ABB motion control

Reference manual

Mint Basic Programming

AL 1D D
MN1955WEN " I. I'

You can find manuals and other product documents in PDF format on the Internet. See section
Document library on the Internet on the inside of the back cover. For manuals not available in the
Document library, contact your local ABB representative.

Contents

1 General Information

2 Overview

2.1 Introduction
22 WhatisMint?...........
23 MintBasiC

3 Building Blocks

3.1 Introduction
3.2 dentifiers......
33 Literals.......
331 Numbers..........coiiii e
332 Characters.o i
333 SHNGS. .ot
34 Datatypes
341 INteger. .. e
342 Float ...
343 SUNG. . .o
344 TiMe ...
345 Controller.
3.46 Semaphore.............iiiiiiii
347 Userdefined
348 MeMOryuSageviiiiiennnnennn.
35 WVariables
3.6 Statements.............
3.6.1 Statementseparation
3.6.2 Linecontinuation...............
37 Modules......
3.8 Program........... ...
3.8 1 Layout......... ...
3.82 COmMMENtS.t e
3.83 Whitespacecouiiiiii
3.8.4 Compilation Errors
385 Execution

4 Expressions

4.1 Introduction
4.2 Operators.uiiii
4.2.1 Arithmeticoperators,
4.2.2 Relationaloperators

MN1955WEN

Contents

4.3

4.4
4.5
4.6

51
5.2
5.3
54

55
5.6
5.7

4.2.3 L0gical OPEratorsottt 4-3

4.2.4 BitWISE OPEratOrsottt it e s 4-4
4.2.5 String concatenation Operator« ..o 4-5
4.2.6 Immediate [f Operator. 4-5
427 ISOPEraOr . ..ot e 4-5
4.2.8 Miscellaneous operators i 4-6
Orderofevaluation i, 4-7
4.3.1 Operator PreCeAENCEo vttt et 4-7
432 Useofbrackets i 4-8
FUNCIONS. . . . 4-10
Type Casting oo 4-11
Floating-point limitations 4-12
4.6.1 General Properties.ttt 4-12

Declaration Statements

INtroducCtionot 5-1
Constants e 5-1
Defines . .. 5-2
Variables 5-3
5.4.1 SIMple ... 5-3
D42 AITAYS. . ot 5-4
543 MEMOIY USAOE . . . o o ittt e et e e e e e e e 5-5
SHUCIUIES . . o e e e e e 5-6
Bitfields e 5-8
Labels . . . 5-10

6 Action Statements

6.1
6.2
6.3
6.4

INtroduction 6-1
ASSIGNMENt 6-1
Commands 6-3
Control flow e 6-4
6.4.1 Conditional eXeCUtioN. i 6-4
6.4.2 Repetitive XeCUtiON.ot 6-7
6.4.3 Overriding the natural flow of execution. 6-10
6.4.4 Keyword qualification. 6-11
6.4.5 Labeled qualification 6-12
6.4.6 GoToStatement e 6-14
6.4.7 Delaying eXecution.t 6-14

7 Directive Statements

7.1
7.2

INtroduction 7-1
AULO . . o 7-2

ii Contents MN1955WEN

7.3

8.1
8.2

8.3
8.4

8.5
8.6

8.7
8.8
8.9
8.10
8.11

8.12
8.13

OPtION . .t 7-3

7.3.1 Compatibility Options. 7-3
7.3.2 Keyword support Options.t 7-4
7.3.3 Code generation OptionNS.ottt 7-5
7.3.4 Errorand warning OptionS.ot 7-7
7.35 RUN-tIMEOPLONS.o 7-8
7.3.6 Configuration Options 7-9
7.3.7 Listinggeneration options 7-10

Modular Programming

INtroduction 8-1
Subroutines 8-1
8.2.1 Issues relating to reference parameters 8-3
The conceptoflocality. 8-5
FUNCHONSo e 8-7
8.4.1 Sideeffects. 8-7
RECUISION. . . . 8-8
TasKS . .o 8-10
8.6.1 TheParenttask.t 8-10
8.6.2 Declaringtasksot 8-10
8.6.3 Starting tasks 8-11
8.6.4 ENdingtasks 8-11
8.6.5 Suspendingtasks 8-11
8.6.6 Resumingtasks. 8-12
8.6.7 Testingthestatusofatask............... 8-12
8.6.8 Taskscheduling 8-12
EVeNts 8-14
Startupmodule 8-15
Shutdownmodule 8-16
Exitingmodules 8-17
Static and dynamicmoduleso 8-18
8.11.1 Staticmodules.t 8-18
8.11.2 Dynamicmodulest 8-18
8.11.3 Lifetimeo 8-18
OVernding SCOPEottt 8-20
Task synchronization. i 8-21
8.13.1 Critical block 8-21
8.13.2 Semaphore block 8-23
8.13.3 DeadloCK.o 8-26

9 Conditional Compilation

9.1
9.2

INtroduction o 9-1
USA0E ..ottt 9-2

MN1955WEN Contents iii

9.3

Limitations oo e 9-4

9.3.1 SYNtaCiC COMECINESS v ottt ettt e et e e 9-4
9.3.2 Numeric conditions.ot 9-5
9.3.3 Allowed OPeratorsttt 9-5
9.3.4 SEQUENCING . .« ottt ettt e e e e e 9-5

10 Intrinsic Commands and Functions

10.1
10.2

10.3

10.4

Introduction 10-1
Inputand output 10-2
10.2. 0 B P H v ot 10-2
10.2.2 BOI#H. .ottt 10-2
10.2.3 ECRO. .ottt e 10-2
10.2.4 INKBY . .ot 10-3
10.2.5 INPUEH © oottt e e e e e 10-3
10.2.6 LaStKeY . .. 10-4
10,27 LINEH . ottt 10-4
10.2.8 LOCAte # . . . 10-4
10.2.9 PHNLH. oottt e e 10-4
10.2. 00 ReadKeY . ..ot 10-5
Mathematical functions 10-6
10.3.1 ADS. .\ttt 10-6
10.3.2 ACOS. . oottt ettt e e e e 10-6
10.3.3 ASIN Lottt 10-6
10.3.4 AlAN . . 10-6
10.3.5 AMANZ . ottt 10-6
10.3.8 COS. .\ttt et et e 10-6
10,37 EXP ettt 10-7
10.3.8 FrAC .o oottt et e et 10-7
10.3.9 L0 .+ttt et e e 10-7
10.3.10 L0010 . o ottt e 10-7
1031 MAX .« o oottt e e e e 10-7
10302 MiN . oottt 10-8
L0.3. LB POW .« .ottt 10-8
10.3.LARNG. . oottt e 10-8
10.3.A5ROUNG. « oottt ettt e ettt e e e e 10-9
10,3068 SGN. 4 o ettt 10-9
10,307 SN ettt 10-9
10,308 SO . v vt e ettt e e 10-9
10,3 L0 TaN. o et 10-9
TYPE CONVEISION . . .ottt e e e e e 10-10
10.4.1 Cvtleee2FIt. . . oot 10-10
10.4.2 CVHNE2FI ..o e e e e e e 10-10
10.4.3 CVIFI2IEEE. . . oottt ettt ettt 10-11
10.4.4 CVIFI2INE . ..ot 10-11
1045 M. .ttt e e e e 10-11
10.4.6 FIOBL. . oottt et e e 10-11
String manipulation 10-12

