0999999999		1	0	Preset Initial value for reverse active energy
Forward VArh Initial	0999999999		1	0	Preset Initial value for forward reactive energy
Reverse VArh Initial	0999999999		1	0	Preset Initial value for reverse reactive energy

8.9.5 Monitored data

Table 482: SP, SE Monitored data

Name	Туре	Values (Range)	Unit	Description
SA-kVA	FLOAT32	-999999.9999999.9	kVA	Apparent power, magnitude of instantaneous value, Phase A
SB-kVA	FLOAT32	-999999.9999999.9	kVA	Apparent power, magnitude of instantaneous value, Phase B
SC-kVA	FLOAT32	-999999.9999999.9	kVA	Apparent power, magnitude of instantaneous value, Phase C
PA-kW	FLOAT32	-999999.9999999.9	kW	Active power, magnitude of instantaneous value, Phase A
PB-kW	FLOAT32	-999999.9999999.9	kW	Active power, magnitude of instantaneous value, Phase B
PC-kW	FLOAT32	-999999.9999999.9	kW	Active power, magnitude of instantaneous value, Phase C
QA-kVAr	FLOAT32	-999999.9999999.9	kVAr	Reactive power, magnitude of instantaneous value, Phase A
QB-kVAr	FLOAT32	-999999.9999999.9	kVAr	Reactive power, magnitude of instantaneous value, Phase B
QC-kVAr	FLOAT32	-999999.9999999.9	kVAr	Reactive power, magnitude of instantaneous value, Phase C
PFA	FLOAT32	-1.001.00		Power factor, magnitude of instantaneous value, Phase A
PFB	FLOAT32	-1.001.00		Power factor, magnitude of instantaneous value, Phase B
PFC	FLOAT32	-1.001.00		Power factor, magnitude of instantaneous value, Phase C
Max demand SL1	FLOAT32	-999999.9999999.9	kVA	Maximum demand for Phase A
Max demand SL2	FLOAT32	-999999.9999999.9	kVA	Maximum demand for Phase B
Max demand SL3	FLOAT32	-999999.9999999.9	kVA	Maximum demand for Phase C
Min demand SL1	FLOAT32	-999999.9999999.9	kVA	Minimum demand for Phase A
Min demand SL2	FLOAT32	-999999.9999999.9	kVA	Minimum demand for Phase B
Min demand SL3	FLOAT32	-999999.9999999.9	kVA	Minimum demand for Phase C
Max demand PL1	FLOAT32	-999999.9999999.9	kW	Maximum demand for Phase A
Max demand PL2	FLOAT32	-999999.9999999.9	kW	Maximum demand for Phase B
Table continued on next page				

Name	Туре	Values (Range)	Unit	Description
Max demand PL3	FLOAT32	-999999.9999999.9	kW	Maximum demand for Phase C
Min demand PL1	FLOAT32	-999999.9999999.9	kW	Minimum demand for Phase A
Min demand PL2	FLOAT32	-999999.9999999.9	kW	Minimum demand for Phase B
Min demand PL3	FLOAT32	-999999.9999999.9	kW	Minimum demand for Phase C
Max demand QL1	FLOAT32	-999999.9999999.9	kVAr	Maximum demand for Phase A
Max demand QL2	FLOAT32	-999999.9999999.9	kVAr	Maximum demand for Phase B
Max demand QL3	FLOAT32	-999999.9999999.9	kVAr	Maximum demand for Phase C
Min demand QL1	FLOAT32	-999999.9999999.9	kVAr	Minimum demand for Phase A
Min demand QL2	FLOAT32	-999999.9999999.9	kVAr	Minimum demand for Phase B
Min demand QL3	FLOAT32	-999999.9999999.9	kVAr	Minimum demand for Phase C
Time max dmd SL1	Timestamp			Time of maximum demand phase A
Time max dmd SL2	Timestamp			Time of maximum demand phase B
Time max dmd SL3	Timestamp			Time of maximum demand phase C
Time max dmd PL1	Timestamp			Time of maximum demand phase A
Time max dmd PL2	Timestamp			Time of maximum demand phase B
Time max dmd PL3	Timestamp			Time of maximum demand phase C
Time max dmd QL1	Timestamp			Time of maximum demand phase A
Time max dmd QL2	Timestamp			Time of maximum demand phase B
Time max dmd QL3	Timestamp			Time of maximum demand phase C
Time min dmd SL1	Timestamp			Time of minimum demand phase A
Time min dmd SL2	Timestamp			Time of minimum demand phase B
Time min dmd SL3	Timestamp			Time of minimum demand phase C
Time min dmd PL1	Timestamp			Time of minimum demand phase A
Time min dmd PL2	Timestamp			Time of minimum demand phase B
Time min dmd PL3	Timestamp			Time of minimum demand phase C
Time min dmd QL1	Timestamp			Time of minimum demand phase A
Time min dmd QL2	Timestamp			Time of minimum demand phase B
Time min dmd QL3	Timestamp			Time of minimum demand phase C
S_INST_A	FLOAT32	-999999.9999999.9	kVA	Apparent power, magnitude of instantaneous value, Phase A
S_INST_B	FLOAT32	-999999.9999999.9	kVA	Apparent power, magnitude of instantaneous value, Phase B
S_INST_C	FLOAT32	-999999.9999999.9	kVA	Apparent power, magnitude of instantaneous value, Phase C
S_DB_A	FLOAT32	-999999.9999999.9	kVA	Apparent power, magnitude of reported value, Phase A
S_DB_B	FLOAT32	-999999.9999999.9	kVA	Apparent power, magnitude of reported value, Phase B
S_DB_C	FLOAT32	-999999.9999999.9	kVA	Apparent power, magnitude of reported value, Phase C
S_DMD_A	FLOAT32	-999999.9999999.9	kVA	Demand value of apparent Power, Phase A
S_DMD_B	FLOAT32	-999999.9999999.9	kVA	Demand value of apparent Power, Phase B
S_DMD_C	FLOAT32	-999999.9999999.9	kVA	Demand value of apparent Power, Phase C
P_INST_A	FLOAT32	-999999.9999999.9	kW	Active power, magnitude of instantaneous value, Phase A
P_INST_B	FLOAT32	-999999.9999999.9	kW	Active power, magnitude of instantaneous value, Phase B
Table continued on next	page			

P.D.B.A FLOAT32 -999999.9999999.9 kW Active power, magnitude of reported value, Phase A P.D.B.B FLOAT32 -999999.9999999.9 kW Active power, magnitude of reported value, Phase B P.D.B.C FLOAT32 -999999999999.9. kW Active power, magnitude of reported value, Phase C P.DMD.B FLOAT32 -999999999999.9 kW Demand value of active Power, Phase B P.DMD.C FLOAT32 -999999999999 kW Demand value of active Power, Phase B P.DMD.T.A FLOAT32 -999999999999 kWA Reactive power, magnitude of instantaneous value, Phase B Q.INST.B FLOAT32 -999999999999 kVAr Reactive power, magnitude of instantaneous value, Phase B Q.INST.C FLOAT32 -999999999999 kVAr Reactive power, magnitude of instantaneous value, Phase B Q.DB.B FLOAT32 -9999999999999 kVAr Reactive power, magnitude of reported value, Phase B Q.DMD.A FLOAT32 -9999999999999 kVAr Reactive power, magnitude of reported value, Phase B Q.DMD.C FLOAT32 -999999	Name	Туре	Values (Range)	Unit	Description
P_DB_B FLOAT32 -999999.9999999.9. kW Active power, magnitude of reported value, Phase B P_DB_C FLOAT32 -999999.9999999.9. kW Active power, magnitude of reported value, Phase C P_DMD_B FLOAT32 -999999.9999999.9. kW Demand value of active Power, Phase A P_DMD_B FLOAT32 -999999.9999999.9. kW Demand value of active Power, Phase C Q_INST_A FLOAT32 -999999.9999999.9. kWA Demand value of active Power, Phase C Q_INST_B FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of instantaneous value, Phase C Q_INST_B FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of instantaneous value, Phase C Q_INST_C FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of instantaneous value, Phase A Q_DB_B FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of reported value, Phase A Q_DMD_C FLOAT32 -999999.9	P_INST_C	FLOAT32	-999999.99999999.9	kW	Active power, magnitude of instantaneous value, Phase C
P_DB_C FLOAT32 -999999.9999999.9 kW Active power, magnitude of reported value, Phase C P_DMD_A FLOAT32 -999999.9999999.9 kW Demand value of active Power, Phase A P_DMD_B FLOAT32 -999999999999.9 kW Demand value of active Power, Phase A P_DMD_C FLOAT32 -999999999999.9 kW Demand value of active Power, Phase C Q_INST_A FLOAT32 -999999999999999999.9 kVAr Reactive power, magnitude of instantaneous value, Phase C Q_INST_C FLOAT32 -999999999999	P_DB_A	FLOAT32	-999999.9999999.9	kW	Active power, magnitude of reported value, Phase A
P_DMD_A FLOAT32 .999999.9999999.9 kW Demand value of active Power, Phase A P_DMD_B FLOAT32 .999999.9999999.9 kW Demand value of active Power, Phase B P_DMD_C FLOAT32 .999999.9999999.9 kW Demand value of active Power, Phase B Q_INST_A FLOAT32 .999999.9999999.9 kWA Demand value of active Power, Phase C Q_INST_B FLOAT32 .999999.9999999.9 kVAr Reactive power, magnitude of instantaneous value, Phase B Q_INST_C FLOAT32 .999999.9	P_DB_B	FLOAT32	-999999.9999999.9	kW	Active power, magnitude of reported value, Phase B
P_DMD_B FLOAT32 -999999_9999999_9 kW Demand value of active Power, Phase B P_DMD_C FLOAT32 -999999_9999999_9 kW Demand value of active Power, Phase C Q_INST_A FLOAT32 -999999_9999999_9 kWAr Reactive power, magnitude of instantaneous value, Phase E Q_INST_C FLOAT32 -999999_9999999_9 kVAr Reactive power, magnitude of instantaneous value, Phase E Q_DB_A FLOAT32 -999999_999999_9 kVAr Reactive power, magnitude of instantaneous value, Phase B Q_DB_B FLOAT32 -999999_999999_9 kVAr Reactive power, magnitude of reported value, Phase B Q_DB_B FLOAT32 -999999_999999_9 kVAr Reactive power, magnitude of reported value, Phase B Q_DMD_A FLOAT32 -999999_999999_9 kVAr Reactive power, magnitude of reported value, Phase B Q_DMD_B FLOAT32 -999999_9999999_9 kVAr Reactive power, magnitude of reported value, Phase B Q_DMD_B FLOAT32 -999999_9999999_9 kVAr Demand value of reactive Power, Phase B Q_DMD_A FLOAT32 -999999_999999_9<	P_DB_C	FLOAT32	-999999.9999999.9	kW	Active power, magnitude of reported value, Phase C
P_DMD_C FLOAT32 -999999.9999999.9. kW Demand value of active Power, Phase C Q_INST_A FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of instantaneous value, Phase B Q_INST_B FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of instantaneous value, Phase B Q_INST_C FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of instantaneous value, Phase B Q_DB_B FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of reported value, Phase B Q_DB_C FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of reported value, Phase B Q_DMD_A FLOAT32 -999999.9	P_DMD_A	FLOAT32	-999999.9999999.9	kW	Demand value of active Power, Phase A
Q_INST_A FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of instantaneous value, Phase A Q_INST_B FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of instantaneous value, Phase B Q_INST_C FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of instantaneous value, Phase A Q_DB_A FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of reported value, Phase A Q_DB_C FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of reported value, Phase B Q_DMD_A FLOAT32 -999999.9	P_DMD_B	FLOAT32	-999999.9999999.9	kW	Demand value of active Power, Phase B
Q_INST_B FLOAT32 -999999.9999999.9 kVAr Reactive power, magnitude of instantaneous value, Phase B Q_INST_C FLOAT32 -999999.9999999.9 kVAr Reactive power, magnitude of instantaneous value, Phase A Reactive power, magnitude of reported value, Phase A Q_DB_B FLOAT32 -999999.9999999.9 kVAr Reactive power, magnitude of reported value, Phase A Reactive power, magnitude of reported value, Phase B RO_DB_C FLOAT32 -999999.9999999.9 kVAr Reactive power, magnitude of reported value, Phase A Reactive power, magnitude of reported value, Phase B RO_DBM_DB_B FLOAT32 -999999.9999999.9 kVAr Demand value of reactive Power, Phase A PerloAT32 Power FLOAT32 -999999.9999999.9 kVAr Demand value of reactive Power, Phase B PerloAT32 Power FloAT32 -999999.9	P_DMD_C	FLOAT32	-999999.99999999.9	kW	Demand value of active Power, Phase C
Q_INST_C FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of instantaneous value, Phase A Q_DB_A FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of reported value, Phase A Q_DB_B FLOAT32 -999999.9999999.9. kVAr Reactive power, magnitude of reported value, Phase B Q_DMD_C FLOAT32 -9999999999999.9. kVAr Reactive power, magnitude of reported value, Phase C Q_DMD_B FLOAT32 -9999999999999.9. kVAr Demand value of reactive Power, Phase A Q_DMD_C FLOAT32 -999999999999.9. kVAr Demand value of reactive Power, Phase C PF_INST_A FLOAT32 -999999999999.9. kVAr Demand value of reactive Power, Phase C PF_INST_B FLOAT32 -999999	Q_INST_A	FLOAT32	-999999.9999999.9	kVAr	Reactive power, magnitude of instantaneous value, Phase A
Q_DB_A	Q_INST_B	FLOAT32	-999999.9999999.9	kVAr	Reactive power, magnitude of instantaneous value, Phase B
Q_DB_B FLOAT32 .999999.9999999.9 kVAr Reactive power, magnitude of reported value, Phase B Q_DB_C FLOAT32 .999999.9999999.9 kVAr Reactive power, magnitude of reported value, Phase C Q_DMD_A FLOAT32 .999999.9999999.9 kVAr Demand value of reactive Power, Phase A Q_DMD_B FLOAT32 .999999.9999999.9 kVAr Demand value of reactive Power, Phase B Q_DMD_C FLOAT32 .999999.9999999.9 kVAr Demand value of reactive Power, Phase B Q_DMD_C FLOAT32 .999999.9	Q_INST_C	FLOAT32	-999999.9999999.9	kVAr	Reactive power, magnitude of instantaneous value, Phase C
Q_DB_C FLOAT32 -999999.9999999.9 kVAr Reactive power, magnitude of reported value, Phase C Q_DMD_A FLOAT32 -999999.9999999.9 kVAr Demand value of reactive Power, Phase A Q_DMD_B FLOAT32 -999999.9999999.9 kVAr Demand value of reactive Power, Phase B Q_DMD_C FLOAT32 -999999.9999999.9 kVAr Demand value of reactive Power, Phase B Q_DMD_C FLOAT32 -999999.9999999.9 kVAr Demand value of reactive Power, Phase C PF_INST_A FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of instantaneous value, Phase B PF_INST_C FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of instantaneous value, Phase C PF_DB_A FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase A PF_DB_B FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase A PF_DB_B FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase B PF_DB_C FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase B PF_DB_C FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase A PF_DMD_C FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase A PF_DMD_C FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase A PF_DMD_C FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase B PF_DMD_C FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase B EA_RV_ACM_A INT128 099999999.9 kWh Accumulated reverse active energy value, Phase A EA_RV_ACM_A INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B EA_RV_ACM_A INT128 0999999999 kWh Accumulated freverse reactive energy value, Phase A EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactiv	Q_DB_A	FLOAT32	-999999.9999999.9	kVAr	Reactive power, magnitude of reported value, Phase A
Q_DMD_A FLOAT32 FLOAT3	Q_DB_B	FLOAT32	-999999.9999999.9	kVAr	Reactive power, magnitude of reported value, Phase B
Q_DMD_B FLOAT32 -99999999999.9 kVAr Demand value of reactive Power, Phase B Q_DMD_C FLOAT32 -99999999999.9 kVAr Demand value of reactive Power, Phase C PF_INST_A FLOAT32 -99999999999.9 kVAr Power factor, magnitude of instantaneous value, Phase A PF_INST_B FLOAT32 -99999999999.9 kVAr Power factor, magnitude of instantaneous value, Phase B PF_INST_C FLOAT32 -99999999999	Q_DB_C	FLOAT32	-999999.9999999.9	kVAr	Reactive power, magnitude of reported value, Phase C
Q_DMD_C FLOAT32 -999999.9999999.9 kVAr Demand value of reactive Power, Phase C PF_INST_A FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of instantaneous value, Phase B PF_INST_B FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of instantaneous value, Phase B PF_INST_C FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of instantaneous value, Phase C PF_DB_A FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase A PF_DB_B FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase A PF_DB_B FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase B PF_DB_C FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase B PF_DMD_A FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase A PF_DMD_B FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase B PF_DMD_C FLOAT32 -999999.9999999.9 kWh Accumulated reverse active energy value, Phase A EA_RV_ACM_A INT128 0999999999 kWh Accumulated reverse active energy value, Phase B EA_RV_ACM_A INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase A ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value	Q_DMD_A	FLOAT32	-999999.99999999.9	kVAr	Demand value of reactive Power, Phase A
PF_INST_A FLOAT32 FLOAT32 PF_INST_B FLOAT32 PF_INST_B FLOAT32 PF_INST_C FLOAT32 PF_INST_C FLOAT32 PF_INST_C FLOAT32 PF_INST_C FLOAT32 PF_INST_C FLOAT32 PF_INST_C PF_INST_C FLOAT32 PF_INST_C FLOAT32 PF_INST_C Power factor, magnitude of instantaneous value, Phase A PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase A PF_INST_C Power factor, magnitude of reported value, Phase A PF_INST_C Power factor, magnitude of reported value, Phase A PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C Power factor, magnitude of reported value, Phase B PF_INST_C P	Q_DMD_B	FLOAT32	-999999.9999999.9	kVAr	Demand value of reactive Power, Phase B
PF_INST_B FLOAT32 FLOAT32 PPSYSYSYSYSYSYSYSYSYSYSYSYSYSYSYSYSYSYS	Q_DMD_C	FLOAT32	-999999.9999999.9	kVAr	Demand value of reactive Power, Phase C
PF_INST_C FLOAT32 PS99999.9999999.9 FLOAT32 PF_DB_A FLOAT32 PS99999.9999999.9 FLOAT32 PS999999.9999999.9 FLOAT32 PS999999.9999999.9 FLOAT32 PS999999.9 FLOAT32 PS9999999.9 FLOAT32 PS99999999.9 FLOAT32 PS99999999 FLOAT32 PS99999999 FLOAT32 PS99999999 FLOAT32 PS99999999 FLOAT32 PS99999999 FLOAT32 PS999999999 FLOAT32 PS99999999 FLOAT32 PS99999999 FLOAT32 PS999999999 FLOAT32 PS99999999 FLOAT32 PS999999999 FLOAT32 PS999999999 FLOAT32 PS999999999 FLOAT32 FLOAT32 PS999999999 FLOAT32 FLOAT32 PS999999999 FLOAT32 FLOAT32 PS999999999 FLOAT32 FLOAT32 FLOAT32 PS999999999 FLOAT32	PF_INST_A	FLOAT32	-999999.9999999.9	kVAr	Power factor, magnitude of instantaneous value, Phase A
PF_DB_A FLOAT32 FLOAT3	PF_INST_B	FLOAT32	-999999.9999999.9	kVAr	Power factor, magnitude of instantaneous value, Phase B
PF_DB_B FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase B PF_DB_C FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase C PF_DMD_A FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase A PF_DMD_B FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase B PF_DMD_C FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase C EA_RV_ACM_A INT128 0999999999 kWh Accumulated reverse active energy value, Phase A EA_RV_ACM_B INT128 0999999999 kWh Accumulated reverse active energy value, Phase B EA_RV_ACM_A INT128 099999999 kWh Accumulated reverse active energy value, Phase C ER_RV_ACM_A INT128 099999999 kWh Accumulated reverse reactive energy value, Phase A ER_RV_ACM_B INT128 099999999 kWh Accumulated reverse reactive energy value, Phase A ER_RV_ACM_B INT128 099999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 099999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 099999999 kWh Accumulated reverse reactive energy value, Phase C EA_FWD_ACM_A INT128 099999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 099999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_B INT128 099999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 099999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase A ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 09999999999999999999999999999999999	PF_INST_C	FLOAT32	-999999.9999999.9	kVAr	Power factor, magnitude of instantaneous value, Phase C
PF_DB_C PF_DMD_A FLOAT32 -999999.9999999.9 kVAr Power factor, magnitude of reported value, Phase C PF_DMD_A FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase A PF_DMD_B FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase B PF_DMD_C FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase C EA_RV_ACM_A INT128 0999999999 kWh Accumulated reverse active energy value, Phase B EA_RV_ACM_B INT128 0999999999 kWh Accumulated reverse active energy value, Phase B EA_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase C ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase A ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase C EA_FWD_ACM_A INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase C EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	PF_DB_A	FLOAT32	-999999.9999999.9	kVAr	Power factor, magnitude of reported value, Phase A
PF_DMD_A FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase A PF_DMD_B FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase B PF_DMD_C FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase C EA_RV_ACM_A INT128 0999999999 kWh Accumulated reverse active energy value, Phase B EA_RV_ACM_B INT128 0999999999 kWh Accumulated reverse active energy value, Phase B EA_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase C ER_RV_ACM_A INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase A ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward reactive energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	PF_DB_B	FLOAT32	-999999.9999999.9	kVAr	Power factor, magnitude of reported value, Phase B
PF_DMD_B FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase B PF_DMD_C FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase C EA_RV_ACM_A INT128 0999999999 kWh Accumulated reverse active energy value, Phase A EA_RV_ACM_B INT128 0999999999 kWh Accumulated reverse active energy value, Phase B EA_RV_ACM_C INT128 0999999999 kWh Accumulated reverse active energy value, Phase C ER_RV_ACM_A INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase A ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	PF_DB_C	FLOAT32	-999999.9999999.9	kVAr	Power factor, magnitude of reported value, Phase C
PF_DMD_C FLOAT32 -999999.9999999.9 kVAr Demand value of power factor, Phase C EA_RV_ACM_A INT128 0999999999 kWh Accumulated reverse active energy value, Phase A EA_RV_ACM_B INT128 0999999999 kWh Accumulated reverse active energy value, Phase B EA_RV_ACM_C INT128 0999999999 kWh Accumulated reverse active energy value, Phase C ER_RV_ACM_A INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase A ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase C EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase C EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	PF_DMD_A	FLOAT32	-999999.9999999.9	kVAr	Demand value of power factor, Phase A
EA_RV_ACM_A INT128 0999999999 kWh Accumulated reverse active energy value, Phase A EA_RV_ACM_B INT128 0999999999 kWh Accumulated reverse active energy value, Phase B EA_RV_ACM_C INT128 0999999999 kWh Accumulated reverse active energy value, Phase C ER_RV_ACM_A INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase A ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase C EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	PF_DMD_B	FLOAT32	-999999.9999999.9	kVAr	Demand value of power factor, Phase B
EA_RV_ACM_B INT128 0999999999 kWh Accumulated reverse active energy value, Phase B EA_RV_ACM_C INT128 0999999999 kWh Accumulated reverse active energy value, Phase C ER_RV_ACM_A INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase A ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase C EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	PF_DMD_C	FLOAT32	-999999.9999999.9	kVAr	Demand value of power factor, Phase C
EA_RV_ACM_C INT128 0999999999 kWh Accumulated reverse active energy value, Phase C ER_RV_ACM_A INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase A ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase C EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	EA_RV_ACM_A	INT128	0999999999	kWh	Accumulated reverse active energy value, Phase A
ER_RV_ACM_A INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase A ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase C EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	EA_RV_ACM_B	INT128	0999999999	kWh	Accumulated reverse active energy value, Phase B
ER_RV_ACM_B INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase B ER_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase C EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	EA_RV_ACM_C	INT128	0999999999	kWh	Accumulated reverse active energy value, Phase C
ER_RV_ACM_C INT128 0999999999 kWh Accumulated reverse reactive energy value, Phase C EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	ER_RV_ACM_A	INT128	0999999999	kWh	Accumulated reverse reactive energy value, Phase A
EA_FWD_ACM_A INT128 0999999999 kWh Accumulated forward active energy value, Phase A EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	ER_RV_ACM_B	INT128	0999999999	kWh	Accumulated reverse reactive energy value, Phase B
EA_FWD_ACM_B INT128 0999999999 kWh Accumulated forward active energy value, Phase B EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 09999999999 kWh Accumulated forward reactive energy value, Phase B	ER_RV_ACM_C	INT128	0999999999	kWh	Accumulated reverse reactive energy value, Phase C
EA_FWD_ACM_C INT128 0999999999 kWh Accumulated forward active energy value, Phase C ER_FWD_ACM_A INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	EA_FWD_ACM_A	INT128	0999999999	kWh	Accumulated forward active energy value, Phase A
ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase A ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	EA_FWD_ACM_B	INT128	0999999999	kWh	Accumulated forward active energy value, Phase B
ER_FWD_ACM_B INT128 0999999999 kWh Accumulated forward reactive energy value, Phase B	EA_FWD_ACM_C	INT128	0999999999	kWh	Accumulated forward active energy value, Phase C
	ER_FWD_ACM_A	INT128	0999999999	kWh	Accumulated forward reactive energy value, Phase A
ER_FWD_ACM_C INT128 0999999999 kWh Accumulated forward reactive energy value, Phase C	ER_FWD_ACM_B	INT128	0999999999	kWh	Accumulated forward reactive energy value, Phase B
	ER_FWD_ACM_C	INT128	0999999999	kWh	Accumulated forward reactive energy value, Phase C

8.9.6 Technical data

Table 483: SP SE Technical data

Characteristic	Value
Pickup accuracy	At all three currents in rage 0.101.20 x In At all three voltages in range 0.501.15 x Vn At the frequency fn ± 1Hz Active power and energy in range PF > 0.71 Reactive power and energy in range PF < 0.71
	± 1.5% for power (S, P and Q) ± 0.015 for power factor ± 1.5% for energy
Suppression of harmonics	DFT: -50 dB at f = n x fn, where n = 2, 3, 4, 5,

8.10 Current total demand distortion, PQI

8.10.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Current total demand distortion	CMHAI	PQM3I	PQI

8.10.2 Function block

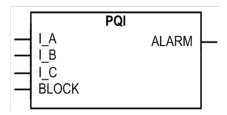


Figure 304: Function block

8.10.3 Functionality

The Current total demand distortion PQI is used for monitoring the current total demand distortion TDD.

