Guide to Instantaneous Selectivity
Circuit Breaker Engineering Reference

This page left intentionally blank

Table of Contents

01 Introduction

02 Assumptions
02 Considerations and Cautionary Notes Regarding Implementation of Instantaneous Selectivity
02 How to Find and Read Values in the Tables
02 Systems with More than Two Circuit Breakers
03 Through Transformer Selectivity
03 Accounting for X/R Ratios Greater than Test Ratios
04 Circuit Breaker Types
04 ANSI/UL 1066 Circuit Breakers with Fully Adjustable Trips
04 UL 489 Circuit Breakers with Fully Adjustable Trips
05 Molded Case Circuit Breakers (MCCB)
05 ArcWatch with Instantaneous Zone Selective Interlocking (I-ZSI) and Waveform Recognition (WFR) Technology
06 EntelliGuard Series Trip Units in ANSI, Power Break II, and Molded Case Circuit Breakers
09 Selectivity with EntelliGuard TU Trip Units in ANSI, Power Break II, and Molded Case Circuit Breakers
10 Selectivity with EntelliGuard TU Trip Units in ANSI, Emax 2, and Molded Case Circuit Breakers
Selectivity with Record Plus FE and FG
Selectivity with Tmax XT
ArcWatch I-ZSI on EntelliGuard TU Trip Units in ANSI WavePro Circuit Breakers ArcWatch I-ZSI on EntelliGuard TU Trip Units in ANSI/UL 1066 EntelliGuard G Circuit Breakers
I-ZSI on Emax 2 TU Trip Units in ANSI Emax 2 Circuit Breakers
ArcWatch I-ZSI on EntelliGuard TU Trip Units in UL489 EntelliGuard G Circuit Breakers
ArcWatch I-ZSI on Spectra microEntelliGuard Molded Case Circuit Breakers (MCCBs)

Trademarks

Spectra Series ${ }^{\circledR}$ Switchboards
EntelliGuard ${ }^{\oplus}$ G
EntelliGuard ${ }^{\circledR}$ TU
microEntelliGuard™
Record Plus ${ }^{\circledR}$ Circuit Breakers
WavePro ${ }^{\text {TM }}$ Circuit Breakers
ArcWatch ${ }^{\text {TM }}$
Tmax ${ }^{\circledR}$ XT
$E m a x{ }^{\circledR} 2$

Warranty

This document is based on information available at the time of its publication. While efforts have been made to ensure accuracy, the information contained herein does not cover all details or variations in hardware and software, nor does it provide for every possible contingency in connection with installation, operation, and maintenance. Features may be described herein that are not present in all hardware and software systems. ABB assumes no obligation of notice to holders of this document with respect to changes subsequently made. ABB makes no representation or warranty, expressed, implied, or statutory, with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warrantees of merchantability or fitness for purpose shall apply.

Contact your local sales office if further information is required concerning any aspect of system operation or maintenance.

Scan this QR code to
learn more about
Selective Coordination.

Introduction
ArcWatch is a set of ABB technologies, WaveForm Recognition (WFR) and Instantaneous Zone Selective Interlocking (I-ZSI) which, when used in combination with one another allow system design that does not require compromise between instantaneous protection from arcing faults and full (.01 Second) selective coordination. Using these technologies, ArcWatch can reduce incident energy to less than $8 \mathrm{cal} / \mathrm{cm}^{2}$ in.

WFR provides ArcWatch protection and coordination between a circuit breaker equipped with an EntelliGuard family trip unit and a downstream current limiting device (Tmax XT, Record Plus, Spectra, TEY-type MCCBs for example). WFR allows EntelliGuard family trip units to recognize the action of a current limiting device downstream. Faults that are already being acted upon by a downstream limiter do not require action; faults that aren't require action. WFR directs the selective response, depending on the location of the fault.

I-ZSI is used to provide ArcWatch protection and coordination between multiple circuit breakers equipped with EntelliGuard and Ekip family trip units. A simple, ultra-fast acting signal, transmitted between electronic trip units, communicates the fault location, determines which circuit breaker will respond to a fault, and which circuit breakers remain closed. ArcWatch technology embedded in specific low-voltage ABB trip units and circuit breakers allows circuit breakers to be set for maximum arc flash protection without sacrificing selective coordination. Setting the instantaneous pick-up value sufficiently below the predicted arcing current permits the circuit breaker to clear arcing faults using the circuit breaker's fastest speed. Traditionally,
lower pick-up settings
lead to reduced selective coordination. ArcWatch solves this dilemma by maintaining selective operation in the instantaneous region even when the time current curves overlap.

These technologies with full-time, always on arc flash mitigation and full selective coordination are ArcWatch.

The following tables list the instantaneous selectivity capability of various ABB circuit breakers. In many cases, selectivity may exceed the selectivity determined by traditional time-current curve analysis. The traditional time-current curves, plotted in Figure 1, demonstrate that the 100A and 1600A circuit breakers shown are fully selective up to $\sim 21,500$ A RMS. However, other analytical techniques and high current testing have demonstrated that these two circuit breakers are selective to a much higher value, 65,000A. The higher values available with many overcurrent devices will be shown on the tables in this reference publication, as well as some values determined by traditional curve overlay.

igure 1: How tables are derived
Circuit breaker mechanisms employ multiple means to open and latch contacts. Some of the mechanisms are very sensitive to instantaneous peak currents. Other mechanisms may be more sensitive to energy, rate of change of current, etc. Some techniques, like ArcWatch, take into account waveform shape and many use combinations of these mechanisms. The different operating mechanisms used and their respective interactions are considered when analyzing system selectivity. Traditional time-current curve based coordination studies provide a very conservative analytical method for determining selectivity and ignore the impact of the various circuit breaker operating mechanism designs.

The selectivity tables in this publication were derived through rigorous analytical techniques, extensive testing, and Six Sigma methodology. The testing was performed using a protocol similar to that described in UL 489 (Standard for Molded Case Circuit Breakers) for series ratings. Testing and analysis was performed for a range of fault magnitudes, closing angles and X / R ratios.

ASSUMPTIONS

- Fault values are expressed in 60 Hz RMS.
- Selectivity short circuit values are valid at the voltage described and any lower voltage. Selectivity at voltages higher than specifically noted is not implied in these tables.
- Selectivity values for paired circuit breakers are valid for X / R ratios equal to, or less than, those for which the circuit breakers were tested or analyzed. A fault X/R ratio higher than the test X / R ratio will require that the selectivity be de-rated by the ratio of the prospective peak currents. A table of X/R ratios, Power Factors, and expected peak currents is provided (see Table 1). These de-rating methods are the same as those used to de-rate the interrupting rating of any overcurrent protection device whose test X / R ratio is less than the X / R ratio of the available fault current where the device is applied.
- For devices equipped with any of the EntelliGuard series of trip units, the EntelliGuard TU trip unit (ETU,) or the microEntelliGuard Trip Unit (MET), any of the Touch/Hi-Touch Trip Units, selectivity is determined by the instantaneous settings on the trip unit. Table 3 and 3a illustrates selectivity levels possible using ETU and MET. Tables 6 through 11 illustrate enhanced selectivity possible using the I-ZSI capabilities of the EntellliGuard series trip units.
- For devices not equipped with ETU, MET or EKIP, the values in the tables represent instantaneous selectivity based on both the upstream and downstream circuit breaker Instantaneous Overcurrent (IOC) being set at the highest possible setting, or Instantaneous is OFF. Where the downstream circuit breaker has an adjustable trip, the setting may be adjusted lower without adverse impact on selectivity. (Unless otherwise indicated, the upstream breaker IOC setting must remain at maximum to achieve the listed selectivity).