iv Contents MN1955WEN

10.5.0 ASC ..ttt 10-12

10.5.2 CRr . 10-12
10.5.3 EVal. .ot 10-12
10.5.4 INSH. oo 10-13
10.5.5 Left .o 10-13
10.5.6 Len .. 10-13
10.5.7 Mid ..o 10-13
10.5.8 Right ..o 10-14
10.5.9 St .o 10-14
10.5.00Val. . oo 10-14
10.6 Task manipulation 10-16
10.6.1 ENd ..o 10-16
10.6.2 RUN . . 10-16
10.6.3 TaskPriority 10-16
10.6.4 TaskQUaNIUMottt e e e 10-16
10.6.5 TaskReSUME. 10-17
10.6.6 TaskStatust 10-17
10.6.7 TaskSUSPENd 10-17
10.7 Eventhandling.......... i 10-18
10.7. 0 DINt .ot e 10-18
10.7.2 EINt .. 10-18
10.7.3 EVeNtPriorityo 10-18
10.7.4 IPEeNd. . .ot 10-18
10.7.5 DprEVENtCOdE.ottt e 10-19
10.8 Errorhandling 10-20
10.8. 1 Erl ..o e 10-20
10.8.2 BT . oo e 10-20
10.8.3 EITAXIS. . ottt 10-20
10.8.4 BSOS, o 10-20
10.9 GeneralpurPoSeot 10-21
10.9. 1 ISAINUM . Lot 10-21
10.9.2 ISAIPha ..o 10-21
10.9.3 ISASCIl « o vttt 10-21
10.9.4 ISCNtrl . ..o 10-21
10.9.5 ISDIgIt . . oot 10-22
10.9.6 ISLOWETot 10-22
10.9.7 ISUPPET . oot 10-22
10.9.8 ISXDIgIt . . o vt 10-22
10.9.9 LBOUND . ..ot 10-22
0.9, L0 NOP .« ot e 10-23
10.9. 11 PAUSE . .ot 10-23
10.9.12R0tateo 10-23
10.9. 18 Shift. . oo 10-23
10.9. 14 TiMe ottt 10-24
10.9.25UBOUNdo 10-25
T10.9. 06 Wat. . . oo 10-25
0.9 07 WraP . . ettt 10-25
10.9.18 WrapOffset . . .o v e 10-25

MN1955WEN Contents v

10.10 Default parameters 10-27

10,000 AXES . . vttt s 10-27
10.10.2BaANK. . oo ottt s 10-27
L10.10.3 BUS . . ¢ vttt 10-27
10.20.4Terminal.ottt 10-28
11 Mint Motion Library
11.1 INtroduction 111
11,2 OVEIVIEW . o oo e e 11-2
11.2.1 CalltyPeS . o oottt 11-2
11.2.2 Advanced parameter passingt e 11-2
11.2.3 RedireCtion.o e 11-4
12 Tutorials
12.1 Introduction 12-1
12.2 Helloworld. e 12-2
12.3 Variables and arithmetic 12-3
12.4 Simple decision making and iteration 12-4
125 Pointtopointmoves 1.t 12-6
12.6 Pointto pointmMoves 2.ttt 12-7
12.7 Pointto pointmoves 3. i 12-8
13 Reference
13.1 Introduction 13-1
13.2 Portingto Mintv.5 13-2
13.2.1 From MIntMT /MINt VSo 13-2
13.2.2 From Mint V4 ..o 13-5
13.2.3 FromVisual BasiCt 13-7
13.2.4 From Structured TexXt. e 13-10
13.3 Arraydatafiles 13-11
13.4 Source code reformatting i 13-12
135 CFRormat Strings.o e 13-13
13.5.1 b:hinary notationt e 13-14
13.5.2 cicharacter 13-14
1353 didecimal. 13-14
13.5.4 e: exponential (scientific) notation 13-14
13.5.5 fifixed pointnotation 13-14
13.5.6 g: general (floating point) notation 13-15
13.5.7 o:octal notation 13-15
13.5.8 g:quad (IP address) notation.c..uutiiei i 13-15
13.5.9 SISHING. . ottt 13-16
13.5.10u:unsigned decimal 13-16
13.5.11 x: hexadecimal notationt 13-16
vi Contents MN1955WEN

13.6 Ermor Codesottt 13-18

13.6.1 Compilation Error Codes.vtit i 13-18
13.6.2 Run-Time Error Codest 13-33
13.7 ReservedwWords. 13-34
13.7.1 ConStantsot 13-34
13.7.2 OPEIAtOrS . . oottt e e 13-35
13.7.3 IntrinsiC cCOmMMaAaNdS oot 13-36
13.7.4 Intrinsic functions 13-37
13.7.5 BloCK CONSIIUCESo 13-39
13.7.6 DatatyPes. . .ottt e 13-40
13.7.7 Simpledeclaration. 13-40
13.7.8 Blockdeclaration. e 13-41
13.7.9 Mint Motion Library functions 13-42
13.8 GlOSSaANY. . .ot 13-67

MN1955WEN

Contents vii

viii Contents MN1955WEN

General Information 1

LTO255A03EN Copyright ABB (c) 2012. All rights reserved.

This manual is copyrighted and all rights are reserved. This document or attached software may not,
in whole or in part, be copied or reproduced in any form without the prior written consent of ABB.
ABB makes no representations or warranties with respect to the contents hereof and specifically
disclaims any implied warranties of fitness for any particular purpose. The information in this
document is subject to change without notice. ABB assumes no responsibility for any errors that may
appear in this document.

Mint™ is a registered trademarks of Baldor, a member of the ABB group.
Windows Vista, Windows 7 and Windows 8 are registered trademarks of the Microsoft Corporation.

ABB Ltd

Motion Control

6 Bristol Distribution Park

Hawkley Drive

Bristol, BS32 0BF

Telephone: +44 (0) 1454 850000

Fax: +44 (0) 1454 859001

E-mail: motionsupport.uk@baldor.com
Web site: www.abbmotion.com

See rear cover for other international offices.

MN1955WEN General Information 1-1

1-2 General Information MN1955WEN

Overview 2

2.1 Introduction

This document provides a thorough description of all the features of Mint Basic. Concepts
are introduced in a staged manner and care has been taken to illustrate how to make the
best use of the language and how to avoid potential pitfalls. A set of tutorials is included that
guide the user from writing the simplest of applications all the way to a complex motion
control application.

2.2 What is Mint?

Mint is the environment used to operate a range of ABB motion controllers and drives.*
Mint is composed of a number of elements:

Mint WorkBench — This is the integrated development environment (IDE) used to
configure, query and program the controllers and drives.

Mint ActiveX controls — These allow applications to be written, typically in C++ or Visual
Basic, which run on the host PC.

Mint Motion Library — This provides a direct interface to the functionality of the hardware
and resides in the firmware. The functionality available varies between products.

Mint Basic — This is the language used to control the hardware, the functionality of which
also resides in the firmware, hence allowing hardware to operate autonomously. Mint
Basic executes programs using a virtual machine called the MVM, which allows a
consistent range of features on all products that support programming.

The following diagram shows the various components that make up Mint.

\
Mint WorkBench

or
Host Application (VB, C#, etc.)

i

Mint ActiveX Control

> Host PC

Communications (ICM)
7\
L4 o
MML MVM > Firmware

X,

R
Operating System

J/

Note that on some systems, the MVM can be replaced with an embedded C application.

* Motion controllers and drives originally produced under the Baldor brand name, for example: NextMove ES,
NextMove ESB-2, NextMove PCI-2, NextMove 100, MicroFlex e100, MicroFlex e150, MotiFlex e100, et al.

MN1955WEN Overview 2-1

2.3 Mint Basic

This document focuses on Mint Basic, which is a dialect of Basic that has much in common
with Visual Basic. It is rich in features, allowing the development of modular, block-structured
programs. These include subroutines, functions, structures, conditional statements and
looping statements. In addition to these features, Mint Basic also includes the capability to
define tasks that execute in parallel with other tasks, allowing isolation of distinct operations
from each other and simplifying program design.

While these features provide all that is required for purely programmatic purposes, they do
not address the requirement to control the hardware directly. For this reason, Mint Basic
allows access to an extensive library of specialized functions that interface to the
functionality embedded into the controllers. This library is called the ‘Mint Motion Library’
(MML), and allows the manipulation of inputs, outputs and motion control, etc. The functions
available within the MML are specific to a particular controller and its firmware revision, so
not all functions are common to all platforms or all firmware revisions.

Mint Basic is a compiled language that targets a proprietary ‘virtual machine’, the Mint Virtual
Machine (MVM), resident in the controller’s firmware. The Mint Basic compiler is integrated
into the Mint ActiveX and is most easily used within Mint WorkBench, but can also be used
by a host application. Since the MVM is a part of the controller’s firmware, it provides an
efficient interface to the MML. This has a number of advantages when compared to an
equivalent host application written in Visual Basic or C++ that uses the Mint ActiveX control,
since there is no communication overhead, programs can start executing as soon as the
controller is powered up, and no intervention is required from a costly host computer.