8.10.4 Operation principle

The function can be enabled and disabled with the Operation setting. The corresponding parameter values are Enable and Disable.

The operation of the current distortion monitoring function can be described with a module diagram. All the modules in the diagram are explained in the next sections.

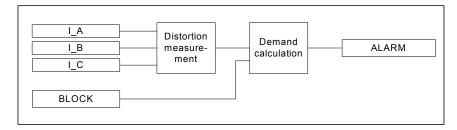


Figure 305: Functional module diagram

8.10.4.1 Distortion measurement

The distortion measurement module measures harmonics up to the 11th harmonic. The total demand distortion TDD is calculated from the measured harmonic components with the formula:

$$TDD = \frac{\sqrt{\sum_{k=2}^{N} I_k^2}}{I_{\text{max demand}}}$$

(Equation 74)

I_k kth harmonic component

 $I_{max\ demand}$ The maximum demand current measured by IA, IB, IC

If IA, IB, IC are not available in the configuration or the measured maximum demand current is less than the *Initial Dmd current* setting, *Initial Dmd current* is used for $I_{max\ demand}$.

8.10.4.2 Demand calculation

The demand value for TDD is calculated separately for each phase. If any of the calculated total demand distortion values is above the set alarm limit *TDD alarm limit*, the ALARM output is activated.

The demand calculation window is set with the *Demand interval* setting. It has seven window lengths from "1 minute" to "180 minutes". The window type can be set with the *Demand window* setting. The available options are "Sliding" and "Nonsliding".

The activation of the BLOCK input blocks the ALARM output.

8.10.4.3 Application

In standards, the power quality is defined through the characteristics of the supply voltage. Transients, short-duration and long-duration voltage variations, unbalance and waveform distortions are the key characteristics describing power quality. Power quality is, however,

a customer-driven issue. It could be said that any power problem concerning voltage or current that results in a failure or misoperation of customer equipment is a power quality problem.

Harmonic distortion in a power system is caused by nonlinear devices. Electronic power converter loads constitute the most important class of nonlinear loads in a power system. The switch mode power supplies in a number of single-phase electronic equipment, such as personal computers, printers and copiers, have a very high third-harmonic content in the current. Three-phase electronic power converters, that is, dc/ac drives, however, do not generate third-harmonic currents. Still, they can be significant sources of harmonics.

Power quality monitoring is an essential service that utilities can provide for their industrial and key customers. Not only can a monitoring system provide information about system disturbances and their possible causes, it can also detect problem conditions throughout the system before they cause customer complaints, equipment malfunctions and even equipment damage or failure. Power quality problems are not limited to the utility side of the system. In fact, the majority of power quality problems are localized within customer facilities. Thus, power quality monitoring is not only an effective customer service strategy but also a way to protect a utility's reputation for quality power and service.

PQI provides a method for monitoring the power quality by means of the current waveform distortion. PQI provides a short-term 3-second average and a long-term demand for TDD.

8.10.5 Signals

Table 484: CMHAI Input signals

Name	Type	Default	Description
I_A	Signal	0	Phase A current
I_B	Signal	0	Phase B current
I_C	Signal	0	Phase C current
BLOCK	BOOLEAN	0=False	Block signal for all binary outputs

Table 485: CMHAI Output signals

Name	Type	Description
ALARM	BOOLEAN	Alarm signal for TDD

8.10.6 Settings

Table 486: CMHAI Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation
Demand interval	0=1 minute 1=5 minutes 2=10 minutes 3=15 minutes 4=30 minutes 5=60 minutes 6=180 minutes			2=10 minutes	Time interval for demand calculation
Demand window	1=Sliding 2=Non-sliding			1=Sliding	Demand calculation window type
TDD alarm limit	1.0100.0	%	0.1	50.0	TDD alarm limit
Initial Dmd current	0.101.00	xIn	0.01	1.00	Initial demand current

8.10.7 Monitored data

Table 487: CMHAI Monitored data

Name	Туре	Values (Range)	Unit	Description
Max demand TDD IA	FLOAT32	0.00500.00	%	Maximum demand TDD for phase A
Max demand TDD IB	FLOAT32	0.00500.00	%	Maximum demand TDD for phase B
Max demand TDD IC	FLOAT32	0.00500.00	%	Maximum demand TDD for phase C
Time max dmd TDD IA	Timestam p			Time of maximum demand TDD phase A
Time max dmd TDD IB	Timestam p			Time of maximum demand TDD phase B
Time max dmd TDD IC	Timestam p			Time of maximum demand TDD phase C
3SMHTDD_A	FLOAT32	0.00500.00	%	3 second mean value of TDD for phase A
DMD_TDD_A	FLOAT32	0.00500.00	%	Demand value for TDD for phase A
3SMHTDD_B	FLOAT32	0.00500.00	%	3 second mean value of TDD for phase B
DMD_TDD_B	FLOAT32	0.00500.00	%	Demand value for TDD for phase B
3SMHTDD_C	FLOAT32	0.00500.00	%	3 second mean value of TDD for phase C
DMD_TDD_C	FLOAT32	0.00500.00	%	Demand value for TDD for phase C

8.11 Voltage total harmonic distortion, PQVPH

8.11.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Voltage total harmonic distortion	VMHAI	PQM3U	PQVPH

8.11.2 Function Block

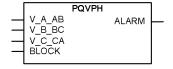


Figure 306: Function block

8.11.3 Functionality

The Voltage total harmonic distortion function PQVPH is used for monitoring the voltage total harmonic distortion THD.

8.11.4 Operation principle

The function can be enabled and disabled with the *Operation setting*. The corresponding parameter values are Enable and Disable.

The operation of the voltage distortion monitoring function can be described with a module diagram. All the modules in the diagram are explained in the next sections.

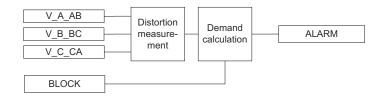


Figure 307: Functional module diagram

The distortion measurement module measures harmonics up to the 11th harmonic. The total harmonic distortion THD for voltage is calculated from the measured harmonic components with the formula

$$THD = \frac{\sqrt{\sum_{k=2}^{N} V_k^2}}{V_1}$$

(Equation 75)

V_kkth harmonic component

V₁the voltage fundamental component amplitude

8.11.4.1 Demand calculation

The demand value for THD is calculated separately for each phase. If any of the calculated demand THD values is above the set alarm limit THD *alarm limit*, the ALARM output is activated.

The demand calculation window is set with the *Demand interval* setting. It has seven window lengths from "1 minute" to "180 minutes". The window type can be set with the *Demand window* setting. The available options are "Sliding" and "Nonsliding".

The activation of the BLOCK input blocks the ALARM output.

8.11.4.2 Application

PQVPH provides a method for monitoring the power quality by means of the voltage waveform distortion. PQVPH provides a short-term three-second average and long-term demand for THD.

8.11.5 Signals

Table 488: PQVPH

Name	Туре	Default	Description
V_A_AB	SIGNAL	0	Phase-to-ground voltage A or phase-to-phase voltage AB
V_B_BC	SIGNAL	0	Phase-to-ground voltage B or phase-to-phase voltage BC
V_C_CA	SIGNAL	0	Phase-to-ground voltage C or phase-to-phase voltage CA
BLOCK	BOOLEAN	0 = FALSE	Block signal for all binary outputs

Table 489: PQVPH Output signals

Name	Туре	Description
ALARM	BOOLEAN	Alarm signal for THD

8.11.6 Settings

Table 490: PQVPH Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
Demand interval	0=1 minute 1=5 minutes 2=10 minutes 3=15 minutes 4=30 minutes 5=60 minutes 6=180 minutes			2=10 minutes	Time interval for demand calculation
Demand window	1=Sliding 2=Non-slidin g			1=Sliding	Demand calculation window type
THD alarm limit	1.0100.0	%	0.1	50.0	THD alarm limit

8.11.7 Monitored data

Table 491: PQVPH Monitored data

Name	Туре	Values (Range)	Unit	Description
Max demand THD UL1	FLOAT32	0.00500.00	%	Maximum demand THD for phase A
Max demand THD UL2	FLOAT32	0.00500.00	%	Maximum demand THD for phase B
Max demand THD UL3	FLOAT32	0.00500.00	%	Maximum demand THD for phase C
Time max dmd THD UL1	Timestamp			Time of maximum demand THD phase A
Time max dmd THD UL2	Timestamp			Time of maximum demand THD phase B
Time max dmd THD UL3	Timestamp			Time of maximum demand THD phase C
3SMHTHD_A	FLOAT32	0.00500.00	%	3 second mean value of THD for phase A
DMD_THD_A	FLOAT32	0.00500.00	%	Demand value for THD for phase A
3SMHTHD_B	FLOAT32	0.00500.00	%	3 second mean value of THD for phase B
DMD_THD_B	FLOAT32	0.00500.00	%	Demand value for THD for phase B
3SMHTHD_C	FLOAT32	0.00500.00	%	3 second mean value of THD for phase C
DMD_THD_C	FLOAT32	0.00500.00	%	Demand value for THD for phase C

8.12 Power Quality, PQSS

8.12.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Voltage variation detection function	PHQVVR	PQ 3U<>	PQSS

8.12.2 Function block

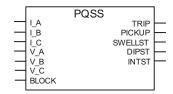


Figure 308: Function block

8.12.3 Functionality

The voltage variation measurement function PQSS is used for measuring the shortduration voltage variations in distribution networks.

Power quality in the voltage waveform is evaluated by measuring voltage swells, dips and interruptions. PQSS includes single-phase and three-phase voltage variation modes.

Typically, short-duration voltage variations are defined to last more than half of the nominal frequency period and less than one minute. The maximum magnitude (in the case of a voltage swell) or depth (in the case of a voltage dip or interruption) and the duration of the variation can be obtained by measuring the RMS value of the voltage for each phase. International standard 61000-4-30 defines the voltage variation to be implemented using the RMS value of the voltage. IEEE standard 1159-1995 provides recommendations for monitoring the electric power quality of the single-phase and polyphase ac power systems.

PQSS contains a blocking functionality. It is possible to block a set of function outputs or the function itself, if desired.

8.12.4 Operation principle

The function can be enabled and disabled with the Operation setting. The corresponding parameter values are Enable and Disable.

The operation of the voltage variation detection function can be described with a module diagram. All the modules in the diagram are explained in the next sections

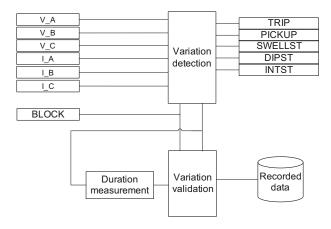


Figure 309: Functional module diagram

8.12.4.1 Phase mode setting

PQSS is designed for both single-phase and polyphase ac power systems and selection can be made with the Phase mode setting, which can be set either to the "Single Phase" or "Three Phase" mode. The default setting is "Single Phase".

The basic difference between these alternatives depends on how many phases are needed to have the voltage variation activated. When the Phase mode setting is "Single Phase", the activation is straightforward. There is no dependence between the phases for variation pickup. The PICKUP output and the corresponding phase pickup are activated when the limit is exceeded or undershot. The corresponding phase pickup deactivation takes place when the limit (includes small hysteresis) is undershot or exceeded. The PICKUP output is deactivated when there are no more active phases.

However, when Phase mode is "Three Phase", all the monitored phase signal magnitudes, defined with Phase supervision, have to fall below or rise above the limit setting to activate the PICKUP output and the corresponding phase output, that is, all the monitored phases have to be activated. Accordingly, the deactivation occurs when the activation requirement is not fulfilled, that is, one or more monitored phase signal magnitudes return beyond their limits. Phases do not need to be activated by the same variation type to activate the PICKUP output. Another consequence is that if only one or two phases are monitored, it is sufficient that these monitored phases activate the PICKUP output.

8.12.4.2 Variation detection

The module compares the measured voltage against the limit settings. If there is a permanent undervoltage or overvoltage, the Reference voltage setting can be set to this voltage level to avoid the undesired voltage dip or swell indications. This is accomplished by converting the variation limits with the Reference voltage setting in the variation detection module, that is, when there is a voltage different from the nominal voltage, the Reference voltage setting is set to this voltage.

The Variation enable setting is used for enabling or disabling the variation types. By default, the setting value is "Swell+dip+Int" and all the alternative variation types are indicated. For example, for setting "Swell+dip", the interruption detection is not active and only swell or dip events are indicated.

In a case where Phase mode is "Single Phase" and the dip functionality is available, the output DIPST is activated when the measured TRMS value drops below the Voltage dip set 3 setting in one phase and also remains above the Voltage Int set setting. If the voltage drops below the Voltage Int set setting, the output INTST is activated. INTST is deactivated when the voltage value rises above the setting Voltage Int set. When the same measured TRMS magnitude rises above the setting Voltage swell set 3, the SWELLST output is activated.

There are three setting value limits for dip (Voltage dip set 1.3) and swell activation (Voltage swell set 1..3) and one setting value limit for interruption.

If Phase mode is "Three Phase", the DIPST and INTST outputs are activated when the voltage levels of all monitored phases, defined with the parameter Phase supervision, drop below the Voltage Int set setting value. An example for the detection principle of voltage interruption for "Three Phase" when Phase supervision is "Ph A + B + C", and also the corresponding pickup signals when Phase mode is "Single Phase", are as shown in the example for the detection of a three-phase interruption.

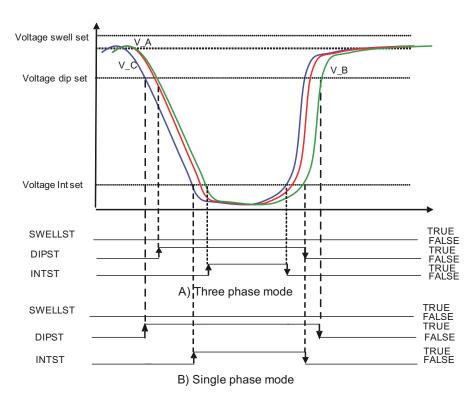


Figure 310: Detection of three-phase voltage interruption

The module measures voltage variation magnitude on each phase separately, that is, phase-segregated status for voltage variation indication is available in monitored data (PICKUP_A, PICKUP_B and PICKUP_C). The configuration parameter Phase supervision defines which voltage phase or phases are monitored. If a voltage phase is

selected to be monitored, the function assumes it to be connected to a voltage measurement channel. In other words, if an unconnected phase is monitored, the function falsely detects a voltage interruption in that phase.

The maximum magnitude and depth are defined as percentage values calculated from the difference between the reference and the measured voltage. For example, a dip to 70 percent means that the minimum voltage dip magnitude variation is 70 percent of the reference dip voltage amplitude.

The activation of the BLOCK input resets the function and outputs.

8.12.4.3 Duration measurement

The duration of each voltage phase corresponds to the period during which the measured TRMS values remain above (swell) or below (dip, interruption) the corresponding limit.

Besides the three limit settings for the variation types dip and swell, there is also a specific duration setting for each limit setting. For interruption, there is only one limit setting common for the three duration settings. The maximum duration setting is common for all variation types.

The duration measurement module measures the voltage variation duration of each phase voltage separately when the Phase mode setting is "Single Phase". The phase variation durations are independent. However, when the Phase mode setting is "Three Phase", voltage variation may pick up only when all the monitored phases are active. An example of variation duration when Phase mode is "Single Phase" can be seen in Figure 311. The voltage variation in the example is detected as an interruption for the phase B and a dip for the phase A, and also the variation durations are interpreted as independent V_B and V_A durations. In case of singlephase interruption, the DIPST output is active when either PICKUP_A or PICKUP_B is active. The measured variation durations are the times measured between the activation of the PICKUP_A or PICKUP_B outputs and deactivation of the PICKUP_A or PICKUP_B outputs. When the Phase mode setting is "Three Phase", the example case does not result in any activation.

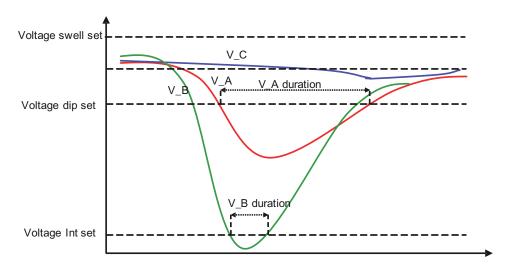


Figure 311: Single-phase interruption for the Phase mode value "Single Phase"

8.12.4.4 Variation validation

The validation criterion for voltage variation is that the measured total variation duration is between the set minimum and maximum durations (Either one of VVa dip time 1, VVa swell time 1 or VVa Int time 1, depending on the variation type, and VVa Dur Max). The maximum variation duration setting is the same for all variation types.

Figure 312 shows voltage dip operational regions. In Figure 310, only one voltage dip/swell/Int set is drawn, whereas in this figure there are three sub-limits for the dip operation. When Voltage dip set 3 is undershot, the corresponding PICKUP_x and also the DIPST outputs are activated. When the TRMS voltage magnitude remains between Voltage dip set 2 and Voltage dip set 1 for a period longer than VVa dip time 2 (shorter time than VVa dip time 3), a momentary dip event is detected. Furthermore, if the signal magnitude stays between the limits longer than VVa dip time 3 (shorter time than VVa Dur max), a temporary dip event is detected. If the voltage remains below Voltage dip set 1 for a period longer than VVa dip time 1 but a shorter time than VVa dip time 2, an instantaneous dip event is detected.

For an event detection, the TRIP output is always activated for one task cycle. The corresponding counter and only one of them (INSTDIPCNT, MOMDIPCNT or TEMPDIPCNT) is increased by one. If the dip limit undershooting duration is shorter than VVa dip time 1, VVa swell time 1 or VVa Int time 1, the event is not detected at all, and if the duration is longer than VVa Dur Max, MAXDURDIPCNT is increased by one but no event detection resulting in the activation of the TRIP output and recording data update takes place. These counters are available through the monitored data view on the LHMI or through tools via communications. There are no phase-segregated counters but all the variation detections are registered to a common time/magnitude-classified counter type. Consequently, a simultaneous multiphase event, that is, the variation-type event detection time moment is exactly the same for two or more phases, is counted only once also for single-phase power systems.

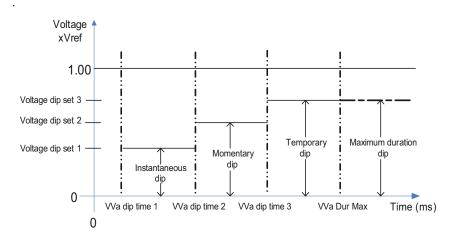


Figure 312: Voltage Dip operational regions

In Figure 313, the corresponding limits regarding the swell operation are provided with the inherent magnitude limit order difference. The swell functionality principle is the same as

for dips, but the different limits for the signal magnitude and times and the inherent operating zone change (here, Voltage swell set x > 1.0 xVn) are applied.

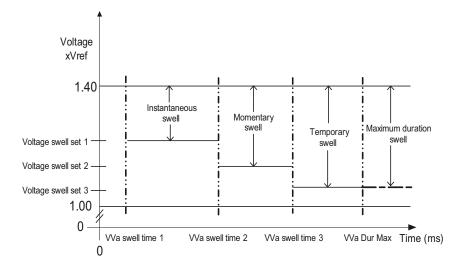


Figure 313: Voltage swell operational regions

For interruption, as shown in Figure 314, there is only one magnitude limit but four duration limits for interruption classification. Now the event and counter type depends only on variation duration time.

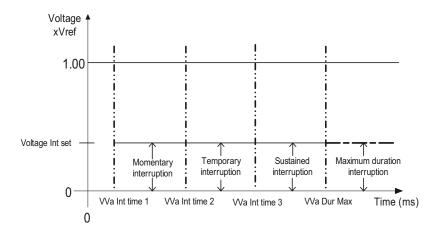


Figure 314: Interruption operating regions

Generally, no event detection is done if both the magnitude and duration requirements are not fulfilled. For example, the dip event does not indicate if the TRMS voltage magnitude remains between Voltage dip set 3 and Voltage dip set 2 for a period shorter than VVa dip time 3 before rising back above Voltage dip set 3.

The event indication ends and possible detection is done when the TRMS voltage returns above (for dip and interruption) or below (for swell) the activation pickup limit. For example, after an instantaneous dip, the event indication when the voltage magnitude

exceeds Voltage dip set 1 is not detected (and recorded) immediately but only if no longer dip indication for the same dip variation takes place and the maximum duration time for dip variation is not exceeded before the signal magnitude rises above Voltage dip set 3. There is a small hysteresis for all these limits to avoid the oscillation of the output activation. No drop-off approach is applied here due to this hysteresis.

Consequently, only one event detection and recording of the same variation type can take place for one voltage variation, so the longest indicated variation of each variation type is detected. Furthermore, it is possible that another instantaneous dip event replaces the one already indicated if the magnitude again undershoots Voltage dip set 1 for the set time after the first detection and the signal magnitude or time requirement is again fulfilled. Another possibility is that if the time condition is not fulfilled for an instantaneous dip detection but the signal rises above Voltage dip set 1, the already elapsed time is included in the momentary dip timer. Especially the interruption time is included in the dip time. If the signal does not exceed Voltage dip set 2 before the timer VVa dip time 2 has elapsed when the momentary dip timer is also started after the magnitude undershooting Voltage dip set 2, the momentary dip event instead is detected. Consequently, the same dip occurrence with a changing variation depth can result in several dip event indications but only one detection. For example, if the magnitude has undershot Voltage dip set 1 but remained above Voltage Intr set for a shorter time than the value of VVa dip time 1 but the signal rises between Voltage dip set 1 and Voltage dip set 2 so that the total duration of the dip activation is longer than VVa dip time 2 and the maximum time is not overshot, this is detected as a momentary dip even though a short instantaneous dip period has been included. In text, the terms "deeper" and "higher" are used for referring to dip or interruption.

Although examples are given for dip events, the same rules can be applied to the swell and interruption functionality too. For swell indication, "deeper" means that the signal rises even more and "higher" means that the signal magnitude becomes lower respectively.

The adjustable voltage thresholds adhere to the relationships:

VVa dip time $1 \le VVa$ dip time $2 \le VVa$ dip time 3.

VVa swell time $1 \le VVa$ swell time $2 \le VVa$ swell time 3.

VVa Int time $1 \le VVa$ Int time $2 \le VVa$ Int time 3.

The user should enter the settings for "VVa x time 1" "VVa x time 2" "VVa x time 3" in the correct order to as to satisfy the relationship mentioned above as the relay will work as per the parameters set by the user..

8.12.4.5 Three/single-phase selection variation examples

The provided rules always apply for single-phase (Phase Mode is "Single Phase") power systems. However, for three-phase power systems (where Phase Mode is "Three Phase"), it is required that all the phases have to be activated before the activation of the PICKUP output. Interruption event indication requires all three phases to undershoot Voltage Int set simultaneously, as shown in Figure 310. When the requirement for interruption for "Three Phase" is no longer fulfilled, variation is indicated as a dip as long as all phases are active.

In case of a single-phase interruption of Figure 311, when there is a dip indicated in another phase but the third phase is not active, there is no variation indication pickup when

Phase Mode is "Three Phase". In this case, only the Phase Mode value "Single Phase" results in the PICKUP B interruption and the PICKUP A dip.