CONSIDERATIONS AND CAUTIONARY NOTES REGARDING IMPLEMENTATION OF

 INSTANTANEOUS SELECTIVITYMost industry standards, and good engineering practice, indicate that selectivity is desirable in power distribution systems to maximize system reliability. System designers must weigh selectivity needs against other important system considerations, such as safety, operational reliability, feasibility, efficiency, cost, and size. The National Electrical Code (NEC) defines minimum performance requirements for construction. Designers should consider other factors that may or may not be addressed by the NEC. They should be aware that systems designed for high levels of selectivity may lead to higher arc flash energy, reduced operator and maintenance safety, higher installation costs, and larger equipment or conductors. The use of ArcWatch and other technologies help balance the compromises between arc flash risk and selectivity, the consequences of these risks should be understood.

Traditional time-current curve based analysis must still be used to make sure that long time, short time phase overcurrent and ground fault protection devices are selectively coordinated.

These tables provide guidance on circuit breaker selectivity where the instantaneous clearing times shown on traditional-time-current curves overlap.

HOW TO FIND AND READ VALUES IN THE TABLES

Before using these tables, the user should have the system one-line diagram, complete with system voltages and available fault currents. The capability for instantaneous selectivity of a particular circuit breaker pair may be dependent on trip setting, rating plug, the circuit breaker's sensor, or the circuit breaker's frame size. The tables will indicate which parameter in the device drives its selective capability.

The Selectivity Tables are organized with upstream devices across the top of the tables (in boldface type), and downstream devices in columns on the left.
In tables 3 and 3a, the column titled "Instantaneous Setting Must Be Greater Than" shows the minimum instantaneous pickup, in amps, (on the upstream device) that will provide the selectivity shown with the corresponding downstream device. Tables 4 and 4a illustrate the maximum possible pickup settings for typical upstream devices equipped with the ETU, MET or EKIP.

Tables 5, 5a and 5b, arranged the same way, shows the selectivity of downstream devices equipped with ETU, MET or EKIP, including current limiting circuit breakers. The value at the intersection of a row and column defines the maximum instantaneous current selectivity capability of the paired devices.

Tables 6 through 11 are also arranged with upstream devices across the top of the tables and downstream devices in the left column. The intersection of a row and column define the maximum possible selectivity of that pair of devices using ArcWatch I-ZSI.

For combinations not shown in the tables or where a table value is blank, the selectivity between the pair can be determined by curve overlay.

Often selectivity may be improved by using a larger upstream device or a circuit breaker with greater adjustability. Downstream selectivity may be improved by using a device with greater current limiting characteristics.

SYSTEMS WITH MORE THAN TWO CIRCUIT BREAKERS

The analysis used to produce the tables allows three or more devices to be combined. Figure 2 represents a system composed of three circuit breakers defined as devices A, B , and C . The devices are applied at three different fault current values. Circuit breaker A and circuit breaker B need to be selective to 30 kA , circuit breaker B and circuit breaker C need to be selective to 13 kA . If these two requirements are fulfilled then circuit breakers A and C will also be selective. Note that the fault current value at the first circuit breaker is important to determine the short circuit rating required for that device; however, it is the available fault current at the downstream circuit breaker that determines the selectivity need.

Figure 2: Multiple circuit breaker selectivity

THROUGH TRANSFORMER SELECTIVITY

Breakers serving a transformer primary and secondary are an example of a circuit where all overcurrent devices do not need to be completely selective to assure reliable system selectivity. Figure 3 shows a simplified system with panel main, a transformer primary main fed from that bus, a 75kVA transformer, a 250A secondary main, and some 120/208V circuits in the downstream panel.

250A transformer secondary main

Figure 3: Through transformer selectivity

For the example shown in Figure 3, the 125A transformer primary main should be selective with the 1200A panel main. Selectivity would be required to the fault current value at the 125A device, or 40kAIC (kA Interrupting Current). The 125A primary main and the 250A secondary main need not be selective with each other. (Opening of either device has the same effect on power continuity at the secondary loads). The 250A secondary main should however be selective with the 1200A primary panel main for the maximum available secondary fault current. The secondary fault current is limited by the transformer impedance. The secondary fault current as seen by the primary circuit is further limited by the transformer ratio. In this example, the calculated, bolted threephase fault current at the transformer's secondary terminals is 4.2 kAIC . At the secondary panel, the fault current is 3.9 kAIC due to the secondary cable impedance. Selectivity between the 30A feeder and the 250A secondary main is required. A maximum fault current of 3.9 kA below the secondary feeder defines the selectivity requirement for that pair of devices. For a 480/208V, delta - wye transformer, the transformer ratio is 2.31:1. The 3.9kA available fault current divided by the transformer ratio is $(3.9 \mathrm{kA} / 2.31)=1.7 \mathrm{kA}$. Therefore, the 30 A secondary feeder and the transformer primary main need to be selective to 1.7 kAIC .

ACCOUNTING FOR X/R RATIOS GREATER THAN TEST RATIOS

Circuit breakers are tested at different X/R ratios depending on RMS value of the test currents. The following are the test currents and power factors used during UL 489 testing, and the corresponding X/R-ratios, and the Peak to RMS current ratios. These are the same values used for the selectivity tables:
> - $<\mathbf{1 0}, \mathbf{0 0 0 A}$ RMS $-\mathrm{PF}=50 \% ; \mathrm{X} / \mathrm{R}=1.732, \mathrm{Peak} / \mathrm{RMS}=1.694$
> - >10,0000 - 20,000A RMS - PF = 30\%; X/R = 3.180, Peak/RMS = 1.978
> - $\mathbf{2 0} \mathbf{2 0} 000 \mathrm{~A}$ RS $-\mathrm{PF}=20 \% ; \mathrm{X} / \mathrm{R}=4.899, \mathrm{Peak} / \mathrm{RMS}=2.183$

A fault current of 60,000A at an X / R ratio of 7 exceeds the standard X / R value. Because of this, the actual peak current magnitude is larger than it would be for the tested X / R of 4.899. For selectivity analysis purposes, the current should be adjusted as follows:

60,000A $\times(2.336 / 2.183) \sim 64,200 \mathrm{~A}$

Where:

- 60,000 = base RMS fault current value
- $7=\mathrm{X} / \mathrm{R}$ ratio of the calculated fault current
- 2.183 = peak current factor for a fault current with an X/R ratio of 4.9
(see Table 1)
- 2.336 = peak current factor for a fault current with an X/R ratio of 7
(see Table 1)

-

Test Ranges	Power Factor	X/R Ratio	Maximum Peak
	4	24.9790	2.663
	5	19.9740	2.625
	6	16.6230	2.589
	7	14.2510	2.554
	8	12.4600	2.520
	8.5	11.7230	2.504
	9	11.0660	2.487
	10	9.9501	2.455
	11	9.0354	2.424
	12	8.2733	2.394
	13	7.6271	2.364
	14	7.0721	2.336
	15	6.5912	2.309
	16	6.1695	2.282
	17	5.7967	2.256
	18	5.4649	2.231
	19	5.1672	2.207
>20kA	20	4.8990	2.183
	21	4.6557	2.160
	22	4.4341	2.138
	23	4.2313	2.110
	24	4.0450	2.095
	25	3.8730	2.074
	26	3.7138	2.054
	27	3.5661	2.034
	28	3.4286	2.015
	29	3.3001	1.996
$\leq 20 \mathrm{kA},>10 \mathrm{kA}$	30	3.1798	1.978
	31	3.0669	1.960
	32	2.9608	1.943
	33	2.8606	1.926
	34	2.7660	1.910
	35	2.6764	1.894
	36	2.5916	1.878
	37	2.5109	1.863
	38	2.4341	1.848
	39	2.3611	1.833
	40	2.2913	1.819
	41	2.2246	1.805
	42	2.1608	1.791
	43	2.0996	1.778
	44	2.0409	1.765
	45	1.9845	1.753
	46	1.9303	1.740
	47	1.8780	1.728
	48	1.8277	1.716
	49	1.7791	1.705
s10kA	50	1.7321	1.694

CIRCUIT BREAKER TYPES

$A B B$ offers several types of circuit breakers with different adjustment and selectivity capabilities. They are broadly described in this section.

