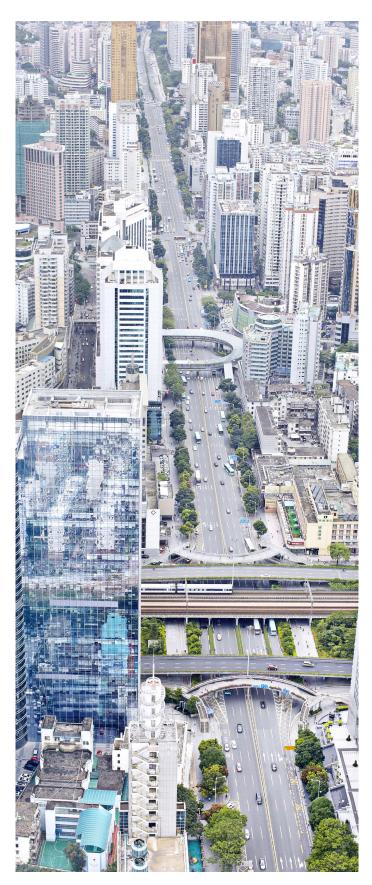


Medium voltage products


Technical Application Papers No. 19 Smart grids 3. Standard IEC 61850

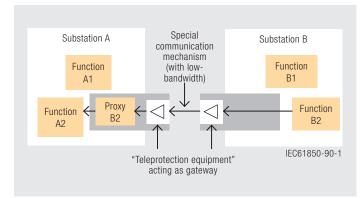
Index

2	1.	Introduction
3	2.	IEC 61850: concept and structure
5	2.1	The basic approach of IEC 61850
5	2.2	The object-oriented data model
7	2.3	The services envisaged for the data model
8	2.4	Performance requirements
9	2.5	Mapping and communication stacks
9	2.6	Ethernet and the station and processes buses
12	2.7	Redundancy
16	2.8	Engineering supported by SCL language
16	2.9	IEC 61850, a lasting concept
17	3.	ABB products based on IEC 61850
17	3.1	Native development of IEC 61850 in ABB
		protection and monitoring devices
19	3.2	Installation and testing of ABB automation
		systems in substations
24	3.3	The ABB verification and validation site for
		IEC 61850
26	4.	Abbreviations and acronyms used in
		IEC 61850

1. Introduction

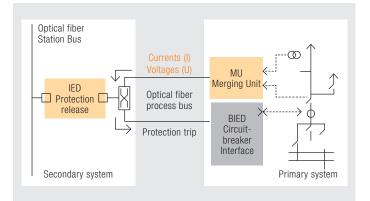
In the technical area, communication can be much more than an exchange of data based on one of the various protocols available in the market. It can actually involve syntax and semantics to the extent that information becomes universally understandable.

This was the goal pursued by IEC (International Electrotechnical Commission) when it addressed the issue that led to publication, in 2004, of a new standard for the purpose of:


- providing a single protocol for a complete substation;
- developing a common format able to describe the substation and facilitate object-oriented modelling of the data required in the substation itself;
- defining the basic services required so that data can be transferred using different communication protocols;
- allowing interoperability between products from different manufacturers.

ANSI (American National Standards Institute) supported the new standard right from the start in an effort that required more than 60 experts and almost ten years of work. IEC 61850 provides a standardized structure for integrating substation components, functional characteristics, the structure of the data in the devices, data designation conventions, establishing how the applications must interact and monitor the devices and lastly, conformance testing. IEC 61850 was very quickly accepted and only two years after having been issued was already being requested by the major part of the market as communication standard The reasons for its success stem from the fact that designing, installing, configuring and servicing a traditional communication infrastructure is a costly business while the benefits introduced by IEC 61850 reduce these costs to a considerable extent while safeguarding, thanks to standardization, the investment.

In the past, all distribution automation systems were based on proprietary solutions and protocols or on use of communication standards from other application fields, such as DNP3 or IEC 60870-5-104.


The problem with these solutions was that they made interoperability between different suppliers or even between different versions of switchgear produced by the same manufacturer, particularly arduous. It took more than twenty years before the need for a standard for communication in substations able to resolve the interoperability issues was formalized. A further aim was to create a standard able to support the continuous and rapid technological developments in this field. This explains the evolution sustained by IEC 61850, which passed from edition 1 to edition 2 with the addition of certain characteristics such as:

- clarification of certain parts like buffered reporting, the mode switch (in test mode) and hierarchical control of accesses (local/remote);
- communication between substations (part 90-1) and between substations and control centres (part 90-2). As can be seen in the diagram below, the standard also deals with use of proxy gateways in low-bandwidth connections;

Communication principles based on Standard IEC 61850, between substations

- the synchronization required for communicating voltage and current samples with speeds in the field of microseconds. An application recommendation was drawn up for that purpose, i.e. part 9-2. The recommendation introduced the merging unit (MU), which will be discussed in section 2.7 and whose task is to provide the samples with the synchronization required. Besides the measuring samples, the Ethernet-based connection also transmits the position of the switching devices, the commands and protection trips. This led to the definition of a true process bus between primary and secondary switchgear and controlgear. The advantage is less wiring, galvanic separation thanks to use of optical fiber and a standard serial interface regardless of the type of measuring instrument used.

Process bus with "merging" unit (MU), circuit-breaker interface (BIED) and external Ethernet switch

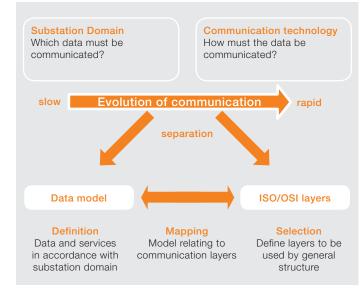
- Support for the redundant interfaces of the IED.
- Data model extension for new application functions, such as supervision of non-electric quantities (new LN, mainly for hydroelectric power plants).
- Statistical assessment of the measurements in logical nodes MMXU and MMXN: mainly required for Power Quality and other applications, such as wind-powered generators.
- Support for tracking and recording services and relative responses: this function is useful for putting into service and security, since it shows the parameters and management of the services required without the need for protocol analyzers.
- Management of logical device hierarchy: useful in the case of complex IED protection systems requiring several functional levels in order to manage common parameters correctly.
- New objects and concepts for testing functional parts in operating systems: useful, since it allows standard applications to be used for the tests while supporting test texts in parallel to real texts.
- Extension of SCL so as to describe new IED properties and support the engineering and retrofitting phase in a better way.
- SCL Implementation Conformance Statements (SICS): defines the mandatory and optional characteristics of the tools for the IEDs and system. This allows the degree of tool interoperability to be assessed.
- The 7-5xx information parts with examples illustrating how to model the application functions of the system.

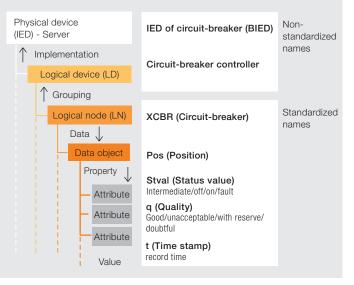
The structure of Edition 2 of IEC 61850 is outlined below:

Parts of Standard IEC 61850 Edition 2: Communication networks and systems for power utility automation

Part 1:	Introduction and overview
Part 2:	Glossary
Part 3:	General requirements
Part 4:	System and project management
Part 5:	Communication requirements for functions
	and device models
Part 6:	Configuration description language for
	communication in electrical substations related
	to IEDs
Part 7-1:	Basic communication structure – Principles
	and models
Part 7-2:	Basic communication structure – Abstract
	communication service interface (ACSI)
Part 7-3:	Basic communication structure – Common
	data classes
Part 7-4:	Basic communication structure – Compatible
	logical node classes and data classes
Part 7-410:	Hydroelectric power plants – Communication
	for monitoring and control
Part 7-420:	Basic communication structure – Distributed
D	energy resources logical nodes
Part 7-5:	IEC 61850 – Modelling concepts
Part 7-500:	Use of logical nodes to model functions of a
	substation automation system
Part 7-510:	Use of logical nodes to model functions of a
	hydro power plant
Part 7-520:	Use of logical nodes to model functions of
Dout 0 1.	distributed energy resources
Part 8-1:	Specific communication service mapping
	(SCSM) – Mappings to MMS (ISO 9506-1 and
Part 80-1:	ISO 9506-2) and to ISO/IEC 8802-3
Fait 00-1.	Guideline to exchange information from a CDC based data model using IEC 60870-5-101/104
Part 9-2:	Specific communication service mapping
i ait 3-2.	(SCSM) – Sampled values over ISO/IEC 8802-3
Part 90-1:	Use of IEC 61850 for the communication
1 411 00 1.	between substations
Part 90-2:	Using IEC 61850 for the communication
1 art 00 2.	between substations and control centres
Part 90-3:	Using IEC 61850 for condition monitoring
Part 90-4:	Network Engineering Guidelines - Technical
	report
Part 90-5:	Using IEC 61850 to transmit synchrophasor
	information according to IEEE C37.118
Part 10:	Conformance testing

Note: IEC TC 88 published IEC 61400-25 Wind turbines - Part 25: Communications for monitoring and control of wind power plants. How to handle the conversion and automatic mapping between data model IEC 61850 and the Common Information Model (CIM) described in IEC 61970 is still being defined. The breakthrough introduced by the Standard is the innovative and expandable language based on XML known as SCL (Substation Configuration Language) used to describe the substation. SCL allows the configuration of the IED to be formally described in functional terms (e.g. control of the circuit-breaker measurements and statuses), communication address and service terms (e.g. reporting procedures). The language can also describe the position of the apparatus and compare it with the functions implemented in the IED.


2.1 The basic approach of IEC 61850


To ensure long-term interoperability, considering that the substation functions have different development timeframes and the need to keep pace with the changes in communication technology, the approach followed by IEC 61850 is to separate the data and communication service models from the protocols, i.e. the seven ISO/ OSI layers used for encoding and decoding information in strings of bits used to transmit that information to a communication medium. This approach is not only capable of meeting communication technology's state-of-the-art but also of safeguarding investments made in engineering and developing the applications. Either way, the data models have been standardized by IEC 61850 at various communication layers so as to assure interoperability.