It is also possible that there are simultaneously a dip in one phase and a swell in other phases. The functionality of the corresponding event indication with one inactive phase is shown in Figure 315. Here, the "Swell + dip" variation type of Phase mode is "Single Phase". For the selection "Three Phase" of Phase mode, no event indication or any activation takes place due to a non-active phase.

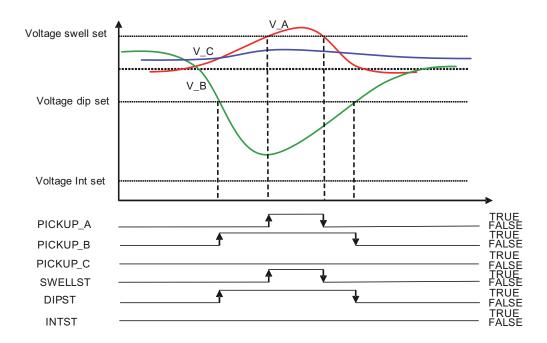


Figure 315: Concurrent dip and swell when Phase mode is "Single Phase"

In Figure 316, one phase is in dip and two phases have a swell indication. For the Phase Mode Dip value "Three Phase", the activation occurs only when all the phases are active. Furthermore, both swell and dip variation event detections take place simultaneously. In case of a concurrent voltage dip and voltage swell, both SWELLCNT and DIPCNT are incremented by one.

Also Figure 316 shows that for the Phase Mode value "Three Phase", two different time moment variation event swell detections take place and, consequently, DIPCNT is incremented by one but SWELLCNT is totally incremented by two. Both in Figure 315 and Figure 316 it is assumed that variation durations are sufficient for detections to take place.

Figure 316: Concurrent dip and two-phase swell

8.12.5 Recorded data

Besides counter increments, the information required for a later fault analysis is stored after a valid voltage variation is detected.

8.12.5.1 Recorded data information

When voltage variation starts, the phase current magnitudes preceding the activation moment are stored. Also, the initial voltage magnitudes are temporarily stored at the variation pickup moment. If the variation is, for example, a two-phase voltage dip, the voltage magnitude of the non-active phase is stored from this same moment, as shown in Figure 312. The function tracks each variation-active voltage phase, and the minimum or maximum magnitude corresponding to swell or dip/ interruption during variation is

temporarily stored. If the minimum or maximum is found in tracking and a new magnitude is stored, also the inactive phase voltages are stored at the same moment, that is, the inactive phases are not magnitude tracked. The time instant (time stamp) at which the minimum or maximum magnitude is measured is also temporarily stored for each voltage phase where variation is active. Finally, variation detection triggers the recorded data update when the variation activation ends and the maximum duration time is not exceeded.

The data objects to be recorded for PQSS are given in Table 492. There are totally three data banks, and the information given in the table refers to one data bank content.

The three sets of recorded data available are saved in data banks 1-3. The data bank 1 holds always the most recent recorded data, and the older data sets are moved to the next banks $(1\rightarrow 2 \text{ and } 2\rightarrow 3)$ when a valid voltage variation is detected. When all three banks have data and a new variation is detected, the newest data are placed into bank 1 and the data in bank 3 are overwritten by the data from bank 2.

Figure 312 shows a valid recorded voltage interruption and two dips for the Phase mode value "Single Phase". The first dip event duration is based on the V_A duration, while the second dip is based on the time difference between the dip stop and start times. The first detected event is an interruption based on the V_B duration given in Figure 312. It is shown also with dotted arrows how voltage time stamps are taken before the final time stamp for recording, which is shown as a solid arrow. Here, the V_B timestamp is not taken when the V_A activation starts.

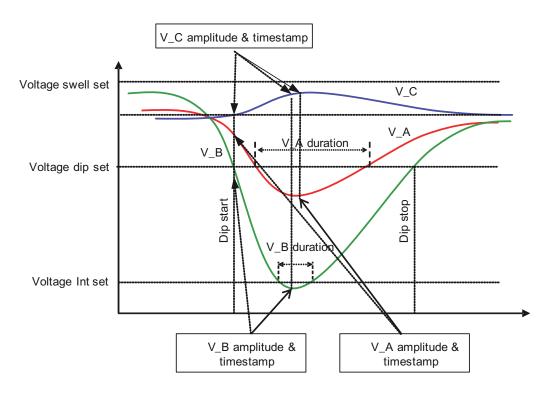
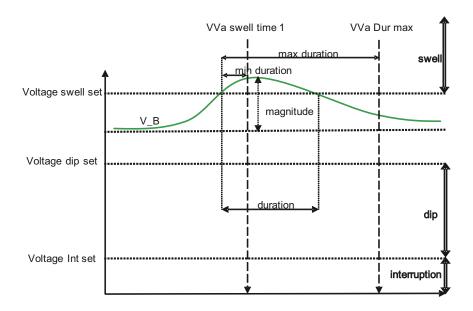


Figure 317: Valid recorded voltage interruption and two dips

Parameter description	Parameter name	Recorded Data DO
Event detection triggering time stamp	Time	(Timestamp) QVV1MSTAx.VVaTyp.t, EXT
Variation type	Variation type	(INS) QVV1MSTAx.VVaTyp.stVal, EXT
Variation magnitude Ph A	Variation Ph A	(MV) QVV1MSTAx.VVa.mag.f
Variation magnitude Ph A time stamp (maximum/minimum magnitude measuring time moment during variation)	Var Ph A rec time	(Timestamp) QVV1MSTAx.VVa.t
Variation magnitude Ph B	Variation Ph B	(MV) QVV2MSTAx.VVa.mag.f
Variation magnitude Ph B time stamp (maximum/minimum magnitude measuring time moment during variation)	Var Ph B rec time	(Timestamp) QVV2MSTAx.VVa.t
Variation magnitude Ph C	Variation Ph C	(MV) QVV3MSTAx.VVa.mag.f
Variation magnitude Ph C time stamp (maximum/minimum magnitude measuring time moment during variation)	Var Ph C rec time	(Timestamp) QVV3MSTAx.VVa.t
Variation duration Ph A	Variation Dur Ph A	(INS) QVV1MSTAx.VVaTm.stVal
Variation Ph A start time stamp (phase A variation start time moment)	Var Dur Ph A time	(Timestamp) QVV1MSTAx.VVaTm.t
Variation duration Ph B	Variation Dur Ph B	(INS) QVV2MSTAx.VVaTm.stVal
Variation Ph B start time stamp (phase B variation start time moment)	Var Dur Ph B time	(Timestamp) QVV2MSTAx.VVaTm.t
Variation duration Ph C	Variation Dur Ph C	(INS) QVV3MSTAx.VVaTm.stVal
Variation Ph C start time stamp (phase C variation start time moment)	Var Dur Ph C time	(Timestamp) QVV3MSTAx.VVaTm.t
Current magnitude Ph A preceding variation	Var current Ph A	(MV) QVV1MSTAx.APreVa.mag.f, EXT
Current magnitude Ph B preceding variation	Var current Ph B	(MV) QVV2MSTAx.APreVa.mag.f, EXT
Current magnitude Ph C preceding variation	Var current Ph C	(MV) QVV3MSTAx.APreVa.mag.f, EXT

Table 492: PQSS Recording data bank parameters

Table 493: Enumeration values for the recorded data parameters


Setting name	Enum name	Value
Variation type	Swell	1
Variation type	Dip	2
Variation type	Swell + dip	3
Variation type	Interruption	4
Variation type	Swell + Int	5
Variation type	Dip + Int	6
Variation type	Swell+dip+Int	7

8.12.6 Application

Voltage variations are the most typical power quality variations on the public electric network. Typically, short-duration voltage variations are defined to last more than half of the nominal frequency period and less than one minute (European Standard EN 50160 and IEEE Std 1159-1995).

These short-duration voltage variations are almost always caused by a fault condition. Depending on where the fault is located, it can cause either a temporary voltage rise (swell) or voltage drop (dip). A special case of voltage drop is the complete loss of voltage (interruption).

PQSS is used for measuring short-duration voltage variations in distribution networks. The power quality is evaluated in the voltage waveform by measuring the voltage swells, dips and interruptions.

Figure 318: Duration and voltage magnitude limits for swell, dip and interruption measurement

Voltage dips disturb the sensitive equipment such as computers connected to the power system and may result in the failure of the equipment. Voltage dips are typically caused by faults occurring in the power distribution system. Typical reasons for the faults are lightning strikes and tree contacts. In addition to fault situations, the switching of heavy loads and starting of large motors also cause dips.

Voltage swells cause extra stress for the network components and the devices connected to the power system. Voltage swells are typically caused by the ground faults that occur in the power distribution system.

Voltage interruptions are typically associated with the switchgear operation related to the occurrence and termination of short circuits. The operation of a circuit breaker disconnects a part of the system from the source of energy. In the case of overhead networks, automatic reclosing sequences are often applied to the circuit breakers that interrupt fault currents. All these actions result in a sudden reduction of voltages on all voltage phases.

Due to the nature of voltage variations, the power quality standards do not specify any acceptance limits. There are only indicative values for, for example, voltage dips in the European standard EN 50160. However, the power quality standards like the international standard IEC 61000-4-30 specify that the voltage variation event is characterized by its duration and magnitude. Furthermore, IEEE Std 1159-1995 gives the recommended practice for monitoring the electric power quality.

Voltage variation measurement can be done to the phase-to-ground and phase-to-phase voltages. The power quality standards do not specify whether the measurement should be

done to phase or phase-to-phase voltages. However, in some cases it is preferable to use phase-to-ground voltages for measurement. The measurement mode is always TRMS.

8.12.7 Signals

Table 494: PQSS Input signals

Name	Type	Default	Description
I_A	SIGNAL	0	Phase A current magnitude
I_B	SIGNAL	0	Phase B current magnitude
I_C	SIGNAL	0	Phase C current magnitude
V_A	SIGNAL	0	Phase-to-ground voltage A
V_B	SIGNAL	0	Phase-to-ground voltage B
V_C	SIGNAL	0	Phase-to-ground voltage C
BLOCK	BOOLEAN	0=False	Block signal for activating the blocking mode

Table 495: PQSS Output signals

Name	Type	Description	
TRIP	BOOLEAN	Voltage variation detected	
PICKUP	BOOLEAN	Voltage variation present	
SWELLST	BOOLEAN	Voltage swell active	
DIPST	BOOLEAN	Voltage dip active	
INTST	BOOLEAN	Voltage interruption active	

8.12.8 Settings

Table 496: PQSS Group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Reference voltage	10.0200.0	%Vn	0.1	57.7	Reference supply voltage in %
Voltage dip set 1	10.0100.0	%	0.1	80	Dip limit 1 in % of reference voltage
VVa dip time 1	0.554.0	cycles	0.1	3	Voltage variation dip duration 1
Voltage dip set 2	10.0100.0	%	0.1	80	Dip limit 2 in % of reference voltage
VVa dip time 2	10.0180.0	cycles	0.1	30	Voltage variation dip duration 2
Voltage dip set 3	10.0100.0	%	0.1	80	Dip limit 3 in % of reference voltage
VVa dip time 3	200060000	ms	10	3000	Voltage variation dip duration 3
Voltage swell set 1	100.0140.0	%	0.1	120	Swell limit 1 in % of reference voltage
VVa swell time 1	0.554.0	cycles	0.1	0.5	Voltage variation swell duration 1
Voltage swell set 2	100.0140.0	%	0.1	120	Swell limit 2 in % of reference voltage
VVa swell time 2	10.080.0	cycles	0.1	10	Voltage variation swell duration 2
Voltage swell set 3	100.0140.0	%	0.1	120	Swell limit 3 in % of reference voltage
VVa swell time 3	200060000	ms	10	2000	Voltage variation swell duration 3
Voltage Int set	0.0100.0	%	0.1	10	Interruption limit in % of reference voltage
VVa Int time 1	0.530.0	cycles	0.1	3	Voltage variation Int duration 1
VVa Int time 2	10.0180.0	cycles	0.1	30	Voltage variation Int duration 2
VVa Int time 3	200060000	ms	10	3000	Voltage variation interruption duration 3
VVa Dur Max	1003600000	ms	100	60000	Maximum voltage variation duration

Table 497: PQSS Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=enable			1=enable	Operation Enable/Disable
Operation	5=disable			r=enable	Operation Enable/Disable
	1=Ph A				
	2=Ph B				
	3=Ph A + B				
Phase supervision	4=Ph C			7=Ph A + B + C	Monitored voltage phase
	5=Ph A + C				
	6=Ph B + C				
	7=Ph A + B + C				
Phase mode	1=Three Phase			2=Cinale Dhoos	Throa/Cingle whose made
Phase mode	2=Single Phase			2=Single Phase	Three/Single phase mode
	1=Swell				
	2=Dip				
	3=Swell + dip				
Variation enable	4=Interruption			7=Swell+dip+Int	Enable variation type
	5=Swell + Int				
	6=Dip + Int				
	7=Swell+dip+Int				

8.12.9 Monitored data

Table 498: PQSS Monitored data

Name	Type	Values (Range)	Unit	Description
ST_A	BOOLEAN	0=False		Start Phase A (Voltage Variation
		1=True		Event in progress)
ST_B	BOOLEAN	0=False		Start Phase B (Voltage Variation
		1=True		Event in progress)
ST_C	BOOLEAN	0=False		Start Phase C (Voltage Variation
		1=True		Event in progress)
INSTSWELLCNT	INT32	02147483647		Instantaneous swell operation counter
MOMSWELLCNT	INT32	02147483647		Momentary swell operation counter
TEMPSWELLCNT	INT32	02147483647		Temporary swell operation counter
MAXDURSWELLCNT	INT32	02147483647		Maximum duration swell operation counter
INSTDIPCNT	INT32	02147483647		Instantaneous dip operation counter
MOMDIPCNT	INT32	02147483647		Momentary dip operation counter
TEMPDIPCNT	INT32	02147483647		Temporary dip operation counter
MAXDURDIPCNT	INT32	02147483647		Maximum duration dip operation counter
Table continued on next	t page			

Name	Type	Values (Range)	Unit	Description
MOMINTCNT	INT32	02147483647		Momentary interruption operation counter
TEMPINTCNT	INT32	02147483647		Temporary interruption operation counter
SUSTINTCNT	INT32	02147483647		Sustained interruption operation counter
MAXDURINTCNT	INT32	02147483647		Maximum duration interruption operation counter
PQSS	Enum	1=on		Status
		2=blocked		
		3=test		
		4=test/blocked		
		5=off		
Time	Timestamp			Time
Variation type	Enum	0=No variation		Variation type
		1=Swell		
		2=Dip	1	
		3=Swell + dip		
		4=Interruption		
		5=Swell + Int		
		6=Dip + Int		
		7=Swell+dip+Int	1	
Variation Ph A	FLOAT32	0.005.00	xVn	Variation magnitude Phase A
Var Ph A rec time	Timestamp			Variation magnitude Phase A time stamp
Variation Ph B	FLOAT32	0.005.00	xVn	Variation magnitude Phase B
Var Ph B rec time	Timestamp			Variation magnitude Phase B time stamp
Variation Ph C	FLOAT32	0.005.00	xVn	Variation magnitude Phase C
Var Ph C rec time	Timestamp			Variation magnitude Phase C time stamp
Variation Dur Ph A	FLOAT32	0.0003600.00 0	s	Variation duration Phase A
Var Dur Ph A time	Timestamp			Variation Ph A start time stamp
Variation Dur Ph B	FLOAT32	0.0003600.00 0	s	Variation duration Phase B
Var Dur Ph B time	Timestamp			Variation Ph B start time stamp
Variation Dur Ph C	FLOAT32	0.0003600.00 0	s	Variation duration Phase C
Var Dur Ph C time	Timestamp			Variation Ph C start time stamp
Var current Ph A	FLOAT32	0.0060.00	xln	Current magnitude Phase A preceding variation
Var current Ph B	FLOAT32	0.0060.00	xln	Current magnitude Phase B preceding variation
Table continued on nex	t page			

Name	Type	Values (Range)	Unit	Description
Var current Ph C	FLOAT32	0.0060.00	xln	Current magnitude Phase C preceding variation
Time	Timestamp			Time
Variation type	Enum	0=No variation		Variation type
		1=Swell		
		2=Dip		
		3=Swell + dip		
		4=Interruption		
		5=Swell + Int		
		6=Dip + Int		
		7=Swell+dip+Int		
Variation Ph A	FLOAT32	0.005.00	xVn	Variation magnitude Phase A
Var Ph A rec time	Timestamp			Variation magnitude Phase A time stamp
Variation Ph B	FLOAT32	0.005.00	xVn	Variation magnitude Phase B
Var Ph B rec time	Timestamp			Variation magnitude Phase B time stamp
Variation Ph C	FLOAT32	0.005.00	xVn	Variation magnitude Phase C
Var Ph C rec time	Timestamp			Variation magnitude Phase C time stamp
Variation Dur Ph A	FLOAT32	0.0003600.00 0	s	Variation duration Phase A
Var Dur Ph A time	Timestamp			Variation Ph A start time stamp
Variation Dur Ph B	FLOAT32	0.0003600.00 0	s	Variation duration Phase B
Var Dur Ph B time	Timestamp			Variation Ph B start time stamp
Variation Dur Ph C	FLOAT32	0.0003600.00 0	s	Variation duration Phase C
Var Dur Ph C time	Timestamp			Variation Ph C start time stamp
Var current Ph A	FLOAT32	0.0060.00	xln	Current magnitude Phase A preceding variation
Var current Ph B	FLOAT32	0.0060.00	xln	Current magnitude Phase B preceding variation
Var current Ph C	FLOAT32	0.0060.00	xln	Current magnitude Phase C preceding variation
Time	Timestamp			Time
Variation type	Enum	0=No variation		Variation type
		1=Swell		
		2=Dip		
		3=Swell + dip		
		4=Interruption		
		5=Swell + Int		
		6=Dip + Int		
		7=Swell+dip+Int		
Table continued on nex	t page			

Name	Type	Values (Range)	Unit	Description
Variation Ph A	FLOAT32	0.005.00	xVn	Variation magnitude Phase A
Var Ph A rec time	Timestamp			Variation magnitude Phase A time stamp
Variation Ph B	FLOAT32	0.005.00	xVn	Variation magnitude Phase B
Var Ph B rec time	Timestamp			Variation magnitude Phase B time stamp
Variation Ph C	FLOAT32	0.005.00	xVn	Variation magnitude Phase C
Var Ph C rec time	Timestamp			Variation magnitude Phase C time stamp
Variation Dur Ph A	FLOAT32	0.0003600.00 0	s	Variation duration Phase A
Var Dur Ph A time	Timestamp			Variation Ph A start time stamp
Variation Dur Ph B	FLOAT32	0.0003600.00 0	s	Variation duration Phase B
Var Dur Ph B time	Timestamp			Variation Ph B start time stamp
Variation Dur Ph C	FLOAT32	0.0003600.00 0	s	Variation duration Phase C
Var Dur Ph C time	Timestamp			Variation Ph C start time stamp
Var current Ph A	FLOAT32	0.0060.00	xln	Current magnitude Phase A preceding variation
Var current Ph B	FLOAT32	0.0060.00	xln	Current magnitude Phase B preceding variation
Var current Ph C	FLOAT32	0.0060.00	xln	Current magnitude Phase C preceding variation

8.13 Frequency measurement, f

8.13.1 Identification

Table 499: Function identification

IEC 61850 identification:	FMMXU1
IEC 60617 identification:	F
ANSI/IEEE C37.2 device number:	F

8.13.2 Function block

Figure 319: Function block symbol

8.13.3 Signals

Table 500: F Input signals

Name	Туре	Default	Description
F	SIGNAL	-	Measured system frequency

8.13.4 Settings

Table 501: F Non group settngs

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=on 5=off			1=on	Operation Off / On
F high high limit	35.0075.00	Hz		60.00	High alarm frequency limit
F high limit	35.0075.00	Hz		55.00	High warning frequency limit
F low limit	35.0075.00	Hz		45.00	Low warning frequency limit
F low low limit	35.0075.00	Hz		40.00	Low alarm frequency limit
F deadband	100100000			1000	Deadband configuration value for integral calculation (percentage of difference between min and max as 0,001 % s

8.13.5 Monitored data

Table 502: FMMXU Monitored datas

name	Туре	Values (Range)	Unit	Description
f Hz	FLOAT32	35.0075.00	Hz	Measured frequency
F_INST	FLOAT32	35.0075.00	Hz	Frequency instantaneous value
F_DB	FLOAT32	35.0075.00	Hz	Frequency reported value
F_RANGE	Enum	0=normal 1=high 2=low 3=high-high 4=low-low		Measured frequency range

8.14 Tap change position indication, 84T

8.14.1 Identification

Function description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Tap position	TPOSSLTC	TPOSM	84T

8.14.2 Function block

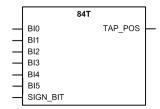


Figure 320: Function block

8.14.3 Functionality

The binary converter function 84T is used for converting binary-coded tap position inputs to their decimal equivalent when a tap position indication is received from the I/O board with the help of the coded binary inputs.

There are three user-selectable conversion modes available for the 7-bit binary inputs where MSB is used as the SIGN bit: the natural binary-coded boolean input to the signed integer output, binary coded decimal BCD input to the signed integer output and binary reflected GRAY coded input to the signed integer output.

8.14.4 Operation principle

The function can be enabled and disabled with the *Operation* setting. The corresponding parameter values are Enable and Disable. When the function is disabled, the tap position quality information is changed accordingly. When the tap position information is not available, it is recommended to disable this function with the *Operation* setting.

The operation of tap position indication function can be described by using a module diagram. All the modules in the diagram are explained in the next sections.

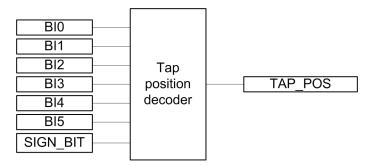


Figure 321: Functional module diagram

Tap position decoder

The function has three alternative user selectable *Operation modes*: "NAT2INT," "BCD2INT" and "GRAY2INT". The operation mode is selected with the *Operation mode* setting. Each operation mode can be used to convert a maximum of 6-bit coded input to an 8-bit signed short integer output. For less than 6-bit input, for example 19 positions with 5 bits when the BCD coding is used, the rest of the bits can be set to FALSE (0).

The operation mode "NAT2INT" is selected when the natural binary coding is used for showing the position of the transformer tap changer. The basic principle of the natural binary coding is to calculate the sum of the bits set to TRUE (1). The LSB has the factor 1. Each following bit has the previous factor multiplied by 2. This is also called dual coding.

The operation mode "BCD2INT" is selected when the binary-coded decimal coding is used for showing the position of the transformer tap changer. The basic principle with the binary-coded decimal coding is to calculate the sum of the bits set to TRUE (1). The four bits nibble (BI3...BI10) have a typical factor to the natural binary coding. The sum of the values should not be more than 9. If the nibble sum is greater than 9, the tap position output validity is regarded as bad.

The operation mode "GRAY2INT" is selected when the binary-reflected GRAY coding is used for showing the position of the transformer tap changer. The basic principle of the GRAY coding is that only one actual bit changes value with consecutive numbers. This function is based on the common binary-reflected GRAY code, which is used with some tap changers. Changing the bit closest to the right side bit gives a new pattern.

An additional separate input, SIGN_BIT, can be used for negative values. If the values are positive, the input is set to FALSE (0). If the SIGN_BIT is set to TRUE (1) making the number negative, the remaining bits are identical to those of the coded positive number.

The tap position validity is set to good in all valid cases. The quality is set to bad in invalid combinations in the binary inputs. For example, when the "BCD2INT" mode is selected and the input binary combination is "0001101", the quality is set to bad and the TAP_POS output is in this case "9". For negative values, when the SIGN_BIT is set to TRUE (1) and the input binary combination is "1011011", the quality is set to bad and the TAP_POS output is in this case "-19".

Table 503: Truth table of the decoding modes

Inputs						TAP_POS outputs			
SIGN_ BIT	BI5	BI4	BI3	BI2	BI1	BI0	NAT2I NT	BCD2I NT	GRAY2 INT
1	0	0	0	0	1	1	-3	-3	-3
1	0	0	0	0	1	0	-2	-2	-2
1	0	0	0	0	0	1	-1	-1	-1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	1	0	2	2	3
0	0	0	0	0	1	1	3	3	2
0	0	0	0	1	0	0	4	4	7
0	0	0	0	1	0	1	5	5	6
0	0	0	0	1	1	0	6	6	4
0	0	0	0	1	1	1	7	7	5
0	0	0	1	0	0	0	8	8	15
0	0	0	1	0	0	1	9	9	14
0	0	0	1	0	1	0	10	9	12
0	0	0	1	0	1	1	11	9	13
0	0	0	1	1	0	0	12	9	8
0	0	0	1	1	0	1	13	9	9
0	0	0	1	1	1	0	14	9	11
0	0	0	1	1	1	1	15	9	10
0	0	1	0	0	0	0	16	10	31
0	0	1	0	0	0	1	17	11	30
0	0	1	0	0	1	0	18	12	28
0	0	1	0	0	1	1	19	13	29
0	0	1	0	1	0	0	20	14	24
0	0	1	0	1	0	1	21	15	25
0	0	1	0	1	1	0	22	16	27
0	0	1	0	1	1	1	23	17	26
0	0	1	1	0	0	0	24	18	16
0	0	1	1	0	0	1	25	19	17
0	0	1	1	0	1	0	26	19	19
0	0	1	1	0	1	1	27	19	18
0	0	1	1	1	0	0	28	19	23
0	0	1	1	1	0	1	29	19	22
0	0	1	1	1	1	0	30	19	20
0	0	1	1	1	1	1	31	19	21
0	1	0	0	0	0	0	32	20	63

Inputs							TAP_POS	outputs	
0	1	0	0	0	0	1	33	21	62
0	1	0	0	0	1	0	34	22	60
0	1	0	0	0	1	1	35	23	61
0	1	0	0	1	0	0	36	24	56

8.14.5 Application

84T provides tap position information for other functions as a signed integer value that can be fed to the tap position input.

