
ABB motion control

Reference manual
Mint Basic Programming

MN1955WEN

You can find manuals and other product documents in PDF format on the Internet. See section
Document library on the Internet on the inside of the back cover. For manuals not available in the
Document library, contact your local ABB representative.

Contents
Contents

1 General Information

2 Overview
2.1 Introduction . 2-1

2.2 What is Mint? . 2-1

2.3 Mint Basic . 2-2

3 Building Blocks
3.1 Introduction . 3-1

3.2 Identifiers . 3-1

3.3 Literals . 3-2
3.3.1 Numbers . 3-2
3.3.2 Characters. 3-6
3.3.3 Strings . 3-7

3.4 Data types . 3-8
3.4.1 Integer . 3-8
3.4.2 Float . 3-8
3.4.3 String. 3-8
3.4.4 Time . 3-8
3.4.5 Controller. 3-9
3.4.6 Semaphore . 3-9
3.4.7 User defined . 3-9
3.4.8 Memory usage . 3-10

3.5 Variables . 3-11

3.6 Statements. 3-12
3.6.1 Statement separation . 3-12
3.6.2 Line continuation . 3-12

3.7 Modules . 3-14

3.8 Program . 3-15
3.8.1 Layout . 3-15
3.8.2 Comments. 3-15
3.8.3 White space . 3-15
3.8.4 Compilation Errors . 3-17
3.8.5 Execution . 3-17

4 Expressions
4.1 Introduction . 4-1

4.2 Operators. 4-2
4.2.1 Arithmetic operators . 4-2
4.2.2 Relational operators . 4-2
MN1955WEN Contents i

4.2.3 Logical operators .4-3
4.2.4 Bitwise operators .4-4
4.2.5 String concatenation operator .4-5
4.2.6 Immediate If operator .4-5
4.2.7 Is operator .4-5
4.2.8 Miscellaneous operators .4-6

4.3 Order of evaluation .4-7
4.3.1 Operator precedence .4-7
4.3.2 Use of brackets .4-8

4.4 Functions. .4-10

4.5 Type casting .4-11

4.6 Floating-point limitations .4-12
4.6.1 General Properties .4-12

5 Declaration Statements
5.1 Introduction .5-1

5.2 Constants .5-1

5.3 Defines .5-2

5.4 Variables .5-3
5.4.1 Simple .5-3
5.4.2 Arrays. .5-4
5.4.3 Memory usage .5-5

5.5 Structures .5-6

5.6 Bitfields .5-8

5.7 Labels .5-10

6 Action Statements
6.1 Introduction .6-1

6.2 Assignment .6-1

6.3 Commands .6-3

6.4 Control flow .6-4
6.4.1 Conditional execution. .6-4
6.4.2 Repetitive execution. .6-7
6.4.3 Overriding the natural flow of execution. .6-10
6.4.4 Keyword qualification .6-11
6.4.5 Labeled qualification .6-12
6.4.6 GoTo statement .6-14
6.4.7 Delaying execution. .6-14

7 Directive Statements
7.1 Introduction .7-1

7.2 Auto .7-2
ii Contents MN1955WEN

7.3 Option . 7-3
7.3.1 Compatibility options . 7-3
7.3.2 Keyword support options. 7-4
7.3.3 Code generation options . 7-5
7.3.4 Error and warning options . 7-7
7.3.5 Run-time options . 7-8
7.3.6 Configuration options . 7-9
7.3.7 Listing generation options . 7-10

8 Modular Programming
8.1 Introduction . 8-1

8.2 Subroutines . 8-1
8.2.1 Issues relating to reference parameters . 8-3

8.3 The concept of locality . 8-5

8.4 Functions . 8-7
8.4.1 Side effects . 8-7

8.5 Recursion. 8-8

8.6 Tasks . 8-10
8.6.1 The Parent task. 8-10
8.6.2 Declaring tasks . 8-10
8.6.3 Starting tasks . 8-11
8.6.4 Ending tasks . 8-11
8.6.5 Suspending tasks . 8-11
8.6.6 Resuming tasks. 8-12
8.6.7 Testing the status of a task . 8-12
8.6.8 Task scheduling . 8-12

8.7 Events . 8-14

8.8 Startup module . 8-15

8.9 Shutdown module . 8-16

8.10 Exiting modules . 8-17

8.11 Static and dynamic modules . 8-18
8.11.1 Static modules. 8-18
8.11.2 Dynamic modules . 8-18
8.11.3 Lifetime . 8-18

8.12 Overriding scope . 8-20

8.13 Task synchronization . 8-21
8.13.1 Critical block . 8-21
8.13.2 Semaphore block . 8-23
8.13.3 Deadlock . 8-26

9 Conditional Compilation
9.1 Introduction . 9-1

9.2 Usage . 9-2
MN1955WEN Contents iii

9.3 Limitations .9-4
9.3.1 Syntactic correctness .9-4
9.3.2 Numeric conditions. .9-5
9.3.3 Allowed operators .9-5
9.3.4 Sequencing .9-5

10 Intrinsic Commands and Functions
10.1 Introduction .10-1

10.2 Input and output .10-2
10.2.1 Beep # .10-2
10.2.2 Bol # .10-2
10.2.3 Echo .10-2
10.2.4 InKey .10-3
10.2.5 Input # .10-3
10.2.6 LastKey .10-4
10.2.7 Line # .10-4
10.2.8 Locate # .10-4
10.2.9 Print #. .10-4
10.2.10 ReadKey .10-5

10.3 Mathematical functions .10-6
10.3.1 Abs .10-6
10.3.2 Acos .10-6
10.3.3 Asin .10-6
10.3.4 Atan .10-6
10.3.5 Atan2 .10-6
10.3.6 Cos. .10-6
10.3.7 Exp .10-7
10.3.8 Frac .10-7
10.3.9 Log .10-7
10.3.10 Log10 .10-7
10.3.11 Max .10-7
10.3.12 Min .10-8
10.3.13 Pow .10-8
10.3.14 Rnd. .10-8
10.3.15 Round. .10-9
10.3.16 Sgn. .10-9
10.3.17 Sin .10-9
10.3.18 Sqrt. .10-9
10.3.19 Tan .10-9

10.4 Type conversion .10-10
10.4.1 CvtIeee2Flt .10-10
10.4.2 CvtInt2Flt .10-10
10.4.3 CvtFlt2Ieee. .10-11
10.4.4 CvtFlt2Int .10-11
10.4.5 Int .10-11
10.4.6 Float .10-11

10.5 String manipulation .10-12
iv Contents MN1955WEN

10.5.1 Asc . 10-12
10.5.2 Chr . 10-12
10.5.3 Eval . 10-12
10.5.4 InStr. 10-13
10.5.5 Left . 10-13
10.5.6 Len . 10-13
10.5.7 Mid . 10-13
10.5.8 Right . 10-14
10.5.9 Str . 10-14
10.5.10 Val . 10-14

10.6 Task manipulation . 10-16
10.6.1 End . 10-16
10.6.2 Run . 10-16
10.6.3 TaskPriority . 10-16
10.6.4 TaskQuantum . 10-16
10.6.5 TaskResume . 10-17
10.6.6 TaskStatus . 10-17
10.6.7 TaskSuspend . 10-17

10.7 Event handling . 10-18
10.7.1 DInt . 10-18
10.7.2 EInt . 10-18
10.7.3 EventPriority . 10-18
10.7.4 IPend. 10-18
10.7.5 DprEventCode. 10-19

10.8 Error handling . 10-20
10.8.1 Erl . 10-20
10.8.2 Err . 10-20
10.8.3 ErrAxis. 10-20
10.8.4 ErrStr. 10-20

10.9 General purpose . 10-21
10.9.1 IsAlnum . 10-21
10.9.2 IsAlpha . 10-21
10.9.3 IsAscii . 10-21
10.9.4 IsCntrl . 10-21
10.9.5 IsDigit . 10-22
10.9.6 IsLower . 10-22
10.9.7 IsUpper . 10-22
10.9.8 IsXDigit . 10-22
10.9.9 LBound . 10-22
10.9.10 Nop . 10-23
10.9.11 Pause . 10-23
10.9.12 Rotate . 10-23
10.9.13 Shift . 10-23
10.9.14 Time . 10-24
10.9.15 UBound . 10-25
10.9.16 Wait . 10-25
10.9.17 Wrap . 10-25
10.9.18 WrapOffset . 10-25
MN1955WEN Contents v

10.10 Default parameters .10-27
10.10.1 Axes .10-27
10.10.2 Bank .10-27
10.10.3 Bus .10-27
10.10.4 Terminal .10-28

11 Mint Motion Library
11.1 Introduction .11-1

11.2 Overview .11-2
11.2.1 Call types .11-2
11.2.2 Advanced parameter passing .11-2
11.2.3 Redirection .11-4

12 Tutorials
12.1 Introduction .12-1

12.2 Hello world. .12-2

12.3 Variables and arithmetic .12-3

12.4 Simple decision making and iteration .12-4

12.5 Point to point moves 1. .12-6

12.6 Point to point moves 2. .12-7

12.7 Point to point moves 3. .12-8

13 Reference
13.1 Introduction .13-1

13.2 Porting to Mint v5.5 .13-2
13.2.1 From MintMT / Mint v5 .13-2
13.2.2 From Mint v4 .13-5
13.2.3 From Visual Basic .13-7
13.2.4 From Structured Text .13-10

13.3 Array data files .13-11

13.4 Source code reformatting .13-12

13.5 C Format Strings .13-13
13.5.1 b: binary notation .13-14
13.5.2 c: character .13-14
13.5.3 d: decimal. .13-14
13.5.4 e: exponential (scientific) notation .13-14
13.5.5 f: fixed point notation .13-14
13.5.6 g: general (floating point) notation .13-15
13.5.7 o: octal notation .13-15
13.5.8 q: quad (IP address) notation. .13-15
13.5.9 s: string. .13-16
13.5.10 u: unsigned decimal .13-16
13.5.11 x: hexadecimal notation .13-16
vi Contents MN1955WEN

13.6 Error Codes . 13-18
13.6.1 Compilation Error Codes. 13-18
13.6.2 Run-Time Error Codes . 13-33

13.7 Reserved words. 13-34
13.7.1 Constants . 13-34
13.7.2 Operators . 13-35
13.7.3 Intrinsic commands . 13-36
13.7.4 Intrinsic functions . 13-37
13.7.5 Block constructs . 13-39
13.7.6 Data types . 13-40
13.7.7 Simple declaration. 13-40
13.7.8 Block declaration. 13-41
13.7.9 Mint Motion Library functions . 13-42

13.8 Glossary. 13-67
MN1955WEN Contents vii

viii Contents MN1955WEN

General Information
1 General Information

LT0255A03EN Copyright ABB (c) 2012. All rights reserved.

This manual is copyrighted and all rights are reserved. This document or attached software may not,
in whole or in part, be copied or reproduced in any form without the prior written consent of ABB.
ABB makes no representations or warranties with respect to the contents hereof and specifically
disclaims any implied warranties of fitness for any particular purpose. The information in this
document is subject to change without notice. ABB assumes no responsibility for any errors that may
appear in this document.

Mint™ is a registered trademarks of Baldor, a member of the ABB group.
Windows Vista, Windows 7 and Windows 8 are registered trademarks of the Microsoft Corporation.

ABB Ltd
Motion Control
6 Bristol Distribution Park
Hawkley Drive
Bristol, BS32 0BF
Telephone: +44 (0) 1454 850000
Fax: +44 (0) 1454 859001
E-mail: motionsupport.uk@baldor.com
Web site: www.abbmotion.com

See rear cover for other international offices.

1

MN1955WEN General Information 1-1

1-2 General Information MN1955WEN

Overview
2 Overview

2.1 Introduction
This document provides a thorough description of all the features of Mint Basic. Concepts
are introduced in a staged manner and care has been taken to illustrate how to make the
best use of the language and how to avoid potential pitfalls. A set of tutorials is included that
guide the user from writing the simplest of applications all the way to a complex motion
control application.

2.2 What is Mint?
Mint is the environment used to operate a range of ABB motion controllers and drives.*
Mint is composed of a number of elements:

 Mint WorkBench – This is the integrated development environment (IDE) used to
configure, query and program the controllers and drives.

 Mint ActiveX controls – These allow applications to be written, typically in C++ or Visual
Basic, which run on the host PC.

 Mint Motion Library – This provides a direct interface to the functionality of the hardware
and resides in the firmware. The functionality available varies between products.

 Mint Basic – This is the language used to control the hardware, the functionality of which
also resides in the firmware, hence allowing hardware to operate autonomously. Mint
Basic executes programs using a virtual machine called the MVM, which allows a
consistent range of features on all products that support programming.

The following diagram shows the various components that make up Mint.

Note that on some systems, the MVM can be replaced with an embedded C application.

* Motion controllers and drives originally produced under the Baldor brand name, for example: NextMove ES,
NextMove ESB-2, NextMove PCI-2, NextMove e100, MicroFlex e100, MicroFlex e150, MotiFlex e100, et al.

2

Mint WorkBench
or

Host Application (VB, C#, etc.)

Mint ActiveX Control

Communications (ICM)

Host PC

FirmwareMML MVM

Operating System
MN1955WEN Overview 2-1

2.3 Mint Basic
This document focuses on Mint Basic, which is a dialect of Basic that has much in common
with Visual Basic. It is rich in features, allowing the development of modular, block-structured
programs. These include subroutines, functions, structures, conditional statements and
looping statements. In addition to these features, Mint Basic also includes the capability to
define tasks that execute in parallel with other tasks, allowing isolation of distinct operations
from each other and simplifying program design.

While these features provide all that is required for purely programmatic purposes, they do
not address the requirement to control the hardware directly. For this reason, Mint Basic
allows access to an extensive library of specialized functions that interface to the
functionality embedded into the controllers. This library is called the ‘Mint Motion Library’
(MML), and allows the manipulation of inputs, outputs and motion control, etc. The functions
available within the MML are specific to a particular controller and its firmware revision, so
not all functions are common to all platforms or all firmware revisions.

Mint Basic is a compiled language that targets a proprietary ‘virtual machine’, the Mint Virtual
Machine (MVM), resident in the controller’s firmware. The Mint Basic compiler is integrated
into the Mint ActiveX and is most easily used within Mint WorkBench, but can also be used
by a host application. Since the MVM is a part of the controller’s firmware, it provides an
efficient interface to the MML. This has a number of advantages when compared to an
equivalent host application written in Visual Basic or C++ that uses the Mint ActiveX control,
since there is no communication overhead, programs can start executing as soon as the
controller is powered up, and no intervention is required from a costly host computer.
2-2 Overview MN1955WEN

Building Blocks
3 Building Blocks

3.1 Introduction
There are a number of basic concepts that need to be understood before a program can be
written. It is important to read and understand these concepts, since they form the
fundamental building blocks on which the remainder of the language is built.

3.2 Identifiers
Identifiers are names used to uniquely identify items within a program such as variables,
subroutines, functions and constants. These items will be discussed later, but the format of
an identifier is the same whatever the item. Names should be chosen carefully to aid
readability. Identifiers must start with either an alphabetic character or an underscore, and
may be followed by any combination of alphanumeric characters and underscores. An
identifier ends when a character is encountered that does not fit the above criteria, such as a
space or a symbol.

The case of characters in an identifier is not significant, so ‘abc’ is considered to be the same
name as ‘ABC’. All characters within an identifier are significant and there is no specific limit
to the length of an identifier, though using very long names is not recommended.

Certain names have a special meaning to the language, and these are called reserved words
or keywords. These include If, Then, Float, Loop, etc., a full list of which can be found in
Reserved words on page 13-34.

The following examples are valid identifiers:

_a
__b
c_
size
belt_speed
x0
_100
_loop
a_strange_but_perfectly_valid_identifier

The following are invalid identifiers:

sub (a reserved keyword)
20x (starts with a digit)
xor (a reserved keyword)
piston length (contains a space, which creates two identifiers)
n-points (contains a hyphen, which makes it an expression)

Identifiers must be unique within the current scope (discussed in The concept of locality on
page 8-5), so it is not permitted for any two declarations in the same module to share the
same name, such as a constant and a variable.

3

MN1955WEN Building Blocks 3-1

3.3 Literals
The term literal is used to describe an item that is literally represented in the program, such
as a number, character or string. Since it represents something literally, it does not need a
name or declaration to determine what it is. Literals are often called constants, though this
term is preferred for use only with named constants (see Constants on page 5-1).

For example, to work out the circumference of a circle the numeric literals 2 and 3.1415927
can be used:

circumference = 2 * 3.1415927 * radius

String literals are often used in print statements, for example:

Print "Circumference = ", 2 * 3.1415927 * radius

3.3.1 Numbers
Mint Basic supports a variety of numeric formats to allow values to be expressed in the most
natural way possible for the problem in hand. These vary from integer to floating-point and
from decimal to other number bases and also formats suitable for expressing time durations
and internet protocol (IP) addresses.

3.3.1.1 Decimal

A simple number begins with a digit and ends when a non-numeric character is encountered.
The following are valid numbers:

1
-250
65535

Note that negative values appear to break this rule, but they are considered to be a simple
expression composed of a unary minus operation on a positive value. There are a few other
exceptions to this rule, which will be described in following sections.

The numbers described so far represent whole numbers (integers), but Mint Basic can also
represent fractional values by using a decimal point. These are called floating-point values,
examples of which are shown below:

2.718
-3600.5
0.0000001
10.0

When floating-point values get very large or very small, the number of digits required to
represent them can become large. When this happens, scientific notation can be used to

specify an exponent to scale the value. Scientific notation factors the value by 10x, which is
read as ‘times ten to the power of x’, where the value x is called the exponent. Exponents
greater than zero increase the value and exponents less than zero reduce the value. For

example, 0.0000001 can be expressed as 1 x 10-7, and 1000000 as 1 x 106.

In Mint Basic, the exponent term is specified by immediately appending a value with an ‘e’ or

‘E’ and placing the exponent’s value (in decimal) immediately after this, so 1 x 10-7 becomes
3-2 Building Blocks MN1955WEN

1e-7 and 1 x 106 becomes 1e6. Note that the exponent is always expressed in decimal.
The following are valid numbers:

1.0365e-5
3.766224E-07
13.4485e6
9.80665e+0

The following are invalid numbers.

2.76807 e1 (numbers cannot contain spaces)
3.769908e 2 (numbers cannot contain spaces)
1.0360795e+ 2 (numbers cannot contain spaces)
3.28084D0 (invalid exponent character)

When a whole number exceeds the range of a signed integer (i.e. is outside the range
-2147483648 to 2147483647), it is automatically assumed to represent a floating-point
value, so 2147483648 represents 2.147483648e+9.

3.3.1.2 Non-decimal

Usually numbers make most sense if they are decimal, but sometimes it is convenient to use
other number bases. This is achieved by prefixing the number with a specification of its base,
and the following table shows how this is done.

The number formats that are prefixed with '0' for binary and '0x' for hexadecimal are for
compatibility with older versions of Mint Basic. Those prefixed with 'base#' are derived from
the IEC 61131-3 standard and is the preferred notation. Note that the base is always
expressed in decimal.

Unlike decimal literals, based literals are assumed to represent an unsigned value, and
therefore, so long as their size is within the range of an unsigned integer, its type will remain
integer. However, since Mint Basic does not have an unsigned integer data-type, it is stored
as a signed integer, so while the value 16#FFFF_FFFF represents the unsigned value
4294967295, it is stored as -1.

In the IEC 61131-3 standard only the bases 2, 8 and 16 may be used in numeric literals, but

Mint Basic allows any base to be used1, thus allowing decimal to be used when the intention
is to specify an unsigned decimal value. The previous example using 16#FFFF_FFFF could
be written using 10#4294967295, which would similarly be stored as -1. Note here the
disparity between the statements Print 10#4294967295 and Print 4294967295,
which would display -1 and 4294967000.0000 respectively. This is because the base
prefixed value is unsigned whereas the simple decimal value is signed. While the unsigned

Decimal Binary Octal Hexadecimal

9 2#1001 01001 8#11 16#9 0x9

15 2#1111 01111 8#17 16#f 0xf

16 2#10000 010000 8#20 16#10 0x10

20 2#10100 010100 8#24 16#14 0x14

255 2#11111111 011111111 8#377 16#ff 0xff

1.Up to 36, as this is when the alphanumeric digits become exhausted.
MN1955WEN Building Blocks 3-3

value is within its valid range (0 to 4294967295), the signed value is outside its valid range
(-2147483648 to 2147483647) thus making it be interpreted as a float. If the base prefixed
value was one bigger, then it too would overflow its valid range and be interpreted as a float.
Note that an integer can be displayed in unsigned notation using the C format string “%lu";
see u: unsigned decimal on page 13-16.

As a further extension to the IEC 61131-3 standard, numeric literals of arbitrary base may be
used to define floating-point values. This broadly follows the rules used by Ada (and its
derivative, VHDL), but without the requirement for a closing # character unless an exponent
is used (because 'E' is a valid digit in the higher number bases). The exponent, like the base,
is always expressed in decimal and represents the base to the power of the given value. So

an exponent n will represent 10n in a decimal number, 2n in a binary number, etc.

The following examples illustrate its format:

16#FFF integer value 4095 (IEC 61131-3 compliant)
16#FFF# integer value 4095 (Ada compliant)
16#F.FF floating-point value 15.99609 (Mint specific)
16#F.FF# floating-point value 15.99609 (Ada compliant)
16#F.FF#E+2 floating-point value 4095.0 (Ada compliant)

Representing floating-point values in bases other than 10 is not normally required, but it does
have its uses. For example, it can be used to advantage if it is required that an integer value
be used as a floating-point value, but without the value-changing type reinterpretation, which

can be achieved by simply appending a decimal point2. This means 16#FFFF_FFFF.0
represents the floating-point value 4.294967E+9, but without the complication of having to
work out its decimal digits. Another use is in the specification of a floating-point value that
must be absolutely precise, for example when testing borderline cases in an algorithm. An
example of this might be the representation of the largest and smallest floating-point values,
which are 16#F.FFFFF#E+31 and 16#4.00000#E-32 respectively. Note how the mantissa
uses only six hexadecimal digits, as there are only 24-bits available in the IEEE floating-point
format (one hexadecimal digit occupies 4 bits). This example shows that using a based
floating-point literal avoids having to guess how many digits of precision are required in
decimal notation. The following table shows how some commonly used values are defined in
different domains for both the IEEE 754 and the TI C31/33 DSP standards:

2. More correctly termed a radix point, which is the base independent term for the point that separates the integral and
fractional components. In base 10 it would be the familiar decimal point, in base 2 the binary point, in base 16 the
hexadecimal point, etc.
3-4 Building Blocks MN1955WEN

Arbitrary base floating-point values are only supported in target formats 13 and above.

3.3.1.3 Time duration

Time durations follow the IEC61131-3 specification by using the T# or TIME# prefix. The
prefix is followed by sections for the number of days, hours, minutes, seconds and
milliseconds, suffixed by d, h, m, s and ms respectively. The only rules are that these sections
must be in descending order of size and that no sections may follow one that has a fractional
value. Note that all section values are decimal, and any fractional value of milliseconds will
be truncated. The following are examples of valid time durations:

T#3m25s (equivalent to 205000 ms)
T#2.8s (equivalent to 2800 ms)
T#2d12h (equivalent to 216000000 ms)
T#2.5d (equivalent to 216000000 ms
T#3m25000ms (equivalent to 205000 ms)
T#3m25000.9ms (equivalent to 205000 ms)

The following are invalid time durations:

T#2.0s500ms (milliseconds after fractional seconds)
T#12h2d (hours before days)
T#24d21h (value out of range)

Time literals always represent an integer value and so their type will not be automatically
coerced to floating-point when they become too large to fit into an integer. The permissible
range is -24d20h31m23s648ms to 24d20h31m23s647ms and an error will be generated if a
value falls outside these limits. Time durations are only supported in target formats 13 and
above.

Parameter

Value

Float Integer

Decimal Hexadecimal IEEE 754 TI C31 DSP

Maximum 3.402823466 x 1038 F.FFFFF16 x 1631 7F7FFFFF16 7F7FFFFF16

Minimum -3.402823466 x 1038 -F.FFFFF16 x 1631 FF7FFFFF16 7F80000016

Smallest
(normal)

1.175494351 x 10-38 4.016 x 16-32 0080000016 8200000016

Smallest

(denormal)a

a. This parameter does not map to the TI C31 DSP, which has a smallest value of around 5.87747×10-39, which has a

hexadecimal representation of 2.016×16-32 and a bit pattern of 8100000016.

1.401298464 x 10-45 8.016 x 16-38 0000000116 8100000116

Epsilonb

b. The term ‘epsilon’ has a few meanings, but here it represents the smallest value that can be added to 1.0 and register a
difference.

1.192092896e x 10-7 2.016 x 16-6 3400000016 E900000016

Zero 0.0 0.016 x 160 0000000016 8000000016

One 1.0 1.016 x 160 3F80000016 0000000016
MN1955WEN Building Blocks 3-5

3.3.1.4 Internet protocol

IP addresses are specified using the IP# prefix, which must be followed by four numbers in
the range 0 to 255, each separated by a period, as shown below:

IP#17.34.51.68 (equivalent to 287454020 and 16#11223344)

IP addresses represent a signed integer value, so IP#255.255.255.255 has the decimal
value -1. IP addresses are only supported in target formats 13 and above. Note that an
integer can be displayed in IP notation using the C format string “%lq”; see q: four octet (IP
address) notation on page 13-15. IP addresses are only supported in target formats 13 and
above.

3.3.1.5 Use of underscores

Adjacent digits in the body of a number may be separated by a single underscore character,
but the underscore cannot be used to initiate or terminate a sequence of digits or be used in
a base prefix. This is purely to aid legibility and does not alter the value being represented.
Below are examples of numeric literals that use the underscore:

2#1101_0001
16#8000_0000
3.141_592_654
31_225_001
1_225.500_183

Illegal uses of underscores are shown below.

_100 (underscore cannot start a number)
100_ (underscore not enclosed in digits)
0_x7fff (underscore not enclosed in digits)
1.275e_4 (underscore not enclosed in digits)
1.275_e10 (underscore not enclosed within digits)
12._6 (underscore not enclosed within digits)
12_.6 (underscore not enclosed within digits)
2#11__00 (adjacent underscores)
1_6#FF (underscore not allowed in base prefix)

3.3.2 Characters
Character data is defined by enclosing the required character within single quotes. For
example, the character representing the question mark is expressed as ‘?’. The following
code will print a question mark.

Print '?'

Character data is stored as an integer value with the range 0 to 255 encoded in ASCII
(American Standard Code for Information Interchange), so it is possible to use characters
whenever an integer is expected. Since the ASCII character set only specifies encodings in
the range 0 to 127, any characters that lie outside this range will have a system dependent
appearance. The following code assigns to a variable named ‘digit’ the value of a numeric
character stored in a variable named ‘i’ (i.e. digit will be 0 for character ‘0’, 1 for character ‘1’
etc.).

digit = i – '0'

The following code will display 65, the ASCII code for the character ‘A’.

Print Int('a')
3-6 Building Blocks MN1955WEN

Note that the ASCII code for ‘A’ was displayed, not the value for ‘a’. This is because Mint
Basic always assumes characters to be upper case, so ‘a’ has the same value as ‘A’. This
behavior can be altered using either Option CharCase, or by adjusting the default setting
in the Compiler Options dialog in Mint WorkBench. The following statement can be used to
make character data retain its case.

Option CharCase 2

Characters not generally available on a keyboard, like control codes (those less than 32, and
character 127) and non-ASCII characters (greater than 127), should be represented simply
as integers. If required, these can be converted to character form, typically for output, using
the Chr function.

Note that the single-quote character is also used to initiate a comment, and a consequence
of this is that if by accident more than one character is specified between the single quotes,
then this will be interpreted as a comment.

3.3.3 Strings
String data is defined by enclosing a sequence of characters with double quotes, for
example:

"This is a string"

Note the use of double quotes rather than the single quotes that are used to represent
character data. The following example shows a comment rather than a string or a character:

'This is not a string'

Unlike individual characters, the characters in a string are always stored in the case in which
they were entered. An empty string is represented by two adjacent double quotes.

To allow the inclusion of double-quotes within a string, the backslash character is used
immediately ahead of a double-quote, which is then inserted into the string rather than being
used to terminate it. This syntax stops the inclusion of the backslash character in a string, but
this is overcome by using two successive backslashes. Thus, "\"" represents a string that
contains a single double-quote character, and "\\" represents a string that contains a single
back-slash character.

Strings may contain any character, including those that do not appear on the keyboard (such
as the null character or a carriage return character). To define such a string, the notation
backslash, hexadecimal character, hexadecimal character is used to specify the character
(the case of the hexadecimal digits is not significant). For example, "\00" defines the null
character and "\ff" defines character 255. The following example can be used to define a
string constant that contains the two characters for carriage return and line feed:

Const _crlf = "\0D\0A"

Note that two hexadecimal characters must be used, so the leading zero must be present for
values less than 16 (decimal). This notation is applicable to all characters, so an alternative
(although impractical) way of printing “Hello world” would be to use the following code:

Print "\48\65\6c\6c\6f\20\57\6f\72\6c\64"

Note that the backslash notation is only relevant to strings, and cannot be used in character
data.
MN1955WEN Building Blocks 3-7

3.4 Data types
Section 3.3 described the existence of different types of data, namely integer, floating-point,
character and string data. As a character is an integer (with limited range), this leaves three
fundamental types, which in Mint Basic are called Integer, Float and String.

3.4.1 Integer
Integer data is stored as a signed 32-bit integer using two’s complement encoding, and so

can store whole numbers in the range -231 to 231-1 (-2147483648 to 2147483647).

3.4.2 Float
Floating-point data is stored as a 32-bit word in the native format supported by the run-time
environment of the controller. Usually, this is composed of 24 bits for the mantissa and 8 bits
for the exponent, both including a sign bit. The implementation is usually close to the IEEE

754 standard, and so the range is of the order 10±38 with a precision of around 7 digits. It is
important to remember that floating-point values have a finite precision, and so are inherently
inexact. It follows that computations involving floating-point values are also inexact because
each operation is subject to truncation or rounding. This is discussed in more detail in
Floating-point limitations on page 4-12.

3.4.3 String
String data is stored using a header followed by data words. The header is a 32-bit word
containing the maximum size (in characters) in the least significant 16-bits, and the number
of characters contained in the string in the most significant 16-bits. The data words are each
32-bits in size, with each word having four characters packed into it. The string data contains
as many data words as necessary to completely contain the maximum size specified by the
header. The maximum number of characters that a string can contain is specified using the
notation shown below.

String*12 'A 12 character string
String*256 'A 256 character string

The maximum number of characters allowed is 65535.

3.4.4 Time
The Time type is stored as a 32-bit integer. It is very much like the Integer type, except
that it constantly changes value to match the elapsed time in milliseconds. This effect is
achieved by storing an offset relative to the continuously counting system millisecond timer.
This offset is automatically generated on assigning a value to a variable of type Time and
automatically mapped back on reading the contents of a variable of type Time.

To illustrate this mechanism, if a variable of type Time were set to zero, then the system
millisecond counter would be read and this value stored in the variable. On reading the
contents of the variable, its contents would be subtracted from the system millisecond
counter, giving the elapsed time in milliseconds. This transformation is automatically
performed so that variables of type Time can generally be used as if they were integers. Due
to the data being stored as a 32-bit integer, variables of type Time will wrap approximately
every 49.71 days. The Time data type is only available when Option MintV5.5Keywords
(see page 7-4) is enabled, and only for target formats 12 or above.
3-8 Building Blocks MN1955WEN

3.4.5 Controller
The Controller type is a structure that contains two 32-bit integers called nBus and
nNode that represent the bus and node. Variables of type Controller are used to make
redirected MML calls, which are discussed in Redirection on page 11-4.

The Controller data type is only available when Option MintV5.5Keywords (see
page 7-4) is enabled, and only for target formats 12 or above.

3.4.6 Semaphore
This is a structure with two members, a 32-bit integer and an array of tasks indexed from 1 to
size. Variables of type Semaphore cannot be initialized or manipulated in any way other than
using them in a Semaphore block, so the names of the members are irrelevant. The number
of resources that the semaphore controls is specified using an asterisk followed by an
integer (the size), as shown below:

Semaphore * 2 'A 2 resource semaphore

Variables of type Semaphore are used to synchronize access to resources used by multiple
tasks, which is an advanced subject that is discussed fully in Semaphore block on page 8-23.

The semaphore data type is only available when Option MintV5.5Keywords (see page
7-4) is enabled, and only for target formats 14 and above.

3.4.7 User defined
Mint Basic allows the user to define their own data types, which may be either a structure or
a bitfield of a given name and members. In most circumstances, these types can be used in
exactly the same way as the intrinsic types, the only exceptions being that structures can't be
passed by value or returned by a function.

3.4.7.1 Structures

Structures are used to group data of arbitrary type together as a single entity, often called an
aggregate, which may be composed of simple or structured types.

Structure TMoveInfo
 distance As Float
 id As Integer
End Structure

This is an advanced topic, and is fully discussed in Structures on page 5-6. The Structure
construct is only available when Option MintV5.5Keywords (see page 7-4) is enabled,
and only for target formats 12 or above.

3.4.7.2 Bitfields

The bitfield type is used to give structure to a single 32-bit integer by using named members
that each have a specific contiguous bit range. While this looks like an aggregate (see
Structures above), it is simply a means of decoding the bit pattern of a single value, allowing
data to be accessed directly without having to perform manual masking operations that can
be complex and error prone.
MN1955WEN Building Blocks 3-9

Bitfield TBytes
 byte0 As 0 To 7
 byte1 As 8 To 15
 byte2 As 16 To 23
 byte3 As 24 To 31
End Bitfield

This is an advanced concept, and is fully discussed in Bitfields on page 5-8. The Bitfield
construct is only available when Option MintV5.5Keywords (see page 7-4) is enabled,
and only for target formats 14 or above.

3.4.8 Memory usage
The following table shows how much memory is used by each of the intrinsic data types.

Calculating the memory usage for the String type is more complex than other types. A
string is composed of a 32-bit word that contains the maximum size in characters and the
actual number of characters in it, and this is followed by enough 32-bit words as required to
store the maximum possible number of characters. In general:

 Divide the size of the string by four, as there are four characters per 32-bit word.

 Extract the integer part, and if the result was fractional add one to it.

 Add one to account for the header word.

 Multiply by four to convert words to bytes.

For example, a string that is sized to contain only one character will be composed of the 32-
bit header, and one 32-bit word that will only have one byte used. A string that is sized to
contain 65535 characters will be composed of the 32-bit header and 16384 32-bit words,
each of which containing four characters and the last word containing three characters.

The semaphore type is also a little complex as it is composed of an integer and an integer
array of size equal to the semaphore’s size, so the memory used by a semaphore of size n is
16 + 4 x n bytes.

Type Size (bytes)

Integer 4

Float 4

Time 4

Controller 8

String 68

String * 1 8

String * 65535 65540

Controller 8

Semaphore 20

Semaphore * 4 32

Bitfield 4
3-10 Building Blocks MN1955WEN

3.5 Variables
Data is stored and retrieved using a named area of memory called a variable. Variables are
declared using the Dim statement and may be any data-type supported by Mint Basic, and
may be a single value or have many values if the variable is an array or a structure. The term
‘scalar’ is used to describe a single valued variable and the term ‘aggregate’ is used to
describe a many valued variable.

Dim a As Float
Dim b As String * 256
Dim c As Semaphore

The declaration of variables is discussed in Variables on page 5-3.
MN1955WEN Building Blocks 3-11

3.6 Statements
Statements fall into one of the following categories:

 Declaration: Used to declare a named entity for later use, for example a variable or a
subroutine.

 Action: Used to do something, like perform an assignment or make a subroutine call.

 Directive: Used to direct the behavior of the compiler, like setting the optimization level or
specifying whether a program should auto-run on power-up.

 Comment: Used to annotate the operation of the program.

Programs are mostly composed of declaration and action statements, and a well written
program will also contain a moderate number of comments to document its operation.
Statements can be either simple, like an assignment, or structured, like a loop or a
subroutine declaration. An example of simple statements is shown below, the first being an
assignment, the second a subroutine call and the third a Print statement:

a = 2 * x + 1
calcTimings beltSpeed, productsPerSecond
Print "a = ", a

An example of a structured statement, a While loop, is shown below:

While Speed(0) > 10
 ...
End While

The statements used in declarations are discussed in Declaration statements on page 5-1,
and those used to do something are discussed in Action statements on page 6-1.

3.6.1 Statement separation
Statements require some means of defining when one ends and the next begins, and this is
achieved using either a new line or a colon. Below are examples of statement sequences:

a = (b + 1) / 2
b = Sqrt(b * (1 – c))

And the same two statements with the statement separator:

a = (b + 1) / 2 : b = Sqrt(b * (1 – c))

It is not common practice to use the statement separator other than in a single line If
statement, since its use can make the program harder to read.

3.6.2 Line continuation
Sometimes, a single statement can be so long that it becomes desirable to make it span
multiple lines. This can be achieved with the line continuation character, which is an
underscore. Below is an example of its usage with a subroutine call that has three
parameters, each being non-trivial expressions:

calculateForces d + x * (c + x * (b + x * a)), _
Sqrt(1 + Sin(y) ^ 2), _
(1 – z) / (1 + z)
3-12 Building Blocks MN1955WEN

Note that anything after the line continuation character is completely ignored up to the end of
the line. This differs from Visual Basic, which will issue an error if anything exists after the line
continuation character. A consequence of this is that the source reformatting facility will not
include any characters that exist after the line continuation character.
MN1955WEN Building Blocks 3-13

3.7 Modules
The term ‘module’ is used to describe the declaration of a named block that contains
statements, which when invoked, causes the statements it contains to be executed in
sequence. The Startup and Shutdown modules are the only exceptions in that they do not
require a name, since there may only be one of each in a program and they already have a
unique name.

Mint Basic supports a number of different module types to simplify the design and
implementation of a program. Their declaration and use is discussed in Modular
Programming starting on page 8-1.
3-14 Building Blocks MN1955WEN

3.8 Program
A program is an ASCII file composed of a sequence of statements. The statements at the
outer level are implicitly contained in a task called 'ParentTask'.

3.8.1 Layout
The general rule is that constants, defines and variable declarations should precede the
executable statements, and the module declarations should follow. Specifically, it is
recommended that you order your statements and modules in the following manner:

 Data declarations
- Constant declarations
- Define declarations
- Type declarations
- Variable declarations

 Executable statements

 Module declarations
- Tasks
- Functions
- Subroutines
- Events
- Startup module
- Shutdown module

Note that the Startup and Shutdown modules are placed out of the way as the very end of
the program. This may seem counter-intuitive, but once written these modules are rarely
changed and so they need not clutter the other code. Also, wherever they are placed
amongst the other module declarations, the statements in the Startup module will always
be executed first and the statements in the Shutdown module will always be executed last.

The above formatting guidelines can be applied to an existing program by clicking Program >
Format Source Code in Mint WorkBench. See Source code reformatting on page 13-12.

3.8.2 Comments
Comments are an important part of any program, because however carefully variables,
subroutines, etc. are named, there is often a need to explain a statement’s purpose.
Comments allow you to state clearly how a piece of code functions, aiding readability. It is
good practice to use comments liberally in a program, but many statements often do not
need further explanation. A comment is initiated using a single quote character, which
causes all text up to the end of the line to be a comment. Below is an example of a comment.

'Calculate the pivot value, avoiding divisions by zero

The presence of comments does not have any impact on the performance of a program,
though they increase the size of the source file, which, if stored on the controller will
consume more memory.

3.8.3 White space
The term white space covers the use of spaces and blank lines, and its use can considerably
improve the readability of a program. It is recommended that spaces be placed after commas
MN1955WEN Building Blocks 3-15

and either side of arithmetic and relational operators at the very least, and anywhere else
where readability can be improved by its use.

Indentation is a form of white space that makes a program easier to read by aligning the start
of each line of code in a manner that reflects the nesting of the block-structured elements in
the program. These block-structured statements have yet to be discussed, but to generalize
a block-structured statement can be viewed as a statement container delimited by a pair of
keywords of the form Block.. End Block. These delimiters should be aligned in the same
column as the code that precedes it, and the statements contained should be indented
further (two spaces is recommended).

The following example shows a poorly formatted example of a number guessing program:

Dim value As Integer
Dim guess As Integer
Dim attempts As Integer
Loop
value=1+Int(Rnd*100)
attempts=0
'Iterate until a correct guess is made
Repeat
'Read the guess and increment the number of attempts
Input "Enter guess: ",guess
attempts=attempts+1
'See if the guess was correct, prompting as required
If guess<value Then
Print "Higher"
ElseIf guess>value Then
Print "Lower"
End If
Until guess=value
'Notify the user of success and the number of attempts used
Print "Correct in ",attempts," attempts"
End Loop

Shown below is the same program, but with careful use of indentation and white space:

Dim value As Integer
Dim guess As Integer
Dim attempts As Integer

Loop
 value = 1 + Int(Rnd * 100)
 attempts = 0

 'Iterate until a correct guess is made
 Repeat
 'Read the guess and increment the number of attempts
 Input "Enter guess: ", guess
 attempts = attempts + 1

 'See if the guess was correct, prompting as required
 If guess < value Then
 Print "Higher"
 ElseIf guess > value Then
 Print "Lower"
 End If
 Until guess = value

 'Notify the user of success and the number of attempts used
 Print "Correct in ", attempts, " attempts"
End Loop
3-16 Building Blocks MN1955WEN

The careful use of white space is a powerful aid to readability so should always be used. All
the code samples in this document are formatted carefully, and it is recommended that this
technique is acquired early on and maintained. Since the subject of formatting is such a
subjective matter, it is ultimately up to each individual to decide what style to adopt.

3.8.4 Compilation Errors
These occur when the program text contains something that does not conform to the
language specification. This might be due to a badly formed number, a missing Then after
the condition in an If statement, multiple declarations that share the same name, etc. These
are all detected by the compiler and listed in the Build tab of the Mint WorkBench Output
window. A program that contains errors will not execute until they are all resolved. The
compiler also detects code that may be incorrect and issues a warning for each occurrence,
and it is recommended that these are all resolved.

3.8.5 Execution
In general, execution starts at the first statement of the parent task and terminates when the
last statement has been executed. However, there are some exceptions to this, listed below

 The presence of a Startup module will cause execution to start at its first statement,
and when its last statement has been executed, execution will continue at the first
statement of the parent task.

 The presence of a Shutdown module will cause execution to continue at its first
statement when the program terminates for any reason. Usually this is due to the last
statement of the parent task having been executed, but can also be the result of an
unhandled error.

 Errors in the program will cause execution to terminate unless an error handler is
present, in which case, execution will temporarily be directed to the error handler’s
statements. When the error handler's last statement has been executed, execution will
continue from the point at which the error occurred. Note that errors in the Startup and
Shutdown modules always cause immediate termination, whether an error handler is
present or not,. Errors in the error handler are fatal unless Option ErrorFatal (see
page 7-8) is set to 0 (zero).

 Executing the End statement will cause immediate termination.

When the parent task terminates, all child tasks also terminate. Execution is initiated either
by the run-time system receiving a run command or automatically on boot-up if the program
has been instructed to do so by using an Auto statement.

3.8.5.1 Run-time Errors

These occur when a program has compiled successfully and is executing. These fall into two
categories, the synchronous error and asynchronous error.

 Synchronous errors are those that happen as a direct result of code in the program, such
as a division by zero, a parameter being out of range, etc. If an error handler is present
then it will be called, otherwise execution will terminate immediately. However, some
synchronous errors are so serious that execution will terminate without executing the
error handler, though the Shutdown module will still be executed.

 Asynchronous errors are those that either happen indirectly from code in the program or
which are caused by an external interaction. For example, motion may be initiated under
program control (or triggered externally via a host application or the command line), but
MN1955WEN Building Blocks 3-17

this motion might fail due to a following error. This will generate an error condition that
will be handled by the error handler. However, an important difference from synchronous
errors is that asynchronous errors do not cause the program to terminate if an error
handler is not present.

Errors that occur in a Critical block (see page 8-21) that masks out the error handler are
dealt with as soon as the error handler is no longer masked out. If multiple errors occur, then
they will be handled in sequence on e100 products. On non-e100 products only the last error
will be handled.
3-18 Building Blocks MN1955WEN

Expressions
4 Expressions

4.1 Introduction
An expression is used to calculate a result using a mixture of operators and operands.
Expressions are used in many circumstances, such as in an assignment, calling a subroutine
or a function, in conditional statements, etc. The simplest form of expression is simply a
literal or an identifier, for example:

123
x

Fortunately, expressions can be more complicated than this, for example:

x + 1
x <= y
x(i) > 2 * (y + z)
x = y + z

Note that the last expression looks very much like an assignment (see Assignment on page
6-1 for details), because the same symbol is used to represent assignment and equality.
However, the context of the ‘=’ can be used to determine what it represents, but this can lead
to somewhat confusing looking statements like:

equal = i = j

This evaluates the expression ‘i = j’, which will be either true (1) or false (0), and then assigns
the result to variable ‘equal’. This might be more clearly expressed as:

equal = (i = j)

However, the above expressions are much more efficiently evaluated than using an If
statement, for example:

If i = j Then equal = _true Else equal = _false

A fuller description of assignment is covered in Assignment on page 6-1.

4

MN1955WEN Expressions 4-1

4.2 Operators
An operator is something that performs an operation on its operand data. Operators that take
a single operand are called unary operators and operators that take two operands are called
binary operators. An example of a unary operator is the unary minus, which uses the ‘-’
character, so the expression ‘-j’ will read the value from variable ‘j’ and negate the result. An
example of a binary operator is subtraction, which also uses the ‘-’ character, so in the
expression ‘i - j’, ‘i’ and ‘j’ are the operands, and the result is the value of ‘i’ minus ‘j’.

Binary operators, in general, do not evaluate their operands in a prescribed order.
Consequently, the expression x() + y() may evaluate the function call x() first followed by y(),
but it may do it the other way round. Consequently, no assumptions should be made with
regard to operand evaluation order. The only exception to this is for the operators AndAlso
and OrElse, which guarantee left to right evaluation.

4.2.1 Arithmetic operators
The arithmetic operators +, -, *, /, \, % and ^ are used to evaluate addition, subtraction,
multiplication, division, integer division, modulus and exponentiation respectively. All these
operators take numeric operands, which may be of mixed type, and each returns a numeric
result of an appropriate type. The term ‘appropriate type’ means that if either operand is a
float, then the result is of type float. If both operands are integer, then the result is of type
integer. There are two exceptions to this:

 The division operator (/), which always returns a float.