2-2 Overview MN1955WEN

Building Blocks 3

3.1 Introduction

There are a number of basic concepts that need to be understood before a program can be
written. It is important to read and understand these concepts, since they form the
fundamental building blocks on which the remainder of the language is built.

3.2 ldentifiers

Identifiers are names used to uniquely identify items within a program such as variables,
subroutines, functions and constants. These items will be discussed later, but the format of
an identifier is the same whatever the item. Names should be chosen carefully to aid
readability. Identifiers must start with either an alphabetic character or an underscore, and
may be followed by any combination of alphanumeric characters and underscores. An
identifier ends when a character is encountered that does not fit the above criteria, such as a
space or a symbol.

The case of characters in an identifier is not significant, so ‘abc’ is considered to be the same
name as ‘ABC’. All characters within an identifier are significant and there is no specific limit
to the length of an identifier, though using very long names is not recommended.

Certain names have a special meaning to the language, and these are called reserved words
or keywords. These include If, Then, Float, Loop, etc., a full list of which can be found in
Reserved words on page 13-34.

The following examples are valid identifiers:

_b

Cc_

size
belt_speed
x0

_100

_loop
a_strange_but_perfectly_valid_identifier

The following are invalid identifiers:

sub (a reserved keyword)

20x (starts with a digit)

xor (a reserved keyword)

piston length (contains a space, which creates two identifiers)
n-points (contains a hyphen, which makes it an expression)

Identifiers must be unique within the current scope (discussed in The concept of locality on
page 8-5), so it is not permitted for any two declarations in the same module to share the
same name, such as a constant and a variable.

MN21955WEN Building Blocks 3-1

3.3

3.3.1

3.3.1.1

Literals

The term literal is used to describe an item that is literally represented in the program, such
as a number, character or string. Since it represents something literally, it does not need a
name or declaration to determine what it is. Literals are often called constants, though this
term is preferred for use only with named constants (see Constants on page 5-1).

For example, to work out the circumference of a circle the numeric literals 2 and 3.1415927
can be used:

circumference = 2 * 3.1415927 * radius

String literals are often used in print statements, for example:

Print "Circumference = ", 2 * 3.1415927 * radius

Numbers

Mint Basic supports a variety of numeric formats to allow values to be expressed in the most
natural way possible for the problem in hand. These vary from integer to floating-point and
from decimal to other number bases and also formats suitable for expressing time durations
and internet protocol (IP) addresses.

Decimal

A simple number begins with a digit and ends when a non-numeric character is encountered.
The following are valid numbers:

1
-250
65535

Note that negative values appear to break this rule, but they are considered to be a simple
expression composed of a unary minus operation on a positive value. There are a few other
exceptions to this rule, which will be described in following sections.

The numbers described so far represent whole nhumbers (integers), but Mint Basic can also
represent fractional values by using a decimal point. These are called floating-point values,
examples of which are shown below:

2.718
-3600.5
0.0000001
10.0

When floating-point values get very large or very small, the number of digits required to
represent them can become large. When this happens, scientific notation can be used to

specify an exponent to scale the value. Scientific notation factors the value by 10%, which is
read as ‘times ten to the power of X', where the value x is called the exponent. Exponents
greater than zero increase the value and exponents less than zero reduce the value. For

example, 0.0000001 can be expressed as 1 x 107, and 1000000 as 1 x 106.

In Mint Basic, the exponent term is specified by immediately appending a value with an ‘e’ or
‘E’ and placing the exponent’s value (in decimal) immediately after this, so 1 x 107 becomes

3-2 Building Blocks MN21955WEN

3.3.1.2

le-7 and 1 x 108 becomes 1e6. Note that the exponent is always expressed in decimal.
The following are valid numbers:

1.0365e-5
3.766224E-07
13.4485e6
9.80665e+0

The following are invalid numbers.

2.76807 el (numbers cannot contain spaces)
3.769908e 2 (numbers cannot contain spaces)
1.0360795e+ 2 (numbers cannot contain spaces)
3.28084D0 (invalid exponent character)

When a whole number exceeds the range of a signed integer (i.e. is outside the range
-2147483648 to 2147483647), it is automatically assumed to represent a floating-point
value, so 2147483648 represents 2.147483648e+9.

Non-decimal

Usually numbers make most sense if they are decimal, but sometimes it is convenient to use
other number bases. This is achieved by prefixing the number with a specification of its base,
and the following table shows how this is done.

Decimal Binary Octal Hexadecimal
9 2#1001 01001 8#11 16#9 0x9
15 2#1111 01111 8#17 16#f Oxf

16 2#10000 010000 8#20 16#10 0x10
20 2#10100 010100 8#24 16#14 0x14
255 2#11111111 011111111 8#377 16#ff Oxff

The number formats that are prefixed with '0' for binary and '0x' for hexadecimal are for
compatibility with older versions of Mint Basic. Those prefixed with ‘base#' are derived from
the IEC 61131-3 standard and is the preferred notation. Note that the base is always
expressed in decimal.

Unlike decimal literals, based literals are assumed to represent an unsigned value, and
therefore, so long as their size is within the range of an unsigned integer, its type will remain
integer. However, since Mint Basic does not have an unsigned integer data-type, it is stored
as a signed integer, so while the value 16#FFFF_FFFF represents the unsigned value
4294967295, it is stored as -1.

In the IEC 61131-3 standard only the bases 2, 8 and 16 may be used in numeric literals, but

Mint Basic allows any base to be used?, thus allowing decimal to be used when the intention
is to specify an unsigned decimal value. The previous example using 16#FFFF_FFFF could
be written using 10#4294967295, which would similarly be stored as -1. Note here the
disparity between the statements Print 10#4294967295 and Print 4294967295,
which would display -1 and 4294967000.0000 respectively. This is because the base
prefixed value is unsigned whereas the simple decimal value is signed. While the unsigned

1.Up to 36, as this is when the alphanumeric digits become exhausted.

MN1955WEN

Building Blocks 3-3

value is within its valid range (0 to 4294967295), the signed value is outside its valid range
(-2147483648 to 2147483647) thus making it be interpreted as a float. If the base prefixed
value was one bigger, then it too would overflow its valid range and be interpreted as a float.
Note that an integer can be displayed in unsigned notation using the C format string “%Iu";
see u: unsigned decimal on page 13-16.

As a further extension to the IEC 61131-3 standard, numeric literals of arbitrary base may be
used to define floating-point values. This broadly follows the rules used by Ada (and its
derivative, VHDL), but without the requirement for a closing # character unless an exponent
is used (because 'E' is a valid digit in the higher number bases). The exponent, like the base,
is always expressed in decimal and represents the base to the power of the given value. So

an exponent n will represent 10" in a decimal number, 2" in a binary number, etc.

The following examples illustrate its format:

16#FFF integer value 4095 (IEC 61131-3 compliant)
16#FFF# integer value 4095 (Ada compliant)

16#F _FF floating-point value 15.99609 (Mint specific)
16#F .FF# floating-point value 15.99609 (Ada compliant)

16#F .FF#E+2 floating-point value 4095.0 (Ada compliant)

Representing floating-point values in bases other than 10 is not normally required, but it does
have its uses. For example, it can be used to advantage if it is required that an integer value
be used as a floating-point value, but without the value-changing type reinterpretation, which

can be achieved by simply appending a decimal pointz. This means 16#FFFF_FFFF.0
represents the floating-point value 4.294967E+9, but without the complication of having to
work out its decimal digits. Another use is in the specification of a floating-point value that
must be absolutely precise, for example when testing borderline cases in an algorithm. An
example of this might be the representation of the largest and smallest floating-point values,
which are 16#F . FFFFF#E+31 and 16#4 . 00000#E-32 respectively. Note how the mantissa
uses only six hexadecimal digits, as there are only 24-bits available in the IEEE floating-point
format (one hexadecimal digit occupies 4 bits). This example shows that using a based
floating-point literal avoids having to guess how many digits of precision are required in
decimal notation. The following table shows how some commonly used values are defined in
different domains for both the IEEE 754 and the Tl C31/33 DSP standards:

2. More correctly termed a radix point, which is the base independent term for the point that separates the integral and
fractional components. In base 10 it would be the familiar decimal point, in base 2 the binary point, in base 16 the
hexadecimal point, etc.