For many applications, for example differential protection algorithms, the position information of the tap changer can be coded in various methods. In this function, the binary inputs in the transformer terminal connector are used as inputs to the function. The user can choose the coding method by setting the mode parameter. The available coding methods are BCD, GRAY and Natural binary coding. Since the number of binary inputs is limited to seven, the coding functions are limited to 7-bit, including the sign bit, and thus the 6 bits are used in the coding functions. The position limits for the tap positions at BCD, GRAY and Natural binary coding are ± 39 , ± 63 and ± 63 respectively.

8.14.6 Signals

Table 504: 84T Input signals

Name	Туре	Default	Description
BI0	BOOLEAN	0=False	Binary input 1
BI1	BOOLEAN	0=False	Binary input 2
BI2	BOOLEAN	0=False	Binary input 3
BI3	BOOLEAN	0=False	Binary input 4
BI4	BOOLEAN	0=False	Binary input 5
BI5	BOOLEAN	0=False	Binary input 6
SIGN_BIT	BOOLEAN	0=False	Binary input sign bit

8.14.7 Settings

Table 505: 84T Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable			1=Enable	Operation Off / On
Operation mode	1=NAT2INT 2=BCD2INT 3=GRAY2INT			2=BCD2INT	Operation mode selection

8.14.8 Monitored data

Table 506: 84T Monitored data

Name	Туре	Values (Range)	Unit	Description
TAP_POS	INT8	-6363		Tap position indication

8.14.9 Technical data

Table 507: 84T Technical data

Descrpition	Value
Response time	Typical 100 ms

Section 9 Recording functions

9.1 Disturbance recorder, DFR

9.1.1 Functionality

The IED is provided with a digital fault recorder featuring up to 12 analog and 64 binary signal channels. The analog channels can be set to record either the waveform or the trend of the currents and voltage measured.

The analog channels can be set to trigger the recording function when the measured value falls below or exceeds the set values. The binary signal channels can be set to start a recording on the rising or the falling edge of the binary signal or both.

By default, the binary channels are set to record external or internal IED signals, for example the pickup or trip signals of the IED stages, or external blocking or control signals. Binary IED signals such as a protection pickup or trip signal, or an external IED control signal over a binary input can be set to trigger the recording. The recorded information is stored in a non-volatile memory and can be uploaded for subsequent fault analysis.

9.1.1.1 Recorded analog inputs

The user can map any analog signal type of the IED to each analog channel of the digital fault recorder by setting the *Channel selection* parameter of the corresponding analog channel. In addition, the user can enable or disable each analog channel of the digital fault recorder by setting the *Operation* parameter of the corresponding analog channel to Enable or Disable.

All analog channels of the digital fault recorder that are enabled and have a valid signal type mapped are included in the recording.

9.1.1.2 Triggering alternatives

The recording can be triggered by any or several of the following alternatives:

- Triggering according to the state change of any or several of the binary channels of the digital fault recorder. The user can set the level sensitivity with the *Level trigger* mode parameter of the corresponding binary channel.
- Triggering on limit violations of the analog channels of the digital fault recorder (high and low limit)
- Manual triggering via the *Trig recording* parameter (LHMI or communication)
- Periodic triggering.

Regardless of the triggering type, each recording generates events through state changes of the *Recording started*, *Recording made* and *Recording stored* status parameters. The *Recording stored* parameter indicates that the recording has been stored to the non-volatile

memory. In addition, every analog channel and binary channel of the digital fault recorder has its own *Channel triggered* parameter. Manual trigger has the *Manual triggering* parameter and periodic trigger has the *Periodic triggering* parameter. A state change in any of these parameters also generates an event that gives individual information about the reason of the triggering. COMTRADE files provide unambiguous information about the reason of the triggering, usually only for the binary channels but in some cases also for the analog channels.

Triggering by binary channels

Input signals for the binary channels of the digital fault recorder can be formed from any of the digital signals that can be dynamically mapped. A change in the status of a monitored signal triggers the recorder according to the configuration and settings. Triggering on the rising edge of a digital input signal means that the recording sequence starts when the input signal is activated. Correspondingly, triggering on the falling edge means that the recording sequence starts when the active input signal resets. It is also possible to trigger from both edges. In addition, if preferred, the monitored signal can be non-triggering. The trigger setting can be set individually for each binary channel of the digital fault recorder with the *Level trigger mode* parameter of the corresponding binary channel.

Triggering by analog channels

The trigger level can be set for triggering in a limit violation situation. The user can set the limit values with the *High trigger level* and *Low trigger level* parameters of the corresponding analog channel. Both high level and low level violation triggering can be active simultaneously for the same analog channel. If the duration of the limit violation condition exceeds the filter time of approximately 50 ms, the recorder triggers. In case of a low level limit violation, if the measured value falls below approximately 0.05 during the filter time, the situation is considered to be a circuit-breaker operation and therefore, the recorder does not trigger. This is useful especially in undervoltage situations. The filter time of approximately 50 ms is common to all the analog channel triggers of the digital fault recorder. The value used for triggering is the calculated peak-to-peak value.

Manual triggering

The recorder can be triggered manually via the LHMI or via communication by setting the *Trig recording* parameter to TRUE.

Periodic triggering

Periodic triggering means that the recorder automatically makes a recording at certain time intervals. The user can adjust the interval with the *Periodic trig time* parameter. If the value of the parameter is changed, the new setting takes effect when the next periodic triggering occurs. Setting the parameter to zero disables the triggering alternative and the setting becomes valid immediately. If a new non-zero setting needs to be valid immediately, the user should first set the *Periodic trig time* parameter to zero and then to the new value. The user can monitor the time remaining to the next triggering with the Time to trigger monitored data which counts downwards.

9.1.1.3 Length of recordings

The user can define the length of a recording with the *Record length* parameter. The length is given as the number of fundamental cycles.

According to the memory available and the number of analog channels used, the digital fault recorder automatically calculates the remaining amount of recordings that fit into the available recording memory. The user can see this information with the Rem. amount of recordings that are ten seconds long. The recordings contain data from all analog and binary channels of the digital fault recorder, at the sample rate of 32 samples per fundamental cycle.

The user can view the number of recordings currently in memory with the Number of recordings monitored data. The currently used memory space can be viewed with the Rec. memory used monitored data. It is shown as a percentage value.

The maximum number of recordings is 100.

9.1.1.4 Sampling frequencies

The sampling frequency of the digital fault recorder analog channels depends on the set rated frequency. One fundamental cycle always contains the amount of samples set with the *Storage rate* parameter. Since the states of the binary channels are sampled once per task execution of the digital fault recorder, the sampling frequency of binary channels is 400 Hz at the rated frequency of 50 Hz and 480 Hz at the rated frequency of 60 Hz.

		Compling	Compline	Comp
Table 508:	Sampling frequencies	s of the digital fault	recorder analog	channels

Storage rate (samples per fundamental cycle)	Recording length	Sampling frequency of analog channels, when the rated frequency is 50 Hz	Sampling frequency of binary channels, when the rated frequency is 50 Hz	Sampling frequency of analog channels, when the rated frequency is 60 Hz	Sampling frequency of binary channels, when the rated frequency is 60 Hz
32	1* Record length	1600 Hz	400 Hz	1920 Hz	480 Hz
16	2* Record length	800 Hz	400 Hz	960 Hz	480 Hz
8	4 * Record length	400 Hz	400 Hz	480 Hz	480 Hz

9.1.1.5 Uploading of recordings

The IED stores COMTRADE files to the $C:\COMTRADE\$ folder. The files can be uploaded with the PCM tool or FTP software that can access the $C:\COMTRADE\$ folder.

One complete digital fault recorder consists of two COMTRADE file types: the configuration file and the data file. The file name is the same for both file types. The configuration file has .CFG and the data file .DAT as the file extension.

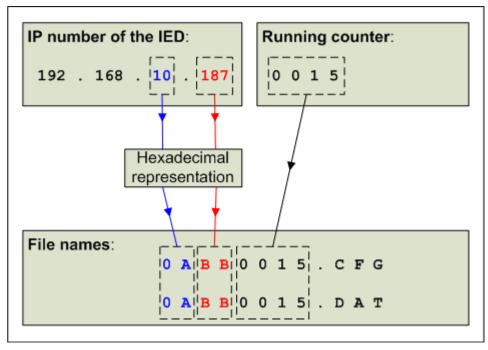


Figure 322: Digital fault recorder file naming

The naming convention of 8+3 characters is used in COMTRADE file naming. The file name is composed of the last two octets of the IED's IP number and a running counter, which has a range of 1...9999. A hexadecimal representation is used for the IP number octets. The appropriate file extension is added to the end of the file name.

9.1.1.6 Deletion of recordings

There are several ways to delete digital fault records. The recordings can be deleted individually or all at once.

Individual digital fault recorder can be deleted with the PCM tool or any appropriate computer software, which can access the IED's C:\COMTRADE folder. The digital fault recorder is not removed from the IED memory until both of the corresponding COMTRADE files, .CFG and .DAT, are deleted. The user may have to delete both of the files types separately, depending on the software used.

Deleting all digital fault records at once is done either with the PCM tool or any appropriate computer software, or from the LHMI via the **Clear/Digital fault recorder** menu. Deleting all digital fault recorders at once also clears the pre-trigger recording in progress.

9.1.1.7 Storage mode

The digital fault recorder can capture data in two modes: waveform and trend mode. The user can set the storage mode individually for each trigger source with the *Storage mode* parameter of the corresponding analog channel or binary channel, the *Stor. mode manual* parameter for manual trigger and the *Stor. mode periodic* parameter for periodic trigger.

In the waveform mode, the samples are captured according to the *Storage rate* and *Pre-trg length* parameters.

In the trend mode, one RMS value is recorded for each enabled analog channel, once per fundamental cycle. The binary channels of the digital fault recorder are also recorded once per fundamental cycle in the trend mode.

Only post-trigger data is captured in trend mode.

The trend mode enables recording times of 32 * Record length.

9.1.1.8 Pre-trigger and post-trigger data

The waveforms of the digital fault recorder analog channels and the states of the digital fault recorder binary channels are constantly recorded into the history memory of the recorder. The user can adjust the percentage of the data duration preceding the triggering, that is, the so-called pre-trigger time, with the *Pre-trg length* parameter. The duration of the data following the triggering, that is, the so-called post-trigger time, is the difference between the recording length and the pre-trigger time. Changing the pre-trigger time resets the history data and the current recording under collection.

9.1.1.9 Operation modes

Digital fault recorder has two operation modes: saturation and overwrite mode. The user can change the operation mode of the digital fault recorder with the *Operation mode* parameter.

Saturation mode

In saturation mode, the captured recordings cannot be overwritten with new recordings. Capturing the data is stopped when the recording memory is full, that is, when the maximum number of recordings is reached. In this case, the event is sent via the state change (TRUE) of the *Memory full* parameter. When there is memory available again, another event is generated via the state change (FALSE) of the *Memory full* parameter.

Overwrite mode

When the operation mode is "Overwrite" and the recording memory is full, the oldest recording is overwritten with the pre-trigger data collected for the next recording. Each time a recording is overwritten, the event is generated via the state change of the *Overwrite of rec.* parameter. The overwrite mode is recommended, if it is more important to have the latest recordings in the memory. The saturation mode is preferred, when the oldest recordings are more important.

New triggerings are blocked in both the saturation and the overwrite mode until the previous recording is completed. On the other hand, a new triggering can be accepted before all pre-trigger samples are collected for the new recording. In such a case, the recording is as much shorter as there were pre-trigger samples lacking.

9.1.1.10 Exclusion mode

Exclusion mode is on, when the value set with the *Exclusion time* parameter is higher than zero. During the exclusion mode, new triggerings are ignored if the triggering reason is the same as in the previous recording. The *Exclusion time* parameter controls how long the

exclusion of triggerings of same type is active after a triggering. The exclusion mode only applies to the analog and binary channel triggerings, not to periodic and manual triggerings.

When the value set with the *Exclusion time* parameter is zero, the exclusion mode is disabled and there are no restrictions on the triggering types of the successive recordings.

The exclusion time setting is global for all inputs, but there is an individual counter for each analog and binary channel of the digital fault recorder, counting the remaining exclusion time. The user can monitor the remaining exclusion time with the *Exclusion time rem* parameter of the corresponding analog or binary channel. The *Exclusion time rem* parameter counts downwards.

9.1.2 Configuration

The user can configure the digital fault recorder with the PCM600 tool or any tool supporting the IEC 61850 standard.

The user can enable or disable the digital fault recorder with the *Operation* parameter under the **Configuration/Digital fault recorder/General** menu.

Analog channels are fixed except channel 4 which is selectable based on the Ground CT option. The name of the analog channel is user-configurable. The user can modify it by writing the new name to the *Channel id text* parameter of the corresponding analog channel.

Any external or internal digital signal of the IED which can be dynamically mapped can be connected to the binary channels of the digital fault recorder. These signals can be, for example, the pickup and trip signals from protection function blocks or the external digital inputs of the IED. The connection is made with dynamic mapping to the binary channel of the digital fault recorder using SMT of PCM600. It is also possible to connect several digital signals to one binary channel of the digital fault recorder. In that case, the signals can be combined with logical functions, for example AND and OR. The user can configure the name of the binary channel and modify it by writing the new name to the *Channel id text* parameter of the corresponding binary channel.

Note that the *Channel id text* parameter is used in COMTRADE configuration files as a channel identifier.

The recording always contains all binary channels of the digital fault recorder. If one of the binary channels is disabled, the recorded state of the channel is continuously FALSE and the state changes of the corresponding channel are not recorded. The corresponding channel name for disabled binary channels in the COMTRADE configuration file is Unused BI.

To enable or disable a binary channel of the digital fault recorder, the user can set the *Operation* parameter of the corresponding binary channel to the values Enable or Disable.

The states of manual triggering and periodic triggering are not included in the recording, but they create a state change to the *Periodic triggering* and *Manual triggering* status parameters, which in turn create events.

The *Recording started* parameter can be used to control the indication LEDs of the IED. The output of the *Recording started* parameter is TRUE due to the triggering of the digital fault recorder, until all the data for the corresponding recording is recorded.

The IP number of the IED and the content of the *Bay name* parameter are both included in the COMTRADE configuration file for identification purposes.

9.1.3 Application

The digital fault recorder is used for post-fault analysis and for verifying the correct operation of protection IEDs and circuit breakers. It can record both analog and binary signal information. The analog inputs are recorded as instantaneous values and converted to primary peak value units when the IED converts the recordings to the COMTRADE format.

COMTRADE is the general standard format used in storing disturbance recordings.

The binary channels are sampled once per task execution of the digital fault recorder. The task execution interval for the digital fault recorder is the same as for the protection functions. During the COMTRADE conversion, the digital status values are repeated so that the sampling frequencies of the analog and binary channels correspond to each other. This is required by the COMTRADE standard.

The digital fault recorder follows the 1999 version of the COMTRADE standard and uses the binary data file format.

9.1.4 Settings

Table 509: Non-group general settings for digital fault recorder

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable		1	1=Enable	DFR Enabled / Disabled
Record length	10500	fundamental cycles	1	50	Size of the recording in fundamental cycles
Pre-trg length	595	%	1	10	Length of the recording preceding the triggering
Operation mode	1=Saturation 2=Overwrite		1	1	Operation mode of the recorder
Exclusion time	01 000 000	ms	1	0	The time during which triggerings of same type are ignored
Storage rate	32, 16, 8	samples per fundamental cycle		32	Storage rate of the waveform recording
Periodic trig time	0604 800	s	10	0	Time between periodic triggerings
Stor. mode periodic	0=Waveform 1=Trend / cycle		1	0	Storage mode for periodic triggering
Stor. mode manual	0=Waveform 1=Trend / cycle		1	0	Storage mode for manual triggering

Table 510: Non-group analog channel settings for digital fault recorder

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable		1	1=Enable for Channels 1 - 4 5=Disable for channels 5 - 8	Analog channel is enabled or disabled
Channel selection	1		0		Select the signal to be recorded by this channel
Channel id text	0 to 64 characters, alphanumeric			DR analog channel X	Identification text for the analog channel used in the COMTRADE format
High trigger level	0.0060.00	pu	0.01	10.00	High trigger level for the analog channel
Low trigger level	0.002.00	pu	0.01	0.00	Low trigger level for the analog channel
Storage mode	0=Waveform 1=Trend / cycle		1	0	Storage mode for the analog channel

^{1.} Refer to the application manual for channel allocation for each configuration.

Table 511: Non-group binary channel settings for digital fault recorder

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	1=Enable 5=Disable		1	5=Disable	Binary channel is enabled or disabled
Level trigger mode	1=Positive or Rising 2=Negative or Falling 3=Both 4=Level trigger off		1	1=Rising	Level trigger mode for the binary channel
Storage mode	0=Waveform 1=Trend / cycle		1	0	Storage mode for the binary channel
Channel id text	0 to 64 characters, alphanumeric			DR binary channel X	Identification text for the analog channel used in the COMTRADE format

Table 512: Control data for digital fault recorder

Parameter	Values (Range)	Unit	Step	Default	Description
Trig recording	0=Cancel 1=Trig				Trigger the disturbance recording
Clear recordings	0=Cancel 1=Clear				Clear all recordings currently in memory

9.1.5 Monitored data

Table 513: Monitored data for digital fault recorder

Parameter	Values (Range)	Unit	Step	Default	Description
Number of recordings	0100				Number of recordings currently in memory
Rem. amount of rec.	0100				Remaining amount of recordings that fit into the available recording memory, when current settings are used
Rec. memory used	0100	%			Storage mode for the binary channel
Time to trigger	0604 800	S			Time remaining to the next periodic triggering

9.1.6 Technical revision history

Table 514: RDRE Technical revision history

Technical revision	Change
В	ChNum changed to EChNum (RADR's). RADR912 added (Analog channel 9 -12). RBDR3364 added (Binary channel 33 - 64).
С	Enum update for Channel selection parameters (DR.RADRx.EChNum.setVal) Std. enum changes to Clear and Manual Trig

9.2 Fault locator FLOC

Functional description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Synchronism and energizing check	SECRSYN	SYNC	25

9.2.1 Identification

Functional description	IEC 61850 identification	IEC 60617 identification	ANSI/IEEE C37.2 device number
Fault locator	DRFLO	FLO	FLO

9.2.2 Function block

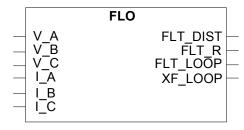


Figure 323: Function block

9.2.3 Functionality

The fault locator function performs the estimation of apparent distance to fault and fault resistance. The calculation is performed by comparing the pre-fault current and voltage phasor by fault current and voltage phasor along with line parameters.

The fault loop is determined and the respective voltage and current phasor are selected for the fault location algorithm. The pre fault current and voltage phasor are used to calculate the pre fault load impedance and fault current and voltage phasor are used to calculate the apparent impedance during the fault. The load impedance, apparent impedance and line parameters are used to estimate the fault resistance and distance to fault.

9.2.4 Operation principle

The *Operation* setting is used to enable or disable the function. When selected "On" the function is enabled and respectively "Off" means function is disabled.

The operation of FLO can be described by using a module diagram (see Figure 324). All the modules in the diagram are explained in the next sections.

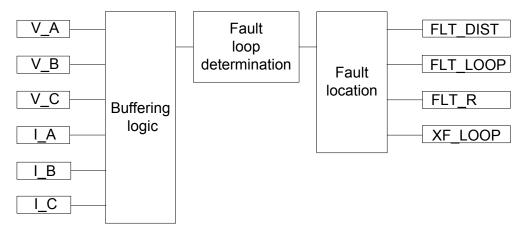


Figure 324: Functional module diagram

Buffering logic

This module buffers the three phase voltage and current phasor input values (DFT values of V_A, V_B, V_C, I_A, I_B, I_C). Once the phase current magnitude is more than the *Phase Level* setting the pre-fault buffer will freeze and updating of fault buffer will be started. The fault buffer will freeze once the buffer is updated fully. The fault location algorithm will be started only if Relay Trip signal is detected.

Fault loop determination

Any fault can be categorized as either a phase to phase fault or a phase to ground fault.

The fault loop determination algorithm determines whether the fault is a phase to ground fault or phase to phase fault by comparing the phase currents with zero sequence current.

This module determines the fault loop from pre-fault and fault phasor stored in the respective buffers. The fault typing is the procedure to identify the type of fault and therefore the respective voltage and current phasor can be selected from the pre-fault and fault buffers, for the fault location algorithm.

Once the fault has been classified as either a phase to ground or phase to phase fault, then the specific fault loop is determined by comparing all phase currents with the setting *Phase Level*. Fault loop determination is done in accordance with Table 515.

Fault in phase A	Fault in phase B	Fault in phase C	Fault in ground (lo)	FLTLOOP	FLTLOOP
1	0	0	1	AG Fault	1
0	1	0	1	BG Fault	2
0	0	1	1	CG Fault	3
1	1	0	0	AB Fault	4
0	1	1	0	BC Fault	5
1	0	1	0	CA Fault	6
1	1	1	0	ABC Fault	7
1	1	0	1	ABG Fault	-1
0	1	1	1	BCG Fault	-2
1	0	1	1	CAG Fault	-3
1	1	1	1	ABCG Fault	-4
0	0	0	0	No Fault	0

Table 515: Fault identification

Once the specific fault type is determined, the respective fault loop voltage and current phasor are taken for fault location algorithm.

If the fault is any single phase to ground fault, then the respective phase current should be ground compensated.

The procedure for the ground compensation is given below,

For ground fault cases, the current measured at the relay is ground compensated by employing the following formula:

$$I_{\mathit{rly}}^* = I_{\mathit{rly}} + k * I_0 * (ZL_{\mathit{zero}} - ZL_{\mathit{pos}}) / ZL_{\mathit{pos}}$$
 Equation (76)

where

$$I_0 = (I_A + I_B + I_C)/3$$
 Equation (77)

k = 1.0 (scaling factor)

 $\mathrm{ZL}_{\mathrm{pos}}$ and $\mathrm{ZL}_{\mathrm{zero}}$ refer to positive and zero sequence line impedances.

$$ZL_{pos} = RL_{pos} + j*XL_{pos}$$

$$ZL_{zero} = RL_{zero} + j*XL_{zero}$$

$$RL_{pos} = PosSeqR * LinLen$$

$$XL_{pos} = PosSeqX * LinLen$$

$$RL_{zero} = ZeroSeqR * LinLen$$

$$XL_{zero} = ZeroSeqX * LinLen$$

 I_{rlv}^* = Ground compensated phase current

 I_{rly} = Non-compensated phase current

R1 is positive sequence line resistance in ohm/ (miles or kms) and is provided as a setting X1 is positive sequence line reactance in ohm/ (miles or kms) and is provided as a setting R0 is zero sequence line resistance in ohm/ (miles or kms) and is provided as a setting

X0 is zero sequence line reactance in ohm/ (miles or kms) and is provided as a setting

Line Length is the length of the line in the units of kilometers (Km) or miles and is provided as a setting.

If R1, X1, R0, X0 are given in ohm/mile then the length of the line *Line Length* should be given in the unit of miles

If R1, X1, R0, X0 are given in ohm/Km then the length of the line Line Length should be given in the unit of Km's.

Table 516 describes what will be the voltage phasor and current phasor under different fault types.

Table 516: Relay voltage and current phasor identification

FLTLOOP	Current phasor	Voltage phasor
AG Fault	I_A*	V_A
BG Fault	I_B*	V_B
CG Fault	I_C*	V_C
ABG Fault	(I_A - I_B)	(V_A - V_B)
BCG Fault	(I_B - I_C)	(V_B - V_C)
CAG Fault	(I_C - I_A)	(V_C - V_A)
ABCG Fault	I_A	V_A
AB Fault	(I_A - I_B)	(V_A - V_B)
BC Fault	(I_B - I_C)	(V_B - V_C)
CA Fault	(I_C - I_A)	(V_C - V_A)
ABC Fault	I_A	V_A

^{*} indicates the respective current is ground compensated

Fault location

This module calculates the distance to fault and fault resistance from the voltage phasor and current phasor selected based on type of the fault (see Table 516).