 The integer division operator (\), which rounds any float operands to integer and returns
an integer.

For example, the expression 3.142 + 123 will yield the floating-point result 126.142, and
128.7 \ 12.4 will be treated as 129 \ 12, yielding 10.

The modulus operator (Mod or %) performs a division, but returns the amount left over if the
numerator is not an exact multiple of the denominator. It is normal to use this with integer
operands, but it can also be used with floating-point operands. The sign of the result is the
same as that of the numerator.

4.2.2 Relational operators
The relational operators =, <>, <, <=, >, >= are used to evaluate equality, inequality, less
than, less than or equal to, greater than, and greater than or equal respectively. All these
operators take operands that are either both numeric or both string, and all return an integer
value, either 1 (one) if the condition is true, or 0 (zero) if it is false. When used with string
operands, a lexical (character by character) comparison is performed, for example:

"abc" < "ABC" 'Evaluates to false (0)
"abc" < "abcdef" 'Evaluates to true (1)

While it is perfectly valid to use expressions like inPosition = _true,
inPosition <> _true and inPosition = _false, these are considered poor style
and are better expressed as inPosition, Not(inPosition) and Not(inPosition)
respectively.
4-2 Expressions MN1955WEN

4.2.3 Logical operators
The term ‘logical’ relates to the two states ‘true and ‘false’. In Mint Basic anything non-zero is
considered to be true and only exactly zero is considered false (note that this applies to
floating-point values too, so even the smallest non-zero value is considered to be true).

There are four logical operators in Mint Basic, the unary operators Not and Bool, which are
used to perform logical negation and logical affirmation respectively, and the binary operators
AndAlso and OrElse, which are used to perform logical conjunction and inclusive
disjunction respectively. All these operators take numeric operands and return an integer
result (with the value 0 or 1). The following truth table shows the results of applying the
operators Not and Bool:

The Not operator has the symbolic equivalent !, and is used to reverse a logical state. The
Bool operator has no symbolic equivalent (though using !! achieves the same result), and
is used to convert a numeric value to a Boolean value, which can be useful when performing
logical operations with the And operator. Since Not and Bool are operators, it is not
necessary to use brackets around the operand, but it is considered good practice to do so.

The AndAlso and OrElse operators are similar to their bitwise counterparts And and Or,
but differ in that they deal exclusively with the two logical states ‘true and ‘false’. They also
differ in that they employ a technique called ‘short-circuit evaluation’, which means that
operands are only evaluated if they need to be. For example when evaluating i OrElse j,
if i is true (non-zero) then the whole expression is true and so there is no point in evaluating
the rest (which could be something much more complex than the variable j). Likewise, when
evaluating i AndAlso j, if i is false, then the whole expression is false, irrespective of the
value of j. The following truth table shows the results of applying the operators AndAlso
and OrElse.

Remember that while only the operand values 0 (false) and 1 (true) are shown in the above
table, any non-zero operand is considered to be true.

Operand Not Bool

-12846002 0 1

-1 0 1

-0.01 0 1

0 1 0

0.01 0 1

1 0 1

8366271 0 1

Operand 1 Operand 2 AndAlso OrElse

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1
MN1955WEN Expressions 4-3

The AndAlso and OrElse operators guarantee left to right evaluation, so for example
x() OrElse 1 will call function x, even though the whole expression is known to be true.
Likewise, x() AndAlso 0 will call function x, even though the whole expression is known
to be false.

To take most advantage of the short-circuiting of these operators, if it is known that an
operand predominantly evaluates to false, then use it as the first operand of AndAlso. If it is
known that an operand predominantly evaluates to true, then use it as the first operand to
OrElse. These two tricks will increase the possibility that the second operand can be safely
discounted, hence saving time.

Note that the Bool, AndAlso and OrElse operators are only available when Option
MintV5.5Keywords (see page 7-4) is enabled. Furthermore, Bool is only for target
formats 11 and above, and the AndAlso and OrElse operators are only available in target
formats 13 and above.

4.2.4 Bitwise operators
The term bitwise relates to the bits that make up an integer value, which can be imagined as
being a stream of true and false values stored in a single integer value (try displaying integer
values using Print Bin to see the bit pattern). Unary operators work on a single set of bits
and binary operators work on the corresponding bits from two sets.

The bitwise operators And, Or, Xor and ~ are used to evaluate bitwise conjunction, bitwise
inclusive disjunction, bitwise exclusive disjunction and ones-complement respectively. The
operators And and Or have symbolic equivalents & and | respectively. All these operators
take numeric operands and return an integer result.

These operators are especially useful to turn on/off bits, as shown below.

'Turn on bits 3 and 5
bits = bits Or 2#101000

'Turn off bits 1 and 4
bits = bits And ~2#10010

Note the use of the one’s complement operator (~) to invert the bits specified prior to using
the bitwise conjunction operator (And) to turn off only the bits specified.

Special care should be taken when using the bitwise operators in a logical sense, as they will
not necessarily give the result expected unless the operands are only 0 (zero) or 1 (one).
A typical mistake with these operators would be to assume that anything non-zero was true;
in the following example, this means the program would not enter the If statement:

i = 2#10
j = 2#01
If i And j Then
 ...
End If

Of course, this is not an error, as the result of the conditional expression is zero since there
are no corresponding bits that are both set. This type of problem can be avoided by using the
logical operators AndAlso and OrElse, which give the added benefit of performing a short-
circuit evaluation (see page 4-3). If logical operation is required but short-circuiting should be
avoided, then i <> 0 And j <> 0 or Bool(i) And Bool(j) can be used, but
4-4 Expressions MN1955WEN

remember that forcing each operand to be zero or one by using <> or Bool is only
necessary when the operands may have values other than zero or one.

4.2.5 String concatenation operator
The + operator can be used with string operands to concatenate (join together) its string
operands. For example, to append a semi-colon character onto the end of string ‘s’, the
following code is used.

s = s + ";"

4.2.6 Immediate If operator
The ‘immediate if’ operator, IIf, gives the ability to make a choice within an expression. It
takes three operands enclosed within brackets and evaluates to either the second or third
operand depending on the condition expressed in the first operand. If the condition is true,
then the second operand is returned, otherwise the third operand is returned. The second
and third operands must be compatible, either numeric or exactly the same type. Only one
operand is ever evaluated according to the condition. For example, to avoid a division by
zero the following code can be used:

y = IIf(x <> 0, Sin(x) / x, 1)

The following two statements are equivalent:

s = Mid(IIf(i < 10, t, u), 4, 2)
If i < 10 Then s = Mid(t, 4, 2) Else s = Mid(u, 4, 2)

and the following two statements are also equivalent:

mySub(w, x, IIf(y < 0, 0, y), z)
If y < 0 Then mySub(w, x, 0, z) Else mySub(w, x, y, z)

Since the IIf operator is used like a function, its precedence is largely irrelevant. However,
while it looks like a function, it is not executed like one, as that would entail the evaluation of
all its operands before being called, which would severely negate its usefulness.

Note that IIf is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 13 and above.

4.2.7 Is operator
The Is operator simply accesses the Select statement’s expression to allow it to be used
in a Case statement. It is similar to Case Is in Visual Basic, but is slightly more flexible in
that it may be used multiple times in one Case statement and does not have to immediately
follow the Case keyword. For example:

Select Case i
 Case 12 To 16: DoStuff()
 Case Is < 0: RangeError()
End Select

would have to be coded:
MN1955WEN Expressions 4-5

Select Case i
 Case 12 To 16: DoStuff()
 Case _minInt To -1: RangeError()
End Select

Alternatively, an If statement could be used:

If i < 0 Then
 RangeError()
Else
 Select Case i
 Case 12 To 16: DoStuff()
 End Select
End If

Note that it is better to specify a range using a construct like Case 12 To 16 rather than
Case Is >= 12 AndAlso Is <= 16, as the compiler can generate significantly better
code. Note that this operator is only available when the MintV5.5Keywords option is enabled,
and only for target formats 11 or above.

4.2.8 Miscellaneous operators
The following operators require further knowledge of Mint Basic:

 The scope override operator (see Overriding scope on page 8-20).

 The member access operator (see Structures on page 5-6).

 The array-subscripting operator (see Arrays on page 5-4).

 The function-calling operator (see Functions on page 8-7).

 The compound parameter operator (see Advanced parameter passing on page 11-2).

 The redirection operator (see Redirection on page 11-4).

These operators will be explained when necessary.
4-6 Expressions MN1955WEN

4.3 Order of evaluation
An expression is evaluated by applying the operators to the operands in a prescribed
sequence, in general taking operators from left to right. The sequence could be specified as
being a simple left to right evaluation, but it is conventional for arithmetic operators to be
evaluated in an order that is a function of the operators present. This sequence is defined by
the precedence of each operator, which is described in detail below. However, it is possible
to override this evaluation order by using brackets, and this is also discussed below.

4.3.1 Operator precedence
An expression is evaluated in a particular order, dependent on the precedence of the
operators used in the expression. A common method uses the phrase BODMAS as a
reminder, which stands for Brackets, Order (exponentiation), Division, Multiplication, Addition
and Subtraction. This method evaluates terms in brackets first, followed by order
(exponentiation or raising to a power), followed by division, followed by multiplication,
followed by addition and subtraction. Although BODMAS specifies operator precedence, it is
quite limited since it only applies to arithmetic operators. Note that brackets, as described by
the ‘B’ in BODMAS, are not considered to be an operator. This is because they are only used
to order the evaluation and so do not actually evaluate anything.

The following table shows the operator precedence for all Mint Basic operators, some of
which have yet to be explained. This table groups operators of the same precedence, with
the operators in one group having a higher precedence than operators in lower groups:

Operator Description Usage

:: Scope override module_name::local_name

.
()
()
[]

Member access
Array subscripting
Parameter passing
Compound parameter

structure_name::member_name
array_name(exprs)
module_name(exprs)
call_name([exprs], exprs)

-> Redirection redirect_name->call

Not, !
Bool
~
-
+

Logical not
Logical affirmation
Bitwise complement
Unary minus
Unary plus

Not(expr), !expr
Bool(expr)
~expr
-expr
+expr

^ Exponentiation expr ^ expr

*
/
\
Mod, %

Multiply
Divide
Integer divide
Modulus

expr * expr
expr / expr
expr \ expr
expr % expr, expr Mod expr

+
+
-

Plus
String concatenation
Minus

expr + expr
expr + expr
expr - expr

<
<=
>
>=

Less than
Less than or equal
Greater than
Greater than or equal

expr < expr
expr <= expr
expr > expr
expr >= expr
MN1955WEN Expressions 4-7

Note that the term expr is used to represent an expression and exprs is used to represent a
comma-separated list of expressions. For calls, exprs may validly represent no expressions
at all, and in the case of a compound parameter, the comma between it and any following
parameters present is only required if there are other parameters.

When an expression is composed of operators of the same precedence, binary operators are
evaluated from left to right, and unary operators from right to left. For example 2*i\j is
evaluated as (2*i)\j, and 2^3^4 is evaluated as (2^3)^4, giving the answer 4096.
Similarly, -~-i is evaluated as -(~(-i)), which is intuitive as a unary operator can only be
applied to an operand that has been evaluated.

4.3.2 Use of brackets
Brackets are used to force the order of evaluation to whatever is required. For example, with
the operator precedence rules of Mint Basic, the expression:

2 * i + 1

will be evaluated as

(2 * i) + 1

If this is what is required, then there is no need to use brackets, as most people are familiar
with the correct evaluation order for arithmetic operators. However, brackets would have to
be used if it was required for the expression to be evaluated as:

2 * (i + 1)

Mint Basic, unlike some languages, always honors brackets, even when used with operators
of the same precedence. So, when evaluating 8*(i\4), the term i\4 will be determined
before multiplying it by 8. Usually this makes no difference, which is why some languages do
not dictate that brackets should force the evaluation order for operators of the same
precedence. However, in cases where the result would overflow (such as would be the case
if i were greater than one-eighth of _maxInt), then it can be significant.

Once an expression becomes complicated, perhaps using many different operator types
(arithmetic, relational, bitwise etc.), then it makes increasing sense to use brackets to make it
clear how it will be evaluated, even if they are not required. Below are three examples of

=
<>

Equal
Not equal

expr = expr
expr <> expr

And, & Bitwise AND expr And expr, expr & expr

Or, |
Xor

Bitwise inclusive OR
Bitwise exclusive OR

expr Or expr, expr | expr
expr Xor expr

AndAlso Logical conjunction expr AndAlso expr

OrElse Logical inclusive
disjunction

expr OrElse expr

IIf Immediate if IIf(expr, expr, expr)

Is Select expression Is

Operator Description Usage
4-8 Expressions MN1955WEN

identical expressions, the first heavily bracketed, the second lightly bracketed and the last
not bracketed at all:

(a < b) OrElse (c AndAlso (d = e))
a < b OrElse (c AndAlso d = e)
a < b OrElse c AndAlso d = e

The number of brackets used depends on personal preference. Too many brackets can
clutter an expression, making it difficult to read, and too few can introduce uncertainty about
how the expression will be evaluated without a detailed understanding of the precedence
rules.
MN1955WEN Expressions 4-9

4.4 Functions
A function is a piece of code that returns a result, and as such its only use is in expressions.
There are two types of function, intrinsic and user-defined. Intrinsic functions are those that
are an integral part of the language, like Sqrt and Log, while user-defined functions are
those that are declared by the user in their program. Both types of function are called in the
same way, by using the function’s name and appending any parameters that it requires
enclosed within brackets. Below are examples of expressions that use function calls:

Rnd
Rnd()
Sqrt(x)
1 + Sqrt(x ^ 2 + y ^ 2)
(Exp(x) – Exp(-x)) / 2
calcConveyerSpeed(itemsPerSecond, itemSeparation)

Note that the brackets used to enclose the parameters are optional for functions that take no
parameters, as is shown above with the Rnd function.

The declaration of user-defined functions is described in Functions on page 8-7, and tables
of intrinsic functions are given in section 9, Conditional Compilation.
4-10 Expressions MN1955WEN

4.5 Type casting
Type casting is when data of one type is converted into another type. Often the user does
this explicitly, so this is called an explicit cast. Below are some examples of explicit casts
used in assignment statements (see Assignment on page 6-1):

i = Int(x)
x = Float(i)

Another type of cast is one that is automatically inserted by the compiler to ensure that data
is compatible with its usage, and this is called an implicit cast. Below are examples of implicit
casts:

i = x
x = i

The reason that this may be important is due to the internal representations of the different
data types being such that one data type cannot necessarily be represented exactly using
another type, which can cause a loss of precision. Examples of precision loss are shown
below.

Dim x As Float, i As Integer
i = 2147483647
x = i
Print Int(x) - i

The above program will print the value -127, indicating a loss of precision. This occurs
because it is not possible to store an integer that uses more than 24 of its 32 bits in a
floating-point variable, which only has 24 bits of precision. The compiler detects these
instances and issues a warning, allowing them to be examined to ensure their correctness.
Assuming they are correct, the warning can be avoided by using an explicit cast.

More information on the type casting function available can be found in Type conversion on
page 10-10.
MN1955WEN Expressions 4-11

4.6 Floating-point limitations
Special care has to be taken when using floating-point data. While it appears to have a high
precision combined with a massive range (allowing it to express both large and small
values), it cannot be relied on to store data exactly.

4.6.1 General Properties
Floating-point values are encoded in 32-bit binary, using 24 bits for the value and 8 bits for
the scale factor, which gives an equivalent decimal precision of 7.22 digits. This encoding is
broadly similar to that used by integer data, so the resultant value is the sum of the bit values
that are set, where each bit value is a power of 2. The finite number of bits available coupled
with the differing number base results in floating-point operations being inherently inexact. In
the following table, the decimal value 10 is encoded in binary as 10102, along with some
other examples:

As can be seen, whole numbers can be represented exactly. This method is extended in the
following table, to show how fractional values are represented (the binary point is placed
between bits 0 and -1 for clarity):

As can be seen, the decimal value 0.1 is represented by the binary value 0.000110012, but
adding these bit values 1/16 + 1/32 + 1/256 gives 0.09765625, which is not exactly 0.1. This
clearly illustrates how some values cannot be represented precisely in binary due to the

Bit

4 3 2 1 0

2Bit

Decimal 16 8 4 2 1

0 0 0 0 0 0

1 0 0 0 0 1

2 0 0 0 1 0

3 0 0 0 1 1

10 0 1 0 1 0

Bit

3 2 1 0 . -1 -2 -3 -4 -5 -6 -7 -8

2Bit

Decimal 8 4 2 1 . 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256

0 0 0 0 0 . 0 0 0 0 0 0 0 0

1 0 0 0 1 . 0 0 0 0 0 0 0 0

10 1 0 1 0 . 0 0 0 0 0 0 0 0

0.5 0 0 0 0 . 1 0 0 0 0 0 0 0

0.25 0 0 0 0 . 0 1 0 0 0 0 0 0

0.5625 0 0 0 0 . 1 0 0 1 0 0 0 0

0.1 0 0 0 0 . 0 0 0 1 1 0 0 1
4-12 Expressions MN1955WEN

number of digits required exceeding that available3. Moreover, in the case of 0.1, the binary
encoding repeats indefinitely, so it would be imprecise how ever many bits were available.
This is analogous to the inability to represent 1/3 in decimal, but in base 3 it would be
represented exactly by 0.13. The IEEE 754 single precision standard uses 24 bits for the

significand4 and 8 bits for the exponent, so the most precise encoding for 0.1 is

100110011001100110011002 × 2-4.

Due to the finite precision of floating-point data the result of a floating-point operation often
has to be rounded, and this rounding has an impact on the precision of the final result.
Ideally, all products would use IEEE 754 arithmetic, as this would ensure that they all
calculated to the same standard. However, due to the hardware used in some controllers,
alternative methods are used. For example, the DSP used in the NextMove range of
controllers uses a proprietary format built into the hardware of the DSP, and while it has
properties in common with IEEE 754, it also has significant differences. One of the main
reasons for not using IEEE 754 arithmetic is speed, as the implementation of such things as
gradual underflow, unbiased rounding, etc. (which all serve a useful purpose in terms of
accuracy), reduce execution speed.

Examples:
The following code illustrates the relative scale problem.

Dim x As Float

x = 1000000
Print x = x + 0.5

x = 10000000
Print x = x + 0.5

x = 100000000
Print x = x + 0.5

On a NextMove controller, the values 0, 1, and 1 will be displayed, but on a MintDriveII, the
values 0, 0 and 1 are displayed, indicating that IEEE 754 can discern the difference for
longer. Problems can occur when rounding errors produce a result with a limited precision,
but which is very close to being precise. This provides results that are apparently correct
when displayed, such as 4.0000, 0.2500, etc., but which only appear this way due to the
rounding that takes place when outputting to a fixed number of decimals. This is not usually
too much of a problem if the results stay in the floating-point domain, but when casting to
integer a value that appears to be whole (such as 4.0000) may not be. This sort of problem is
heavily implementation dependent (remember that some systems use formats other than
IEEE 754), and so a problem that occurs on one system may not occur on another. The
following program illustrates this; when executed on a controller from the NextMove family it

displays 4.0000 and 3, but when executed on a MintDriveII it displays 4.0000 and 4:

Dim x As Float = 200
x = x / 50
Print x; Int(x)

3. For brevity and to illustrate a point, this table has only 12 bits of precision, half that of the IEEE 754 single precision
standard.
4. It actually uses a sign bit with 23 bits for the significand (this term has generally replaced the term “mantissa”) and 8 bits
for the exponent. However because the significand is normalized, the first bit is always known to be 1, so there is no point
wasting space by storing it, so this hidden bit gives effectively 24 bits of precision.
MN1955WEN Expressions 4-13

A related problem can arise due to the propagation of rounding errors, which causes the
small errors inherent in the representation of a floating-point value to become magnified by
repeating an operation many times. The following program illustrates this, which when
executed on a controller from the NextMove family displays the values pi = 3.1356 and
pi = 3.1416:

Const n = 50000

Dim i As Integer
Dim s As Float

s = 0
For i = 1 To n - 1 Step 2
 s = s + 1 / (2 * i - 1) - 1 / (2 * i + 1)
Next i

Print "pi = ", s * 4

s = 0
For i = n - 1 To 1 Step -2
 s = s + 1 / (2 * i - 1) - 1 / (2 * i + 1)
Next i

Print "pi = ", s * 4

Clearly, the second loop calculates pi more accurately, because it calculates the small terms
(i.e. the ones with the largest divisor) first, hence allowing them to be treated as significant
before the terms get so large that they become swamped.

Note that the above program highlights a deficiency in the DSP used in the NextMove range
of controllers, because it does not employ unbiased rounding or allow it to be used, instead
always rounding down (i.e. towards -∞). However, if an IEEE 754 emulation library is used
the results are both “pi = 3.1416”, but if the rounding mode is set to round down then the
values “pi = 3.1356” and “pi = 3.1416” are displayed. This shows that the rounding mode
causes the inaccuracy.

These are just a few of the problems inherent in dealing with floating-point arithmetic, which
is an integral part of programming, and so the programmer needs to exercise diligence in
dealing with such matters.
4-14 Expressions MN1955WEN

Declaration Statements
5 Declaration Statements

5.1 Introduction
Mint Basic provides a number of simple declaration types to allow such things as variables
and constants to be created for later use. The declaration of subroutines, functions, etc. are
also permitted in Mint Basic. However, since these are quite complicated, they are described
later in Modular Programming starting on page 8-1.

5.2 Constants
Often a program uses a particular value in many places, so it may be beneficial to give this
value a name which can be used instead.

Mint Basic includes some pre-defined constants, like _pi, and so no formal declaration is
required in this case. However, in cases where the constant is more specific, you can provide
a name and value within your program. This is done using the Const keyword:

Const identifier = expression

The expression must be composed only of literals or other named constants to enable it to be
evaluated by the compiler. Using named constants helps to make a program more readable
since it replaces a number with a meaningful name. This avoids the confusion of unexplained
‘magic numbers’ when returning to the program at a later date. Another benefit is that they
also centralize a value to its constant declaration, making it easier to change without having
to search through the whole program to replace occurrences of the value. Both of these
factors will help to improve the maintainability of the program. It is common practice, though
not strictly required, to prefix constant names with a leading underscore, as illustrated by the
predefined constant _pi. For example, the calculation of the circumference will become:

circumference = 2 * _pi * radius

Another example where a string constant is required is:

Const _escape = "\1b"
Print #_term3, _escape, 'B'

The type of a constant is derived from the expression assigned to it, and so it is generally not
needed to specify the type in the declaration of the constant. However, it can be specified
using the syntax:

Const identifier As type = expression

The specified type must be compatible with the expression.

5

MN1955WEN Declaration Statements 5-1

5.3 Defines
A Define statement provides the means of substituting something in the place of an
identifier that is used in the program. A define can be similar to a constant if it defines a name
as being equivalent to a literal, but it is more flexible than this and can allow quite complex
substitutions to be made. Try to avoid using defines to represent values, as constants are
better suited for this purpose.

A define is created with the Define statement, which is followed by an equals sign and then
the text that is to be substituted. Below is an example of one that references an element in
the Comms array:

Define boxesPerSecond = Comms(12)

Using the above declaration is a simple matter of using the identifier boxesPerSecond in a
location where Comms(12) would be valid, as is shown below:

If boxesPerSecond < 1 Then boxesPerSecond = 1

A define may contain references to other defines in its declaration. The following example
illustrates this:

Define initBoxesPerSecond = boxesPerSecond = 5

The above define can confusingly be used in two ways, as an assignment or as an equality
test:

initBoxesPerSecond
If initBoxesPerSecond Then
 ...
End If

A define can be useful for specifying a range of values, for example axes:

Define xyAxes = 0, 1
...
VectorA(xyAxes) = 0;

Defines must be declared before they are used and are processed in the order in which they
are encountered, irrespective of their scope.
5-2 Declaration Statements MN1955WEN

5.4 Variables
A variable is a named area of memory where data can be stored. Unlike constants, the value
can be changed during execution of the program. The general form of the Dim statement is:

Dim identifier As type

It is good practice to put all the Dim statements together at the top of a module after any
Const and Define statements. Avoid using Dim in other places, like after non-declaration
statements or inside block constructs like Loop, etc.

Dim counter As Integer 'A good place for a variable declaration

Loop
 Dim found As Integer 'A poor place for a variable declaration
 ...
End Loop

The area of memory that is allocated to a variable depends on the class of module in which it
is declared, and it can be either allocated a static or a dynamic address. This is an advanced
topic, and further details on the modules available can be found in section 8, Modular
Programming. However, if it is required that a variable that would normally be dynamic has a
static address, it should be declared with the Static keyword:

Static counter As Integer

This will not alter the scope of the variable, but will make it behave like a global variable.

5.4.1 Simple
While the data type of literal data is implied in the formatting of the literal (for example 12575
is an integer, 12.0 is a float and “Enter speed” is a string), for variables, the type of storage
needs to be specified when the variable is declared, as shown below:

Dim x As Float

The variable ‘x’ has now been allocated the memory it requires and can now be used to store
floating-point values and be used in expressions.

String variables are declared in a similar manner, but due to them being able to contain a
variable number of characters, a maximum size can optionally be specified using an asterisk
followed by the size, as shown below:

Dim s1 As String
Dim s2 As String * 4

Variable ‘s1’ may contain up to the default number of characters (usually 64), while variable
‘s2’ may contain no more than four characters.

Variables can be initialized in their declaration by assigning them a value, as shown below:

Dim x As Float = 12.25
Dim s1 As String = "Hello world"
Dim s2 As String * 4 = "-1.6"

Multiple declarations can be made using one Dim statement:
MN1955WEN Declaration Statements 5-3

Dim i As Integer, x As Float, s As String

While this is a useful shorthand notation, care should be taken to give each declaration a
data type, avoiding declarations like the one below:

Dim i, j, k As Integer

The above declaration will create two floating-point variables called ‘i’ and ‘j’, and one integer
called ‘k’. This happens because the default data type, if none is specified, is Float.

5.4.2 Arrays
If a number of items of data must be stored, then it usually makes sense to store these in a
single variable that has multiple elements within it (note that structures can also be used for
this purpose, which is discussed in Structures on page 5-6). This is called an array, and uses
the following type of declaration:

Dim dataPoints(1000) As Float

The above variable ‘dataPoints’ contains 1000 floating-point values, indexed from 1 to 1000
inclusively. Arrays, like simple scalar variables, can be initialized in their declaration, but
since they are an aggregate of values, the initialization should be enclosed in braces { }.
The above declaration would then become:

Dim dataPoints(1000) As Float = {-0.2, -0.05, 0.6, 0.3, 0.01, 0;}

Note how the last initialization value has a semi-colon placed after it, which causes all
remaining elements to be set to that value (zero in this case).

To access an individual element of an array, the array variable must be indexed. The
examples below show element 16 being assigned and element 750 being read:

dataPoints(16) = 100.5
Print dataPoints(750)

Note that if an index is used that is outside the range specified in the declaration of the array,
an index out of range run-time error (code 3103) will be generated.

Once an array has been indexed, the result behaves exactly as a simple variable of that type
and can be used in the same way as a simple variable. For example, an array of floats that
has been indexed can be used in an Input statement, be passed to a subroutine, etc. An
array of structures that has been indexed can have its members accessed, or be assigned
another structure, etc.

Arrays can be multi-dimensional, with no practical limit on the number of dimensions allowed.
Below are example declarations of a two-dimensional and a three-dimensional array:

Dim zRefPoints(2, 64) As Float
Dim lookupTable(16, 2, 8) As Integer

The index range, by default, starts from 1 (one), but this can be changed using the Base
option or by setting the default for this option using the Compiler Options dialog in Mint
WorkBench. Using this technique, the only valid bases are zero or one. If zero is used, the
array is indexed from zero up to the size specified, inclusively.

Option Base 0 'Index arrays from zero
5-4 Declaration Statements MN1955WEN

Note that this is different to the C/C++ programming language, which specifies the number of
elements, but which indexes them from zero, i.e. the last valid index is one less than the size.
This can lead to misleading variable declarations like:

Dim zRefPoints(1, 63) As Float 'Really a 2x64 array

A much clearer and more flexible way of specifying the index range is to use the To keyword
in the declaration. The following declares an array that may be indexed from -5 to 5 in the
first dimension, and from 0 to 9 in the second dimension:

Dim xValues(-5 To 5, 0 To 9) As Float

Arrays are stored in a column major format, so the following declaration:

Dim n(2, 2) As Integer = {1, 2, 3, 4}

will contain the values n(1, 1) = 1, n(2, 1) = 2, n(1, 2) = 3 and n(2, 2) = 4. This can be altered
using the RowMajor option (see page 7-5), which by default is zero (giving the above
behavior), but by setting this to one, the values would be n(1, 1) = 1; n(1, 2) = 2; n(2, 1) = 3;
n(2, 2) = 4. Most people find initializing row major arrays more intuitive, as the data is entered
row by row rather than column by column.

Note that an array cannot be dynamically resized at run-time.

5.4.3 Memory usage
For safety, arrays are stored in a manner that allows the array bounds to be validated during
execution, and so determining the amount of memory used by an array is not a simple matter
of multiplying the number of elements by the size of a single element. To achieve this, an
array is stored as a header followed by the element data. The header is a sequence of 32-bit
words. The first of these contains the number of dimensions, which is followed by a lower
and upper bound for each dimension. The following table shows the amount of memory used
by different declarations:

In general, multiply the number of dimensions by two and add one, then multiply this result
by four (because each of the parameters defining the number of dimensions and the lower
and upper bound for each is four bytes in size). Add to this the number of elements in the
array multiplied by the size of an element in bytes.

Declaration Size (bytes)

Dim a As Float 4

Dim a(10) As Float 52

Dim a(2,5) As Float 60

Dim a As String 68

Dim a(10) As String * 1 92

Dim a(10) As String 692
MN1955WEN Declaration Statements 5-5

5.5 Structures
Structures provide a means of grouping data together, possibly of different types, into a
single named entity for convenient handling. Like an array, a structure is an aggregate (a
collection) of values, but unlike an array the data type of each member may be different.

Structures are declared using the Structure keyword:

Structure TComplex
 real As Float
 imag As Float
End Structure

Here, a structure has been declared called ‘TComplex’ (note the use of a leading 'T' to
denote that it is a data type) that contains two members called 'real' and 'imag', both of type
Float. This declaration does not reserve any memory, as it purely defines a template of the
structure’s contents. To create a variable of this type, the Dim statement is used, which
allocates the required amount of memory:

Dim x0 As TComplex, x1 As TComplex

In general, structures can be used in most cases where an intrinsic type, like Float, would
be permitted. For example they can be used in the declaration of arrays, assigned to, and
used as parameters. However, structures cannot be returned by a function and they cannot
be passed by value.

A structure may be initialized in its declaration by assigning a value to it. Since a structure is
an aggregate, like an array, the initialization values must be enclosed within braces { } and
there must be a value for each member of the structure. An example of the previous
declaration, but this time initialized, is shown below:

Dim x0 As TComplex = {10.5, 0.1}, x1 As TComplex = {-2.09, -1.937}

To access the contents of a structure variable, the member access operator (a period) must
be used. For example, to zero variable ‘x0’, the following code is used:

x0.real = 0
x0.imag = 0

As previously mentioned, it is possible to use user-defined types in most circumstances,
including assignment:

x1 = x0

Structures may also be nested, for example:

Structure T1
 a As Float
 b As Float
End Structure

Structure T2
 c As T1
 d As Integer
End Structure

Dim x As T2
5-6 Declaration Statements MN1955WEN

x.d = 0
x.c.a = 12.6
x.c.b = -0.0625

Initialization within the declaration for variable ‘x’ would look like this:

Dim x As t2 = {{1.0, 2.0}, 123}

Note how the initialization of the nested structure appears within its own set of braces.

Structures may include members that are arrays, and be declared as arrays too:

Structure t3
 a As Float
 b As Float
End Structure

Structure t4
 c(2) As t1
 d As Integer
End Structure

Dim y(3) As t4, i As Integer, j As Integer
...

y(i).d = 0
y(i).c(j).a = 12.6
y(i).c(j).b = -0.0625

Initialization within the declaration for variable ‘x’ would look like this:

Dim y(3) As t4 = {{{{1.0, 2.0}, {3.0, 4.0}}, 123}, _
 {{{5.0, 6.0}, {7.0, 8.0}}, 456}, _

{{{9.0, 10.0}, {11.0, 12.0}}, 789}}

Note again how each nested initialization appears within its own braces, and how arrays are
treated in a similar manner by enclosing them in braces. As with the initialization of simple
arrays, a semi-colon can be used to cause the last value to be repeated for all remaining
array elements. To illustrate this, the previous declaration could then become something like
this:

Dim y(3) As t4 = {{{{0.0, 0.0};}, 123};}

The above declaration causes all elements of the array member ‘c’ of ‘t4’ to be set to zero
and member ‘d’ set to 123, and this is repeated for all three elements of variable ‘y’.
Evidently, nested structures can become complicated, so this type of usage should be limited
to cases where it is strictly necessary.

Note that structures are only available when Option MintV5.5Keywords (see page 7-4)
is enabled, and only for target formats 12 and above.
MN1955WEN Declaration Statements 5-7

5.6 Bitfields
Bitfields provide a means of partitioning a sequence of bits such that each partition has a
prescribed bit-range and a unique name to allow it to be accessed. Bitfields are declared
using the Bitfield keyword:

Bitfield TCommsData
 parity As 8 To 8
 data As 0 To 7
End Bitfield

Here, a bitfield has been declared called ‘TCommsData’ (note the use of a leading ‘T’ to
signify that it is a data-type) that contains two members called ‘parity’ and ‘data’. Note that
these members do not have a conventional data-type, but instead have their bit range
specified using constant values with the To keyword. If a member requires only a single bit,
then the To keyword can be omitted (i.e. parity As 8 would be valid). Members of a
bitfield are of type integer and, with the exception of a member that extends from bit 0 to bit
31, are all unsigned.

The declaration of a bitfield does not reserve any memory, it simply defines a template of its
contents. To create a variable of this type, the Dim statement is used, which allocates the
required amount of memory.

Dim x As TCommsData

In general, bitfields can be used in most cases where an intrinsic type, like integer, would be
permitted. For example they can be used in the declaration of arrays, assigned to, used as
parameters, returned by a function and passed by reference or value.

A bitfield may be initialized in its declaration by assigning a value to it. Since a bitfield is just
a 32-bit integer, it may be initialized using a single integer value. However, since some
structure has been incorporated via members, these may be individually initialized by
enclosing their values in braces { } and there must be a value for each member. In the latter
case, the initialization is performed in declaration order of the members, which is only
significant if members overlap. An example of the above declaration, but initialized, is shown
below.

Dim x0 As TCommsData = 0
Dim x1 As TCommsData = {0, 0}

The members of a bitfield are accessed using the member’s name, which has the semantics
of an integer variable, but with a range limited by the bit-range specified in the bitfield’s
declaration.

If x.parity Then
 ...
End If

When writing to a bitfield member, any bits outside the range allowed are masked out, as
illustrated below:

x.parity = 1 'Writes 1
x.parity = 2 'Writes 0
x.parity = 3 'Writes 1

While a bitfield variable has an address, its members define data within that address, and so
are not individually addressable. Because of this, passing a member as a reference
5-8 Declaration Statements MN1955WEN

parameter will require a temporary variable to be used (see Issues Relating to Reference
Parameters on page 8-3) and so the contents of the bitfield member passed will not be
changed. However, a whole bitfield may be passed as a reference parameter, and any
changes made will be reflected in the contents of the passed parameter.

Note that bitfields are only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.
MN1955WEN Declaration Statements 5-9

5.7 Labels
Labels have two uses:

 To define a location in a program that execution can be directed to using the GoTo
statement.

 To give a block of code a qualification that can be used by the Exit and Continue
statements.

A label declaration is initiated with the hash (#) character, followed by the name of the label:

#myLabel

See GoTo statement on page 6-14 and Exit and Continue statements on page 6-10 for more
details on how labels are used.
5-10 Declaration Statements MN1955WEN

Action Statements
6 Action Statements

6.1 Introduction
Mint Basic provides a number of non-declaration statement types, which are termed ‘action
statements’. These vary from simple assignment to conditional and repetitive execution. The
action statements used for controlling tasks and calling subroutines are discussed in Modular
Programming starting on page 8-1.

6.2 Assignment
It is a very common task to evaluate an expression and to store the result. This is achieved
using the assignment operator, where the expression to the right of the equals sign is
evaluated and stored in the variable to the left of the equals sign:

variable = expression

Typically, the variable is a simple identifier:

y = 81.05
y = x
y = a * x ^ 2 + b * x + c

The variable assigned can itself be an expression, as is the case when a specific array
element is indexed, a structure member accessed, or any combination of these:

y(i) = a * x(i) ^ 2 + b * x(i) + c
x.a = (y + z) / 2
z(i).a = 0
w.c(i) = 0

If the expression is not the same type as the variable, then it will be automatically cast, if
possible (see Type casting on page 4-11). The following example shows two assignments,
the first where the integer expression is cast to float, and the second where the floating-point
expression is cast to integer:

Dim x As Float, i As Integer

x = i
i = x

Note that casting a float to an integer is performed by truncation, not rounding. The two
assignments above are the same as:

x = Float(i)
i = Int(x)

Data of any type can be used in an assignment statement, so long as it is a compatible type.
This includes strings and arrays, examples of which are shown below:

6

MN1955WEN Action Statements 6-1

Dim s1 As String * 10, s2 As String * 20
s1 = s2

Note that in the case of the string assignment, the types are the same but the sizes are
different. This is only a problem if the string being assigned contains more characters than
the variable can contain, which will result in a ‘string overflow’ run-time error (3109).

Arrays may be assigned in two ways, firstly by assigning a sequence of values, and secondly
by assigning another array variable. An example of each of these is shown below:

Dim x(10) As Float, y(2, 5) As Float

x = 1, 2, 3, 4, 5, 6, 7;
y = x

Note that the assignment of a sequence of values is not enclosed in braces, which are only
required if the assignment is in the variable’s declaration. Note also that in the assignment of
array ‘x’ to array ‘y’ that the types are the same, but the structure is different. This is not a
problem, as the internal storage is just a sequence of values. While the number of elements
is the same in this example, if they were different, no error would result; only as many
elements as will fit into the destination are copied.
6-2 Action Statements MN1955WEN

6.3 Commands
A command is a statement that causes a named routine to be executed. This named routine
can be a built in command or a user defined command. Built in commands, also called
intrinsic commands, include Print, Run, Shift, etc. User defined commands are created
by declaring a subroutine and calling it using its name. This is an advanced topic and is
discussed in Subroutines on page 8-1.

A command is executed by using its name as a statement, as shown below:

Run

Many commands can accept parameters, which are supplied to the command by enclosing
them in brackets and separating each with a comma, as shown below.

Run(conveyerTask, glueGunTask)

Similarly, for subroutines, the name of the subroutine is used in the same way. An exception
to this parameter passing mechanism is that for I/O commands the parameters are not
enclosed in brackets:

Print #_TERM1, "Products/second = ", 1000 * nProducts / nTime

This is discussed in more depth in Input and output on page 10-2.
MN1955WEN Action Statements 6-3

6.4 Control flow
Statements are executed sequentially, and while this is very useful, only the simplest of
programs can be written relying on this behavior alone. To do anything truly useful,
statements that control the flow of execution must be used. For this purpose, Mint Basic
supports a range of common block-structured constructs to allow the order of execution to be
precisely controlled. These may be based on conditions being met, or may be unconditional,
and may be a once only branch or a form of repetition.

6.4.1 Conditional execution
Conditional execution is used to decide whether to execute one section of code or another,
and is always based on one or more conditions.

6.4.1.1 If statement

The If statement, in its simplest form, can be read as “if a condition is met, then execute
these instructions, otherwise continue execution after the If statement”. For example:

If x < y Then
 x = y
 lessThan = _true
End If

This can also be expressed more concisely using a single-line If statement:

If x < y Then x = y: lessThan = _true

It is a common requirement to do something when a condition is true, but otherwise do
something else. This is achieved by using the Else statement, for example:

If x < y Then
 x = y
 lessThan = _true
Else
 lessThan = _false
End If

Again, this could be expressed more concisely using a single-line If statement, but as the
number of statements starts to grow, it makes more sense to use the block notation.

The final form allows multiple conditions to be tested in sequence using the ElseIf
statement, until one condition is met. For example:

If x < y Then
 x = y
ElseIf x <= 1.05 * y Then
 x = (x + y) / 2
Else
 outOfRange = _true
End If

The ElseIf keyword used above can be replaced with the Else If keyword, which is
provided for compatibility with older versions of Mint Basic.

The Select statement, described below, may be more appropriate for the case of matching
a single expression against a number of possible values.
6-4 Action Statements MN1955WEN

6.4.1.2 Select statement

The Select statement is typically used to test an expression for equality against a range of
values. The expression and the Case values must be compatible types (numeric and string
types cannot be mixed) and may be any type that allows relational comparison, i.e. any
numeric type (including character) and string5 are permitted. For example:

Select Case LastKey
 Case 'A': x = x + 1
 Case 'B': x = x - 1
End Select

This example checks the last key pressed, and if it was ‘A’ it increments variable ‘x’,
otherwise if it was ‘B’ it decrements ‘x’. If neither case is matched, nothing is done. Clearly,
the same effect could be achieved using an If statement, but use of the Select statement
allows the compiler to generate more efficient code when the tests are against integral
values whose range is limited and which do not contain big gaps. Even in non-optimal
conditions some improvements are possible (and the worst case is guaranteed to be no
worse than using an If statement) so it is recommended to use the Select statement
whenever testing a range of integral values.Note that execution always exits the Select
statement when a Case statement is encountered after the one that matched the Select
expression. This means that there is no fall-through like in C or C++, which means that the
following code executes nothing when LastKey is "B":

If it is required to do something if another key was pressed, then a Case Else statement
can be added:

Select Case LastKey
 Case 'A' = x + 1
 Case 'B'
 Case 'C': x = x – 1
 Case Else: Print "Bad selection"
End Select

If the intention was to decrement “x" when LastKey was “B" or “C", then the following code
should be used:

Select Case LastKey
 Case 'A': x = x + 1
 Case 'B', 'C': x = x - 1
End Select

Note also that the Case keyword immediately after the Select keyword may be omitted, but
should be retained if compatibility with previous versions of Mint Basic is required.

If it is required to do something when any other key was pressed, then a Case Else
statement can be added:

Select Case LastKey
 Case 'A' = x + 1
 Case 'B': x = x - 1
 Case Else: Print "Bad selection"
End Select

As the following example illustrates, a range of values can be tested, incrementing ‘x’ if
‘mode’ is 0, and decrementing ‘x’ if ‘mode’ is 1, 3, 4, or 5:

5.String comparison within the Select statement is only available in target formats 11 and above.
MN1955WEN Action Statements 6-5

Select Case mode
 Case 0: x = x + 1
 Case 1, 3 To 5: x = x – 1
 Case 2, 6: x = x + 10
 Case 7: x = x – 10
 Case Else: Print "Bad mode"
End Select

When the number of statements in each Case section increases, it may be convenient to put
them each on their own line. In the following example, the previous example has been
expanded to increment ‘y’ by 1 when ‘x’ is incremented by 10, and to decrement ‘y’ by 1
when ‘x’ is decremented by 10:

Select Case mode
 Case 0
 x = x + 1
 Case 1, 3 To 5
 x = x – 1
 Case 2, 6
 x = x + 10
 y = y + 1
 Case 7
 x = x – 10
 y = y - 1
 Case Else
 Print "Bad mode"
End Select

This formatting of the Select statement is preferred and will be used in all further examples.

Furthermore, a condition can be tested by using the Is operator (see page 4-5). The
following example shows how to increment variable ‘x’ when the Select expression is 0 to
10, decrement ‘x’ when the Select expression is greater than 50, or otherwise zero ‘x’:

Select Case (x + y) / 2
 Case 0 To 10
 x = x + 1
 Case Is > 50
 x = x - 1
 Case Else
 x = 0
End Select

Finally, it is possible to use non-constant expressions in a Case statement:

Select Case (x + y) / 2
 Case a To b + 1
 x = x + 1
 Case Is > c
 x = x - 1
 Case Else
 x = 0
End Select

Where ‘a’, ‘b’ and ‘c’ are variables or function calls. Note that for a Case containing multiple
elements (e.g. Case a, b, c To d, e), then these are compared with the Select
expression from left to right until a match is found, any remaining elements being ignored.
This is a form of ‘short-circuit’ evaluation, and is not normally a problem unless one of the
elements is a function call that causes side effects (see Side effects on page 8-7 for more
information on this).
6-6 Action Statements MN1955WEN

Note that the Is operator is only available when Option MintV5.5Keywords (see page
7-4) is enabled, and only for target formats 11 and above.

6.4.2 Repetitive execution
The statements in this category are used to cause statements to be repeatedly executed,
either conditionally or unconditionally. It is common in computing to use the term ‘iteration’ to
describe repetition.

6.4.2.1 Loop statement

This statement allows unconditional looping, executing repeatedly all the instructions
contained within it:

Loop
 ...
End Loop

Looping continues indefinitely, unless an Exit statement is encountered.

6.4.2.2 Repeat statement

This statement allows conditional looping, executing all the instructions contained within it
until the specified condition is met:

Repeat
 ...
Until expression

Note that one iteration of the loop is always performed, as the condition is at the end of the
loop. Looping continues until the condition becomes true (non-zero), unless an Exit
statement is encountered. Below is an example of a Repeat statement being used to
evaluate π/4:

Const n = 50000

Dim i As Integer, s As Float = 0.0

i = n – 1
Repeat
 s = s + 1 / (2 * i - 1) – 1 / (2 * i + 1)
 i = i - 2
Until i < 1

6.4.2.3 While statement

This statement allows conditional looping, executing the instructions contained within it while
the condition remains true:

While expression
 ...
End While

Note that it is possible that no iterations will be executed, as the condition is at the top of the
loop. Looping continues while the condition remains true (non-zero), unless an Exit
statement is encountered. Below is an example of a While statement being used to evaluate
π/4:
MN1955WEN Action Statements 6-7

Const n = 50000

Dim i As Integer, s As Float = 0.0

i = n – 1
While i >= 1
 s = s + 1 / (2 * i - 1) – 1 / (2 * i + 1)
 i = i - 2
End While

6.4.2.4 For statement

This statement allows a prescribed number of iterations to be performed by specifying a
starting value, a finishing value and a step:

For counter = start To end Step step
 ...
Next counter

Below is an example of a For statement being used to evaluate π/4.