EntelliGuard ${ }^{\circledR}$ TU trip unit and Spectra RMS allow instantaneous trip to be adjusted as a multiple of the rating plug Ampacity. The maximum adjustment may be limited by the frame. For Record Plus and Spectra with microEntelliGuard, the instantaneous trip is adjusted as a multiple of the current sensor.

ANSI /UL 1066 Circuit Breakers with Fully Adjustable Trips

ANSI circuit breakers are those designed and tested to ANSI C37 standards. ABB ANSI devices are Emax 2, AKR, WavePro®, EntelliGuard and EntelliGuard G ANSI circuit breakers. They are generically called Low Voltage Power Circuit Breakers (LVPCBs), and are listed to UL 1066.

EntelliGuard G and Emax 2 ANSI /UL 1066 circuit breakers are available with or without Instantaneous Overcurrent Protection. Some ANSI/UL 1066 circuitbreakers are equipped with an Instantaneous "Override" at very high fault currents. These overrideequipped circuit breakers are selective to the current level at which theoverride becomes active. This level is referred to as the "Withstand Rating" in the tables for EntelliGuard G ANSI/UL1066 Circuit Breaker.

UL 489 Circuit Breakers with Fully Adjustable Trips

Insulated Case Circuit Breakers (ICCBs) are listed to UL 489. The tables on pages 7-9 also include UL 489 listed Power Break II and EntelliGuard G circuit breakers with EntelliGuard TU trip units. These always include Long-Time, Short Time, and Instantaneous (LSI) protections, although a user may choose to not implement the s function.

Typically, any circuit breaker with adjustable short time pickup and delay allows for a higher instantaneous pickup adjustment. A higher instantaneous pickup may facilitate higher levels of instantaneous selectivity.

Selectivity limits for these circuit breakers are established based on withstand (EntelliGuard G UL489) or short circuit (Power Break II) ratings.

Molded Case Circuit Breakers (MCCB)

ABB MCCBs fall into several categories:

- Thermal-magnetic, Current Limiting *:
- Record Plus: FB, FC, FD
- Q-Line: THQC/THHQC, THQB/THHQB, THQL / THHQL
- TEY Family: TEY, TEY (F, D, H, L)
- Tmax XT1, XT3
- Formula A1, A2

- Electronic, Current Limiting *:

- Adjustable Instantaneotus (LI or LIG):
- Record Plus: FE, FG (with SMR1, SMR2 or PremEon S Trip Unit)
- Spectra: SE, SF, SG (Spectra RMS)
- Fully Adjustable (LSI or LSIG)
- Record Plus: FG (with SMR2 Trip Unit):
- Spectra: SG (with micro-EntelliGuard Trip Unit)
- Tmax XT 2, 4 and 5 (with Ekip DIP, Touch/Hi-Touch)

- Electronic, Non Current Limiting:

- Adjustable Instantaneous (LI)
- Spectra: SK
- Fully Adjustable (LSI or LSIG)
- Spectra: SK (with micro-EntelliGuard Trip Unit)**
- Tmax XT 6 and 7 (with Ekip DIP, Touch/Hi-Touch)
-
* Many MCCBs not labeled or UL Listed as current limiting may be current limiting under some fault conditions. It cannot be assumed that any circuit breaker not labeled current limiting always takes a certain amount of time to clear. Time-current curves may show clearing times in excess of $1 / 2$ or 1 cycle, but the circuit breaker may clear in less than $1 / 2$ cycle
${ }^{* *}$ S
解 included in the tables and examples in this document refer to specifically to "SKS and SKT" versions.
These SK MCCBs include extended INST pickup and are the versions recommended for maximum selective coordination

Fully adjustable electronic trips allow setting of the long time pick-up, long time delay, short time pick-up, short time delay, and whether the short time characteristic will have an $I^{2} \mathrm{~T}$ response or not. These electronic trips allow for separate adjustments of instantaneous and ground fault protection.

Current limiting circuit breakers as load side devices will provide greater levels of selectivity if the downstream circuit breaker has a current limiting threshold (the current level at which the circuit breaker becomes current limiting) that is lower than the instantaneous pick-up setting of the circuit breaker above.

ARCWATCH INSTANTANEOUS ZONE SELECTIVE INTERLOCKING (I-ZSI)

Unique to the EntelliGuard and Touch/Hi-Touch family of trip units is the ability to allow simultaneous and independent ZSI of both the short-time and instantaneous protection functions. Instantaneous protection may be interlocked such that all upstream circuit breakers whose zone includes the fault will shift from instantaneous clearing to a 0.058 second time band (in the case of EntelliGuard G circuit breakers) or 0.067 seconds (for other stored energy circuit breakers). Since it is expected that faults of sufficient magnitude to engage the instantaneous pickup are dangerously high, all upstream ArcWatch interlocked trip units that receive a restraint signal are shifted to the same band. If, for whatever reason, the downstream circuit breaker fails to clear, quick backup protection is provided from upstream devices.

Power Break II ICCBs and Spectra microEntelliGuard MCCBs are capable of sending ArcWatch I-ZSI restraint signals, but cannot be restrained by a received signal. They must therefore be the most downstream breakers in an I-ZSI coordinated set of devices.

The ability to use ArcWatch to shift instantaneous protections allows these circuit breakers to be selective to their full withstand rating while still providing instantaneous protection.

ARCWATCH WAVEFORM RECOGNITION (WFR)

Waveform Recognition is an exclusive intelligence built into ABB's EntelliGuard family of trip units. It allows the trip units to "see" the operation of current limiting overcurrent devices downstream. This feature is automatically built into every EntelliGuard series trip unit, whatever circuit breaker (EntelliGuard G, PowerBreak II, Spectra MCCB, or even retrofitted legacy ANSI) it is installed on. This exclusive ArcWatch intelligence allows INST pickups to be adjusted lower than possible on traditional peak-sensing or even RMS-sensing devices, allowing selective coordination with better arc flash performance.

Table 2: Trip unit types

Product Family	UL 489 Molded Case	UL 489 Insulated Case	ANSI C37/ UL 1066	Trip Unit Types		WFR/ArcWatch Protections	
				Thermal-magnetic (TM) or Electronic with Adjustable INST (LI or LIG)	Adjustable LSIG	I-ZSI	WFR
Spectra	Yes	-	-	Spectra RMS- electronic	Optional micro-EntelliGuard (SG/SK)	Yes (as downstream)	Yes (as downstream)
Record Plus	Yes	-	-	FB, FC -TM	-	No	
		-	-	FE, FG - Electronic SMR1 or PremEon S	Optional - SMR2 (FG only)	No	
EntelliGuard G	-	Yes	Yes	Electronic	EntelliGuard TU	Yes	Yes (as upstream)
PowerBreak II	-	Yes	-	Electronic	EntelliGuard TU	Yes (as downstream)	
WavePro	-	-	Yes	Electronic	EntelliGuard TU	Yes	
Emax 2	-	-	Yes	Electronic	Ekip	No	No
Tmax XT	Yes	-	-	TM	Ekip	No	Yes (as downstream)
Formula	Yes	-	-	TM	-	No	Yes (as downstream)

ENTELLIGUARD SERIES TRIP UNITS IN ANSI, POWER BREAK II, AND MOLDED CASE

 CIRCUIT BREAKERS ; EKIP TRIP UNITS IN ANSI EMAX2 AND TMAX XT MOLDED CASE
CIRCUIT BREAKERS

Selectivity between any upstream circuit breaker with an EntelliGuard Series trip unit OR Ekip trip unit and a downstream ABB current limiting circuit breaker is determined by the setting of the upstream EntelliGuard TU /Ekip TU. Tables 3 and 3a on pages 7 and 8 identify the values for ABB's currently produced current limiting molded case circuit breakers. When the upstream trip unit's IOC is set at the value listed in the column labeled "Instantaneous setting must be \geq " or higher, the pair is selective over the instantaneous range. The table describes how the circuit breaker type limits selectivity. The table applies through 480 volts, except where limited by circuit breaker maximum voltage.