The algorithm uses the fundamental frequency phasor voltages and currents measured at the relay terminal before and during the fault.

The algorithm basically is an iterative technique, performs a comparison of the pre fault load impedance and apparent impedance during the fault, to estimate the distance to fault.

Estimated values of fault resistance, pre fault load impedance and line impedance are then modified using the correction factors. And the corrected values are used to estimate the final FLT DIST and FLT R.

During the auto-re-closure sequences the fault location is done with initial fault conditions.

9.2.5 Application

Electrical power system has grown rapidly over the last few decades. This resulted in a large increase of the number of lines in operation and their total length. These lines experience faults which are caused by storms, lightning, snow, freezing rain, insulation breakdown and short circuits caused by birds and other external objects. In most cases, electrical faults manifest in mechanical damage, which must be repaired before returning the line to service. The restoration can be expedited if the location of the fault is either known or can be expedited with reasonable accuracy.

Fault locators provide estimate for both sustained and transient faults. Generally transient faults cause minor damage that is not easily visible on inspection. Fault locators help identify those locations for early repairs to prevent recurrence and consequent major damage.

The fault location algorithm is most applicable for radial feeder. The algorithm is based on the system model shown in Figure 325. The algorithm was designed to be used on a homogeneous radial distribution line. Therefore the unit is not intended to be used on a distribution line with many different types of conductors because the algorithm will not be as accurate. Fault locator algorithm may not be accurate for switch on to fault condition.

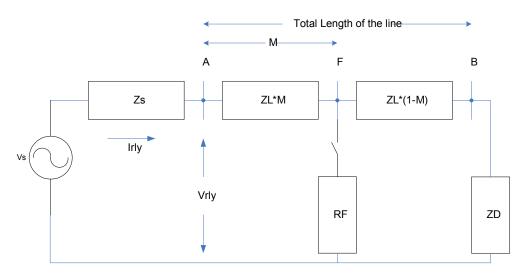


Figure 325: System model considered for fault location

Where,

Vs = Source Voltage

Vrly = Voltage at the relay location

Irly = Current in the transmission line at the relay location

Zs = Source impedance

ZL = Transmission line impedance in ohm/unit length

ZD = Load impedance

RF = Fault resistance

M = Distance to point of fault from relay location

9.2.6 Signals

Table 517: FLO input signals

Name	Туре	Default	Description
V_A	SIGNAL	0	Phase A Voltage
V_B	SIGNAL	0	Phase B Voltage
V_C	SIGNAL	0	Phase C Voltage
I_A	SIGNAL	0	Phase A Current
I_B	SIGNAL	0	Phase B Current
I_C	SIGNAL	0	Phase C Current

9.2.7 Settings

Table 518: FLO group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Operation	ON/OFF			ON	Operation
Line Length	0.00300.00	Miles/Kms		100.00	Length of the transmission or distribution line in miles
R1	0.00020.000	Ohm/(Mile or Km)		1.000	Positive sequence resistance of line in primary Ohm/(Mile or Km)
X1	0.00030.000	Ohm/(Mile or Km)		2.000	Positive sequence reactance of line in primary Ohm/(Mile or Km)
R0	0.00020.000	Ohm/(Mile or Km)		0.010	Zero sequence resistance of line in primary Ohm/(Mile or Km)
X0	0.00030.000	Ohm/(Mile or Km)		1.000	Zero sequence reactance of line in primary Ohm/(Mile or Km)
Phase Level	0.0040.00	%ln		0.10	Threshold magnitude of phase current in the per-unit of primary rated current

9.2.8 Monitored data

Table 519: FLO monitored data

Name	Туре	Description
FLT_DIST	FLOAT32	Estimated distance to fault in Miles or Kms depending on Line parameter units
FLT_R	FLOAT32	Estimated fault resistance in ohms
XF_LOOP	FLOAT32	Estimated reactance in the fault loop in ohms
FLT_LOOP	-1=ABG Fault -2=BCG Fault -3=CAG Fault -4=ABCG Fault 0=No Fault 1=AG Fault 2=BG Fault 3=CG Fault 4=AB Fault 5=BC Fault 6=CA Fault 7=ABC Fault	Fault loop

Section 10 Other functions

- 10.1 Minimum pulse timer (2pcs), TP
- 10.2 Mimimum pulse timer (2pcs, second/minute resolution), 62CLD
- 10.3 Pulse timer (8pcs), PT
- 10.3.1 Function block

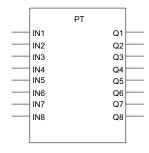


Figure 326: Function block

10.3.2 Functionality

The pulse timer function block PT contains eight independent timers. The function has a settable pulse length. Once the input is activated, the output is set for a specific duration using the *Pulse delay time* setting.

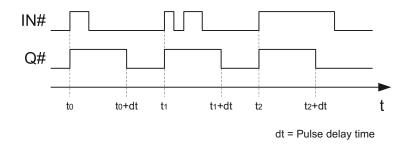


Figure 327: Timer operation

10.3.3 Signals

Table 520: PT Input signals

Name	Туре	Default	Description
IN1	BOOLEAN	0=False	Input 1 status
IN2	BOOLEAN	0=False	Input 2 status
IN3	BOOLEAN	0=False	Input 3 status
IN4	BOOLEAN	0=False	Input 4 status
IN5	BOOLEAN	0=False	Input 5 status
IN6	BOOLEAN	0=False	Input 6 status
IN7	BOOLEAN	0=False	Input 7 status
IN8	BOOLEAN	0=False	Input 8 status

Table 521: PT Output signals

Name	Туре	Description
Q1	BOOLEAN	Output 1 status
Q2	BOOLEAN	Output 2 status
Q3	BOOLEAN	Output 3 status
Q4	BOOLEAN	Output 4 status
Q5	BOOLEAN	Output 5 status
Q6	BOOLEAN	Output 6 status
Q7	BOOLEAN	Output 7 status
Q8	BOOLEAN	Output 8 status

10.3.4 Settings

Table 522: PT Non group settings

Pulse delay time 1	03600000	ms	10	0	Pulse delay time
Pulse delay time 2	03600000	ms	10	0	Pulse delay time
Pulse delay time 3	03600000	ms	10	0	Pulse delay time
Pulse delay time 4	03600000	ms	10	0	Pulse delay time
Pulse delay time 5	03600000	ms	10	0	Pulse delay time
Pulse delay time 6	03600000	ms	10	0	Pulse delay time
Pulse delay time 7	03600000	ms	10	0	Pulse delay time
Pulse delay time 8	03600000	ms	10	0	Pulse delay time

Table 523: Generic timers, TPGAPC1...4

Parameter	Values (Range)	Unit	Step	Default	Description
Pulse time	060000	ms	1	150	Minimum pulse time

Table 524: Generic timers, TPSGAPC1

Parameter	Values (Range)	Unit	Step	Default	Description
Pulse time	0300	s	1	0	Minimum pulse time, range in seconds

Table 525: Generic timers, TPMGAPC1

Parameter	Values (Range)	Unit	Step	Default	Description
Pulse time	0300	min	1	0	Minimum pulse time, range in minutes

10.3.5 Technical data

Table 526: PT Technical data

Characteristic	Value	
Operate time accuracy	±1.0% of the set value or ±20 ms	

10.4 Time delay off timers, TOF

10.4.1 Function block

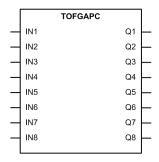


Figure 328: Function block

10.4.2 Functionality

The time-delay-off function block TOFGAPC can be used, for example, for a drop-off-delayed output related to the input signal. TOFGAPC contains eight independent timers. There is a settable delay in the timer. Once the input is activated, the output is set immediately. When the input is cleared, the output stays on until the time set with the *Off delay time* setting has elapsed.

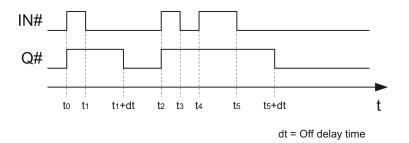


Figure 329: Timer operation

10.4.3 Signals

Table 527: TOFGAPC Input signals

Name	Туре	Default	Description
IN1	BOOLEAN	0=False	Input 1 status
IN2	BOOLEAN	0=False	Input 2 status
IN3	BOOLEAN	0=False	Input 3 status
IN4	BOOLEAN	0=False	Input 4 status
IN5	BOOLEAN	0=False	Input 5 status
IN6	BOOLEAN	0=False	Input 6 status
IN7	BOOLEAN	0=False	Input 7 status
IN8	BOOLEAN	0=False	Input 8 status

Table 528: TOFGAPC Output signals

Name	Туре	Description
Q1	BOOLEAN Output 1 stat	
Q2	BOOLEAN Output 2 statu	
Q3	BOOLEAN Output 3 statu	
Q4	BOOLEAN Output 4 statu	
Q5	BOOLEAN Output 5 statu	
Q6	BOOLEAN Output 6 sta	
Q7	BOOLEAN	Output 7 status
Q8	BOOLEAN	Output 8 status

10.4.4 Settings

Table 529: TOFGAPC Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Off delay time 1	03600000	ms	10	0	Off delay time
Off delay time 2	03600000	ms	10	0	Off delay time
Off delay time 3	03600000	ms	10	0	Off delay time
Off delay time 4	03600000	ms	10	0	Off delay time
Off delay time 5	03600000	ms	10	0	Off delay time
Off delay time 6	03600000	ms	10	0	Off delay time
Off delay time 7	03600000	ms	10	0	Off delay time
Off delay time 8	03600000	ms	10	0	Off delay time

10.4.5 Technical data

Table 530: TOFGAPC Technical data

Characteristic	Value		
Operate time accuracy	±1.0% of the set value or ±20 ms		

10.5 Time delay on timers, TON

10.5.1 Function block

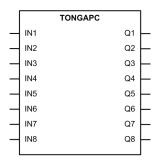


Figure 330: Function block

10.5.2 Functionality

The time-delay-on function block TONGAPC can be used, for example, for time-delaying the output related to the input signal. TONGAPC contains eight independent timers. The timer has a settable time delay. Once the input is activated, the output is set after the time set by the *On delay time* setting has elapsed.

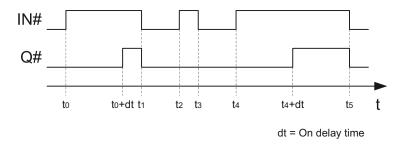


Figure 331: Timer operation

10.5.3 Signals

Table 531: TONGAPC Input signals

Name	Туре	Default	Description
IN1	BOOLEAN	0=False	Input 1
IN2	BOOLEAN	0=False	Input 2
IN3	BOOLEAN	0=False	Input 3
IN4	BOOLEAN	0=False	Input 4
IN5	BOOLEAN	0=False	Input 5
IN6	BOOLEAN	0=False	Input 6
IN7	BOOLEAN	0=False	Input 7
IN8	BOOLEAN	0=False	Input 8

Table 532: TONGAPC Output signals

Name	Туре	Description
Q1	BOOLEAN	Output 1
Q2	BOOLEAN	Output 2
Q3	BOOLEAN	Output 3
Q4	BOOLEAN	Output 4
Q5	BOOLEAN	Output 5
Q6	BOOLEAN	Output 6
Q7	BOOLEAN	Output 7
Q8	BOOLEAN	Output 8

10.5.4 Settings

Table 533: TONGAPC Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
On delay time 1	03600000	ms	10	0	On delay time
On delay time 2	03600000	ms	10	0	On delay time
On delay time 3	03600000	ms	10	0	On delay time
On delay time 4	03600000	ms	10	0	On delay time
On delay time 5	03600000	ms	10	0	On delay time
On delay time 6	03600000	ms	10	0	On delay time
On delay time 7	03600000	ms	10	0	On delay time
On delay time 8	03600000	ms	10	0	On delay time

10.5.5 Technical data

Table 534: TONGAPC Technical data

Characteristic	Value	
Operate time	±1.0% of the set	
accuracy	value or ±20 ms	

10.6 Set reset flip flops, SR

10.6.1 Function block

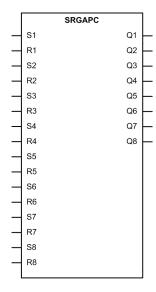


Figure 332: Function block

10.6.2 Functionality

The SRGAPC function block is a simple SR flip-flop with a memory that can be set or that can reset an output from the S# or R# inputs, respectively. SRGAPC contains eight independent set-reset flip-flop latches where the SET input has the higher priority over the RESET input. The status of each Q# output is retained in the nonvolatile memory. The individual reset for each Q# output is available on the LHMI or through tool via communication.

Table 535: Truth table for SRGAPC

S#	R#	Q#
0	0	0 ¹
0	1	0
1	0	1
1	1	1

^{1.} Keep state/no change

10.6.3 Signals

Table 536: SRGAPC Input signals

Name	Туре	Default	Description
S1	BOOLEAN	0=False	Set Q1 output when set
R1	BOOLEAN	0=False	Resets Q1 output when set
S2	BOOLEAN	0=False	Set Q2 output when set
R2	BOOLEAN	0=False	Resets Q2 output when set
S3	BOOLEAN	0=False	Set Q3 output when set
R3	BOOLEAN	0=False	Resets Q3 output when set
S4	BOOLEAN	0=False	Set Q4 output when set
R4	BOOLEAN	0=False	Resets Q4 output when set
S5	BOOLEAN	0=False	Set Q5 output when set
R5	BOOLEAN	0=False	Resets Q5 output when set
S6	BOOLEAN	0=False	Set Q6 output when set
R6	BOOLEAN	0=False	Resets Q6 output when set
S7	BOOLEAN	0=False	Set Q7 output when set
R7	BOOLEAN	0=False	Resets Q7 output when set
S8	BOOLEAN	0=False	Set Q8 output when set
R8	BOOLEAN	0=False	Resets Q8 output when set

Table 537: SRGAPC Output signals

Name	Туре	Description
Q1	BOOLEAN	Q1 status
Q2	BOOLEAN	Q2 status
Q3	BOOLEAN	Q3 status
Q4	BOOLEAN	Q4 status
Q5	BOOLEAN	Q5 status
Q6	BOOLEAN	Q6 status
Q7	BOOLEAN	Q7 status
Q8	BOOLEAN	Q8 status

10.6.4 Settings

Table 538: SRGAPC Non group settings

Parameter	Values (Range)	Unit	Step	Default	Description
Reset Q1	0=Cancel 1=Reset			0=Cancel	Resets Q1 output when set
Reset Q2	0=Cancel 1=Reset			0=Cancel	Resets Q2 output when set
Reset Q3	0=Cancel 1=Reset			0=Cancel	Resets Q3 output when set
Reset Q4	0=Cancel 1=Reset			0=Cancel	Resets Q4 output when set
Reset Q5	0=Cancel 1=Reset			0=Cancel	Resets Q5 output when set
Reset Q6	0=Cancel 1=Reset			0=Cancel	Resets Q6 output when set
Reset Q7	0=Cancel 1=Reset			0=Cancel	Resets Q7 output when set
Reset Q8	0=Cancel 1=Reset			0=Cancel	Resets Q8 output when set

10.7 Move blocks, MV

10.7.1 Function block

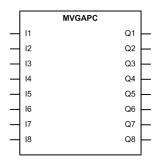


Figure 333: Function block

10.7.2 Functionality

The move function block MVGAPC is used for user logic bits. Each input state is directly copied to the output state. This allows the creating of events from advanced logic combinations.

10.7.3 Signals

Table 539: MVGAPC Output signals

Name	Туре	Description
Q1	BOOLEAN	Q1 status
Q2	BOOLEAN	Q2 status
Q3	BOOLEAN	Q3 status
Q4	BOOLEAN	Q4 status
Q5	BOOLEAN	Q5 status
Q6	BOOLEAN	Q6 status
Q7	BOOLEAN	Q7 status
Q8	BOOLEAN	Q8 status

Section 11 General function block features

11.1 Definite time characteristics

11.1.1 Definite time operation

The DT mode is enabled when the *Operating curve type* setting is selected either as "ANSI Def. Time" or "IEC Def. Time". In the DT mode, the TRIP output of the function is activated when the time calculation exceeds the set *Trip delay time*.

The user can determine the reset in the DT mode with the *Reset delay time* setting, which provides the delayed reset property when needed.

The *Type of reset curve* setting has no effect on the reset method when the DT mode is selected, but the reset is determined solely with the *Reset delay time* setting.

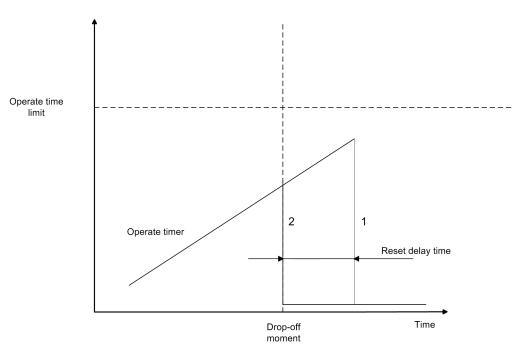


Figure 334: Operation of the counter in drop-off

In case 1, the reset is delayed with the *Reset delay time* setting and in case 2, the counter is reset immediately, because the *Reset delay time* setting is set to zero.

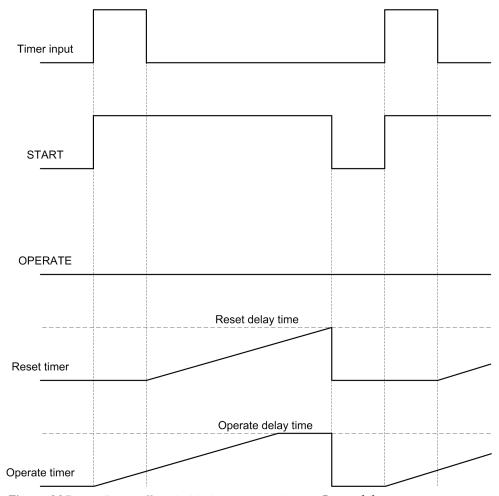


Figure 335: Drop-off period is longer than the set Reset delay time

When the drop-off period is longer than the set *Reset delay time*, as described in Figure 335, the input signal for the definite timer (here: timer input) is active, provided that the current is above the set *Pickup value*. The input signal is inactive when the current is below the set *Pickup value* and the set hysteresis region. The timer input rises when a fault current is detected. The definite timer activates the PICKUP output and the trip timer starts elapsing. The reset (drop-off) timer starts when the timer input falls, that is, the fault disappears. When the reset (drop-off) timer elapses, the trip timer is reset. Since this happens before another pickup occurs, the TRIP output is not activated.

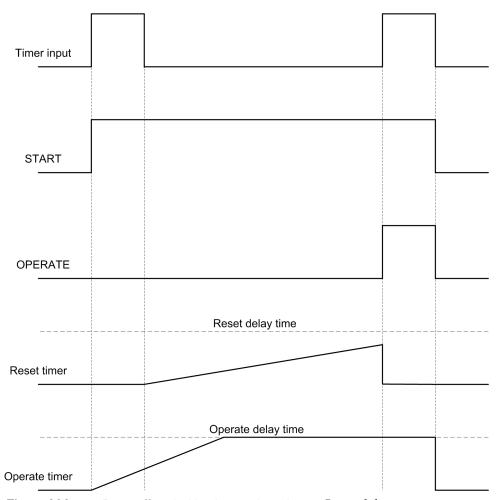


Figure 336: Drop-off period is shorter than the set Reset delay time

When the drop-off period is shorter than the set *Reset delay time*, as described in Figure 336, the input signal for the definite timer (here: timer input) is active, provided that the current is above the set *Pickup value*. The input signal is inactive when the current is below the set *Pickup value* and the set hysteresis region. The timer input rises when a fault current is detected. The definite timer activates the PICKUP output and the trip timer starts elapsing. The reset (drop-off) timer starts when the timer input falls, that is, the fault disappears. Another fault situation occurs before the reset (drop-off) timer has elapsed. This causes the activation of the TRIP output, since the trip timer already has elapsed.

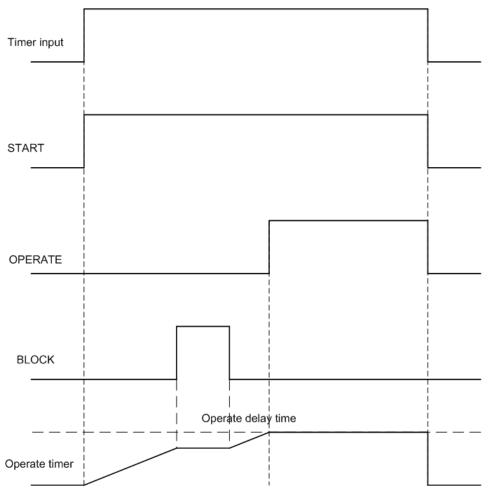


Figure 337: Operating effect of the BLOCK input when the selected blocking mode is "Freeze timer"

If the BLOCK input is activated when the trip timer is running, as described in Figure 337, the timer is frozen during the time BLOCK remains active. If the timer input is not active longer than specified by the *Reset delay time* setting, the trip timer is reset in the same way as described in Figure 335, regardless of the BLOCK input.

The selected blocking mode is "Freeze timer".

11.2 Current based inverse definite minimum time characteristics

11.2.1 IDMT curves for overcurrent protection

In inverse-time modes, the trip time depends on the momentary value of the current: the higher the current, the faster the trip time. The trip time calculation or integration starts immediately when the current exceeds the set *Pickup value* and the PICKUP output is activated.

The TRIP output of the component is activated when the cumulative sum of the integrator calculating the overcurrent situation exceeds the value set by the inverse-time mode. The set value depends on the selected curve type and the setting values used. The user determines the curve scaling with the *Time multiplier* setting.

The *Minimum trip time* setting defines the minimum trip time for the IDMT mode, that is, it is possible to limit the IDMT based trip time for not becoming too short. For example:

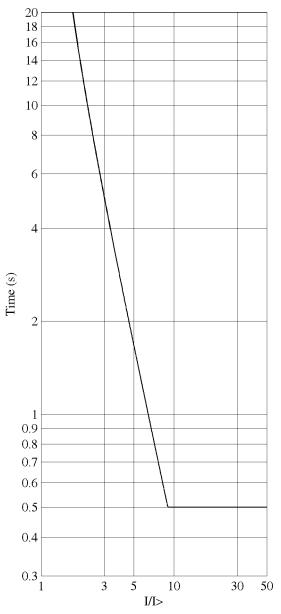



Figure 338: Trip time curves based on IDMT characteristic with the value of the Minimum trip time setting = 0.5 second

Figure 339: Trip time curves based on IDMT characteristic with the value of the Minimum trip time setting = 1 second

11.2.1.1 Standard inverse-time characteristics

For inverse-time operation, both IEC and ANSI/IEEE standardized inverse-time characteristics are supported.

The trip times for the ANSI and IEC IDMT curves are defined with the coefficients A, B and C.