2.2 The object-oriented data model

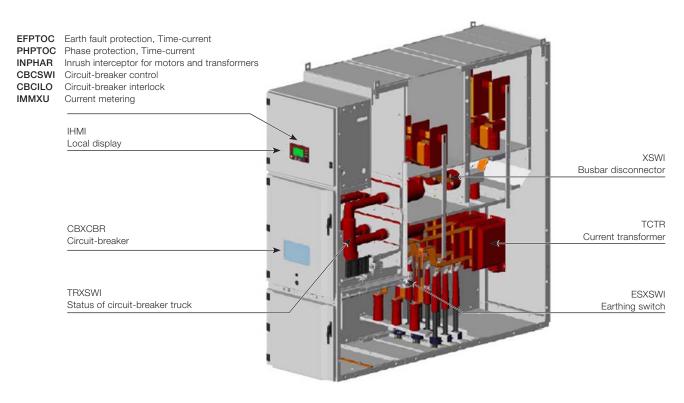
The basic structure of the data model is applicationagnostic. However, the model classes are substantially related to one substation. Wind farm, hydroelectric power plant and distributed energy source object-oriented models were added later.

All the application functions, which include data interfaces towards primary apparatuses, are divided into the smallest possible parts that can communicate with each other and, more importantly, can be inplemented separately in the various IED. Standard IEC 61850 calls these basic objects Logical Nodes (or LN). The name of a class to which an LN belongs refers to the function to which the data object belongs. The data objects in an LN can be mandatory, optional or conditional. In addition, the data objects contain attributes which can be considered as detailed properties or values of the data object. This hierarchical model is illustrated in the figure below.

The IEC 61850 object-oriented data model of a physical device

Since the names of the LN classes and the full names of the data objects and attributes have been standardized they provide, in a formal way, the semantics of all the transmitted objects in Standard IEC 61850.

In turn, the LN can be grouped into Logical Devices (LD) with non-standardized names that can be implemented in servers residing in the IED.


The common properties of the physical devices are connected with an LN class called LPHD.

A generic class with limited semantic meaning can be used if an LN class for a certain function is missing.

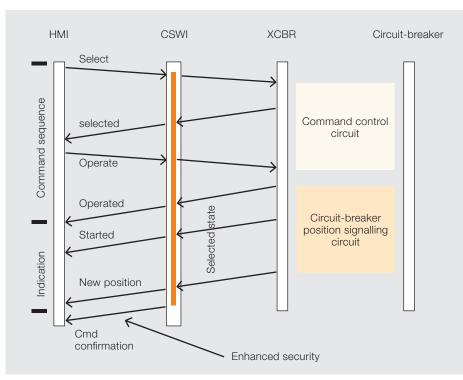
The extension of LN and data strictly in accordance with

the extension rules provided by the Standard (which include the size of the name and unique references to the semantic meaning) is certainly a more challenging activity, since interoperability is guaranteed and maintained by these rules. A hierarchical system for the designation of objects and functions will have to be used for the functional identification of each data item within the scope of a substation, preferably in accordance with IEC 81346: Industrial systems, installations and equipment and industrial products - Structuring principles and reference designations.

An example of a data model for a medium voltage switchgear unit is illustrated in the figure below.

The data model for a medium voltage switchgear unit

2.3 The services envisaged for the data model


To ensure interoperability, not only must the data objects be standardized but also the mode by which they are accessed. IEC 61850 also deals with this issue.

The most common services are:

- Read: reading data such as the value of an attribute
- Write: writing a value, such as a configuration attribute
 Control: controlling operating mechanisms and other controllable objects using standard methods like "select-
- before-operate" or "direct operate"
- Reporting: for example, "event driven" signalling after a value has been changed
- Logging: local storage of events along with the relative time or other log data

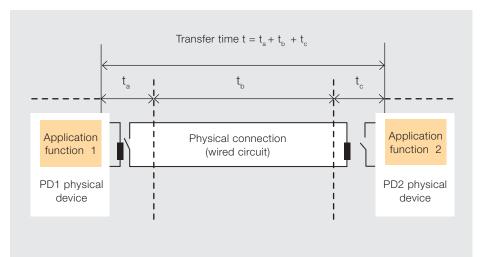
- Get directory: i.e. display the data model
- File transfer: for configuring, recording interferences or log data
- GOOSE: this is the acronym for Generic Object
 Oriented System Event and is the service used for rapid transmissions of information that is critical in terms of time, such as changes of status, interlocks, opening commands between IED
- Sampled value (SV): the SV service rapidly transmits a flow of current or voltage samples

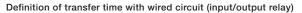
The following diagram illustrates the service known as Control, which implements the "select-before-operate with enhanced security" mode. The SELECT command is imparted by the operator to his work station (HMI) and is communicated to the bay controller (LN CSWI).

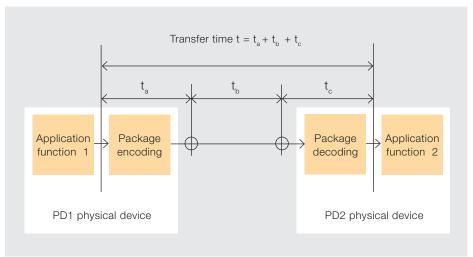
Control service with select-before-operate mode

The SELECT command is confirmed both by the bay control unit and by the IED of the circuit-breaker (LN XCBR), depending on the architecture of the System. The operator can issue an OPERATE command when he obtains a positive receipt (Selected) from CSWI. The operation request is transmitted to the circuit-breaker (XCBR) via the bay controller. Once the command has been executed, a positive receipt ("Operated") is sent to the operator. Additional confirmation is provided by the reporting service, which is activated by the movement of the circuit-breaker ("Started"), and when the new position ("New position") has been reached. If the service with "enhanced security" is used, the final result is confirmed by a command concluded message ("Cmd confirmation"), which definitively concludes the service.

2.4 Performance requirements

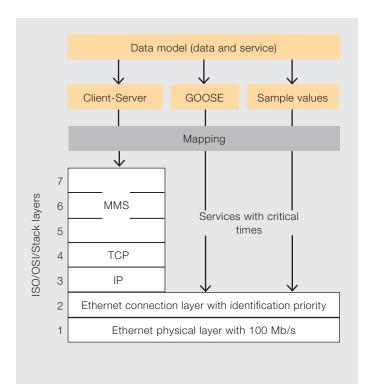

The time required to transfer messages between the transmitting application (e.g.: protection function that sends a release command) and the receiving application (circuit-breaker function that implements the operation) is determined by the requirements of the function that depends on this message being transferred.


Since circuit-breaker release is critical, it can be associated with the class possessing the most stringent transfer time requirements, i.e. 3 ms. Transfer of samples using the SV service is also assigned to this class so as to avoid delays in detecting fault conditions by the protections. In the diagram alongside, the transfer time of a GOOSE message on a serial line is compared to the transfer time in a wired circuit.


Speaking of GOOSE, it is important to underscore the security criteria adopted for these messages:

- the communication connection between IED is continuously monitored via cyclic data transmission;
- an event relating to modification of a data item is sent immediately and several times to ensure that it has been received;
- both the application and the user are informed in the case of timeout.

To analyze the sequence of events in the appropriate way and analyze a fault in retrospect, the events must have a time with 1 ms accuracy, which is better than any change of status a contact may undergo. This accuracy can be obtained by using the Simple Network Time Protocol (SNTP) on a serial communication line. Higher accuracy levels in the region of 1 µs can be achieved with one pulse per second (pps) using separate optical fiber or wire.



Definition of transfer time with communication packages

2.5 Mapping and communication stacks 2.6 Ethernet and the station and

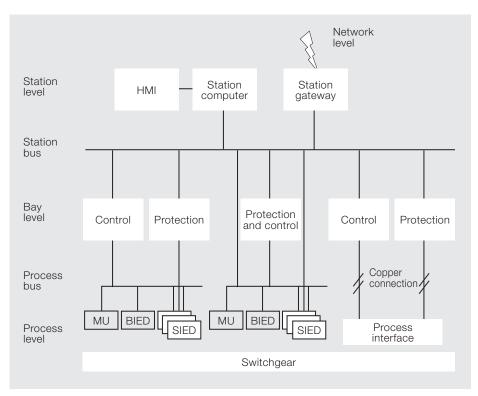
IEC 61850 selects the basic technologies for communication stacks: a stack structure in accordance with ISO/OSI layers, which include Ethernet (layers 1 and 2), TCP/IP (layers 3 and 4) and the Manufacturing Messaging Specification or MMS (layers 5 to 7). The object-oriented model and relative services are mapped at MMS application layer (layer 7). Only critical services over time, such as SV and GOOSE, are mapped directly at Ethernet layer (layer 2).

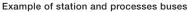
Mapping in ISO/OSI layers in IEC 61850

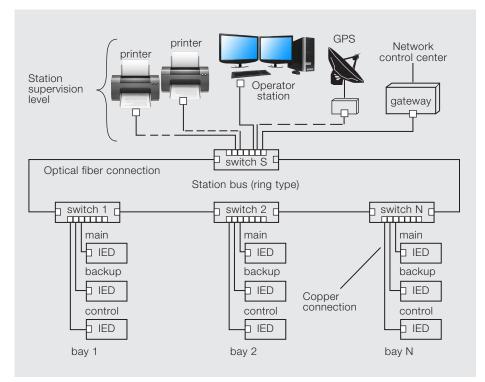
2.6 Ethernet and the station and processes buses

Ethernet, currently at a speed of 100 Mb/s, is the basic technology adopted by IEC 61850. The Standard envisages two buses based on Ethernet switch technology. The station bus connects the protection, control and monitoring IED of the bay units to the devices at station level, i.e. the central computers with relative HMI and the gateways towards the communication center (NCC, Network Communication Center) using all the services required by the applications.

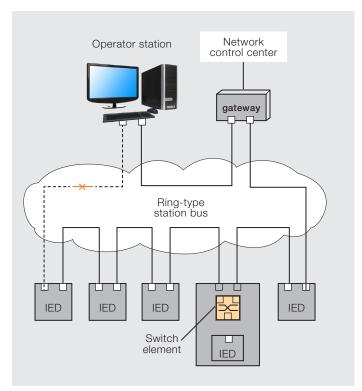
The information in transit typically concerns control, such as measurements, interlocks and select-before-operate. The MMS protocol is used for transferring data between the station level and the bay IED, while GOOSE is the service used for transferring data from bay to bay. The process bus connects the bay units to operating devices in the field using services such as SV for transmitting measurement samples for protection purposes. Other information concerning the communication status, commands and operating apparatus trips is identical to that of the station bus.