3-4 Building Blocks MN21955WEN

3.3.1.3

Value

Parameter Float Integer

Decimal Hexadecimal IEEE 754 TI C31 DSP
Maximum |3 402823466 x 1038 |F.FFFFF,gx 161 | 7F7FFFFFg | TF7FFFFF g
Minimum |.3 402823466 x 103 |-F.FFFFF;gx 1631 |FF7FFFFFig | 7F80000046
Smallest 1.175494351 x 10738 4.046 X 16732 0080000044 8200000044
(normal)
Smallest 1.401298464 x 1045 8.0, x 16738 000000014 81000001,¢
(denormal)?
Epsilon® 1.192092896€ x 1077 |2.0,5 x 16 34000000, | E9000000,6
Zero 0.0 0.04 x 169 00000000;5 | 80000000, ¢
One 1.0 1.046 x 16° 3F800000;5 | 00000000, ¢

a. This parameter does not map to the TI C31 DSP, which has a smallest value of around 5.87747x10739, which has a
hexadecimal representation of 2.0,6x16™32 and a bit pattern of 81000000;¢.

b. The term ‘epsilon’ has a few meanings, but here it represents the smallest value that can be added to 1.0 and register a
difference.

Arbitrary base floating-point values are only supported in target formats 13 and above.

Time duration

Time durations follow the IEC61131-3 specification by using the T# or TIME# prefix. The
prefix is followed by sections for the number of days, hours, minutes, seconds and
milliseconds, suffixed by d, h, m, s and ms respectively. The only rules are that these sections
must be in descending order of size and that no sections may follow one that has a fractional
value. Note that all section values are decimal, and any fractional value of milliseconds will
be truncated. The following are examples of valid time durations:

T#3m25s (equivalent to 205000 ms)
T#2.8s (equivalent to 2800 ms)
T#2d12h (equivalent to 216000000 ms)
T#2.5d (equivalent to 216000000 ms

T#3m25000ms (equivalent to 205000 ms)
T#3m25000.9ms (equivalent to 205000 ms)

The following are invalid time durations:

T#2 .0s500ms (milliseconds after fractional seconds)
T#12h2d (hours before days)
T#24d21h (value out of range)

Time literals always represent an integer value and so their type will not be automatically
coerced to floating-point when they become too large to fit into an integer. The permissible
range is -24d20h31m23s648ms to 24d20h31m23s647ms and an error will be generated if a
value falls outside these limits. Time durations are only supported in target formats 13 and
above.

MN21955WEN Building Blocks 3-5

3.3.14

3.3.15

3.3.2

Internet protocol

IP addresses are specified using the IP# prefix, which must be followed by four numbers in
the range 0 to 255, each separated by a period, as shown below:

1P#17.34.51.68 (equivalent to 287454020 and 16#11223344)

IP addresses represent a signed integer value, so 1P#255._255_255_255 has the decimal
value -1. IP addresses are only supported in target formats 13 and above. Note that an
integer can be displayed in IP notation using the C format string “%lqg”; see q: four octet (IP
address) notation on page 13-15. IP addresses are only supported in target formats 13 and
above.

Use of underscores

Adjacent digits in the body of a number may be separated by a single underscore character,
but the underscore cannot be used to initiate or terminate a sequence of digits or be used in
a base prefix. This is purely to aid legibility and does not alter the value being represented.
Below are examples of numeric literals that use the underscore:

2#1101_0001
16#8000_0000
3.141_592_654
31_225_001
1_225.500_183

lllegal uses of underscores are shown below.

_100 (underscore cannot start a number)
100_ (underscore not enclosed in digits)
0_Xx7fff (underscore not enclosed in digits)
1.275e_4 (underscore not enclosed in digits)
1.275_el0 (underscore not enclosed within digits)
12. 6 (underscore not enclosed within digits)
12_.6 (underscore not enclosed within digits)
2#11_ 00 (adjacent underscores)

1_6#FF (underscore not allowed in base prefix)

Characters

Character data is defined by enclosing the required character within single quotes. For
example, the character representing the question mark is expressed as ‘?". The following
code will print a question mark.

Print "?*

Character data is stored as an integer value with the range 0 to 255 encoded in ASCII
(American Standard Code for Information Interchange), so it is possible to use characters
whenever an integer is expected. Since the ASCII character set only specifies encodings in
the range 0 to 127, any characters that lie outside this range will have a system dependent
appearance. The following code assigns to a variable named ‘digit’ the value of a numeric
character stored in a variable named ‘i’ (i.e. digit will be 0 for character ‘0’, 1 for character ‘1’
etc.).

digit = i — "0"
The following code will display 65, the ASCII code for the character ‘A’

Print Int("a")

3-6 Building Blocks MN21955WEN

3.3.3

Note that the ASCII code for ‘A" was displayed, not the value for ‘a’. This is because Mint
Basic always assumes characters to be upper case, so ‘a’ has the same value as ‘A’. This
behavior can be altered using either Option CharCase, or by adjusting the default setting
in the Compiler Options dialog in Mint WorkBench. The following statement can be used to
make character data retain its case.

Option CharCase 2

Characters not generally available on a keyboard, like control codes (those less than 32, and
character 127) and non-ASCII characters (greater than 127), should be represented simply
as integers. If required, these can be converted to character form, typically for output, using
the Chr function.

Note that the single-quote character is also used to initiate a comment, and a consequence
of this is that if by accident more than one character is specified between the single quotes,
then this will be interpreted as a comment.

Strings
String data is defined by enclosing a sequence of characters with double quotes, for
example:

"This is a string”

Note the use of double quotes rather than the single quotes that are used to represent
character data. The following example shows a comment rather than a string or a character:

"This iIs not a string”

Unlike individual characters, the characters in a string are always stored in the case in which
they were entered. An empty string is represented by two adjacent double quotes.

To allow the inclusion of double-quotes within a string, the backslash character is used
immediately ahead of a double-quote, which is then inserted into the string rather than being
used to terminate it. This syntax stops the inclusion of the backslash character in a string, but
this is overcome by using two successive backslashes. Thus, "\ represents a string that
contains a single double-quote character, and *"\\"" represents a string that contains a single
back-slash character.

Strings may contain any character, including those that do not appear on the keyboard (such
as the null character or a carriage return character). To define such a string, the notation
backslash, hexadecimal character, hexadecimal character is used to specify the character
(the case of the hexadecimal digits is not significant). For example, '*\00" defines the null
character and "\ ff" defines character 255. The following example can be used to define a
string constant that contains the two characters for carriage return and line feed:

Const _crlf = "\OD\OA"

Note that two hexadecimal characters must be used, so the leading zero must be present for
values less than 16 (decimal). This notation is applicable to all characters, so an alternative
(although impractical) way of printing “Hello world” would be to use the following code:

Print "\48\65\6c\6c\6f\20\57\6T\72\6c\64"

Note that the backslash notation is only relevant to strings, and cannot be used in character
data.

MN21955WEN Building Blocks 3-7

3.4

34.1

3.4.2

3.4.3

3.4.4

Data types

Section 3.3 described the existence of different types of data, namely integer, floating-point,
character and string data. As a character is an integer (with limited range), this leaves three
fundamental types, which in Mint Basic are called Integer, Float and String.

Integer

Integer data is stored as a signed 32-bit integer using two’s complement encoding, and so
can store whole numbers in the range -231 to 231-1 (-2147483648 to 2147483647).

Float

Floating-point data is stored as a 32-bit word in the native format supported by the run-time
environment of the controller. Usually, this is composed of 24 bits for the mantissa and 8 bits
for the exponent, both including a sign bit. The implementation is usually close to the IEEE

754 standard, and so the range is of the order 10%38 with a precision of around 7 digits. It is
important to remember that floating-point values have a finite precision, and so are inherently
inexact. It follows that computations involving floating-point values are also inexact because
each operation is subject to truncation or rounding. This is discussed in more detail in
Floating-point limitations on page 4-12.

String

String data is stored using a header followed by data words. The header is a 32-bit word
containing the maximum size (in characters) in the least significant 16-bits, and the number
of characters contained in the string in the most significant 16-bits. The data words are each
32-bits in size, with each word having four characters packed into it. The string data contains
as many data words as necessary to completely contain the maximum size specified by the
header. The maximum number of characters that a string can contain is specified using the
notation shown below.