The values of the coefficients can be calculated according to the formula:

$$t[s] = \left(\frac{A}{\left(\frac{I}{I>}\right)^{c} - 1} + B\right) \cdot k$$

(Equation 78)

t[s] t[s] = Trip time in seconds

I measured current

I> set Pickup value

k set *Time multiplier*

Table 540: Curve parameters for ANSI and IEC IDMT curves

Curve name	Α	В	С
(1) ANSI Extremely Inverse	28.2	0.1217	2.0
(2) ANSI Very Inverse	19.61	0.491	2.0
(3) ANSI Normal Inverse	0.0086	0.0185	0.02
(4) ANSI Moderately Inverse	0.0515	0.1140	0.02
(6) Long Time Extremely Inverse	64.07	0.250	2.0
(7) Long Time Very Inverse	28.55	0.712	2.0
(8) Long Time Inverse	0.086	0.185	0.02
(9) IEC Normal Inverse	0.14	0.0	0.02
(10) IEC Very Inverse	13.5	0.0	1.0
(11) IEC Inverse	0.14	0.0	0.02
(12) IEC Extremely Inverse	80.0	0.0	2.0
(13) IEC Short Time Inverse	0.05	0.0	0.04
(14) IEC Long Time Inverse	120	0.0	1.0

The maximum guaranteed measured current is 50 x In for the current protection. When the set *Pickup value* exceeds 1.00 x In, the turn point where the theoretical IDMT characteristics are leveling out to the definite time can be calculated with the formula:

$$Turn\ point = \frac{50 \times In}{Pickup value}$$
 (Equation 79)

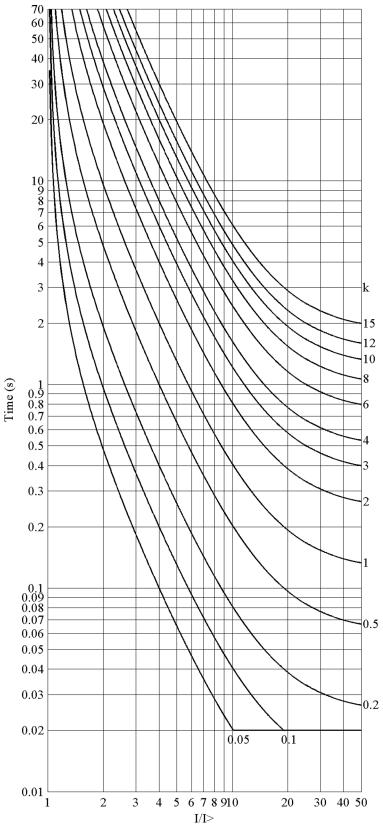


Figure 340: ANSI extremely inverse-time characteristics

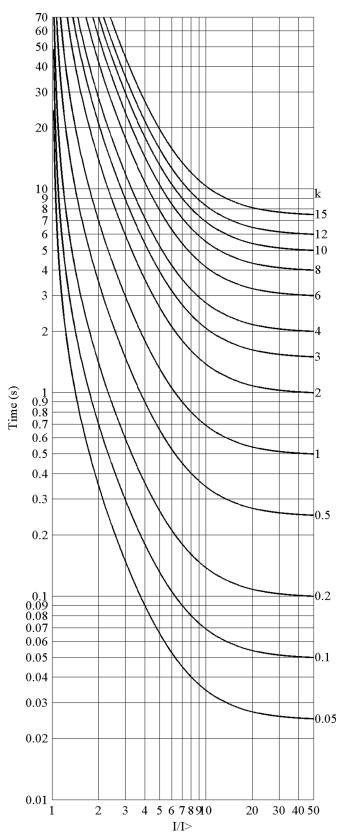


Figure 341: ANSI very inverse-time characteristics

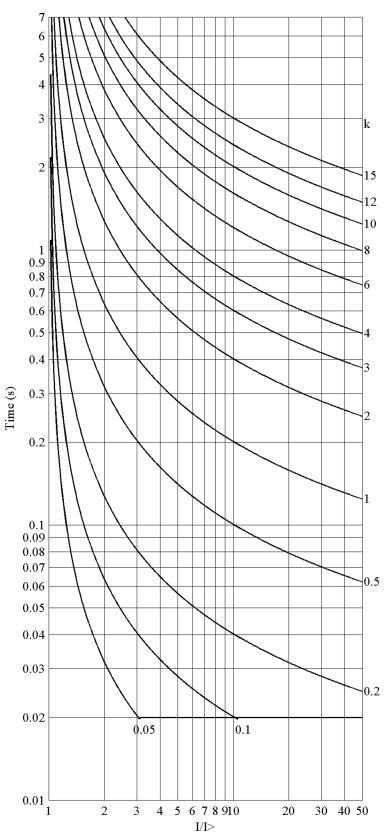


Figure 342: ANSI normal inverse-time characteristics

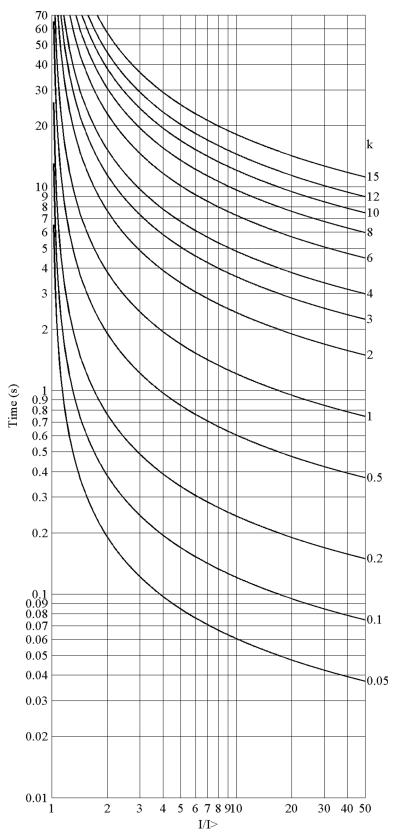


Figure 343: ANSI moderately inverse-time characteristics

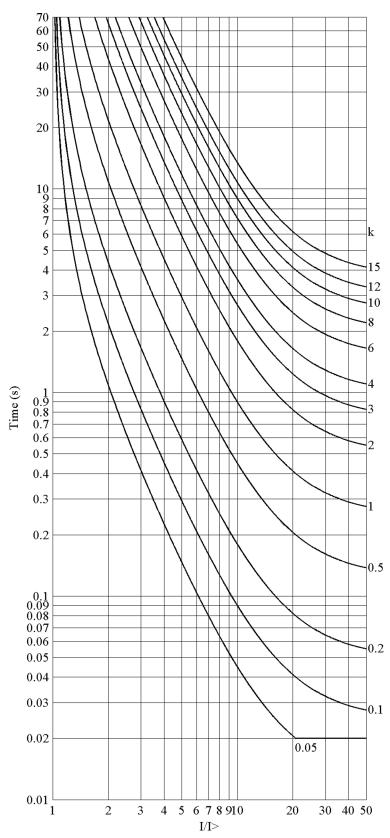


Figure 344: ANSI long-time extremely inverse-time characteristics

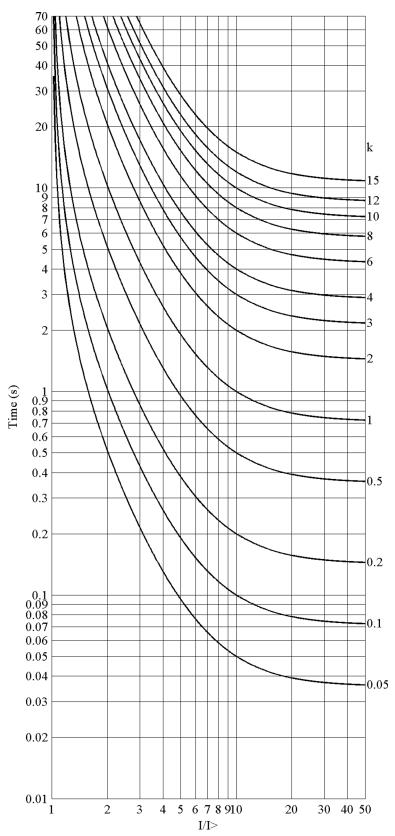


Figure 345: ANSI long-time very inverse-time characteristics

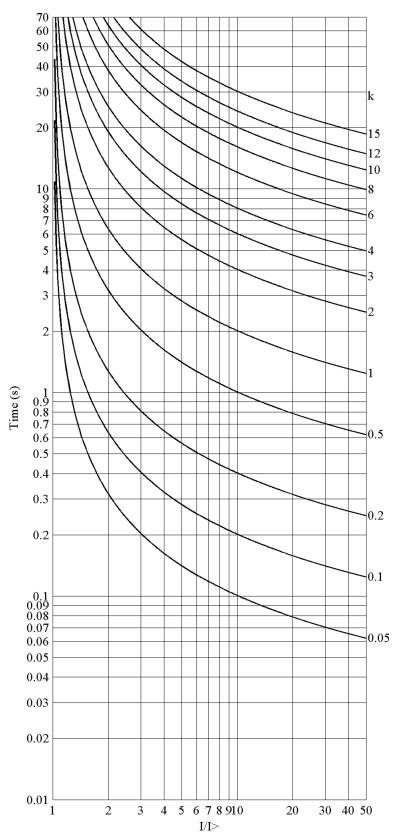


Figure 346: ANSI long-time inverse-time characteristics

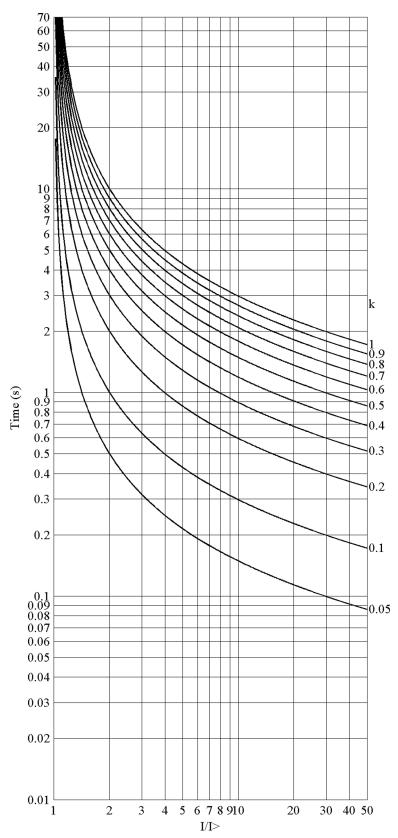


Figure 347: IEC normal inverse-time characteristics

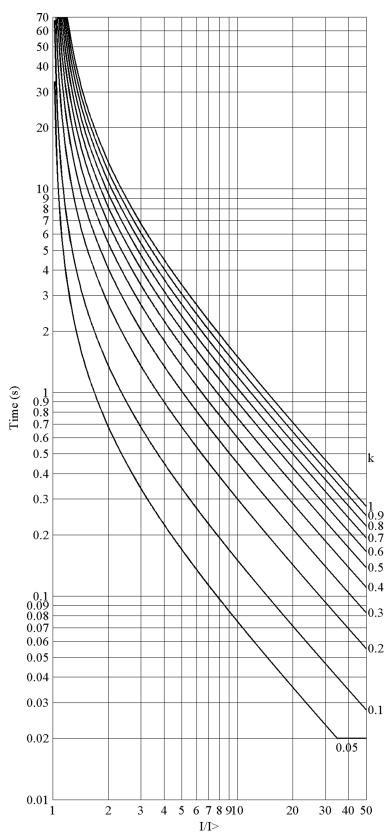


Figure 348: IEC very inverse-time characteristics

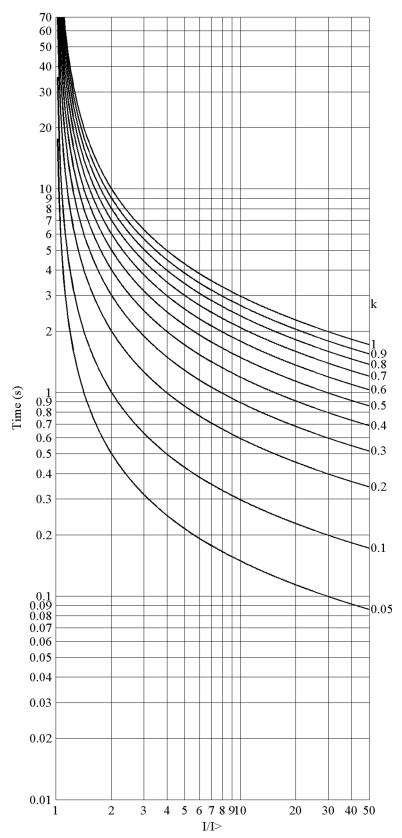


Figure 349: IEC inverse-time characteristics

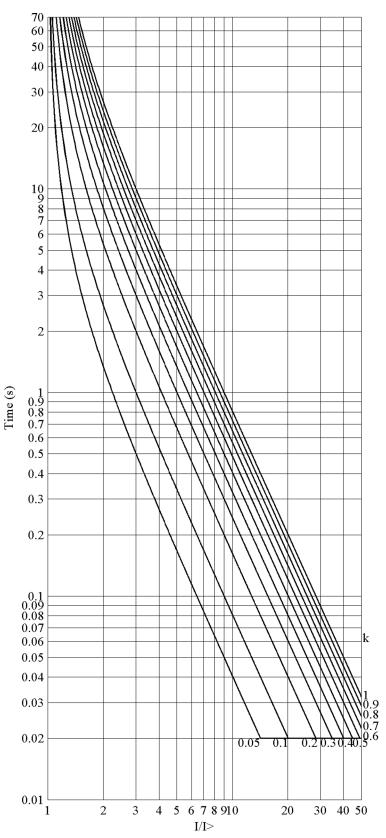


Figure 350: IEC extremely inverse-time characteristics

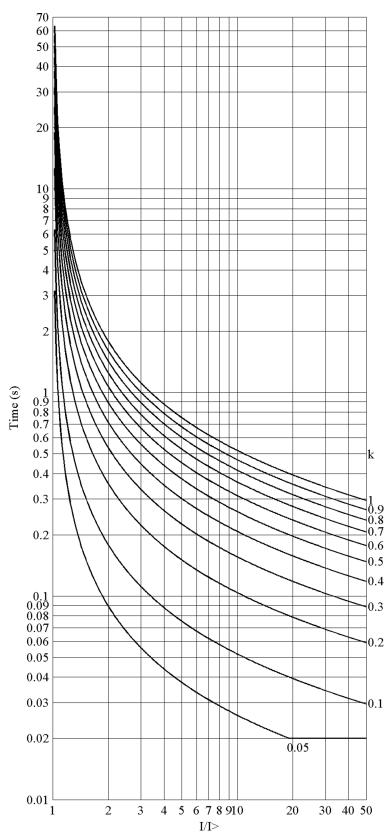


Figure 351: IEC short-time inverse-time characteristics

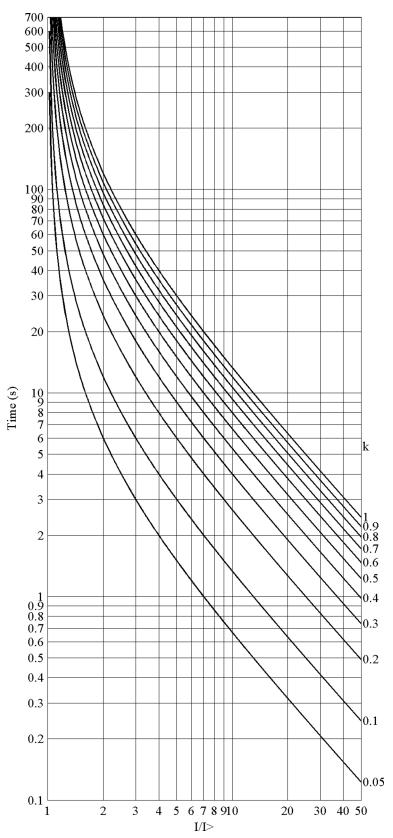


Figure 352: IEC long-time inverse-time characteristics

11.2.1.2 User-programmable inverse-time characteristics

The user can define curves by entering parameters into the following standard formula:

$$t[s] = \left(\frac{A}{\left(\frac{I}{I>}\right)^{c} - E} + B\right) \cdot k$$

(Equation 80)

t[s] Trip time (in seconds)

A set Curve parameter A

B set Curve parameter B

C set Curve parameter C

E set Curve parameter E

I Measured current

l> set Pickup value

k set Time multiplier

11.2.1.3 RI and RD-type inverse-time characteristics

The RI-type simulates the behavior of electromechanical relays. The RD-type is a ground-fault specific characteristic.

The RI-type is calculated using the formula

$$t[s] = \left(\frac{k}{0.339 - 0.236 \times \frac{I}{I}}\right)$$

(Equation 81)

The RD-type is calculated using the formula

$$t[s] = 5.8 - 1.35 \times \ln\left(\frac{I}{k \times I}\right)$$

(Equation 82)

t[s] Trip time (in seconds)

k set Time multiplier

I Measured current

I>set Pickup value

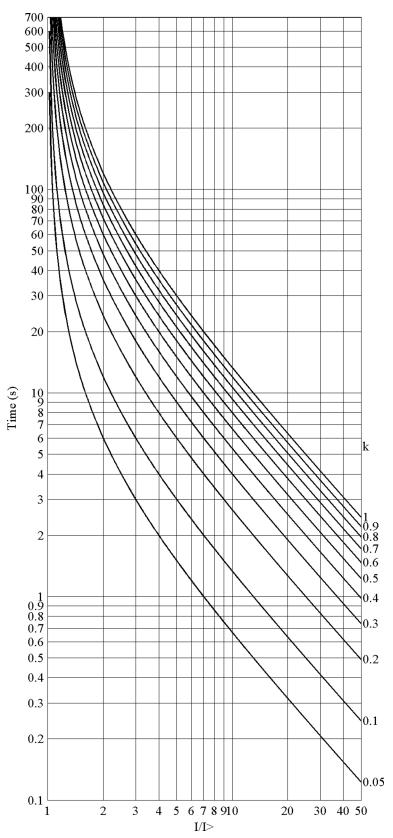


Figure 353: RI-type inverse-time characteristics

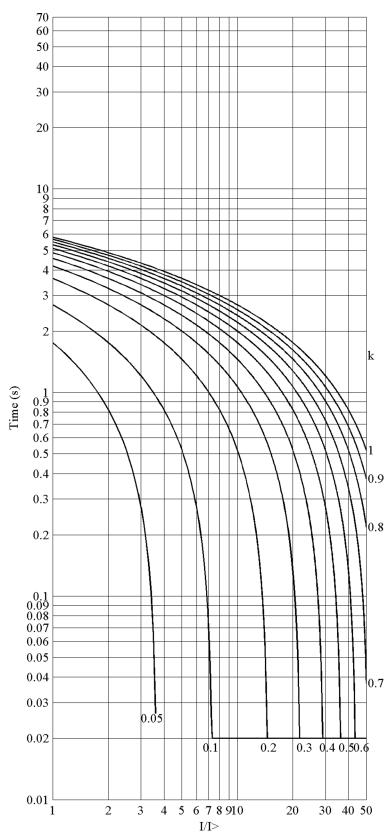


Figure 354: RD-type inverse-time characteristics

11.2.2 Reset in inverse-time modes

The user can select the reset characteristics by using the *Type of reset curve* setting as follows:

Table 541: Values for reset mode

Setting name	Possible values
Type of reset curve	1=Immediate 2=Def time reset 3=Inverse reset

Immediate reset

If the *Type of reset curve* setting in a drop-off case is selected as "Immediate", the inverse timer resets immediately.

Definite time reset

The definite type of reset in the inverse-time mode can be achieved by setting the *Type of reset curve* parameter to "Def time reset". As a result, the trip inverse-time counter is frozen for the time determined with the *Reset delay time* setting after the current drops below the set *Pickup value*, including hysteresis. The integral sum of the inverse-time counter is reset, if another pickup does not occur during the reset delay.

If the *Type of reset curve* setting is selected as "Def time reset", the current level has no influence on the reset characteristic.

Inverse reset

Inverse reset curves are available only for ANSI and user-programmable curves. If you use other curve types, immediate reset occurs.

Standard delayed inverse reset

The reset characteristic required in ANSI (IEEE) inverse-time modes is provided by setting the *Type of reset curve* parameter to "Inverse reset". In this mode, the time delay for reset is given with the following formula using the coefficient D, which has its values defined in the table below.

$$t[s] = \left(\frac{D}{\left(\frac{I}{I>}\right)^2 - 1}\right) \cdot k$$

(Equation 83)

t[s] Reset time (in seconds)

kset Time multiplier

I Measured current

I> set Pickup value

Table 542: Coefficients for ANSI delayed inverse reset curves

Curve name	D
(1) ANSI Extremely Inverse	29.1
(2) ANSI Very Inverse	21.6
(3) ANSI Normal Inverse	0.46
(4) ANSI Moderately Inverse	4.85
(6) Long Time Extremely Inverse	30
(7) Long Time Very Inverse	13.46
(8) Long Time Inverse	4.6

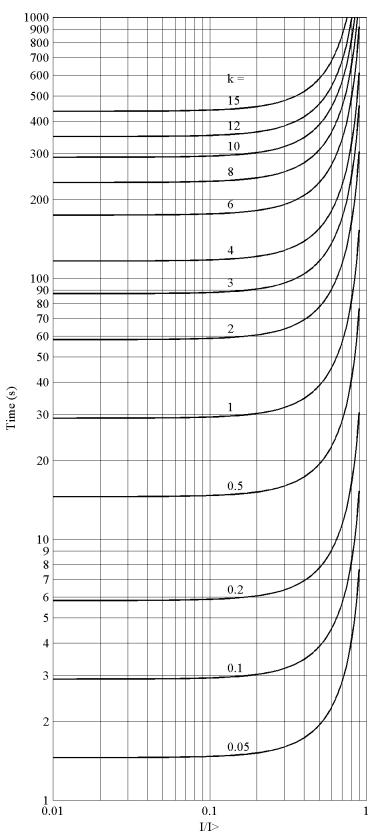


Figure 355: ANSI extremely inverse reset time characteristics

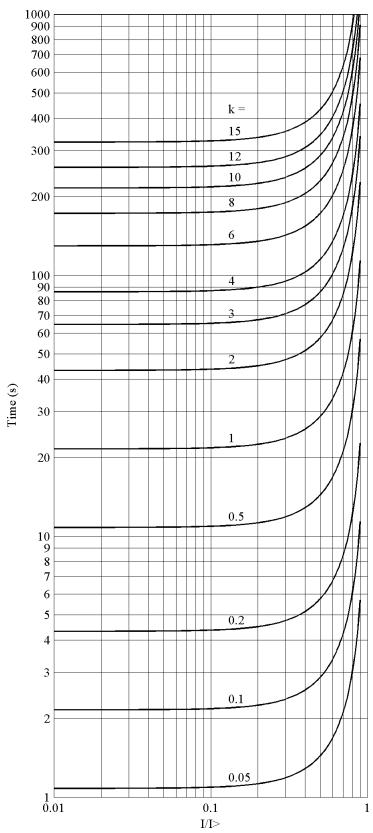


Figure 356: ANSI very inverse reset time characteristics

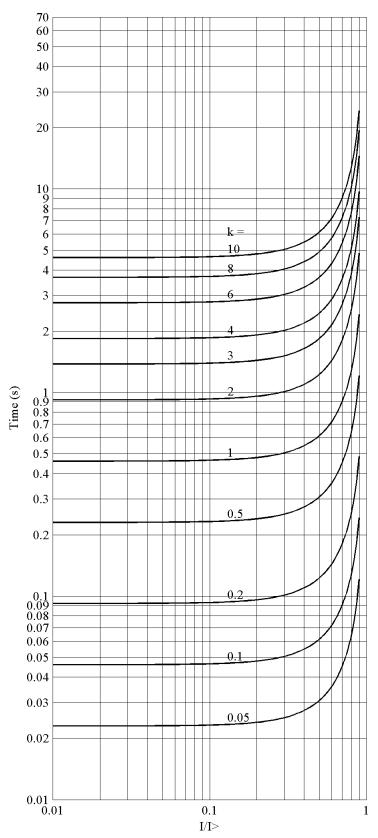


Figure 357: ANSI normal inverse reset time characteristics

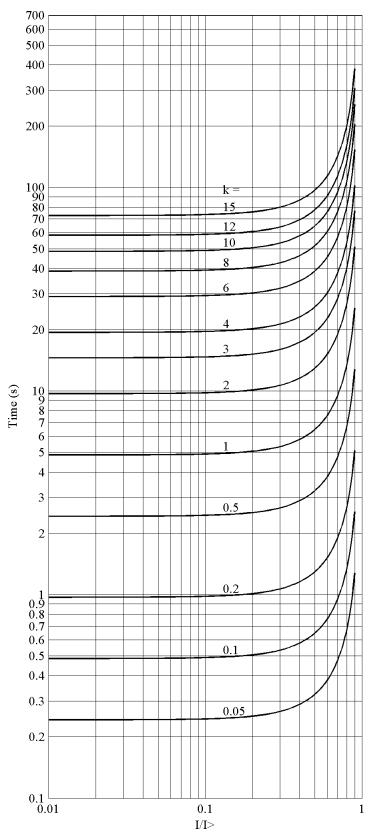


Figure 358: ANSI moderately inverse reset time characteristics

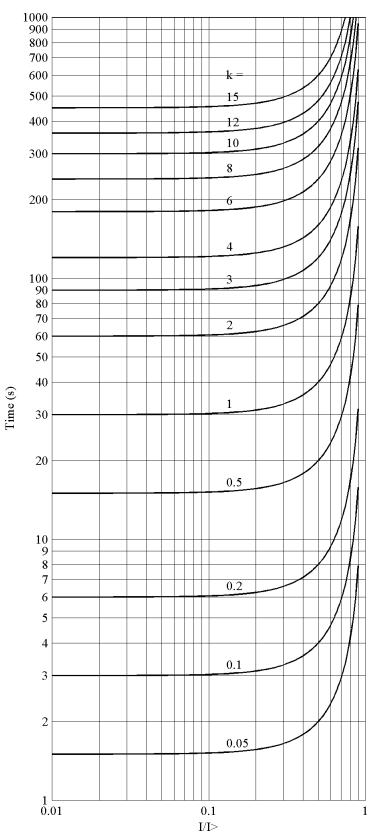


Figure 359: ANSI long-time extremely inverse reset time characteristics

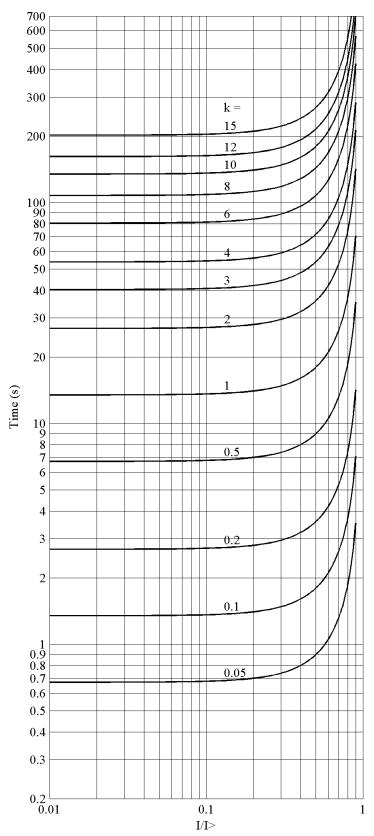


Figure 360: ANSI long-time very inverse reset time characteristics

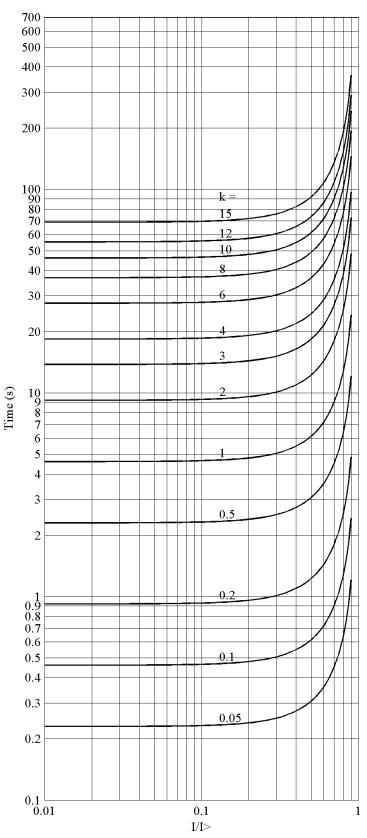


Figure 361: ANSI long-time inverse reset time characteristics

The delayed inverse-time reset is not available for IEC-type inverse time curves.