Const n = 50000
Dim i As Integer, s As Float = 0.0

For i = n - 1 To 1 Step -2
 s = s + 1 / (2 * i - 1) – 1 / (2 * i + 1)
Next i

The For loop obeys the following rules:

 The counter may be any numeric variable, and while this is usually a simple variable, it
can also be an array element, a structure member, or any combination of these.

 It is illegal to jump into a For loop, as this would skip its initialization and cause
unpredictable behavior. Because of this, an error will be reported by the compiler.

 The counter is initialized to the start value and increments by the specified step prior to
starting the next iteration.

 The Step specification is optional, and if omitted will default to 1 (one).

 Looping continues until the final value is exceeded, unless an Exit statement is
encountered or GoTo is used to jump outside the loop.

 Once iteration has started, the end value and the step are frozen (i.e. even if they were
specified using variables, changing the value of these variables will have no effect on the
iterations performed).

 No iterations will be performed if the start value is greater than the end value with a
positive step or the start value is less than the end value with a negative step.

 After the loop terminates, the final value of the counter will be equal to the last value
used in the body of the loop, i.e. such that adding the step would take it beyond the
upper limit.

The For loop is handled in one of two ways depending on the firmware revision. In older
builds (MVM Library Build 45 and prior), the number of iterations required is calculated
ahead of time and only this number of iterations is performed. This strategy results in slightly
odd behavior when the loop counter is modified within the loop’s body. For this reason,
newer firmware (MVM Library Build 46 and above) adopts a strategy that iterates until the
final value is exceeded, but leaving the loop counter equal to the last value used in the loop
(this final point is a deviation from Visual Basic to aid compatibility with previous versions of
Mint Basic).
6-8 Action Statements MN1955WEN

The following program shows how each strategy functions:

Dim i As Integer, f As Float, fnew As Float

'Mint Basic For loop run-time semantics (old)
i = (1000 - 0) / 0.1
f = 0
While i > 0
 f = f + 0.1
 i = i - 1
End While
Print "Mint Basic old"; f

'Mint Basic For loop run-time semantics (new)
f = 0
Loop
 fnew = f + 0.1
 If fnew > 1000 Then Exit
 f = fnew
End Loop
Print "Mint Basic new"; f

'Visual Basic For loop run-time semantics
f = 0
While f < 1000
 f = f + 0.1
End While
Print "Visual Basic"; f

The above program produces the following output (on a controller from the NextMove
family).

Mint Basic old 999.8049
Mint Basic new 999.9048
Visual Basic 1000.0050

While the shortfall is usually small, as shown in the above example, the worst case shortfall
can be as large as the step size, and the program below illustrates this (when executed on a
controller from the NextMove family):

Const _fStep = 2 / 3

Dim f As Float, fUpper As Float, i As Integer

For i = 1 To 5
 fUpper = i * _fStep
 For f = 0 To fUpper Step _fStep
 Next f
 Print i; f; fUpper; IIf(Abs(f - fUpper) < 0.01, "Good", "Bad!")
Next i

Using MVM Library Build 45 and prior:

1 0.6667 0.6667 Good
2 1.3333 1.3333 Good
3 2.0000 2.0000 Good
4 2.6667 2.6667 Good
5 2.6667 3.3333 Bad!

Using MVM Library Build 46 and above:
MN1955WEN Action Statements 6-9

1 0.6667 0.6667 Good
2 1.3333 1.3333 Good
3 1.3333 2.0000 Bad!
4 2.6667 2.6667 Good
5 3.3333 3.3333 Good

Clearly, neither the old nor the new strategy copes with floating-point data in all cases, and
the reasons for this are discussed in the next section.

6.4.2.5 Error propagation

Whenever floating-point arithmetic is performed, there exists the possibility that arithmetic
operations can accumulate errors. This is perfectly normal, and is not usually a problem
unless the calculation is performed within a loop in such a manner that these small errors
accumulate to a significant level, possibly rendering the final result useless. Such errors can
occur in statements like:

For x = 0 to 1000 Step 0.1
Next x
Print x

Because of the differences discussed in the previous section, the above code fragment will
either display 999.8029 or 999.9048 on a controller from the NextMove family. The first value
occurs because the number of iterations is correctly calculated as being 10000, but due to
floating-point limitations the final value falls short. The second value occurs because
999.9048 is within 0.1 of 1000, and so when incremented was beyond the upper limit, hence
terminating the loop. In both cases the value is not 1000.0 because floating-point arithmetic
is inherently inaccurate, leading to the accumulation of many small errors due to repeatedly
adding 0.1 to variable ‘x’.

If an accurate series of 10000 equally spaced values were required in the range 0 to 1000, it
would be more accurate to use the code below:

For i = 0 To 10000
 x = i / 10
Next i

These examples show the simplest forms of error associated with using floating-point
arithmetic, and this subject is discussed in more depth in Floating-point limitations on page
4-12.

6.4.3 Overriding the natural flow of execution
The conditional and repetitive constructs present in Mint Basic provide a means of specifying
the natural flow of execution in a program. Most of the time these constructs are entirely
adequate by themselves, but there are occasions when the natural flow of a program needs
to be broken. The commands in this section allow this to occur, although they should be used
sparingly as their use generally makes a program less readable.

6.4.3.1 Exit and Continue statements

The Exit statement is used to immediately jump out of the closest surrounding loop, thus
terminating it. The Continue statement is used to jump immediately to the end of the
closest surrounding loop, thus causing its next iteration to start.

Repeat
 ...
6-10 Action Statements MN1955WEN

 If expression Then Exit 'Jump to the statement after Until
 If expression Then Continue 'Jump to the Until
 ...
Until expression

The Continue statement is often used when reversing the condition and indenting a further
level could cause such deep nesting that the program might become harder to read:

For i = 1 to n
 'Skip negative elements
 If a(i) < 0 Then Continue

 'Process positive elements
 ...
Next i

Compare this with equivalent code that uses a block If statement rather than a Continue
statement.

For i = 1 to n
 'Skip negative elements
 If a(i) >= 0 Then
 'Process positive elements
 ...
 End If
Next i

The example below illustrates how only the closest surrounding loop is operated on, and will
cause execution to jump to the statement immediately after the End Loop when the
condition in the If statement is met:

Repeat
 ...
 Loop
 ...
 If expression Then Exit
 ...
 End Loop
 ...
Until expression

Methods of getting around this restriction are discussed in the following sections.

6.4.4 Keyword qualification
As was shown in the previous section, it is only possible to exit or continue the closest
surrounding loop. This limitation can be avoided by qualifying the Exit or Continue
statement with the keyword of the required loop. This is illustrated by modifying the previous
example to make it exit the Repeat loop instead:

 Repeat
 ...
 Loop
 ...
 If expression Then Exit Repeat
 ...
 End Loop
 ...
Until expression

When qualified, the Exit statement may also be used to exit a Select statement, as shown
below:
MN1955WEN Action Statements 6-11

Select Case i
 Case 1:
 ...
 Case 2:
 ...
 If expression Then Exit Select 'Cannot use just Exit
 ...
 Case Else
 ...
End Select

As with loops, only the closest surrounding Select statement can be exited. The problem of
only operating on the closest surrounding block of the specified type is illustrated below,
where it is required to exit the outer Loop statement, but with no obvious way of achieving
this:

Loop
 ...
 Loop
 ...
 If expression Then Exit Loop 'Exits inner loop only!
 ...
 End Loop
 ...
End Loop

A means of getting around this restriction is discussed in the next section.

6.4.5 Labeled qualification
As shown in the previous section, it is only possible to exit or continue the closest
surrounding block matching the specified keyword qualification. This limitation can be
avoided by qualifying the required block with a label and using this label in the Exit or
Continue statement (see Labels on page 5-10 for details of their syntax). Note that the label
used to qualify the block is local to the block and is only visible to the Exit and Continue
statements enclosed in that block.

This is illustrated by modifying the last example from the previous section to make it exit the
outer Loop:

Loop#outer
 ...
 Loop
 ...
 If expression Then Exit Loop outer
 ...
 End Loop
 ...
End Loop

Since the loop is uniquely qualified by the label in the above example, the keyword
qualification may be dispensed with:

Loop#outer
 ...
 Loop
 ...
 If expression Then Exit outer
 ...
 End Loop
 ...
End Loop
6-12 Action Statements MN1955WEN

Labeled qualification may also be used to exit a Select statement, but in this case it must
be used in conjunction with keyword qualification, otherwise it would try to locate a loop with
a matching label:

Select Case#i i
 Case 1:
 ...

 Case 2:
 ...
 Select Case j
 Case -1:
 ...

 Case 1:
 ...
 If expression Then Exit Select i 'Cannot use just Exit i
 ...

 Case Else
 ...
 End Select
 ...

 Case Else
 ...
End Select

In the example above, note how the outer Select statement is labeled with the name 'i',
which is the same name as the variable used as the select expression. This is allowed
because the block label is not a label declaration (and so will not clash with any other
declarations in the program), it is just a name tagged to a block that is visible only to the
Continue and Exit commands.

Note that labeled blocks are only available when Option MintV5.5Keywords (see page
7-4) is enabled, and only for target formats 13 and above.

6.4.5.1 Summary

The following points summarize how Exit and Continue operate.

 Exit and Continue statements with no qualification operate only on loop blocks and
search for the closest surrounding loop block.

 Exit and Continue statements qualified with only a keyword search for the closest
surrounding block with a matching keyword.

 Exit and Continue statements qualified with only a label operate only on loop blocks
and search for the closest surrounding loop block with a matching label.

 Exit and Continue statements qualified with both a keyword and a label search for the
closest surrounding block where both qualifications match.

 The block label is specific to the block it is qualifying and is only visible to the Exit and
Continue statements nested within this block.

 Nested blocks may use the same block label, the ambiguity of doing so being resolved
by the above rules.

 Non-nested blocks within the same scope may use the same block label without
ambiguity, since they can only be accessed from inside the block.
MN1955WEN Action Statements 6-13

6.4.6 GoTo statement
The GoTo statement is used to direct execution to another point in the program, namely the
location of a label (see Labels on page 5-10 for details of their syntax). Below is an example
of how they can be used:

If Abs(pivot) < assumedZero Then GoTo zeroPivot
...
#zeroPivot

The label must be in the same scope as the GoTo statement, hence disallowing the jumping
into or out of modules. Additionally, it is illegal to jump into the body of a For loop or a
Semaphore block, since they will not yet be initialized for correct operation. The compiler will
issue an error if it detects such a misuse.

The GoTo statement should be reserved for unusual circumstances where the natural
structure of an algorithm has to be broken. Code that uses GoTo can always be rewritten to
avoid its use, though sometimes at the cost of an extra variable or repeated conditional tests.
If these additional costs are significant, or the natural clarity of the algorithm is disrupted,
then its use might be justified.

6.4.7 Delaying execution
Mint Basic has two statements that delay execution, but without executing any statements.
These statements provide a shorthand notation to aid readability and also enable multi-
tasking programs to run efficiently.

6.4.7.1 Pause statement

The Pause statement only allows execution to pass through it when the specified condition is
met. An example is shown below, which will wait for a key to be pressed on terminal 1.

Pause(InKey(_TERM1))

It might not be obvious why this statement is useful, as it could have been implemented
using one of the repetitive statements, for example:

Repeat: Until InKey(_TERM1)

However, while this will work, it is not elegant and will cause a multi-tasking program to
execute more slowly. The inefficiency arises because, in the time-frame of processing
instructions, if the condition is false, it is unlikely to become true during execution of the next
instruction, or indeed the next ‘n’ instructions (assuming ‘n’ is small). In this example, it is
waiting for a key to be pressed, and since it takes time for the user to notice this and act on it,
it makes little sense to continue testing this condition repeatedly. The Pause statement is
designed to avoid this situation by handing execution to other tasks if the condition is false,
which leads to much improved efficiency in a multi-tasking program.

Note that the condition must be a function of something external to the task that contains the
Pause statement or an infinite loop will occur. This is because the Pause statement does not
execute any statements, and so cannot itself cause the state of the condition to change. For
example, consider a task waiting for a variable to become non-zero, as shown below:

Dim counter As Integer = 0

Pause(counter > 0)
Print "Counter greater than zero"
6-14 Action Statements MN1955WEN

This code would loop forever, since variable ‘counter’ will never be greater than zero.
However, if another task were added that could alter the state of ‘counter’, then this condition
has at least a chance of succeeding:

Dim counter As Integer = 0

Run(handleCounter)
Pause(counter > 0)
Print "Counter greater than zero"

Task handleCounter
 Dim i As Integer = 0

 Loop
 If i > 1000 Then
 counter = counter + 1
 i = 0
 End If
 i = i + 1
 End Loop
End Task

In the case of Pause(InKey), the condition is a function of a process external even to the
Mint Basic program.

6.4.7.2 Wait statement

The Wait statement only allows execution to pass through it when the specified number of
milliseconds has elapsed, for example:

Wait(50)

As with the Pause statement, you could express this using a repetitive statement, but this
would incur the same type of multi-tasking inefficiency, since even in a single millisecond a
great many instructions can be executed. Furthermore, it would also require a variable to
monitor the passage of time. These are both good reasons to use Wait:

Time = 0 'Hope nothing else is using this!
Repeat: Until Time >= 50

Or, using a temporary variable to avoid modifying Time:

Dim t0 As Integer
...
t0 = Time
Repeat: Until Time – t0 >= 50

Or, using the Time data type:

Dim t0 As Time
...
t0 = 0
Repeat: Until t0 >= 50

Evidently, these are all lengthy and inefficient so should be avoided. If the Pause statement
is used, then multi-tasking efficiency will be close to optimal, as shown below:

Time = 0
Pause(Time >= 50)

However, this is still not as concise as the Wait statement.
MN1955WEN Action Statements 6-15

6-16 Action Statements MN1955WEN

Directive Statements
7 Directive Statements

7.1 Introduction
The Mint Basic compiler can be directed to behave in a variety of ways with regard to
keyword support, error reporting, code generation and run-time behavior, using the keywords
in this section.

The default behavior of the compiler is stored in the registry, and these settings can be
adjusted using the Tools, Options…, Advanced Options dialog in Mint WorkBench. Note that
these settings are stored for each controller, so changing an option when connected to a
controller will only change the settings for that specific controller.

In some of the following sections, options are listed using the format ‘Description (Option
Name)’, where Description indicates the text shown in the Tools, Options…, Advanced
Options dialog in Mint WorkBench, and (Option Name) shows the equivalent Mint program
statement (if available). Directive statements in a program always take priority over the
defaults set in Mint WorkBench.

7

MN1955WEN Directive Statements 7-1

7.2 Auto
This statement indicates that the program should start executing automatically on power-up,
providing that there are no initialization errors or warnings.

Auto

The location of the Auto statement is unimportant, so long as it appears where a statement
is valid, though it will typically be placed in the Startup module. Note that the same
functionality can be obtained using code 3101 statement:

Option Auto 1

The benefit of this is that it is possible to be explicit about whether auto-running is required or
not rather than having to search the source program for an Auto statement. Also, because it
is a compiler option, it is possible to make the default setting whatever is required.
7-2 Directive Statements MN1955WEN

7.3 Option
This statement allows an internal option of a given name to be set to a specific value, thus
modifying the compiler’s behavior. The following example shows how the InKey command
can be made to return -1 instead of 0 when the input buffer is empty:

Option InKeyMode 0

Option statements must be placed at the outer level, and it is usual to place them at the
head of the program.

Information on all code 3101s available is detailed in the following sections.

7.3.1 Compatibility options
The compatibility mode controls an aggregate of options to enable the easy specification of
the required compatibility.

The compatibility mode can be set in a Mint Basic program using Option
CompatibilityMode, which can be set to any of the above values. The effect of setting
this option is shown in the following table:

Compatibility Mode Description

0 No compatibility required, i.e. all options will be applied and not be
overridden.

5000 Compatibility with MintMT, i.e. all new features disabled.

5400 Compatibility with MintMT, but with new features like structures
enabled.

5500 Compatibility with Mint Basic used on e100 products.

CompatibilityMode

Option 5000 5400 5500

Abbreviations 1 1 1

BraceUsage 0 0 1

CFormatting 0 1 1

CharCase 0 0 0

ChrReturnsString 0 0 1

ErrorRegs 2 2 1

LegacyKeywords 1 1 0

LegacyParameter 0 0 1

MintV5.5Keywords 0 1 1

ModuleNesting 0 1 1

OptionalParameter 0 0 1

PromoteCharsToString 1 1 0

ZeroPad 1 1 0
MN1955WEN Directive Statements 7-3

Because this option controls an aggregate of options, setting one of code 3101s in the above
table individually will be overridden if followed by setting the compatibility mode. For
example, the following statement sets the compatibility mode to 5400 with the exception of
disallowing legacy keywords:

Option CompatibilityMode = 5400
Option LegacyKeywords 0

However, in the following example, because legacy keywords are disabled prior to setting the
compatibility mode, it will be reset, thus allowing their use:

Option LegacyKeywords 0
Option CompatibilityMode = 5400

Note that under compatibility modes 5000 and 5400, error handling is performed using Err,
Erl, etc., which are automatically primed. This behavior is designed to be compatible with
previous versions of Mint Basic, so ERRORREADNEXT, etc., if available, should not be used in
either of these compatibility modes.

7.3.2 Keyword support options
The keywords supported by Mint Basic are controlled with these options.

Allow abbreviated keywords (Option Abbreviations) controls whether the abbreviated
names of MML functions are permitted. Use of abbreviations no longer improves execution
speed as it did in version 4 of Mint Basic and before, and since they make programs difficult
to read, their use should be avoided.

Legacy keywords (Option LegacyKeywords) controls whether short-hand notation used
before MintMT is recognized or are treated as valid identifiers. The short-hand notations
affected by this option are shown in the following table:

Keyword Description

an, adcn ADC(n)

Dint, EInt Disable/enable digital input events

ik InKey

in, inn INX(n)

on, outn OUTX(n)

rk ReadKey

tm Terminal

te Time

Tron, Troff Trace on/off

wt Wait
7-4 Directive Statements MN1955WEN

Mint v5.5 keywords (Option MintV5.5Keywords) controls whether features new to Mint
Basic are recognized or are instead treated as valid identifiers.

7.3.3 Code generation options
Array base (Option Base) controls whether the lowest index of arrays is 0 (zero) or 1 (one)
if it is not specified explicitly. The default is 1 (one).

Allow C format strings (Option CFormatting)controls whether the format strings used in
the C language are permitted in a Using clause.

Chr returns string (Option ChrReturnsString) controls whether the Chr function returns
a string or an integer (flagged for display as a character). The default is 1 (one), which makes
it return a string.

Keyword Description

AndAlso Logical conjunction (short-circuit)

Bitfield..End Bitfield User defined bitfield type

Bool Logical affirmation

CvtIeee2Flt
Conversion functions for re-mapping
the internal representation of numeric
types

CvtInt2Flt

CvtFlt2Ieee

CvtFlt2Int

Echo Input echo on/off

EventPriority Allows control of event priorities

IIf Immediate if

Is Case expression relational operator

IsAlnum Is alphanumeric (a-z, A-Z, 0-9)

IsAlpha Is alphabetic (a-z, A-Z)

IsAscii Is ASCII code (0-127)

IsCntrl Is control code (0-31, 127)

IsDigit Is decimal digit (0-9)

IsLower Is lower case (a-z)

IsUpper Is upper case (A-Z)

IsXDigit Is hexadecimal digit (0-9, a-f, A-F)

OrElse Logical inclusive disjunction
(short-circuit)

Shutdown..End Shutdown Shutdown module declaration

Structure..End Structure User defined structure type

Wrap Wrap a value to within limits

WrapOffset Shortest offset to a target value within
the wrap limits
MN1955WEN Directive Statements 7-5

Compound parameters (Option CompoundParameters) controls the extent to which
compound parameters can be used. A setting of 0 (zero) prohibits their use. The default
setting of 1 (one) allows their use, but only in the first parameter. A setting of 2 allows their
use in any parameter.

Line tracking mode (Option LineMappings) controls the method used to keep track of
the currently executing line number in a Mint Basic program. A setting of 0 (zero) uses the
line instruction. A setting of 1 (one) uses a line mapping table (the default). A setting of 2
provides no line tracking information at all.

Allow dynamic modules inside any static module (Option ModuleNesting) controls
whether subroutines and functions are allowed to be declared inside all static modules or
not. Previous versions of Mint Basic only allowed subroutines and functions to be declared
within tasks. The default is to allow dynamic module declarations within all static module
types.

Optimization level (Option OptLevel) controls the level of optimization used by the
compiler. Higher values indicate more optimization. The valid range of values is 0 to 4, with
the default being 2. Each value has the following meaning.

0. No optimization.

1. Dead code removal.

2. Structure preserving optimizations.

3. Structure changing optimizations (may give odd behavior when single-stepping).

4. Iteration of all optimizations until no changes are made.

Use ByRef as default parameter passing mechanism (Option ParametersByRef)
controls whether parameters are passed by reference or by value when it is not specified
explicitly. The default is 1 (one), which passes parameters by reference.

Promote characters to string (Option PromoteCharsToString) controls whether
character data (that enclosed in single quotes) is automatically promoted to a string where
appropriate. The default is 0 (zero), which does not promote them.

Static initialisation method (Option StaticInitialisation) controls when static
variables are initialized. A setting of 0 (zero) only initializes on program download. A setting
of 1 (one) initializes on program download and also initializes all static variables each time
the parent task is executed. A setting of 2 initializes on program download and also
initializes the static variables declared in a module each time the module is executed, except
for static variables declared in a dynamic module, which are initialized each time the parent
task is executed. A setting of 3 is the same as setting 2, but without the exception for static
variables declared in a dynamic module. The default setting is 2. These settings can be
viewed in terms of the amount of initialization being performed being at its lowest with a
setting of 0 (zero), and gradually increasing with each setting increment.

Enable watch window support (Option WatchWindowSupport) controls whether
information used to monitor the contents of static variables is included in the executable. The
default is 1 (one), which includes the required information.

Default string size in characters (Option StringSize) controls the maximum number of
characters allowed in a string when it has not been specified explicitly. The default is 64.
7-6 Directive Statements MN1955WEN

Vector table maximum hole size (Option VectorMaxHoleSize) controls how large the
holes in a vector table can become before they are terminated and a new table is started.
When tables become segmented, which can be due to holes or non-constant Case
expressions, the vector tables are processed in sequence until a match is found. The default
value is 2147483647 (i.e. there is no practical limit).

Vector table maximum size (Option VectorMaxSize) controls how large the vector table
used for Select statement can become. When a vector table exceeds this size, it results in
multiple segments, each of which is processed in sequence until a match is found. The
default value is 256.

Automatically initialize local variables (Option ZeroLocals) controls whether local
variables in subroutines and functions (i.e. dynamic variables) are automatically initialized to
zero/null on entry. The default is 0 (zero), which leaves them uninitialized.

7.3.4 Error and warning options
Warning levels are 0, 1 or 2, with 0 signifying that the warning is ignored, 1 signifying a
warning, and 2 promotes a warning to be an error. The global warning level, set with Option
WarningLevel, only applies to individual warnings that have a level of 1, i.e. if a warning is
disabled (set to 0), then it will not be affected by the global warning level, and if an individual
warning is promoted to be an error (set to 2), then it will not be affected if the global warning
level is set to 0 or 1.

Brace usage warning level (Option BraceUsage) controls whether omitting braces around
array initialization data is ignored, warned or flagged as an error. The default is 1 (one).

Case already exists warning level (Option CaseExists) controls whether duplicating a
Case expression is ignored, warned or flagged as in error. The default is 1 (one).

Declaration hidden warning level (Option DeclarationHidden) controls whether
declarations that hide others are ignored, warned or flagged as an error. The default is 1
(one).

Declaration hides predefined warning level (Option DeclarationHidesPredefined)
controls whether declarations in a program that share a name with an item in the symbol
table is ignored, warned or flagged as an error. The default is 2.

Declaration unused warning level (Option DeclarationUnused) controls whether
declarations that are unused are ignored, warned or flagged as an error. The default is 1
(one).

Errors per statement (Option ErrorsPerStatement) controls the number of errors
reported for each statement, and is intended to limit the number of errors produced. The
default is 1 (one).

Floating-point equality test warning level (Option FloatComparison) controls whether
testing floating-point values for equality is ignored, warned or flagged as an error. The default
is 1 (one).

Function return variable not set warning level (Option FunctionReturn) controls
whether not setting the function return variable for all paths through a function is ignored,
warned or flagged as an error. The default is 1 (one).
MN1955WEN Directive Statements 7-7

Legacy feature warning level (Option LegacyFeatures) controls whether legacy features
(like MML functions that have a new name, labeled events, GoSub, Return and all keywords
enabled with the LegacyKeywords option, see page 7-4) are allowed and ignored, allowed
but warned or flagged as an error. The default is 1 (one).

Legacy parameter warning level (Option LegacyParameter) controls whether using dot
or square bracket parameters is ignored, warned or flagged as an error. The default is 1
(one).

LHS/RHS parameter mismatch warning level (Option LhsRhsParameterMismatch)
controls whether mismatches between the left-hand side and right-hand side parameters are
ignored, warned or flagged as an error. The default is 1 (one).

Maximum number of errors (Option MaxErrors) controls the maximum number of errors
that will be reported before compilation is aborted with a “Too many errors” error. The default
is 100.

Optional parameter warning level (Option OptionalParameter) controls whether
omitting an optional parameter is ignored, warned or flagged as an error. The default is 1
(one).

Precision loss warning level (Option PrecisionLoss) controls whether operations that
might lose precision are ignored, warned or flagged as an error. The default is 1 (one).

Temporary used warning level (Option TempUsedInCall) controls whether operations
that require the use of a temporary variable are ignored, warned or flagged as an error. The
default is 1 (one).

Global warning level (Option WarningLevel) controls the global warning level, which if 0
(zero) causes warnings to be ignored, if 1 (one) keeps warnings as warnings, and if 2
promotes warnings to be errors. The default is 1 (one).

7.3.5 Run-time options
Auto run program on power-up (Option Auto) controls whether programs should auto-run
on power-up or not. The default is 0 (zero), which means they should not auto-run by default.

Character case (Option CharCase) controls whether character data is converted to upper-
case, lower-case or left unaltered. The default is 0 (zero).

Error in error event is fatal (Option ErrorFatal) controls whether errors that occur in the
ONERROR event are fatal. The default is 1 (one), which means that errors are fatal in
ONERROR.

Error registers (Option ErrorRegs) controls whether the error registers (Err, Erl, etc.)
are automatically primed prior to entering the ONERROR event. The default is 1 (one), which
allows their use for pre-e100 products only. Setting this to 2 allows their use for all products
and a setting of 0 (zero) disables their use for all products.

InKey mode (Option InKeyMode) controls whether the InKey function returns -1 or 0
(zero) when the input buffer is empty. The default is 1 (one), which makes InKey return 0
(zero) when the input buffer is empty.
7-8 Directive Statements MN1955WEN

Maximum concurrent MML calls (Option MaxMmlCalls) controls how many MML calls
may be made in parallel on products that support this (currently only e100 products). Any
value between 1 and 15 is allowed, although system stability may be compromised with
settings above 2. The default value is 2.

Angles measured in radians (Option Radians) controls whether angles are represented in
degrees or radians. The default is 0 (zero), which is degrees. Setting this to 1 (one) will
cause angles to be measured in radians. Previous versions of Mint Basic only allowed the
use of degrees. This option may be useful if compatibility with Visual Basic is required, or
radians are more convenient for the application.

Row major arrays (Option RowMajor) controls whether arrays are stored as row major or
column major. Previous versions of Mint Basic only used column major, which remains the
default setting. Note that this option only affects the initialization of arrays and has no impact
on how they are indexed in a program.

Scheduler (Option Scheduler) controls which scheduler is used to execute programs.
The schedulers are:

 0 (Default) This uses an ageing process that factors the priority by the waiting time for
each waiting task (excluding blocked tasks) to decide which to execute next. Blocked
tasks wait until an unblocking event occurs, at which point the blocked tasks are
processed in turn to remove the blockage, after which normal scheduling continues. This
scheduler speed is inversely proportional to the number of executing tasks (excluding
blocked tasks).

 1 This uses probability theory to execute tasks. Each task is allocated a weighting
equivalent to the task’s priority (set using TaskPriority). The scheduler then randomly
picks the next task, which means that tasks with greater priority (weighting) have a
greater chance of being chosen. On average, this results in extremely rapid execution for
all tasks, while increasing the chance that high priority tasks will be serviced frequently.
However, it does not guarantee the frequency at which a particular task will be chosen.
This scheduler operates in constant time.

Shutdown behavior (Option Shutdown) controls the behavior of the Shutdown module.
The default value is 0 (zero) and the setting of each bit has the following effect:

 0. User break does not run the shutdown module.

 1. User break and error conditions encountered in the shutdown module do not cause
the Mint Break Type to be enforced.

 2. User break is not allowed when executing the shutdown module.

Zero pad numeric output (Option ZeroPad) controls whether numeric output is padded
with leading zeroes or spaces. The default is 0 (zero), which pads with spaces.

7.3.6 Configuration options
These options are only adjustable via the Compiler Options dialog, since they are used to
configure the compiler rather than to have any specific effect on the program being compiled.

Convert MML functions to uppercase is used to allow the editor to either convert all MML
function names to upper case (the default) or to leave them unaltered as they are typed.
MN1955WEN Directive Statements 7-9

Hash table initial size is used to control the initial size of the hash tables used by the
compiler. The default is 5.

Hash table maximum size is used to control how large the hash tables used by the compiler
are allowed to become. The default is 0, which implies they are unlimited.

Hash table resize threshold is used to specify the average number of items per bucket that if
exceeded will cause the hash tables used by the compiler to be resized. The default is 3.

Show compilation statistics is used to control whether a brief summary of the compilation is
shown as a diagnostic in the build tab. The default is 0 (disabled).

7.3.7 Listing generation options
These options are only adjustable via the Compiler Options dialog, since they are used to
configure the compiler’s listing generation facility rather than to have any specific effect
during a compilation.

Apply conversions is used to specify whether certain conversions should be applied to the
source file. The default is 1 (one). These conversions include:

 Conversion of identifiers to match the character case of their declaration.

 Conversion of legacy keywords to the current standard (e.g. ik becomes InKey, a0
becomes ADC(0)).

 Conversion of literals to the current standard (e.g. 01101 becomes 2#1101).

 Conversion of calls to use bracketed parameters, including dot parameters and
commands that use unbracketed parameters (e.g POS.0 becomes POS(0) and
mySub a, b, c becomes mySub(a, b, c)).

Bracketing method is used to specify the level of bracketing that is to be used in expressions.
The valid range is 0-5, and the default is 3. A setting of 0 will have the minimum number of
brackets present that are necessary to represent the expression, higher values introducing
progressively more brackets.

Case separation is used to specify the number of blank lines between successive Case
elements of a Select statement. The default is 1 (one).

Comment column alignment is used to specify on what column end-of-line comments are to
be aligned. The default is 32.

Convert single-line If statements to block form is used to control whether single-line If
statements are converted to block If form. The default is 0 (disabled).

Indentation depth is used to specify the indentation depth for block-structured constructs.
The default is 2.

Module separation is used to specify the number of blank lines between module
declarations. The default is 3.

Sort declarations is used to specify whether declarations should be sorted into a prescribed
order. The default is 0.
7-10 Directive Statements MN1955WEN

Modular Programming
8 Modular Programming

8.1 Introduction
Modular programming is based on the principle of splitting a problem into a number of
manageable parts, and then dealing with each of these in isolation. This allows each part to
be small enough to comprehend, hence easing its design, implementation and testing. It also
allows parts to be re-used within a program, thus avoiding duplication. It is then a matter of
writing some code that uses these parts in a meaningful manner, a much simpler task than
writing one huge program.

Mint Basic uses the term “module” to describe these components, each of which has unique
properties. These modules include the commonly available subroutines and functions, and
the less common module types like tasks, events, the Startup module and Shutdown
module.

8.2 Subroutines
Subroutines are used to collect code together that performs a specific purpose. They are
useful in situations where the same piece of code requires execution in a number of places,
though their use shouldn’t be dictated by this alone; they can still be very useful even if only
called from one location.

A subroutine is declared using the Sub keyword:

Sub mySub()
 ...
End Sub

Note the empty brackets after the subroutine’s name, which normally contain parameters,
but which must be present even if there are none. Subroutines are called by using their name
as a statement:

mySub

While this is quite useful, subroutines become even more useful when they can receive input
data, which is achieved by using parameters. The following code shows how this can be
achieved:

Sub mySub(x As Float)
 ...
End Sub

This allows a single floating-point value to be passed to the subroutine, which it can then use
for some purpose. Like subroutines that take no parameters, this subroutine is called using
its name as a statement, but with the parameter following it enclosed in brackets:

mySub(12.875)

Subroutines that accept more than one parameter separate each with a comma. Below is an
example of a subroutine that takes many parameters:

8

MN1955WEN Modular Programming 8-1

quadratic(a0, a1, a2, z1, z2)
Print "Solutions are: ", z1, " and ", z2

Sub quadratic(a As Float, b As Float, c As Float, _
 x1 As Float, x2 As Float)
 Dim d As Float

 d = Sqrt(b ^ 2 – 4 * a * c)
 x1 = (-b + d) / (2 * a)
 x2 = (-b - d) / (2 * a)
End Sub

The above example shows a subroutine that accepts five parameters, the first three used as
input (they are only read), and the last two used as output (they are written to). This allows
subroutines to return data, as is shown above, where variables ‘z1’ and ‘z2’ are set to the
roots (solutions) of the quadratic.

By default, all parameters are passed by reference, which allows the contents of the passed
variable to be altered from inside the subroutine, as was shown in the previous example.
Conversely, parameters passed by value use a copy of the value so that any changes made
to it within the subroutine will not alter data outside of the subroutine. While parameters are
considered as references unless specified otherwise, it is good practice to explicitly state the
passing mechanism by prefixing a parameter’s name with either ByRef or ByVal. The
previous example would then become:

quadratic(a0, a1, a2, z1, z2)
Print "Solutions are: ", z1, " and ", z2

Sub quadratic(ByVal a As Float, ByVal b As Float, ByVal c As Float, _
 ByRef x1 As Float, ByRef x2 As Float)
 Dim d As Float

 d = Sqrt(b ^ 2 – 4 * a * c)
 x1 = (-b + d) / (2 * a)
 x2 = (-b - d) / (2 * a)
End Sub

Doing this allows the compiler to generate more efficient code, and also limits unwanted side
effects. For example if the value of one of the parameters ‘a’, ‘b’, or ‘c’ were changed inside
the subroutine as part of the computation, then this change would not be propagated back
into a variable used in the call (in this case ‘a0’, ‘a1’ and ‘a2’).

Parameters may be of any valid data type, though there are limitations with strings and user-
defined types since they must always be passed by reference. It is still beneficial to explicitly
specify ByRef for these, even though it is the default. With string parameters, it serves no
purpose to specify the size of the string (doing so will generate an error), as string
parameters inherit their size from whatever is passed when the call is made. String
parameters are simply references to another string, and the string they reference will have a
size specified (either implicitly or explicitly).

Sometimes, it is necessary to pass an array as a parameter. A parameter is made to
represent an array by putting empty brackets after its name. The following is an example of a
subroutine that calculates the maximum and minimum of an array:

Sub maxMin(x() As Float, ByRef maximum As Float, ByRef minimum As Float)
 Dim i As Integer

 maximum = -1e38 : minimum = 1e38
 For i = LBound(x) To UBound(x)
8-2 Modular Programming MN1955WEN

 If x(i) > maximum Then maximum = x(i)
 If x(i) < minimum Then minimum = x(i)
 Next i
End Sub

Like string and user-defined parameters, array parameters are always passed by reference,
so it not strictly necessary to specify ByRef, though it is still good practice to do so. As with
strings, there is no need to specify the array’s index bounds, as they will be inherited from the
parameter supplied when the call is made. The compiler validates each call that involves
array parameters to ensure that they all use arrays that have the same number of
dimensions and are of the same data type.

The default parameter passing mechanism can be adjusted using the compiler option
ParametersByRef, (see page 7-5) or by setting the default in the Compiler Options dialog
in Mint WorkBench.

'Pass parameters by value unless specified otherwise
'(or are arrays, strings or structures)
Option ParametersByRef 0

Note that if the default is changed to ByVal, then this will not alter the passing method used
for parameters that must be passed by reference (arrays, strings and structures) in the case
of the mechanism not being explicitly specified.

8.2.1 Issues relating to reference parameters
Because reference parameters allow a two way communication of data both into and out of a
subroutine or function, their use is slightly more complicated. This arises because to make
this two-way mechanism work requires that the parameter is represented as a pointer to its
data, and this requires that two conditions be met.

 The passed parameter must be of the same type as the parameter declaration. Clearly, it
would make very little sense to have an integer parameter refer to a floating-point
variable, as their internal representations are different.

 The passed parameter must represent something that can be assigned to, such as a
simple variable, an array element or a structure member. Clearly, it is only possible to
copy a value to an expression that represents a memory location.

For each parameter, the Mint Basic compiler checks whether the above conditions have
been met, and if so simply passes its address. Otherwise, the only way to make the call is to
automatically create a suitable variable, copy the passed expression into it, and finally pass
its address. This variable is called a temporary variable, and while they enable the call to be
made, the ability to return data is lost, since there is no way to interrogate the contents of a
temporary (it is simply a means to an end). Because of this, the compiler generates a
warning to bring to the attention of the user that a temporary has been used, as quite often
their use signifies a problem with the program’s implementation.

For example, assuming the declarations below:

Dim a As Float, i As Integer
Dim x(10) As Float

Sub incByTenPercent(ByRef x As Float)
 x = 1.1 * x
End Sub
MN1955WEN Modular Programming 8-3

The code below shows calls that do not require temporaries to be used:

incByTenPercent(a)
incByTenPercent(x(i))

The code below shows calls that will require temporaries to be used, and so in both cases
the parameter supplied will not change value (not even the seemingly valid variable ‘i’):

incByTenPercent(a + 1)
incByTenPercent(i)

A further problem exists for string parameters, as these have a size which can vary
depending on the declaration and how many characters are currently stored in the string.
The problem is that if a string temporary is required, it assumes the default string size, and
this may not be large enough. The following example demonstrates this problem:

doComms(_escape + Mid(output, 2))

Sub doComms(ByRef packet As String)
 ...
End Sub

The above code will fail with a ‘string overflow’ error if the expression on the first line contains
more than the default number of characters in the packet string (usually 64). To avoid this
happening, declare a string variable that is known to be large enough to contain the string,
and use that to make the call:

Dim myTempStr As String * 2000
...
myTempStr = _escape + Mid(output, 2)
doComms(myTempStr)

Sub doComms(ByRef packet As String)
 ...
End Sub

In general, the use of temporaries should be avoided.
8-4 Modular Programming MN1955WEN

8.3 The concept of locality
The previous section showed how a subroutine is declared and used, and while it showed
how variables can be declared inside a subroutine, it did not mention the significance of this.
One of the key benefits of modular programming is the ability to write sections of code
without needing to worry about how they will interact with other parts of the program. This is
achieved through the use of modules, which are simply containers for code. It is then quite
reasonable that if a module contains declarations, then those declarations will be local to the
module and therefore only visible within it. This idea is applicable to all types of declarations
made within a module, and it also applies to parameters too, which can be viewed as local
variables whose contents are automatically primed when a call is made.

The term scope is used to define the visibility of an identifier. An identifier is ‘in scope’ if it is
accessible at a certain point in the program, and is ‘out of scope’ if it is not visible at a certain
point in the program. The scoping rules are such that a module can see declarations made in
enclosing modules. This concept makes it possible to write code safe in the knowledge that
no identifiers will conflict with those enclosed within other modules. The following code
illustrates the concept of scope:

Dim a As String
...
a = "" 'Modify the String 'a'

Task myTask1
 Dim a As Float
 ...
 a = a / 2 'Modify the Float 'a'

 Sub mySub1()
 Dim a As Time
 a = 0 'Modify the Time 'a'
 ...
 End Sub

 Sub mySub2()
 a = a + 1 'Modify the Float 'a'
 ...
 End Sub

 Function myFunc(ByVal a As Integer) As Integer
 a = a % 2 'Modify the Integer 'a'
 ...
 End Function
End Task

Task myTask2
 a = "\1b[" 'Modify the String 'a'
 ...
End Task

The global variable ‘a’ declared on the first line is different to that declared within ‘myTask’,
which is different again to that declared within ‘mySub1’, which is different again from that
declared within ‘myFunc’. Note that the parameter ‘a’ used in function ‘myFunc’ is considered
a local, and so the name cannot be used in a declaration inside the function (as a variable for
example).

To illustrate the concept of declarations made outside a module being visible, but only in an
outward direction, the variable ‘a’ in ‘myFunc’ is not visible while inside ‘mySub1’, ‘mySub2’
or ‘myTask1’, and the variable ‘a’ in ‘mySub1’ is not visible while inside ‘myFunc’ or
‘myTask1’. This offers the potential to allow different programmers to write each of these
MN1955WEN Modular Programming 8-5

modules in isolation, as all they need to know is the interface to each module, since the
internals are completely private.

Note that scope is only applicable to modules and not to any other block-structured
constructs like loops or critical blocks etc. Consequently, a variable declared inside a loop will
have the same scope as the loop’s parent module. Such declarations should be avoided.

There is a mechanism for explicitly overriding the natural scoping rules of Mint Basic, and
this is discussed later in Overriding scope on page 8-20.
8-6 Modular Programming MN1955WEN

8.4 Functions
Functions are very similar to subroutines but return a result, so they are used in expressions.
As such, the same rules about local declarations and parameter passing also apply.

Functions are declared using the Function keyword, and below is an example of a function
that returns the maximum value contained in an array:

Function maximum(ByRef x() As Float) As Float
 Dim i As Integer

 maximum = -1e38
 For i = LBound(x) To UBound(x)
 If x(i) > maximum Then maximum = x(i)
 Next i
End Function

Since functions are designed to be used in expressions, they must return a result. As with
variables, the data type of the function’s result must be specified, as shown in the previous
example. The mechanism used to specify the result is to assign it to the function’s name,
which can be viewed as being equivalent to a local variable. The setting of the function’s
result must be made for all possible paths through the function. Functions cannot return
arrays or user-defined types.

8.4.1 Side effects
A side effect is a term used to describe the situation where a variable outside the scope of a
module is altered during the execution of the module. Most of the time, this behavior is both
intentional and understandable, but in the case of the module being a function it can lead to
confusion. Typically, this arises when a function alters a variable external to it, but the result
of the function is dependent on this external variable. The following example shows this side
effect:

Dim a As Float = 0

Print sneaky(0)
Print sneaky(0)

Function sneaky(x As Float) As Float
 sneaky = Cos(x + a)
 a = (a + 1) % 180
End Function

The above code will display different values for the two apparently identical calls made.

Side effects in functions should be avoided, as they add significant complication to the
verification of a program. Side effects in subroutines should be minimized by passing
variables that require their contents to be modified as reference parameters where possible.
MN1955WEN Modular Programming 8-7

8.5 Recursion
Subroutines and functions can be called whenever they are in scope, and so it is allowable
that they may call themselves. This self-reactivation is called recursion, and is appropriate
when an algorithm is recursively defined. For example, the Mint Basic compiler makes
extensive use of recursion, as the elements that make up the language may be nested
arbitrarily.

A chain of recursive calls must terminate at some point, so the chain of calls must have a
conditional statement at some point that ends the recursion. In the following example that
calculates terms of the Fibonacci series, the recurrence is only continued while ‘n’ is greater
than 2:

Function fib(ByVal n As Integer) As Integer
 If n > 2 Then
 fib = fib(n - 2) + fib(n - 1)
 Else
 fib = 1
 End If
End Function

Recursion can be an extremely powerful tool, but there is a penalty for each reactivation.
This is because when a subroutine or function is called, data must be stored on a stack to
enable continuation when it terminates. In addition to this, memory needs to be allocated to
store the local variables used in the function. If the recurrence is continued for too long, then
this will result in an ‘out of memory’ run-time error. The example shown has only one item of
local data, the integer parameter ‘n’, and so its overheads would appear to be low. However,
this function can be easily re-coded to use simple iteration rather than recursion, for
example:

Function fib(ByVal n As Integer) As Integer
 Dim nextVal As Integer, temp As Integer

 fib = 0
 nextVal = 1
 While n > 0
 temp = fib + nextVal
 fib = nextVal
 nextVal = temp
 n = n - 1
 End While
End Function

Although the appearance of the recursive example may look attractive, it takes 2566 ms to
calculate the first 20 terms, compared to only 23 ms for the iterative formulation. This
example is not particularly realistic, in fact it purposely shows a poor use of recursion, but it
provides a very simple illustration of the advantages and disadvantages of recursion. The
advantage is that it can represent an algorithm concisely; the disadvantage is potentially
slow execution when compared to a comparable iterative solution. This shows that recursion
should be reserved for cases where the alternative becomes unacceptably complicated, or
when the performance penalty is bearable.

Recursion can be viewed as a means of iterating but without an explicit loop, and some
programming languages (of the 'functional' variety) necessitate its use for even the simplest
of tasks. For example, to evaluate the maximum value in an array, the following function
could be used:
8-8 Modular Programming MN1955WEN

Function maximum(a() As Float, ByVal n As Integer) As Float
 maximum = IIf(n = 1, a(n), Max(a(n), maximum(a, n - 1)))
End Function

 To summate the contents of an array, the following function can be used:

 Function summate(a() As Float, ByVal n As Integer) As Float
 summate = IIf(n = 1, a(1), a(n) + summate(a, n - 1))
 End Function

 To calculate the greatest common divisor of two values, the following function can be used:

 Function gcd(ByVal m As Integer, ByVal n As Integer) As Integer
 gcd = IIf(n = 0, m, gcd(n, m % n))
 End Function

The examples given so far are purposely very simple, but a more useful application of
recursion is the quick-sort algorithm:

 Sub qsort(a() As Float, ByVal m As Integer, ByVal n As Integer)
 Dim pivot As Float
 Dim i As Integer, j As Integer

 i = m
 j = n
 pivot = a((m + n) \ 2)

 Repeat
 While a(j) > pivot
 j = j - 1
 End While
 While a(i) < pivot
 i = i + 1
 End While
 If i <= j Then
 swap(a(i), a(j))
 i = i + 1
 j = j - 1
 End If
 Until j < i

 If m < j Then qsort(a, m, j)
 If i < n Then qsort(a, i, n)
End Sub

It is possible to code all of the examples to use iteration rather than recursion, some of which
will be more efficient, but all of which will be more complicated.
MN1955WEN Modular Programming 8-9

8.6 Tasks
Tasks are used to define a section of code that can be executed in parallel with other tasks.
This allows distinct processes to be isolated, hence assisting maintainability.