String*12 "A 12 character string
String*256 “A 256 character string

The maximum number of characters allowed is 65535.

Time

The Time type is stored as a 32-bit integer. It is very much like the Integer type, except
that it constantly changes value to match the elapsed time in milliseconds. This effect is
achieved by storing an offset relative to the continuously counting system millisecond timer.
This offset is automatically generated on assigning a value to a variable of type Time and
automatically mapped back on reading the contents of a variable of type Time.

To illustrate this mechanism, if a variable of type Time were set to zero, then the system
millisecond counter would be read and this value stored in the variable. On reading the
contents of the variable, its contents would be subtracted from the system millisecond
counter, giving the elapsed time in milliseconds. This transformation is automatically
performed so that variables of type Time can generally be used as if they were integers. Due
to the data being stored as a 32-bit integer, variables of type Time will wrap approximately
every 49.71 days. The Time data type is only available when Option MintV5.5Keywords
(see page 7-4) is enabled, and only for target formats 12 or above.

3-8 Building Blocks MN21955WEN

3.4.5

3.4.6

3.4.7

3.4.7.1

3.4.7.2

Controller

The Controller type is a structure that contains two 32-bit integers called nBus and
nNode that represent the bus and node. Variables of type Control ler are used to make
redirected MML calls, which are discussed in Redirection on page 11-4.

The Controller data type is only available when Option MintV5.5Keywords (see
page 7-4) is enabled, and only for target formats 12 or above.

Semaphore

This is a structure with two members, a 32-bit integer and an array of tasks indexed from 1 to
size. Variables of type Semaphore cannot be initialized or manipulated in any way other than
using them in a Semaphore block, so the names of the members are irrelevant. The number
of resources that the semaphore controls is specified using an asterisk followed by an
integer (the size), as shown below:

Semaphore * 2 "A 2 resource semaphore

Variables of type Semaphore are used to synchronize access to resources used by multiple
tasks, which is an advanced subject that is discussed fully in Semaphore block on page 8-23.

The semaphore data type is only available when Option MintV5._5Keywords (see page
7-4) is enabled, and only for target formats 14 and above.

User defined

Mint Basic allows the user to define their own data types, which may be either a structure or
a bitfield of a given name and members. In most circumstances, these types can be used in
exactly the same way as the intrinsic types, the only exceptions being that structures can't be
passed by value or returned by a function.

Structures

Structures are used to group data of arbitrary type together as a single entity, often called an
aggregate, which may be composed of simple or structured types.

Structure TMovelnfo
distance As Float
id As Integer

End Structure

This is an advanced topic, and is fully discussed in Structures on page 5-6. The Structure
construct is only available when Option MintV5.5Keywords (see page 7-4) is enabled,
and only for target formats 12 or above.

Bitfields

The bitfield type is used to give structure to a single 32-bit integer by using named members
that each have a specific contiguous bit range. While this looks like an aggregate (see
Structures above), it is simply a means of decoding the bit pattern of a single value, allowing
data to be accessed directly without having to perform manual masking operations that can
be complex and error prone.

MN1955WEN Building Blocks 3-9

Bitfield TBytes
byteO As 0 To 7
bytel As 8 To 15
byte2 As 16 To 23
byte3 As 24 To 31

End Bitfield

This is an advanced concept, and is fully discussed in Bitfields on page 5-8. The Bitfield
construct is only available when Option MintV5._5Keywords (see page 7-4) is enabled,
and only for target formats 14 or above.

3.4.8 Memory usage
The following table shows how much memory is used by each of the intrinsic data types.

Type Size (bytes)
Integer 4
Float 4
Time 4
Controller 8
String 68
String * 1 8
String * 65535 |65540
Controller 8
Semaphore 20
Semaphore * 4 |32
Bitfield 4

Calculating the memory usage for the String type is more complex than other types. A
string is composed of a 32-bit word that contains the maximum size in characters and the
actual number of characters in it, and this is followed by enough 32-bit words as required to
store the maximum possible number of characters. In general:

Divide the size of the string by four, as there are four characters per 32-bit word.
Extract the integer part, and if the result was fractional add one to it.

Add one to account for the header word.

Multiply by four to convert words to bytes.

For example, a string that is sized to contain only one character will be composed of the 32-
bit header, and one 32-bit word that will only have one byte used. A string that is sized to
contain 65535 characters will be composed of the 32-bit header and 16384 32-bit words,
each of which containing four characters and the last word containing three characters.

The semaphore type is also a little complex as it is composed of an integer and an integer
array of size equal to the semaphore’s size, so the memory used by a semaphore of size n is
16 + 4 x n bytes.

3-10 Building Blocks MN21955WEN

3.5 Variables

Data is stored and retrieved using a named area of memory called a variable. Variables are
declared using the Dim statement and may be any data-type supported by Mint Basic, and
may be a single value or have many values if the variable is an array or a structure. The term
‘scalar’ is used to describe a single valued variable and the term ‘aggregate’ is used to
describe a many valued variable.

Dim a As Float
Dim b As String * 256
Dim c As Semaphore

The declaration of variables is discussed in Variables on page 5-3.

MN1955WEN Building Blocks 3-11

3.6 Statements

Statements fall into one of the following categories:

m Declaration: Used to declare a named entity for later use, for example a variable or a
subroutine.

m Action: Used to do something, like perform an assignment or make a subroutine call.

m Directive: Used to direct the behavior of the compiler, like setting the optimization level or
specifying whether a program should auto-run on power-up.

m Comment: Used to annotate the operation of the program.

Programs are mostly composed of declaration and action statements, and a well written
program will also contain a moderate number of comments to document its operation.
Statements can be either simple, like an assignment, or structured, like a loop or a
subroutine declaration. An example of simple statements is shown below, the first being an
assignment, the second a subroutine call and the third a Print statement:

a=2*x+1
calcTimings beltSpeed, productsPerSecond
Print "a = ", a

An example of a structured statement, a Whi le loop, is shown below:
While Speed(0) > 10
End While

The statements used in declarations are discussed in Declaration statements on page 5-1,
and those used to do something are discussed in Action statements on page 6-1.

3.6.1 Statement separation
Statements require some means of defining when one ends and the next begins, and this is
achieved using either a new line or a colon. Below are examples of statement sequences:

a
b

(b+1)7/2
Sqrt(b * (1 - ¢))

And the same two statements with the statement separator:
a=((Mm+1)/2:b=Sqgrt(hb * (1 - c))

It is not common practice to use the statement separator other than in a single line If
statement, since its use can make the program harder to read.

3.6.2 Line continuation

Sometimes, a single statement can be so long that it becomes desirable to make it span
multiple lines. This can be achieved with the line continuation character, which is an
underscore. Below is an example of its usage with a subroutine call that has three
parameters, each being non-trivial expressions:

calculateForces d + x * (c + X * (b + X * a)), _
Sqrt(l + Sin(y) ~ 2),
A-2)7 A+ 2)

3-12 Building Blocks MN21955WEN

Note that anything after the line continuation character is completely ignored up to the end of
the line. This differs from Visual Basic, which will issue an error if anything exists after the line
continuation character. A consequence of this is that the source reformatting facility will not
include any characters that exist after the line continuation character.

MN21955WEN Building Blocks 3-13

3.7 Modules

The term ‘module’ is used to describe the declaration of a named block that contains
statements, which when invoked, causes the statements it contains to be executed in
sequence. The Startup and Shutdown modules are the only exceptions in that they do not
require a name, since there may only be one of each in a program and they already have a
unique name.

Mint Basic supports a number of different module types to simplify the design and
implementation of a program. Their declaration and use is discussed in Modular
Programming starting on page 8-1.

3-14 Building Blocks MN21955WEN

3.8

3.8.1

3.8.2

3.8.3

Program

A program is an ASCII file composed of a sequence of statements. The statements at the
outer level are implicitly contained in a task called 'ParentTask'.

Layout

The general rule is that constants, defines and variable declarations should precede the
executable statements, and the module declarations should follow. Specifically, it is
recommended that you order your statements and modules in the following manner:

m Data declarations
- Constant declarations
- Define declarations
- Type declarations
- Variable declarations
m Executable statements

m Module declarations
- Tasks
- Functions
- Subroutines
- Events
- Startup module
- Shutdown module

Note that the Startup and Shutdown modules are placed out of the way as the very end of
the program. This may seem counter-intuitive, but once written these modules are rarely
changed and so they need not clutter the other code. Also, wherever they are placed
amongst the other module declarations, the statements in the Startup module will always
be executed first and the statements in the Shutdown module will always be executed last.