Instantaneous selectivity between a circuit breaker with an EntelliGuard Series or EKIP trip unit and any non-current limiting circuit breaker may be evaluated via traditional time current curve overlay analysis. If ArcWatch Instantaneous zone selective interlocking is employed, selectivity is limited only by the upstream circuit breaker's withstand or short circuit rating is possible.

Instantaneous pickup Band in curve overlay between Upstream and Downstream breakers must be separated without interference.

Table 3: Circuit breaker type and selectivity limits

Notes:

1. EntelliGuard TU must employ rating plug of 400A or greater.
2. EntelliGuard TU must employ rating plug of 800 A or greate
3. Any curve overlap in the INST clearing region of the time-current curve does not represent a lack of selectivity and can be ignored.

4. Min/max ranges of Spectra G shown with standard Spectra RMS trip unit (min rating plug)/with micro-EntelliGuard (min rating plug and min. LTPU setting)
5. Min/max ranges for Record Plus FE and FG show with PremEon S trip unit. SMR1 minimum limits differ without affecting upstream selectivity
6. EntelliGuard E used in GE Entellisys switchgear.
7. FE 160A IEC, FG 630A IEC
8. Minimum rating plugs by frame for MET: 600A frame $=225$ plug; 400A frame $=150 \mathrm{~A}$ plug; 150A frame $=60 \mathrm{~A}$ plug

Table 3a: Circuit breaker types and selectivity limits

Notes

1. Any curve overlap in the INST clearing region of the time-current curve does not represent a lack of selectivity and can be ignored.

2. Min/max ranges of Spectra G shown with standard Spectra RMS trip unit (min rating plug)/with micro-EntelliGuard (min rating plug and min. LTPU setting)
3. Min/max ranges for Record Plus FE and FG show with PremEon S trip unit. SMR1 minimum limits differ without affecting upstream selectivity. 3 Pole only.
. FE 60A IEC, FG 630A IEC
4. Minimum rating plugs by frame for MET: 600A frame $=225$ plug; 400A frame $=150 \mathrm{~A}$ plug; 150A frame $=60 \mathrm{~A}$ plug
5. Above mentioned selectivity is valid with Upstream Instantaneous setting OFF, INST = OFF.

SELECTIVITY WITH ENTELLIGUARD TU TRIP UNITS IN ANSI, POWER BREAK II, AND MOLDED CASE CIRCUIT BREAKERS

The table below identifies maximum instantaneous pickup multipliers for various types and sizes of ABB circuit breakers. The lower part of the table identifies the maximum instantaneous pickup (in amperes) for various circuit breaker, sensor, and rating plug combinations. If you compare this value with the values in the third column of the preceding Table 3/3a, you can tell if a pair of circuit breakers can be selective.

Table 4: Maximum instantaneous pickup for EntelliGuard family trip units in various circuit breakers types

Upstream device with EntelliGuard TU Trip Unit	Selective Spectra K (SKS and SKT)	Power Break II, UL 489 CB	Legacy WavePro or AKR, ANSI CB	EntelliGuard G, ANSI/UL (Standard INST)	EntelliGuard G, ANSI (Extended INST)
	Max Instantaneous ${ }^{1}$ in \mathbf{X}				
800A frame	25.5	15	15	15	30
1000A frame	20.5	-	-	-	-
1200A frame	17	-	-	-	-
1600A frame	-	15	15	15	30
2000A frame	-	15	15	15	30
3000A frame	-	13		15	30
3200A frame	-	-	13	15	30
4000A frame	-	10	10	15	23
5000A frame	-	-	7	15	19
6000A frame (UL 489 only)	-	-	-	15	-
	Amperes per above multipliers				
800A frame, 800A plug	20,400	12,000	12,000	12,000	24,000
1000A frame/sensor ${ }^{2}$	20,500	-	-	-	-
1200A frame/sensor ${ }^{2}$	20,400	-	-	-	-
1600A frame, 1600A plug	-	24,000	24,000	24,000	48,000
2000A frame, 2000A plug	-	30,000	30,000	30,000	60,000
3000A frame, 3000A plug	-	39,000	-	45,000	90,000
3200A frame, 3200A plug	-	-	41,600	48,000	96,000
4000A frame, 4000A plug	-	40,000	40,000	60,000	92,000
5000A frame, 5000A plug	-	-	35,000	75,000	95,000
6000A frame, 6000A plug	-	-	-	90,000	-

Notes

2. Spectra K only.

For Power Break II, WavePro and EntelliGuard G maximum instantaneous is a multiple of rating plug; the above values for those breakers may be lower if a smaller rating plug than maximum for frame is used. For Selective Spectra K, maximum instantaneous is a multiple of frame. In Power Break II, WavePro, and Selective Spectra K the maximum instantaneous multiplier is limited by frame rating. In EntelliGuard G, the maximum instantaneous X may be limited by withstand). The amperes listed above, multiplied by 0.9 , provide maximum selectivity above non-current limiting circuit breakers if instantaneous is adjusted to maximum and no zone selective interlocking is used.

SELECTIVITY WITH EKIP TRIP UNITS IN ANSI, Emax 2, AND MOLDED CASE CIRCUIT BREAKERS

The table below identifies maximum instantaneous pickup multipliers for various types and sizes of ABB circuit breakers. The lower part of the table identifies the maximum instantaneous pickup (in amperes) for various circuit breaker, sensor, and rating plug combinations. If you compare this value with the values in the third column of the preceding table, you can tell if a pair of circuit breakers can be selective.

Table 4a: Maximum instantaneous pickup for EntelliGuard family trip units in various circuit breakers types

Downstream device with Ekip Trip Unit	Tmax XT7, ANSI/UL 1066	Emax 2 1.2, ANSI/UL 1066	$\begin{aligned} & \text { Emax } 2 \text { 2.2, } \\ & \text { ANSI/UL } 1066 \end{aligned}$	Emax 2 4.2, ANSO/ UL 1066	Emax 2 6.2, ANSI/UL 1066
	Max Instantaneous ${ }^{1}$ in X				
800A frame	15	15	15	15	-
1000A frame	15	-	-	-	-
1200A frame	15	15	15	-	-
1600A frame	-	-	15	15	-
2000A frame	-	-	15	15	-
2500A frame	-	-	-	15	-
3200A frame	-	-	-	15	-
3600A frame	-	-	-	-	-
4000A frame	-	-	-	-	15
5000A frame	-	-	-	-	15
6000A frame	-	-	-	-	15
	Amperes per above multipliers				
800A frame, 800A plug	12,000	12,000	12,000	12,000	-
1000A frame, 1000A plug	15,000	-	-	-	-
1200A frame, 1200A plug	18,000	18,000	-	-	-
1600A frame, 1600A plug	-	-	24,000	24,000	-
2000A frame, 2000A plug	-	-	30,000	30,000	-
3000A frame, 3000A plug	-	-	-	37,500	-
3200A frame, 3200A plug	-	-	-	48,000	-
3600A frame, 3600A plug	-	-	-	54,000	-
4000A frame, 4000A plug	-	-	-	-	60,000
5000A frame, 5000A plug	-	-	-	-	75,000
6000A frame, 6000A plug	-	-	-	-	90,000

Notes

1. Rating plug determines maximum Instantaneous pickup (X) for Tmax XT7 and Emax2. For some Ekip DIP versions trip unit of XT7, maximum instantaneous is $10 X$.

For Tmax XT7 and Emax 2 the maximum instantaneous is a multiple of frame; the above values for those breakers may be lower instantaneous protection is set to a lower threshold. The amperes listed above, multiplied by 0.85 , provide maximum selectivity above non-current limiting circuit breakers if instantaneous is adjusted to maximum and no zone selective interlocking is used. Settings are valid for Inst = OFF. This is applicable in breakers with adjustable Instantaneous protection only.