8.6.1 The Parent task
All Mint Basic programs have at least one task, called the Parent task, which is composed of
all the statements defined outside of any module type:

Dim x As Float

Loop
 Input "x = ", x
 Print "Sqrt(", x, ") = ", Sqrt(x)
End Loop

These statements constitute an implicit form of task, almost as if there were a ‘Task
ParentTask..End Task’ surrounding the entire program, but this is not required explicitly, nor
is it allowed. An important property of the Parent task is that when it terminates, any other
tasks currently executing also terminate. The declaration and manipulation of these other
tasks is described in the following sections.

8.6.2 Declaring tasks
A task is declared using the Task keyword, for example:

Task menu
 ...
End Task

As well as being able to have local constants, variables, etc., a task may also have local
subroutines and functions. For example:

Task menu
 ...
 Sub display()
 ...
 End Sub
 Sub keypress()
 ...
 End Sub
End Task

A task terminates either when it runs out of statements to execute, when the Exit Task
keyword is encountered, when its name is used in an End task-name command, or when
the parent task terminates. Therefore, if it is required that a task runs continuously then it
must use a loop of some sort to continue processing, for example:

Task menu
 Loop
 'Handle menu processing in this loop
 ...
 End Loop

 Sub display()
 ...
 End Sub

 Sub keypress()
 ...
 End Sub
End Task
8-10 Modular Programming MN1955WEN

Tasks are global, and so must be declared at the outer lever (i.e. they cannot be nested
inside other modules).

8.6.3 Starting tasks
A task that has been declared does not execute until told to do so, which is achieved using
the Run command:

Run(menu)

Multiple tasks can be started using one Run command, which is more concise than having a
Run command for each task, for example:

Run(menu, checkInputs, controlMotion)

Note that the Run command initiates execution from the first statement, irrespective of
whether the task was terminated, suspended or already running.

8.6.4 Ending tasks
A task normally continues executing until it runs out of statements, but it can be forced to
terminate by another task using the End command, for example:

End(checkInputs)

Like the Run command, multiple tasks can be ended in one statement:

End(checkInputs, controlMotion)

Note that the End command causes termination irrespective of whether the task was running
or suspended. If the task was already terminated End has no effect. Another means of
ending a task is by using the Exit Task command:

Task checkInputs
 ...
 If ... Then Exit Task
 ...
End Task

Clearly, this can only be used within the task being terminated and is equivalent to jumping to
the End Task statement, causing the task to terminate.

8.6.5 Suspending tasks
A task’s execution can be halted without stopping it completely by using the TaskSuspend
command, for example:

TaskSuspend(controlMotion)

Like the Run command, multiple tasks can be suspended in one statement:

TaskSuspend(checkInputs, controlMotion)
MN1955WEN Modular Programming 8-11

When a task has been suspended, it remains in a state of limbo until it is told to resume
execution by a TaskResume command. The TaskSuspend command has no effect on a
task that is already suspended or terminated.

8.6.6 Resuming tasks
A task that has been suspended can be resumed by using the TaskResume command, for
example:

TaskResume(controlMotion)

Like the Run command, multiple tasks can be resumed in one statement:

TaskResume(checkInputs, controlMotion)

Note that the TaskResume command is only useful when the task on which it operates is in
a suspended state, otherwise it will not do anything.

8.6.7 Testing the status of a task
A task’s status can be queried using the TaskStatus function. A task can be in one of three
states.

 Terminated

 Running

 Suspended

The predefined constants _tskTerminated, _tskRunning and _tskSuspended can be
used in the testing process. An example of testing the status of a task is shown below:

If TaskStatus(checkInputs) = _tskRunning Then Run(controlMotion)

A typical use for this function is to ensure that the parent task does not terminate
prematurely, which would also terminate all child tasks:

Pause(TaskStatus(menu) = _tskTerminated)

8.6.8 Task scheduling
While tasks appear to execute in parallel, in reality they do this by executing a few
instructions in one task before moving on to do the same in another task, etc. This is handled
by a scheduler, and the scheduler uses two parameters to control this behavior, one to
determine when to run a task and the second to determine how long to run it for. These
parameters are called the priority and the quantum size.

Each task has a priority, which determines the frequency at which it is executed. For
example, a task with priority 10 will be executed twice as often as a task with priority 5. The
precise means by which this is achieved is controlled by Option Scheduler (see Run-
time options on page 7-8). The default priority for all tasks is 10, though this can be adjusted
using the TaskPriority command.

TaskPriority(ParentTask, 2)
8-12 Modular Programming MN1955WEN

Note that the priority specifies a relative priority with respect to other tasks, so in a program
with two tasks, setting the priorities to 50 and 100 is exactly the same as setting them to 5
and 10.

In addition to the priority, each task also has a quantum size, which specifies how many
instructions to process before task switching. Note that instructions do not equate to Mint
Basic statements, but rather to the ‘machine code’ instructions generated by the Mint Basic
compiler and executed by the Mint Virtual Machine. The default quantum size for all tasks is
10, though this can be adjusted using the TaskQuantum command.

TaskQuantum(ParentTask, 1)

Note that having a small quantum size results in smoother execution, but the cost of this will
be slow execution (because relatively more time is spent task switching). Conversely, a large
quantum size will result in jerky execution, causing tasks to get no CPU time for relatively
long periods, but overall execution will be fast. The default quantum size provides a good
balance between smoothness and speed of execution, and should only be changed when
there is a specific need.
MN1955WEN Modular Programming 8-13

8.7 Events
Events are used to handle situations that can occur at any point during program execution.
These situations each have a name, and if an event handler is present in the program with a
matching name, then it will be automatically called whenever that particular situation occurs.

Events are declared using the Event keyword.

Event ONERROR
 ...
End Event

Event In0
 ...
End Event

Events are global, and so must be declared at the outer lever (i.e. they cannot be nested
inside other modules). Like tasks, events may have local subroutine and function
declarations, which is desirable if they only have meaning within the event they are declared
in.

More information of the events that are supported on a given product is given in the help file,
and examples of common event types are presented in Event handling on page 10-18.
8-14 Modular Programming MN1955WEN

8.8 Startup module
The Startup module declares a section of code that will executed before executing any
code in the parent task, and is typically used for configuration purposes.

The Startup module is declared as shown below.

Startup
 ...
End Startup

There can be only one Startup module in a Mint Basic program, which is why it does not
have a name. The Startup module must be declared at the outer level (i.e. it cannot be
nested inside other modules).

Note that this is a module declaration rather than an executable statement, so execution
does not flow through it like other block-structured constructs such as Loop..End Loop,
etc. Because of this, it must be placed with the other module declarations, and it is
recommended that it is placed out of the way at the end of the program.

Note that no events will be handled and no tasks will execute while the Startup module is
being processed, and any errors encountered will be fatal (i.e. will terminate execution).

Any child tasks initiated with Run inside the Startup module will effectively be ignored, as
execution of the parent task always starts out with all child tasks in a terminated state. The
presence of the Run command without parameters in the Startup module will cause
execution to immediately jump to the first statement of the parent task, this being equivalent
to issuing the Exit Startup command.
MN1955WEN Modular Programming 8-15

8.9 Shutdown module
The Shutdown module declares a section of code that will be executed whenever the
program terminates, and its intended use is to put a machine into a safe state. The
Shutdown module is declared as shown below:

Shutdown
 ...
End Shutdown

There can be only one Shutdown module in a Mint Basic program, which is why it does not
have a name. The Shutdown module must be declared at the outer level (i.e. it cannot be
nested inside other modules).

Note that this is a module declaration rather than an executable statement, so execution
does not flow through it like with other block-structured constructs like Loop..End Loop,
etc. Because of this, it must be placed with the other module declarations and it is
recommended that it is placed out of the way at the end of the program.

Note that no events will be handled and no tasks will execute while the Shutdown module is
being processed, and any errors encountered will be fatal (i.e. will terminate execution, but
without causing the Shutdown module to be executed again).The behavior of the shutdown
module can be controlled using Option Shutdown, which is described in Run-time options
on page 7-8.

Note that the Shutdown module is only available when Option MintV5.5Keywords (see
page 7-4) is enabled, and only for target formats 14 and above.
8-16 Modular Programming MN1955WEN

8.10 Exiting modules
Modules normally exit when they complete execution of the last statement in their body, at
which point End Sub, End Task, etc. will be encountered. However, it is sometimes
desirable to force early termination of a module, and this is achieved using the Exit
statement, in much the same way as it is used to terminate a block (like a Repeat loop). To
exit a module, the Exit statement must be qualified with the module type, so to exit a task
the Exit Task command would be used:

Task myTask
 ...
 Loop
 ...
 If condition Then Exit Task
 ...
 End Loop
End Task

Note that there is one important difference between exiting modules and blocks; it is not
possible to specify a module type different to the module enclosing the statement. This
means that if you are in a subroutine called from within a task, it is not possible to use
Exit Task from inside the subroutine. The example below illustrates this illegal usage:

Task myTask
 mySub

 Sub mySub()
 ...
 If condition Then Exit Task 'Not allowed!
 ...
 End Sub
End Task

The reason this is not allowed is because it is not easy to determine how to safely exit the
subroutine before exiting the task. For example, the subroutine may have been called from
another subroutine or function, or called from outside the task in which it was declared (using
the scope override operator), or may have been called recursively. These are all conditions
that are difficult to handle in a safe manner.

The Exit command can still be used within a module to exit a block it contains, either
unqualified or qualified with the required block type.
MN1955WEN Modular Programming 8-17

8.11 Static and dynamic modules
There are two fundamentally different module types in Mint Basic; the static module and the
dynamic module.

8.11.1 Static modules
Static modules are used to represent a section of code that can have only a single instance
active at any given time. Static modules must be declared at the outer level, making it illegal
to nest them inside any other module type. The static module types supported by Mint Basic
are events, tasks, the Startup module and the Shutdown module, which may all have
dynamic modules declared within them.

In static modules, local variables are allocated fixed locations in memory, making them like
global variables, but with limited scope. Due to them having fixed locations, the scope
override operator may be used to access static variables in another module.

Local variables in a static module are automatically initialized to zero if no explicit
initialization is present in its declaration, but this will only occur once when the program is
downloaded. A static variable that is initialized will take the specified value on downloading
the program and will also be reassigned this value each time execution passes through its
declaration.

8.11.2 Dynamic modules
Dynamic modules are used to represent a section of code that can have multiple instances
active at any given time. Subroutines and functions are dynamic modules, since they can
both be called from different tasks at the same time and can even call themselves. Dynamic
modules can be declared inside any static module, including the parent task, but dynamic
modules cannot contain dynamic module declarations (i.e. it is illegal to declare subroutines
and functions within a subroutine or function).

In dynamic modules, local variables are allocated when required and later freed when no
longer needed. As a consequence of this, local variables do not have a fixed memory
location, and so the scope override operator cannot be used to access them.

Local variables in dynamic modules are not initialized to zero if no explicit initializer is present
in its declaration. This is because there can be a significant performance penalty in doing
this, especially with arrays. Typically, the user will initialize local variables as required, and so
this duplication of effort is usually a waste.

8.11.3 Lifetime
The lifetime of a variable is the period from the moment it comes into existence to the
moment it ceases to exist. This depends on whether it is allocated a static or dynamic
address and, as mentioned in the previous sections, this is usually determined by the class
of module in which it is declared. However, this can be overridden by declaring the variable
using the keyword Static rather than Dim.

A static variable has a lifetime that is the same as the lifetime of the program. In other words,
as soon as a program is downloaded to a controller or drive, a static variable exists and can
be used, and only when the program is deleted does its lifetime come to an end.
8-18 Modular Programming MN1955WEN

A dynamic variable has a lifetime equal to the lifetime of the module in which it is declared. In
other words, when a dynamic module is activated its dynamic variables are created and can
be used, and when the module terminates the lifetime of its local variables comes to an end.

Lifetime should not be confused with scope, because a variable being “live" does not mean
that it will be visible (i.e. in scope), though the converse is always true. An example of this is
a variable declared in a static module, as this will not be in scope in any other module,
though it is “live" and can therefore be accessed from another module using the scope-
override operator (::). However, not all variables that are “live" can be accessed this way,
such as a variable in a subroutine or function (unless it is declared using Static rather than
Dim), as it is in another stack frame (making it hard to locate) and is transient (i.e. its lifetime
may expire at any time).
MN1955WEN Modular Programming 8-19

8.12 Overriding scope
The scoping rules of Mint Basic are designed to facilitate modular programming techniques,
as discussed in The concept of locality on page 8-5. However, it is sometimes desirable to be
able to access something directly that is not in the current scope. For example, it may be
neater to access a variable local to a task to monitor its state rather than having to make that
variable global.

This can be achieved by using the scope override operator, which has the symbol :: and
can be used to access constants, variables, subroutines and functions declared in a static
module, or constants and static variables declared in a dynamic module.

Conveyor::productsPerSecond = 45

Task Conveyor
 Dim productsPerSecond As Integer
 ...
End Task

The above example shows how a variable local to a task can be manipulated with the scope
override operator.

It is sometimes required to gain access to the global scope, for example to access a variable
whose name has been reused in the current scope. This can be achieved in two ways, so to
access global variable ‘x’, either of the following could be used:

ParentTask::x
::x

The benefit of the second method, apart from less typing, is that it goes directly to the global
scope without the possibility of being blocked by an intermediate declaration. Though being
blocked is usually unlikely to occur, the example below shows how it can occur
unexpectedly:

Task spooler
 Dim counts As Integer
 ...
End Task

Task picker
 Dim spooler As Integer

 If spooler::counts = 0 Then 'Error: spooler is an integer!
 ...
End Task

To avoid this, the expression spooler::counts = 0 needs to be replaced with either
ParentTask::spooler::counts = 0 or ::spooler::counts = 0. The only time
that the latter expression must be used is in the highly unlikely case that a declaration called
ParentTask exists, thus blocking access to it.
8-20 Modular Programming MN1955WEN

8.13 Task synchronization
Mint Basic provides two mechanisms for synchronizing tasks, the Critical block and the
Semaphore block. The Critical block provides a means of protecting a section of code by
simply stopping the scheduler from task switching, while the Semaphore block provides a
means of protecting a section of code by only allowing it to execute if a resource can be
acquired.

The section of code being protected by either mechanism is commonly called a critical
section, and this should not be assumed to be synonymous with a Critical block. This
potential source of confusion is not confined to Mint Basic, as other programming
environments support mechanisms to protect a critical section of code (like the mutex,
semaphore and monitor), one of which is also called a critical section.

The Critical block is supported by all versions of Mint Basic, while the Semaphore block
is a relatively new addition. In general, a Semaphore block should be used to protect a
resource and a Critical block should be used to ensure that a section of code is executed
speedily. However, because the Semaphore block is a relatively new addition, the
Critical block is often used to protect a resource, and in this case it is advisable to
change existing Critical blocks to Semaphore blocks wherever possible to allow
programs to execute more efficiently.

8.13.1 Critical block
Mint Basic allows sections of code to be executed concurrently and for events to interrupt
execution (see Tasks on page 8-10, and Events on page 8-14), but it is sometimes
necessary to execute a section of code without allowing it to be interrupted. This is achieved
by placing the code within a Critical block. Typically, this is used to stop tasks from
interfering with each other, but this situation is better handled using semaphores. The
Critical block is better suited to making a section of code execute as rapidly as possible
by inhibiting other tasks (and possibly events) from using processor time. This situation may
be the due to a calculation being performed in a dynamic system where higher speed
calculation increases the integrity of the result. However, for historical reasons, the examples
in this section show the former use.

For example, if the factoring of a variable requires protection from the effects of multi-tasking,
then this can be achieved as shown below:

Critical
 product = product * 2
End Critical

This will ensure that the operation will complete without being interrupted by another task,
which may be important if other tasks also modify this variable.

The following example shows how multi-tasking can interfere with the correct operation of a
program:

Dim product As Integer = 1

Run(factor1, factor2)
Pause(TaskStatus(factor1) = _tskTerminated AndAlso _
 TaskStatus(factor2) = _tskTerminated)
Print "Product = ", product

Task factor1
MN1955WEN Modular Programming 8-21

 Dim i As Integer

 For i = 1 To 10
 product = 2 * product
 Next i
End Task

Task factor2
 Dim i As Integer

 For i = 1 To 10
 product = 2 * product
 Next i
End Task

The above program displays the incorrect value of 16384 rather than 1048576. This happens
because the global variable ‘product’ has been read in one task but before it can be factored
and the result stored, the other task has written its own result to ‘product’. This will again be
overwritten when the first task completes the writing of its result. The code below shows how
this can be avoided by enclosing each statement that modifies the value of ‘product’ inside a
Critical block:

Dim product As Integer = 1

Run(factor1, factor2)
Pause(TaskStatus(factor1) = _tskTerminated AndAlso _
 TaskStatus(factor2) = _tskTerminated)
Print "Product = ", product

Task factor1
 Dim i As Integer

 For i = 1 To 10
 Critical
 product = 2 * product
 End Critical
 Next i
End Task

Task factor2
 Dim i As Integer

 For i = 1 To 10
 Critical
 product = 2 * product
 End Critical
 Next i
End Task

Sometimes it is necessary to not only inhibit multi-tasking while a statement sequence is
being executed, but to also inhibit the processing of events. This is achieved by supplying a
bit-pattern of events that are allowed to occur inside the Critical block, which is called an
‘event inclusion mask’. Not specifying a value will allow all events to be processed, while a
value of zero will stop all events from being processed. For example:

Critical
 'All events will get processed here
 ...
End Critical

Critical(0)
 'No events will get processed here
 ...
End Critical
8-22 Modular Programming MN1955WEN

Critical(_evONERROR Or _evTIMER)
 'Only error and timer events will get processed here
 ...
End Critical

Critical blocks may be nested and each may have its own event inclusion mask. The
event inclusion mask of a nested Critical block may allow events not allowed in the
enclosing Critical blocks. In the following example, the first Critical statement
disallows all events and then the program waits for 5000 ms. The program then enters
another critical section that allows all events and then waits for 5000 ms. Since events are
allowed during this second 5000 ms period, the TIMER event prints the time each second for
five seconds:

Dim t As Time = 0

Critical(0) 'Disallow both multi-tasking and events
 Wait(5000)
 Critical 'Disallow multi-tasking, but allow events
 Wait(5000)
 End Critical
 Wait(5000)
End Critical

Print "Terminating"

Event TIMER
 Print "Time = ", t
End Event

Startup
 TIMEREVENT = 1000
End Startup

When a Critical block exits, either by falling out of the bottom or via a command like
Exit, Exit Sub, GoTo, etc., any event inclusion mask will be reset to the correct setting for
the new point of execution.

If an error occurs whilst in a Critical block that has masked out the ONERROR event, then
one of two things can happen. Firstly, if there is an ONERROR event handler declared in the
program, then any errors encountered will be processed when ONERROR becomes active (i.e.
when the Critical block that has masked it out exits, or a nested Critical block that
allows it is entered). Secondly, if there is no ONERROR event handler present, then execution
will terminate immediately.

8.13.2 Semaphore block
The Critical block, discussed in section 8.13.1, provides a means of allowing a section of
code to execute without any multi-tasking and optionally without any event processing. This
is a simple mechanism that has significant limitations, mainly because it does not allow only
specific tasks to be frozen.

A better way of synchronizing tasks is to use a semaphore, which can be considered as a
license that must be acquired before a task can proceed. When the task has finished, the
semaphore is released, allowing other tasks that require its use to acquire it. When a
semaphore cannot be acquired (because it has already been acquired, possibly by the same
task that is now trying to acquire it), then the task attempting its acquisition stalls until it
becomes free, a state called ‘blocking’. Crucially, while this semaphore acquisition and
release is happening, multi-tasking continues for all tasks except those that cannot acquire a
MN1955WEN Modular Programming 8-23

semaphore. This makes semaphores a much more efficient means of controlling a multi-
tasking program than the Critical block, which stalls all tasks whether or not they need to
be stalled.

A semaphore is represented in Mint Basic by a variable of type Semaphore, which must be
declared in the parent task to allow all tasks access to it. The acquisition and release is
achieved using a semaphore block, initiated using Semaphore and terminated using
End Semaphore, with the semaphore variable specified as a parameter:

Dim s As Semaphore

Semaphore(s)
 ...
End Semaphore

A semaphore variable has a size associated with it that represents the number of tasks that
can concurrently acquire it. The size is specified using an asterisk followed by an integer
constant, which if omitted defaults to one. A size of one is called a binary semaphore
(because it has two states, acquired and not acquired) and is very similar to a mutex (an
acronym for ‘mutual exclusion’). Examples of semaphore declarations are shown below.

Dim a As Semaphore 'Allow one task access at a time
Dim b As Semaphore * 2 'Allow two tasks access at a time
Dim c As Semaphore * 1 'Allow one task access at a time

A more complete example follows to show a semaphore in action, with some performance
figures to compare it with a Critical block and unprotected code:

Const _n = 1000

Dim semProduct As Semaphore
Dim product As Integer = 0
Dim t As Time, t0 As Integer, i As Integer = 100

t = 0
Run(task1, task2, counter)
Pause TaskStatus(counter) = _tskTERMINATED
t0 = t
Print "Product = ", product, " in ", t0, "ms"
Print "Counter = ", counter::i, " = ", counter::i / t0, "/ms"

Print

Sub criticalSection()
 i = i + i \ 2
 product = i + product - 1
 i = i + i \ 2
 product = i + product - 1
 i = i + i \ 2
 product = i + product - 1
 i = i + i \ 2
 product = i + product - 1
End Sub

Task task1
 Dim i As Integer

 For i = 1 To _n
 Semaphore(semProduct)
 criticalSection
 End Semaphore
 Next i
8-24 Modular Programming MN1955WEN

End Task

Task task2
 Dim i As Integer

 For i = 1 To _n
 Semaphore(semProduct)
 criticalSection
 End Semaphore
 Next i
End Task

Task counter
 Dim i As Integer

 i = 0
 Repeat
 i = i + 1
 Until TaskStatus(task1) = _tskTERMINATED AndAlso _
 TaskStatus(task2) = _tskTERMINATED
End Task

The above program was executed on a NextMove PCI, and the following data was recorded:

The unprotected code produces an answer different to protected code, as would be
expected, but this is only included to compare execution speed. The Critical block is
clearly the quickest, but at the expense of slowing down the counter task by over a factor of
6. The Semaphore block is the slowest, which is to be expected, as there is an overhead in
acquiring and releasing semaphores, but the important point is that it does not slow down
other tasks.

When a Semaphore block terminates, either by falling out of the bottom of the block or due
to an Exit, Continue or GoTo statement that directs execution out of a Semaphore block,
the semaphore will be released. This is even the case if a task is terminated by another task
using End task-name, or by Mint WorkBench or a host application.

Note that a Critical block can still be used for sections of code that need to execute
rapidly, as multi-tasking slows execution. Note that this technique can even be used within a
Semaphore block, as the strength of a Semaphore block is that it allows multi-tasking to
continue. However, something that should never be done is the acquisition of a semaphore
within a Critical block, as this will cause deadlock if the semaphore cannot be acquired.

There are times when it is necessary to perform some other action if a semaphore cannot be
acquired, and this can be achieved using an Else section within the Semaphore block:

Semaphore(s)
 ...
Else
 ...
End Semaphore

 Result Counts Time (ms) Counts/ms

Unprotected 1126639334 6127 1174 5.22

Critical 754490945 502 599 0.84

Semaphore 754490945 11252 1867 6.03
MN1955WEN Modular Programming 8-25

Here, if the semaphore cannot be acquired, then the code contained in the Else section is
executed. When an Else section is present, the critical section of code is between the
Semaphore and the Else, as the statements in the Else section are not subject to the
semaphore being acquired. If the semaphore must be acquired after executing the code in
the Else section, then the Semaphore block must be placed inside a loop:

Loop
 Semaphore(s)
 ...
 Exit Loop
 Else
 ...
 End Semaphore
End Loop

There are also times when the acquisition of a semaphore needs to time out, and this can be
achieved by specifying the maximum acquisition time in milliseconds:

Semaphore(s, 100)
 ...
Else
 ...
End Semaphore

This will cause the statements in the Else section to be executed if the semaphore 's' cannot
be acquired after trying for 100 ms. If no Else section is present, then execution continues
after the semaphore block.

It is illegal to jump into a semaphore block, as this will skip the acquisition of the semaphore,
and because of this an error will be reported by the compiler. Note that the semaphore block
is only available when Option MintV5.5Keywords (see page 7-4) is enabled, and only
for target formats 14 and above.

8.13.3 Deadlock
When two tasks require access to the same resource, but neither can acquire it, the program
is said to be in a state of deadlock. While it is possible using a Critical block to create a
situation where the program freezes, it is much more likely to occur when using the
Semaphore block. For example, the following program will wait indefinitely at the Pause
statement in task 'b' because it is in a Critical block and the expression is a function of
another task, which is not allowed to continue because of the Critical block:

Dim i As Integer

Run(a, b)
Pause(TaskStatus(a) = _tskTERMINATED AndAlso_
 TaskStatus(b) = _tskTERMINATED)
Print "Finished"

Task a
 For i = 1 to 10000
 Next i
End Task

Task b
 Critical
 Pause(i > 9000)
 End Critical
End Task
8-26 Modular Programming MN1955WEN

While it is possible that variable 'i' may be altered by a host application, this is not probable.

The Semaphore block is much more likely to cause deadlock problems, which can occur
due to the following reasons:

 Trying to acquire a semaphore while in a Critical block or an event. This is bad
because multi-tasking is frozen while in a Critical block or an event, and so if the
acquisition fails it will fail for ever (unless a timeout or an Else section is used, or a task
holding a semaphore is terminated externally, i.e. by a host application).

 The task trying to acquire the semaphore has already acquired it. This is bad because a
semaphore is not a re-entrant/recursive lock, so once acquired they will block even if the
task trying to acquire it has already previously acquired it.

 Different tasks attempting to cyclically acquire multiple semaphores. This has the
potential to be bad if the semaphores are acquired in a particular order, a simple case of
which is shown below:

Dim x As Semaphore, y As Semaphore, z As Semaphore

Task a
 Semaphore(x)
 Semaphore(y)
 'Execute code
 End Semaphore
 End Semaphore
End Task

Task b
 Semaphore(y)
 Semaphore(z)
 'Execute code
 End Semaphore
 End Semaphore
End Task

Task c
 Semaphore(z)
 Semaphore(x)
 'Execute code
 End Semaphore
 End Semaphore
End Task

The above tasks may or may not enter a state of deadlock, and this depends entirely on how
the scheduler switches tasks. For example:

 If task 'a' acquires 'x' and 'y' and starts to execute code, then task 'b' cannot acquire 'y'.

 Then task 'c' acquires 'z' but cannot acquire 'x' (already taken by task 'a').

 Then task 'a' releases 'x' and 'y'. This allows task 'b' to acquire 'y', but it still cannot
acquire 'z' (already taken by task c).

 Then task 'c' acquires 'x', executes its code, then releases 'x' and 'z'. This allows task 'b'
to acquire 'z' and start executing code.

 Finally task 'b' releases 'y' and 'z'.

However, if the scheduling happened differently, then for example:

 Task 'a' acquires 'x', task 'b' acquires 'y', and task 'c' acquires 'z'.
MN1955WEN Modular Programming 8-27

 Task 'a' cannot then acquire 'y', task 'b' cannot acquire 'z' and task 'c' cannot acquire 'x',
etc.

Evidently, deadlock may or may not occur depending entirely on the order of scheduling,
which is a function of the task priorities, the task quantum sizes and the code in each task.
Changes to any of these may cause deadlock, so in situations like this it is safest to assume
the worst. There are a few strategies to avoid deadlock:

1. Acquire all resources at once and do not proceed until this is achieved.

2. Release acquired resources on failing to acquire another and attempt to request them
later.

3. Enforce that resources are acquired in a particular order.

Since Mint Basic does not support the acquisition of multiple resources in one attempt,
option 1 cannot be implemented directly. However, it can be simulated manually using option
2, as shown below:

Loop
 Semaphore(a)
 Semaphore(b)
 'Eureka, acquired both semaphores, so execute critical section
 Exit Loop 'This releases semaphores 'a' and 'b'
 Else
 Continue Loop 'This releases semaphore 'a'
 End Semaphore
 End Semaphore
End Loop

In the above example, the acquisition of 'a' will either succeed or fail. On acquiring 'a', the
acquisition of 'b' will either succeed (allowing the critical section to be entered) or
immediately jump to the Else section, causing the loop to be continued and implicitly freeing
'a' (remember that jumping out of a Semaphore block releases its semaphore).

Option 3 can either be implemented by the programmer ensuring that resource acquisition
occurs in a particular order, or, if the algorithm allows it, a Semaphore array coupled with a
means of acquiring semaphores from it in index order can be used. When a critical section
exits, either by falling out of the bottom or via a command like Exit, Exit Sub, GoTo etc.,
any event inclusion mask will be reset to the correct setting for the new point of execution.
8-28 Modular Programming MN1955WEN

Conditional Compilation
9 Conditional Compilation

9.1 Introduction
It is sometimes desirable to omit sections of code, perhaps to target one source program to
different machine configurations. To achieve this, the keywords #If, #ElseIf, #Else and
#End If are used to control what code is compiled and what code is ignored, and they
behave in a manner very similar to the If, ElseIf, Else and End If keywords, but with a
few important differences.

 The expression used in a #If or #ElseIf condition must evaluate to a constant value,
and so must be composed solely of literals, constants, or defines that represent a literal

or constant6.

 While the If statement can be provided with an expression that can be evaluated at
compile time, each section of the If statement is carefully examined irrespective of
whether it will be executed or not. This means that, for example, you cannot use an
unsupported keyword, even in a section that will never be executed. The #If statement
lifts this restriction, the only limitation being that all sections are syntactically correct.

 The If statement cannot be used to enclose alternate declarations with the same name,
whereas the #If statement can distinguish which should be retained and which should
be discarded.

 The If statement cannot be used to enclose module declarations, whereas the #If
statement can.

The terms used in conditional compilation expressions can be declared in the program, but
this can be limiting since the program must be changed to target another machine
configuration. To overcome this, terms can be specified in Mint WorkBench by clicking
Program > Conditional target settings. This allows a number of named configurations to be
created, each containing the definitions required to target the program without having to alter
it. See the Mint help file.

6.The #Const keyword used by Visual Basic to declare pre-processor values is not supported as it is not required due to
the implementation used by the Mint Basic compiler.

9

MN1955WEN Conditional Compilation 9-1

9.2 Usage
The #If keyword is used to initiate a conditional compilation block. It is followed by an
expression that must be composed of values known at compile time, which in turn is followed
by the keyword Then and a new line. If the expression is true (non-zero) then its section of
code is active and any other sections present are inactive. The #If block is terminated using
the #End If keyword, as shown below.

#If 1 Then
 'Some code
#End If

The previous example used an integer literal, but it is possible to use a constant declared
externally in a conditional target, or declared in the program, as shown below:

Const _mode = 1
 ...
#If _mode Then
 'Some code
#End If

The expression may use operators as required, provided it evaluates to a constant, as
shown below.

#If _mode = 1 OrElse _mode = 3 Then
 'Some code
#End If

It is common to allow an alternative section of code to be compiled when the condition is
false, which is achieved using the #Else keyword:

#If _mode = 1 OrElse _mode = 3 Then
 'Some code
#Else
 'Some alternative code
#End If

It may be required to have a number of alternative sections, which is achieved using the
#ElseIf keyword.

#If _mode = 1 Then
 'Some code
#ElseIf _mode = 2 Then
 'Some alternative code
#ElseIf _mode = 3 Then
 'Some alternative code
#Else
 'Some alternative code
#End If

If it is required to conditionally allow the use of a keyword, the Defined function can be
used:

#If Defined(KEYWORD) Then
 'Coding using the specified keyword
#Else
 'Alternative coding using other keywords
#End If
9-2 Conditional Compilation MN1955WEN

Note that the Defined keyword may only be used in a #If or #ElseIf condition.

All the above constructs may be nested, and while the examples use constants local to the
program, constants defined in a conditional target may be used in exactly the same way.

Two additional constructs can be used to cause warnings and errors to be generated during
compilation, which can be useful as reminders and for catching invalid conditional
compilation paths. These are called #Warning and #Error respectively, for example:

#If _mode = 1 Then
 ...
 #Warning "To do: This code does not handle failure cases well"
#Else
 #Error "Incorrect mode used"
#End If

A number of predefined constants are provided to make it easier to target a program to a
specific controller/drive. These include _platform, _NextMovePCI, etc. (see Reserved
words staring on page 13-34). For example:

#If _platform = _NextMoveE100 Then
 'Some code
#ElseIf _platform = _MotiFlexE100MintCard Then
 'Some alternative code
#ElseIf _platform = _MotiFlexE100 Then
 'Some alternative code
#Else
 'Some alternative code
#End If

Conditional compilation keywords are only available in target formats 13 and above.
MN1955WEN Conditional Compilation 9-3

9.3 Limitations
When compared with other languages, there are a few limitations with conditional
compilation in Mint Basic. These are described in the following sections.

9.3.1 Syntactic correctness
The intention of conditional compilation is to allow a program to be easily targeted using
internally or externally declared constants, and the implementation reflects this simple
requirement. Additionally, the implementation is designed to not interfere with the automatic
listing generation facility. Because of this, the implementation is not based on that of a
traditional pre-processor, instead being handled by the syntax analyzer, much like in C#. A
consequence of this is that certain forms of conditional compilation constructs are not
allowed. Principally, as was mentioned in Usage, this implementation requires that all
sections of a conditional compilation block be syntactically correct, and it is this that prohibits
certain ‘traditional’ constructs. For example, the following code is illegal:

 #If 0 Then
 Add some code here to implement homing of the gantry axis
#End If

But this can easily be recoded to make it syntactically correct:

#If 0 Then
 'Add some code here to implement homing of the gantry axis
#End If

For example, the following is illegal:

#If 1 Then
Function fac(ByVal n As Integer) As Integer
#Else
Function fac(n As Integer) As Integer
#End If
 fac = IIf(n = 0, 1, n * fac(n – 1))
End Function

...but can be easily recoded to make it legal:

#If 1 Then
 Function fac(ByVal n As Integer) As Integer
 fac = IIf(n = 0, 1, n * fac(n – 1))
 End Function
#Else
 Function fac(n As Integer) As Integer
 fac = IIf(n = 0, 1, n * fac(n – 1))
 End Function
#End If

 Instances of the illegal constructs shown above should be rare and are easily avoided, as
demonstrated.
9-4 Conditional Compilation MN1955WEN

9.3.2 Numeric conditions
Currently, the condition must be composed of numeric terms, which means that string
comparisons, such as the one shown below, are not allowed:

 #If _s = "MODE 1" Then
 ...
#End If

This restriction should not prove limiting and may be removed in a future version.

9.3.3 Allowed operators
While it is perfectly valid to use expressions in a #If condition, the expression may only
contain operators, i.e. no function calls are allowed, either intrinsic (e.g. Log, Sin, etc.) or
user-defined (those declared in a program). Certain operators are not allowed, like the
redirection operator, ->, and all terms must be numeric. Brackets may be freely used to
order evaluation.

#If Log10(_n) = 2 Then 'Illegal, functions not allowed!

This restriction should not prove limiting and may be removed in a future version.

9.3.4 Sequencing
The terms used in a conditional expression must be known (which is also a requirement
when a pre-processor is used), so the following example is illegal:

 #If _n = 1 Then
 ...
#End If

Const _n = 1

What is less obvious is that when a constant’s value is a function of another constant, then
they also need to be declared such that one knows about the other. For example, the
following code is illegal:

Const _n = _m + 1
Const _m = 0

#If _n = 1 Then

This is illegal because the syntax analyzer has tried to evaluate _m + 1, but could not
because it is a function of _m, which is as yet undeclared. This is only a problem for
conditional compilation, as the semantic anal yser can determine the value of _n, as by that
stage in the compilation process all the terms have been declared and so the evaluator may
look them up. However, the syntax anal yser is not so fortunate, as it can only see what has
gone before, and so will generate an error if it encounters a term that it does not understand.
MN1955WEN Conditional Compilation 9-5

9-6 Conditional Compilation MN1955WEN

Intrinsic Commands and Functions
10 Intrinsic Commands and Functions

10.1 Introduction
Mint Basic has a variety of built-in commands and functions. Since these are an intrinsic part
of the language, they are commonly called intrinsic commands and functions, and so are
available on all products.

This section categorizes these and gives a description on how each is used.

10
MN1955WEN Intrinsic Commands and Functions 10-1

10.2 Input and output
Mint Basic has a number of commands and functions that facilitate I/O. These commands
differ from the other intrinsic commands in the way that they are called:

 A terminal may be specified as the first parameter, which is prefixed with a ‘#’ character.
For compatibility with older versions of Mint Basic, the terminal parameter does not need
to be separated from following parameters with a comma, though it is good practice to do
so.

 Modifiers may be used ahead of parameters to alter the number base. They do not need
to be separated from the items around them using a comma.

 The Using clause may be used with the Input, Print and Line commands. This
clause has parameters itself.

The terminal parameter, or if omitted the Terminal keyword, allows a number of terminals
to be specified using a bit pattern to represent each terminal. This enables output to be sent
to multiple terminals in one statement, and is achieved by combining the _TERMx constants
using the Or operator. For example, to print the message “Error” on terminals 1 and 3, the
following command is used:

Print #_TERM1 Or _TERM3, "Error"

While all the commands / functions below accept a terminal parameter, only the ones that are
functions, or can be assigned to, do not use the # suffix to denote the terminal, instead using
bracketed notation. The other commands all use the # suffix, as there may be some
ambiguity as to whether the first parameter is a terminal or not.

10.2.1 Beep #
This command causes the specified terminal to beep.

Beep #_TERM2

If no terminal is specified, then the Terminal bitmap will be used.

10.2.2 Bol #
This command causes the cursor to move to the beginning of the line for the specified
terminal.

Bol #_TERM1

If no terminal is specified, then the Terminal bitmap will be used.

10.2.3 Echo
This is both a command and a function. As a command, it allows input echoing to be enabled
or disabled for a given terminal:

Echo(_TERM1) = _false

The default setting for each terminal is _true, which causes the characters received to be
echoed. However, if the input device handles its own echoing, then echoing should be
disabled to avoid each character appearing twice.
10-2 Intrinsic Commands and Functions MN1955WEN

As a function, Echo allows the input echo setting for the given terminal to be queried:

If Echo(_TERM3) Then

Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 12 and above.

10.2.4 InKey
This function returns a character from the specified terminal.

c = InKey(_TERM2)

If no terminal is specified, then the Terminal bitmap will be used.

Note that by default, this function will return zero if the input buffer is empty. If the input is
such that it is valid for a null character to be received, then the behavior of this function can
be adjusted using Option InKeyMode (see page 7-5) to make it return -1 if the input buffer
is empty. Using InKey primes LastKey.

10.2.5 Input #
This command allows a variable’s contents to be set by entering text from an input device
like a keyboard or CAN keypad on the specified terminal. This is achieved by specifying the
variable that requires setting after the terminal name, optionally preceded by a prompt string,
as shown below:

Input #_TERM2, x
Input #_TERM2, x, y
Input #_TERM2, "x = ", x
Input #_TERM2, "x = ", x, "y = ", y
Input #_TERM1, camData(i)

Output modifiers cannot be used with the Input statement.

For floating-point input decimal is always used, but for integer input decimal is assumed
unless a base prefix supported by Mint Basic is used. For example, for integer input, if “101”
was entered then the resulting value read would be 101, but if “0101” was entered, then the
resulting value read would be 5.

The Using clause can be used, which causes input to be constrained to the specified
parameters. For floating-point input, the two parameters represent the number of whole digits
and the number of decimal digits. For integer input, only the number of whole digits can be
specified. A negative value for the number of whole digits causes the sign (+/-) to be placed
before the first digit.

Input #_TERM1, position Using(4, 2)

When a Using clause is used, input is always in decimal so any leading zeroes present will
not cause the value to be treated as binary. If no terminal is specified, then the Terminal
bitmap will be used.
MN1955WEN Intrinsic Commands and Functions 10-3

10.2.6 LastKey
This function returns the last key read using either InKey or ReadKey.

Select Case LastKey

Note that each task has its own copy of the last key that was read, hence making it possible
to use ReadKey in one task and InKey in another with LastKey working correctly in each
case.

10.2.7 Line #
This command is used output to the specified line, which is cleared prior to printing.

Line #_TERM1, 4, "x = ", x, " i = ", Hex i Using(4)

The Line statement allows all the capabilities of the Print statement to be used (see
Print # below for details).

10.2.8 Locate #
This command allows the cursor to be positioned on the specified terminal. The cursor
location is specified by two comma separated expressions that specify the column and row
to move the cursor to:

Locate #_TERM1, 10, 4
Locate #_TERM2, i + j, 3 * (k – 2)

If no terminal is specified, then the Terminal bitmap will be used.

10.2.9 Print #
This command takes a terminal parameter followed by a series of comma or semi-colon
separated expressions to print. When the semi-colon is used to separate expressions, a tab
is printed between them. The final expression may have a comma placed after it to suppress
printing of the carriage-return and line-feed. Below are examples of simple print statements:

Print #_TERM1
Print #_TERM2, x
Print #_TERM2, "x = ", x
Print #_TERM2, "x = ", x; " y = ", y
Print #_TERM1, "x = ", x,

Note that the first statement will just print a carriage return and line feed to terminal 1 and the
last statement will suppress the carriage return and line feed. If no terminal is specified, then
the Terminal bitmap will be used.

An expression may be preceded by an output modifier to control the output format to use.
The allowed modifiers are Bin, Dec, Hex and Sci, which respectively output in binary,
decimal (the default), hexadecimal and scientific notation.

Print #_TERM1, "x = ", Sci x
Print #_TERM1, "Axes = ", Bin Axes

An expression may have a Using clause after it to specify the number of characters to
display in front of and behind the decimal point:
10-4 Intrinsic Commands and Functions MN1955WEN

Print #_TERM2, "Value = ", x Using(4, 6)
Print #_TERM1, "Value = ", Sci x + y Using(6, 3),

The Using clause may also use a format string in place of one or two numeric expressions.
This allows all the format strings permitted in the C language to be used in Mint Basic:

Print #_TERM2, "Value = ", i Using("%12u")
Print #_TERM1, "Value = ", x + y Using("%12.6f"),

The first line of the example shows the only way that an integer can be displayed as
unsigned. The second line shows a more convenient way of specifying a field-width and
number of decimals for floating-point output. The ability to use C format strings is controlled
by the CFormatting option (see page 7-5), which must be set to 1 (one) to enable it. See C
Format Strings on page 13-13 for details.

10.2.10 ReadKey
This function returns the currently depressed key on a CAN keypad node.

i = ReadKey(_TERM3)

If no terminal is specified, then the Terminal bitmap will be used. Note that this differs from
InKey in that keystrokes are not buffered. Using ReadKey primes LastKey.
MN1955WEN Intrinsic Commands and Functions 10-5

10.3 Mathematical functions
Mint Basic has a range of mathematical functions to assist in the calculation of complex
expressions.

10.3.1 Abs
This function returns the absolute value of the expression (i.e. removes the sign).

If Abs(x – y) < 0.5e-6 Then Exit Sub

This function is useful for testing the magnitude of a value when the sign of it is unimportant.

10.3.2 Acos
This function returns the arc-cosine of the expression.

 x = Acos(z)

The expression must be in the range -1 to 1 otherwise an ‘invalid argument’ run-time error
(code 3101) will be generated. The result is in the range 0 to 180 degrees.

10.3.3 Asin
This function returns the arc-sine of the expression.

x = Asin(z)

The expression must be in the range -1 to 1 otherwise an ‘invalid argument’ run-time error
(code 3101) will be generated. The result is in the range -90 to 90 degrees.

10.3.4 Atan
This function returns the arc-tangent of the expression.

x = Atan(y / x)

The result is in the range -90 to 90 degrees.

10.3.5 Atan2
This function returns the arc-tangent in the correct quadrant, by using two numeric
arguments.

x = Atan2(y, x)

The result is in the range -180 to 180 degrees.

10.3.6 Cos
This function returns the cosine of the expression (in degrees).

x = Cos((y – z) / 2)

The result will be in the range -1 to 1.
10-6 Intrinsic Commands and Functions MN1955WEN

10.3.7 Exp
This function returns the exponential of the numeric argument.

x = Exp(y)

This function is the anti-logarithm of the Log function.

10.3.8 Frac
This function returns the fractional part of the numeric argument (i.e. removes the integer
part from the floating-point expression).

f = Frac(x)

10.3.9 Log
This function returns the natural logarithm (base e) of the numeric argument.

x = Log(y)

The argument must be greater than zero, otherwise an ‘invalid argument’ run-time error
(code 3101) will be generated.

10.3.10 Log10
This function returns the common logarithm (base 10) of the numeric argument.

x = Log10(y)

The argument must be greater than zero, otherwise an ‘invalid argument’ run-time error
(code 3101) will be generated.

10.3.11 Max
This function returns the largest of the numeric arguments.

x = Max(x, y)

It is permissible to use arrays as arguments, in which case the largest element of the array
will be returned.

x = Max(myArray)

It is also permissible to supply multiple arrays as parameters.

x = Max(myArray1, myArray2)

The mixing of array and scalar parameters is also allowed.

x = Max(x, y, myArray1, myArray2, 0)

There is no practical limit to the number of arguments, and the result type is float if any
arguments are of type float, otherwise integer. Note that this is only available when
Option MintV5.5Keywords (see page 7-4) is enabled, and only for target formats 14 and
above.
MN1955WEN Intrinsic Commands and Functions 10-7

10.3.12 Min
This function returns the smallest of the numeric arguments.

x = Min(x, y)

It is permissible to use arrays as arguments, in which case the smallest element of the array
will be returned.

x = Min(myArray)

It is also permissible to supply multiple arrays as parameters.

x = Min(myArray1, myArray2)

The mixing of array and scalar parameters is also allowed.

x = Min(x, y, myArray1, myArray2, 0)

There is no practical limit to the number of arguments, and the result type is float if any
arguments are of type float, otherwise integer. Note that this is only available when
Option MintV5.5Keywords (see page 7-4) is enabled, and only for target formats 14 and
above.