Obtaining the synchronization of current and voltage samples and sending them to the protections using the SV service is a very challenging task.


Units called MU (merging unit) are used to convert the analog signals from conventional and non-conventional current- and voltage-measuring instrument transformers into IEC 61850 SV data frames. The format of a SV data frame containing voltages and currents for the three phases and the zero component has thus been defined. Two sampling speeds have been defined (80 and 256 samples per cycle) as well as a synchronization signal of one pulse per second (1 pps) with class T4 synchronizing accuracy (± 4 µs). At switchgear level, the process bus and relative functionalities consist of the IED of the circuit-breakers (BIED) and disconnectors (SIED), and the relative connections. Since the functions can be freely allocated, IED with BIED, SIED and MU functions can be created at the same time


The Standard does not prescribe a specific topology since the physical Ethernet network supports clearly defined topologies.

For the station bus, the switch ring, with or without redundancy, is the most widely used topology for connecting the protection, backup and control IED.


In small substations, the IED can be connected straight to the ring since they include a switch element able to support faults in a single connection.

Example of non-redundant station bus

Ring with switches and nodes

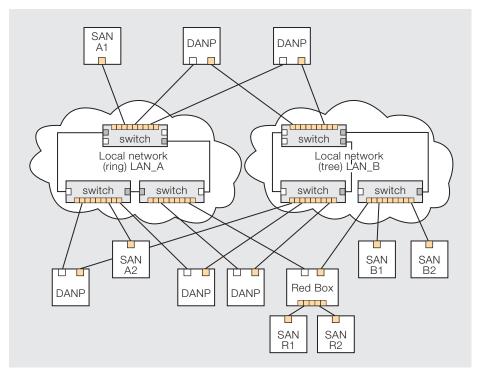
UAS UAL PI -U/I sensors IA1 IAL PI I sensors switch control ΡI PI 7 IA2 PMC2 I sensors PI \bigcirc IB1 9.2 traffic actor ΡI PMC2 IB2 Œ PI -I sensors P IC1 (\mathbb{D}) ΡI 8 1 traffic PI switch control ICL PI I sensors IC2 (D)PI: Process interface PMC: Protection. \bigcirc UCL ΡI U/I sensors Ucs measurement, control

Large substations can have several rings, one for each voltage level, connected to each other in a tree network, thus with mixed topology.

The process bus can also be configured with ring or star topology.

The downtime tolerated by the substation's automation system is called "grace period". This means that the time the communication network takes to resume service after a fault must be less than the grace period. A 100 ms delay can be tolerated when the station bus transmits information about commands, for instance. Only 4 ms delay is tolerated when interlock or trip signals are transmitted. 4 ms is also the maximum delay tolerated in the case of the process bus that transmits critical data from the MU to the protections. The maximum recovery times suggested by IEC technical committee 57 are given in the figure below.

Recovery time suggested by IEC TC57 WG10


Communication partner	Communication bus	Recovery time
From Scada to IED client - server	station bus	100 ms
Interlocks/locks between IED	station bus	4 ms
Busbar protection	station bus	0 ms
Sample values	process bus	0 ms

The values above affect the level of redundancy the system must provide.

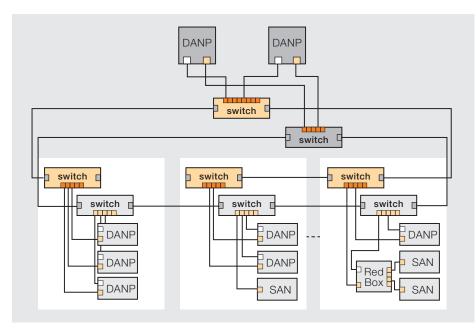
2.7 Redundancy

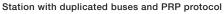
Standard IEC 62439, Industrial communication networks - High availability automation networks is applied to resolve the problem of redundancy. It is applicable to all industrial Ethernet networks since it proposes methods that are independent of the protocols used. The Standard einvisages two fundamental methods: network redundancy and node redundancy.

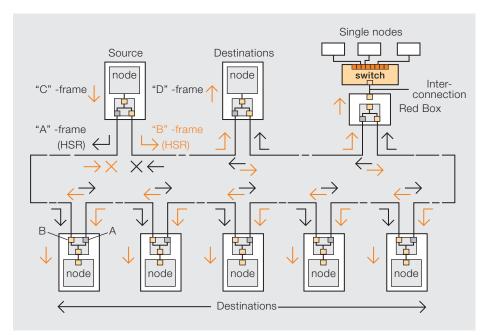
- Network redundancy requires redundant switches and connections. However, the individual nodes are connected to the switches by nonredundant connections. The level of availability is not very high since only part of the system is redundant. Redundancy is not normally active, thus activation involves a certain delay. An example of this solution is the method proposed by the RSTP protocol (IEEE 802.1D) which, however, guarantees less-than-asecond times solely in very restricted topologies. However, it can be an economical solution for substations where redundancy has not been planned.
- In node redundancy, the nodes must use two ports to connect to two different redundant networks. This method is applicable to any sort of network topology. It is a costly solution but extremely advantageous as to availability. In this case, the only non-redundant parts are the nodes themselves.

Node redundancy

The second edition of Standard IEC 61850 includes two redundancy protocols that are defined in IEC 62439-

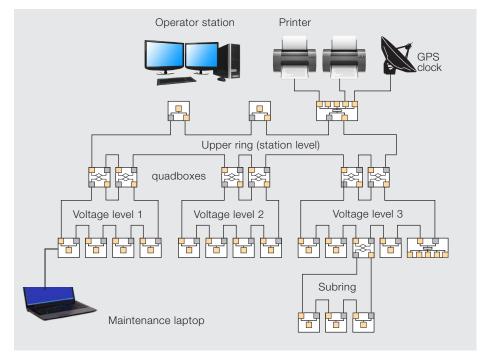

3, Industrial communication networksHigh availability automation networksPart 3: Parallel Redundancy Protocol (PRP) and High-availability Seamless

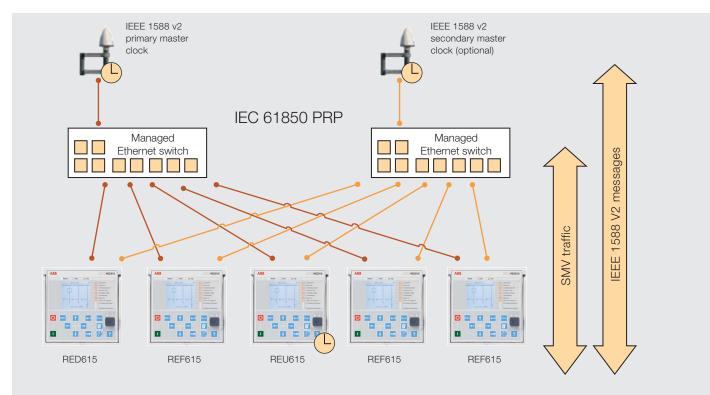

Redundancy (HSR). These protocols are applicable to substations of any size and topology. In both cases, each node has two identical Ethernet ports for connection to the network. The protocols handle the duplication of all the information transmitted and provide zero-time transmission if the connection or switches are faulty.

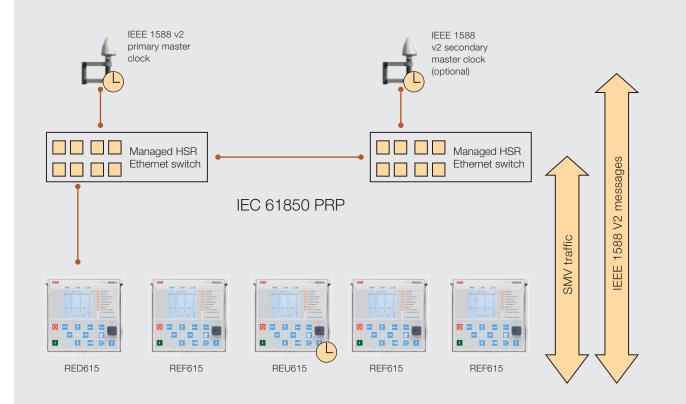

The PRP protocol, which is defined in paragraph 4 of the Standard, specifies that each PRP node called DANP must be connected in parallel to two independent LAN with similar topology operating in parallel.

The recovery time is therefore nil, while the redundancy status is monitored so that it continues to be efficient. Non-PRP nodes (if any), which are called SAN, are connected to a single network and can therefore only communicate with other DANP and SAN nodes connected to the same network, or can be connected to a so-called redundancy box which acts like a DANP.

The PRP protocol does not cover faults in single nodes, but does accept the connection of duplicated nodes. The HRS protocol applies the principles of PRP to a single ring topology. It considers the two directions as two independent virtual LAN, thereby creating a more economical solution. Switches are not used in this case since each device functionally or physically contains a switch.

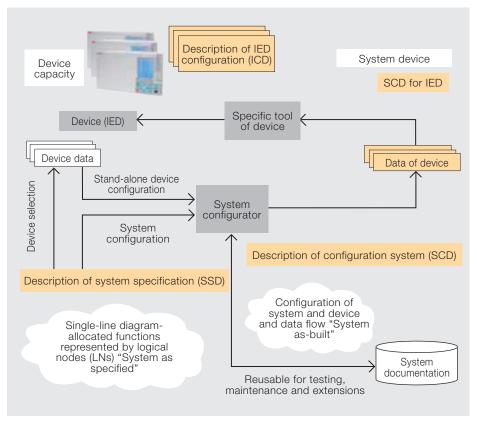



High-availability ring with HSR protocol


Whenever a data frame must be sent, the node actually transmits two, one for each port, which circulate in opposite directions. Each node re-transmits the data frames received from one port to the other. When the node that originated the data frame receives it again, it rejects it to prevent it from re-circulating. To identify duplicates, the source adds a sequence number to the frame header. This number is incremented by the source for each data frame sent. This allows the data frame to be rejected immediately prior to being read. The traffic is more or less double that of the single ring, but the average propagation time is less, thus the ring can support a similar number of devices. Single nodes, e.g. printers and computers, can be connected to the network by means of the socalled redundancy boxes, which are considered as elements of the ring. A pair of redundancy boxes can also be used to connected another isolated ring to a PRP redundant network. In this case, each redundancy box sends data frames in one direction only. This allows a series of networks structured in a hierarchical mode or of equal level to be created.