SELECTIVITY WITH RECORD PLUS FE AND FG

The table below identifies maximum selectivity between Record Plus upstream circuit breakers and typical downstream branch devices. The table assumes the INST pickup setting of the upstream device adjusted to its maximum. Downstream devices (where adjustable) may be adjusted to lower INST pickup settings without affecting the maximum selectivity of the pair. The table applies through 480 volts, as limited by circuit breaker maximum voltage. Instantaneous pickup Band in curve overlay between Upstream and Downstream breakers must be separated without interference.

Table 5: Selectivity for typical 600A and smaller combinations

Downstream			Upstream				
			Record Plus FG			Record Plus FE	
	Amperes	Poles	600	400	250	250	150 \& 125
Record Plus FE Electronic	20-250	2 and 3	100,000	-	-	-	-
Record Plus FB/FC	15-100	1,2 and 3	65,000	65,000	65,000	-	-
TEYL	80-125	2 and 3	65,000	65,000	65,000	-	-
	35-70	1,2 and 3	65,000	65,000	65,000	-	-
	15-30	2 and 3	65,000	65,000	65,000	-	-
	15-30	1	65,000	65,000	65,000	14,000	10,000
TEYH	80-125	2 and 3	35,000	35,000	35,000	-	-
	35-70	1,2 and 3	35,000	35,000	35,000	-	-
	15-30	2 and 3	35,000	35,000	35,000	-	-
	15-30	1	35,000	35,000	35,000	14,000	10,000
TEYF	35-100	1,2 and 3	14,000	14,000	14,000	-	-
	15-30	2 and 3	14,000	14,000	14,000	-	-
	15-30	1 P	14,000	14,000	14,000	14,000	10,000
TEY	70-100	1,2 and 3	6,000	4,000	2,500	-	-
	35-60	2 and 3	10,000	10,000	2,500	-	-
	15-30	2 and 3	14,000	14,000	14,000	-	-
	35-60	1	10,000	10,000	2,500	-	-
	15-30	1	14,000	14,000	14,000	10,000	10,000
THQC/THQL/THQB	125	2	10,000	10,000	2,500	-	-
	70-100	1,2 and 3	10,000	10,000	2,500	-	-
	35-60	2 and 3	10,000	10,000	10,000	4,000	4,000
	15-30	2 and 3	10,000	10,000	10,000	6,000	6,000
	35-60	1	10,000	10,000	10,000	-	-
	15-30	1	10,000	10,000	10,000	10,000	10,000
THHQC/THHQL/THHQB	125	2	22,000	22,000	2,500	-	-
	70-100	1, 2 and 3	22,000	22,000	2,500	-	-
	35-60	2 and 3	22,000	22,000	10,000	4,000	4,000
	15-30	2 and 3	22,000	22,000	22,000	6,000	6,000
	35-60	1	22,000	22,000	10,000	-	-
	15-30	1	22,000	22,000	22,000	14,000	14,000

SELECTIVITY WITH TMAX XT

The table below identifies the maximum selectivity between Tmax XT upstream circuit breakers and Tmax XT downstream branch devices. The table assumes the INST pickup setting of the upstream device is adjusted to its maximum. INST = OFF is also acceptable for upstream device. Downstream devices may be thermal magnetic or electronic trip, and where adjustable may be adjusted to lower INST pickup settings without affecting the maximum selectivity of the pair. The table applies through 480 volts, as limited by circuit breaker maximum voltage. Instantaneous pickup Band in curve overlay between Upstream and Downstream breakers must be separated without interference.
-
Table 5a: Selectivity for typical 800A and smaller combinations

Downstream			Upstream						
	Amperes	Poles	Tmax XT6 (Ekip)		Tmax XT5 (Ekip) ${ }^{1}$			$\begin{aligned} & \text { Tmax XT4 (Ekip) } \\ & \hline 250 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Tmax } \times \text { T2 (Ekip) } \\ \hline 125 \\ \hline \end{array}$
			800	600	600	400	250		
Tmax XT4	250	2, 3, and 4	65,000	65,000	100,000	100,000	-	-	-
Tmax XT3	225	2, 3, and 4	-	-	35,000	-	-	-	-
Tmax XT2	125	2, 3, and 4	65,000	65,000	100,000	100,000	100,000	-	-
Tmax XT1	125	2, 3, and 4	-	-	65,000	65,000	65,000	-	-
Formula A2 (240V)	250	2 and 3	25,000	25,000	25,000	25,000	-	-	-
	125	2 and 3	25,000	25,000	25,000	25,000	,	-	-
Sentricity SLC (240V)	125	2	10,000	10,000	10,000	10,000	10,000	10,000	-
	100	2	10,000	10,000	10,000	10,000	10,000	10,000	-
	60	1 and 2	10,000	10,000	10,000	10,000	10,000	10,000	10,000
	30	1 and 2	10,000	10,000	10,000	10,000	10,000	10,000	10,000
	15	1 and 2	10,000	10,000	10,000	10,000	10,000	10,000	10,000
Sentricity SLCH (240V)	125	2	22,000	22,000	22,000	22,000	22,000	22,000	-
	100	2	22,000	22,000	22,000	22,000	22,000	22,000	-
	60	1 and 2	22,000	22,000	22,000	22,000	22,000	22,000	22,000
	30	1 and 2	22,000	22,000	22,000	22,000	22,000	22,000	22,000
	15	1 and 2	22,000	22,000	22,000	22,000	22,000	22,000	22,000

Notes:

1. Shown selectivity is valid with Ekip DIP version of the trip unit only. Please contact ABB for selectivity ratings with Ekip Touch/High Touch trip unit.

SELECTIVITY WITH TMAX XT

The table below identifies the maximum selectivity between Tmax XT upstream circuit breakers and typical downstream branch devices. The table assumes the INST pickup setting of the upstream device is adjusted to its maximum. INST = OFF is also acceptable for upstream device. Downstream devices (where adjustable) may be adjusted to lower INST pickup settings without affecting the maximum selectivity of the pair. The table applies through 480 volts, as limited by circuit breaker maximum voltage. Instantaneous pickup Band in curve overlay between Upstream and Downstream breakers must be separated without interference.
-
Table 5b: Selectivity for typical 800A and smaller combinations