10.3.13 Pow
This function returns the result of raising the first numeric argument to the power of the
second numeric argument.

x = Pow(y, z)

Anything to the power of 0 (zero) gives an answer of 1 (one).

Any value, positive or negative, can be raised to the power of a whole number, either positive
or negative, and the result will correctly reflect the number of multiplications performed. For
example, Pow(-2,3) will give the result -8, as it is equivalent to -2 * -2 * -2, and
Pow(-2,-3) will give the result -0.125, which is 1 / -8).

If the first parameter is 0 (zero) and the second parameter is negative, then an invalid
argument run-time error (code 3101) will be generated, as this is essentially a division by
zero.

The first argument must be greater than or equal to 0 (zero) if the second argument is not a
whole number, otherwise an ‘invalid argument’ run-time error (code 3101) will be generated.
In the case of an error, the value returned is zero.

10.3.14 Rnd
This function returns a pseudo-random number greater than zero but less than 1.

x = Rnd()

Each time that the Rnd function is called, a new value will be returned. The same sequence
will be returned each time the controller is power cycled.
10-8 Intrinsic Commands and Functions MN1955WEN

10.3.15 Round
This function returns the result of rounding the numeric argument to the nearest integer.

i = Round(x)

Note that if the argument is outside of the range of an integer, then an ‘invalid argument’ run-
time error (code 3101) will be generated. This function can also return a floating-point value
rounded to a given number of decimal places. For example, if variable ‘x’ contains 18.383539
then the statement below will assign 18.384 to variable ‘f’.

f = Round(x, 3)

If a number of decimal places of zero is specified, then it will round to the nearest whole
value. If -1 is used it will round to the nearest 10, and if -2 is used it will round to the nearest
100, etc. Note that the ability to round to a given number of decimal places is only available
when Option MintV5.5Keywords (see page 7-4) is enabled, and only for target formats
14 and above.

10.3.16 Sgn
This function returns the sign of the supplied numeric argument, which is -1 if negative, 0 if
zero, and +1 if positive.

i = Sgn(x)

10.3.17 Sin
This function returns the sine of the expression (in degrees).

x = Sin((y – z) / 2)

The result will be in the range -1 to 1.

10.3.18 Sqrt
This function returns the square root of the numeric argument.

x = Sqrt((x – 1) / y)

The argument must not be negative or an ‘invalid argument” run-time error (code 3101) will
be generated.

10.3.19 Tan
This function returns the tangent of the expression (in degrees).

x = Tan((y – z) / 2)

The result will be in the range -∞ to ∞.
MN1955WEN Intrinsic Commands and Functions 10-9

10.4 Type conversion
Mint Basic includes a number of functions to allow the conversion from one numeric data-
type to another, and these functions fall into one of two categories:

 The value preserving transformation.

 The non-value preserving transformation.

The value preserving transformation is most commonly used, and converts the value subject
to the precision limitations of the destination type, so integer 185 would become float 185.0,
and float 12.875 would become integer 12. The Int and Float functions fall into this
category.

The non-value preserving transformations have a very narrow field of use and are rarely
needed. There are two types of non-value preserving transformation:

 Those that simply reinterpret the internal bit-pattern without altering it, such as the
CvtInt2Flt and CvtFlt2Int functions.

 Those that apply a transformation, such as the CvtIeee2Flt and CvtFlt2Ieee
functions (assuming that the native float format is not IEEE 754 compliant).

10.4.1 CvtIeee2Flt
This function is used to convert an integer value encoded in the IEEE 754 single precision
format to the native floating-point format used by the controller.

f = CvtIeee2Flt(i)

This function is useful when receiving floating-point data from an external source that uses
IEEE format floats, or when the bits that make up an IEEE float that has been manipulated
locally needs to be converted back into a native float. Note that this is only available when
Option MintV5.5Keywords (see page 7-4) is enabled, and only for target formats 13 and
above.

10.4.2 CvtInt2Flt
This function is used to convert the internal bit representation of an integer value into a float.

f = CvtInt2Flt(i)

This function should not be confused with the Float function, which converts the value of an
integer expression to its closest representation in the floating-point domain. The
CvtInt2Flt function simply dupes the compiler into using the bit-pattern of an integer as if
it were a float, and is typically used when a bit-pattern that represents a native float needs to
be converted back into a float. Note that this is only available when
Option MintV5.5Keywords (see page 7-4) is enabled, and only for target formats 13 and
above.
10-10 Intrinsic Commands and Functions MN1955WEN

10.4.3 CvtFlt2Ieee
This function is used to convert a floating-point value encoded in the format used by the
controller to an integer value encoded in the IEEE 754 single precision format.

f = CvtFlt2Ieee(i)

This function is useful when transmitting floating-point data to an external source that uses
IEEE format floats, or when the bits that make up an IEEE float need to be manipulated
directly. Note that this is only available when Option MintV5.5Keywords (see page 7-4)
is enabled, and only for target formats 13 and above.

10.4.4 CvtFlt2Int
This function is used to convert the internal bit representation of a floating-point value into an
integer.

f = CvtFlt2Int(i)

This function should not be confused with the Int function, which converts the value of a
floating-point expression to the integer domain truncated towards zero. The CvtFlt2Int
function simply dupes the compiler into using the bit-pattern of a float as if it were an integer,
and is typically used when the bits that make up a native float need to be manipulated
directly. Note that this is only available when Option MintV5.5Keywords (see page 7-4)
is enabled, and only for target formats 13 and above.

10.4.5 Int
This function returns the integer component of the numeric argument by truncating the
fractional part.

i = Int(x)

Note that if the argument is outside of the range of an integer, an ‘invalid argument’ error
(code 3101) will be generated. If it is required to round to the nearest integer, the Round
function can be used (see page 10-9). This explicit cast should be used in place of implicit
casts automatically inserted by the compiler.

10.4.6 Float
This function returns the floating-point equivalent of the numeric argument.

x = Float(i)

Since the range of a Float exceeds that if an Integer, no range errors will be generated.
However, the precision of a float may result in the value not being as precise as it was in
integer domain. This explicit cast should be used in place of implicit casts automatically
inserted by the compiler.
MN1955WEN Intrinsic Commands and Functions 10-11

10.5 String manipulation
Mint Basic has a range of functions to allow strings to be manipulated.

10.5.1 Asc
This function returns the ASCII code of the first character in the string argument.

code = Asc(s)

If the string is empty, an invalid argument run-time error (code 3101) will be generated and 0
(zero) will be returned.

10.5.2 Chr
This function returns a single character string of the numeric argument, which is an ASCII
code.

s = s + Chr(i)

Note that if the argument is outside of the range of a character (0-255), an invalid argument
error (code 3101) will be generated.

The behavior of this function now conforms with most other forms of the Basic programming
language. However, previous versions of Mint Basic were such that the Chr function could
only be of use in a Print statement (to allow an integer to be displayed as a character). If
this more limited functionality is required, for example for compatibility reasons, then
Option ChrReturnsString (see page 7-5) can be set to 0 (zero).

10.5.3 Eval
This function returns the floating-point evaluation of the string argument. This function differs
from the Val function in that it can evaluate expressions involving variables declared in the
program, whereas the Val function only converts numeric values.

x = Eval(s)

It can be made to return an integer value, without loss of precision, using the construct.

x = Int(Eval(s))

Similarly, it can be made to return a string value, either in floating-point or integer format (the
latter without loss of precision) depending on the string contents, using the following
construct.

x = Str(Eval(s))

Like the Val function, when returning an integer result and the value encoded in the string
exceeds the range of a signed integer, an integer out of range error will be generated (code

3104) and the result will be truncated at either -232 or 231-1 depending on its sign. If the
string contents cannot be decoded, then an evaluation error (code 3111) will be generated
and the error string will indicate the problem.

Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.
10-12 Intrinsic Commands and Functions MN1955WEN

10.5.4 InStr
This function returns the character location of the first occurrence of one string in another.
The first character is at location 1 (one).

i = InStr(source, search)
i = InStr(start, source, search)

The search starts at the first character if ‘start’ is omitted or at the character specified in ‘start’
if present. The search is case sensitive. Zero is returned if the string is not found.
If ‘start’ is beyond the end of the ‘source’ then 0 (zero) is returned.
If ‘source’ is empty, then 0 (zero) is returned.
If ‘search’ is empty, then ‘start’ is returned or 1 (one) if ‘start’ is omitted.
If ‘start’ is less than or equal to zero then an invalid argument run-time error (code 3101) will
be generated and 0 (zero) will be returned.

10.5.5 Left
This function returns the left ‘length’ characters of the string argument.

s = Left(s, length)

If the string is empty or ‘length’ is 0 (zero), then an empty string will be returned.
If ‘length’ is greater than the length of the string, then the entire string will be returned.
If ‘length’ is negative, then an invalid argument run-time error (code 3101) will be generated
and an empty string returned.

10.5.6 Len
This function returns the length of the string argument (i.e. the number of characters it
contains).

i = Len(s)

10.5.7 Mid
This is both a command and a function. As a command, it allows the contents of a string
variable to be modified, starting at location ‘start’, and optionally capping the number of
characters changed to ‘length’.

Mid(s, start) = t
Mid(s, start, length) = t

The string ‘s’ being modified can neither be lengthened nor shortened, and the characters
written will automatically be capped to enforce this. If ‘length’ is zero, or the string ‘t’ is empty,
then the string ‘s’ will remain unaltered. If ‘start’ lies outside the range of characters in ‘s’ (i.e.
is less than 1 (one) or greater than Len(s)), or ‘length’ is negative, then an ‘invalid
argument’ run-time error (code 3101) will be generated and the string ‘s’ is unmodified.

As a function, it returns the middle portion of the string argument, starting at ‘start’ and
optionally containing up to ‘length’ characters.

s = Mid(s, start)
s = Mid(s, start, length)
MN1955WEN Intrinsic Commands and Functions 10-13

If ‘start’ is beyond the end of the string or ‘length’ is zero, an empty string will be returned.
If ‘start’ is less that 1 (one) or ‘length’ is less than 0 (zero), then an ‘invalid argument’ run-time
error (code 3101) will be generated and an empty string returned. Note that the Mid
command is only available when Option MintV5.5Keywords (see page 7-4) is enabled,
and only for target formats 14 and above.

10.5.8 Right
This function returns the right ‘length’ characters of a string argument.

s = Right(s, length)

If the string is empty or ‘length’ is 0 (zero), an empty string will be returned. If ‘length’ is
greater than the length of the string, then the entire string will be returned. If ‘length’ is
negative, then an invalid argument run-time error (code 3101) will be generated and an
empty string returned.

10.5.9 Str
This function returns the string equivalent of the numeric argument. If the argument is a float,
then a floating-point conversion is performed, otherwise an integer conversion is performed.

s = Str(x)

This function may take a second parameter to specify the base to use in the conversion.
When a base is specified, the numeric argument is converted to a string representing an
unsigned integer.

s = Str(-14, 16) 's = "4294967282"

A negative base may be used, in which case the numeric argument is converted to a string
representing a signed integer.

s = Str(-14, -16) 's = "-E"
s = Str(-14, -10) 's = "-14"
s = Str(-14, -8) 's = "-16"
s = Str(-14, -2) 's = "-1110"

The base may be any value between 2 and 36, or -2 and -36 for signed conversion. An out of
range base will cause an invalid argument run-time error (code 3101) to be generated.

Note that the ability to specify the base is only available when
Option MintV5.5Keywords is enabled, and only for target formats 14 and above.

10.5.10 Val
This function returns the floating-point equivalent of the string argument. This function differs
from the Eval function in that it can only convert numeric values, whereas the Eval function
evaluates expressions involving variables declared in the program.

x = Val(s)

It can be made to return an integer value, without loss of precision, using the construct.

x = Int(Val(s))
10-14 Intrinsic Commands and Functions MN1955WEN

All numeric formats supported by Mint Basic may be converted using this function, as the
example below shows.

s = "1.234e2" : Print Val(s) 'Displays 123.4000
s = "16#FF" : Print Val(s) 'Displays 255.0000
s = "0xff" : Print Val(s) 'Displays 255.0000
s = "1.234e2" : Print Int(Val(s)) 'Displays 123
s = "16#FF" : Print Int(Val(s)) 'Displays 255
s = "0xff" : Print Int(Val(s)) 'Displays 255

This function may take a second parameter specifying the base to use in the conversion, in
which case an unsigned conversion will be performed and the result is an integer. Note that
when a base is specified, the entire digit sequence is assumed to be in that base and
conversion will halt at the first character not in the specified base, as the following example
illustrates:

s = "332F4BD0" : Print Val(s, 16) 'Displays 858737616
s = "16#332F4BD0" : Print Val(s, 16) 'Displays 22 (number ends at #)
s = "0x332F4BD0" : Print Val(s, 16) 'Displays 0 (number ends at x)

The base may be left open by specifying a base of zero, in which case it will behave
identically to Int(Val(s)) in performing a translation based on the contents of the string.

The base may be any value between 2 and 36, or 0 for an open conversion. An out of range
base will cause an invalid argument run-time error (code 3101) to be generated.

Like the Eval function, when returning an integer result and the value encoded in the string
exceeds the range of a signed integer, an integer out of range error will be generated (code

3104) and the result will be truncated at either -232 or 231-1 depending on its sign. However,
when the base parameter is used (unlike the Eval function, which does not have this facility)
and the value encoded in the string exceeds the range of an unsigned integer, the result is

capped at 232-1 (remember that this unsigned value will, by necessity, be stored as a signed
value of -1). If the string contents cannot be decoded, then an evaluation error (code 3111)
will be generated and the error string will indicate the problem.

Note that the ability to specify the base is only available when
Option MintV5.5Keywords is enabled, and only for target formats 14 and above.
MN1955WEN Intrinsic Commands and Functions 10-15

10.6 Task manipulation
Mint Basic has commands to control the operation of tasks.

10.6.1 End
This command allows task execution to be stopped. When used with no parameters, the End
command terminates execution of the parent task, which stops the entire program (including
all child tasks). When used with specific tasks as parameters, only those tasks will be
terminated:

End(productCounter)
End(keyMonitor, productCounter)

If used on a task that is not running, then no action will result.

10.6.2 Run
This command causes tasks to start execution at their very first statement. When used with
no parameters, the Run command starts execution of the parent task, but without executing
the Startup module. To execute the Startup module prior to executing the parent task,
the Run Startup command must be used. When used with a specific task or tasks as
parameters, those tasks will be executed.

Run(menuSystem)
Run(menuSystem, doorGuard)

If used on a task that is already running or suspended, then execution will be stopped prior to
immediately restarting it at the first statement in the task. In the case of the parent task (e.g.
via Run, Run(Startup) or Run(ParentTask), all child tasks will be terminated prior to
restarting execution.

10.6.3 TaskPriority
This command sets the priority of the specified task

TaskPriority(productMonitor, 15)

The default priority for all tasks is 10. Valid values are any positive integer value. See Task
Scheduling on page 8-12 for a description of how the priority influences execution.

10.6.4 TaskQuantum
This command sets the quantum size of the specified task

TaskQuantum(productMonitor, 5)

The default quantum size for all tasks is 10. Valid values are any positive integer value. See
Task Scheduling on page 8-12 for a description of how the quantum influences execution.
10-16 Intrinsic Commands and Functions MN1955WEN

10.6.5 TaskResume
This command resumes execution of the specified tasks.

TaskResume(packageCounter)

Resuming a task makes it continue execution from the point it was suspended with the
TaskSuspend command. If used on a task that is either running but not suspended, or not
running, then no action will occur.

10.6.6 TaskStatus
This function returns the status of the task specified in the argument.

Pause(TaskStatus(glueGun) = _tskTERMINATED)

A task status may be in the following states:

 _tskTERMINATED (the task is terminated)

 _tskRUNNING (the task is running)

 _tskSUSPENDED (the task is suspended)

10.6.7 TaskSuspend
This command suspends execution of the specified tasks.

TaskSuspend(packageCounter)

Suspending a task halts it immediately. Its status becomes _tskSUSPENDED until it is
resumed with a TaskResume command or restarted with the Run command, at which point
its status becomes _tskRUNNING. Note that suspending the parent task does not cause
child tasks to be suspended. If used on a task that is not running or is already suspended,
then no action will result.
MN1955WEN Intrinsic Commands and Functions 10-17

10.7 Event handling
Mint Basic includes a number of commands and functions to allow events to be controlled.

10.7.1 DInt
This command will disable all digital input events (INx, FASTIN and FASTINx). However,
while disabled they will still be pended, and so will be handled as soon as they are re-
enabled using EInt.

DInt

Note that this is provided for compatibility with older versions of Mint Basic, and that the MML
function EVENTDISABLE should be used instead.

10.7.2 EInt
This command will enable all digital input events (INx, FASTIN and FASTINx) that were
disabled using DInt.

EInt

Note that this is provided for compatibility with older versions of Mint Basic, and that the MML
function EVENTDISABLE should be used instead.

10.7.3 EventPriority
This command sets the order of priority used for processing events.

EventPriority(_evONERROR, _evTIMER, _evIN)

If an event type is excluded from this command then it will not get processed, even if a
handler is present in the program. Note that this is only available when
Option MintV5.5Keywords (see page 7-4) is enabled, and only for target formats 13 and
above

10.7.4 IPend
This is both a command and a function. As a command it allows the digital inputs of a
specified bank to be either pended or unpended.

IPend(2) = 2#1110110111

As a function, it allows the pending status of a given bank to be read:

If IPend(1) And 2#1000 Then Exit Function

For compatibility with older versions of Mint Basic, IPend can be used with no parameters,
in which case it will use the current value of Bank.
10-18 Intrinsic Commands and Functions MN1955WEN

10.7.5 DprEventCode
This function returns the DPR event code used to generate the DPR event, and is most
commonly used inside the DPR event.

i = DprEventCode

Note that this command is not limited to products that have Dual Port RAM, as it can be
triggered from a host application using the DoDPREvent Mint ActiveX function.
MN1955WEN Intrinsic Commands and Functions 10-19

10.8 Error handling
Mint Basic includes functions that allow the error status to be queried. Typically, these are
used in the ONERROR event. Note that on e100 products, these functions cannot be used
unless Option ErrorRegs is set to 2 (see page 7-8). See the Mint help file for details on
how to handle errors if this setting is not used.

10.8.1 Erl
This function returns the line on which the last error occurred.

10.8.2 Err
This function returns the error code of the last error.

10.8.3 ErrAxis
This function returns the axis number of the last error.

10.8.4 ErrStr
This function returns the error string of the last error.
10-20 Intrinsic Commands and Functions MN1955WEN

10.9 General purpose
Mint Basic includes a number of additional general purpose commands and functions that do
not fit into any specific category.

10.9.1 IsAlnum
This function is used to determine if the parameter is an alphanumeric character, returning 1
(one) if it is and 0 (zero) if it is not.

If IsAlnum(x) Then

A character is alphanumeric if it is one of ‘a’ to ‘z’, ‘A’ to ‘Z’ or ‘0’ to ‘9’.

Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.

10.9.2 IsAlpha
This function is used to determine if the parameter is an alphabetic character, returning 1
(one) if it is and 0 (zero) if it is not.

If IsAlpha(x) Then

A character is alphabetic if it is one of ‘a’ to ‘z’ or ‘A’ to ‘Z’.

Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.

10.9.3 IsAscii
This function is used to determine if the parameter is an ASCII character, returning 1 (one) if
it is and 0 (zero) if it is not.

If IsAscii(x) Then

A character is ASCII if its code is in the range 0 to 127.

Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.

10.9.4 IsCntrl
This function is used to determine if the parameter is a control character, returning 1 (one) if
it is and 0 (zero) if it is not.

If IsCntrl(x) Then

A character is a control character if its code is 0 to 31 or 127.

Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.
MN1955WEN Intrinsic Commands and Functions 10-21

10.9.5 IsDigit
This function is used to determine if the parameter is a decimal digit, returning 1 (one) if it is
and 0 (zero) if it is not.

If IsDigit(x) Then

A character is a digit if it is one of ‘0’ to ‘9’.

Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.

10.9.6 IsLower
This function is used to determine if the parameter is a lowercase character, returning 1 (one)
if it is and 0 (zero) if it is not.

If IsLower(x) Then

A character is lowercase if it is one of “a” to “z”.

Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.

10.9.7 IsUpper
This function is used to determine if the parameter is an uppercase character, returning 1
(one) if it is and 0 (zero) if it is not.

If IsUpper(x) Then

A character is uppercase if it is one of ‘A’ to ‘Z’.

Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.

10.9.8 IsXDigit
This function is used to determine if the parameter is a hexadecimal digit, returning 1 (one) if
it is and 0 (zero) if it is not.

If IsXDigit(x) Then

A character is a hexadecimal digits if it is one of ‘0’ to ’9’, ‘A’ to ‘F’ or ‘a’ to ‘f’.

Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.

10.9.9 LBound
This function returns the lower index bound of the array argument.

i = LBound(a)
10-22 Intrinsic Commands and Functions MN1955WEN

If the array is multi-dimensional, then the required dimension can be specified using an
optional second numeric argument.

i = LBound(a, 2)

This is typically used inside a subroutine or function to enable it to operate on arrays of
varying size.

10.9.10 Nop
This command simply consumes a very small amount of time, and is generally used when a
sub-millisecond delay is required for timing purposes.

Nop

10.9.11 Pause
This command halts execution of the task in which it is located until the specified condition
becomes true.

Pause(COMMS(14) < 10)

Note that this has been designed specifically to ensure that multi-tasking performance is kept
high by not delaying the execution of any other task while the condition is not met.

10.9.12 Rotate
This is both a command and a function and allows the first parameter to be rotated by the
number of bits specified in the second parameter. Rotating to the left is performed with a
negative value and rotating to the right is performed with a positive value. The rotation is
performed as if the data were unsigned (i.e. the sign bit is considered as part of the data).

As a command, it allows the contents of an integer variable to be rotated the specified
number of bits:

Rotate(i, 16)

As a function, it allows the first numeric argument to be rotated by the number of bits
specified in the second numeric argument:

i = Rotate(i, 1)
j = Rotate(j, -1)

Note that when using the function form, if the argument being rotated is a float, then it will be
implicitly cast to an integer, which may result in an integer out of range error (code 3104) if its
value lies outside that of an integer.

10.9.13 Shift
This is both a command and a function and allows the first parameter to be shifted by the
number of places specified in the second parameter. Shifting to the left is performed with a
negative value and shifting to the right is performed with a positive value. The shift is
performed as if the data were unsigned (i.e. the sign bit is considered as part of the data).
MN1955WEN Intrinsic Commands and Functions 10-23

As a command, it allows the contents of an integer variable to be shifted the specified
number of bits:

Shift(i, 16)

As a function, it allows the first numeric argument to be shifted by the number of bits
specified in the second numeric argument.

i = Shift(i, 1)
j = Shift(j, -1)

Note that when using the function form, if the argument being shifted is a float, then it will be
implicitly cast to an integer, and in so doing may result in an integer out of range error (code
3104) if its value lies outside that of an integer.

10.9.14 Time
This is both a command and a function. As a command, it allows the millisecond timer to be
set to a given value (usually zero).

Time = 0

Typically, this is used to time something or to enforce a time-out period on an operation. Note
that if a floating point value is assigned, then it will be implicitly cast to an integer, and in so
doing may result in an integer out of range error (code 3104) if its value lies outside that of an
integer.

Each task has its own copy of Time, and so setting the Time in one task will have no effect
on the Time setting in another task. When an event is triggered, it also has its own copy of
Time, which will be primed to be the same as that used in the parent task.

As a function, it allows the Time to be read:

Pause(NODELIVE(_busCANOPEN, 4) OrElse Time > 5000)

Note that this is provided for compatibility with older versions of Mint Basic, and that
variables of type Time should be used instead (see page 3-8):

Dim timeTaken As Time

timeTaken = 0
Pause(NODELIVE(_busCANOPEN, 4) OrElse timeTaken > 5000)

Using variables of type Time allows many unique time variables to be declared and also
provides a much simpler interface between tasks and events by using the normal scoping
rules of the language, as shown below.

Dim t As Time
...

Event In0
 t = 0
 ...
End Event

The ability to set the time in an event and read its value in other tasks and events is not
possible if the Time command/function is used.
10-24 Intrinsic Commands and Functions MN1955WEN

10.9.15 UBound
This function returns the upper index bound of the array argument.

i = UBound(a)

If the array is multi-dimensional, then the required dimension can be specified using an
optional second numeric argument:

i = UBound(a, 2)

This is typically used inside a subroutine or function to enable it to operate on arrays of
varying size.

10.9.16 Wait
This command delays execution for the specified number of milliseconds.

Wait(1000)

Note that this command is designed to limit the impact on the performance of other tasks
currently executing, so should be used in preference to loops that wait for a timer to reach a
given value.

Note that if a floating point argument is used, then it will be implicitly cast to an integer, and in
so doing may result in an integer out of range error (code 3104) if its value lies outside that of
an integer.

10.9.17 Wrap
This function maps a value into the specified domain by adding or subtracting multiples of the
domain range until the value falls inside the range (it actually uses a more elegant method
than this, but the concept is valid). This is useful for rotary axes, where the position wraps at
each revolution, i.e. 365° is equivalent to 5°, and -5° is equivalent to 355°, etc.

For example, to wrap ‘x’ to lie within the range 0° to 360°, the following command is used.

x = Wrap(x, 0, 360)

The value being wrapped may be many multiples of the wrap range outside the wrap limits.
Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.

10.9.18 WrapOffset
This function calculates the offset required to move from one location to another within the
specified wrap limits using the smallest move possible. This is useful for rotary axes, where
the position wraps at each revolution, so moving from 355° to 5° would require a 10°
movement rather than an -350° movement.

For example, to calculate the distance required to move from ‘x1’ to ‘x2’ within the wrap
range 0° to 360° and assign it to ‘dx’, the following command is used.

dx = WrapOffset(x1, x2, 0, 360)
MN1955WEN Intrinsic Commands and Functions 10-25

Both the source and the target may be many multiples of the wrap range outside the wrap
limits. Note that this is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 14 and above.
10-26 Intrinsic Commands and Functions MN1955WEN

10.10 Default parameters
Mint Basic allows certain parameters to be omitted when making certain types of call, such
as not specifying the terminal with the Print command, or not specifying an axis or axes
with an MML call. This might seem useful, but it provides no performance benefit and can
make program verification difficult. Consequently, it is not recommended that they be used,
and should be viewed purely as an aid to backward compatibility. The commands and
functions listed here all allow default parameters to be specified. It should be noted that each
task has its own set of default parameters and that events use a copy of the parent task’s
default parameters (to avoid side-effects).

The compiler option OptionalParameter is used to control the use of default parameters;
see Error and warning options on page 7-7.

10.10.1 Axes
This is both a command and a function. As a command, it allows the default axis bitmap that
will be used with MML functions to be specified.

Axes(0, 1, 6, 7)

Each task has its own copy of Axes, so setting the Axes in one task will have no effect on
the Axes setting in another task. When an event is triggered, it also has its own copy of
Axes, which will be primed to be the same as that used in the parent task.

As a function, Axes allows the integer bit pattern that represents the axis string to be read:

If Axes And 2#100000 Then Exit Function

10.10.2 Bank
This is both a command and a function. As a command, it allows the default digital I/O bank
that will be used with MML functions to be specified.

Bank = 1

Each task has its own copy of Bank, and so setting the Bank in one task will have no effect
on the Bank setting in another task. When an event is triggered, it also has its own copy of
Bank, which will be primed to be the same as that used in the parent task.

As a function, it allows the bank to be read:

If Bank = 4 Then Exit Function

10.10.3 Bus
This is both a command and a function. As a command, it allows the default bus that will be
used with MML functions to be specified.

Bus = _busETHERNET

Each task has its own copy of Bus, and so setting Bus in one task will have no effect on the
Bus in another task. When an event is triggered, it also has its own copy of Bus, which will
be primed to be the same as that used in the parent task.
MN1955WEN Intrinsic Commands and Functions 10-27

As a function, it allows the bus to be read:

If Bus = _busCANOPEN Then Exit Function

10.10.4 Terminal
This is both a command and a function. As a command, it allows the default terminal that will
be used for I/O commands and functions to be specified.

Terminal = _TERM1

Each task has its own copy of Terminal, and so setting the Terminal in one task will have
no effect on the Terminal setting in another task. When an event is triggered, it also has its
own copy of Terminal, which will be primed to be the same as that used in the Parent task.

As a function, it allows the terminal to be read:

If Terminal = _TERM3 Then Exit Function
10-28 Intrinsic Commands and Functions MN1955WEN

Mint Motion Library
11 Mint Motion Library

11.1 Introduction
A wide range of functions resident in the controller’s firmware provide direct access to the
functionality of the hardware. This functionality allows, amongst other things, digital outputs
to be set or interpolated moves to be performed. These functions are collectively called the
Mint Motion Library (MML). The functionality available in the MML can vary greatly between
different hardware types and even between different firmware builds for the same hardware.
As such, the help file should be consulted for the specific details for the product you intend to
use.

The MML can be accessed in a variety of ways:

 Mint ActiveX control.

 An embedded application

 Mint Basic.

The Mint ActiveX control is used when writing a host application, typically in Visual Basic or
C++. An embedded application is written in C and linked directly to the supplied firmware
libraries. Only the use of Mint Basic will be discussed here.

11
MN1955WEN Mint Motion Library 11-1

11.2 Overview
An overview of the functionality available within the MML and the syntax used to access it is
discussed in the following sections. This includes how to make calls, pass parameters and
redirect calls to other controllers.

11.2.1 Call types
There are three types of MML call, the ‘get’ call, the ‘set’ call and the ‘do’ call. Calls that allow
the getting of data more often than not also allow the data to be set, while ‘do’ calls are
commands that do not get or set a value, they simply perform an action.

Calls that return a value are termed ‘set’ calls, and are called in the same way as a user-
defined function by simply using its name in an expression and appending to it any
parameters enclosed within brackets. Below is an example of an expression that reads the
positions of two axes using the POS function (an MML ‘get/set’ function).

distance = Sqrt(POS(0) ^ 2 + POS(1) ^ 2)

Calls that allow a value to be set are termed ‘get’ calls, and are called using assignment, with
the call being on the left-hand side of the assignment operator and the value to be assigned
being on the right-hand side. Below is an example showing the position of an axis being set:

POS(0) = 0

Calls that neither set or get a value are termed ‘do’ calls, and are called in the same way as a
user-defined subroutine by simply using the name as a command and appending the
parameters enclosed within brackets. Below is an example of triggering motion on axis 0
(zero):

GO(0)

It is possible for some ‘set’ calls to take more than one right-hand-side value, and for ‘do’
calls to take a variable number of parameters. The ability to take an arbitrary number of
parameters is indicated in the help file by a trailing ‘…’ in the parameter list and in the right-
hand side expressions for ‘set’ calls. This information is also shown in the Mint WorkBench
editor when the mouse cursor is hovered over the keyword. For example:

VECTORA(0, 1) = x, y
VECTORA(2, 3) = 0, 0
GO(0, 2)

Previous versions of Mint Basic used ‘dot parameters’, where each parameter was appended
to the keyword separated by a dot (period). This uncommon approach to parameter passing
has its problems, which is why it is not used by any other main-stream programming
languages. However, it is supported for compatibility reasons and is described in Legacy
MML parameters on page 13-4.

11.2.2 Advanced parameter passing
A technique can be used to reduce the amount of code that is required to make a series of
MML calls. The MOVEA command accepts only a single parameter (and thus a single right-
hand side expression), as indicated by no ‘…’ in the help file or the hover-over help. This
means a sequence of commands must be used, as shown below:
11-2 Mint Motion Library MN1955WEN

MOVEA(0) = 10
MOVEA(1) = 20
MOVEA(2) = -10
MOVEA(3) = 0
MOVEA(4) = 12
GO(0, 1, 2, 3, 4)

This requires many statements, but it is possible to use fewer statements by using the []
operator to specify multiple values for a single parameter (a compound parameter). The
above example then becomes:

MOVEA([0, 1, 2, 3, 4]) = 10, 20, -10, 0, 12
GO(0, 1, 2, 3, 4)

This automatically generates a series of calls binding each RHS parameter to each LHS
parameter. The code generated by the compiler is the same for both the long and short-hand
versions. If, in the above example, it was required to move all the axes to the same position,
then a single RHS value could have been used, with the semi-colon operator causing it be
re-used the required number of times. The code would then become:

MOVEA([0, 1, 2, 3, 4]) = 0;
GO(0, 1, 2, 3, 4)

Note that if the [] operator is used to supply multiple values to a single parameter, it can
only be used for the first parameter in the call. For example, the CONTOURPARAMETER MML
call takes two parameters, so setting the stop angle of axes 0 and 2 to 10 and 20 degrees
respectively, as shown below, is legal:

CONTOURPARAMETER([0, 2], _ctpSTOP_ANGLE) = 10, 20

Compare the above with attempting to set the stop angle of axis 0 to 30 degrees and the
slew angle to 5 degrees, which is illegal:

CONTOURPARAMETER(0, [_ctpSTOP_ANGLE, _ctpSLEW_ANGLE]) = 30, 5

Note that this notation should only be used with a distinct parameter requiring multiple
values. For calls that expect multiple parameters all of the same type, such as a coordinated
move like VECTORA, this it is not required and should not be used. The following illustrates
incorrect usage of the [] operator:

VECTORA([0, 1, 2, 3, 4]) = 10, 20, -10, 0, 12

The worst that could happen with the above code is that the call could be expanded to a
series of calls, as was shown above for MOVEA. Doing this would create motion, but not
coordinated motion, since it would be the equivalent of an individual call for each axis, each
requiring individual triggering. This would be confusing and hard to trace, so the compiler
detects this form of misuse and generates an error.

The [] operator can also be used with ‘get’ calls, and in this instance it expands it into a
series of calls, the result of each being combined with the AND operator. Consequently, doing
this only makes sense for ‘get’ calls that return 0 or 1, such as the IDLE function. The
following example shows two ways to wait until two axes become idle:

Pause(IDLE([0, 1]))
Pause(IDLE(0) And IDLE(1))

The code generated by the compiler is the same for both of the above statements.
MN1955WEN Mint Motion Library 11-3

11.2.3 Redirection
It is possible to execute an MML call on another controller by using the redirection operator,

->. Redirection is possible over any bus that supports Immediate Command Mode (ICM),
which currently includes CANopen and EPL (ETHERNET Powerlink). To use the redirection
operator, a controller variable first needs to be created, as shown below:

Dim remoteController As Controller

The Controller data-type is a predefined structure that contains two members called
nBus and nNode, both being integers. Once this has been created, it needs to be configured
to point at a specific node on a specific bus, for example:

remoteController.nBus = _busETHERNET
remoteController.nNode = 5

A more concise way of doing this can be achieved by initializing the controller variable in its
declaration:

Dim remoteController As Controller = {_busETHERNET, 5}

Once this has been done, redirected calls can be made using the -> operator:

Print remoteController->POS(0)

The above example illustrates how to redirect to a controller connected directly to the one
that was executing the Mint Basic program. It is also possible to redirect to a controller
connected to the controller to which the initial redirection was made. This is done by creating
another Controller variable that references the second controller. For example, assume
that the first slave controller is connected to the master via Ethernet and is node 5, and that
the second slave controller is connected to the first slave controller via CAN and is node 3.
The code to perform this ‘two hop’ redirection is shown below:

Dim slave1 As Controller = {_busETHERNET, 5}
Dim slave2 As Controller = {_busCAN, 3}

Print slave1->slave2->POS(0)

A maximum of fifteen redirection hops are allowed. See the Mint help file to see if redirection
is available on your product.
11-4 Mint Motion Library MN1955WEN

Tutorials
12 Tutorials

12.1 Introduction
The best way to learn a new programming language is by using it to write programs. This
section provides a series of tutorials to show how this can be done, starting with the simplest
of programs and slowly building in difficulty.

12
MN1955WEN Tutorials 12-1

12.2 Hello world
Write a program to display some words on the screen.

One of the simplest programs that can be written is the Hello world program, which simply
prints “Hello world” on the screen. This is done using the Print statement:

Print "Hello world"

This program shows a literal string (see page 3-7) being used in a Print statement, and will
cause this string to be displayed on the default terminal.
12-2 Tutorials MN1955WEN

12.3 Variables and arithmetic
Write a program to tabulate temperatures in Celsius and Fahrenheit.

A temperature in Celsius (C) can be converted to Fahrenheit (F) using the equation
F = 32 + 9 x C / 5.

The statements below will tabulate the temperatures 0, 10, 20 and 30 Celsius and their
equivalents in Fahrenheit:

Print 0; 32 + 9 * 0 / 5
Print 10; 32 + 9 * 10 / 5
Print 20; 32 + 9 * 20 / 5
Print 30; 32 + 9 * 30 / 5

This technique is rather crude, since the range of values displayed cannot be changed
easily, and the code involves much duplication. Both of these points make this solution error
prone and inflexible. A better solution is to use a loop with a variable to calculate the
temperatures. This can be achieved using the For statement, which allows a starting value,
a final value and a step to be specified:

Dim celsius As Float

'Loop printing Celsius and the equivalent Fahrenheit
For celsius = 0 To 30 Step 10
 Print celsius; 32 + 9 * celsius / 5
Next celsius
MN1955WEN Tutorials 12-3

12.4 Simple decision making and iteration
Write a program that picks a random value between 1 and 100 and allows the user to guess
what it is. Report how many attempts it took to guess correctly.

The first task is to pick a random value. Mint Basic has a function called Rnd that returns a
value greater than or equal to 0 and less than 1. Multiplying a value in this range by 100
gives a result between 0 and 99.9999. Using the Int function to take the integer (whole) part
of this value gives a result in the range 0 to 99. Finally, adding 1 to this will give a value in the
required range of 1 to 100.

Dim value As Integer
value = 1 + Int(Rnd * 100)

The next task is to read a guess from the user, which can be done using the Input
command:

Dim guess As Integer
Input "Enter guess: ", guess

This will display the prompt Enter guess: on the terminal. When the user enters a value
and presses enter, the variable guess will be set to the typed value.

The next task is to compare the guess with the required value, reporting whether it is too low,
too high, or correct. This can be done using the If statement:

If guess < value Then
 Print "Higher"
ElseIf guess > value Then
 Print "Lower"
End If

These two steps need to be placed inside a loop that terminates when the correct guess is
entered:

Dim value As Integer
Dim guess As Integer

value = 1 + Int(Rnd * 100)
Repeat
 Input "Enter guess: ", guess
 If guess < value Then
 Print "Higher"
 ElseIf guess > value Then
 Print "Lower"
 End If
Until guess = value

Note how the calculation of value is outside the loop, since it must not change while
guesses are being made.

This program will work correctly, but it does not yet report how many attempts it took to guess
the correct value. To do this, another variable is needed that increments each time a guess is
entered. This variable will be printed when the loop terminates:

Dim value As Integer
Dim guess As Integer
Dim attempts As Integer
12-4 Tutorials MN1955WEN

value = 1 + Int(Rnd * 100)
attempts = 0
Repeat
 Input "Enter guess: ", guess
 attempts = attempts + 1
 If guess < value Then
 Print "Higher"
 ElseIf guess > value Then
 Print "Lower"
 End If
Until guess = value
Print "Correct in ", attempts, " attempts"

Finally, the program can be made to continue indefinitely by putting most of the code inside
an overall Loop statement.

Dim value As Integer
Dim guess As Integer
Dim attempts As Integer

Loop
 'Calculate a value in the range 1-100 and reset the attempt count
 value = 1 + Int(Rnd * 100)
 attempts = 0

 'Iterate until a correct guess is made
 Repeat
 'Read the guess and increment the number of attempts
 Input "Enter guess: ", guess
 attempts = attempts + 1

 'See if the guess was correct, prompting as required
 If guess < value Then
 Print "Higher"
 ElseIf guess > value Then
 Print "Lower"
 End If
 Until guess = value

 'Notify the user of success and the number of attempts used
 Print "Correct in ", attempts, " attempts"
End Loop

Since the program has become moderately complex, comments have been added to
describe each stage.
MN1955WEN Tutorials 12-5

12.5 Point to point moves 1
Write a program to move axis 0 repeatedly from -10 to 10 and back again.

There are two commands to move an axis to a given location, MOVEA and MOVER. These
move to an absolute position (MOVEA), or a position relative to the current location (MOVER).

The first thing to do is to move to the starting location at -10:

MOVEA(0) = -10

Issuing this command alone does not make the axis move. This is because the specified
move has been loaded into the move buffer, and is waiting to be triggered. Triggering is
achieved using the GO command, so the program becomes:

MOVEA(0) = -10
GO(0)

The axis will now move to location -10.

The axis must move repeatedly backwards and forwards, so the commands need to be
enclosed within a loop.

MOVEA(0) = -10
GO(0)
Loop
 MOVEA(0) = 10
 GO(0)
 MOVEA(0) = -10
 GO(0)
End Loop

The program could be simplified to merge the initial position into the back and forth motion:

Loop
 MOVEA(0) = -10
 GO(0)
 MOVEA(0) = 10
 GO(0)
End Loop

Repeatedly loading moves can cause the move buffer to become full. This is not necessarily
a problem, but can be avoided by waiting for each move to complete before loading the next.
This can be achieved using the IDLE function combined with the Pause command:

Loop
 MOVEA(0) = -10
 GO(0)
 Pause(IDLE(0))
 MOVEA(0) = 10
 GO(0)
 Pause(IDLE(0))
End Loop
12-6 Tutorials MN1955WEN

12.6 Point to point moves 2
Write a program to move axes 0 and 1 repeatedly from (-10, -50) to (10, 50) and back again.

The program from the previous example could be used as a starting point for this problem:

Loop
 MOVEA(0) = -10
 MOVEA(1) = -50
 GO(0, 1)
 MOVEA(0) = 10
 MOVEA(1) = 50
 GO(0, 1)
End Loop

Note how each axis is triggered using GO(0, 1). You will notice that the axes will get out of
phase with each other (because the distance each is moving differs significantly), but this
can be prevented by using the IDLE function combined with the Pause command, as before:

Loop
 MOVEA(0) = -10
 MOVEA(1) = -50
 GO(0, 1)
 Pause(IDLE(0) AndAlso IDLE(1))
 MOVEA(0) = 10
 MOVEA(1) = 50
 GO(0, 1)
 Pause(IDLE(0) AndAlso IDLE(1))
End Loop

Note how the program uses the AndAlso operator to wait for both axis 0 and axis 1 to be
idle.

This program can be simplified by loading both axes’ positions in the same command using
the compound parameter. Waiting for the axes to become idle can also be simplified using
the same technique:

Loop
 MOVEA([0, 1]) = -10, -50
 GO(0, 1)
 Pause(IDLE([0, 1])
 MOVEA([0, 1]) = 10, 50
 GO(0, 1)
 Pause(IDLE([0, 1])
End Loop
MN1955WEN Tutorials 12-7

12.7 Point to point moves 3
Write a program to move axes 0 and 1 repeatedly from (-10, -50) to (10, 50) and back again,
while ensuring that both axes arrive at each location at the same time.

There are two commands to move axes to a given location in a coordinated manner;
VECTORA and VECTORR. These move to an absolute position (VECTORA), or a position
relative to the current location (VECTORR).

The program from the previous example could be used as a starting point for this problem,
but with the MOVEA commands replaced with VECTORA:

Loop
 VECTORA(0, 1) = -10, -50
 GO(0)
 VECTORA(0, 1) = 10, 50
 GO(0)
End Loop

Note how each axis is triggered using just GO(0). This is because a coordinated move has a
master axis, which is always the first axis specified in the move. Only the master axis needs
to be specified when triggering the move or when reading whether it is idle. All the axes in a
coordinated move are controlled by the master axis.

Loop
 VECTORA(0, 1) = -10, -50
 GO(0)
 Pause(IDLE(0))
 VECTORA(0, 1) = 10, 50
 GO(0)
 Pause(IDLE(0))
End Loop
12-8 Tutorials MN1955WEN

Reference
13 Reference

13.1 Introduction
This section describes how Mint Basic differs from previous versions of Mint Basic and from
Visual Basic. Also discussed are the options available to configure the language, and a
keyword summary.

13
MN1955WEN Reference 13-1

13.2 Porting to Mint v5.5
It is natural and unavoidable with any programming language that some changes result in
compatibility issues, and this is no exception with Mint Basic. These issues are discussed
below to help streamline the porting of programs developed with older versions of Mint Basic.
Also discussed are the differences between Mint Basic and other popular languages.

13.2.1 From MintMT / Mint v5
The enhancements made to Mint Basic since MintMT / Mint v5 may require changes to be
made to your Mint Basic programs so that they compile successfully under Mint v5.5. Many
of the required changes will help avoid the warnings that are generated to help guide you into
adopting the revisions to the syntax. This section outlines all of the differences and describes
what must be done to make programs compile without generating warnings or errors.

The simplest approach would be to set the compiler’s compatibility mode to 5000 (see
Compatibility on page 7-3 for details), which should allow an existing program to compile
without making any changes (except the repositioning of the Startup module to the end of
the program). However, doing this will not allow any of the new language features, like
structures, to be used. Alternatively, the compatibility mode can be set to 5400, which will
have the same compatibility settings as 5000, but will allow the use of new language
features. Note that there may be some compatibility problems when using this mode; for
example the Is keyword will conflict with the abbreviation for INSTATE.

Using either of these modes will provide the most direct means of getting an existing
program running quickly. However, if it is intended to port the program back to the original
system, then mode 5000 should be used to avoid inadvertently using a feature that will not
be supported by the older system.

13.2.1.1 Language enhancements

Mint Basic includes a number of enhancements compared with previous versions:

 'Dot parameters' have been replaced with bracketed parameters. For example, MOVER.0
becomes MOVER(0).

 The use of square brackets [] to denote multiple parameters has changed - see
Advanced parameter passing on page 11-2.

 Keywords that were followed by a space then an identifier or value now require brackets
around the identifier(s) or value. For example, Run myTask, TaskSuspend myTask
and Wait 250 become Run(myTask), TaskSuspend(myTask)and Wait(250).

 The Structure keyword can be used to create data-types that contain multiple
members (see Structures on page 5-6).

 Variables of type Time can be declared to overcome the scoping limitations inherent with
the Time keyword (see page 3-8).

 The Is operator can be used in the Select statement (see page 6-5).