Series of HRS rings

Two concrete examples of redundant systems with ABB apparatus are illustrated on the next page. Full redundancy in the entire system can be achieved at station level with two computers (MicroSCADA1 and MicroSCADA2) and hot redundancy operation. At IED level, PRP and HRS redundancy is achieved with IED from the REx 615 family equipped with redundant double port.



2.8 Engineering supported by SCL language

To process data from other IED, the receiving IED must know how these data have been sent, how they have been encoded, what they mean to the specific installation and the functions of the transmitting unit. This means that it is important to have a language allowing a standardized exchange of data from devices produced by different manufacturers that consequently use different configuration tools. To achieve this, IEC 61850 introduced an engineering process that uses SCL language based on XML (eXtensible Markup Language).

The installation specifications and description of the IED are first used for the purpose of selecting the types of devices. After this, their formal description, in the form of a file with file extension .ICD (IED Configuration Description), is loaded into the configuration tool of the system. This tool defines the meaning of the functions of the IED within the installation and allocates the LN to the elements in the single-line diagram of the installation itself. The data that flow between all the IED are then defined and lastly, all the names of the IED and the relative communication parameters and addresses are configured. The result is an SCD (System Configuration Description) file containing the full description of the entire system to IEC 61850 specifications. The file can then be imported by the configuration tools of the single IED devices so as to complete their individual configuration. The engineering principle with SCL file is illustrated in the next diagram.

Example of engineering with SCL

Since the data model of the IED is visible via the communication system, including the possible configurations and setting parameter values, and since all this can be described in SCL, the SCD file is a medium that can be used by other applications throughout the entire life cycle of the system, such as archiving the configuration of the system in a standardized form and transferring the parameters of the protections to the configuration tool of the protection system.

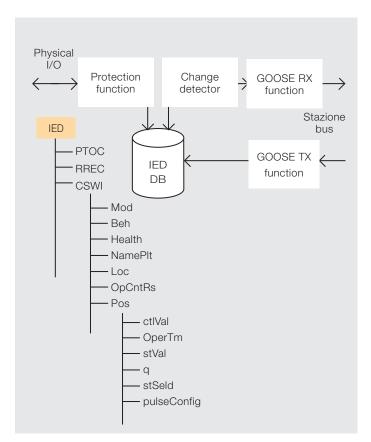
It can also be used in test and simulation tools or for checking the real system configuration version with respect to the required configuration.

2.9 IEC 61850, a lasting concept

The long-term value of IEC 61850 for users lies in its object-oriented and hierarchical data model structure with high-level standardization of semantics and use of Ethernet, i.e. a widely established and prevalent communication technology. Thus IEC 61850 is more than a simple communication protocol. Its potential is such that in future, it could probably cover the entire spectrum of applications in power systems.

3. ABB products based on IEC 61850

3.1 Native development of IEC 61850 in ABB protection and monitoring devices

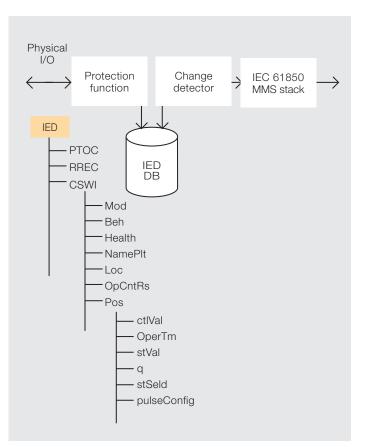

In an IED design where IEC 61850 is implemented in the native mode, the life-cycle of the device must be considered from its actual specifications, throughout the development of both device and system, their putting into service and finally their operation and maintenance.

In short, an IED based on IEC 61850 must:

- be able to provide the system and other IED and tools (even when produced by other manufacturers) with a complete set of protection and control data in accordance with the data model and in order to ensure the correct level of interoperability;
- provide rapid communication and a good performance level of the applications so that the GOOSE services can be used in the best possible way in critical situations, such as the creation of interlocks between bays and distributed protection algorithms;
- conform to data modelling and use SCL for engineering the system, configuring the devices, diagnostics and putting into service;
- be able to suppoprt further developments, e.g. for the transmission of current and voltage samples and synchronization accuracy.

Development of ABB's Relion protection and control family has been based on these principles. Firstly, their functionality is based on the data model and LN defined by the Standard. The protection and control algorithms are modelled and development in full accordance with the rules established in IEC 61850. The data models in this architecture are directly implemented in the protection and control functions, thus the LN can be directly accessed by the communication services. This means that there is no need to either remap the data or convert their mapping: an essential feature if high performance is to be achieved. In short, the design of ABB IED focuses on reducing delays due to the interface to the minimum when received and transmitted analog and digital signals are processed, signals that in the past reached the IED via wiring.

During execution of the algorithm of an LN such as the time overcurrent protection function (PTOC), the value of a data item may change, e.g. an overcurrent may be detected. At the end of the cycle, a process of the IED checks whether there have been changes in the sets of data relating to IEC 61850. Certain activities or services in the IEC 61850 data model are based on and activated by changes in the data sets, e.g. GOOSE and the events report. Thus, in an IED that uses GOOSE, the high-priority internal process that executes it is activated and the changed data item is sent as rapidly as possible to the station bus via the communication interface, using a GOOSE multicast message. Goose multicast messages are spontaneous and do not require cycle polling mechanisms. In addition, the data structure used in GOOSE allows direct access to the internal database of the IED and, since the data model conforms to standard IEC 61850, data conversion is not required. This mechanism is illustrated in the figure below:

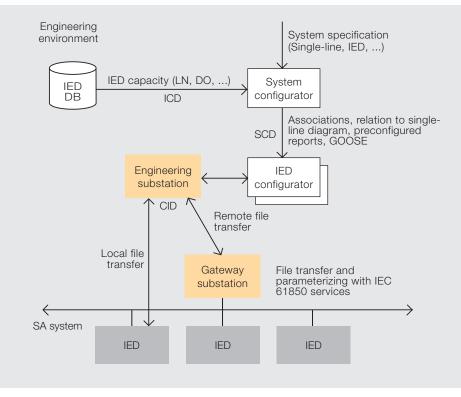


Management of GOOSE messages and data

3. ABB products based on IEC 61850

Similarly, and again thanks to native development of IEC 61850 in ABB devices, IED that receive GOOSE messages from other IED in the same LAN are extremely efficient and fast. This is because GOOSE messages are processed directly in the data link layer of Ethernet without additional processing via TCP and IP layers. This type of Ethernet communication is very fast, since the data are recovered directly by the hardware interface, allowing GOOSE to decode the message in less than 1 ms and enter solely the modified data item in the DB of the IED. This allows it to be immediately accessed by the protection and control algorithm for successive processing.

Reports of events to a SCADA system that uses the buffered/ non-buffered reporting service is based on the mechanism previously described for GOOSE. When changes to a data item are activated by an application, e.g. the activation signal of a protection in PTOC, the new data item, the relative time and quality attribute are stored in an internal event queue by the change detector of the IED. Meanwhile, the communication interface of the IED is activated and begins to transmit the events to clients, such as a gateway or a computer. Here again, there is no need for any sort of data conversion because the internal data model and the structure of the data in the communication are based on standard IEC 61850.



IEC 61850 events management

3.2 Installation and testing of ABB automation systems in substations

All the IED belonging to ABB's Relion family are configured in accordance with the rules defined in IEC 61850. The configuration is based on the library of ICD (Installable Client Driver) files available in the connectivity package of the IED. These files contain the data models of the IED. During the top-down engineering process, the system integrator selects the library of ICD files that represent the types of IED and creates the system configuration description (SCD) in accordance with the substation design. In this phase, the substation configuration already includes all the IED, the single-line diagram, the GOOSE connections between the devices and definition of the events. The SCD file is imported by the tools of the IED, thus the IED are parameterized and configured in accordance with the specifications of the grid and application.

System engineering flow

3. ABB products based on IEC 61850

In smaller substations, but still based on IEC 61850, engineering can be achieved using a bottom-up process. The process starts from the tools of the IED which, beginning from the IED themselves, create the SCD file (which includes the single-line diagram and data set for the events report) and export it to the system configuration tools. In many cases, this already meets the customer's specifications. The systems engineer can add the GOOSE connection (if required), define the details of the single-line diagram and the events to the system configuration tool. After this, the systems engineer re-exports the SCD file complete with the IED tools for their definitive configuration.

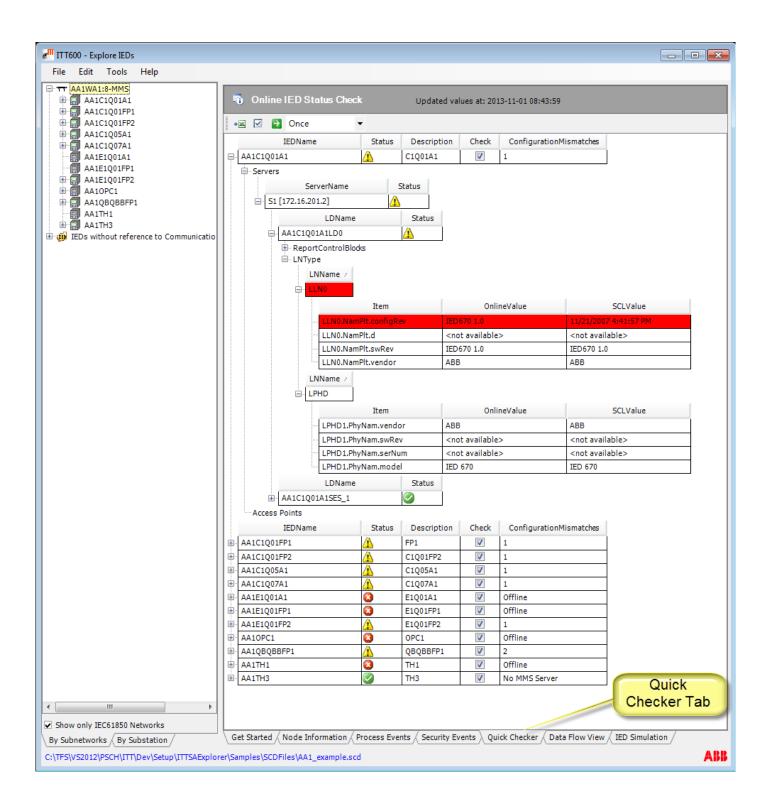
Whichever the case, the final result of the top-down and bottom-up processes is the SCD file, which is required for configuring the SCADA of the substation and gateways and which also provides useful information for creating the singleline diagram of the substation.