Downstream			Upstream						
			Tmax XT6 (Ekip)		Tmax XT5 (Ekip) ${ }^{1}$			$\begin{array}{\|l\|} \hline \text { Tmax XT4 (Ekip) } \\ \hline 250 \end{array}$	$\begin{aligned} & \text { Tmax XT3 (TM) } \\ & \hline 225 \\ & \hline \end{aligned}$
	Amperes	Poles	800	600	600	400	250		
Record Plus FE	20-250	2 and 3	65,000	65,000	100,000	-	-	-	-
Record Plus FB/FC	15-100	1,2 , and 3	65,000	65,000	65,000	65,000	65,000	-	-
TEYL	80-125	2 and 3	50,000	50,000	65,000	65,000	65,000	-	-
	35-70	1,2 , and 3	50,000	50,000	65,000	65,000	65,000	-	-
	15-30	2 and 3	50,000	50,000	65,000	65,000	65,000	-	-
	15-30	1	50,000	50,000	65,000	65,000	65,000	4,000	-
TEYH	80-125	2 and 3	35,000	35,000	35,000	35,000	35,000	-	-
	35-70	1,2 , and 3	35,000	35,000	35,000	35,000	35,000	-	-
	15-30	2 and 3	35,000	35,000	35,000	35,000	35,000	-	-
	15-30	1	35,000	35,000	35,000	35,000	35,000	4,000	-
TEYF	35-100	1,2 , and 3	14,000	14,000	14,000	14,000	14,000	-	-
	15-30	2 and 3	14,000	14,000	14,000	14,000	14,000	-	-
	15-30	1	14,000	14,000	14,000	14,000	14,000	4,000	-
TEY	70-100	1, 2, and 3	14,000	14,000	14,000	14,000	14,000	-	-
	35-60	2 and 3	14,000	14,000	14,000	14,000	14,000	-	-
	15-30	2 and 3	14,000	14,000	14,000	14,000	14,000	-	-
	36-60	1	14,000	14,000	14,000	14,000	14,000	-	-
	15-30	1	14,000	14,000	14,000	14,000	14,000	4,000 (15A only)	-
THQC/THQL/THQB	125	2	10,000	10,000	10,000	10,000	10,000	-	-
	70-100	1, 2, and 3	10,000	10,000	10,000	10,000	10,000	-	-
	35-60	2 and 3	10,000	10,000	10,000	10,000	10,000	-	-
	15-30	2 and 3	10,000	10,000	10,000	10,000	10,000	4,000 (15A 3P only)	-
	35-60	1	10,000	10,000	10,000	10,000	10,000	4,000	-
	15-30	1	10,000	10,000	10,000	10,000	10,000	4,000	9,000
THQQC/THHQL/THHQB	125	2	22,000	22,000	22,000	22,000	22,000	-	-
	70-100	1,2 , and 3	22,000	22,000	22,000	22,000	22,000	-	-
	35-60	2 and 3	22,000	22,000	22,000	22,000	22,000	-	-
	15-30	2 and 3	22,000	22,000	22,000	22,000	22,000	4,000 (15A 3P only)	-
	35-60	1	22,000	22,000	22,000	22,000	22,000	4,000	-
	15-30	1	22,000	22,000	22,000	22,000	22,000	4,000	9,000
Spectra F	70-250	2 and 3	-	-	100,000	100,000	-	-	-
Spectra E	15-150	2 and 3	-	-	100,000	100,000	100,000	-	-

1. Shown selectivity is valid with Ekip DIP version of the trip unit only. Please contact ABB for selectivity ratings with Ekip Touch/High Touch trip unit.

Figure 4: Selectivity using ArcWatch I-ZSI and WFR tested breaker pairs with switchboard service entrance

Figure 5: Selectivity using ArcWatch I-ZSI and WFR tested breaker pairs with switchgear service entrance, 480V and 208V paths

Figure 4a: Selectivity with ReliaGear Switchboard Service Entrance

Hi-Touch trip unit may be substituted for the Touch trip unit. Hi-Touch or Touch may be substituted for EKIP DIP except for the XT5. If a sensor value is not indicated, any available sensor value may be used without loss of instantaneous selectivity.

MCCB $=$ UL489 Molded Case Circuit Breaker I-ZSI = Instantaneous Zone Selective Interlocking AF = Frame Amps AS = Sensor Amps

Instantaneously selective via I-ZSI as indicated on table 10a

Pair is instantaneously selective to 100 kA as indicated on table 3a.

Pair is instantaneously selective to
100kA as indicated on table 5 a.

Pair is in series and do not need to coordinate

Pair is instantaneously selective to 4 kA as indicated on table 5b.

Figure 5a: Selectivity with ReliaGear Switchgear Service Entrance

Hi-Touch trip unit may be substituted for the Touch trip unit. Hi-Touch or Touch may be substituted for EKIP DIP except in the XT5. If a sensor value is not indicated, any available sensor value may be used without loss of instantaneous selectivity.

ARCWATCH I-ZSI ON ENTELLIGUARD TU TRIP UNITS IN ANSI WAVEPRO CIRCUIT BREAKERS

Maximum instantaneous selectivity that may be achieved using Instantaneous Zone Selective Interlocking between these WavePro Low Voltage Power circuit breakers. Limited by short circuit rating of downstream device or upstream device.

Table 6: Selectivity with EntelliGuard TU in ANSI WavePro circuit breakers using I-ZSI

Downstream	Upstream													
	WavePro ANSI Low Voltage Power CB. Long Time Curves, Short Time pickup, and instantaneous pickup must be adjusted per TCC													
WavePro	WPS-08	WPH-08	WPX-08	WPS-16	WPH-16	WPX-16	WPS-20	WPS-32	WPH-32	WPX-32	WPS-40	WPX-40	WPS-50	WPX-50
WPS-08	30	30	30	30	30	30	30	30	30	30	30	30	30	30
WPH-08	30	42	42	30	42	42	42	42	42	42	42	42	42	42
WPX-08	30	42	65	30	42	65	65	65	65	65	65	65	65	65
WPS-16	-	-	-	30	30	30	30	30	30	30	30	30	30	30
WPH-16	-	-	-	30	42	42	42	42	42	42	42	42	42	42
WPX-16	-	-	-	30	42	65	65	65	65	65	65	65	65	65
WPS-20	-	-	-	-	-	-	65	65	65	65	65	65	65	65
WPS-32	-	-	-	-	-	-	-	65	65	65	65	65	65	65
WPH-32	-	-	-	-	-	-	-	65	85	85	85	85	85	85
WPX-32	-	-	-	-	-	-	-	65	85	100	85	100	85	100
WPS-40	-	-	-	-	-	-	-	-	-	-	85	85	85	85
WPX-40	-	-	-	-	-	-	-	-	-	-	85	100	85	100
WPS-50	-	-	-	-	-	-	-	-	-	-	-	-	85	85
WPX-50	-	-	-	-	-	-	-	-	-	-	-	-	85	100

Notes:
Selectivity values are shown in kA .

ARCWATCH I-ZSI ON ENTELLIGUARD TU TRIP UNITS IN ANSI ENTELLIGUARD G CIRCUIT BREAKERS

Maximum instantaneous selectivity that may be achieved using Instantaneous Zone Selective Interlocking between these EntelliGuard ANSI (VL 1066) circuit breakers. Limited by short circuit rating of downstream device and withstand rating of upstream device.

Table 7: Selectivity with EntelliGuard TU Trip Units in ANSI EntelliGuard G circuit breakers using I-ZSI

Downstream EntelliGuard G, ANSI CB		Upstream																						
		EntelliGuard G ANSI / UL1066 Low Voltage Power CB. Long Time Curves, Short Time pickup, and Instantaneous pickup must be adjusted per TCC																						
Frame and Sensor	$\begin{aligned} & \text { AIC Tier, } \\ & \text { at } 240 \text { \& } \\ & 480 \mathrm{~V} \end{aligned}$	800A				1600A				2000A				3200A					4000A			5000A		
		N-65kA	H-85kA	E-85kA	M-100kA	N-65kA	H-85kA	E-85kA	M-100kA	N-65kA	H-85kA	E-85kA	M-100kA	N-65kA	E-85kA	M-100kA	B-100kA	L-150kA	M-100kA	B-100kA	L-150kA	M-100kA	B-100kA	L-150kA
800A	N-65kA	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
800A	H-85kA	65	65	85	85	65	65	85	85	65	65	85	85	65	85	85	85	85	85	85	85	85	85	85
800A	E-85kA	65	65	85	85	65	65	85	85	65	65	85	85	65	85	85	85	85	85	85	85	85	85	85
800A	M-100kA	65	65	85	85	65	65	85	85	65	65	85	85	65	85	85	100	100	85	100	100	85	100	100
1600A	$\mathrm{N}-65 \mathrm{kA}$	-	-	-	-	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
1600A	H-85kA	-	-	-	-	65	65	85	85	65	65	85	85	65	85	85	85	85	85	85	85	85	85	85
1600A	E-85kA	-	-	-	-	65	65	85	85	65	65	85	85	65	85	85	85	85	85	85	85	85	85	85
1600A	M-100kA	-	-	-	-	65	65	85	85	65	65	85	85	65	85	85	100	100	85	100	100	85	100	100
2000A	N-65kA	-	-	-	-	-	-	-	-	65	65	65	65	65	65	65	65	65	65	65	65	65	65	65
2000A	H-85kA	-	-	-	-	-	-	-	-	65	65	85	85	65	85	85	85	85	85	85	85	85	85	85
2000A	E-85kA	-	-	-	-	-	-	-	-	65	65	85	85	65	85	85	85	85	85	85	85	85	85	85
2000A	M-100kA	-	-	-	-	-	-	-	-	65	65	85	85	65	85	85	100	100	85	100	100	85	100	100
3200A	N-65kA	-	-	-	-	-	-	-	-	-	-	-	-	65	65	65	65	65	65	65	65	65	65	65
3200A	E-85kA	-	-	-	-	-	-	-	-	-	-	-	-	65	85	85	85	85	85	85	85	85	85	85
3200A	M-100kA	-	-	-	-	-	-	-	-	-	-	-	-	65	85	85	100	100	85	100	100	85	100	100
3200A	B-100kA	-	-	-	-	-	-	-	-	-	-	-	-	65	85	85	100	100	85	100	100	85	100	100
3200A	L-150kA	-	-	-	-	-	-	-	-	-	-	-	-	65	85	85	100	100	85	100	100	85	100	100
4000A	M-100kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	85	100	100	85	100	100
4000A	B-100kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	85	100	100	85	100	100
4000A	L-150kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	85	100	100	85	100	100
5000A	M-100kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	85	100	100
5000A	B-100kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	85	100	100
5000A	L-150kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	85	100	100