 The Controller data type can be used in conjunction with the redirection operator (->)
to redirect MML calls (see pages 3-9 and 11-4).

 Event priorities can be programmed using EventPriority (see page 10-18).

 Strings can now be used in the Select statement (see page 6-5).

 The scope override operator (::) can be used to access subroutines, functions and
user-defined data types (see page 8-20).

 The Semaphore block can be used to control shared resources (see 8-23).
13-2 Reference MN1955WEN

 The Bitfield keyword can be used to create data types that simplify access to
selected bits or bit-ranges within an integer value (see page 5-8).

 The intrinsic functions have been extended and some existing functions have been
enhanced to allow them to do more.

 The ‘immediate if’ operator, IIf, can be used to make a choice within an expression
(see page 4-5).

 The logical operators AndAlso and OrElse can be used to perform 'short-circuit'
evaluation (see page 4-3).

These features can be enabled of disabled using a number of options discussed in section 7,
Directive Statements. This can be useful, as it is possible that any of the new features
mentioned above could conflict with a declaration’s name in a program being ported.

13.2.1.2 The Startup module

The original language definition for Mint Basic made it illegal to place executable statements
after a module declaration, but this rule was not enforced. This mistake meant that a
statement like x = 0 could be placed between two subroutine declarations, resulting in
difficult to read code and the possibility that errors could go undetected (e.g. should the
statement that was between two modules actually have been in one or the other?).
Consequently, Mint v5.5 now enforces this rule.

Mint Workbench used to place an auto-generated Startup module at the head of the
program, but doing this made the parent task’s statements lie after a module declaration, and
so this has now become illegal. If this occurs in an existing program, the error “Error 2377 -
Statement 'statement' present after a module declaration on line n” will be generated by the
compiler. To avoid this error, simply cut out the Startup module and paste it at the end of
the program. Mint WorkBench now correctly places an auto-generated Startup module at
the end of the program.

13.2.1.3 Defines

The MintMT / Mint v5 compiler used the same scoping rules for Define statements as it did
for every other declaration type, which meant that a Define was local to the module that it
was declared in. However, in Mint v5.5, the compiler uses a pre-processor that has no
concept of scope, and so a Define has global scope but only becomes valid from its point of
declaration onwards. In general this difference should not present any compatibility issues,
though it is considered bad practice to use a Define that was declared in another module.

For example, the following program will print ‘1’, ‘2’, and ‘1’ under MintMT / Mint v5, but will
print ‘1’, ‘2’ and ‘2’ under Mint v5.5 (which will also generate the diagnostic “Warning 2109 -
Redefinition of Define 'myDefine' on line 8” to alert the user that a Define had been
redefined).

Define myDefine = 1

Print myDefine
mySub1
mySub2

Sub mySub1()
 Define myDefine = 2 'Redefinition
 Print myDefine
End Sub

Sub mySub2()
 Print myDefine 'Will behave differently between v5/v5.5
End Sub
MN1955WEN Reference 13-3

For example, the following program will not compile under MintMT / Mint v5, but will compile
under Mint v5.5:

mySub1
mySub2

Sub mySub1()
 Define myDefine = 2
 Print myDefine
End Sub

Sub mySub2()
 Print myDefine 'Allowed under Mint v5.5, but this use is bad practice
End Sub

In future releases, Define statements may revert to using conventional scoping rules that
are more easily understood.

13.2.1.4 Labeled subroutines and events

Mint Basic continues to support labeled subroutines and events but these should ideally be
converted to use the block-structured syntax (see sections 13.2.2.2 and 13.2.2.3). If these
are not converted, they must be present after the main program’s statements but ahead of
any module declarations (e.g. subroutines, functions, tasks, etc.).

'Main program statements
...
End

#mySub
 ...
Return

#OnError
 ...
Return

Task myTask
 ...
End Task

This is because the statements that define the labeled subroutine ‘mySub’ and the labeled
event handler ‘OnError’ are considered part of the main program’s statements since they are
not formal module declarations.

13.2.1.5 Legacy MML parameters

To allow legacy Mint Basic programs to function, the calling conventions used by previous
versions of Mint Basic are also supported. The most common calling convention was the ‘dot
parameter’, which allowed the following type of statements:

Print POS.0
CONTOURPARAMETER.0._ctpSTOP_ANGLE

This mechanism makes the job of the compiler considerably more difficult, as it has to
attempt to differentiate between floating point values and integers separated by dots, which
is not always an easy task. For example CONTOURPARAMETER.1.2 needs to be resolved
from CONTOURPARAMETER, .1, .2 (or CONTOURPARAMETER, ., 1.2) into
CONTOURPARAMETER, ., 1, ., 2. This adds a level of vagueness into the language definition
that is not desirable, and the disambiguation rules required to resolve this make it difficult to
prove correctness. Consequently, it is best to avoid dot parameters.
13-4 Reference MN1955WEN

The next most common calling convention was the use of parameters inside square
brackets, for example:

Print POS[0]
CONTOURPARAMETER[0]._ctpSTOP_ANGLE.

However, the main use of square bracket parameters was in the generation of multiple calls
from a single statement, for example:

Pause(IDLE[0, 1])
POS[0, 1] = 0;

These can be converted to use round brackets: IDLE([0, 1]) and POS([0, 1]) = 0;.
Functions that take a variable number of parameters like VECTORA[0, 1] = 10, 20 can
be converted to VECTORA(0, 1) = 10, 20. Deciding whether to embed the square
brackets inside round brackets, or to simply change the square brackets to round ones can
cause some confusion. The rule is that if the function takes a variable number of arguments,
(indicated by ‘...’ in the help file topic’s Format section, and in the hover-over help in Mint
WorkBench edit windows) then the square brackets should be converted into round ones;
otherwise put round brackets around the parameters (including dot parameters). So for
example:

CONTOURPARAMETER[0]._ctpSTOP_ANGLE

becomes:

CONTOURPARAMETER(0, _ctpSTOP_ANGLE)

The final calling convention was to omit optional parameters, specifically the axes, bank, bus
or node, the values for these being determined from a set of registers called Axes, Bank and
Bus respectively (if the node number is omitted, the node number of the controller executing
the program is assumed). Using these registers introduces the potential for error, since it is
not self evident what parameters were being used in a call. There is also the potential for
side effects if other parts of the program unexpectedly alter these registers.

While the Mint Basic compiler allows these constructs, it will generate a warning for each one
encountered, and it is suggested that Mint Basic programs are modified to remove calls that
use any of these constructs.

13.2.2 From Mint v4
Many enhancements were made to the Mint Basic language with the introduction of MintMT,
but with the objective of retaining compatibility wherever possible. The changes required are
described below, which once performed will put a program into a state compatible with
MintMT / Mint v5 (i.e. equivalent to using compatibility mode 5000).

13.2.2.1 Configuration File

The program used to be split into two sections, the configuration and the program. This
demarcation is no longer allowed and existing configuration files must be converted to a
Startup module, which is simply achieved by copying the configurations contents and
pasting them into a Startup module, as shown below:

Startup
 paste configuration here
End Startup

The Startup module should be placed with the other module declarations at the end of the
program (see Startup module on page 8-15).
MN1955WEN Reference 13-5

13.2.2.2 Labels

Mint v4 allowed a label to be any sequence of alphanumeric characters, but now only a valid
identifier may be used. This should not normally pose any problems, as most labels were
simple names, but those that are not can easily be made so as required.

13.2.2.3 Labeled Subroutines and Events

Subroutines used to be declared with a label, and terminated with a Return statement. They
were called with the GoSub statement:

GoSub mySub
...

#mySub
 ...
Return

This is a crude mechanism with the only means of passing parameters being the use of
global variables, and no means of hiding data local to the subroutine. While these will
continue to operate, it is recommended that these are converted to use Sub..End Sub:

mySub
...

Sub mySub()
 ...
End Sub

Event handlers were also declared using labels and Return:

#OnError
 ...
Return

While this will continue to operate, it is recommended that these are converted to use:

Event..End Event:

Event ONERROR
 ...
End Event

It was also possible that labeled events could be called directly as subroutines:

GoSub OnError
...

#OnError
 ...
Return

Since it is not possible to directly call an event declared using Event..End Event,
instances of this should be converted to a subroutine with an altered name to distinguish it
from the event’s name (e.g. prefixing it with ‘do’ would be adequate). The true event,
declared using Event..End Event, can then call the subroutine:

doOnError
...

Sub doOnError()
13-6 Reference MN1955WEN

 ...
End Sub

Event ONERROR
 doOnError
End Event

However, since the calling of labeled events as subroutines is not standard practice, the
above construct will be rarely seen, if at all.

13.2.2.4 Scalar Array Usage

Previously, it was possible to use arrays as if they were also scalars, so Dim a(10) had 10
elements that were accessed by indexing, but a could also be used as if it was a scalar
(without its use overwriting any of its elements). This quirk is no longer supported, and all
such occurrences will now assign to the first element of the array. The only way to avoid this
is to create a scalar variable and use that wherever the array is used without indexing.

13.2.3 From Visual Basic
While Mint Basic is similar to VB, it is not the same in all regards and the differences can
result in some confusion for a programmer already familiar with VB. The differences that
might cause problems are highlighted in this section. The two frames of reference for
comparison are VB6 and VB.NET, and the term VB is used when a feature is common to
both.

The Int function is equivalent to VB’s Fix function, which truncates towards zero rather
than -∞ (note that VB’s Int function does the latter).

The Select statement may be used without the following Case keyword, which is not
allowed in VB6, but is allowed in VB.NET.

The Is operator cannot be omitted from a Case expression as it can in VB.NET. The Is
operator can be used in a more complex manner in Mint Basic, essentially being equivalent
to the Select expression, allowing statements such as:

Case Is < 0 OrElse Is > 100

When printing, the meanings of the comma and semi-colon separators are reversed, and the
comma is slightly different. In Mint Basic, the comma merely separates the arguments to be
displayed and the semi-colon emits a tab character ahead of each argument it precedes. In
VB6, the comma emits a tab ahead of each argument it precedes and the semi-colon emits a
space ahead of each argument it precedes.

The Mint Atan function is called Atn in VB6.

All Mint trigonometric functions work in degrees, whereas VB uses radians.

The Mint keywords Hex and Oct are output modifiers, whereas in VB they are functions to
convert a number into a string.

The Mint IIf function only evaluates the expression dictated by the condition, whereas
VB.NET always evaluates both (which makes it almost useless). Since its initial release,
VB.NET has had the poor behavior of IIf corrected, but to avoid any compatibility issues, it
has been released as the If operator. There are some differences between the VB IIf
MN1955WEN Reference 13-7

operator and the VB.NET If operator, since the latter can take 2 or 3 arguments. The Mint
Basic IIf operator should be considered as either the new VB.NET If operator with three
arguments, or the existing VB IIf operator with short-circuiting.

The Mint Len function returns only the number of characters in a string, whereas in VB it can
also return the number of bytes used by a variable.

The + operator is used to concatenate strings, whereas in VB both the + and the & operator
can be used for this purpose. This is because in Mint the & operator is used for bitwise
conjunction, but in VB the & always performs string concatenation with operands
automatically cast to strings as required. The VB + operator is more complex in operation; it
adds if either operand is numeric and concatenates if both operands are strings. Mint Basic
will generate an error if one operand to + is numeric and the other operand is a string;
operands must either be numeric or be strings, but not a combination (as allowed in VB).

The Mint Str and Val functions can take an optional second parameter indicating the base
to use in the conversion. VB does not have this capability, but does have the functions Hex
and Oct to convert an integer to a string.

The Auto statement is used to indicate that a program should auto-run on controller boot-up,
whereas in VB.NET it specifies string marshalling rules.

The Mint STOP statement stops motion on the specified axis, whereas in VB.NET it suspends
execution (like placing a break-point in the code).

The Mint Using keyword in used in an output statement (Print, Line) to specify the output
format, whereas in VB.NET it specifies a block of code (terminated with End Using) that
acquires a resource that is automatically freed on exiting the Using block.

In a Mint Dim statement, the default type (if none is specified) is Float, but in VB6 it is
Variant and in VB.NET it is Object or the type of the initializer, if present. In Mint and VB6,
each variable must be given its own type, but in VB.NET one type specification covers all
preceding variable names after the previous type specification, if present, or the Dim
keyword if not.

The default parameter passing mechanism in Mint is ByRef, which is the same as VB6, but
VB.NET uses ByVal as default.

In Mint, the VB numeric formats for octal and hexadecimal (&O177777, &HFFFF, etc.) are not
supported as they introduce ambiguity into the language, due to & being used for bitwise
conjunction in Mint. Hence it would not be clear if something like i&HF represented i & HF
or i &HF.

The Do looping types of VB are not supported as they introduce ambiguity into the language
(due to the Loop block).

The Mint constants _false and _true have the values of 0 and -1 respectively. The
equivalent VB constants False and True are generally 0 and -1 respectively, though in
VB.NET, depending on how the cast is performed, True can also take the value +1.

Labels are defined by a hash character followed by an identifier, whereas in VB labels are
defined by an identifier followed by a colon.
13-8 Reference MN1955WEN

The Shift command is used to perform unsigned bit shifting with a negative shift indicating
left, and a positive shift indicating a right shift. VB.NET uses the << and >> operators to shift
bits left and right respectively and operates on both signed and unsigned values. To perform
signed shifting in Mint Basic, the value should be multiplied by 2 (using *) to left shift, and
divided by 2 (using \) to right shift.

Assigning a string that is longer than the destination variable’s size simply caps the string in
VB, whereas in Mint Basic a ‘string overflow’ run-time error is generated.

Conversion from floating-point to integer is performed using rounding in VB, whereas Mint
Basic uses truncation (apart from the case of the integer divide operator, which rounds).
However, VB rounds using “Bankers’ rounding”, whereas Mint Basic rounds using simple
rounding (“Round Half Up” or “Symmetric Arithmetic Rounding”).

#Const is not supported in Mint Basic, as the only requirement is that the expressions used
for conditional compilation evaluate to a constant, whereas VB uses a more traditional pre-
processor that requires explicit symbols declared with #Const that the pre-processor can
see (i.e. it sees nothing else).

The following table gives a summary of how common areas of each language relate to each
other.

Mint Basic VB6 VB.NET

Int Fix Fix

- Int Int

Atan Atn Atan

Sgn Sgn Sign

Log10 - Log(x, 10)

Sqrt Sqr Sqrt

Float CSng CSng

Str(x, 16) Hex Hex

Str(x, 8) Oct Oct

<, <=, >=, >, =, <> StrComp StrComp

Integer Long Integer

- Integer Short

Float Single Single

_false False False

_true True True

AndAlso - AndAlso

OrElse - OrElse

#label-name label-name label-name:

Shift - <<, >>

Rotate - -
MN1955WEN Reference 13-9

13.2.4 From Structured Text
Structured Text (ST) is an IEC 61131-3 language that has a Pascal-like syntax and is the only
IEC language similar to Mint Basic. This section is intended to help a programmer familiar
with ST to port a program to Mint Basic or to write a program in Mint Basic.

Mint Basic uses one source file to define all the tasks and events that make up a program,
while in the IEC environment, these would all be separate files. In Mint Basic, global data is
declared at the outer level, while in the IEC environment, global data is specified in a
VAR_GLOBAL block, which is shared amongst programs.

ST is a more strongly typed language, and so more explicit casts are required than are
needed in an equivalent Mint Basic program.

Assignment uses the = symbol, but ST uses := .

Strings are delimited with double quotes, but ST uses single quotes.

Non-printing characters within strings are denoted by a backslash followed by two
hexadecimal digits, but ST uses a dollar character followed by two hexadecimal digits.

The Integer data-type is equivalent to DINT in ST (and DInt is a reserved word in Mint
Basic used for disabling input events).

The Float data-type is equivalent to REAL in ST.

The END_REPEAT delimiter is not required after the UNTIL condition.

The Select statement is the equivalent of the CASE statement in ST.

ST does not support multi-tasking directly, though this can be achieved using multiple
programs (possibly with scheduling limitations due to the IEC run-time model).
13-10 Reference MN1955WEN

13.3 Array data files
Array data can be uploaded from a controller and stored in a file by using the Program, Data
File, Upload... menu item in Mint WorkBench. Similarly, a previously uploaded file can be
downloaded to a controller using the matching Download... item.
MN1955WEN Reference 13-11

13.4 Source code reformatting
The Mint Basic compiler has the ability to reformat source code, which will correctly indent all
language constructs, place spaces around operators, blank lines between modules, correctly
capitalise identifier names, etc. This facility is available from Mint Workbench under the
Program menu.

Since the compiler uses prescribed rules to format the code, the resulting code may differ in
certain respects. For example

 While blank lines are honoured, multiple blank lines will be replaced with a single blank
line (except between module declarations where multiple blank lines may be used).

 Blank lines may appear where there was no blank line in the original listing.

 Line continuations are not always honoured, as certain constructs are considered a
single non-breakable unit, e.g. Sub mySub will not honour a line continuation placed
between the Sub and mySub.

A number of listing generation options are available to refine the formatting, the details of
which can be found in Listing generation options on page 7-10. The option Sort declarations
allows declarations to be sorted into a prescribed order, although this may have some
adverse effects. By default, the reformatted code will contain declarations in the same order
as the supplied code. However, when a declaration is moved the comments immediately
prior to it are moved with it, which can result in some comments moving incorrectly. For
example, a block heading comment describing the program, authors, change history, etc.
may move if the first declaration that follows it is a Dim and there are Const, Define, etc.
declarations after the Dim.
13-12 Reference MN1955WEN

13.5 C Format Strings
The Using clause may use C format strings provided Option CFormatting is enabled.
This gives Mint Basic additional flexibility for justification, leading zeroes and formats
available (signed, unsigned, hexadecimal, octal, float, etc.). Additionally, some extensions
become available, such as the ability to display binary values and IP addresses.

A C format string takes the following form:

“%[sign][width][.precision][length]<format>"

Items enclosed in square brackets are optional, but the format (in angle brackets) is
mandatory.

sign
This determines whether a numeric value is always preceded by its sign (whether it is
positive or negative) or is only prefixed by a sign when it is negative. The ‘+’ character is
used to force the sign to be displayed.

width
This specifies the minimum number of characters used, the justification (left or right) and the
padding character. If the value is narrower than the field width then it will be padded, by
default, with spaces, or with leading zeroes if the field width starts with a leading zero (left
justification always pads with spaces). Padding will be to the right if the field width is prefixed
with a ‘-‘ character (left justification) and to the left if this character is omitted (right
justification).

precision
This is a value prefixed with a period, and specifies the number of decimal places for floating-
point values, the number of characters to output for string values, and the number of digits to
output for integer data. For integer data, the value will be padded with leading zeroes if it has
fewer digits than the specified precision.

length
This indicates the size of the data being processed. The ‘l’ (lower case 'L') is used to indicate

a long7 rather than an int. For most controllers, integer is the same as long integer (i.e. 32
bits) and so does not need to be used. However, on Flex+DriveII, MintDriveII, MicroFlex e100
and MotiFlex e100 an integer is the same as a short integer (i.e. 16 bits), and so the ‘l’
modifier must be used. Note that the ‘l’ modifier may be safely used on all controllers for
integer data, but is not required for floating-point data (32 bits) as Mint Basic does not allow
the use of long floats (64 bits, called double in C).

format
This specifies the formatting that is to be applied to the value. Valid format characters are
described in the following sections.

7.The terms long, int and short are C programming language specific, but need to be mentioned as C format strings
deal directly with the C data-types. A system’s natural word size is represented by an int, and the rules are that a long is
at least as long as an int and a short is no longer than an int.
MN1955WEN Reference 13-13

13.5.1 b: binary notation
The integer argument is printed in unsigned binary notation.

Print 1234 Using("%lb")
10011010010
Print -121015514 Using("%lb")
11111000110010010111001100100110

13.5.2 c: character
The integer argument is printed as a single character.

Print -121015514 Using("%lc")
&

13.5.3 d: decimal
The integer argument is printed in signed decimal notation. The · characters in the following
examples indicate the position of spaces in the output.

Print -121015514 Using("%ld")
-121015514

Print -121015514 Using("%12ld")
··-121015514

Print -121015514 Using("%-12ld")
-121015514··

Print -121015514 Using("%012ld")
-00121015514

Print -121015514 Using("%12.10ld")
·-0121015514

Print -121015514 Using("%-12.10ld")
-0121015514·

13.5.4 e: exponential (scientific) notation
The floating point argument is printed in decimal using scientific notation. This format will
output non-numeric characters (if present) in lower case. If upper case characters are
required, then the format may be converted to upper case E.

Print 1234.0 Using("%e")
1.234000e+03

Print 1234.0 Using("%E")
1.234000E+03

13.5.5 f: fixed point notation
The floating point argument is printed in decimal using fixed point notation. The output is in
the format [-]mmm.nnnnn where the number of n’s is specified by the precision, and the
number of m’s is that required to obtain the specified field width. The default precision is 6.
The · characters in the following examples indicate the position of spaces in the output.
13-14 Reference MN1955WEN

Print 12.34567 Using("%f")
12.345670

Print 12.34567 Using("%.2f")
12.35

Print 12.34567 Using("%12f")
···12.345670

Print 12.34567 Using("%12.2f")
·······12.35

Print 12.34567 Using("%+12.2f")
······+12.35

Print 12.34567 Using("%+-12.2f")
+12.35······

Print 12.34567 Using("%+012.2f")
+00000012.35

13.5.6 g: general (floating point) notation
The floating point argument is printed in decimal using either %e or %f, whichever is shorter,
with trailing zeroes not being printed. This format will output non-numeric characters (if
present) in lower case. If upper case characters are required, then the format may be
converted to upper case G.

Print 1234.0 Using("%g")
1234

Print 12345678.0 Using("%g")
1.23457e+07

Print 12345678.0 Using("%G")
1.23457E+07

13.5.7 o: octal notation
The integer argument is printed in octal notation.

Print 1234 Using("%lo")
2322

13.5.8 q: quad (IP address) notation
The integer argument is printed in quad notation (also called dotted-quad or dot-decimal
notation).

Print 12345678 Using("%lq")
0.188.97.78

Print -121015514 Using("%lq")
248.201.115.38
MN1955WEN Reference 13-15

13.5.9 s: string
The string argument is printed. The · characters in the following examples indicate the
position of spaces in the output.

Print "Hello world" Using("%s")
Hello world

Print "Hello world" Using("%10s")
Hello world

Print "Hello world" Using("%-10s")
Hello world

Print "Hello world" Using("%20s")
·········Hello world

Print "Hello world" Using("%-20s")
Hello world·········

Print "Hello world" Using("%20.10s")
··········Hello worl

Print "Hello world" Using("%-20.10s")
Hello worl··········

Print "Hello world" Using("%.10s")
Hello worl

13.5.10 u: unsigned decimal
The integer argument is printed in unsigned decimal notation.

Print -1234 Using("%lu")
4294966062

Print -121015514 Using("%lu")
4173951782

13.5.11 x: hexadecimal notation
The integer argument is printed in hexadecimal notation. This format will output non-numeric
characters (if present) in lower case. If upper case characters are required, then the format
may be converted to upper case X.

Print 1234 Using("%lx")
4d2

Print 16#4D2 Using("%lx")
4d2

Print 1234 Using("%lX")
4D2

Print -121015514 Using("%lx")
f8c97326

Print -121015514 Using("%lX")
F8C97326
13-16 Reference MN1955WEN

Formats that would normally have a prefix when specified as literals in a Mint Basic program
are output without any such prefix. For example, 16#ABC would output as abc if %lx were
used.

Note that there is no type checking performed, either during compilation or run-time, that
validates that the data being printed is compatible with the format string used, and this can
cause unpredictable behavior if they are incompatible. For example, displaying an integer
with the formats ‘f’, ‘g’ or ‘e’ will not output what was expected, and displaying a floating-point
value with the formats ‘b’, ‘c’, ‘d’, ‘q’, ‘u’ or ‘x’ will also cause unpredictable output. The format
‘s’ is only valid when used when displaying a string, and likewise will cause unpredictable
behavior if any other data-type is used. For example, the following statement all use
incompatible data and format strings:

Print 1234 Using("%f") 'Bad – Integer data/float format
Print 1234.0 Using("%d") 'Bad – Float data/integer format
Print "Hello" Using("%u") 'Bad – String data/integer format
Print 1234 Using("%s") 'Bad – Integer data/string format

The formats used by the Mint Basic output modifiers are as follows.

When the modifiers are used in conjunction with a Using clause that takes integer
arguments, there are some important differences between this and the C format strings.

 The padding character is controlled by Option ZeroPad.

 The width value specifies the number of digits before the decimal point (excluding the
sign) rather than the overall field width, except when the Sci modifier is used, in which
case it represents to overall field width.

 A negative width value specifies that the sign should be emitted.

 The precision value is only applicable to floating-point values.

These limitations and anomalies, mainly to aid compatibility with previous versions of Mint
Basic, make it generally easier to use C format strings rather than the output modifiers.

Type Modifier C Format String Description

Integer Dec (or none) "%ld" Decimal

Hex "%lX" Hexadecimal

Bin "%lb" Binary

Float none "%.4f" Floating point

Sci "%e" Scientific notation

String none "%s" String
MN1955WEN Reference 13-17

13.6 Error Codes
This section lists the errors that may be issued either during compilation or execution of a
program.

13.6.1 Compilation Error Codes
A program may fail to compile for a number of reasons, such as using an undeclared
identifier, supplying an incorrect number of parameters in a call, etc. The table below lists all
compilation errors.

Error
Code

Description Extended Description

2100 Internal error This should never occur and indicates an internal fault in the
compiler. In such circumstances, please contact ABB with an
example of the code that produced this error.

2101 Name is reserved This should never occur and indicates that a predefined
symbol shares its name with a reserved word. Please contact
ABB if this occurs.

2102 Lexically incorrect This should never occur and indicates that a predefined
symbol has a name that does not conform to the naming rules
for identifiers. Please contact ABB if this occurs.

2103 Anachronism This is not an error, but merely an indication that Mint Basic
now has a better feature than the one that has been used. For
example, labelled subroutines called with GoSub and ended
with Return should be replaced with the true subroutines
now provided by Mint Basic. Also, if the newer constructs are
used, they will be displayed in the Mint WorkBench tree view
for easier program navigation.

2104 Too many errors This is generated when the maximum number of errors
allowed is exceeded.

2105 Symbol table read
error

This should never occur and should be reported to ABB if it
does.

2106 Failed to read
default options

This should never occur and should be reported to ABB if it
does.

2107 Reserved

2108 Define redefinition This occurs if an identifier that represents a define is used as
the name of another define.

2109 Define is a
function of itself

This occurs if a define is defined in terms of itself, either
directly or mutually.

2150 Unterminated
string

This occurs when a string literal is not terminated with a
closing double quote before the end of the line is reached.

2151 Bad label This occurs if a label is declared that uses a name that is a
reserved word.
13-18 Reference MN1955WEN

2152 Bad ASCII code This occurs when an incorrect ASCII code is specified within a
string literal. Valid ASCII codes are \" to specify a double
quote, \\ to specify a backslash, and \hh where hh is a two
digit hexadecimal number. An invalid character such as \£, or
an invalid ASCII code such as \Fg, will cause this error.

2153 Bad number This occurs when a badly formed number is encountered,
such as 1.128r-6 or 0xffgffff.

2154 Bad identifier This occurs if an identifier is composed entirely of
underscores.

2200 Unexpected end-
of-file

This occurs when end of file is reached while processing a
construct that has not been terminated.

2201 Unexpected
symbol

This indicates that a symbol has been encountered that is
either out of context or not a recognized language element.

2202 Expected end-of-
line

This occurs when the end of a line is required but is not
present.

2203 Expected Then This occurs while parsing an If statement that does not have
a Then clause immediately after the conditional expression.

2204 Unexpected Else This occurs while parsing an If block that has already had its
Else clause processed, thus making further Else clauses
illegal.

2205 Expected End If This occurs when a block If statement is terminated with
something other than End If.

2206 Expected Case This occurs when the Select statement is not followed by the
Case keyword.

2207 Expected End
Select

This occurs when a Select statement is terminated with
something other that End Select.

2208 Expected End
While

This occurs when a While statement is terminated with
something other than End While, Endw or Wend.

2209 Expected Until This occurs when a Repeat statement is terminated with
something other than Until.

2210 Expected End
Loop

This occurs when a Loop statement is terminated with
something other than End Loop or Endl.

2211 Expected identifier This occurs when an identifier is expected and was not found,
for example, tasks, events, subroutines and functions,
amongst others, all require an identifier.

2212 Expected equals This occurs when an assignment operator is expected, such
as after a For loop variable, or after the name of a Define,
but one is not found.

2213 Expected To This occurs while parsing a For statement when there is no
To keyword after the initial value expression.

2214 Expected Next This occurs when a For statement is terminated with
something other than Next.

Error
Code

Description Extended Description
MN1955WEN Reference 13-19

2215 Incorrect identifier
in Next

This occurs when the optional loop counter identifier is used,
but which does not match that actually used.

2216 Expected
expression

This occurs when an expression is required, but one is not
present. For example x = myFunc(a, b,) would generate
this error, as there is no expression after the last comma.

2217 Unexpected
Return

This occurs when a Return statement is used anywhere
other than the outer scope, i.e. inside a subroutine, task, etc.

2218 Unexpected Sub This occurs when an attempt is made to declare a subroutine
anywhere other than the outer scope or the outer scope of a
task. For example, it is illegal to declare a subroutine inside
any of the following: start-up module, event, subroutine,
function or any block construct.

2219 Unexpected
Function

This occurs when an attempt is made to declare a function
anywhere other than the outer scope or the outer scope of a
task. For example, it is illegal to declare a function inside any
of the following: start-up module, event, subroutine, function
or any block construct.

2220 Expected ‘(‘ This occurs when an opening bracket is expected, but not
found. For example, subroutine and function parameter lists
must be bracketed and intrinsic functions (Sin, Cos, Atan2,
TaskStatus, etc.) must have their parameters bracketed.

2221 Expected ‘)’ This occurs when a closing bracket is expected, but not found.
For example, subroutine and function parameter lists must be
bracketed and intrinsic functions (Sin, Cos, Atan2,
TaskStatus, etc.) must have their parameters bracketed.

2222 Expected ‘[‘ This occurs when the Axes statement is not immediately
followed by [.

2223 Expected ‘]’ This occurs when an expression list initiated with [is not
terminated with].

2224 Expected ‘,’ This occurs when items required to be separated by a comma
are not.

2225 Unexpected ‘,’ This occurs when a parameter list has a trailing comma with
no expression after it.

2226 Expected End Sub This occurs when a subroutine declaration is terminated with
something other than End Sub.

2227 Expected data-
type

This occurs when something other than integer, float or string
follows an As clause.

2228 Expected End
Function

This occurs when a function declaration is terminated with
something other than End Function.

2229 Unexpected Task This occurs when an attempt is made to declare a task at
anywhere other than the outer scope.

2230 Expected End
Task

This occurs when a task declaration is terminated with
something other than End Task.

Error
Code

Description Extended Description
13-20 Reference MN1955WEN

2231 Unexpected Event This occurs when an attempt is made to declare an event at
anywhere other than the outer scope.

2232 Expected End
Event

This occurs when an event declaration is terminated with
something other than End Event.

2233 Unexpected
Startup

This occurs when an attempt is made to declare a start-up
module at anywhere other than the outer scope.

2234 Expected End
Startup

This occurs when a start-up module declaration is terminated
with something other than End Startup.

2235 Non-reference
array

This occurs when an array parameter is specified as being
passed by value using the ByVal keyword. This is illegal, as
arrays are always passed by reference.

2236 Cannot initialise
parameters

Parameters receive their initial values from the call statement,
and so it makes no sense, and is illegal, to try and initialize
them.

2237 Else without If This occurs when an Else clause is encountered outside an
If statement.

2238 End If without If This occurs when an End If clause is encountered outside
an If statement.

2239 Case without
Select

This occurs when a Case clause is encountered outside a
Select statement.

2240 End Select without
Select

This occurs when an End Select clause is encountered
outside a Select statement.

2241 End While without
While

This occurs when an End While clause is encountered
outside a While statement.

2242 Until without
Repeat

This occurs when an Until clause is encountered outside a
Repeat statement.

2243 End Loop without
Loop

This occurs when an End Loop clause is encountered
outside a Loop statement.

2244 Next without For This occurs when a Next clause is encountered outside a
For statement.

2245 End Sub without
Sub

This occurs when an End Sub clause is encountered outside
a subroutine declaration.

2246 End Function
without Function

This occurs when an End Function clause is encountered
outside a function declaration.

2247 End Task without
Task

This occurs when an End Task clause is encountered
outside a task declaration.

2248 End Event without
Event

This occurs when an End Event clause is encountered
outside an Event declaration.

2249 End Startup
without Startup

This occurs when an End Startup clause is encountered
outside a start-up module declaration.

Error
Code

Description Extended Description
MN1955WEN Reference 13-21

2250 Block not found This occurs when an unqualified Exit or Continue
statement is used without being in a block that can be exited
or continued.

2251 Sub block not
found

This occurs when an Exit statement qualified with Sub is
used without being in a subroutine.

2252 Function block not
found

This occurs when an Exit statement qualified with
Function is used without being in a function.

2253 Task block not
found

This occurs when an Exit statement qualified with Task is
used without being in a task.

2254 Event block not
found

This occurs when an Exit statement qualified with Event is
used without being in an event.

2255 Startup block not
found

This occurs when an Exit statement qualified with Startup
is used without being in the start-up module.

2256 While block not
found

This occurs when an Exit or Continue statement qualified
with While is used without being in a While statement.

2257 Repeat block not
found

This occurs when an Exit or Continue statement qualified
with Repeat is used without being in a Repeat statement.

2258 For block not
found

This occurs when an Exit or Continue statement qualified
with For is used without being in a For statement.

2259 Loop block not
found

This occurs when an Exit or Continue statement qualified
with Loop is used without being in a Loop statement.

2260 Unexpected end-
of-statement

This occurs when a statement ends unexpectedly, for example
Input followed by no input variable.

2261 Expected
statement
separator

This occurs when a statement separator is expected but not
found, for example:
While Rnd() < 0.5 Print "Mint"

2262 Size string in Dim
only

This occurs when an attempt is made to size a string outside a
Dim statement, for example:
Function abc(s As String * 12)

2263 Expected End
Critical

This occurs when a critical block is terminated with something
other than End Critical.

2264 Reserved

2265 Size strings only This occurs when a data-type other than a string is sized, for
example:
Dim f As Float * 4

2266 Expected End
Structure

This occurs when a structure is terminated with something
other than End Structure.

2267 Expected ‘}’ This occurs when a braced initialization has something other
than a close brace after a semi-colon.

2268 Expected End
DriveMacro

This occurs when a drive macro is terminated with something
other than End DriveMacro.

Error
Code

Description Extended Description
13-22 Reference MN1955WEN

2269 End DriveMacro
without
DriveMacro

This occurs when an End DriveMacro statement is
encountered outside a drive macro statement.

2270 Expected End
Shutdown

This occurs when a shutdown module is terminated with
something other than End Shutdown.

2271 End Shutdown
without Shutdown

This occurs when an End Shutdown is encountered outside
a shutdown statement.

2272 Expected End
Semaphore

This occurs when a semaphore is terminated with something
other than End Semaphore.

2273 End Semaphore
without
Semaphore

This occurs when an End Semaphore is encountered outside
a semaphore statement.

2274 Expected End
Bitfield

This occurs when a bitfield is terminated with something other
than End Bitfield.

2300 Invalid event name This occurs when an event name is used that does not
correspond to a valid event is used. Either the event specified
is completely illegal, or the controller does not support that
event.

2301 Multiple
declaration

This occurs when an identifier is used twice in the same scope
for declaring an object such as a variable, subroutine, task,
etc.

2302 Event preclusion This occurs when events that are mutually exclusive are
declared. For example, if the general FASTIN event has been
declared, then it is illegal to declare any of the specifically
numbered events such as FASTIN1 (and vice-versa), as this
would cause ambiguity about which to call.

2303 Unused
declaration

This occurs when an object is declared but never used. This is
not an error, but indicates that the object in question could
safely be removed. Note that if this warning is issued for an
event, then the event mentioned has not been included in a
call to EventPriority so will be ignored.

2304 Identifier not found This occurs when an attempt is made to use something that
has not been declared, such as a variable or subroutine.

2305 Identifier shared
with predefined

This occurs when a user defined object is given the same
name as a predefined symbol, such as an MML routine, event
name or constant.

2306 Cannot call tasks
or events

This occurs when an attempt is made to call a task or event as
if were a subroutine or function.

2307 Expected value This is generated whenever a value is required, but one is not
present. For example, the string literal "Value" is not a
value, but the literal 1.0 and variable x are values.

2308 Modify constant This occurs when a constant is supplied as a parameter to a
subroutine or function that modifies the parameters value.

Error
Code

Description Extended Description
MN1955WEN Reference 13-23

2309 Expected variable This occurs whenever a variable is expected but something
else is supplied, such as a constant or literal.

2310 Expected constant This occurs whenever a constant is expected but something
else is supplied, such as a variable.

2311 Expected variable
or value

This occurs when a parameter is supplied to a subroutine or
function call that is neither a variable nor a value, such as a
task or event name.

2312 Expected Null This occurs when an MML routine is called that accepts an
array parameter that may be null, but is supplied with a
constant value other than zero (null).

2313 Bad parameter in
call

This occurs when a reference parameter is modified, but is
supplied with something that cannot be modified. Examples of
this are a variable that is not the same type as the parameter,
an MML call or an expression.

2314 Bad cast This occurs when an attempt is made to cast an object to a
type that is incompatible. An example of this would be the
implicit casting of a string to an integer during an assignment,
for example:
i = "Hello world"
where i is an integer variable.

2315 Incorrect number
of parameters

This occurs when a call is made with the wrong number of
parameters, and can occur with subroutines/functions and
MML routines.

2316 Incorrect number
of indices

This occurs when an array is indexed with the wrong number
of indices. For array parameters, where the number of indices
and index ranges are not explicitly specified, the first usage
determines the number of indices.

2317 Cannot index
scalar

This occurs when an attempt is made to index a scalar.

2318 Wrong call class This occurs when a callable routine is used in the wrong
context. Examples of this are functions called as subroutines,
subroutines called as functions, MML command routines used
as get/set routines and read only MML routines being written
to.

2319 Call of non-
callable object

This occurs when an attempt is made to call an object that is
not callable, such as an event or a task.

2320 Declaration hides
other

This occurs when a declaration hides a declaration in an outer
scope that shares the same name.

2321 Expected Task This occurs when a task name is expected, but is not found.
The TaskSuspend, TaskPriority and TaskStatus
keywords all require qualifying with a task name, and the Run
and End commands may be qualified with a task name.

Error
Code

Description Extended Description
13-24 Reference MN1955WEN

2322 Integer out of
range

This occurs when the compiler evaluates a constant integer
expression, and the result lies outside the range of a 32-bit
signed integer.

2323 Float out of range This occurs when the compiler evaluates a constant floating-
point expression, and the result falls outside the range of a 4-
byte IEEE float.

2324 Character out of
range

This occurs when the value supplied to the Chr function lies
outside the range 0 to 255.

2325 Division by zero This occurs when the compiler evaluates a constant
expression containing a division by zero.

2326 Using clause
ignored

This is displayed when the Using clause is used with
character and string data. Note that this error is obsolete. It
will not appear in more recent versions of Mint WorkBench
that support string variables.

2327 Hex or Bin used
with bad decimals

The Hex and Bin print modifiers imply integer output, and so
specifying a number of decimal places other than zero makes
no sense.

2328 Expected array This occurs when an MML call that requires an array
parameter is not supplied with an array.

2329 Expected float
array

This occurs when an MML call that requires an array of floats
is supplied with an array of another type.

2330 Expected integer
array

This occurs when an MML call that requires an array of
integers is supplied with an array of another type.

2331 Too many right-
hand-sides

This occurs when the number of right-hand side values
supplied in a statement exceeds the number of left-hand
sides. This error often occurs when using square bracket
notation.

2332 Illegal jump into
block

This occurs when a label inside the body of a For loop is
referenced from outside the loop. This is not allowed because
the initialization stage of the For loop will be bypassed
leading to undefined behavior.

2333 Too many tasks This occurs on controllers that support only a limited number
of tasks when more than the maximum number of tasks
allowed are declared. Some controllers, such as the

Flex+DriveII, support only a single task.

2334 Unexpected ‘;’ This occurs when an attempt is made to use a semi-colon with
a MML routine that does not require it. The semi-colon is only
appropriate for use with axis related commands that either use
an axis string (or have the axes specified in square brackets),
or non axis related commands that make use of square
bracket notation.

Error
Code

Description Extended Description
MN1955WEN Reference 13-25

2335 Function return not
assigned

This occurs when a function is declared, but the statements in
the function's body do not include an assignment to the
function's name to specify the return value. The process used
for checking this error does not confirm that all paths through
the function are valid.

2336 Expected static
module

This occurs when a module name used with the scope
override operator :: is not the name of a task, event or start-
up module.

2337 Expected string This occurs when a string is expected in an assignment to a
string array, but something else is supplied.

2338 String constant too
long

This occurs when the string assigned to a string variable is
longer than the variable. For example:
Dim s As String * 10
s = "0123456789abcd"
The string assigned to s is longer than 10 characters so the
error occurs. Similarly, the error can occur if a string array is
initialized with a string that is too long. The default length for
string variables is 64 characters. See Strings on page 3-7.

2339 Loss of precision This warning occurs when a value is assigned to a destination
of a different type. Depending on the value being assigned,
this can lead to a significant change in the value, such as
when assigning a float to an integer where any fractional data
will be lost, or when an integer is assigned to a float where
some of the lower digits may be lost. To check for this, if an
integer was assigned to a float and the float assigned back to
another integer, then would the two integer values match?
This check is performed on assignments, calls to subroutines/
functions that take parameters and constant declarations
where the type is explicitly specified. For example, the
following program will generate two warnings about the
assignments of i to x and x to j, and will display 123456789
and 123456784, highlighting the problem:
Dim i As Integer
Dim j As Integer
Dim x As Float
i = 123456789 : x = i : j = x
Print i; j

Error
Code

Description Extended Description
13-26 Reference MN1955WEN

2340 Temporary used in
call

This warns that a value passed to a subroutine will be stored
in a temporary (invisible) variable so that the variable's
address can be used as the reference. This is particularly
important for strings, as using a temporary variable to contain
an intermediate string result has the problem that the
temporary variable may be too small, causing run-time string
overflows. However, this warning is generated for any type of
temporary variable that may have to be created. To avoid this
warning, either ensure that the value is held in an appropriate
variable before it is passed to the subroutine/function or, if the
parameter is not intended to return a value, make it a value
parameter by prefixing it with the ByVal keyword.

2341 Define used
before declaration

This error is generated when a define name is used before it
has been defined (see Define on page 5-2). To avoid this
error, ensure that Define appears before the name is used,
for example:
Define my_axes = 0, 1, 2, 3
Print my_axes

2342 Anachronistic
MML call

This warning is generated when the specified 'old keyword'
has been superseded by a differently named 'new keyword'. It
is likely that both keywords operate in exactly the same way,
so it will be possible to use the old keyword name without
problems. However, it is better to use the new keyword name
to maintain maximum compatibility with any future
developments.

2343 Expected integer This error is generated by the Shift and Rotate commands
(when used as a statement) if the item to be shifted is not an
integer, for example:
Dim x As Float
Shift(x, 2)

2344 Bad Using clause This error is generated if bad parameters are used in a Using
clause, such as a string. For example:
Print "Pos = ", POS(0) Using("6, 3")

2345 Unrecognised
option key

This will be generated if an option name is used that is not
recognized, for example:
Option BillyGoatGruff 1

2346 Unsupported
option key

This will be generated if an option is set that is unsupported by
a certain target format, for example:
Option CFormatting 1
on target formats below 10.

2347 Bad option value This will be generated if an option is assigned a value that is
invalid/out of range, for example:
Option OptLevel 6

2348 Option multiply
defined

This will be displayed if the same option is set more than once
in a program.

Error
Code

Description Extended Description
MN1955WEN Reference 13-27

2349 Option not in outer
level

This will be displayed if an option is set inside a module of any
type (task, subroutine, function, event, start-up or shutdown).

2350 String out of range This will be displayed when the Asc function is supplied with
an empty string.

2351 Label out of scope This will be displayed if a GoTo or GoSub specifies a label that
is not situated in the same scope as the GoTo or GoSub
statement.

2352 Parameter must
be reference

This occurs when a parameter that must be passed by
reference is specified as being ByVal.

2353 Unexpected size This occurs when a size specification is used with a parameter
declaration or with data types that cannot be sized. Only
strings can be sized.

2354 Incompatible
operands

This occurs when an operator is given operands that are
incompatible, such as when trying to divide a float by a string.

2355 Must be scalar This occurs when an item that must be scalar has been given
dimensions, such as a constant or a bitfield member.

2356 Bad module
nesting

This occurs when modules are incorrectly nested, such as
would occur if an event were declared inside a subroutine.

2357 ElseIf after Else This occurs when an ElseIf statement is encountered after
an Else statement.

2358 Multiple Else This occurs when more than one Else statement is present.

2359 Case after Case
Else

This occurs when a Case statement is encountered after a
Case Else statement.

2360 Multiple Case Else This occurs when more than one Case Else statement is
present.

2361 Expected Case This occurs when a Case statement was expected, but
something else was encountered.

2362 Expected scalar This occurs when a scalar (a single value) is expected, but an
aggregate such as an array or structure is encountered.

2363 Expected 1D array This occurs when a one-dimensional array is expected, but a
multi-dimensional array is encountered.

2364 Expected array of
Null

This occurs when an array or Null is expected, but something
else is encountered.

2365 Result
indeterminate

This occurs when a result cannot be determined from the
given operands/parameters.

2366 Illegal initialisation This occurs when an initialization is encountered that is not
allowed, such as with parameters or structure members.

2367 Expected float This occurs when a float is expected, but something else is
encountered.

2368 Variable used but
not initialised

This occurs when a variable has been used, but has not been
assigned a value.

Error
Code

Description Extended Description
13-28 Reference MN1955WEN

2369 Expected
assignment

This occurs when as assignment is expected, but something
else is encountered.

2370 Incorrect identifier
in Next

This occurs when the expression used with Next does not
match that used in the For.

2371 Anachronism This occurs when an out of date language feature is used. For
example:
 The use of GoSub or Return.

 The use of labelled events, for example #OnError,
#Timer etc.