Taking advantage of active participation in the IEC 61850 standardization working group and having acquired in-depth knowledge of the design and supply of substation automation systems, ABB developed an ITT (Integrated Testing Toolkit) for use in the construction of numerous installations. ABB's approach has always been to supply a toolkit that would conceal the complexity of IEC 61850 technology while solely displaying the data required by the application. SCL language has led to the creation of files used for exchanging configuration data among the engineering tools. There are different types of files, the contents of which depend on the purpose of the tool in question. One of these files is the SCD, which is the main document of the substation automation system. The typical contents of the SCD file are as follows:

- description of the complete topology of the substation and of the primary devices;
- description of all the protection and control devices and of the automation system at station level, including the data models and their functionality;
- list of all the communication addresses;
- complete horizontal and vertical data flow in the system;
- relationship between functionality of the automation system and the primary apparatus.

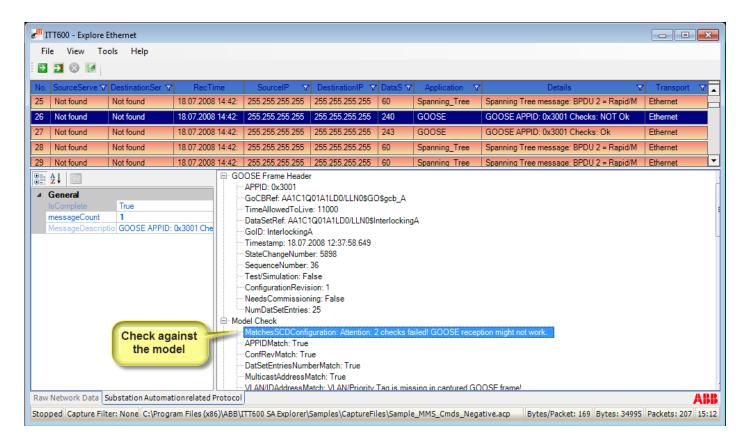
Thus the SCD file contains the interfaces between each device (client or server) and the system, so its use for successive activities like tests, maintenance and its possible extension are of interest. The systems engineer need no longer worry about committing errors in compiling the test configuration in the manual mode, since he simply needs to import the specific SCD file for that particular project into the test tool. The technician can then concentrate on analyzing the operation of the application.

Another situation that can be extremely onerous is when time inconsistencies, due to various causes, that prevent distributed functions from interoperating are detected when an IEC 61850-based system is tested and put into service. Finding errors can take a long time and require help from experts, something that is not always acceptable. To overcome this problem, ABB has developed a tool called ITT600 SA Explorer, which simplifies problem diagnosis and remedying by combining a powerful online diagnostics tool with an intrinsic interpreter of IEC 61850 data. The typical characteristics of the diagnostics and analysis tool are listed

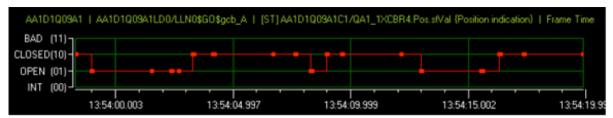

- use of the specific SCD file of the project;

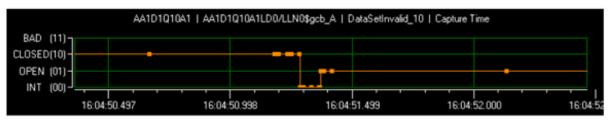
below:

- establishment of online communication with the IED using both the set of static and dynamic configuration data and the control blocks for the reports;
- display of the status of the system when operating;
- verification of data consistency and configuration review with reference to the SCD file;
- analysis and verification of operating applications;
- decoding of Ethernet traffic by converting it into the language of the automation system based on the SCD file;
- display of the addresses of recorded data pertaining to the system or products.

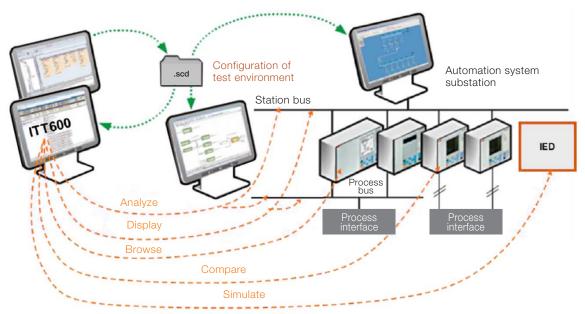

For example, comparison between the correct offline configuration and online communication can immediately detect possible inconsistencies.

In a similar way, decoding of GOOSE messages by means of the ITT600 SA Explorer tool with clear texts, information about the application and relative mapping in the SCD file, provides an excellent view of Ethernet traffic.


3. ABB products based on IEC 61850


Another method for supporting the distributed function test is provided by a time trend of GOOSE messages between IED, which allows interaction between various applications such as interlocks to be easily monitored.

🚰 ITT600 - Explore GOOSE		×
Eile Tools Help		
🐸 🛃 🕼 X 🕸	Selected GOOSE Admibutes	
IEDs: AA1C1Q01A1 C1Q01A1		
Found IEDs: 3		
C Frame Time @ Capture Time	AA1C1Q01A1 AA1C1Q01A1LD0/LLN0\$G0\$gd_A AA1.C1.Q01.QC1 - (QC1) - [ST]AA1C1Q01A1LD0/SXSWI5 Poa.stVal Capture Time	
 ALCICODIALLOBISTOSCH, A. ALCICODIALDOBISCH, A. ALCICODIALDOBISCH, C. (2017). STI ALCICODIALDOSCSMIT PostaSteld (Command enabled) (Boolean) ALCICODIABI (2017). STI ALCICODIALDOSCSMIT PostaSteld (Command enabled) (Boolean) ALCICODIACC- (CC2). STI ALCICODIALDOSCSMIT PostaSteld (Command enabled) (Boolean) ALCICODIACC- (CC2). STI ALCICODIALDOSCSMIT PostaSteld (Command enabled) (Boolean) ALCICODIACL- (CA1). STI ALCICODIALDOSCSCBT PostaSteld (Command enabled) (Boolean) ALCICODIAL- (CA1). STI ALCICODIALDOSCSCBT PostaSteld (Command enabled) (Boolean) ALCICODIAL- (CA1). STI ALCICODIALDOSCSCBT PostaSteld (Postion) ALCICODIAL- (CA1). STI ALCICODIALDOSCSCBT PostaSteld (Postion) ALCICODIAL- (CA1). STI ALCICODIALDOSCSCBT PostaSteld (Postion) ALCICODIAL- (CA1). STI ALCICODIALDOSSCMIT PostaStel (Postion) ALCICODIAL- (CA1). STI ALCICODIALDOSSCMIT PostaStel (Postion) ALCICODIAL- (CA1). STI ALCICODIALDOSSCMIT PostaStel (Postion) ALCICODIABC- (QC2). STI ALCICODIALDOSSCMIT PostaStel (Postion) ALCICODIABC- (QC3). STI ALCICODIALDOSSCMIT PostaStel (Postion) ALCICODIAGC- (QC3). STI ALCICODIALDOSSCMIT PostaStel (Postion) ALCICODIAGC- (QC	B40 (1) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	14:


The different colours in the graph indicate different results of verification between the SCD file and online data.

Red means that revision control is valid.

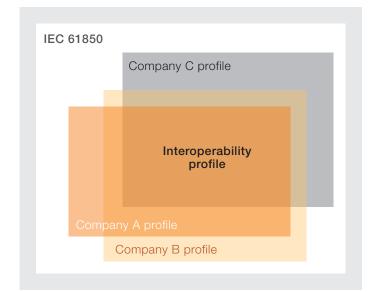
Orange means that revision control has failed.

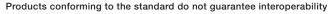
The tool can be connnected to both the system bus and directly to an IED.

Case of principal use of ITT600 SA Explorer

Created during the system engineering phase, the SCD file remains stored in the tool and is therefore available for simulations in real components of the system based on the description of the interface extracted from the file itself.

3. ABB products based on IEC 61850


3.3 The ABB verification and validation site for IEC 61850


Native development of IEC 61850 in the design of ABB IED is tested at the ABB System Verification Center (SVC) as part of the validation process. Not only does the center test the devices individually, but also their integration into even large systems. It also provides support and explanations about the IEC 61850 standard, thereby facilitating its integration and development in the devices.

The SVC has been qualified by the UCA (Utility

Communication Architecture) International User Group (called UCAlug) as a test laboratory and center of competence for IEC 61850. UCAlug is a no-profit consortium of electricity authorities and suppliers whose objective is to promote the integration and interoperability of the systems managed by electricity/gas/water supply and distribution authorities using technologies based on international standards. The group does not create standards but helps to compile and define product testing and certification schemes. SVC is therefore ufficially qualified to certify product conformance to IEC 61850.

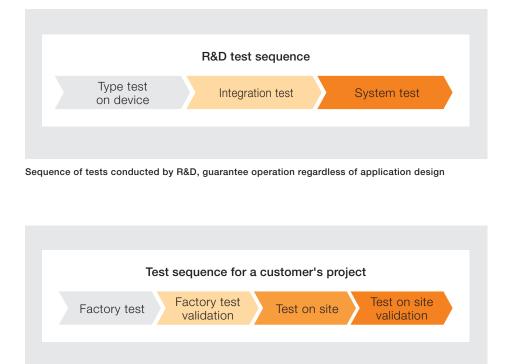
The interoperability test is not defined in the Standard but is a fundamental step. The fact that products of different manufacturers conform to the Standard themselves does not guarantee interoperability since the communication profiles may not be the same. A communication profile defines the mandatory sub-assembly of the options developed in the device, chosen from among those defined by the Standard. The profiles of different products may therefore conform to the standard but may not be fully interoperable.

