

Zurich, February 16, 2012, Peter Leupp

Power Systems On the growth path

Power Systems Key performance indicators and highlights

Power Systems	Q4 11	Q4 10	Change		FY 2011	FY 2010	Change	
\$ millions unless otherwise indicated			US\$	Local			US\$	Local
Orders	3,130	2,626	19%	21%	9,278	7,896	18%	12%
Order backlog (end Dec)	11,570	10,929	6%	11%				
Revenues	2,412	2,088	16%	17%	8,101	6,786	19%	14%
EBIT	145	3	n.a.		548	114	381%	
as % of revenues	6.0%	0.1%			6.8%	1.7%		
Operational EBITDA ¹	238	69	245%		742	304	144%	
as % of operational revenues	9.9%	3.3%			9.1%	4.5%		
Cash flow from operating activities	306	508	-40%		288	439	-34%	

- Biggest orders in history large orders supported by base order growth
- Strong double-digit growth in service business
- Cable business back on track
- Well positioned for future growth
 - Record order backlog; tender backlog remains high
 - R&D continues to drive technology and innovation

Power Systems Market trends and opportunities

Market trends

- Economic growth
 - Need for more electricity / capacity
- Climate change challenge
 - Renewables
 - Energy efficiency
 - Demand management
- Higher reliability of power supplies
 - Stronger and smarter grids
 - Improve / upgrade existing grid
- Urbanization / mobility
- Water gets higher visibility

Key opportunities for ABB

Power generation

Traditional and renewable (solar, wind, hydro)

Integration of renewables

HVDC; cables; semiconductors

Reinforcing the grid: capacity / reliability

FACTS; substations; storage

Smarter power networks

Control and automation; software

Mobility

Railways / metros

Water

Pumping stations; desalination plants

Service; asset management; consulting

Renewables solutions Solar: PV, CSP and CPV

Photovoltaic (PV)

- Optimized, high efficiency modular solutions
- Proven track record ~250 MW; 40 PV plants

Concentrated solar power (CSP)

- 35% stake in Novatec; co-operation on turnkey projects
- Cost-effective and efficient Linear Fresnel-based direct steam generation (500°C)
- Highest yield per m² land

Concentrated photovoltaic (CPV)

- Significant stake in Greenvolts with exclusive marketing and sales agreement
- Outstanding solar electrical efficiency with triple-junction cells and dual-axis trackers
- Prefabricated / tested "plug and play" system

Transportation solutions Railway and shore-to-ship power

Bangalore, Warsaw, São Paulo

Ystad, Sweden / Hoek van Holland

Rail

- Traction power supply for metros and urban rail in India, Brazil, Poland
- Turnkey transmission, distribution, auxiliary and traction substations
- Efficient and seamless management of power network
- Space saving; high operational performance and productivity

Shore-to-ship power

- Clean, reliable power from shore for onboard systems of berthed vessels
- Reduction of greenhouse gasses, noise emissions and vibrations
- Flexible, simultaneous supply with two frequencies to match vessel requirements

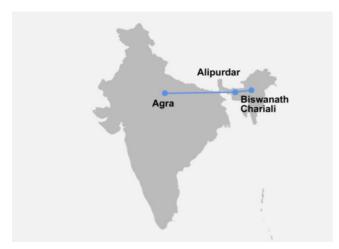
HVDC technology A key transmission enabler

Connecting remote hydro power

Xiangjaba-Shanghai, Itaipu, 3Gorges

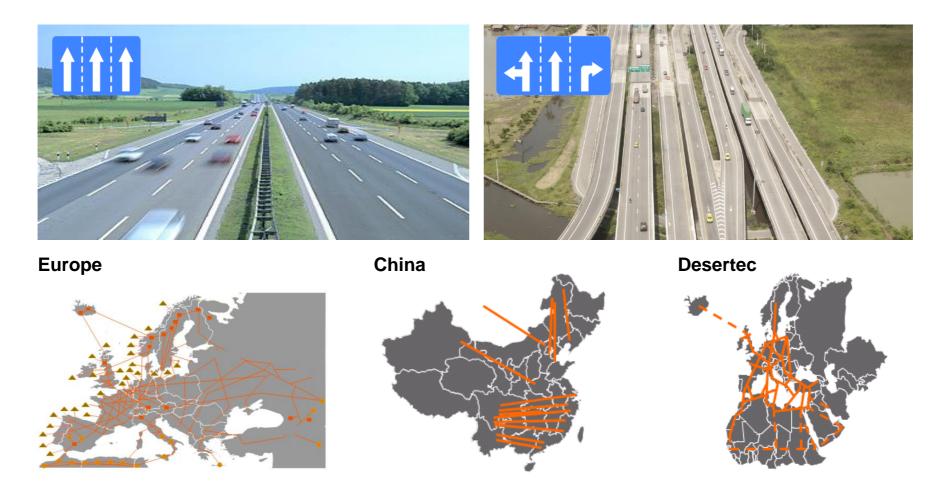
Power from shoreTroll A, Valhall platform

Offshore wind connections Borwin 1, Dolwin 1+2,



Cross border interconnections NorNed, EWIC, Skagerrak, NordBalt, Estlink

Ultra high voltage direct current link order in India \$900-million order is a technology first



- Transmitting remote hydro power from multiple stations more than 1,700 km
- Capable of supplying enough electricity to serve 90 million people
- Highest-ever converter capacity at 8,000 MW
- World's 1st UHVDC link with three converter stations
 - Two "sending" stations convert from AC to DC for transmission
 - One "receiving" station in Agra converts back into AC for distribution to end users

HVDC power highways From joining the dots to connecting the lines

ABB's unique position in HVDC In-house converters, semiconductors, cables

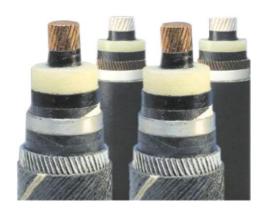
Essential components of HVDC transmission systems

R&D, consulting, simulation

Converters/breakers

High power semiconductors

HV cables


Conversion of AC to DC and vice versa

New simulation/test lab Sweden

Silicon based devices for power switching

~\$200mln investment Switzerland

Transmit large amount of power below ground and sea

~\$90mln US; \$400mln Sweden

Power and productivity