Notes:
Selectivity values are shown in kA.

I-ZSI ON EMAX2 TU TRIP UNITS IN ANSI EMAX2 CIRCUIT BREAKERS

Maximum instantaneous selectivity that may be achieved using Instantaneous Zone Selective Interlocking between these Emax 2 ANSI (UL 1066) circuit breakers.
Limited by short circuit rating of downstream device and withstand rating of upstream device.
-
Table 7a: Selectivity with Emax 2 TU Trip Units in ANSI Emax 2 circuit breakers using I-ZSI

		Upstream												
Emax 2, ANSI CB		Emax 2 ANSI / UL1066 Low Voltage Power CB. Long Time Curves, Short Time pickup, and Instantaneous pickup must be adjusted per TCC												
Frame and Sensor	AIC Tier, at 240 \& 480V	Emax2 1.2 800A/1200A			Emax2 2.2 1600AB-A 42kA	Emax2 2.2 2000A				Emax2 4.2 3200A			Emax2 6.2 6000A	
		B-A 42kA	N-A 50kA	S-A 65kA		N-A 50kA	S-A 65kA	H-A 85kA	V-A 100kA	S-A 65kA	H-A 85kA	V-A 100kA	H-A 85kA	V-A 100kA
800A/1200A	B-A 42kA	42	42	42	42	42	42	42	42	42	42	42	42	42
800A/1200A	N-A 50kA	42	42	42	42	50	50	50	50	50	50	50	50	50
800A/1200A	S-A 65kA	42	42	42	42	50	50	65	65	50	65	65	65	65
1600A	B-A 42kA	-	-	-	42	42	42	42	42	42	42	42	42	42
2000A	N-A 50kA	-	-	-	-	50	50	50	50	50	50	50	50	50
2000A	S-A 65kA	-	-	-	-	50	50	65	65	50	65	65	65	65
2000A	H-A 85kA	-	-	-	-	50	50	65	65	50	65	85	85	85
2000A	V-A 100kA	-	-	-	-	50	50	65	65	50	65	85	85	85
3200A	S-A 65kA	-	-	-	-	-	-	-	-	50	65	65	65	65
3200A	H-A 85kA	-	-	-	-	-	-	-	-	50	65	85	85	85
3200A	V-A 100kA	-	-	-	-	-	-	-	-	50	65	85	85	85
6000A	H-A 85kA	-	-	-	-	-	-	-	-	-	-	-	85	85
6000A	V-A 100kA	-	-	-	-	-	-	-	-	-	-	-	85	85

Notes:
Selectivity values are shown in kA.

ARCWATCH I-ZSI ON ENTELLIGUARD TU TRIP UNITS IN UL489 ENTELLIGUARD G CIRCUIT BREAKERS

Maximum instantaneous selectivity that may be achieved using Instantaneous Zone Selective Interlocking (I-ZSI) between these EntelliGuard UL circuit breakers. Limited by short circuit rating of downstream device and withstand rating of upstream device.
-
Table 8: Selectivity with EntelliGuard TU in EntelliGuard G UL 489 Listed circuit breakers using I-ZSI

Downstream		Upstream																		
EntelliGuard G, UL, CB		EntelliGuard G UL489 Low Voltage Power CB. Long Time Curves, Short Time pickup, and Instantaneous pickup must be adjusted per TCC																		
Frame and	AIC Tier, at	800A	800A	800A	1600A	1600A	1600A	2000A	2000A	2000A	3000A	3000A	3000A	3000A	4000A	4000A	5000A	5000A	6000A	6000A
Sensor	240 \& 480V	N-65kA	H-85kA	M-100kA	L-150kA	M-100kA	L-150kA	M-100kA	L-150kA	M-100kA	L-150kA									
800A	N-65kA	42	50	65	42	50	65	42	50	65	42	50	65	65	65	65	65	65	65	65
800A	H-85kA	42	50	65	42	50	85	42	50	65	42	50	65	85	65	85	65	85	65	85
800A	M-100kA	42	50	65	42	50	100	42	50	65	42	50	65	85	65	85	65	85	65	85
1600A	N-65kA	-	-	-	42	50	65	42	50	65	42	50	65	65	65	65	65	65	65	65
1600A	H-85kA	-	-	-	42	50	85	42	50	65	42	50	65	85	65	85	65	85	65	85
1600A	M-100kA	-	-	-	42	50	100	42	50	65	42	50	65	85	65	85	65	85	65	85
2000A	N-65kA	-	-	-	-	-	-	42	50	65	42	50	65	65	65	65	65	65	65	65
2000A	H-85kA	-	-	-	-	-	-	42	50	65	42	50	65	85	65	85	65	85	65	85
2000A	M-100kA	-	-	-	-	-	-	42	50	65	42	50	65	85	65	85	65	85	65	85
3000A	N-65kA	-	-	-	-	-	-	-	-	-	42	50	65	65	65	65	65	65	65	65
3000A	H-85kA	-	-	-	-	-	-	-	-	-	42	50	65	85	65	85	65	85	65	85
3000A	M-100kA	-	-	-	-	-	-	-	-	-	42	50	65	85	65	85	65	85	65	85
3000A	L-150kA	-	-	-	-	-	-	-	-	-	42	50	65	85	65	85	65	85	65	85
4000A	M-100kA	-	-	-	-	-	-	-	-	-	-	-	-	-	65	85	65	85	65	85
4000A	L-150kA	-	-	-	-	-	-	-	-	-	-	-	-	-	65	85	65	85	65	85
5000A	M-100kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	65	85	65	85
5000 A	L-150kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	65	85	65	85
6000A	M-100kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	65	85
6000A	L-150kA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	65	85

Notes:
Selectivity values are shown in kA.