For instance, one manufacturer may have developed products that use only GOOSE, while another may have concentrated on products that use only GSSE (Generic Substation Status Event). As opposed to GOOSE, it only supports a fixed data structure). Both devices conform to the Standard even though they are not interoperable.

The system integrator is responsible for ascertaining that the products chosen for a substation design are interoperable. The interoperability test assesses the dynamic interaction between two or more IED of the system by covering all the different configurations, as far as possible. When it comes to distributed functions, this is especially important. The test also allows the performance of services supplied by communication devices (such as switches) to be assessed. The test must obviously be conducted for each specific substation design, just as though it were a type test for the system. From the interoperability aspect, it is important to also test the configuration tools and engineering (based on SCL) of different manufacturers.

SVC is representative of all the possible ABB automation system applications for 245 kV, 132 kV, 33 kV and 11 kV voltage ratings. All configurations are based on modular units, the purpose being to verify the most common and widely used solutions as far as possible.

The primary part is fully simulated by means of simulation devices. The test sequence for isolated products begins with type tests relating to IEC 61850 and terminates with the system test.


If the devices pass the type test, the sequence proceeds with integration tests that involve new products added to a small system. The sequence ends with the interoperability test, this being the objective of the Standard. However, as explained above, tests on single devices cannot guarantee interoperability in the specific real system.

Specific tests for a customer's design begin with routine tests.

This allows the specific factory acceptance test (FAT) to then be conducted. After this, dedicated tests on site prepare the system for the site acceptance test (SAT). All the tests are based on the specifications of the system ordered by the customer and are conducted by the integrator or supplier of the system under the customer's supervision.

ABB's SVC assures the high quality of ABB IED in relation to IEC 61850 thanks to its verification and validation capabilities, and provides a platform for the exchange of experience in ABB among communication experts.

Test sequence for a customer's project

4. Abbreviations and acronyms used in standard IEC 61850

The following is a list from chapter 3 of standard IEC 61850-2 describing the abbreviations used in various parts of the standard and, partially, in this document.

A	Current in Amperes (Amps)	Cf	Crest factor
a.c.	alternating current	CF	ConFiguration (Functional Constraint)
ACD	ACtivation information of Directional protection	Cfg	Configuration
acs	Access	CFI	Canonical Format Identifier
ACSE	Application Common Service Element	CG	Core Ground
ACSI	Abstract Communication Service Interface	Ch	Channel
ACT	Protection ACTivation information	Cha	Charger
Acu	Acoustic	Chg	Change
Age	Ageing	Chk	Check
AIS	Air Insulated Switchgear	Chr	Characteristic
Alm	Alarm	CIM	Common Information Model of IEC 61970-301
ALPDU	Application Layer Protocol Data Unit	Cir	Circulating
Amp	Current – non phase related	CL	Connectionless
An	Analogue	Clc	Calculate
Ang	Angle	Client-CR	Client Conformance Requirement
A-Profile	Application Profile	Clk	Clock or Clockwise
APCI	Application Protocol Control Information	Cls	Close
APDU	Application Protocol Data Unit	Cnt	Counter
API	Application Program Interface	CO	ContrOl (Functional Constraint)
ASDU	Application Service Data Unit	Col	Coil
ASG	Analogue SettinG	ConNode	Connectivity Node
ASN.1	Abstract Syntax Notation One	Cor	Correction
AUI	Attachment Unit Interface, Transceiver, or connecting cable	CRC	Cyclic Redundancy Check
Auth	Authorisation	Crd	Coordination
Auto	Automatic	Crv	Curve
Aux	Auxiliary	CSMA/CD	Carrier Sense Multiple Access/Collision Detection
Av	Average	CT	Current Transformer/Transducer
B	Bushing	Ctl	Control
Bat	Battery	Ctr	Centre
Beh	Behaviour	Сус	Cycle
BER	Basic Encoding Rules ASN.1	d.c.	direct current
Bin	Binary	DA	Data Attribute
Blk	Block, or Blocked	DANP	Doubly Attached Node with PRP
Bnd	Band	DAN	Data Attribute Type
Во	Bottom	dataNs	Data Name Space
BR	Buffered Report (Functional Constraint)	DataRef	Data Reference
BRC	Buffered Report Control class	DatAttrRef	Data Attribute Reference
BRCB	Buffered Report Control Block	DC	DesCription (functional constraint)
CAD		dchg	
Cap	Computer Aided Design Capability		Trigger option for data-change
-		Dea	Density
Car	Carrier Circuit Breaker	Den	Detected
CB	ROM Compact Disc Read Only Memory	Det DEX	De EXcitation
CD CDC	· · · · · · · · · · · · · · · · · · ·	•••••••	De-EXcitation
••••••	Common Data Class	DF	Data Frame
CDCAName cdcNs	Common Data Class Attribute Name	Diag	Diagnostics
	common data class Name space	Dif	Differential/Difference
	Common Data Class Name Space	Dir	Directional
CE	Cooling Equipment	DI	Delay

Dlt	Delete	GO	GOose Control
Dmd	Demand	GoCB	Goose Control Block
Dn	Down	••••••	Generic Object Models for Substation and Feeder
DO	Data Object	GOMSFE	Equipment
DORef	Data Object Reference	GOOSE	Generic Object Oriented Substation Events
DPC	Double Point Control	GPS	Global Positioning System (time source)
DPS	Double Point Status information	Gr	Group
DPSCO	Double Point Controllable Status Output	Grd	Guard
DQ0	Direct, Quadrature and Zero (0) axis quantities	Gri	Grid
Drag	Drag Hand	GS	GSSE Control (Functional Constraint)
Drv	Drive	GsCB	GSSE Control Block
DS	Data Set	GSE	Generic Substation Event
Dsch	Discharge	GSEM	Generic Substation Event Model
DSG	Data Set Group	GSSE	Generic Substation Status Event
DTD	Document Type Definition	Н	Harmonics (phase related)
dupd	trigger option for data update	H2	Hydrogen
Dur	Duration	Ha	Harmonics (non phase related)
DUT	Device Under Test	Hi	High or Highest
EC	Earth Coil	HMI	Human Machine Interface
ECT	Electronic Current Transformer or transducer	HP	Hot Point
EF	Earth Fault	HSR	High-availability Seamless Redundancy
EMC		Hz	Hertz – frequency cycles/second
EMI	Electro Magnetic Compatibility		Status Inputs/Output contacts, or channels
	Electro Magnetic Interference	ICD	IED Configuration Description
Ena EPRI	Enabled	IEC	International Electrotechnical Commission
	Electric Power Research Institute		Intelligent Electronic Device
Eq	Equalisation or Equal		Institute of Electrical and Electronic Engineers
Ev	Evaluation		Internet Engineering Task Force
EVT	Electronic Voltage Transformer or transducer		Interface (serial)
Ex	Excitation	 Imb	Imbalance
EX	EXtended definition (Functional Constraint)	Imp	Impedance (non phase related)
Exc	Exceeded	 In	Input
Excl	Exclusion	 Ina	Inactivity
F/S	Functional Standard	INC	INteger status – Controllable
FA	Fault Arc	Incr	Increment
Fact	Factor	Ind	Indication
FAT	Factory Acceptance Test	 Inh	Inhibit
FC	Functional Constraint	Ins	Insulation
FCD	Functionally Constrained Data	Int	Integer
FCDA	Functionally Constrained Data Attribute	IntgPd	Integrity Period
fchg	Trigger option for filtered-data change	IP	Internet Protocol
FD	Fault Distance	ISC	Integer Step Controlled position information
Flt	Fault	ISCSO	Integer Status Controllable Status Output
Flw	Flow	ISI	Integer Status Information
FPF	Forward Power Flow	ISO	International Standards Organisation
Fu	Fuse		Current x Time product
Fwd	Forward	·········· I	Lower
Gen	General	LAN	Local Area Network
GI	General Interrogation	LC	LOG CONTROL Class
GIS	Gas Insulated Switchgear	LCB	Log Control Block
Gn	Generator	LOD LD	Logical Device
Gnd	Ground		Logiour Device

4. Abbreviations and acronyms used in standard IEC 61850

Ld	Lead	MSVCB	Multicast Sampled Value Control Block
LD0	Logical Device Zero (0)	MT	Main Tank
LDC	Line Drop Compensation	MTTF	Mean Time To Failure
LDCR	Line Drop Compensation Resistance	MTTR	Mean Time To Repair
LDCX	Line Drop Compensation Reactance (X)	MU	Merging Unit
LDCZ	Line Drop Compensation Impedance (Z)	MX	Measurand analogue value X (Functional Constraint)
ldNs	logical device Name space	N	Neutral
LED	Light Emitting Diode	Nam	Name
Len	Length	NCC	Network Control Centre
Lev	Level	Net	Net sum
Lg	Lag	Ng	Negative
LG	LoGging (Functional Constraint)	Nom	Nominal, Normalising
Lim	Limit	NPL	Name PLate
Lin	Line	Num	Number
Liv	Live	0	Optional
LLC	Logical Link Control	Ofs	Offset
LLNO	Logical Node Zero (0)	Ор	Operate/Operating
LN	Logical Node IEC 61850-1	Opn	Open
LN	Name Logical Node Name	OSI	Open Systems Interconnection
LNC	Logical Node Class	Out	Output
LNData	Logical Node Data	Ov	Over/Override/Overflow
LNG	Logical Node Group	Pa	···· •
•••••		Par	Partial
InNs	logical node Name space	•••••••••••••••••••••••••••••••••••••••	Parallel
Lo	Low	PC	Physical Connection
LO		Pct	Percent PD Physical Device
Loc	Local	PDU	Protocol Data Unit
Lod	Load or Loading	PE	Process Environment
Lok	Locked	Per	Periodic
Los	Loss	PF	Power Factor
LPHD	Logical Node PHysical Device	Ph	Phase
LSAP	Link Service Access Point	PHD	PHysical Device
LSDU	Link layer Service Data Unit	PhPh	Phase to Phase
Lst	List	Phy	Physical
LTC	Load Tap Changer	PICOM	Piece of Information for COMmunication
m	Minutes	- PICS	Protocol Implementation Conformance Statement
M	Mandatory		(ISO/IEC 8823-2:1994)
M/O	Data Object is Mandatory or Optional	PIXIT	Protocol Implementation eXtra Information for Testing
MAC	Media Access Control	Pls	Pulse
MAU	Medium Attachment Unit (Transceiver)	Plt	Plate
Max	Maximum	Pmp	Pump
MCAA	MultiCast Application Association	Po	Polar
Mem	Memory	Pol	Polarizing
MICS	Model Implementation Conformance Statement	pos	Position
Min	Minimum	POW	Point On Wave Switching
MMS	Manufacturing Message Specification (ISO 9506)	PP	Phase to Phase
Mod	Mode	PPV	Phase to Phase Voltage
Mot	Motor	Pres	Pressure
ms	Milliseconds	Prg	Progress
MS	Multicast Sampled value control (Functional Constraint)	Pri	Primary
Mst	Moisture	Pro	Protection
MSVC	Multicast Sampled Value Control	PRP	Parallel Redundancy Protocol