 When redundant decimals have been ignored. For
example, in the statement Input i Using(6, 0), if i
is an integer then the zero (which specifies the fractional
places to display) is redundant.

 The use of obsolete parameter formats, such as POS.0 or
POS[0]. See From MintMT / Mint v5 on page 13-2.

 The use of Axes, Bank, Bus or Terminal to set a default
value. Each item should now be explicitly defined with
each keyword.

 Omitting an optional parameter to an MML function, like
POS = 0. Each parameter should now be explicitly
defined, e.g. POS(axis) = 0.

 The use of an obsolete keyword, such as Adc0, In0,
Out0, ik, rk, etc. See Keyword support options on page
7-4.

2372 Expected string
array

This occurs when a string array is expected, but something
else is encountered.

2373 Block invalid This occurs when an invalid block type is encountered, such
as when trying to continue a subroutine.

2374 Unexpected output
modifier

This occurs when an output modifier is unexpectedly
encountered, such as when one is used in an Input
statement.

2375 Unexpected Using
clause

This occurs when a Using clause is encountered when it was
not expected, such as with the prompt string of an Input
statement.

2376 Bad Is operator This occurs when an Is operator is used outside a Case
expression.

Error
Code

Description Extended Description
MN1955WEN Reference 13-29

2377 Statement after
module

This occurs when executable statements are present after any
module declaration. When using compiler target versions 11
or above (required for firmware versions 5400 and above), all
executable statements that are not contained within a module
(subroutine, function, task, event, start-up or shutdown) must
appear before the modules, as viewed in the Mint WorkBench
editing window. A common cause of this error is when the
start-up module has been placed at the very beginning of the
program, before statements that are not contained within a
module. The start-up module should be placed at the end of
the program code.

2378 Not in outer level This occurs when something is incorrectly nested within a
module, such as an Option statement or a task declaration.

2379 Bad input
parameter

This occurs when an incorrect Input parameter is
encountered, such as when there are no parameters or just a
prompt string.

2380 Too few right-
hand-sides

This occurs when not enough parameters are supplied to the
right of an assignment.

2381 Incompatible type This occurs when an incompatible type is encountered, such
as using something other than a floating-point or integer For
loop counter, or when assigning structures of different types.

2382 Expected structure This occurs when a structure is expected, but something else
is encountered.

2383 Expected member This occurs when a member is expected, but something else
is encountered, which can occur with the structure member
access operator and the scope override operator.

2384 Float equality This occurs when a test for equality is made when either or
both operands are floating-point.

2385 Expected redirect This occurs when a redirection is expected, but something
else is encountered.

2386 Expected redirect
of MML API

This occurs when a redirection or a Mint Basic function is
expected, but something else is encountered.

2387 Too many
redirections

This occurs when too many redirections are used (the current
maximum allowed is 15).

2388 Expected Case
statement

This occurs when a Case statement is expected, but
something else is encountered.

2389 Expected type
name

This occurs when a type name is expected, but something
else is encountered.

2390 Expected time This occurs when a variable of type time is expected, but
something else is encountered.

2391 Expected time
array

This occurs when an array of type time is expected, but
something else is encountered.

Error
Code

Description Extended Description
13-30 Reference MN1955WEN

2392 Recursive
structure

This occurs when a structure contains a member that is of the
same type as the structure being declared, which can also be
through mutually recursive structures.

2393 Expected ‘{‘ This occurs when a { is expected, but something else is
encountered.

2394 Unexpected ‘{‘ This occurs when a { is encountered, but something else is
expected.

2395 Too few elements This occurs when there are fewer initializers than structure
members.

2396 Too many
elements

This occurs when there are more initializers than structure
members.

2397 Expected variable
or MML API

This occurs when a variable or a Mint Basic function is
expected, but something else is encountered.

2398 Multiple
EventPriority

This occurs when the EventPriority command is used
more than once in a program.

2399 Incorrect event
enumeration

This occurs when an event enumeration is used that is not
recognized in a call to EventPriority.

2400 Expected indexing This occurs when an array indexing operation is expected, but
is not present.

2401 Block not found This occurs when an unqualified Exit or Continue
statement is used without being in a block that can be exited
or continued.

2402 Expected
statement

This error results when a statement is expected, but
something else is found. For example, Rnd + 1 is not a
statement, and would generate this error if used as one.

2403 Drive macro data
overflow

This error is issued when a drive macro contains more than
1006 bytes of data.

2404 Too many drive
macro’s

This error is issued when a program contains more than 5
drive macro declarations.

2405 Drive macro name
too long

This error is issued when a drive macro name exceeds 16
characters.

2406 Case value
already used

This warning is issued when a case value is used more than
once, including overlapping ranges or ranges that include any
previously used values.

2407 Expected simple
type

This error is issued when a function return type is not a simple
type. It must be an intrinsic type, like Float, and must not be an
array.

2408 Expected
semaphore

This error is issued when the expression in a semaphore
block is not of type Semaphore.

2409 Expected bitfield This error is issued when a bitfield is expected but something
else is found, e.g. myBitfieldVar = 1.

Error
Code

Description Extended Description
MN1955WEN Reference 13-31

2410 Expected bitrange This error is issued when a bit range is expected but
something else is encountered, for example declaring a
bitfield member a using a As Float.

2411 Result determinate This warning is issued when an expression’s result is
determinate, even though it is not composed entirely of literal
values. For example, the expression (x > 10) = 2 will
always be false because x > 10 can only take the values 0
or 1, so can never be equal to 2.

2412 Expected label This error is issued when a GoTo statement uses something
other than a label for its target, e.g. GoTo _false.

2413 Statement ignored This occurs when a statement is encountered that has no
effect and so is ignored, for example running a task from the
start-up or shutdown modules.

2414 Bad Defined
parameter

This occurs when the parameter to the Defined function is
not a simple identifier.

2415 Defined function
not in #If

This error is issued when the Defined function is used
anywhere other than in a #If or #ElseIf expression.

2416 Bad #If expression This indicates an expression that is invalid, such as one that is
non-numeric, one that uses a variable or function call, one that
uses a constant ahead of its declaration, or one that uses an
unevaluated constant. For example:
Const _n = _m, _m = 12
will result in _n being unevaluated because it is a function of a
constant declared after itself.

2417 Message This indicates a user generated error or warning from using
the keywords #Error or #Warning, the text of which being
arbitrary.

Error
Code

Description Extended Description
13-32 Reference MN1955WEN

13.6.2 Run-Time Error Codes
Execution of a program may result in an error condition, such as when evaluating the square
root of a negative value, which will generate an invalid argument error. The table below lists
all the errors that are generated by the MVM, whether they are fatal and what the outcome is
after an error.

The MML has its own set of error codes, which are all treated as non-fatal.

As mentioned in Run-time Errors on page 3-17, an error causes one of two things to occur;
either program termination or the calling of the error handler. Fatal errors always cause
immediate termination (preceded by execution of the shutdown module, if present), as will
non-fatal errors when no error handler is present, otherwise the error handler (ONERROR) is
invoked.

Error Code Description Fatal Outcome

3100 Division by zero No Numerator

3101 Invalid argument No Argument

3102 Stack overflow Yes -

3103 Index out of range Yes -

3104 Integer out of range No _minInt or _maxInt

3105 Bank out of range No -

3106 Bus out of range No -

3107 Axis out of range No -

3108 Stack underflow Yes -

3109 String overflow No String unaltered

3110 Error registers not primed No Random value

3111 Evaluation error No 0.0, 0 or “”

3112 Out of memory Yes -

MML Error Range Description

0 to 499 Synchronous errors.

500 to 799 Asynchronous errors.

800 to 999 H2 errors.
MN1955WEN Reference 13-33

I,
13.7 Reserved words
Reserved words follow the naming conventions for identifiers, but their use is reserved by
Mint Basic for use in specifying program structure, intrinsic commands, operators, etc. Note
that some reserved words are compound, i.e. made up of multiple components, such as
End While, which is not allowed for user identifiers.

13.7.1 Constants
The following table lists all the names reserved for use as constants in Mint Basic:

Name Description

_false 0

_FlexPlusDrive2 15

_maxInt 2147483647

_minInt -2147483648

_MicroFlexE100 27

_MintDrive2 14

_MotiFlexE100 32

_MotiFlexE100MintCard 35

_NextMoveBX 2

_NextMoveBX2 17

_NextMoveES 20

_NextMoveESB 23

_NextMoveESB2 36

_NextMoveE100 31

_NextMovePCI 9

_NextMovePCI2 29

_NextMoveST 19

_Null 0

_pi 3.1415927

_platform The platform code of the controller/drive (e.g. 9 for NextMove PC

14 for MintDriveII, etc.)

_true 1

_tskRunning 1

_tskSuspended 2

_tskTerminated 0

_ver The version string of the compiler (e.g. “Version 13.0”)

_VirtualController 12
13-34 Reference MN1955WEN

13.7.2 Operators
The following table lists all the names reserved for use as operators in Mint Basic:

Name Description

And Bitwise conjunction

AndAlso Logical conjunction

Bool Logical affirmation

IIf Immediate if

Is Access Select expression

Mod Modulus

Not Logical negation

Or Bitwise inclusive disjunction

OrElse Logical inclusive disjunction

Xor Bitwise exclusive disjunction
MN1955WEN Reference 13-35

13.7.3 Intrinsic commands
The following table lists all the names reserved for use as commands in Mint Basic:

Name Description

Bank Sets the default bank when assigned to.

Bus Sets the default bus when assigned to.

Dint Disables digital input events.

Echo Sets the input-echo mode for the specified terminal.

EInt Enables digital input events.

End Ends execution of the current program or specified task(s).

EventPriority Allows the priority of events to be specified.

GoTo Makes execution continue at the location of the specified label.

IPend Sets the pending state of the digital input events for the specified bank
when assigned to.

Mid Sets the string from the specified location, optionally capping the
number of characters changed to the specified amount.

Nop No operation (consumes one clock cycle).

Pause Pauses until the specified condition is met.

Rotate Rotates the content of the given variable by the specified number of
bits.

Run Runs the program or the specified task(s).

Shift Shifts the contents of the given variable by the specified number of bits.

TaskPriority Sets the priority of the specified task.

TaskQuantum Sets the quantum size of the specified task.

TaskResume Resumes execution of the specified task.

TaskSuspend Suspends execution of the specified task.

Terminal Sets the default terminal bitmap when assigned to.

Time Sets the time in milliseconds when assigned to.

Troff Turns trace on.

Tron Turns trace off.

Wait Wait for the specified number of milliseconds.
13-36 Reference MN1955WEN

13.7.4 Intrinsic functions
The following table lists all the names reserved for use as functions in Mint Basic:

Name Description

Abs Absolute value.

Acos Arc-cosine of the numeric argument, result in degrees.

Asc ASCII code of the first character of the string argument.

Asin Arc-sine of the numeric argument, result in degrees.

Atan Arc-tangent of the numeric argument, result in degrees.

Atan2 Arc-tangent of the two numeric arguments in the correct quadrant,
result in degrees.

Axes Default axis bitmap.

Bank Default bank.

Bus Default bus.

Chr Cast integer to a single character string.

Cos Cosine of the numeric argument in degrees.

CvtFlt2Ieee Converts a native float bit-pattern to an IEEE float bit-pattern.

CvtFlt2Int Converts a native float bit-pattern to an integer.

CvtIeee2Flt Converts an IEEE float bit-pattern to a native float.

CvtInt2Flt Converts an integer bit-pattern to a native float.

DprEventCode The code of the pended DPR event.

Echo The input echo state for the given terminal parameter.

Erl The line number of the last error encountered (non e100 only).

Err The error code of the last error (non e100 only).

ErrAxis The axis number of the last error (non e100 only).

ErrStr The error string of the last error (non e100 only).

Eval The evaluation of the string argument.

Exp The exponential of the numeric argument.

Float The floating-point value of the integer argument.

Frac The fractional component of the floating-point argument.

InKey Reads the next character from the input buffer for the given terminal
parameter.

InStr The character location of the location of one string in another.

Int The integer part of the integer argument.

IsAlnum Is the character argument alphanumeric.

IsAlpha Is the character argument alphabetical.

IsAscii Is the character argument an ASCII code.

IsCntrl Is the character argument a control code.

IsDigit Is the character argument a decimal digit.
MN1955WEN Reference 13-37

IsLower Is the character argument lowercase.

IsUpper Is the character argument uppercase.

IsXDigit Is the character argument a hexadecimal digit.

IPend Bitmap of any pending digital input events of the specified bank.

LastKey The last key read using either InKey or ReadKey.

LBound Lower bound of the specified array.

Left The left portion of the string argument.

Len The number of characters in the specified string.

Log The natural logarithm of the numeric parameter.

Log10 The common (base 10) logarithm of the numeric parameter.

Max The largest of the arguments.

Mid The middle portion of the string argument.

Min The smallest of the arguments.

Pow Raises the first numeric argument to the power of the second numeric
argument.

ReadKey The key currently depressed on a CAN keypad node.

Right The right portion of a string argument.

Rnd A random number in the range 0  x < 1.

Rotate The numeric argument rotated the specified number of bits.

Round The nearest integer to the floating-point argument, or if a number of
decimal places is specified (as a second argument), returns the
floating-point argument rounded to that number of decimal places.

Sgn The sign of the numeric argument (-1, 0, +1).

Shift The numeric argument shifted the specified number of bits.

Sin Sine of the numeric parameter in degrees.

Sqrt Square root of the numeric argument.

Str The string representation of the numeric argument.

Tan Tangent of the numeric argument in degrees.

TaskStatus Status of the specified task.

Terminal Default terminal bitmap.

Time Current time in milliseconds.

UBound Upper bound of the specified array.

Val Numeric representation of the string argument.

Name Description
13-38 Reference MN1955WEN

13.7.5 Block constructs
The following table lists all of the names reserved for use as language elements in Mint
Basic:

Name Description

Continue
Continue For
Continue Loop
Continue Repeat
Continue While

Force continuation of the closest surrounding loop.
Force continuation of the closest surrounding For loop.
Force continuation of the closest surrounding Loop loop.
Force continuation of the closest surrounding Repeat loop.
Force continuation of the closest surrounding While loop.

Critical
End Critical

Mark the start of a critical section of code.
Mark the end of a critical section of code.

Event
End Event

Declare an event.
Mark the end of an event declaration.

Exit
Exit For
Exit Loop
Exit Repeat
Exit Select
Exit While

Force exiting of the closest surrounding loop.
Force exiting of the closest surrounding For loop.
Force exiting of the closest surrounding Loop loop.
Force exiting of the closest surrounding Repeat loop.
Force exiting of the closest surrounding Select statement.
Force exiting of the closest surrounding While loop.

Exit Event
Exit Function
Exit Shutdown
Exit Startup
Exit Task
Exit Sub

Exit the event.
Exit the function.
Exit the Shutdown module.
Exit the Startup module.
Exit the task.
Exit the subroutine.

For
To
Step
Next

Define a For loop.
Specify the initial and final values of the loop.
Specify the step used on each iteration of the loop.
Marks the end of the loop.

If
Then
ElseIf
End If

Define an If statement.
Marks the end of the condition.
Follow on condition to test if the prior condition was not met.
Marks the end of the If statement.

Loop
End Loop

Define an unconditional loop.
Marks the end of the loop.

Repeat
Until

Define a ‘repeat until condition true’ loop.
Marks the end of the loop.

Select Case
Case
Case Else
End Select

Define a select statement.
Define a value or range of values.
Define what to do if all prior conditions not met.
Marks the end of the select statement.

Semaphore
End Semaphore

Mark the start of a semaphore block.
Mark the end of a semaphore block.

Startup
End Startup

Declare a Startup module.
Marks the end of the Startup module.
MN1955WEN Reference 13-39

13.7.6 Data types
The following table lists all the names reserved for use as data-types.

13.7.7 Simple declaration
The following table lists all the names reserved for use as language elements in Mint Basic:

While
End While

Define a ‘while condition true’ loop.
Marks the end of the loop.

Name Description

Controller Specifies that the type is Controller.

Float Specifies that the type is Float.

Integer Specifies that the type is Integer.

Semaphore Specifies that the type is Semaphore.

String Specifies that the type is String.

Time Specifies that the type is Time.

Name Description

As Used to specify the type of a variable or parameter.

ByRef Used to specify that a parameter be passed by reference.

ByVal Used to specify that a parameter be passed by value.

Const Used to declare a named constant.

Define Used to declare a define.

Dim Used to declare a variable.

Name Description
13-40 Reference MN1955WEN

13.7.8 Block declaration
The following table lists all the block constructs reserved for the declaration of data-types and
modules.

Name Description

Bitfield
End Bitfield

Declare a bitfield.
Mark the end of a bitfield.

Event
End Event

Declare an event.
Mark the end of an event declaration.

Function
End Function

Declare a function.
Marks the end of the function.

Shutdown
End Shutdown

Declare a Shutdown module.
Marks the end of the Shutdown module.

Sub
End Sub

Declare a subroutine.
Marks the end of the subroutine.

Startup
End Startup

Declare a Startup module.
Marks the end of the Startup module.

Structure
End Structure

Declare a structure.
Marks the end of the structure.

Task
End Task

Declare a task.
Marks the end of the task.
MN1955WEN Reference 13-41

13.7.9 Mint Motion Library functions
The following keywords are for use in accessing MML API. Please note that not all the
functions listed below will be available on all controllers, and there are likely to be new
functions available that are not listed below. Consult the latest help file for a current list of the
MML functions available on each controller.

Name Description

ABORT To abort motion on all axes.

ABORTMODE To control the default action taken in the event of an abort.

ABSENCODER To read the current resolver, EnDat or Hiperface encoder
position.

ABSENCODERMODE To compensate for abnormal Hiperface encoder wiring.

ABSENCODEROFFSET To set the zero point for an EnDat or Hiperface encoder.

ABSENCODERTURNS To set or read the number of turns of unique information
available on an absolute encoder.

ACCEL To define the acceleration rate of an axis.

ACCELDEMAND To read the instantaneous demand acceleration.

ACCELJERK To define the jerk rate to be used during periods of
acceleration.

ACCELJERKTIME To define the jerk rate to be used during periods of
acceleration.

ACCELSCALEFACTOR To scale axis encoder counts, or steps, into user defined
acceleration units.

ACCELSCALEUNITS To define a text description for the acceleration scale factor.

ACCELTIME To define the acceleration rate of an axis.

ACCELTIMEMAX To define the acceleration rate of an axis.

ACTIVERS485NODE To enable the transmitter on a controller's RS485 port.

ADC To read an analog input value.

ADCDEADBAND To set the deadband to be applied to an ADC input.

ADCDEADBANDHYSTERE-
SIS

To set a hysteresis level for entering and leaving the deadband
on the ADC inputs.

ADCDEADBANDOFFSET To set the deadband offset to be applied to an ADC input.

ADCERROR To read back the analog inputs currently in error.

ADCERRORMODE To control the default action taken in the event of an ADC limit
being exceeded on an associated channel.

ADCFILTER To set the amount of filtering to be applied to the specified
analog input.

ADCGAIN To set the gain to be applied to an ADC input.

ADCMAX To set the upper analog limit value for the specified analog
input.

ADCMIN To set the lower analog limit value for the specified analog
input.
13-42 Reference MN1955WEN

ADCMODE To set the analog input mode.

ADCMONITOR To specify the analog inputs that an axis will monitor for analog
limit checking.

ADCOFFSET To set the offset to be applied to an ADC input.

ADCOFFSETTRIM To zero (trim) the specified analog input.

ADCTIMECONSTANT To set the time constant of the low pass filter applied to an ADC
input.

ASYNCERRORPRESENT To determine whether an asynchronous error is present.

AUTOHOMEMODE To set the autohome mode for the specified configuration.

AUTOSTARTMODE To set the autostart mode for the specified configuration.

AUXDAC To set or read the auxiliary DAC outputs.

AUXDACOFFSET To apply a voltage offset to an auxiliary DAC.

AUXENCODER To set or read the auxiliary encoder input.

AUXENCODERMODE To make miscellaneous changes to the auxiliary encoders.

AUXENCODERPRESCALE To scale down the auxiliary encoder input.

AUXENCODERROLLOVER To count the number of wraps of the auxiliary encoder value.

AUXENCODERSCALE To set or read the scale factor for the auxiliary encoder input.

AUXENCODERSPEED To specify a (virtual) speed reference for the auxiliary encoder.

AUXENCODERVEL To read the velocity of the auxiliary encoder input.

AUXENCODERWRAP To set or read the encoder wrap range for the auxiliary encoder
input.

AUXENCODERZERO-
ENABLE

To re-enable Z pulse capturing on the auxiliary encoder

AUXENCODERZERO-
LATCHMODE

To control the latching mechanism for the auxiliary encoder's Z
latch.

AUXENCODERZERO-
POSITION

To read the auxiliary encoder position at the last Z capture.

AUXENCODERZLATCH To read the state of the auxiliary encoder's Z latch.

AXISBUS To read the fieldbus used to host this axis.

AXISCHANNEL To allow user mapping of hardware to axis numbers.

AXISDAC To read the DAC channel used to control the specified axis.

AXISERROR To read back the motion error.

AXISMODE To return the current mode of motion.

AXISNODE To read the node number used to host the axis.

AXISPDOOUTPUT To read the stepper pulse/direction output channel used to
control the specified axis.

AXISPOSENCODER To select the source of the position signal used in dual encoder
feedback systems.

Name Description
MN1955WEN Reference 13-43

AXISREMOTECHANNEL To read the remote channel number on the node used to host
the axis.

AXISSTATUS To return the current error status from the specified axis.

AXISSTATUSWORD To read the DS 402 status word for an axis.

AXISVELENCODER To select the source of the velocity signal used in dual encoder
feedback systems.

AXISWARNING To read or clear present axis warnings.

AXISWARNINGDISABLE To allow individual axis warnings to be enabled and disabled.

BACKLASH To set the size of the backlash present on an axis.

BACKLASHINTERVAL To set the rate at which backlash compensation is applied.

BACKLASHMODE To control the use of backlash compensation.

BLEND To start blending the current move with the next move in the
buffer.

BLENDDISTANCE To specify the distance, before the end of the vector path,
where blending will begin.

BLENDMODE To enable blending for interpolated moves.

BOOST To control the stepper boost outputs.

BRIDGECOMPENABLE To enable or disable bridge circuit compensation.

BRIDGEERRORCURRENT To set the current parameter used when compensating for non-
linearities in the drive's PWM bridge.

BRIDGEERRORVOLTAGE To set the voltage parameter used when compensating for non-
linearities in the drive's PWM bridge.

BUSBAUD To specify the bus baud rate.

BUSCOMMANDMASK To define a bit mask for CANopen, DeviceNet and PROFIBUS
Command telegrams.

BUSENABLE To enable or disable the operation of a fieldbus.

BUSEVENT To return the next event in the bus event queue of a specific
bus.

BUSEVENTINFO To return the additional information associated with a bus
event.

BUSNODE To set or read the node ID used by this node for the specified
bus.

BUSPROCESSDATAIN To configure the drive for the type of process data that will be
received from the master.

BUSPROCESSDATAIN-
DATATYPE

To configure the data type for process data that will be received
from the master.

BUSPROCESSDATAIN-
PARAMETER

To define the associated parameter for items received in
process data telegrams.

BUSPROCESSDATAOUT To configure the type of process data that will be sent by the
drive.

Name Description
13-44 Reference MN1955WEN

BUSPROCESSDATAOUT-
DATATYPE

To configure the data type for process data that will be sent by
the drive.

BUSPROCESSDATAOUT-
INTERVAL

To define the update interval for information sent in process
data telegrams.

BUSPROCESSDATAOUT-
PARAMETER

To define the associated parameter for items sent in process
data telegrams.

BUSPROTOCOL To read the protocol currently supported on a particular
fieldbus.

BUSRESET To reset the bus controller.

BUSSTATE To return the status of the bus controller.

BUSTIMEOUT To alter the inter-character timeout for MODBUS ASCII.

CAM To perform a cam profile.

CAMAMPLITUDE To modify the amplitude of a cam profile.

CAMBOX To start or stop a CAMBox channel.

CAMBOXDATA To load data associated with a CAMBox channel.

CAMEND To define an end point in the cam table if multiple cams are
required.

CAMINDEX To returns the currently executing cam segment number.

CAMPHASE To allow a cam profile to be shifted forwards or backwards over
a fixed number of cam segments.

CAMPHASESTATUS To get the state of the CAMPHASE for a specific axis.

CAMSEGMENT To change CAM table data.

CAMSTART To define a start point in the cam table if multiple cams are
required.

CAMTABLE To specify the array names to be used in a cam profile on the
specified axis.

CANCEL To stop motion and clear errors on an axis.

CANCELALL To stop motion and clear errors on all axes.

CAPTURE To control the operation of capture.

CAPTUREAXIS To set or read the axis for a capture channel.

CAPTUREBUFFERSIZE To read the total size of the capture buffer.

CAPTURECHANNEL-
INTEGERUPLOAD

To allow an entire channel of captured data values to be
uploaded as integer data into an array.

CAPTURECHANNEL-
UPLOAD

To allow an entire channel of captured data values to be
uploaded into an array.

CAPTURECOMMAND To control the operation of capture.

CAPTUREDURATION To define the total duration of the data capture.

CAPTUREEVENT To configure capturing to stop on an event.

CAPTUREEVENTAXIS To set the axis to monitor for the capture trigger event.

Name Description
MN1955WEN Reference 13-45

CAPTUREEVENTDELAY To define the post-trigger delay for event capture.

CAPTUREHSMODE To set or read the mode of a high speed capture channel.

CAPTUREINTERVAL To define the interval between data captures, relative to the
servo frequency.

CAPTUREMODE To set or read the mode on a capture channel.

CAPTUREMODE-
PARAMETER

To specify a parameter associated with CAPTUREMODE.

CAPTURENUMPOINTS To read the number of captured points per channel.

CAPTUREPERIOD To define the interval between data captures.

CAPTUREPOINT To allow individual capture values to be read.

CAPTUREPOINTINTEGER To allow individual capture values to be read as integer values.

CAPTUREPRETRIGGER-
DURATION

To set the duration of the pre-trigger phase.

CAPTUREPROGRESS To return the progress of the pre-trigger or post-trigger capture
phase.

CAPTURESTATUS To return the progress of the capture.

CAPTURETRIGGER To generate a capture trigger.

CAPTURETRIGGER-
ABSOLUTE

To ignore the sign of the trigger value when triggering from a
capture channel source.

CAPTURETRIGGER-
CHANNEL

To set the channel to be used as the reference source for
triggering.

CAPTURETRIGGERMODE To set the method used to evaluate the trigger source.

CAPTURETRIGGER-
SOURCE

To set the reference source to be used for triggering.

CAPTURETRIGGERVALUE To set the trigger value when triggering from a capture channel
source.

CHANNELTYPE To determine what hardware is available to a specific channel.

CIRCLEA To perform a circular move with absolute co-ordinates.

CIRCLER To perform a circular move with relative co-ordinates.

CLEARERRORLOG To clear the error log.

COMMISSIONED To set or read whether the axis/drive has been commissioned.

COMMS To access the reserved comms array.

COMMSINTEGER To access the reserved comms array, storing values as
integers.

COMMSMAPDATATYPE To define the data type of a comms element.

COMMSMAPMODE To set or read the comms mapping for a comms element.

COMMSMAPPARAMETER To set or read the associated parameter for a mapped comms
element.

COMMSMODE To select comms use over either RS485 or CANopen.

Name Description
13-46 Reference MN1955WEN

COMMSRETRIES To set the maximum number of re-tries for a RS485/422
comms telegram.

COMPAREENABLE To enable/disable the position compare control of a specific
digital output.

COMPARELATCH To read the state of the position compare latch.

COMPAREMODE To enable and disable the position compare on an axis.

COMPAREOUTPUT To specify the digital output used for position compare.

COMPAREPOS To write to the position compare registers.

CONFIG To set the configuration of an axis for different control types.

CONNECT To enable a connection between two remote nodes to be made
or broken.

CONNECTSTATUS To return the status of the connection between this node and
another node.

CONTOURANGLE To set the inter-vector angle threshold for contoured moves.

CONTOURMODE To enable contouring for interpolated moves.

CONTOURPARAMETER To set the parameters for contoured moves.

CONTROLMODE To set or read the control mode.

CONTROLMODESTARTUP To set or read the control mode used when the drive is turned
on.

CONTROLRATE To set the control loop and profiler sampling rates.

CONTROLREFCHANNEL To specify a channel for the source of the control reference
command.

CONTROLREFSOURCE To specify the source of the control reference command.

CONTROLREFSOURCE-
STARTUP

To set or read the source of the control reference command
used when the drive is turned on.

CURRENTDEMAND To read the demands to the current controllers.

CURRENTLIMIT To restrict the current output to a defined range.

CURRENTMEAS To read the measured current.

CURRENTSENSORMODE To enable a current sensor temperature drift compensation
scheme.

DAC To write a value to the DAC or read the present DAC value.

DACLIMITMAX To restrict the DAC output voltage to a defined range.

DACMODE To control the use of the DAC.

DACMONITORABSOLUTE To specify whether only absolute (positive) values should be
output when monitoring using an auxiliary DAC channel.

DACMONITORAXIS To specify which axis to monitor during DAC monitoring.

DACMONITORGAIN To specify a multiplying factor for use during DAC monitoring.

DACMONITORMODE To specify which axis parameter to monitor during DAC
monitoring.

Name Description
MN1955WEN Reference 13-47

DACMONITORMODE-
PARAMETER

To specify a parameter associated with DACMONITORMODE.

DACMONITOROFFSET To specify an offset to add to the output when monitoring using
an auxiliary DAC channel.

DACOFFSET To apply a voltage offset to a DAC channel.

DACRAMP To specify the number of milliseconds over which the maximum
DAC output will be ramped to zero.

DECEL To set the deceleration rate on the axis.

DECELJERK To define the jerk rate to be used during periods of
deceleration.

DECELJERKTIME To define the jerk rate to be used during periods of
deceleration.

DECELTIME To set the deceleration rate on the axis.

DECELTIMEMAX To define the deceleration rate of an axis.

DEFAULT To return axis motion variables to their power-up state.

DEFAULTALL To return all axis motion variables to their power-up state.

DPREVENT To interrupt the host PC and generate a trappable event, using
the Dual Port RAM (DPR).

DPRFLOAT To read and write a 32-bit floating-point value to Dual Port RAM
(DPR)

DPRLONG To read and write a 32-bit integer value to Dual Port RAM
(DPR).

DRIVEBUSNOMINAL-
VOLTS

To return the nominal value of the DC bus voltage for the drive.

DRIVEBUSOVERVOLTS To set or return the overvoltage trip level for the drive.

DRIVEBUSUNDERVOLTS To set or return the undervoltage trip level for the drive.

DRIVEBUSVOLTS To return the current level of the DC bus.

DRIVEDISABLEMODE To prevent moves in the move buffer being cleared when an
axis is disabled.

DRIVEENABLE To enable or disable the drive for the specified axis.

DRIVEENABLEINPUT-
MODE

To control the action taken in the event of the drive being
disabled from the drive enable input/enable DIP switch.

DRIVEENABLEMODE To set the drive to auto-enable on power on.

DRIVEENABLEOUTPUT To specify an output as a drive enable.

DRIVEENABLESWITCH To read the state of the drive enable input.

DRIVEERROR To report errors on the drive or to clear current drive errors.

DRIVEFEEDBACK To read the type of feedback module.

DRIVEID To define a text description for the drive.

DRIVEOKOUTPUT To assign a digital output as the Drive OK output.

DRIVEOVERLOADAREA To read the extent of a drive overload condition.

Name Description
13-48 Reference MN1955WEN

DRIVEOVERLOADMODE To set or read the action taken in the event of a drive overload
condition.

DRIVEPEAKCURRENT To read the peak current rating of the drive.

DRIVEPEAKDURATION To read the duration for which peak drive current can be
sustained.

DRIVERATEDCURRENT To read the continuous current rating for the drive.

DRIVERATINGZONE To specify the rating conditions under which the drive operates.

DRIVESPEEDFATAL To define the overspeed trip level.

DRIVESPEEDMAX To set or read the maximum motor speed to be used.

EFFORT To read the instantaneous effort applied by the current
controllers.

ENABLESWITCH To read the state of the Drive Enable DIP switch.

ENCODER To set or read the axis encoder value.

ENCODERCYCLESIZE To set or read the size of a sin/cos cycle on an encoder.

ENCODERLINESIN To set or read the number of encoder lines (pre-quadrature) for
the drive feedback.

ENCODERLINESIN-
SPEEDMAX

To read the maximum allowable speed when using a resolver
feedback device.

ENCODERLINESOUT To define the resolution of the encoder output.

ENCODERMODE To make miscellaneous changes to the encoders.

ENCODEROFFSET To set or read the offset used to calculate encoder position for
absolute encoders.

ENCODEROUTCHANNEL To set or read the encoder channel to be output on a simulated
encoder output.

ENCODEROUT-
RESOLUTION

To set or read the resolution of a simulated encoder output.

ENCODERPRESCALE To scale down the encoder input.

ENCODERRESOLUTION To set or read the number of encoder lines (pre-quadrature) for
the motor.

ENCODERSCALE To set or read the scale factor for the encoder channel.

ENCODERTYPE To set or read the feedback type of the motor.

ENCODERVEL To read the velocity from an encoder channel.

ENCODERWRAP To set or read the encoder wrap range for the encoder channel.

ENCODERZACTIVELEVEL To specify the active level of the encoder Z pulse.

ENCODERZLATCH To get and reset the state of an axis' encoder Z latch.

ERRCODE To return the last error code read from the error list.

ERRDATA To return data associated with the last error read from the error
list.

ERRLINE To return the line number of the last error read from the error
list.

Name Description
MN1955WEN Reference 13-49

ERRORCLEAR To clear all errors in the specified group.

ERRORCODEENABLE To allow or prevent specific errors to be created.

ERRORDECEL To set the deceleration rate on the axis for powered stops, in
the event of an error or stop input.

ERRORINPUT To set or return the digital input to be used as the error input for
the specified axis.

ERRORINPUTMODE To control the default action taken in the event of an external
error input.

ERRORLOGCLEAR To clear the error log.

ERRORLOGMODE To specify how the error log is updated.

ERRORLOGSAVE To save the error log to non-volatile EEPROM memory.

ERRORMASK To prevent specific error conditions calling the ONERROR event.

ERRORPRESENT To determine if errors in a particular group are present in the
error list.

ERRORREADCODE To determine if a particular error is present in the error list.

ERRORREADNEXT To return the next entry in the specified group from the error
list.

ERRORSWITCH To return the state of the error input.

ERRSTRING To return the error string for the last error code read from the
error list.

ERRTIME To return the time stamp for the last error code read from the
error list.

EVENTACTIVE To indicate whether an event is currently active.

EVENTDISABLE To selectively enable and disable Mint events.

EVENTPEND To manually cause an event to occur.

EVENTPENDING To indicate whether an event is currently pending.

EVENTUNPEND To manually remove a pending event.

FACTORYDEFAULTS To reset parameter table entries to their default values.

FASTAUXENABLE To manually clear the auxiliary encoder's fast position latch.

FASTAUXENCODER To return the instantaneous auxiliary encoder value that was
recorded on the fast interrupt.

FASTAUXLATCH To read the auxiliary encoder fast interrupt latch.

FASTAUXLATCH-
DISTANCE

To specify the distance over which further auxiliary encoder
latch edges will be ignored.

FASTAUXLATCHEDGE To select the capture edge for fast capture on the auxiliary
encoder.

FASTAUXLATCHMODE To set the default action to be taken to clear the auxiliary
encoder's fast position latch.

FASTAUXSELECT To select which of the fast position capture inputs will capture
an auxiliary encoder channel.

Name Description
13-50 Reference MN1955WEN

FASTENABLE To manually clear the encoder's fast position latch.

FASTENCODER To return the instantaneous encoder value that was recorded
on the fast interrupt.

FASTLATCH To read the axis fast interrupt latch.

FASTLATCHDISTANCE To specify the distance over which further position latch edges
will be ignored.

FASTLATCHEDGE To define which edge polarity should cause the fast position to
be captured.

FASTLATCHMODE To set the default action to be taken to clear the encoder's fast
position latch.

FASTPOS To return the instantaneous axis position that was recorded on
the fast interrupt.

FASTSELECT To select which of the fast position capture inputs (or outputs)
will cause axis position to be captured.

FASTSOURCE To select whether fast position capture is triggered by a digital
input or a digital output.

FEEDBACKFAULTENABLE To enable or disable detection of motor feedback faults.

FEEDRATE To set the slew speed of an individual move loaded in the move
buffer.

FEEDRATEMODE To control the use of slew speed, acceleration, deceleration
and feedrate override.

FEEDRATEOVERRIDE To override the current speed or feedrate.

FEEDRATEPARAMETER To set the parameters for the current speed or feedrate being
used.

FIRMWARERELEASE To read the release number of the firmware.

FIRMWAREVERSION To read the version number of the firmware.

FLY To create a flying shear by following a master axis with
controlled acceleration and deceleration.

FOLERROR To return the instantaneous following error value.

FOLERRORFATAL To set the maximum permissible following error before an error
is generated.

FOLERRORMODE To determine the action taken on the axis in the event of a
following error.

FOLERRORWARNING To set the following error threshold before an axis warning is
generated.

FOLLOW To enable encoder following with a specified gear ratio.

FOLLOWDENOM To set or read the follow ratio's denominator.

FOLLOWMODE To define the mode of operation of the FOLLOW keyword.

FOLLOWNUMERATOR To set or read the follow ratio's numerator.

FREQ To set a constant frequency output.

Name Description
MN1955WEN Reference 13-51

GEARING To set the percentage size for gearing compensation.

GEARINGMODE To turn gearing compensation on or off.

GLOBALERROROUTPUT To specify a global error output which will be deactivated in the
event of an error.

GO To begin synchronized motion.

GROUP To set or read whether a node is a member of a group.

GROUPCOMMS To write to the comms arrays of all the nodes within a specified
group.

GROUPMASTER To set a node as the master of a group or to return the node ID
of the group master.

GROUPMASTERSTATUS To determine whether the current node is master of the group.

GROUPSTATUS To determine whether the current node is a member of the
group.

HALL To read the current Hall state on feedback devices which use
Hall sensors.

HALLFORWARDANGLE To define the electrical angles at which Hall states change,
when the motor is running in the forward direction, for feedback
devices which use Hall sensors.

HALLREVERSEANGLE To define the electrical angles at which Hall states change,
when the motor is running in the reverse direction, for feedback
devices which use Hall sensors.

HALLTABLE To define the Hall table for an encoder motor.

HELIXA To load a helix move into the move buffer.

HELIXR To load a helix move into the move buffer.

HOLDSWITCH To read the current state of the Hold DIP switch.

HOME To find the home position on an axis.

HOMEACCEL To set the acceleration rate for the homing profile.

HOMEBACKOFF To set the home back-off speed factor.

HOMECREEPSPEED To set the creep speed for homing moves.

HOMEDECEL To set the deceleration rate for the homing profile.

HOMEINPUT To set a digital input to be the home switch input for the
specified axis.

HOMEOFFSET To apply an offset to the homing sequence.

HOMEPHASE To find the phase of the homing sequence currently in
progress.

HOMEPOS To read the axis position at the completion of the homing
sequence.

HOMEREFPOS To define a reference position for homing moves.

HOMESPEED To set the speed for the initial seek phase of the homing
sequence.

Name Description
13-52 Reference MN1955WEN

HOMESTATUS To set or read the status of a homing sequence.

HOMESWITCH To return the state of the home input.

HOMETYPE To set the homing mode to be performed at start up.

HTA To start the hold to analog mode of motion.

HTACHANNEL To specify the analog input to use for a particular axis while in
Hold To Analog (HTA) mode.

HTADAMPING To specify the damping term used in the Hold To Analog (HTA)
algorithm.

HTADEADBAND To specify the analog error deadband.

HTAFILTER To set the filter factor for the analog input.

HTAKINT To specify the integral gain term used in the Hold To Analog
(HTA) force loop.

HTAKPROP To specify the proportional gain term used in the Hold To
Analog (HTA) force loop.

IDLE To indicate if a move has finished executing and the axis has
finished moving.

IDLEMODE To control the checks performed when determining if an axis
idle.

IDLEPOS To read or set the idle following error limit.

IDLESETTLINGTIME To read the time taken for an axis to become idle.

IDLETIME To specify the period for which the axis must meet its idle
conditions before becoming idle.

IDLEVEL To read or set the idle velocity limit.

IMASK To mask off Mint events IN0 .. INx

IN To read the state of all the inputs on an input bank.

INCA To set up an incremental move to an absolute position.

INCR To set up an incremental move to a relative position.

INITERROR To report any errors detected during start up.

INITWARNING To return the sum of a bit pattern describing initialization
warnings generated at start up.

INPUTACTIVELEVEL To set the active level on the digital inputs.

INPUTDEBOUNCE To set or return the number of samples used to 'debounce' a
digital input bank.

INPUTMODE To set or return the sum of a bit pattern describing which of the
user digital inputs should be edge or level triggered.

INPUTNEGTRIGGER To set or return the user inputs that become active on negative
edges.

INPUTPOSTRIGGER To set or return the user inputs that become active on positive
edges.

INSTATE To read the state of all digital inputs.

Name Description
MN1955WEN Reference 13-53

INSTATEX To read the state of an individual digital input.

INX To read the state of an individual digital input.

JOG To set an axis for speed control.

JOGCOMMAND To start or stop a jog by giving a direction command.

JOGDURATION To specify the duration of a timed jog.

JOGMODE To specify the control mode for profiling a jog move.

JOGSPEED To define a preset jog speed.

JOGTIME To return the remaining jog time before deceleration.

KACCEL To set the servo loop acceleration feed forward gain.

KDERIV To set the servo loop derivative gain on the servo axes.

KEYS To remap the layout of the keys on a BaldorCAN KeypadNode.

KFINT To set or read the integral gain of the flux controller for
induction motor control.

KFPROP To set or read the proportional gain of the flux controller for
induction motor control.

KIINT To set the integral gain used by the current controller.

KINT To set the servo loop integral gain.

KINTLIMIT To restrict the overall effect of the integral gain KINT.

KINTMODE To control when integral action will be applied in the servo loop.

KIPROP To set the proportional gain used by the current controller.

KITRACK To set the tracking factor used by the current controller.

KNIFE To load a tangential knife move on the specified axis.

KNIFEAXIS To specify the master axis that the knife axis should follow.

KNIFEMODE To specify the knife mode with which moves on the knife
master axis are loaded.

KNIFESTATUS To read or set the status of the knife axis.

KPROP To set the proportional gain for the position controller.

KVDERIV To set the derivative gain used by the speed controller.

KVDERIVTCONST To set the time constant used by the filter on the derivative gain
term of the speed controller.

KVEL To set the servo loop velocity feedback gain term.

KVELFF To set the velocity feedforward term for the position controller.

KVINT To set the integral gain used by the speed controller.

KVPROP To set the proportional gain used by the speed controller.

KVTIME To set the time constant of a low pass filter, applied to
measured speed.

KVTRACK To set the tracking factor used by the speed controller.

LATCH To read the state of a fast latch channel.

Name Description
13-54 Reference MN1955WEN

LATCHENABLE To manually re-enable a fast latch channel.

LATCHINHIBITTIME To specify a period during which further fast triggers will be
ignored.

LATCHINHIBITVALUE To specify a range of values within which further fast triggers
will be ignored.

LATCHMODE To set the default action to be taken to clear a fast latch.

LATCHSOURCE To define the source of data to be latched by a fast latch
channel.

LATCHSOURCECHANNEL To define the channel of the source of data to be latched by a
fast latch channel.

LATCHTRIGGERCHANNEL To select which of the fast latch inputs (or outputs) will trigger a
fast latch channel.

LATCHTRIGGEREDGE To define which edge polarity should cause the fast latch to be
triggered.

LATCHTRIGGERMODE To select whether a fast latch is triggered by a digital input or a
digital output.

LATCHVALUE To return the instantaneous latch value that was recorded by a
fast latch.

LED To set or read the display mode for the seven segment display.

LEDDISPLAY To set or read the value for the seven segment display.

LIFETIME To return a lifetime counter for the drive.

LIMIT To return the state of the forward and reverse limit switch inputs
for the given axis.

LIMITFORWARD To return the state of the forward limit switch input for the given
axis.

LIMITFORWARDINPUT To set the user digital input configured to be the forward end of
travel limit switch input for the specified axis.

LIMITMODE To control the default action taken in the event of a forward or
reverse hardware limit switch input becoming active.

LIMITREVERSE To return the state of the reverse limit switch input for the given
axis.

LIMITREVERSEINPUT To set the user digital input configured to be the reverse end of
travel limit switch input for the specified axis.

LOADDAMPING To define the equivalent viscous damping coefficient for the
motor and load.

LOADINERTIA To define the combined inertia of the motor and load.

LOOPTIME To set the servo loop update interval in microseconds.

MASTERCHANNEL To set or read the channel of the input device used for gearing.

MASTERDISTANCE To set the distance on the master axis over which the slave will
travel for a 'segment' in master-slave move types.

MASTERSOURCE To set or read the source of the input device used for gearing.

Name Description
MN1955WEN Reference 13-55

MAXSPEED To set a limit for the speed demanded on an axis.

MISCERROR To read or clear the miscellaneous error flag.

MISCERRORDISABLE To enable or disable miscellaneous errors calling the error
event.

MOTORBRAKE To manually override motor brake control.

MOTORBRAKEDELAY To specify engage/disengage delays associated with motor
brake control.

MOTORBRAKEMODE To activate or deactivate motor brake control.

MOTORBRAKEOUTPUT To specify an output to be used as a control signal for a braked
motor.

MOTORBRAKESTATUS To determine the state of the motor brake control.

MOTORCATALOGNUMBER To return the catalog number of the motor.

MOTORDIRECTION To set or read the electrical direction of the motor.

MOTORENCODERLINES To set or read the number of encoder lines (pre-quadrature) for
the motor.

MOTORFEEDBACK To set or read the feedback type of the motor.

MOTORFEEDBACKANGLE Reads the instantaneous value of commutation angle for the
motor.

MOTORFEEDBACKOFFSET To set or read the electrical angle at which the absolute
position read from an EnDat, Hiperface or SSI encoder is zero.

MOTORFEEDBACK-
PROTOCOLERROR

To read the type of feedback error when using a Hiperface
encoder.