ARCWATCH I-ZSI ON SPECTRA MICROENTELLIGUARD MOLDED CASE CIRCUIT BREAKERS (MCCBs)

The tables that follow show maximum instantaneous selectivity that may be achieved using Instantaneous Zone Selective Interlocking (I-ZSI) between downstream Spectra molded case circuit breakers provided with Instantaneous Zone Selective Interlocking (I-ZSI) and upstream ABB WavePro Low Voltage Power Circuit Breakers or ABB EntelliGuard G circuit breakers also provided with I-ZSI. Limited by short circuit rating of downstream device and withstand rating of upstream device. Maximum fault current shown for 480 V .
-
Table 9: Upstream WavePro ANSI circuit breakers

Downstream Devices: Spectra with microEntelliGuard ${ }^{2}$	Upstream Devices													
	WPS-08	WPH-08	WPX-08	WPS-16	WPH-16	WPX-16	WPS-20	WPS-32	WPH-32	WPX-32	WPS-40	WPX-40	WPS-50	WPX-50
1200A	$-^{1}$	${ }^{-1}$	${ }^{1}$	30	42	65	65	65	85	100	85	100	85	100
800A	$-^{1}$	$-^{1}$	$-^{1}$	30	42	65	65	65	85	100	85	100	85	100
600A	30	42	65	30	42	65	65	65	85	100	85	100	85	100

-

Table 10: Upstream EntelliGuard G ANSI / UL1066 Circuit Breakers

Downstream Devices: Spectra with microEntelliGuard ${ }^{2}$	Upstream Devices																						
	800A	800A	800A	800A	1600A	1600A	1600A	1600A	2000A	2000A	2000A	2000A	3200A	3200A	3200A	3200A	3200A	4000A	4000A	4000A	5000A	5000A	5000A
	N-65kA	H-85kA	E-85kA	M-100kA	N-65kA	H-85kA	E-85kA	M-100kA	N-65kA	H-85kA	E-85kA	M-100kA	N-65kA	E-85kA	M-100kA	B-100kA	L-150kA	M-100kA	B-100kA	L-150kA	M-100kA	B-100kA	L-150kA
1200A	${ }^{1}$	$-^{1}$	$-^{1}$	${ }^{1}$	65	65	85	85	65	65	85	85	65	85	85	100	100	85	100	100	85	100	100
800A	-1	-1	$-^{1}$	- ${ }^{1}$	65	65	85	85	65	65	85	85	65	85	85	100	100	85	100	100	85	100	100
600A	65	65	85	85	65	65	85	85	65	65	85	85	65	85	85	100	100	85	100	100	85	100	100

otes

1. Spectra circuit breakers may be instantaneously selective if the trip settings allow the Long-Time and Short-Time curves to be selective per examination of the applicable time current curves,
2. Spectra G \& K circuit breakers are available in multiple short circuit ratings ranging from 35 to 100 kA at 480 V . Instantaneous selectivity is only possible up to short circuit rating of the lowest device in the selective pair.
3. Selectivity values are shown in kA

I-ZSI ON TMAX XT

that follow show maximum instantaneous selectivity that may be achieved using Instantaneous Zone Selective Interlocking (I-ZSI) between downstream Tmax XT molded case circuit breakers provided with Instantaneous Zone Selective Interlocking (I-ZSI) and upstream ABB Emax2 Low Voltage Power Circuit Breakers also provided with I-ZSI. Limited by short circuit rating of downstream device and withstand rating of upstream device. Maximum fault current shown for 480 V .
-
Table 10a: Upstream Emax2 ANSI / UL1066 Circuit Breakers

Downstream	Upstream Devices												
Tmax XT7	Emax2 1.2 1200A			$\text { Emax2 } 2.2 \text { 1600A }$B-A 42kA	Emax2 2.2 2000A				Emax2 4.2 3200A			Emax 26.2 6000A	
	B-A 42kA	N-A 50kA	S-A 65kA		N-A 50kA	S-A 65kA	H-A 85kA	V-A 85kA	S-A 65kA	H-A 85kA	V-A 100kA	H-A 85kA	V-A 100kA
1200A	-	-	-	-	-	-	-	-	65	85	100	85	100
1000A	-	-	-	42	50	50	65	65	65	85	100	85	100
800A	42	42	42	42	50	50	65	65	65	85	100	85	100

Notes:

1. Emax2 and Tmax XT7 circuit breakers may be instantaneously selective if the trip settings allow the Long-Time and Short-Time curves to be selective per examination of the applicable time current curves.
2. Emax2 and Tmax XT7 circuit breakers are available in multiple short circuit ratings ranging from 42 to 100 kA at 480 V . Instantaneous selectivity is only possible up to short circuit rating of the lowest device in the selective pair.
3. Selectivity values are shown in kA.

Table 10b: Upstream Emax2 ANSI / UL1066 Circuit Breakers

Downstream	Upstream Devices												
Spectra K	Emax 1.2 1200A			$\begin{array}{\|l\|} \hline \text { Emax2 } 2.2 \text { 1600A } \\ \hline \text { B-A 42kA } \\ \hline \end{array}$	Emax 2.2 2000A				Emax 24.2 3200A			Emax 26.2 6000A	
	B-A 42kA	N-A 50kA	S-A 65kA		N-A 50kA	S-A 65kA	H-A 85kA	V-A 85kA	S-A 65kA	H-A 85kA	V-A 100kA	H-A 85kA	V-A 100kA
1200A	-	-	-	-	-	-	-	-	65	85	100	85	100
800A	42	42	42	42	50	50	65	65	65	85	100	85	100

Notes:

1. Spectra circuit breakers may be instantaneously selective if the trip settings allow the Long-Time and Short-Time curves to be selective per examination of the applicable time current curves.
2. Spectra G \& K circuit breakers are available in multiple short circuit ratings ranging from 35 to 100 kA at 480 V . Instantaneous selectivity is only possible up to short circuit rating of the lowest device in the selective pair.
3. Selectivity values are shown in kA .

Table 11: Upstream EntelliGuard G UL489

Downstream Devices: Spectra with microEntelliGuard ${ }^{2}$	Upstream Devices																		
	800A	800A	800A	1600A	1600A	1600A	2000A	2000A	2000A	3000A	3000A	3000A	3000A	4000A	4000A	5000A	5000A	6000A	6000A
	N-65kA	H-85kA	M-100kA	N -65kA	H-85kA	M-100kA	N-65kA	H-85kA	M-100kA	N-65kA	H-85kA	M-100kA	L-150kA	M-100kA	L-150kA	M-100kA	L-150kA	M-100kA	L-150kA
1200A	${ }^{1}$	${ }^{1}$	${ }^{1}$	42	50	100	42	50	65	42	50	65	85	65	85	65	85	65	85
800A	$-^{1}$	- ${ }^{1}$	$-^{1}$	42	50	100	42	50	65	42	50	65	85	65	85	65	85	65	85
600A	42	50	65	42	50	100	42	50	65	42	50	65	85	65	85	65	85	65	85

Notes:
 and Instantaneous settings are sufficiently lower than that of the line side device).
Spectra G \& K circuit breakers are available in multiple short circuit ratings ranging from 35 to 100 kA at 480 V . Instantaneous selectivity is only possible up to short circuit rating of the lowest device in the selective pair 3. Long time curves, short time pickup and instantaneous pickup must be adjusted per TCC.
4. Selectivity values are shown in kA .

Figures 6 \& 7: Selectivity with respect to current over time

-

Figures 6a \& 7a: Selectivity with respect to current over time

Figures 6b \& 7b: Selectivity with respect to current over time

Emax2 3200A upstream from 1200A CB (SK). Set to optimize protection.
Selectivity is not obvious by inspection of TCC. Selectivity will be forced by Arcwatch capabilities.

Example: Upstream Emax2 E4.3 3200A with Downstream 1200A Spectra K with MET. When set for optimal protection, overlap in the INST regions indicate a lack of selectivity.

Emax2 3200A upstream 1200A CB (XT7). Selectivity is forced by shift in Short Time (ST) and Instantaneous (I) function. Downstream device continues to provide optimized protection, upstream device now provides selective
backup protection.

Emax2 3200A upstream 1200A CB (SK). Selectivity is forced by ArcWatch caused shift in Short Time (ST) and Instantaneous (I) function. Downstream device continues to provide optimized protection, upstream device now provides selective
backup protection.

This page left intentionally blank

This page left intentionally blank

- $\overline{\text { ABB Inc. }}$

305 Gregson Drive
305 Gregson Dr
United States
electrification.us.abb.com

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB Inc. © 2022 ABB
All rights reserved