Ps	Positive	SCO	Supply Change Over
Pst	Post	SCSM	Specific Communication Service Mapping
Pwr	Power	SE	Setting Group Editable (functional constraint)
qchg	Trigger option for quality-change	Sec	Security
Qty	Quantity	Seq	Sequence
RO	Zero Sequence Resistance	Server-CR	Server-Conformance Requirement
R1	Positive Sequence Resistance	Set	Setting
Ra	Raise	SF6	Sulphur HexaFluoride gas
Rat	Ratio	SG	Setting Group (functional constraint)
Rcd	Record or Recording	SGC	Setting Group Control class
Rch	Reach	SGCB	Setting Group Control Block
Rcl	Reclaim	Sh	Shunt
Re	Retry	SIG	Status Indication Group
React	Reactance	SMV	Sampled Measured Value
Rec	Reclose	SMVC	Sampled Measured Value Control IEC
Red	Reduction	SNTP	Simple Network Time Protocol
Rel	Release	SoE	Sequence of Events
Rem	Remote	Sp	Speed
Res	Residual	SP	SetPoint (functional constraint)
Rest	Resistance	SPC	Single Point Control
RFC	Request For Comments	SPCSO	Single Point Controllable Status Output
Ris	Resistance	SPS	Single Point Status information
 	Relation	Src	Source
Rms	Root mean square	ST	STatus information (functional constraint)
Rot	Rotation	Stat	Statistics
RP	Unbuffered RePort (functional constraint)	Std	Standard
RPF	Reverse Power Flow	Str	Start
Rs	Reset, Resetable	Sts	Stress
Rsl	Result	Sup	Supply
Rst	Restraint	SUT	System Under Test
RSTP	Rapid Spanning Tree Protocol	SV	Sampled Value (functional constraint – SV substitution)
Rsv	Reserve	Svc	Service
Rte	Rate	SVC	Sampled Value Control
Rtg	Rating	Sw	Switch
RTU	Remote Terminal Unit	Swg	Swing
Rv	Reverse	Syn	Synchronisation
Rx	Receive/Received	T	Transient data
S1	Step one	TCI	TeleControl Interface
52	Step two	TCP	Transmission Control Protocol
SA	Substation Automation	TCP/IP	Transmission Control Protocol / Internet Protocol
SAN	Singly Attached Node	Td	Total distortion
SAP	Service Access Point	Tdf	Transformer derating factor
SAS	Substation Automation System	TE	Telecommunication Environment
SAT	Site Acceptance Test	Thd	Total harmonic distortion
SAV	Sampled Analogue Value	Thm	Thermal
SBO	Select Before Operate	Tif	Telephone influence factor
SC	Secondary Converter	Tm	Time
SCADA	Supervisory Control And Data Acquisition	Tmh	Time in hours
SCD	Substation Configuration Description		TeleMonitoring Interface (for example to engineer's
Sch	Scheme	TMI	work-station)
SCL	Substation Configuration description Language	Tmm	Time in minutes