The above formatting guidelines can be applied to an existing program by clicking Program >
Format Source Code in Mint WorkBench. See Source code reformatting on page 13-12.

Comments

Comments are an important part of any program, because however carefully variables,
subroutines, etc. are named, there is often a need to explain a statement’s purpose.
Comments allow you to state clearly how a piece of code functions, aiding readability. It is
good practice to use comments liberally in a program, but many statements often do not
need further explanation. A comment is initiated using a single quote character, which
causes all text up to the end of the line to be a comment. Below is an example of a comment.

"Calculate the pivot value, avoiding divisions by zero

The presence of comments does not have any impact on the performance of a program,
though they increase the size of the source file, which, if stored on the controller will
consume more memory.

White space

The term white space covers the use of spaces and blank lines, and its use can considerably
improve the readability of a program. It is recommended that spaces be placed after commas

MN21955WEN Building Blocks 3-15

and either side of arithmetic and relational operators at the very least, and anywhere else
where readability can be improved by its use.

Indentation is a form of white space that makes a program easier to read by aligning the start
of each line of code in a manner that reflects the nesting of the block-structured elements in
the program. These block-structured statements have yet to be discussed, but to generalize
a block-structured statement can be viewed as a statement container delimited by a pair of
keywords of the form Block.. End Block. These delimiters should be aligned in the same
column as the code that precedes it, and the statements contained should be indented
further (two spaces is recommended).

The following example shows a poorly formatted example of a number guessing program:

Dim value As Integer
Dim guess As Integer
Dim attempts As Integer

Loop

value=1+Int(Rnd*100)

attempts=0

"lterate until a correct guess is made

Repeat

"Read the guess and increment the number of attempts
Input “Enter guess: ",guess

attempts=attempts+1

"See 1If the guess was correct, prompting as required
1T guess<value Then

Print "Higher"

Elself guess>value Then

Print “Lower™

End If

Until guess=value

"Notify the user of success and the number of attempts used
Print "Correct in ",attempts," attempts"

End Loop

Shown below is the same program, but with careful use of indentation and white space:

Dim value As Integer
Dim guess As Integer
Dim attempts As Integer

Loop
value = 1 + Int(Rnd * 100)
attempts = 0

"lterate until a correct guess is made

Repeat
"Read the guess and increment the number of attempts
Input "Enter guess: ', guess

attempts = attempts + 1

"See if the guess was correct, prompting as required
1T guess < value Then
Print "Higher"
Elself guess > value Then
Print “Lower"
End If
until guess = value

“Notify the user of success and the number of attempts used
Print "Correct in ", attempts, " attempts"
End Loop

3-16 Building Blocks MN21955WEN

3.8.4

3.8.5

3.85.1

The careful use of white space is a powerful aid to readability so should always be used. All
the code samples in this document are formatted carefully, and it is recommended that this
technique is acquired early on and maintained. Since the subject of formatting is such a
subjective matter, it is ultimately up to each individual to decide what style to adopt.

Compilation Errors

These occur when the program text contains something that does not conform to the
language specification. This might be due to a badly formed number, a missing Then after
the condition in an 1¥ statement, multiple declarations that share the same name, etc. These
are all detected by the compiler and listed in the Build tab of the Mint WorkBench Output
window. A program that contains errors will not execute until they are all resolved. The
compiler also detects code that may be incorrect and issues a warning for each occurrence,
and it is recommended that these are all resolved.

Execution

In general, execution starts at the first statement of the parent task and terminates when the
last statement has been executed. However, there are some exceptions to this, listed below

m The presence of a Startup module will cause execution to start at its first statement,
and when its last statement has been executed, execution will continue at the first
statement of the parent task.

m The presence of a Shutdown module will cause execution to continue at its first
statement when the program terminates for any reason. Usually this is due to the last
statement of the parent task having been executed, but can also be the result of an
unhandled error.

m Errors in the program will cause execution to terminate unless an error handler is
present, in which case, execution will temporarily be directed to the error handler’s
statements. When the error handler's last statement has been executed, execution will
continue from the point at which the error occurred. Note that errors in the Startup and
Shutdown modules always cause immediate termination, whether an error handler is
present or not,. Errors in the error handler are fatal unless Option ErrorFatal (see
page 7-8) is set to O (zero).

m Executing the End statement will cause immediate termination.

When the parent task terminates, all child tasks also terminate. Execution is initiated either
by the run-time system receiving a run command or automatically on boot-up if the program
has been instructed to do so by using an Auto statement.

Run-time Errors

These occur when a program has compiled successfully and is executing. These fall into two
categories, the synchronous error and asynchronous error.

m Synchronous errors are those that happen as a direct result of code in the program, such
as a division by zero, a parameter being out of range, etc. If an error handler is present
then it will be called, otherwise execution will terminate immediately. However, some
synchronous errors are so serious that execution will terminate without executing the
error handler, though the Shutdown module will still be executed.

m Asynchronous errors are those that either happen indirectly from code in the program or
which are caused by an external interaction. For example, motion may be initiated under
program control (or triggered externally via a host application or the command line), but

MN1955WEN Building Blocks 3-17

this motion might fail due to a following error. This will generate an error condition that
will be handled by the error handler. However, an important difference from synchronous
errors is that asynchronous errors do not cause the program to terminate if an error
handler is not present.

Errors that occur in a Critical block (see page 8-21) that masks out the error handler are
dealt with as soon as the error handler is no longer masked out. If multiple errors occur, then
they will be handled in sequence on €100 products. On non-e100 products only the last error
will be handled.

3-18 Building Blocks MN21955WEN

4.1

Expressions 4

Introduction

An expression is used to calculate a result using a mixture of operators and operands.
Expressions are used in many circumstances, such as in an assignment, calling a subroutine
or a function, in conditional statements, etc. The simplest form of expression is simply a
literal or an identifier, for example:

123
X

Fortunately, expressions can be more complicated than this, for example:

1

=Yy
@H>2*+2
y +z

+
<
i

X X X X

Note that the last expression looks very much like an assignment (see Assignment on page
6-1 for details), because the same symbol is used to represent assignment and equality.
However, the context of the ‘=" can be used to determine what it represents, but this can lead
to somewhat confusing looking statements like:

equal =1 = j

This evaluates the expression ‘i = j', which will be either true (1) or false (0), and then assigns
the result to variable ‘equal’. This might be more clearly expressed as:

equal = (i = j)

However, the above expressions are much more efficiently evaluated than using an If
statement, for example:

IT 1 = jJ Then equal = _true Else equal = _false

A fuller description of assignment is covered in Assignment on page 6-1.

MN1955WEN Expressions 4-1

4.2

421

4.2.2

Operators

An operator is something that performs an operation on its operand data. Operators that take
a single operand are called unary operators and operators that take two operands are called
binary operators. An example of a unary operator is the unary minus, which uses the ‘-’
character, so the expression ‘-j’ will read the value from variable ‘j’ and negate the result. An
example of a binary operator is subtraction, which also uses the ‘-’ character, so in the
expression ‘i - J', ‘i’ and |’ are the operands, and the result is the value of ‘i’ minus .

Binary operators, in general, do not evaluate their operands in a prescribed order.
Consequently, the expression x() + y() may evaluate the function call x() first followed by y(),
but it may do it the other way round. Consequently, no assumptions should be made with
regard to operand evaluation order. The only exception to this is for the operators AndAlso
and OrElse, which guarantee left to right evaluation.

Arithmetic operators

The arithmetic operators +, -, *, /, \, % and " are used to evaluate addition, subtraction,
multiplication, division, integer division, modulus and exponentiation respectively. All these
operators take numeric operands, which may be of mixed type, and each returns a numeric
result of an appropriate type. The term ‘appropriate type’ means that if either operand is a
float, then the result is of type float. If both operands are integer, then the result is of type
integer. There are two exceptions to this:

= The division operator (/), which always returns a float.

= The integer division operator (\), which rounds any float operands to integer and returns
an integer.