MOTORFEEDBACK-
PROTOCOLRETRIES

To set or read the number of retries to attempt when an error
occurs on a Hiperface encoder.

MOTORFEEDBACKSTATUS To read the current status of the EnDat or Hiperface encoder.

MOTORFLUX To set the motor's magnetic flux level, to allow the drive to
accurately calculate motor torque and compensate for back-
EMF.

MOTORLINEARENCODER-
RESOLUTION

To set the resolution of the encoder on a linear motor.

MOTORLINEARPOLE-
PITCH

To set or read the distance between north poles on a linear
motor.

MOTORLS To set or read the motor leakage inductance.

MOTORMAGCURRENT To set or read the magnetizing current (Im) of an induction

motor.

MOTORMAGIND To set or read the magnetizing inductance (Lm) of an induction

motor.

MOTOROVERLOADAREA To read the extent of an overload condition.

MOTOROVERLOADMODE To set or read the action taken in the event of a motor overload
condition.

Name Description
13-56 Reference MN1955WEN

MOTORPEAKCURRENT To set or read the peak current rating of the motor.

MOTORPEAKDURATION To set or read the duration for which peak motor current can be
sustained.

MOTORPOLES To set or read the number of motor poles.

MOTORPOWERMEASURED To read the instantaneous electrical power applied to the
motor.

MOTORRATEDCURRENT To set or read the rated current of the motor.

MOTORRATEDFREQ To set or read the rated frequency of an induction motor.

MOTORRATEDSPEEDRPM To set or read the rated speed of an induction motor.

MOTORRATEDVOLTS To set or read the rated voltage of an induction motor.

MOTORRESOLVEROFFSET To set the feedback alignment for a resolver motor.

MOTORROTORLEAKAGE-
IND

To set or read the rotor leakage inductance of an induction
motor.

MOTORROTORRES To set or read the rotor resistance of an induction motor.

MOTORRS To set the motor stator resistance.

MOTORSLIP To read the slip of an induction motor.

MOTORSPECNUMBER To return the spec number of the motor.

MOTORSTATORLEAKAGE-
IND

To set or read the stator leakage inductance of an induction
motor.

MOTORSTATORRES To set or read the stator resistance of an induction motor.

MOTORTEMPERATURE-
INPUT

To assign a digital input as the motor overtemperature trip
input.

MOTORTEMPERATURE-
MODE

To set or read the action taken in the event of the motor
temperature trip input becoming active.

MOTORTEMPERATURE-
SWITCH

To read the state of the motor overtemperature trip input.

MOTORTYPE To read or set the type of motor.

MOVEA To set up a positional move to an absolute position.

MOVEBUFFERBACKUP To save or restore an axis move buffer.

MOVEBUFFERFREE To return the number of free spaces in the move buffer for the
specified axis.

MOVEBUFFERID To attach or read back a 16-bit identifier from the move buffer.

MOVEBUFFERIDLAST To read a 16-bit identifier from the move buffer.

MOVEBUFFERLOW To set or return the number of free spaces in the move buffer
before a move buffer low event is generated.

MOVEBUFFERSIZE To set or return the size of the move buffer allocated on the
specified axis.

MOVEBUFFERSTATUS

MOVEDWELL To load a dwell move into the move buffer.

Name Description
MN1955WEN Reference 13-57

MOVEOUT To load a digital output bit pattern into the move buffer.

MOVEOUTX To load a change of state for a specific digital output into the
move buffer.

MOVEPULSEOUTX To load a pulsed change of state for a specific digital output
into the move buffer.

MOVER To set up a positional move to a relative position.

MOVESTATUS To return information about the progress of the current move.

NETFLOAT To access a controller's network data array, storing values in
floating-point format.

NETINTEGER To access a controller's network data array, storing values as
integers.

NODE To set or read the node ID used by this node.

NODELIVE To determine if a CAN node on the bus is currently live or dead.

NODESCAN To scan a specific CAN bus for the presence of a specific node.

NODETYPE To add or remove a CAN node to/from the CAN network. Can
also be read to determine the node type.

NUMBEROF To return information about the abilities of the controller.

NUMBEROFEXTENDED To return information about the abilities of the controller.

NVFLOAT To read or write a floating-point value in non-volatile memory.

NVLONG To read or write a long integer value in non-volatile memory.

NVRAMDEFAULT To clear the contents of non-volatile RAM (NVRAM).

OFFSET To perform a positional offset move.

OFFSETDISTANCE To specify the distance over which offset moves of mode 4 will
occur.

OFFSETMODE To define the mode of operation for the OFFSET keyword.

OFFSETSPEEDLIMIT To set the maximum speed limit of an axis during an offset
move.

OFFSETSTATUS To read the status of the previous offset move.

OUT To set or read the state of all the outputs on an output bank.

OUTPUTACTIVELEVEL To set the active level on the digital outputs.

OUTX To set or read an individual digital output.

PARAMETERSAVE To save drive parameters to non-volatile memory.

PARAMSAVEMODE To allow parameters to be stored in EEPROM during run-time.

PHASESEARCHBACKOFF To select the back-off distance used to clear an end stop during
the phase search sequence.

PHASESEARCHBAND-
WIDTH

To define the bandwidth used to design the 'debounce'
controller used during the initial alignment stage of the phase
search sequence.

PHASESEARCHCURRENT To select amount of current applied to the motor during the
phase search sequence.

Name Description
13-58 Reference MN1955WEN

PHASESEARCHINPUT To set or read the digital input to be used as the phase search
trigger input.

PHASESEARCHMODE To turn on the 'debounce' controller used during the initial
alignment stage of the phase search sequence.

PHASESEARCHOUTPUT To assign a digital output as the phase search output.

PHASESEARCHSPEED To select the speed of travel during the search sections of a
phase search sequence.

PHASESEARCHSTATUS To determine whether commutation is aligned on an axis.

PHASESEARCHSWITCH To return the current state of the phase search input for the
axis.

PHASESEARCHTRAVEL To select the amount of travel during the search sections of a
phase search sequence.

PLATFORM To return the platform type.

PLCACTION To read the action assigned to a PLC Task channel.

PLCACTIONPARAMETER To read the associated parameter for an action assigned to a
PLC Task channel.

PLCAUTOENABLE To specify whether the PLC Task will automatically be enabled
on power-up.

PLCCONDITION To read a PLC Task channel's test condition.

PLCDEFAULT To reset the PLC Task table to default settings.

PLCENABLE To enable/disable the PLC Task.

PLCENABLEACTION To enable/disable individual PLC Task channels.

PLCGEARFACTOR To set or read the gear factor used by the 'Fast Gear' PLC
Action.

PLCOPERATOR To read the operator for a PLC Task channel.

PLCPARAMETER To read the associated parameter used by a PLC Task
channel's condition.

PLCSTATUS To read a bit pattern of active (true) PLC Task channels.

PLCTASK To set up PLC Task channels.

PLCTASKSTATUS To read the current state of an individual PLC Task.

PLCTIME To set or read the frequency of the PLC Task.

POS To set or read the current axis position.

POSACHIEVED To indicate whether the axis is ‘in position’.

POSDEMAND To set or read the instantaneous position demand.

POSOFFSET To set or read the offset used to calculate axis position for
absolute encoders.

POSREF To read the position reference value for an axis.

POSREMAINING To indicate the remaining move distance.

POSROLLOVER To count the number of wraps of the axis position value.

Name Description
MN1955WEN Reference 13-59

POSROLLOVERDEMAND To return the number of position wraps required by the current
move.

POSSCALEFACTOR To scale axis encoder counts, or steps, into user defined
position units.

POSSCALEUNITS To define a text description for the position scale factor.

POSTARGET To read the target position of the current positional move.

POSTARGETLAST To read the target position of the last move in the move buffer.

POSWRAP To set or read the position wrap range for the axis.

POWERREADYINPUT To set or read the input used to inform a DC bus slave that
mains power has been applied to the master.

POWERREADYOUTPUT To set or read the output used by a DC bus master to inform a
DC bus slave that mains power has been applied to the
master.

PRECISIONINCREMENT To read or set the theoretical distance between each of the
values in the leadscrew compensation tables.

PRECISIONMODE To control the action of leadscrew compensation.

PRECISIONOFFSET To set the distance between the start of the leadscrew and axis
zero position.

PRECISIONTABLE To load the leadscrew compensation tables.

PRESETCANCEL To set up a preset 'move' to perform a cancel command.

PRESETDWELLTIME To specify a dwell time between a hardware trigger and the
preset move starting.

PRESETHOME To set up a homing type preset move.

PRESETINDEX To read the current preset index or set a new index.

PRESETINDEXMODE To set the controller's response to changes in a preset index.

PRESETINDEXSOURCE To define the source for preset index changes.

PRESETINPUTSMAX To define the number of preset moves available in the preset
table.

PRESETINPUTSTATE To read the current state of digital inputs representing the
preset index.

PRESETJOG To set up a jog preset move.

PRESETMOVEA To set up an absolute preset move.

PRESETMOVEENABLE To enable or disable preset moves.

PRESETMOVEPARAMETER To define a preset move's parameters.

PRESETMOVER To set up a relative preset move.

PRESETMOVESUSPEND To pause a preset move.

PRESETMOVETYPE To define the type of preset move.

PRESETPOS To set up a preset 'move' to set the axis position value.

PRESETSELECTORINPUT To assign the base input for preset index selection.

Name Description
13-60 Reference MN1955WEN

PRESETSPEEDREF To set up a fixed point speed reference preset move.

PRESETSTOP To set up a preset 'move' to perform a stop command.

PRESETTORQUEREF To set up a fixed point torque reference preset move.

PRESETTRIGGERINPUT To assign the input to be used as the preset index trigger.

PRODUCTCATALOG-
NUMBER

To return the catalog number of the controller.

PRODUCTPOWERCYCLES To return the number of times the controller has been power
cycled.

PRODUCTSERIALNUMBER To return the serial number of the controller.

PROFILEMODE To select the type of velocity profiler to use.

PROFILETIME To set the profiler update rate.

PULSECOUNTER To return the value of the pulse input counter.

PULSEDIRMODE To set the control mode for the step (pulse) & direction digital
inputs.

PULSEOUTX To activate a digital output for a specified number of
milliseconds.

RELAY To enable or disable the relay.

RELAYOUTPUT To set the relay compatibility mode.

REMOTEADC To read the value of a remote analog input (ADC).

REMOTEADCDELTA To control the rate of change on a remote analog input before a
REMOTEADC message is sent.

REMOTEBAUD To specify the CAN baud rate of a remote BaldorCAN node
(I/O or Keypad).

REMOTECOMMS To access the reserved comms array on another controller.

REMOTECOMMSINTEGER To access the reserved comms array on another controller,
storing values as integers.

REMOTEDAC To control the value of a remote analog output channel (DAC).
The value is a percentage (positive and negative) of the full-
scale output value.

REMOTEDEBOUNCE To control the number of samples used to debounce an input
on a remote CAN node.

REMOTEEMERGENCY-
MESSAGE

Returns the error code from the last emergency message
received from a particular CANopen node.

REMOTEENCODER To read the value of a remote encoder channel.

REMOTEERROR To read the CANopen error register information reported within
the last emergency message received from a specific node.

REMOTEESTOP To control the emergency stop state of a remote CAN node.

REMOTEIN To read the state of all the digital inputs on a remote CAN node.

REMOTEINBANK To read the state of a bank of digital inputs on a remote CAN
node.

Name Description
MN1955WEN Reference 13-61

REMOTEINHIBITTIME To set or read the CANopen PDO inhibit time.

REMOTEINPUT-ACTIVE-
LEVEL

To control the active state of digital inputs on a remote CAN
node.

REMOTEINX To read the state of individual digital inputs from a remote CAN
node.

REMOTEMODE To control the update mode for a remote node.

REMOTENODE To specify the node ID of a remote BaldorCAN node (I/O or
Keypad).

REMOTEOBJECT To access the Object Dictionary of any CANopen node present
on the network.

REMOTEOBJECTFLOAT To access ‘floating-point’ entries in the Object Dictionary of a
remote node present on the network.

REMOTEOBJECTSTRING To access 'Vis-String' entries in the Object Dictionary of any
CANopen node present on the network.

REMOTEOUT To control the state of digital outputs on a remote CAN node.

REMOTEOUTBANK To read the state of a bank of digital outputs on a remote CAN
node.

REMOTEOUTPUT-
ACTIVELEVEL

To control the active state of digital outputs on a remote CAN
node.

REMOTEOUTPUTERROR To read or reset the digital outputs that are in error on a remote
BaldorCAN node.

REMOTEOUTX To control the state of individual digital outputs on a remote
CAN node.

REMOTEPDOIN To request data from a node in the form of a PDO message.

REMOTEPDOOUT To force a controller node to transmit a variable length PDO
message with a specific COB-ID. The PDO will contain up to
64 bits of data that can be passed in the form of two 32-bit
values.

REMOTEPDOVALID To read the status of the PDO (process data object) data for a
node.

REMOTERESET To force a remote CAN node to perform a software reset.

REMOTESTATUS To set or read the status register on a remote CAN node.

RESET To clear motion errors, set the position to zero and re-enable
the drive.

RESETALL To perform a reset on all axes.

RESETINPUT To define the reset input for an axis.

SCALEFACTOR To scale axis encoder counts, or steps, into user defined units.

SENTINEL To set up sentinel channels.

SENTINELACTION To control the action of a sentinel channel.

SENTINELACTIONMODE To control how the action of a sentinel channel is performed.

Name Description
13-62 Reference MN1955WEN

SENTINELACTION-
PARAMETER

To specify a parameter to fully define the sentinel action.

SENTINELLATCH To determine whether a sentinel channel has become true
since it was last checked.

SENTINELPERIOD To control the time interval between sentinel samples.

SENTINELSOURCE To read the source used by a sentinel channel.

SENTINELSOURCE2 To set or read the secondary source used by a sentinel
channel.

SENTINELSOURCE2-
PARAMETER

To set or read the parameter used to qualify the secondary
sentinel source.

SENTINELSOURCE-
PARAMETER

To read the source parameter used by a sentinel channel.

SENTINELSTATE To read the current state of a sentinel channel.

SENTINELTRIGGER-
ABSOLUTE

To read the 'absolute' parameter used by a sentinel channel.

SENTINELTRIGGERMODE To read the 'mode' parameter used by a sentinel channel.

SENTINELTRIGGER-
VALUE

To read the 'lowVal' or 'highVal' parameter used by a sentinel
channel.

SENTINELTRIGGER-
VALUEFLOAT

To specify the ‘lowVal’ or ‘highVal’ parameter, as a floating-
point number, to be used in a sentinel channel's trigger criteria.

SENTINELTRIGGER-
VALUEINTEGER

To specify the ‘lowVal’ or ‘highVal’ parameter, as an integer
number, to be used in a sentinel channel's trigger criteria.

SERIALBAUD To set the baud rate of the RS232 / RS485/422 port.

SERIALPROTOCOL To select the serial protocol to be used.

SEXTANT To read the current sextant value for a motor using Hall
sensors.

SOFTLIMITFORWARD To set the forward software limit position on a specified axis.

SOFTLIMITMODE To set or read the default action taken if a forward or reverse
software limit position is exceeded.

SOFTLIMITREVERSE To set or read the reverse software limit position on a specified
axis.

SPEED To set or read the slew speed of positional moves loaded in the
move buffer.

SPEEDDEMAND To read the speed demand.

SPEEDERROR To return the error between the demanded speed and the
measured speed.

SPEEDERRORFATAL To set or read the trip limit for the error between demanded and
measured speed.

SPEEDMEASURED To return the measured speed.

SPEEDREF To set or read a fixed point speed reference.

SPEEDREFACCELTIME To set or read the acceleration ramp for a speed profile.

Name Description
MN1955WEN Reference 13-63

SPEEDREFDECELTIME To set or read the deceleration ramp for a speed profile.

SPEEDREFENABLE To enable speed command mode.

SPEEDREFERROR-
DECELTIME

To set a deceleration ramp for a speed profile in the event of an
error.

SPEEDREFSOURCE To specify the source of the speed reference command.

SPLINE To perform a spline move.

SPLINEEND To define the end segment in the spline table for a spline move.

SPLINEINDEX To read the currently executing spline segment number.

SPLINESEGMENT To change spline table data.

SPLINESTART To define the start segment in a spline table for a spline move.

SPLINESUSPENDTIME To set the segment duration for a controlled stop during a
spline move.

SPLINETABLE To specify the array names to be used in a spline move on the
specified axis.

SPLINETIME To set the segment duration for all segments for a spline move.

SRAMP To set the percentage of S-ramping applied to linear moves.

STEPPER To set or read the stepper axis value.

STEPPERDELAY To enforce a time delay between state changes on step and
direction outputs.

STEPPERIO To manually control the step and direction pins of a stepper
channel.

STEPPERMODE To make miscellaneous changes to the steppers.

STEPPERSCALE To set or read the scale factor for the stepper output channel.

STEPPERVEL To read the velocity from a stepper output channel.

STEPPERWRAP To set or read the stepper wrap range for a stepper output
channel.

STOP To perform a controlled stop during motion.

STOPINPUT To set or read the digital input to be used as the stop switch
input for the specified axis.

STOPINPUTMODE To set or read the action taken in the event of a stop input
becoming active.

STOPMODE To set or read the action taken when an axis is stopped.

STOPSWITCH To return the current state of the stop input for the axis.

SUSPEND To pause the current move.

SUSPENDINPUT To set or read the digital input to be used as the suspend
switch input for the specified axis.

SUSPENDSWITCH To return the current state of the suspend input for the axis.

SYSTEMDEFAULTS To reset parameter table entries to their default values and
erase the Mint program, non-volatile RAM and error log.

Name Description
13-64 Reference MN1955WEN

SYSTEMSECONDS To set or read a programmable system lifetime counter for the
drive.

SYSTEMTIMEMODE To specify whether system time data is stored to non-volatile
memory.

TEMPERATURE To report the internal drive temperature.

TEMPERATURELIMIT-
FATAL

To set or read the temperature fatal limit.

TEMPERATURELIMIT-
WARNING

To read the temperature warning limit.

TERMINALADDRESS To set or read the node ID for a CAN node associated with a
terminal.

TERMINALDEVICE To set or read the device type associated with a given terminal.

TERMINALMODE To set or read handshaking modes for a terminal.

TERMINALPORT To set or read the communication port associated with a given
terminal.

TIMEREVENT To set or read the rate of the timer event.

TIMESCALE To scale speed related values into user time units.

TORQUE To execute torque control (constant current) on a servo axis.

TORQUEDEMAND To return the instantaneous torque demand.

TORQUEFILTERBAND To define the band of operation for a torque filter stage.

TORQUEFILTERDEPTH To define the reduction in gain for a notch torque filter stage.

TORQUEFILTERFREQ To define a characteristic frequency for a torque filter stage.

TORQUEFILTERTYPE To define the type of characteristic used for the given torque
filter stage.

TORQUELIMITNEG To set or read the maximum negative torque limit.

TORQUELIMITPOS To set or read the maximum positive torque limit.

TORQUEREF To set or read a torque reference for torque (constant current)
mode on a servo axis.

TORQUEREFENABLE To set the drive into torque command mode.

TORQUEREFERRORFALL-
TIME

To set or read the 'deceleration ramp' for a torque profile in the
event of an error.

TORQUEREFFALLTIME To set or read the 'deceleration ramp' for a torque profile.

TORQUEREFRISETIME To set or read the 'acceleration ramp' for a torque profile.

TORQUEREFSOURCE To specify the source of the torque reference command.

TRIGGERCHANNEL To specify the input used for triggering, when triggering on an
axis source or encoder.

TRIGGERCOMPENSATION To specify the size of the compensation term used when axis
triggering on an axis/encoder position.

TRIGGERINPUT To specify the input used for triggering, when triggering on a
digital input.

Name Description
MN1955WEN Reference 13-65

TRIGGERLATCH To specify the latch channel used for triggering, when
triggering on a latch channel.

TRIGGERMODE To control the triggering of a move.

TRIGGERSOURCE To specify the source when axis triggering is using an axis/
encoder position.

TRIGGERVALUE To specify an absolute value on which to trigger motion.

USERPARAMETER To provide access to user-programmable parameters stored in
EEPROM.

USERPOSITIONUNITS To define a text description for the user unit.

USERTIMEUNITS To define a text description for the user time unit.

VECTORA To perform an interpolated vector move on two or more axes
with absolute co-ordinates.

VECTORR To perform an interpolated vector move on two or more axes
with relative co-ordinates.

VEL To return the instantaneous axis velocity.

VELDEMAND To read the current instantaneous demand velocity.

VELDEMANDPATH To read the instantaneous demand velocity along the path of a
multi-axis move.

VELERROR To report the velocity following error.

VELFATAL To set or read the threshold for the maximum difference
between demand and actual velocity.

VELFATALMODE To control the default action taken in the event of the velocity
threshold being exceeded.

VELREF To set or read a fixed point speed reference.

VELSCALEFACTOR To scale axis encoder counts, or steps, into user defined
velocity units.

VELSCALEUNITS To define a text description for the velocity scale factor.

VELSETPOINTMAX To set or read the maximum limit of a velocity band.

VELSETPOINTMIN To set the minimum limit of a velocity band.

VOLTAGEDEMAND To read the voltage demand outputs from the current
controllers.

Name Description
13-66 Reference MN1955WEN

13.8 Glossary

A
Action statement One that performs a computational action, like an assignment or a
subroutine call (c.f. declaration statement).
ActiveX A control used to allow access to a resource, the Mint ActiveX allowing the host
computer access to a controller.
Ada A programming language (derived from Pascal and named after Ada Lovelace)
commissioned by the US department of defense to replace the plethora of languages they
once used.
Aggregate A collection of values, usually an array or a structure.
Alphabetic A character in the range ‘a’ to ‘z or ‘A’ to ‘Z.
Alphanumeric A character that is either alphabetic or numeric.
API Application Programming Interface.
Array A collection of values all of the same type that may be accessed by indexing a
specific element.
ASCII American Standard Code for Information Interchange, a specification of the
characters with ordinal values 0 to 127.

B
Bankers’ rounding Round to the nearest even digit in the case of the following digit being
exactly 5. More correctly called “Round to Nearest Even" or “Unbiased Rounding".
Base An alternative to “radix", so base 2 is binary, base 10 is decimal, etc.
Binary Base 2 (may use digits ‘0’ and ‘1’), usually denoted in text using the subscript 2, e.g.
1110102, or in Mint Basic using the prefix 2#, e.g. 2#111010.
Bitfield A data-type that allows integers mapped to specific bit ranges within a 32-bit value
to be read/written by name.
Block A statement which when executed causes the statements it contains to be executed.
Boolean A logical state that may take only the values false or true.
Boot-up A system boots-up when it starts operating, either on power-up or after resetting,
and configures itself for operation during this phase.
Byte The smallest unit of storage that a processing unit can access. Typically, this is 8 bits
long, but some systems use 16 or 32 bits, and some early computer architectures used 9
bits. Though the architectures that the MVM runs on support 8, 16 and 32 bit bytes, this only
matters for embedded programming and so whenever the term is used in this document, 8
bit bytes are meant.

C
CAN Controller Area Network. A network originally developed by Bosch in 1985 for in-
vehicle networks with the objective of reducing wiring loom sizes. It proved popular and was
made an ISO standard in 1993 (ISO 11898) and is now widely used in many application
areas, such as in medical, avionics and automation systems.
Cast In a computing sense, a contraction of the term “type cast".
Character An integer value in the range 0 to 255 that represents an ASCII code, which for
convenience may be defined by enclosing the required character within single quotes, e.g.
'0' defines that character for the digit zero, and has the integer value 48.
Compiler A program that converts from one language to another, usually from a high-level
programming language to a low-level machine language.
Concatenation The joining together of two items, usually strings.
Conditional compilation The ability to use or ignore sections of code based on a condition
that is evaluated during compilation, thus not incurring any run-time penalty and allowing
increased flexibility with regard to what the program contains and how it is targeted.
MN1955WEN Reference 13-67

Contiguous Something that is continuous, containing no gaps.
Controller A programmable electronic device used to control hardware.
Control character A character with ordinal value 0 to 31 or 127.
CPU Central Processing Unit.
Critical section A section of code that must be protected from the influence of other tasks,
for example, the body of a Semaphore block or a Critical block are examples of critical
sections.
Cursor The location where the next character will be written, usually signified by a flashing
block or similar.
C# An object oriented language based on C++ and Java that was developed by Microsoft to
be the principle programming language of the .NET environment.

D
Data-type The nature of the data stored in a variable is defined by its data-type (or ‘type’ for
short). Data-types must be differentiated because they each have fundamentally different
properties and storage requirements.
Deadlock A state where multiple tasks are completely inhibiting the progress of each other.
Decimal Base 10 (may use digits ‘0’ to ‘9’), no denotation usually used, though in text can
be denoted using a subscript 10, e.g. 10110, or in Mint Basic using the prefix 10#, e.g.
10#101.
Declaration statement One that creates a named entity that can be accessed by using its
name, such as a constant or a subroutine (c.f. action statement).
Directive statement One that merely directs the compiler to act in a particular way, for
example to perform certain optimizations.
DPR Dual Port RAM.
Drive An electronic amplifier designed to drive an electric motor. A drive that is not
programmable relies on an external input (often from a controller) to specify the required
motor movement.
DSP Digital Signal Processor.

E
Event A named block of code that is automatically executed in response to some event
occurring.
Exception An abnormal condition that results in an error.
Exponent The value used to raise a number to the power of (exponentiation). Usually used
in scientific notation where the value is 10 (for decimal numbers) and the exponent is a whole
number, positive for scaling up and negative for scaling down.
Exponentiation The raising of one number to the power of another.

F
Fatal error An error that causes immediate termination of the program (cf. non-fatal error).
Floating-point A decimal number that includes a decimal point and optionally an exponent.
Function A named block of code that executes sequentially in the calling task and which
returns a result.

G
Globals A term commonly used to describe variables with global scope that can be
accessed from anywhere in a program (cf. Locals).
13-68 Reference MN1955WEN

H
Hexadecimal Base 16 (may use digits ‘0’ to ‘9’ and ‘a’ to ‘f’), usually denoted in text using
the subscript 16, e.g. 19016, or in Mint Basic using the prefix 16#, e.g. 16#190.
HMI Human Machine Interface. Usually a keypad with a display, or a touchscreen device.

I
ICM Immediate Command Mode. A proprietary high-level communications protocol used to
execute functions on the controller or drive, such as reading or writing an axis position,
loading a move, running a Mint Basic program, downloading firmware, etc.
Identifier A name used to identify a declaration.
IEC International Electrotechnical Commission, the international standards and conformity
assessment body for all fields of electrotechnology.
IEC 61131-3 A standard that defines a number of programming languages for use in
programming PLCs.
IEEE 754 A standard for floating-point data that uses binary encoding.
IEEE 854 A standard for floating-point data that may use either binary or decimal encoding.
Integer A whole number, possibly negative.
Intrinsic Something built into the core language, like the Sin function.
I/O Input/Output.
Iteration Repetition.

J
Jerk The rate of change of acceleration, used in S-ramping to define the extent of the S, a
low jerk giving a large S and a high value giving a small S. As jerk tends to infinity, the motion
will tend to trapezoidal.

K
Keyword A special word used by Mint Basic that may not be used for other purposes.
These are also referred to as “Reserved words".

L
Label A name that defines a location in the program used by GoTo and the blocks on which
Exit and Continue operate.
Lifetime A term used to describe the period that a variable exists.
Literal A value expressed directly, e.g. a number like 12 or 0.375, or a string like ‘Enter
value: ‘, or a character like ‘=’ (which is really just a number).
Livelock A state similar to deadlock, but where execution is proceeding, though in such a
way that nothing useful is being achieved.
Locals A term commonly used to describe variables with local scope that can only be
accessed from within the module in which they are declared (cf. Globals).
Lower case Non-capitalized letters, the name deriving from a time when typesetters stored
these letters in a case below the case containing the capital letters.

M
Machine language The native language of a machine, typically a CPU or DSP, or in the
case of Mint Basic, the MVM.
MML Mint Motion Library. A library of commands and functions that allow access to the
hardware of a controller or drive.
Module A block of code that can be executed, usually via reference to its name (Sub,
Function, Task and Startup (the latter two using the Run command)), or automatically
(Startup, Shutdown and Event).
MN1955WEN Reference 13-69

Mutex A means of preventing simultaneous access to a common resource, typically a
section of code (called a ‘critical section’), in a multi-tasking environment. A mutex is like a
binary semaphore, and, depending on the implementation, may be re-entrant/recursive,
which means that a process may acquire the same mutex multiple times without blocking,
though it must be released as many times as it was acquired in order to become free for
acquisition by other processes.
MVM Mint Virtual Machine. This is a VM used by all ABB controllers and drives that are
programmable using Mint Basic. It makes all the devices behave similarly, providing a
consistent range of features across the entire product range.

N
Non-fatal error An error that is not so severe that termination is required, allowing the error
handler to be invoked if present to try and rectify the problem, otherwise causing immediate
termination.
Numeric A number, or with reference to a character, one in the range “0” to “9”.

O
O Big ‘O’ notation is used to indicate what some property is proportional to, typically

execution time. For example a linear process is O(n), a quadratic process is O(n2), a cubic

process is O(n3), etc., where n indicates the amount of data to process. Clearly, the
performance of a higher order process degrades at a more rapid rate than a corresponding
lower order process (as the amount of data increases), the best case being a constant time
process, denoted by O(1), the performance of which is independent of size.
Octal Base 8 (may use digits ‘0’ to ‘7’), usually denoted in text using the subscript 8, e.g.
1778, or in Mint Basic using the prefix 8#, e.g. 8#177.
Operator Something that operates on its operand data. Operators can be named (Xor),
symbolic (*) or both (Mod/%), and may take an arbitrary number of operands, though only
unary and binary operators are common, with ternary operators either looking like function
calls (Mint Basic / VB) or using a multi-symbol operator (e.g. C/C++). Ternary operators,
being operators rather than function calls, are evaluated differently, as the parameters to a
function are always evaluated, whereas the operands to a ternary operator need not be.
Operand An item of data manipulated by an operator, e.g. ‘x’ and ‘y’ are the operands to
the ‘+’ operator in the expression ‘x + y’.

P
PAC Programmable Automation Controller. A powerful PLC that combines the reliability of
a PLC with the capabilities of a PC based control system. This gives the capability to do such
things as process control, data acquisition, machine visualization, remote monitoring, motion
control, etc.
Parameter A variable used to pass data to a subroutine or function. These can also be
called “Arguments” or sometimes “Operands”.
PLC Programmable Logic Controller. This is a device that can process multiple inputs and
programmatically control multiple outputs in real time. They are used in many industries,
typically to control some part of a machine.
Pointer A variable that contains a memory address, thus making it ‘point’ to that memory
location.
Precedence A level of importance that is used to decide in what order to process things,
used in expressions (operator precedence) and event execution (event precedence).
Priority A measure of the importance of a task or an event.
Program A sequence of statements designed to achieve some objective.
Pseudo-Random An apparently random sequence determined by some mathematical
equation, thus making it not truly random.
13-70 Reference MN1955WEN

R
Radix The base of a number, so radix 10 is decimal, radix 8 is octal, etc.
Recursion A subroutine or function that calls itself, either directly or indirectly (mutual
recursion).
Reserved word A word that is reserved for use in the language definition, and as such it
cannot be used as an identifier.

Q
Quantum The size of a task’s time-slice, generally measured in time units, but in the case
of the MVM, measured in instructions.

R
Radix The base of a number, so radix 10 is decimal, radix 8 is octal, etc.
RAM Random Access Memory.
Recursion A subroutine or function that calls itself, either directly or indirectly (mutual
recursion).
Reserved word A word that is reserved for use in the language definition, and as such
cannot be used as an identifier.
Rotate Data is rotated by moving its bit pattern left or right a specified number of bits, with
bits that 'fall off' one end reappearing at the other end. Rotating may be performed on signed
or unsigned data, but Mint Basic only supports the latter.

S
SCADA Supervisory control and data acquisition. A system that supervises control (i.e.
coordinates processes but does not directly control in real time) and monitors the
components of the system, allowing operators to view its status and have its history stored in
a database.
Scientific notation A notation used to scale numbers using an exponent to make them

more readable. In text form this is denoted by appending “×10-12”, and in Mint Basic by
appending “e-12” (this example uses an exponent of -12, but any integer is valid).
Scope The visibility of declarations based on the nesting of modules such that the current
module is searched first, followed by the module enclosing it, etc., until it is found.
Semaphore A means of preventing simultaneous access to a common resource, typically a
section of code (called a ‘critical section’), in a multi-tasking environment. Semaphores are
not re-entrant/recursive, and so a task can block itself if it attempts to acquire a semaphore
that it has already acquired. While a binary semaphore is like a mutex, a semaphore also has
the ability to allow a number of processes access to a resource when a mutex can only ever
allow one process access.
Semaphore variable A variable used to control access to a resource by using it in a
semaphore block. The number of acquisitions allowed may be specified when it is declared,
and if not done so, then a binary semaphore is assumed.
Semaphore block A block that contains a sequence of statements that can be executed
only when the specified semaphore can be acquired.
Shift Data is shifted by moving its bit pattern left or right a specified number of bits, with bits
that 'fall off' one end being lost and bits that appear at the other being zeroed. Shifting may
be performed on signed or unsigned data, but Mint Basic only supports the latter.
Short circuit A term used in computing to describe the cutting short of an operation once
the outcome is known.
Shutdown module A block of code that automatically executes whenever a program
terminates.
Side effect Occurs when a module alters data declared outside of itself, making verification
difficult.
MN1955WEN Reference 13-71

S-ramp In terms of motion profiling, a velocity graph that has curved acceleration and
deceleration phases for smoother motion, controlled by the jerk setting (cf. trapezoidal
profiling).
Startup module A block of code that automatically executes on start up or when the
Run Startup command is issued.
Starvation A state where a task is so starved of access to a resource or CPU time that it
makes no useful progress.
Statement An element of code used to either declare something or do something (c.f.
declaration statement and action statement), which can be simple (e.g. an assignment or
call) or structured (e.g. a loop or a task declaration).
String A sequence of characters enclosed within double quotes, for example "Speed = ".
Structure A collection of values of arbitrary type that may be accessed by accessing its
members.
Structured text A textual programming language similar to Pascal that is part of the IEC
61131-3 framework.
Subroutine A named block of code that executes sequentially in the calling task.

T
Target format In terms of the MVM, it encapsulates the instruction set and the format of the
MEX file that the MVM must decode. The MVM validates the MEX file’s target format prior to
execution, only running it if it matches.
Task A named block of code that executes in parallel with other tasks.
Terminal An I/O device that may send or receive character data (e.g. a VT100 terminal, or
CAN keypad).
Trapezoidal In terms of motion profiling, the velocity graph will be composed of straight
lines (cf. S-ramp).
Type See Data-type.
Type cast The conversion from one data-type to another, which may be performed
implicitly by the compiler or explicitly by using a function like Int.

U
Upper case Capitalized letters, the name deriving from when typesetters stored these
letters in a case above the case containing the non-capital letters.

V
VB Visual Basic, Microsoft’s dialect of Basic used for programming visual applications (i.e.
using a graphical user interface).
VM Virtual Machine. This is an abstract machine, typically used to mimic the operation of a
real machine but using a software implementation rather than hardware. The machine
implemented is often abstract itself, as it is simply a means to an end, the objective usually
being a common run-time system to aid porting to a variety of target platforms. Examples of
this are the P-machine that enabled the widespread use of Pascal, the Java Virtual Machine,
the Common Language Infrastructure that is the heart of the .NET framework, and the Mint
Virtual Machine.
VHDL A language commissioned by the US department of defense that shares many
features with Ada. Its name is derived from VHSIC Hardware Description Language (Very
High Speed Integrated Circuits).

W
Warning These are used to indicate that something may be wrong, such as passing an
integer variable to a parameter that is a floating-point reference. It is good practice to
eliminate warnings from a program.
13-72 Reference MN1955WEN

Wrap Wrapping occurs when something overflows off one end of a scale and reappears on
the other end.
MN1955WEN Reference 13-73

13-74 Reference MN1955WEN


Comments

If you have any suggestions for improvements to this manual, please let us know. Write your
comments in the space provided below, remove this page from the manual and mail it to:

Manuals
ABB Ltd
Motion Control
6 Bristol Distribution Park
Hawkley Drive
Bristol
BS32 0BF
United Kingdom.

Alternatively, you can e-mail your comments to:

manuals.uk@baldor.com

Comment:

continued...
MN1955WEN Comments

Thank you for taking the time to help us.
Comments MN1955WEN

Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting
the type designation and serial number of the unit in question. A listing of ABB sales,
support and service contacts can be found by navigating to www.abb.com/drives and
selecting Sales, Support and Service network.

Product training

For information on ABB product training, navigate to www.abb.com/drives and select
Training courses.

Providing feedback on ABB Drives manuals

Your comments on our manuals are welcome. Go to www.abb.com/drives and select
Document Library – Manuals feedback form (LV AC drives).

Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet.
Go to www.abb.com/drives and select Document Library. You can browse the library
or enter selection criteria, for example a document code, in the search field.

http://www.abb.com/drives
http://www.abb.com/drives
http://www.abb.com/drives
http://www.abb.com/drives

LT
0

25
5A

03
 (

E
N

)
E

F
F

E
C

T
IV

E
: 2

01
2-

09
-0

1Contact us

ABB Oy
Drives
P.O. Box 184
FI-00381 HELSINKI
FINLAND
Telephone +358 10 22 11
Fax +358 10 22 22681
www.abb.com/drives

ABB Inc.
Automation Technologies
Drives & Motors
16250 West Glendale Drive
New Berlin, WI 53151
USA
Telephone 262 785-3200

 1-800-HELP-365
Fax 262 780-5135
www.abb.com/drives

ABB Beijing Drive Systems Co. Ltd.
No. 1, Block D, A-10 Jiuxianqiao Beilu
Chaoyang District
Beijing, P.R. China, 100015
Telephone +86 10 5821 7788
Fax +86 10 5821 7618
www.abb.com/drives

Baldor Electric Company
(A member of the ABB group)
5711 R.S Boreham, Jr. St.
P.O. Box 2400
Fort Smith, AR 72901
USA
Telephone +1 479 646 4711
Fax +1 479 648 5792
www.baldor.com

ABB Ltd
Motion Control
6 Bristol Distribution Park
Hawkley Drive
Bristol, BS32 0BF
United Kingdom
Telephone +44 (0) 1454 850000
Fax +44 (0) 1454 859001
www.abb.com/drives

www.abb.com/drives
www.abb.com/drives
www.abb.com/drives
www.abb.com/drives
www.abb.com/drives

	Contents
	1 General Information
	2 Overview
	2.1 Introduction
	2.2 What is Mint?
	2.3 Mint Basic

	3 Building Blocks
	3.1 Introduction
	3.2 Identifiers
	3.3 Literals
	3.3.1 Numbers
	3.3.2 Characters
	3.3.3 Strings

	3.4 Data types
	3.4.1 Integer
	3.4.2 Float
	3.4.3 String
	3.4.4 Time
	3.4.5 Controller
	3.4.6 Semaphore
	3.4.7 User defined
	3.4.8 Memory usage

	3.5 Variables
	3.6 Statements
	3.6.1 Statement separation
	3.6.2 Line continuation

	3.7 Modules
	3.8 Program
	3.8.1 Layout
	3.8.2 Comments
	3.8.3 White space
	3.8.4 Compilation Errors
	3.8.5 Execution

	4 Expressions
	4.1 Introduction
	4.2 Operators
	4.2.1 Arithmetic operators
	4.2.2 Relational operators
	4.2.3 Logical operators
	4.2.4 Bitwise operators
	4.2.5 String concatenation operator
	4.2.6 Immediate If operator
	4.2.7 Is operator
	4.2.8 Miscellaneous operators

	4.3 Order of evaluation
	4.3.1 Operator precedence
	4.3.2 Use of brackets

	4.4 Functions
	4.5 Type casting
	4.6 Floating-point limitations
	4.6.1 General Properties

	5 Declaration Statements
	5.1 Introduction
	5.2 Constants
	5.3 Defines
	5.4 Variables
	5.4.1 Simple
	5.4.2 Arrays
	5.4.3 Memory usage

	5.5 Structures
	5.6 Bitfields
	5.7 Labels

	6 Action Statements
	6.1 Introduction
	6.2 Assignment
	6.3 Commands
	6.4 Control flow
	6.4.1 Conditional execution
	6.4.2 Repetitive execution
	6.4.3 Overriding the natural flow of execution
	6.4.4 Keyword qualification
	6.4.5 Labeled qualification
	6.4.6 GoTo statement
	6.4.7 Delaying execution

	7 Directive Statements
	7.1 Introduction
	7.2 Auto
	7.3 Option
	7.3.1 Compatibility options
	7.3.2 Keyword support options
	7.3.3 Code generation options
	7.3.4 Error and warning options
	7.3.5 Run-time options
	7.3.6 Configuration options
	7.3.7 Listing generation options

	8 Modular Programming
	8.1 Introduction
	8.2 Subroutines
	8.2.1 Issues relating to reference parameters

	8.3 The concept of locality
	8.4 Functions
	8.4.1 Side effects

	8.5 Recursion
	8.6 Tasks
	8.6.1 The Parent task
	8.6.2 Declaring tasks
	8.6.3 Starting tasks
	8.6.4 Ending tasks
	8.6.5 Suspending tasks
	8.6.6 Resuming tasks
	8.6.7 Testing the status of a task
	8.6.8 Task scheduling

	8.7 Events
	8.8 Startup module
	8.9 Shutdown module
	8.10 Exiting modules
	8.11 Static and dynamic modules
	8.11.1 Static modules
	8.11.2 Dynamic modules
	8.11.3 Lifetime

	8.12 Overriding scope
	8.13 Task synchronization
	8.13.1 Critical block
	8.13.2 Semaphore block
	8.13.3 Deadlock

	9 Conditional Compilation
	9.1 Introduction
	9.2 Usage
	9.3 Limitations
	9.3.1 Syntactic correctness
	9.3.2 Numeric conditions
	9.3.3 Allowed operators
	9.3.4 Sequencing

	10 Intrinsic Commands and Functions
	10.1 Introduction
	10.2 Input and output
	10.2.1 Beep #
	10.2.2 Bol #
	10.2.3 Echo
	10.2.4 InKey
	10.2.5 Input #
	10.2.6 LastKey
	10.2.7 Line #
	10.2.8 Locate #
	10.2.9 Print #
	10.2.10 ReadKey

	10.3 Mathematical functions
	10.3.1 Abs
	10.3.2 Acos
	10.3.3 Asin
	10.3.4 Atan
	10.3.5 Atan2
	10.3.6 Cos
	10.3.7 Exp
	10.3.8 Frac
	10.3.9 Log
	10.3.10 Log10
	10.3.11 Max
	10.3.12 Min
	10.3.13 Pow
	10.3.14 Rnd
	10.3.15 Round
	10.3.16 Sgn
	10.3.17 Sin
	10.3.18 Sqrt
	10.3.19 Tan

	10.4 Type conversion
	10.4.1 CvtIeee2Flt
	10.4.2 CvtInt2Flt
	10.4.3 CvtFlt2Ieee
	10.4.4 CvtFlt2Int
	10.4.5 Int
	10.4.6 Float

	10.5 String manipulation
	10.5.1 Asc
	10.5.2 Chr
	10.5.3 Eval
	10.5.4 InStr
	10.5.5 Left
	10.5.6 Len
	10.5.7 Mid
	10.5.8 Right
	10.5.9 Str
	10.5.10 Val

	10.6 Task manipulation
	10.6.1 End
	10.6.2 Run
	10.6.3 TaskPriority
	10.6.4 TaskQuantum
	10.6.5 TaskResume
	10.6.6 TaskStatus
	10.6.7 TaskSuspend

	10.7 Event handling
	10.7.1 DInt
	10.7.2 EInt
	10.7.3 EventPriority
	10.7.4 IPend
	10.7.5 DprEventCode

	10.8 Error handling
	10.8.1 Erl
	10.8.2 Err
	10.8.3 ErrAxis
	10.8.4 ErrStr

	10.9 General purpose
	10.9.1 IsAlnum
	10.9.2 IsAlpha
	10.9.3 IsAscii
	10.9.4 IsCntrl
	10.9.5 IsDigit
	10.9.6 IsLower
	10.9.7 IsUpper
	10.9.8 IsXDigit
	10.9.9 LBound
	10.9.10 Nop
	10.9.11 Pause
	10.9.12 Rotate
	10.9.13 Shift
	10.9.14 Time
	10.9.15 UBound
	10.9.16 Wait
	10.9.17 Wrap
	10.9.18 WrapOffset

	10.10 Default parameters
	10.10.1 Axes
	10.10.2 Bank
	10.10.3 Bus
	10.10.4 Terminal

	11 Mint Motion Library
	11.1 Introduction
	11.2 Overview
	11.2.1 Call types
	11.2.2 Advanced parameter passing
	11.2.3 Redirection

	12 Tutorials
	12.1 Introduction
	12.2 Hello world
	12.3 Variables and arithmetic
	12.4 Simple decision making and iteration
	12.5 Point to point moves 1
	12.6 Point to point moves 2
	12.7 Point to point moves 3

	13 Reference
	13.1 Introduction
	13.2 Porting to Mint v5.5
	13.2.1 From MintMT / Mint v5
	13.2.2 From Mint v4
	13.2.3 From Visual Basic
	13.2.4 From Structured Text

	13.3 Array data files
	13.4 Source code reformatting
	13.5 C Format Strings
	13.5.1 b: binary notation
	13.5.2 c: character
	13.5.3 d: decimal
	13.5.4 e: exponential (scientific) notation
	13.5.5 f: fixed point notation
	13.5.6 g: general (floating point) notation
	13.5.7 o: octal notation
	13.5.8 q: quad (IP address) notation
	13.5.9 s: string
	13.5.10 u: unsigned decimal
	13.5.11 x: hexadecimal notation

	13.6 Error Codes
	13.6.1 Compilation Error Codes
	13.6.2 Run-Time Error Codes

	13.7 Reserved words
	13.7.1 Constants
	13.7.2 Operators
	13.7.3 Intrinsic commands
	13.7.4 Intrinsic functions
	13.7.5 Block constructs
	13.7.6 Data types
	13.7.7 Simple declaration
	13.7.8 Block declaration
	13.7.9 Mint Motion Library functions

	13.8 Glossary
	Product and service inquiries
	Product training
	Providing feedback on ABB Drives manuals
	Document library on the Internet