4. Abbreviations and acronyms used in standard IEC 61850

ImmsTime in millisecondsTmpTemperatureTmsTime in secondsToTotalTotTotalT-ProfileTransport ProfileTPThree PoleTPAATwo Party Application AssociationTPIDTag Protocol IdentifierTrTrigTrigopTrigger OptionTrgOpDTrigger Option EnabledTsTotal signedTuTotal unsignedTuTotal unsignedTxTransmit/TransmittedTypTypeUAA ^{main} Utility Communications ArchitectureUMLUnified Modeling LanguageUnUnderURCUnbuffered Report ControlURCBUniversal Resource IdentifierUSVCBUnicast Sampled Value ControlUSVCBUnicast Sampled Value ControlUSVCBUnicast Sampled Value ControlUSVCBUnicast Sampled Value ControlUSVCBUnicast Sampled Value ControlUSVCBVoltageVaacVacuumVaacVacuumVaacVacuumVaacVolt Amperes reactiveVaacVolt Amperes reactiveVirtual Get function (ISO 9506-1)VINValue Governer/TransducerVirtual Put function (ISO 9506-1)VTVoltage fransformer/TransducerWidWatt active power (non phase related)V-PutVirtual Manufacturing DeviceVaacWatt hoursWidthWintowWinW		
TimeTime in secondsToTopTotTotalT-ProfileTransport ProfileTPThree PoleTPATwo Party Application AssociationTPIDTag Protocol IdentifierTrTripTrgTrigger Option InabledTsTotal signedTuTotal signedTuTotal signedTuTransmit/TransmittedTypTypeUCA TM Utility Communications ArchitectureUMLUndifered Report ControlURCUnbuffered Report Control BlockURIUnicast Sampled Value control functional constraint)USVCEUnicast Sampled Value ControlUSVCEUnicast Sampled Value ControlVVoltageVAVolt AmperesVacVacuumValueValueValueValueVirtual Get function (ISO 9506-1)VIDVLAN IDentifierV-PutVirtual Munfacturing DeviceVolVoltage fron phase related)V-PutVirtual Munfacturing DeviceVolVoltage fransformer/TransducerWWatts active powerWacWatchdogW	Tmms	Time in milliseconds
ToTopTotTotalT-ProfileTransport ProfileTPThree PoleTPATwo Party Application AssociationTPIDTag Protocol IdentifierTrTripTrgTrigger Option InabledTsgTotal signedTuTotal unsignedTuTotal unsignedTxTransmit/TransmittedTypTypeUCA TM Utility Communications ArchitectureUMLUnfifered Report ControlURCEUnbuffered Report ControlURCBUnbuffered Report Control BlockURCUnicast Sampled Value control functional constraint)USVCCUnicast Sampled Value ControlUSVCBUnicast Sampled Value ControlUNCVolt Amperes <tr< td=""><td>Tmp</td><td>Temperature</td></tr<>	Tmp	Temperature
TotalTotalT-ProfileTransport ProfileTPThree PoleTPAATwo Party Application AssociationTPIDTag Protocol IdentifierTrTripgTriggerTrigopEnaTrigger OptionTrad UnsignedTxTrammit/TransmittedTypTypeUcA ^{nM} Utility Communications ArchitectureUMLUnified Modelling LanguageUnUnderURCUnbuffered Report ControlURCUnbuffered Report Control BlockURCUnicast Sampled Value ControlUSVCUnicast Sampled Value ControlUSVCBUnicast Sampled Valu	Tms	Time in seconds
T-ProfileTransport ProfileTPThree PoleTPAATwo Party Application AssociationTPIDTag Protocol IdentifierTrTripTrigTrigger OptionTrgOpEnaTrigger Option EnabledTsTotal signedTuTotal unsignedTxTransmit/TransmittedTypTypeUCA TM Utility Communications ArchitectureUMLUnified Modelling LanguageUnUnderURCUnbuffered Report ControlURCBUniversal Resource IdentifierUSUnicast Sampled Value ControlUSVCBUnicast Sampled Value ControlUSVCBUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValValueVacVictual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValueValueVirtual Put function (ISO 9506-1)VITVoltage Iransformer/TransducerWidWatta active power (non phase related)V-PutVirtual Put function (ISO 9506-1)VITVoltage Transformer/TransducerWidWatta thoursWatt hoursWattActive power (non phase related)WidthWichWindWichWindWindow	То	Тор
TPThree PoleTPAATwo Party Application AssociationTPIDTag Protocol IdentifierTrTripTrgTrigger OptionTrgOpEnaTrigger Option EnabledTsTotal signedTuTotal unsignedTxTransmit/TransmittedTypTypeUCA TM Utility Communications ArchitectureUMLUnlified Modelling LanguageUnUnderURCUnbuffered Report ControlURCUnbuffered Report Control BlockURIUnicast Sampled Value control functional constraint)USVCBUnicast Sampled Value ControlUSVCBUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValueVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Antorion (ISO 9506-1)VIValueVirtual Manufacturing DeviceVolValue fransformer/TransducerWwWatts active powerWacWatchologWatt hoursWindWithoursWindWithoursWindWithoursWindWithours	Tot	Total
TPAATwo Party Application AssociationTPIDTag Protocol IdentifierTrTripTrgTrigger OptionTrgOpTrigger Option EnabledTsTotal signedTuTotal signedTuTotal signedTxTransmit/TransmittedTypTypeUCA TM Utility Communications ArchitectureUMLUnlified Modelling LanguageUnUnderURCUnbuffered Report ControlURCUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUncast Sampled Value control functional constraint)USVCDUncast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValueValueVarVolt AmperesVacValueVarVoltage (non phase related)V-PutVirtual Local Area NetworkVivValveVMDVirtual Put function (ISO 9506-1)VIDVirtual Put function (ISO 9506-1)VIDVirtual Anutacturing DeviceVolVoltage fransformer/TransducerWattActive power (mon phase related)V-PutVirtual Put function (ISO 9506-1)VIDVirtual Put function (ISO 9506-1)VIDVirtual Put function (ISO 9506-1)VIDVirtual Put function (ISO 9506-1)VIDVirtual Put function (ISO 9506-1)VITVoltage Transformer/Transd	T-Profile	Transport Profile
TPIDTag Protocol IdentifierTrTripTrgTrigger OptionTrgOpTrigger Option EnabledTsTotal signedTuTotal signedTuTotal unsignedTxTransmit/TransmittedTypTypeUCA TM Utility Communications ArchitectureUMLUnified Modelling LanguageUnUnderURCUnbuffered Report ControlURCBUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled Value control BlockURCUnicast Sampled Value ControlUSVCDUnicast Sampled Value ControlUSVCDVoltageVAVolt AmperesVacVacuumValueVacuumValueVacuumValueVacuumViDVirtual Get function (ISO 9506-1)VIDVirtual Anufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerVacWatte doute powerVacWatte power (non phase related)WidWeek InfeedWhWatt hours	TP	Three Pole
TrTripTrgTriggerTrgOpTrigger OptionTrgOpEnaTrigger Option EnabledTsTotal signedTuTotal unsignedTxTransmit/TransmittedTypTypeUCA TM Utility Communications ArchitectureUMLUnlifed Modelling LanguageUnUnderURCUnbuffered Report ControlURCBUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled Value control functional constraint)USVCUnicast Sampled Value ControlUSVCBUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVoltageVAVoltageVAVoltageVacuumValueValueVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Anufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Ironsformer/TransducerWWatt active power (non phase related)WeikWet infeedWhat hoursWidtWitthoursWidthWitthoursWindow	TPAA	Two Party Application Association
TrgTriggerTrgOpTrigger OptionTrgOpEnaTrigger Option EnabledTsTotal signedTuTotal unsignedTxTransmit/TransmittedTypTypeUCA TM Utility Communications ArchitectureUMLUnified Modelling LanguageUnUnderURCBUnbuffered Report ControlURCBUnbuffered Report Control BlockURIUnicast Sampled value control (functional constraint)USVCBUnicast Sampled Value ControlUSVCBUnicast Sampled Value ControlUSVCBVoltageVAVoltageVAVoltageVacVacuumValueValueVacVoltageVacVoltageVAVolt Amperes reactiveV-GetVirtual Cet function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Curring DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active power (non phase related)Wattactive power (non phase related)WhitWatt hoursWidWindow	TPID	Tag Protocol Identifier
TrigopTrigger OptionTrigopEnaTrigger Option EnabledTsTotal signedTuTotal unsignedTxTransmit/TransmittedTypTypeUCA TM Utility Communications ArchitectureUMLUnified Modelling LanguageUnUnderURCUnbuffered Report ControlURCUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled value control functional constraint)USVCBUnicast Sampled Value ControlUSVCBUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVoltageVAVoltageVAVoltageVAVoltageVAVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual IDentifierVAValveVMDVirtual Manufacturing DeviceVolValveVMDVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWindow	Tr	Trip
TrigopEnaTrigger Option EnabledTsTotal signedTuTotal unsignedTxTransmit/TransmittedTypTypeUCATMUtility Communications ArchitectureUMLUnified Modelling LanguageUnUnderURCUnbuffered Report ControlURCBUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled Value control functional constraint)USVCBUnicast Sampled Value ControlUSVCBUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValValueVarVolt AmperesVacVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Put function (ISO 9506-1)VIDVirtual Put function (ISO 9506-1)VIVoltage Transformer/TransducerWWatt active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWindow	Trg	Trigger
TsTotal signedTuTotal unsignedTxTransmit/TransmittedTypTypeUCATMUtility Communications ArchitectureUMLUnified Modelling LanguageUnUnderURCUnbuffered Report ControlURCBUnbuffered Report Control BlockURIUnicast Sampled value control functional constraint)USVCUncast Sampled Value ControlUSVCBUncast Sampled Value ControlUSVCBUnicast Sampled Value ControlUSVCBVoltageVVoltageVAVoltageVaVoltageVaVoltageVaVoltageVaVoltageVaVoltageVaVoltageVaVitual Get function (ISO 9506-1)VIDVIAN IDentifierVLANVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)WitWatt hoursWid <t< td=""><td>TrgOp</td><td>Trigger Option</td></t<>	TrgOp	Trigger Option
TuTotal unsignedTxTransmit/TransmittedTypTypeUCATMUtility Communications ArchitectureUMLUnified Modelling LanguageUnUnderURCUnbuffered Report ControlURCBUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled value control (functional constraint)USVCUnicast Sampled Value ControlUSVCUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValueValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVIANVirtual Area NetworkVivValueVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WhWatt hoursWidWindow	TrgOpEna	Trigger Option Enabled
TxTransmit/TransmittedTypTypeUCA TM Utility Communications ArchitectureUMLUnified Modelling LanguageUnUnderURCUnbuffered Report ControlURCBUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled value control (functional constraint)USVCUnicast Sampled Value ControlUSVCUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValueValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Anufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VIDVLAN IDentifierVIDVoltage (non phase related)V-PutVirtual Manufacturing DeviceVolVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WhWatt hoursWidWindow	Ts	Total signed
TypeUCATMUtility Communications ArchitectureUMLUnified Modelling LanguageUnUnderURCUnbuffered Report ControlURCUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled value control (functional constraint)USMVCUnicast Sampled Value ControlUSVCUnicast Sampled Value Control BlockUSVCUnicast Sampled Value Control BlockUSVCUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVoltageVAVoltageVacVacuumVacVacuumVacVolt AmperesVacVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WhWatthoursWidWiedthWindowWindow	Tu	Total unsigned
UCATMUtility Communications ArchitectureUMLUnified Modelling LanguageUnUnderURCUnbuffered Report ControlURCBUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled value control (functional constraint)USWCUnicast Sampled Value ControlUSVCUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValueVacuumValueVirtual Get function (ISO 9506-1)VIDVItAN IDentifierVIDVitual Annafacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Control (ISO 9506-1)VIDVirtual Annufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatts active powerWacWatth oursWidWieth hoursWidWiethWindowWindow	Tx	Transmit/Transmitted
UMLUnified Modelling LanguageUnUnderURCUnbuffered Report ControlURCBUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled value control (functional constraint)USMVCUnicast Sampled Value ControlUSVCUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValueVacuumVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVIAVoltage (non phase related)VPutVirtual Manufacturing DeviceVolVoltage fransformer/TransducerWWatts active powerVacWatts active powerWacWatth oursWindWindow	Тур	Туре
UnUnderURCUnbuffered Report ControlURCBUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled value control (functional constraint)USMVCUnicast Sampled Measured Value ControlUSVCBUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValueVarValueVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVIAVirtual Local Area NetworkVivValueVMDVirtual Put function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValueVMDVirtual Manufacturing DeviceVolVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WhWatt hoursWidWidthWindWindow	UCA™	Utility Communications Architecture
URCUnbuffered Report ControlURCBUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled Value control (functional constraint)USMVCUnicast Sampled Measured Value ControlUSVCUnicast Sampled Value ControlUSVCBUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValueVMDVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage fransformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	UML	Unified Modelling Language
URCBUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled value control (functional constraint)USMVCUnicast Sampled Measured Value ControlUSVCUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVINDVirtual Area NetworkVivValueValVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VIVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	Un	
URCBUnbuffered Report Control BlockURIUniversal Resource IdentifierUSUnicast Sampled value control (functional constraint)USMVCUnicast Sampled Measured Value ControlUSVCUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVINDVirtual Local Area NetworkVivValueValVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VIVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)Week infeedWhWidWatt hoursWidWidthWinWindow	URC	Unbuffered Report Control
URIUniversal Resource IdentifierUSUnicast Sampled value control (functional constraint)USMVCUnicast Sampled Value ControlUSVCUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVoltageVAVolt AmperesVacVacuumValueValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Rut active powerWacWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWindowWindow	URCB	
USMVCUnicast Sampled Measured Value ControlUSVCUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVIvValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWindow	URI	÷
USMVCUnicast Sampled Measured Value ControlUSVCUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVIvValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWindow	US	Unicast Sampled value control (functional constraint)
USVCUnicast Sampled Value ControlUSVCBUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatts dative powerWatactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWindowWindow	••••••	
USVCBUnicast Sampled Value Control BlockUTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVIvValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage (non phase related)VerutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	••••••	· · · · · · · · · · · · · · · · · · ·
UTCCo-ordinated Universal TimeVVoltageVAVolt AmperesVacVacuumValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	••••••	÷
VVoltageVAVolt AmperesVacVacuumValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWindWindow	••••••	······
VAVolt AmperesVacVacuumValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	••••••	
VacVacuumValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVlvValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWindWindow		÷
ValValueVarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	••••••	• · · · · · · · · · · · · · · · · · · ·
VarVolt Amperes reactiveV-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	•••••••	
V-GetVirtual Get function (ISO 9506-1)VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	••••••	
VIDVLAN IDentifierVLANVirtual Local Area NetworkVivValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	•••••••	
VLANVirtual Local Area NetworkVlvValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	••••••	
VIvValveVMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	•••••••••••••••••••••••••••••••••••••••	
VMDVirtual Manufacturing DeviceVolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	•••••••	
VolVoltage (non phase related)V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	•••••••	
V-PutVirtual Put function (ISO 9506-1)VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	•••••••••••••••••••••••••••••••••••••••	÷
VTVoltage Transformer/TransducerWWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWindowWindow	••••••	
WWatts active powerWacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow		· · · · · · · · · · · · · · · · · · ·
WacWatchdogWattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow	•••••••	
Wattactive power (non phase related)WeiWeek infeedWhWatt hoursWidWidthWinWindow		·····
WeiWeek infeedWhWatt hoursWidWidthWinWindow		÷
WhWatt hoursWidWidthWinWindow		
Wid Width Win Window	••••••	
Win Window	•••••••••••••••••••••••••••••••••••••••	Watt hours
	••••••	Width
Wrm Warm	Win	Window
	Wrm	Warm
X0 Zero sequence reactance	XO	Zero sequence reactance
X1 Positive sequence reactance	X1	Positive sequence reactance

XML	eXtensible Mark-up Language
XX	Wildcard characters for example all functional constraints apply
Z	impedance
Z0	Zero sequence impedance
Z1	Positive sequence impedance
Zer	Zero
Zn	Zone
Zro	Zero sequence method

Contact us

ABB S.p.A. ABB SACE Division Medium Voltage Products Via Friuli, 4 I-24044 Dalmine Tel.: +39 035 6952 111 Fax: +39 035 6952 874 e-mail: info.mv@it.abb.com

www.abb.com

The data and illustrations are not binding. We reserve the right to make changes without notice in the course of technical development of the product.

© Copyright 2017 ABB. All rights reserved.