User-programmable delayed inverse reset

The user can define the delayed inverse reset time characteristics with the following formula using the set *Curve parameter D*.

$$t[s] = \left(\frac{D}{\left(\frac{I}{I>}\right)^2 - 1}\right) \cdot k$$

(Equation 84)

t[s] Reset time (in seconds)

set *Time multiplier*

D set Curve parameter D

I Measured current

I> set Pickup value

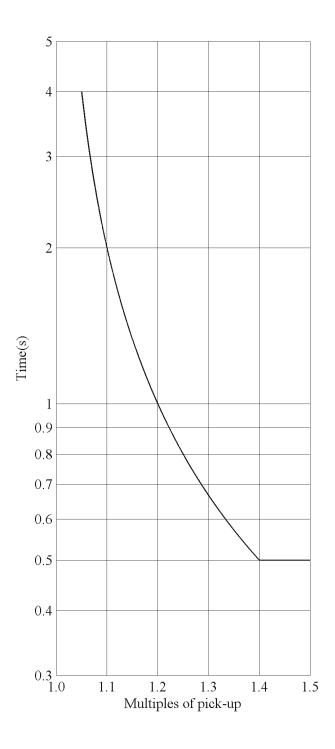
11.2.3 Inverse-timer freezing

When the BLOCK input is active, the internal value of the time counter is frozen at the value of the moment just before the freezing. Freezing of the counter value is chosen when the user does not wish the counter value to count upwards or to be reset. This may be the case, for example, when the inverse-time function of an IED needs to be blocked to enable the definite-time operation of another IED for selectivity reasons, especially if different relaying techniques (old and modern relays) are applied.

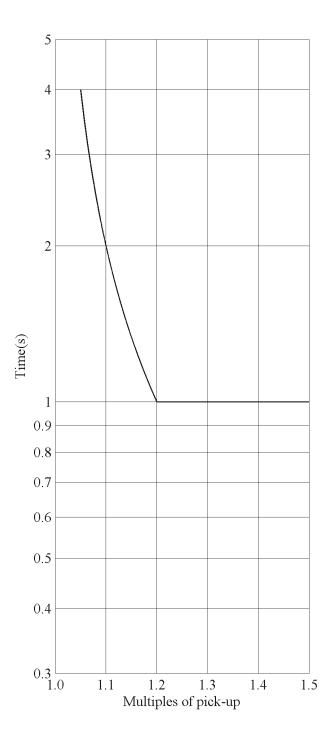
The selected blocking mode is "Freeze timer".

The activation of the BLOCK input also lengthens the minimum delay value of the timer.

Activating the BLOCK input alone does not affect the operation of the PICKUP output. It still becomes active when the current exceeds the set *Pickup value*, and inactive when the current falls below the set *Pickup value* and the set *Reset delay time* has expired.


11.3 Voltage based inverse definite minimum time characteristics

11.3.1 IDMT curves for overvoltage protection


In inverse-time modes, the trip time depends on the momentary value of the voltage, the higher the voltage, the faster the trip time. The trip time calculation or integration starts immediately when the voltage exceeds the set value of the *Pickup value* setting and the PICKUP output is activated.

The TRIP output of the component is activated when the cumulative sum of the integrator calculating the overvoltage situation exceeds the value set by the inverse time mode. The set value depends on the selected curve type and the setting values used. The user determines the curve scaling with the *Time multiplier* setting.

The *Minimum trip time* setting defines the minimum trip time for the IDMT mode, that is, it is possible to limit the IDMT based trip time for not becoming too short. For example:

Figure 362: Trip time curve based on IDMT characteristic with Minimum trip time set to 0.5 second

Figure 363: Trip time curve based on IDMT characteristic with Minimum trip time set to 1 second

11.3.1.1 Standard inverse-time characteristics for overvoltage protection

The trip times for the standard overvoltage IDMT curves are defined with the coefficients A, B, C, D and E.

The inverse trip time can be calculated with the formula:

$$t\left[S\right] = \frac{k \cdot A}{\left(B \times \frac{V - V}{V} > - C\right)^{E}} + D$$

(Equation 85)

t [s] trip time in seconds

V measured voltage

V> the set value of Pickup value

k the set value of *Time multiplier*

Table 543: Curve coefficients for the standard overvoltage IDMT curves

Curve name	Α	В	С	D	E
(17) Inverse Curve A	1	1	0	0	1
(18) Inverse Curve B	480	32	0.5	0.035	2
(19) Inverse Curve C	480	32	0.5	0.035	3

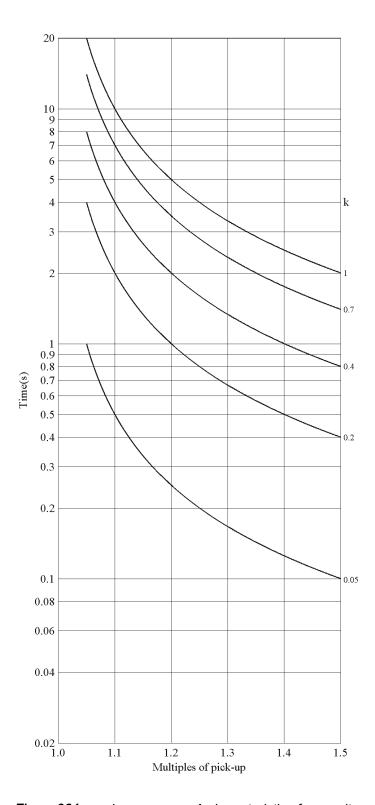


Figure 364: Inverse curve A characteristic of overvoltage protection

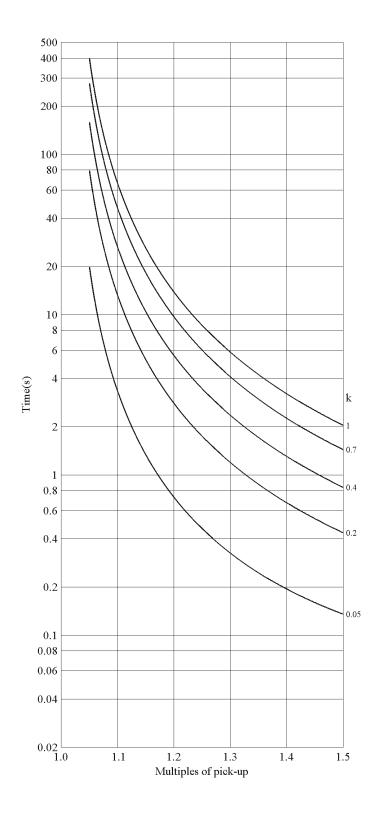


Figure 365: Inverse curve B characteristic of overvoltage protection

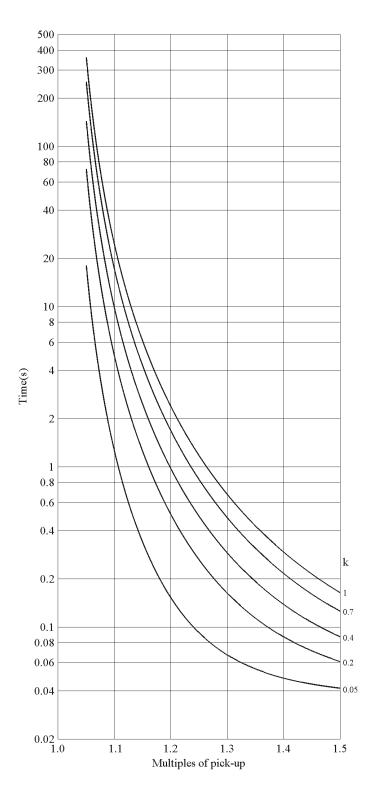


Figure 366: Inverse curve C characteristic of overvoltage protection

11.3.1.2 User programmable inverse-time characteristics for overvoltage protection

The user can define the curves by entering the parameters using the standard formula:

$$t\left[S\right] = \frac{k \cdot A}{\left(B \times \frac{V - V}{V} > -C\right)^{E}} + D$$

(Equation 86)

- t[s] trip time in seconds
- A the set value of Curve parameter A
- B the set value of *Curve parameter B*
- C the set value of Curve parameter C
- D the set value of *Curve parameter D*
- E the set value of *Curve parameter E*
- V measured voltage
- V> the set value of *Pickup value*
- k the set value of *Time multiplier*

11.3.1.3 IDMT curve saturation of overvoltage protection

For the overvoltage IDMT mode of operation, the integration of the trip time does not start until the voltage exceeds the value of *Pickup value*. To cope with discontinuity characteristics of the curve, a specific parameter for saturating the equation to a fixed value is created. The Curve Sat Relative setting is the parameter and it is given in percents compared to *Pickup value*. For example, due to the curve equation B and C, the characteristics equation output is saturated in such a way that when the input voltages are in the range of Pickup value to Curve Sat Relative in percent over Pickup value, the equation uses Pickup value * (1.0 + Curve Sat Relative / 100) for the measured voltage. Although, the curve A has no discontinuities when the ratio V/V> exceeds the unity, Curve Sat Relative is also set for it. The Curve Sat Relative setting for curves A, B and C is 2.0 percent. However, it should be noted that the user must carefully calculate the curve characteristics concerning the discontinuities in the curve when the programmable curve equation is used. Thus, the *Curve Sat Relative* parameter gives another degree of freedom to move the inverse curve on the voltage ratio axis and it effectively sets the maximum trip time for the IDMT curve because for the voltage ratio values affecting by this setting, the operation time is fixed, that is, the definite time, depending on the parameters but no longer the voltage.

11.3.2 IDMT curves for undervoltage protection

In the inverse-time modes, the trip time depends on the momentary value of the voltage, the lower the voltage, the faster the trip time. The trip time calculation or integration starts immediately when the voltage goes below the set value of the *Pickup value* setting and the PICKUP output is activated.

The TRIP output of the component is activated when the cumulative sum of the integrator calculating the undervoltage situation exceeds the value set by the inverse-time mode. The set value depends on the selected curve type and the setting values used. The user determines the curve scaling with the *Time multiplier* setting.

The *Minimum trip time* setting defines the minimum trip time possible for the IDMT mode. For setting a value for this parameter, the user should carefully study the particular IDMT curve.

11.3.2.1 Standard inverse-time characteristics for undervoltage protection

The trip times for the standard undervoltage IDMT curves are defined with the coefficients A, B, C, D and E.

The inverse trip time can be calculated with the formula:

$$t\left[S\right] = \frac{k \cdot A}{\left(B \times \frac{V < -V}{V <} - C\right)^{E}} + D$$

(Equation 87)

t [s] trip time in seconds

V measured voltage

V< the set value of the Pickup value setting

k the set value of the *Time multiplier* setting

Table 544: Curve coefficients for standard undervoltage IDMT curves

Curve name	Α	В	С	D	E
(21) Inverse Curve A	1	1	0	0	1
(22) Inverse Curve B	480	32	0.5	0.055	2

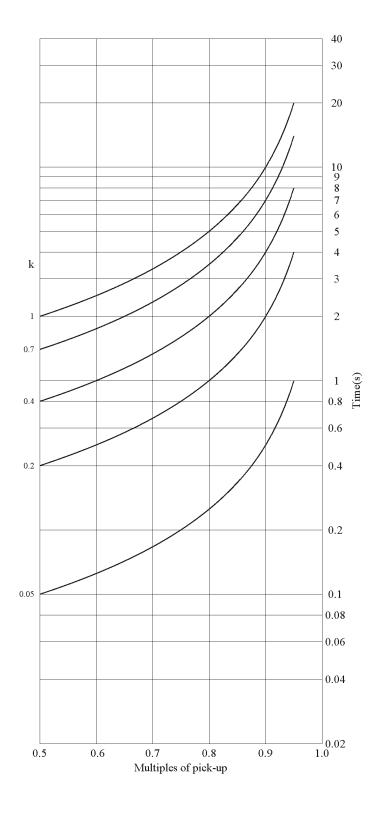


Figure 367: Inverse curve A characteristic of undervoltage protection

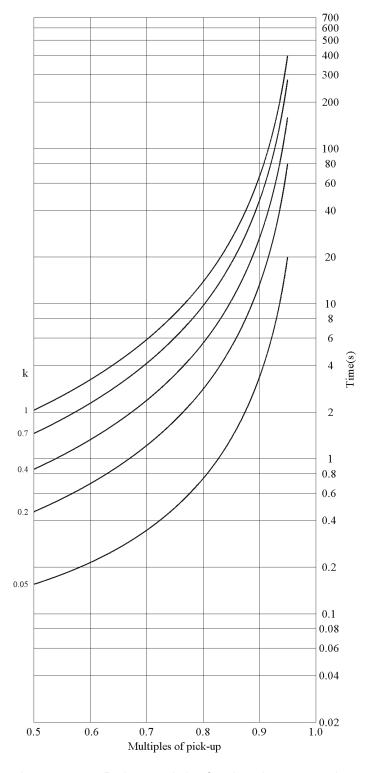


Figure 368: Inverse curve B characteristic of undervoltage protection

11.3.2.2 User-programmable inverse-time characteristics for undervoltage protection

The user can define curves by entering parameters into the standard formula:

$$t\left[S\right] = \frac{k \cdot A}{\left(B \times \frac{V < -V}{V <} - C\right)^{E}} + D$$

(Equation 88)

- t[s] trip time in seconds
- A the set value of Curve parameter A
- B the set value of *Curve parameter B*
- C the set value of Curve parameter C
- D the set value of Curve parameter D
- E the set value of Curve parameter E
- V measured voltage
- V< the set value of Pickup value
- k the set value of Time multiplier

11.3.2.3 IDMT curve saturation of undervoltage protection

For the undervoltage IDMT mode of operation, the integration of the trip time does not start until the voltage falls below the value of *Pickup value*. To cope with discontinuity characteristics of the curve, a specific parameter for saturating the equation to a fixed value is created. The Curve Sat Relative setting is the parameter and it is given in percents compared with *Pickup value*. For example, due to the curve equation B, the characteristics equation output is saturated in such a way that when input voltages are in the range from Pickup value to Curve Sat Relative in percents under Pickup value, the equation uses Pickup value * (1.0 - Curve Sat Relative / 100) for the measured voltage. Although, the curve A has no discontinuities when the ratio V/V> exceeds the unity, Curve Sat Relative is set for it as well. The *Curve Sat Relative* setting for curves A, B and C is 2.0 percent. However, it should be noted that the user must carefully calculate the curve characteristics concerning also discontinuities in the curve when the programmable curve equation is used. Thus, the Curve Sat Relative parameter gives another degree of freedom to move the inverse curve on the voltage ratio axis and it effectively sets the maximum trip time for the IDMT curve because for the voltage ratio values affecting by this setting, the operation time is fixed, that is, the definite time, depending on the parameters but no longer the voltage.

11.4 Measurement modes

In many current or voltage dependent function blocks, there are four alternative measuring principles:

- RMS
- DFT which is a numerically calculated fundamental component of the signal
- · Peak-to-peak

• Peak-to-peak with peak backup

Consequently, the measurement mode can be selected according to the application.

In extreme cases, for example with high overcurrent or harmonic content, the measurement modes function in a slightly different way. The Pickup accuracy is defined with the frequency range of f/fn=0.95...1.05. In peak-to-peak and RMS measurement modes, the harmonics of the phase currents are not suppressed, whereas in the fundamental frequency measurement the suppression of harmonics is at least -50 dB at the frequency range of $f=n \times fn$, where n=2,3,4,5,...

RMS

The RMS measurement principle is selected with the *Measurement mode* setting using the value "RMS". RMS consists of both AC and DC components. The AC component is the effective mean value of the positive and negative peak values. RMS is used in applications where the effect of the DC component must be taken into account.

RMS is calculated according to the formula:

$$I_{RMS} = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} I_i^2$$
 (Equation 89)

- n the number of samples in a calculation cycle
- I_i the current sample value

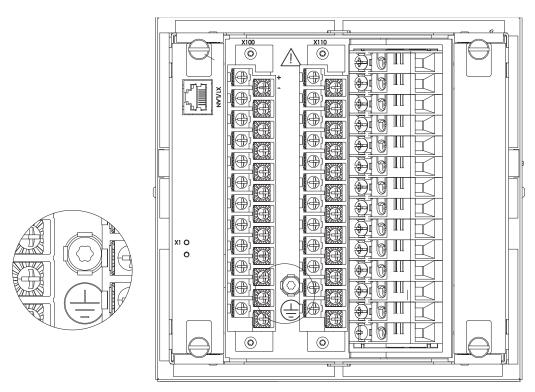
DFT

The DFT measurement principle is selected with the *Measurement mode* setting using the value "DFT". In the DFT mode, the fundamental frequency component of the measured signal is numerically calculated from the samples. In some applications, for example, it can be difficult to accomplish sufficiently sensitive settings and accurate operation of the low stage, which may be due to a considerable amount of harmonics on the primary side currents. In such a case, the operation can be based solely on the fundamental frequency component of the current. In addition, the DFT mode has slightly higher CT requirements than the peak-to-peak mode, if used with high and instantaneous stages.

Peak-to-peak

The peak-to-peak measurement principle is selected with the *Measurement mode* setting using the value "Peak-to-Peak". It is the fastest measurement mode, in which the measurement quantity is made by calculating the average from the positive and negative peak values. The DC component is not included. The retardation time is short. The damping of the harmonics is quite low and practically determined by the characteristics of the anti-aliasing filter of the IED inputs. Consequently, this mode is usually used in conjunction with high and instantaneous stages, where the suppression of harmonics is not so important. In addition, the peak-to-peak mode allows considerable CT saturation without impairing the performance of the operation.

Peak-to-peak with peak backup


The peak-to-peak with peak backup measurement principle is selected with the *Measurement mode* setting using the value "P-to-P+backup". It is similar to the peak-to-peak mode, with the exception that it has been enhanced with the peak backup. In the peak-to-peak with peak backup mode, the function starts with two conditions: the peak-to-peak value is above the set pickup current or the peak value is above two times the set *Pickup value*. The peak backup is enabled only when the function is used in the DT mode in high and instantaneous stages for faster operation.

Section 12 IED physical connections

All external circuits are connected to the terminals on the rear panel of the IED.

- Connect each signal connector (X100 and X110) terminal with one 14 or 16 Gauge wire. Use 12 or 14 Gauge wire for CB trip circuit.
- Connect each ring-lug terminal for signal connector X120 with one of maximum 14 or 16 Gauge wire.
- Connect each ring-lug terminal for CTs/VTs with one 12 Gauge wire.

12.1 Protective ground connections

Figure 369: The protective ground screw is located between connectors X100 and X110

The ground lead must be at least 4.0 mm² and as short as possible.

All binary and analog connections are described in the product specific application manuals."

12.2 Communication connections

The front communication connection is an RJ-45 type connector used mainly for configuration and setting.

Depending on order code, several rear port communication connections are available.

- Galvanic RJ-45 Ethernet connection
- Optical LC Ethernet connection
- ST-type glass fibre serial connection
- EIA-485 serial connection
- EIA-232 serial connection

12.2.1 Ethernet RJ-45 front connection

The IED is provided with an RJ-45 connector on the LHMI. The connector is mainly for configuration and setting purposes. The interface on the PC side has to be configured in a way that it obtains the IP address automatically. There is a DHCP server inside IED for the front interface only.

The events and setting values and all input data such as memorized values and disturbance records can be read via the front communication port.

Only one of the possible clients can be used for parametrization at a time.

- PCM600
- LHMI
- WHMI

The default IP address of the IED through this port is 192.168.0.254.

The front port supports TCP/IP protocol. A standard Ethernet CAT 5 crossover cable is used with the front port.

The speed of the front connector interface is limited to 10 Mbps.

12.2.2 Ethernet rear connections

The Ethernet communication module is provided with either galvanic RJ-45 connection or optical multimode LC type connection depending on the product variant and selected communication interface option. A shielded twisted-pair cable CAT 5e is used with RJ-45, and an optical cable (\leq 2 km) with LC type connections.

The IED's default IP address through this port is 192.168.2.10 with the TCP/IP protocol. The data transfer rate is 100 Mbps.

12.2.3 EIA-232 serial rear connection

The EIA-232 connection follows the TIA/EIA-232 standard and is intended to be used with a point-to-point connection. The connection supports hardware flow control (RTS, CTS, DTR, DSR), full-duplex and half-duplex communication.

12.2.4 EIA-485 serial rear connection

The EIA-485 communication module follows the TIA/EIA-485 standard and is intended to be used in a daisy-chain bus wiring scheme with 2-wire half-duplex or 4-wire full-duplex, multi-point communication.

The maximum number of devices (nodes) connected to the bus where the IED is used is 32, and the maximum length of the bus is 1200 meters.

12.2.5 Optical ST serial rear connection

Serial communication can be used optionally through an optical connection either in loop or star topology. The connection idle state is light on or light off.

12.2.6 Communication interfaces and protocols

The communication protocols supported depend on the optional rear communication module.

Table 545: Supported communication interfaces and protocols

	100BASE-TX RJ-45	100BASE-FX LC	RS-485
			+ IRIG-B
IEC 61850	•	•	-
DNP3 over LAN/WAN	•	•	-
DNP3, RS485	-	-	•
MODBUS RTU/ASCII	-	-	•
MODBUS TCP/IP	•	•	-

12.2.7 Rear communication modules Wite The NAVARCIMANO NAVARCIMANO M O MO O 1001 (C) 1101 (C) 1002 (C) 100 O 1020 7/2/O Hi O 1020 Day, and HO COMP23A RJ-45+RS232/485+ RS485+ST+ IRIG-B COMB11A RJ-45+RS485+ IRIG-B COMB12A LC+RS485+ IRIG-B COMB13A RJ-45+RS485+ IRIG-B+ARC COMB14A LC+RS485+ IRIG-B+ARC COMB02A LC COMB05A RJ-45+ARC COMB06A LC+ARC COMB01A RJ-45 X1 O X13 X XI AARC 0 0 COM0033 COM0034 3xRJ-45+ ST+ARC LC+2xRJ-45+ ST+ARC

Figure 370: Communication module options

Table 546: Communication interfaces included in communication modules

Module ID	RJ-45	LC	EIA-485	EIA-232	ST
COMB01A	•	-	-	-	-
COMB02A	-	•	-	-	-
COMB05A	•	-	-	-	-
COMB06A	-	•	-	-	-
COMB11A	•	-	•	-	-
COMB12A	-	•	•	-	-
COMB13A	•	-	•	-	-
COMB14A	-	•	•	-	-
COMB23A	•	-	•	•	•
COM0033	•	-	-	-	•
COM0034	•	•	-	-	•

Table 547: LED descriptions for COMB01A-COMB14A

LED	Connector	Description ¹
LAN	X1	LAN link status and activity (RJ-45 and LC)
RX1	X5	COM2 2-wire/4-wire receive activity
TX1	X5	COM2 2-wire/4-wire transmit activity
RX2	X5	COM1 2-wire receive activity
TX2	X5	COM1 2-wire transmit activity
I-B	X5	IRIG-B signal activity

^{1.} Depending on the COM module and jumper configuration

Table 548: LED descriptions for COMB23A

LED	Connector	Description ¹
FX	X12	Not used by COMB23A
LAN	X1	LAN Link status and activity (RJ-45 and LC)
FL	X12	Not used by COMB23A
RX	X6	COM1 2-wire / 4-wire receive activity
TX	X6	COM1 2-wire / 4-wire transmit activity
RX	X5 / X12	COM2 2-wire / 4-wire or fiber-optic receive activity
TX	X5 / X12	COM2 2-wire / 4-wire or fiber-optic transmit activity
I-B	X5	IRIG-B Signal activity

^{1.} Depending on the jumper configuration

Table 549: LED descriptions for COM0033 and COM0034

LED	Connector	Description
X1	X1	X1/LAN1 link status and activity
X2	X2	X2/LAN2 link status and activity
X3	Х3	X3/LAN3 link status and activity
RX	X9	COM1 fiber-optic receive activity
TX	X9	COM1 fiber-optic transmit activity

12.2.7.1 COMB01A-COMB014A jumper locations and connections

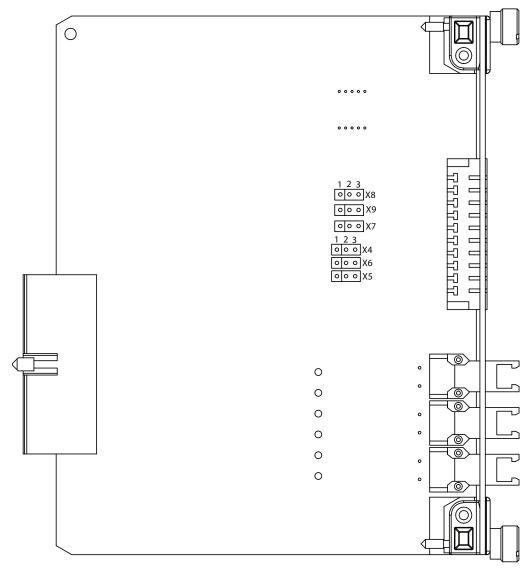


Figure 371: Jumper connectors on communication module

Table 550: 2-wire EIA-485 jumper connectors

Group	Jumper connection	Description	Notes
X4	1-2	A+ bias enabled	COM2
	2-3	A+ bias disabled	2-wire connection
X5	1-2	B- bias enabled	
	2-3	B- bias disabled	
X6	1-2	Bus termination enabled	
	2-3	Bus termination disabled	
X7	1-2	B- bias enabled	COM1
	2-3	B- bias disabled	2-wire connection
X8	1-2	A+ bias enabled	
	2-3	A+ bias disabled	
Х9	1-2	Bus termination enabled	
	2-3	Bus termination disabled	

The bus is to be biased at one end to ensure fail-safe operation, which can be done using the pull-up and pull-down resistors on the communication module. In 4-wire connection the pull-up and pull-down resistors are selected by setting jumpers X4, X5, X7 and X8 to enabled position. The bus termination is selected by setting jumpers X6 and X9 to enabled position.