For example, the expression 3.142 + 123 will yield the floating-point result 126.142, and
128.7 \ 12.4 will be treated as 129\ 12, yielding 10.

The modulus operator (Mod or %) performs a division, but returns the amount left over if the
numerator is not an exact multiple of the denominator. It is normal to use this with integer
operands, but it can also be used with floating-point operands. The sign of the result is the
same as that of the numerator.

Relational operators

The relational operators =, <>, <, <=, >, >= are used to evaluate equality, inequality, less
than, less than or equal to, greater than, and greater than or equal respectively. All these
operators take operands that are either both numeric or both string, and all return an integer
value, either 1 (one) if the condition is true, or O (zero) if it is false. When used with string
operands, a lexical (character by character) comparison is performed, for example:

"abc" < "ABC" "Evaluates to false (0)

"abc" < "abcdef" "Evaluates to true (1)
While it is perfectly valid to use expressions like inPosition = _true,
inPosition <> _true and inPosition = _false, these are considered poor style

and are better expressed as inPosition, Not(inPosition) and Not(inPosition)
respectively.

4-2 Expressions MN1955WEN

4.2.3 Logical operators

The term ‘logical’ relates to the two states ‘true and ‘false’. In Mint Basic anything non-zero is
considered to be true and only exactly zero is considered false (note that this applies to
floating-point values too, so even the smallest non-zero value is considered to be true).

There are four logical operators in Mint Basic, the unary operators Not and Bool, which are
used to perform logical negation and logical affirmation respectively, and the binary operators
AndAlso and OrElse, which are used to perform logical conjunction and inclusive
disjunction respectively. All these operators take numeric operands and return an integer
result (with the value 0 or 1). The following truth table shows the results of applying the
operators Not and Bool:

Operand Not Bool
-12846002 0 1
-1 0 1
-0.01 0 1
0 1 0
0.01 0 1
1 0 1
8366271 0 1

The Not operator has the symbolic equivalent !, and is used to reverse a logical state. The
Bool operator has no symbolic equivalent (though using 1! achieves the same result), and
is used to convert a numeric value to a Boolean value, which can be useful when performing
logical operations with the And operator. Since Not and Bool are operators, it is not
necessary to use brackets around the operand, but it is considered good practice to do so.

The AndAlso and OrElse operators are similar to their bitwise counterparts And and Or,
but differ in that they deal exclusively with the two logical states ‘true and ‘false’. They also
differ in that they employ a technique called ‘short-circuit evaluation’, which means that
operands are only evaluated if they need to be. For example when evaluating i OrElse j,
if 1 is true (non-zero) then the whole expression is true and so there is no point in evaluating
the rest (which could be something much more complex than the variable j). Likewise, when
evaluating i AndAlso j, if i is false, then the whole expression is false, irrespective of the
value of j. The following truth table shows the results of applying the operators AndAlso
and OrElse.

Operand 1 Operand 2 AndAlso OrElse
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Remember that while only the operand values 0 (false) and 1 (true) are shown in the above
table, any non-zero operand is considered to be true.

MN1955WEN Expressions 4-3

4.2.4

The AndAlso and OrElse operators guarantee left to right evaluation, so for example
x() OrElse 1 will call function x, even though the whole expression is known to be true.
Likewise, x() AndAlso O will call function x, even though the whole expression is known
to be false.

To take most advantage of the short-circuiting of these operators, if it is known that an
operand predominantly evaluates to false, then use it as the first operand of AndAlso. Ifitis
known that an operand predominantly evaluates to true, then use it as the first operand to
OrElse. These two tricks will increase the possibility that the second operand can be safely
discounted, hence saving time.

Note that the Bool, AndAlso and OrElse operators are only available when Option
MintV5._5Keywords (see page 7-4) is enabled. Furthermore, Bool is only for target
formats 11 and above, and the AndAlso and OrElse operators are only available in target
formats 13 and above.

Bitwise operators

The term bitwise relates to the bits that make up an integer value, which can be imagined as
being a stream of true and false values stored in a single integer value (try displaying integer
values using Print Bin to see the bit pattern). Unary operators work on a single set of bits
and binary operators work on the corresponding bits from two sets.

The bitwise operators And, Or, Xor and ~ are used to evaluate bitwise conjunction, bitwise
inclusive disjunction, bitwise exclusive disjunction and ones-complement respectively. The
operators And and Or have symbolic equivalents & and | respectively. All these operators
take numeric operands and return an integer result.

These operators are especially useful to turn on/off bits, as shown below.

"Turn on bits 3 and 5
bits = bits Or 2#101000

"Turn off bits 1 and 4
bits = bits And ~2#10010

Note the use of the one’s complement operator (~) to invert the bits specified prior to using
the bitwise conjunction operator (And) to turn off only the bits specified.

Special care should be taken when using the bitwise operators in a logical sense, as they will
not necessarily give the result expected unless the operands are only 0 (zero) or 1 (one).

A typical mistake with these operators would be to assume that anything non-zero was true;
in the following example, this means the program would not enter the 1F¥ statement:

o
N
HH
=
o

IT i And j Then
End IF

Of course, this is not an error, as the result of the conditional expression is zero since there
are no corresponding bits that are both set. This type of problem can be avoided by using the
logical operators AndAlso and OrElse, which give the added benefit of performing a short-
circuit evaluation (see page 4-3). If logical operation is required but short-circuiting should be
avoided, then 1 <> 0 And j <> 0 or Bool(i) And Bool(J) can be used, but

4-4 Expressions MN1955WEN

4.2.5

4.2.6

4.2.7

remember that forcing each operand to be zero or one by using <> or Bool is only
necessary when the operands may have values other than zero or one.

String concatenation operator

The + operator can be used with string operands to concatenate (join together) its string
operands. For example, to append a semi-colon character onto the end of string ‘s’, the
following code is used.

s=s+ """

Immediate If operator

The ‘immediate if' operator, 11F, gives the ability to make a choice within an expression. It
takes three operands enclosed within brackets and evaluates to either the second or third
operand depending on the condition expressed in the first operand. If the condition is true,
then the second operand is returned, otherwise the third operand is returned. The second
and third operands must be compatible, either numeric or exactly the same type. Only one
operand is ever evaluated according to the condition. For example, to avoid a division by
zero the following code can be used:

y = IIf(x <> 0, Sin(x) /7 x, 1)
The following two statements are equivalent:

s = Mid(1IF(i < 10, t, u), 4, 2)
If i < 10 Then s = Mid(t, 4, 2) Else s = Mid(u, 4, 2)

and the following two statements are also equivalent:

mySub(w, x, HIf(y <0, 0, y), 2)
IT y < 0 Then mySub(w, x, 0, z) Else mySub(w, X, y, z)

Since the 11¥ operator is used like a function, its precedence is largely irrelevant. However,
while it looks like a function, it is not executed like one, as that would entail the evaluation of
all its operands before being called, which would severely negate its usefulness.

Note that 11F is only available when Option MintV5.5Keywords (see page 7-4) is
enabled, and only for target formats 13 and above.

Is operator

The Is operator simply accesses the Select statement’s expression to allow it to be used
in a Case statement. It is similar to Case Is in Visual Basic, but is slightly more flexible in
that it may be used multiple times in one Case statement and does not have to immediately
follow the Case keyword. For example:

Select Case i
Case 12 To 16: DoStuff()
Case Is < 0: RangeError()
End Select

would have to be coded:

MN1955WEN Expressions 4-5

Select Case i

Case 12 To 16: DoStuff()

Case _minInt To -1: RangeError()
End Select

Alternatively, an 1T statement could be used:

IT i <0 Then
RangeError(Q)
Ise

Select Case i
Case 12 To 16: DoStuff()
End Select
End If

Note that it is better to specify a range using a construct like Case 12 To 16 rather than
Case Is >= 12 AndAlso Is <= 16, as the compiler can generate significantly better
code. Note that this operator is only available when the MintV5.5Keywords option is enabled,
and only for target formats 11 or above.

4.2.8 Miscellaneous operators

The following operators require further knowledge of Mint Basic:

The scope override operator (see Overriding scope on page 8-20).

The member access operator (see Structures on page 5-6).

The array-subscripting operator (see Arrays on page 5-4).

The function-calling operator (see Functions on page 8-7).

The compound parameter operator (see Advanced parameter passing on page 11-2).
The redirection operator (see Redirection on page 11-4).

These operators will be explained when necessary.

4-6 Expressions MN21955WEN

4.3

431

Order of evaluation

An expression is evaluated by applying the operators to the operands in a prescribed
sequence, in general taking operators from left to right. The sequence could be specified as
being a simple left to right evaluation, but it is conventional for arithmetic operators to be
evaluated in an order that is a function of the operators present. This sequence is defined by
the precedence of each operator, which is described in detail below. However, it is possible
to override this evaluation order by using brackets, and this is also discussed below.

Operator precedence

An expression is evaluated in a particular order, dependent on the precedence of the
operators used in the expression. A common method uses the phrase BODMAS as a
reminder, which stands for Brackets, Order (exponentiation), Division, Multiplication, Addition
and Subtraction. This method evaluates terms in brackets first, followed by order
(exponentiation or raising to a power), followed by division, followed by multiplication,
followed by addition and subtraction. Although BODMAS specifies operator precedence, it is
quite limited since it only applies to arithmetic operators. Note that brackets, as described by
the ‘B’ in BODMAS, are not considered to be an operator. This is because they are only used
to order the evaluation and so do not actually evaluate anything.

The following table shows the operator precedence for all Mint Basic operators, some of
which have yet to be explained. This table groups operators of the same precedence, with
the operators in one group having a higher precedence than operators in lower groups:

Operator Description Usage
i Scope override module_name::local_name
- Member access structure_name::member_name
O Array subscripting array_name(exprs)
O Parameter passing module_name(exprs)
1 Compound parameter call_name([exprs], exprs)
-> Redirection redirect_name->call
Not, ! Logical not Not(expr), lexpr
Bool Logical affirmation Bool(expr)
~ Bitwise complement ~expr
- Unary minus -expr
+ Unary plus +expr
Exponentiation expr ™ expr
* Multiply expr * expr
/ Divide expr / expr
\ Integer divide expr \ expr
Mod, % Modulus expr % expr, expr Mod expr
+ Plus expr + expr
+ String concatenation expr + expr
- Minus expr - expr
< Less than expr < expr
<= Less than or equal expr <= expr
> Greater than expr > expr
>= Greater than or equal expr >= expr

MN1955WEN Expressions 4-7

4.3.2

Operator Description Usage

= Equal expr = expr

<> Not equal expr <> expr

And, & Bitwise AND expr And expr, expr & expr

or, | Bitwise inclusive OR expr Or expr, expr | expr

Xor Bitwise exclusive OR expr Xor expr

AndAlso Logical conjunction expr AndAlso expr

OrElse nglcal !nclu5|ve expr OrElse expr
disjunction

1f Immediate if lIf(expr, expr, expr)

Is Select expression Is

Note that the term expr is used to represent an expression and exprs is used to represent a
comma-separated list of expressions. For calls, exprs may validly represent no expressions
at all, and in the case of a compound parameter, the comma between it and any following
parameters present is only required if there are other parameters.

When an expression is composed of operators of the same precedence, binary operators are
evaluated from left to right, and unary operators from right to left. For example 2*i\j is
evaluated as (2*i)\j, and 273" is evaluated as (27°3)"4, giving the answer 4096.
Similarly, -~-1 is evaluated as -(~(-1)), which is intuitive as a unary operator can only be
applied to an operand that has been evaluated.

Use of brackets

Brackets are used to force the order of evaluation to whatever is required. For example, with
the operator precedence rules of Mint Basic, the expression:

2*i+1
will be evaluated as
@*i)+1

If this is what is required, then there is no need to use brackets, as most people are familiar
with the correct evaluation order for arithmetic operators. However, brackets would have to
be used if it was required for the expression to be evaluated as:

2% (i + 1)

Mint Basic, unlike some languages, always honors brackets, even when used with operators
of the same precedence. So, when evaluating 8*(i\4), the term 1\4 will be determined
before multiplying it by 8. Usually this makes no difference, which is why some languages do
not dictate that brackets should force the evaluation order for operators of the same
precedence. However, in cases where the result would overflow (such as would be the case
if 1 were greater than one-eighth of _maxInt), then it can be significant.

Once an expression becomes complicated, perhaps using many different operator types
(arithmetic, relational, bitwise etc.), then it makes increasing sense to use brackets to make it
clear how it will be evaluated, even if they are not required. Below are three examples of

4-8 Expressions MN21955WEN

identical expressions, the first heavily bracketed, the second lightly bracketed and the last
not bracketed at all:

(a < b) OrElse (c AndAlso (d = e))
a < b OrElse (c AndAlso d = e)
a < b OrElse c AndAlso d = e

The number of brackets used depends on personal preference. Too many brackets can
clutter an expression, making it difficult to read, and too few can introduce uncertainty about
how the expression will be evaluated without a detailed understanding of the precedence
rules.

MN1955WEN Expressions 4-9

4.4 Functions

A function is a piece of code that returns a result, and as such its only use is in expressions.
There are two types of function, intrinsic and user-defined. Intrinsic functions are those that
are an integral part of the language, like Sqrt and Log, while user-defined functions are
those that are declared by the user in their program. Both types of function are called in the
same way, by using the function’'s name and appending any parameters that it requires
enclosed within brackets. Below are examples of expressions that use function calls:

Rnd

RndQ)

Sqrte(x)

1+ Sgrt(x "2 +y "2
(Exp(x) — Exp(-x)) 7/ 2
calcConveyerSpeed(item

)

sPerSecond, itemSeparation)

Note that the brackets used to enclose the parameters are optional for functions that take no
parameters, as is shown above with the Rnd function.

The declaration of user-defined functions is described in Functions on page 8-7, and tables
of intrinsic functions are given in section 9, Conditional Compilation.

4-10 Expressions MN1955WEN

4.5 Type casting

Type casting is when data of one type is converted into another type. Often the user does
this explicitly, so this is called an explicit cast. Below are some examples of explicit casts
used in assignment statements (see Assignment on page 6-1):
i
X

Int(x)
Float(i)

Another type of cast is one that is automatically inserted by the compiler to ensure that data
is compatible with its usage, and this is called an implicit cast. Below are examples of implicit
casts:
i
X

-

The reason that this may be important is due to the internal representations of the different
data types being such that one data type cannot necessarily be represented exactly using
another type, which can cause a loss of precision. Examples of precision loss are shown

below.
Dim x As Float, i As Integer
i = 2147483647
X =1
Print Int(x) - i

The above program will print the value -127, indicating a loss of precision. This occurs
because it is not possible to store an integer that uses more than 24 of its 32 bits in a
floating-point variable, which only has 24 bits of precision. The compiler detects these
instances and issues a warning, allowing them to be examined to ensure their correctness.
Assuming they are correct, the warning can be avoided by using an explicit cast.

More information on the type casting function available can be found in Type conversion on
page 10-10.

MN1955WEN Expressions 4-11

4.6 Floating-point limitations

Special care has to be taken when using floating-point data. While it appears to have a high
precision combined with a massive range (allowing it to express both large and small
values), it cannot be relied on to store data exactly.

4.6.1 General Properties

Floating-point values are encoded in 32-bit binary, using 24 bits for the value and 8 bits for
the scale factor, which gives an equivalent decimal precision of 7.22 digits. This encoding is
broadly similar to that used by integer data, so the resultant value is the sum of the bit values
that are set, where each bit value is a power of 2. The finite number of bits available coupled
with the differing number base results in floating-point operations being inherently inexact. In
the following table, the decimal value 10 is encoded in binary as 1010,, along with some

other examples:

Bit
4 3 2 1 0
Bit
Decimal 16 8 4 2 1
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 0 1 1
10 0 1 0 1 0

As can be seen, whole numbers can be represented exactly. This method is extended in the
following table, to show how fractional values are represented (the binary point is placed
between bits 0 and -1 for clarity):

Bit
slefefofpfaf2]3][4]5]6] 7]
2Bt

Decimal | 8 | 4 [2 | 1 12 | 14 | 18 | 1/16 | 1/32 | 1/64 | 1/128 | 1/256
0 o|lo|o]o olo o] o] o]o 0 0

1 o|lo|o]1 olo|lo]of]o]o 0 0
10 1]of1]o olo|o]o