The jumpers have been set to no termination and no biasing as default.

Table 551: 4-wire EIA-485 jumper connectors for COM2

Group	Jumper connection	Description	Notes
X4	1-2	A+ bias enabled	COM2
	2-3	A+ bias disabled ¹	4-wire TX channel
X5	1-2	B- bias enabled	
	2-3	B- bias disabled	
X6	1-2	Bus termination enabled	
	2-3	Bus termination disabled	
X7	1-2	B- bias enabled	COM2
	2-3	B- bias disabled	4-wire RX channel
X8	1-2	A+ bias enabled	
	2-3	A+ bias disabled	
X9	1-2	Bus termination enabled	
	2-3	Bus termination disabled	

1. Default setting

It is recommended to enable biasing only at one end of the bus.

Termination is enabled at each end of the bus.

It is recommended to ground the signal directly to ground from one node and through capacitor from other nodes.

The two 2-wire ports are called COM1 and COM2. Alternatively, if there is only one 4-wire port configured, the port is called COM2. The fibre-optic ST connection uses the COM1 port.

Collision detection in serial communication is supported on 2-wire mode, in the following cards/ports: COMB23A: COM1, COMB11-14A: COM2.

Table 552: EIA-485 connections for COMB01A-COMB014A

Pin	2-wire mode		4-wire mode		
10	COM1	A/+	COM2	Rx/+	
9		B/-		Rx/-	
8	COM2	A/+		Tx/+	
7		B/-		Tx/-	
6	AGND (isolate	AGND (isolated ground)			
5	IRIG-B +	IRIG-B +			
4	IRIG-B -	IRIG-B -			
3	-	-			
2	GNDC (case v	GNDC (case via capacitor)			
1	GND (case)	GND (case)			

12.2.7.2 COMB023A jumper locations and connections

The optional communication module supports EIA-232/EIA-485 serial communication (X6 connector), EIA-485 serial communication (X5 connector) and optical ST serial communication (X12 connector).

Two independent communication ports are supported. The two 2-wire-ports are called. COM1 and COM2. Alternatively, if only one 4-wire-port is configured, the port is called COM2. The fibre-optic ST connection uses the COM1 port.

Table 553: Configuration options of the two independent communication ports

COM1 connector X6	COM2 connector X5 or X12
EIA-232	Optical ST (X12)
EIA-485 2-wire	EIA-485 2-wire (X5)
EIA-485 4-wire	EIA-485 4-wire (X5)

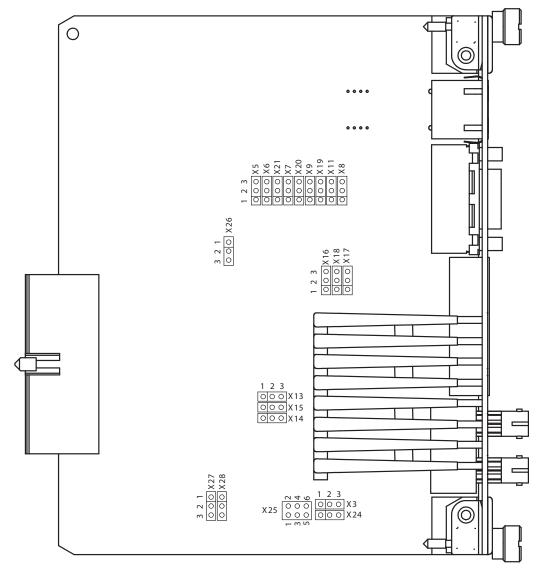


Figure 372: Jumper connections on communication module COMB023A

COM1 port connection type can be either EIA-232 or EIA-485. Type is selected by setting jumpers X19, X20, X21, X26.

The jumpers are set to EIA-232 by default.

Table 554: EIA-232 and EIA-485 jumper connectors for COM1

Group	Jumper connection	Description
X19	1-2 2-3	EIA-485 EIA-232
X20	1-2 2-3	EIA-485 EIA-232
X21	1-2 2-3	EIA-485 EIA-232
X26	1-2 2-3	EIA-485 EIA-232

To ensure fail-safe operation, the bus is to be biased at one end using the pull-up and pull-down resistors on the communication module. In the 4-wire connection, the pull-up and pull-down resistors are selected by setting jumpers X5, X6, X8, X9 to enabled position. The bus termination is selected by setting jumpers X7, X11 to enabled position.

The jumpers have been set to no termination and no biasing as default.

Table 555: 2-wire EIA-485 jumper connectors for COM1

Group	Jumper connection	Description	Notes
X5	1-2 2-3	A+ bias enabled A+ bias disabled ¹	COM1 Rear connector X6
X6	1-2 2-3	B- bias enabled B- bias disabled	2-wire connection
X7	1-2 2-3	Bus termination enabled Bus termination disabled	

^{1.} Default setting

Table 556: 4-wire EIA-485 jumper connectors for COM1

Group	Jumper connection	Description	Notes
X5	1-2 2-3	A+ bias enabled A+ bias disabled ¹	COM1 Rear connector X6
X6	1-2 2-3	B- bias enabled B- bias disabled	4-wire TX channel
X7	1-2 2-3	Bus termination enabled Bus termination disabled	
X9	1-2 2-3	A+ bias enabled A+ bias disabled	4-wire RX channel
X8	1-2 2-3	B- bias enabled B- bias disabled	
X11	1-2 2-3	Bus termination enabled Bus termination disabled	

^{1.} Default setting

COM2 port connection can be either EIA-485 or optical ST. Connection type is selected by setting jumpers X27 and X28.

Table 557: COM2 serial connection X5 EIA-485/ X12 Optical ST

Group	Jumper connection	Description
X27	1-2 2-3	EIA-485 Optical ST
X28	1-2 2-3	EIA-485 Optical ST

Table 558: 2-wire EIA-485 jumper connectors for COM2

Group	Jumper connection	Description
X13	1-2 2-3	A+ bias enabled A+ bias disabled
X14	1-2 2-3	B- bias enabled B- bias disabled
X15	1-2 2-3	Bus termination enabled Bus termination disabled

Table 559: 2-wire EIA-485 jumper connectors for COM2

Group	Jumper connection	Description	Notes
X13	1-2 2-3	A+ bias enabled A+ bias disabled	COM2 4-wire TX channel
X14	1-2 2-3	B- bias enabled B- bias disabled	
X15	1-2 2-3	Bus termination enabled Bus termination disabled	
X17	1-2 2-3	A+ bias enabled A+ bias disabled	4-wire RX channel
X18	1-2 2-3	B- bias enabled B- bias disabled	
X19	1-2 2-3	Bus termination enabled Bus termination disabled	

Table 560: X12 Optical ST connection

Group	Jumper connection	Description
Х3	1-2 2-3	Star topology Loop topology
X24	1-2 2-3	Idle state = Light on Idle state = Light off

Table 561: EIA-232 connections for COMB023A (X6)

Pin	EIA-232
1	DCD
2	RxD
3	TxD
4	DTR
5	AGND
6	-
7	RTS
8	CTS

Table 562: EIA-485 connections for COMB023A (X6)

Pin	2-wire mode	4-wire mode
1	-	Rx/+
6	-	Rx/-
7	В/-	Tx/-
8	A/+	Tx/+

Table 563: EIA-485 connections for COMB023A (X5)

Pin	2-wire mode	4-wire mode
9	-	Rx/+
8	-	Rx/-
7	A/+	Tx/+
6	В/-	Tx/-
5	AGND (isolated ground)	
4	IRIG-B +	
3	IRIG-B -	
2	-	
1	GND (case)	

12.2.7.3 COM0033 and COM0034 jumper locations and connections

The optional communication modules include support for optical ST serial communication (X9 connector). The fiber-optic ST connection uses the COM1 port.

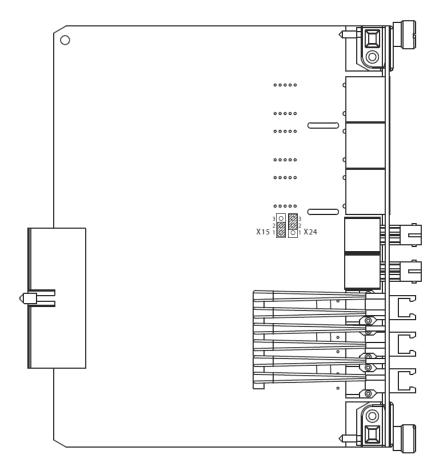


Figure 373: Jumper connections on communication module COM0033

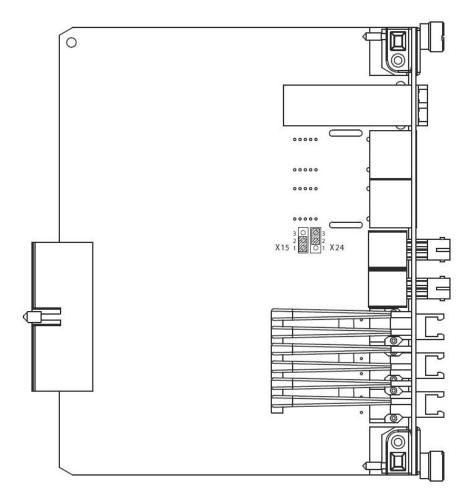


Figure 374: Jumper connections on communication module COM0034

Table 564: X9 Optical ST jumper connectors

Group	Jumper Connection	Description
X15	1-2	Star Topology
X15	2-3	Loop Topology
X24	1-2	Idle state = Light on
A24	2-3	Idle state = Light off

12.2.8 Recommended industrial Ethernet switches

ABB recommends three third-party industrial Ethernet switches.

- RuggedCom RS900
- RuggedCom RS1600
- RuggedCom RSG2100

Section 13 Technical data

Table 565: Dimensions

Description	Value	
Width	frame	7.08 inches (179.8 mm)
	case	6.46 inches (164 mm)
Height	frame	6.97 inches (177 mm), 4U
	case	6.30 inches (160 mm)
Depth		7.64 inches (194 mm)
Weight	complete IED	7.7 lbs (3.5 kg)
	plug-in unit only	4.0 lbs (1.8 kg)

Table 566: Power supply

Description	Type 1	Type 2
Vaux	100, 110, 120, 220, 240 V AC, 50 and 60 Hz	24, 30, 48, 60 V DC
	48, 60, 110, 125, 220, 250 V DC	
Maximum interruption time in the auxiliary DC voltage without resetting the IED	50 ms at V _{aux} rated	
V _{aux} variation	38110% of Vn (38264 V AC)	50120% of Vn (1272 V DC)
	80120% of Vn (38.4300 V DC)	
Start-up threshold		19.2 V DC (24 V DC * 80%)
Burden of auxiliary voltage supply under quiescent (Pq)/ operating condition	DC < 12.0 W (nominal)/< 18.0 W (max) AC< 16.0 W (nominal)/< 21.0W (max)	DC < 12.0 W (nominal)/< 18.0 W (max)
Ripple in the DC auxiliary voltage	Max 15% of the DC value (at frequency of 100 Hz)	
Fuse type	T4A/250 V	

Table 567: Energizing inputs

Description		Value	
Rated frequency		50/60 Hz	
Current inputs	Rated current, In	0.2/1 A ₁₎₂₎	1/5 A ₃₎
	Thermal withstand capability: Continuously For 1 s	4 A 100 A	20 A 500 A
	Dynamic current withstand: Half-wave value	250 A	1250 A
	Input impedance	<100 mΩ	<20 mΩ
Voltage inputs	Rated voltage, Vn	60210 V AC	
	Voltage withstand: • Continuous • For 10 s	2 x Vn (240 V AC) 3 x Vn (360 V AC)	
	Burden at rated voltage	<0.05 VA	

- 1) Ordering option for ground current input
- 2) Not available for RET615
- 3) Ground current and/or phase current

Table 568: Binary inputs

Description	Value
Operating range	±20% of the rated voltage
Rated voltage	24250 V DC
Current drain	1.61.9 mA
Power consumption	31.0570.0 mW
Threshold voltage	18176 V DC
Reaction time	3 ms

Table 569: RTD/mA inputs

Description	Value		
RTD inputs	Supported RTD sensors	100 Ω platinum 250 Ω platinum 100 Ω nickel 120 Ω nickel 250 Ω nickel 10 Ω copper	TCR 0.00385 (DIN 43760) TCR 0.00385 TCR 0.00618 (DIN 43760) TCR 0.00618 TCR 0.00618 TCR 0.00427
	Supported resistance range	02 kΩ	
	Maximum lead resistance (threewire measurement)	25Ω per lead	
	Isolation	2 kV (inputs to protective groundgroundground)	
	Response time	<4 s	
	RTD/resistance sensing current	Maximum 0.33 mA rms	
	Operation accuracy	Resistance	Temperature
		± 2.0% or ±1 Ω	±1°C 10 Ω copper: ±2°C
mA inputs	Supported current range	020 mA	
	Current input impedance	44 Ω ± 0.1%	
	Operation accuracy	±0.5% or ±0.01 mA	

Table 570: Signal output X100: SO1

Description	Value
Rated voltage	250 V AC/DC
Continuous contact carry	5 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R<40 ms	1 A/0.25 A/0.15 A
Minimum contact load	100 mA at 24 V AC/DC

Table 571: Signal outputs and IRF output

Description	Value
Rated voltage	250 V AC/DC
Continuous contact carry	5 A
Make and carry for 3.0 s	10 A
Make and carry for 0.5 s	15 A
Breaking capacity when the control-circuit time constant L/R<40 ms, at 48/110/220 V DC	1 A/0.25 A/0.15 A
Minimum contact load	10 mA at 5 V AC/DC

Table 572: Double-pole power output relays with TCM function

Description	Value
Rated voltage	250 V AC/DC
Continuous contact carry	8 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R<40 ms, at 48/110/220 V DC (two contacts connected in series)	5 A/3 A/1 A
Minimum contact load	100 mA at 24 V AC/DC
Trip-circuit monitoring (TCM): • Control voltage range • Current drain through the monitoring circuit • Minimum voltage over the TCM contact	20250 V AC/DC ~1.5 mA 20 V AC/DC (1520 V)

Table 573: Single-pole power output relays

Description	Value
Rated voltage	250 V AC/DC
Continuous contact carry	8 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R<40 ms, at 48/110/220 V DC	5 A/3 A/1 A
Minimum contact load	100 mA at 24 V AC/DC

Table 574: High-speed output HSO

Description	Value
Rated voltage	250 V AC/DC
Continuous contact carry	6 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R<40 ms, at 48/110/220 V DC	5 A/3 A/1 A
Pickup	1ms
Dropout	20 ms, resistive load

Table 575: Ethernet interfaces

Ethernet interface	Protocol	Cable	Data transfer rate
Front	TCP/IP protocol	Standard Ethernet CAT 5 cable with RJ-45 connector	10 MBits/s
Rear	TCP/IP protocol	Shielded twisted pair CAT 5e cable with RJ-45 connector or fibre-optic cable with LC connector	100 MBits/s

Table 576: Serial rear interface

Туре	Counter connector
Serial port (X5)	10-pin counter connector Weidmuller BL 3.5/10/180F AU OR BEDR or 9-pin counter connector Weidmuller BL 3.5/9/180F AU OR BEDR ¹)
Serial port (X16)	9-pin D-sub connector DE-9
Serial port (X12)	Optical ST-connector

1) Depending on the optional communication module

Table 577: Fibre-optic communication link

Connector	Fibre type	Wave length	Max. distance	Permitted path attenuation ¹)
LC	MM 62.5/125 µm glass fibre core	1300 nm	2 km	<8 dB
ST	MM 62.5/125 µm glass fibre core	820-900 nm	1 km	<11 dB

1) Maximum allowed attenuation caused by connectors and cable together

Table 578: IRIG-B

Description	Value
IRIG time code format	B004, B005 ¹⁾
Isolation	500V 1 min.
Modulation	Unmodulated
Logic level	TTL Level
Current consumption	24 mA
Power consumption	1020 mW

1) According to 200-04 IRIG -standard

Table 579: Lens sensor and optical fiber for arc flash detector

Description	Value
Fiber-optic cable including lens	1.5 m, 3.0 m or 5.0 m
Normal service temperature range of the lens	-40+100°C
Maximum service temperature range of the lens, max 1 h	+140°C
Minimum permissible bending radius of the connection fiber	3.94 inches (100 mm)

Table 580: Degree of protection of flush-mounted IED

Description	Value
Front side	IP 54

Table 581: Environmental conditions

Description	Value
Operating temperature range	-25+55°C (continuous)
Short-time service temperature range	• REF615, REM615 and RET615: -40+85°C (<16 h) ¹⁾²⁾
Relative humidity	<93%, non-condensing
Atmospheric pressure	12.4715.37 psi (86106 kPa)
Altitude	Up to 6561.66 feet (2000 m)
Transport and storage temperature range	-40+85°C

¹⁾ Degradation in MTBF and HMI performance outside the temperature range of -25...+55 °C

²⁾ For IEDs with an LC communication interface the maximum operating temperature is +70 °C

Section 14 IED and Functionality tests

Table 582: Electromagnetic compatibility tests

Test Description	Test level	Reference	
1 MHz/100 kHz burst disturbance test	±2.5 kV differential mode ±2.5 kV common mode	IEEE C37.90.1-2002	
Electrostatic discharge test	±8 kV contact discharge ±15 kV air discharge	IEEE C37.90.32001	
Radio frequency interference tests	20 V/m (prior to modulation) f = 801000 MHz (sweep and keying test)	IEEE C37.90.2-2004	
Fast transient disturbance test All ports • ±4 kV common mode/ differential mode		IEEE C37.90.1-2002	

Table 583: Mechanical tests

Test Description	Requirement	Reference	
Vibration tests (sinusoidal)	Class 2	IEC 60255-21-1	
Shock and bump tests	Class 2	IEC 60255-21-2	
Mechanical durability	200 withdrawals and insertions of the plug-in unit 200 adjustments of IED setting controls	IEEE C37.90-2005 and IEC 60255-6	

Table 584: Insulation tests

Test Description	Requirement	Reference
Dielectric test	2.8 kV DC, 1 min 700 V, DC, 1 min for communication	IEEE C37.90-2005
Impulse voltage test	5 kV, 1.2/50 μs, 0.5 J	IEEE C37.90-2005

Table 585: Environmental tests

Test Description	Requirement	Reference
Dry heat test	+85°C 12h1) 2)	IEEE C37.90-2005
	 96 h at +55°C 16 h at +85° C¹⁾²⁾ 	IEC 60068-2-2
Dry cold test	-40°C 12h ^{2) 3)}	IEEE C37.90-2005
	 96 h at -25°C 6 h at -40°C 	IEC 60068-2-1
Damp heat test	+25°C, Rh = 95%, 96h	IEEE C37.90-2005
	• 6 cycles (12 h + 12 h) at +25°C+55°C, humidity >93%	IEC 60068-2-30
Storage test	+85°C 96h -40°C 96h	IEEE C37.90-2005

^{1.} For IED's with an LC communication interface, the maximum operating temperature +70 $^{\circ}$ C. 2. LCD may be unreadable, but IED is operational.

Section 15 Applicable standards and regulations

EMC council directive 2004/108/EC

EU directive 2002/96/EC/175

IEC 60255

IEEE C37.90.1-2002

IEEE C37.90.2-2004

IEEE C37.90.3-2001

IEEE C37.90-2005

Low-voltage directive 2006/95/EC

Section 16 Glossary

100BASE-FX A physical media defined in the IEEE 802.3 Ethernet standard for

local area networks (LANs) that uses fibre-optic cabling

100BASE-TX A physical media defined in the IEEE 802.3 Ethernet standard for

local area networks (LANs) that uses twisted-pair cabling

category 5 or higher with RJ-45 connectors

ANSI American National Standards Institute

CAT 5 A twisted pair cable type designed for high signal integrity

CAT 5e An enhanced version of CAT 5 that adds specifications for far end

crosstalk

CB Circuit breaker

CBB Cycle building block
CPU Central processing unit

CT Current transformer

CTS Clear to send

DFR Digital fault recorder

DFT Discrete Fourier transform

DHCP Dynamic Host Configuration Protocol

DNP3 A distributed network protocol originally developed by Westronic.

The DNP3 Users Group has the ownership of the protocol and

assumes responsibility for its evolution.

DSR Data set ready
DT Definite time

DTR Data terminal ready

EIA-232 Electrically erasable programmable read-only memory

Serial communication standard according to Electronics

Industries Association

EIA-485 Serial communication standard according to Electronics

Industries Association

EMC Electromagnetic compatibility **FPGA** Field programmable gate array

GOOSE Generic Object Oriented Substation Event

HMI Human-machine interface

HW Hardware

IDMT Inverse definite minimum time

IEC 61850 International standard for substation communication and

modelling

IED Intelligent electronic device

IP Internet protocol

IP address A set of four numbers between 0 and 255, separated by periods.

Each server connected to the Internet is assigned a unique IP address that specifies the location for the TCP/IP protocol.

IRIG-B Inter-Range Instrumentation Group's time code format B

LAN Local area network

LC Connector type for glass fiber cable

LED Liquid crystal display
LED Light-emitting diode

LHMI Local human-machine interface

Modbus A serial communication protocol developed by the Modicon

company in 1979. Originally used for communication in PLCs and

RTU devices.

MV Medium voltage

PC Personal computer; Polycarbonate
PCM600 Protection and Control IED Manager

Peak-to-peak The amplitude of a waveform between its maximum positive value

and its maximum negative value; A measurement principle, where the measurement quantity is made by calculating the average from the positive and negative peak values without including the DC component. The peak-to-peak mode allows considerable CT saturation without impairing the performance of

the operation.

Peak-to-peak with peak backup

A measurement principle similar to the peak-to-peak mode but with the function picking up on two conditions: the peak-to-peak value is above the set pickup current or the peak value is above

two times the set pickup value

RAM Random access memory

RCA Also known as MTA or base angle. Characteristic angle.

RJ-45 Galvanic connector type
RMS Root-mean-square (value)

ROM Read-only memory

RTC Real-time clock
RTS Ready to send

SBO Select-before-operate

SCL Substation configuration language

SMT Signal Matrix Tool in PCM600
SNTP Simple Network Time Protocol

SOTF Switch on to fault

SW Software

TCP/IP Transmission Control Protocol/Internet Protocol

TCS Trip-circuit supervision

TRMS True root-mean-square (value)

UTC Coordinated universal time

WAN Wide area network

WHMI Web human-machine interface

Contact us

ABB Inc.

Distribution Automation

4300 Coral Ridge Drive Coral Springs, FL 33065, USA Phone:+1 (800) 523-2620 Phone:+1 954-752-6700 Fax:+1 954 345-5329

www.abb.com/substationautomation