
—
ABB ABILIT Y ™ POINT OF VIE W

Making the Case for OT Device Drivers
Standardize at the edge to differentiate
on value

• A standardized device-driver approach
allows device manufacturers to com-
pete on features, services and price,
instead of interoperability.

—
Tim Diekmann
Head of Architecture and
Standards, ABB AbilityTM

2 M A K I N G TH E C A SE FO R OT D E V I CE D R I V ER S

In a recent article in Forbes, ABB Chief Security
Officer Satish Gannu made the case for a stan-
dards-based approach for connecting factory de-
vices to the edge, and then the cloud. He reminded
us of the times when we struggled to get the latest
printer working with our computer due to a missing
driver. As he suggests, the advent of a standard de-
vice driver for most common customer platforms
has enabled device manufacturers to compete on
features, services, and price instead of simple in-
teroperability. The same could be true for devices
in the industrial Internet of Things (IIoT).

Customers shopping around for cost saving
opportunities in the IIoT space will always be
leveraging equipment from multiple vendors, be it
for price or the system capabilities they require.
This leaves the burden of integrating the various
components and their respective vendor-specific
cloud connectivity solutions to the customer or a
consulting partner company. When devices cannot
be connected and integrated on-premises, their
cloud counterparts will need to be integrated in the
cloud. This produces additional cost for both the
integration and the multiple-vendor hardware
required to be installed in the factories and
on-premises.

The solution lies in openly defining how devices can
connect to a common edge gateway on-premises
using their favorite or existing communication
means and from there sending normalized or
annotated data to the cloud vendor of choice. As
such, the edge has to become device, protocol,
vendor, and cloud-provider neutral, but not
necessarily agnostic. A list of representative
operational technology (OT) and information
technology (IT) protocols is on the last page.

A simple and open device driver model and a
modern container-based architecture on the edge
allow for secure, efficient, and reliable connectivity
to any cloud vendor to enable value-added services,
applications, and analytical insights into the data in
the cloud.

Competition is spurred again where it is supposed
to be: in the cloud, based on rich and proper data
from many vendor devices at once.

This is the beginning of a series of articles where
we will describe the approach of democratizing the
edge to enable vendors to compete on value based
on the data instead of commodity hardware and
connectivity.

—
Why do we need device drivers for
operational technology?

https://www.forbes.com/sites/forbestechcouncil/2020/01/13/standardize-ot-device-drivers-at-the-edge/#2321277839de

3M A K I N G TH E C A SE FO R OT D E V I CE D R I V ER S

To understand the concept of a device driver for
IIoT devices requires some common understanding
of the established reference architecture for edge
gateways.

Typically, edge gateways are located in the IT
networking environment of a company, factory,
or otherwise enclosed environment with physical
protection boundaries.

The devices connect to the edge gateway either
directly through a network technology supported
by the gateway such as serial bus or Ethernet, or
through an intermediate adapter like a product life-
cycle management (PLM) or distributed control sys-
tem (DCS) that bridges the closed loop circle of a
device bus with a more common network protocol.

Level 1
Instrumentation,
IEDs

Level 2
Control &
Operation

Level 3
Production
Planning &
Tracking

Level 4
Enterprise Resource
Management

PIMS, CPM

Operations
DCS, SCADA

Control &
Protection

Local & Remote IO

loTSP Gateway

loTSP

Intelligent
Devices

—
How to build a device driver

Other than the edge gateway, no device should
have access to the IT network or direct access to
the Internet. (See figure 1).

—
Figure 1
On-premises
network topology

This is to prevent access to the devices from
outside the OT environment, and prevents
compromised devices from opening up unwanted
backdoors to the premises as was famously
exploited in recent botnet attacks.

https://www.bankinfosecurity.com/massive-botnet-attack-used-more-than-400000-iot-devices-a-12841

4

The purpose of the device driver is to translate the
device-specific protocol data (whether raw, binary,
aggregated, or pre-processed) into a messaging
model that is understood by an open and
standardized gateway that can help the drivers
communicate with each other and/or with the
cloud.

In addition, other application logic should be able
to further process the data and decide to store it
locally, process it further by applying local
analytical models, or send the data off to the cloud.
This additional processing should be independent
of the device driver.

—
Figure 2
Democratized IoT
edge gateway

Cloud
Connectivity

MQTT/WS, AMQP/WS, HTTPS

Normalization/
Message Bus

Edge
Runtime

IoT Edge

Cloud

Device
Driver 1

Device
Driver 2

OPC-UABLE, Modbus etc Proprietary

Device
Driver 3

M A K I N G TH E C A SE FO R OT D E V I CE D R I V ER S

Device drivers cover the entire lifecycle of a device,
including device discovery or registration,
configuration, enablement, file upload, and
communication management. In addition, they
provide standard means for important
cybersecurity measures such as certificate and
patch management, firmware update, and maybe
even remote management access.

MAKING THE CASE FOR OT DEVICE DRIVERS 5

The edge gateway hosts a flexible collection of
modules. Modern architectures recommend the use
of containerization techniques where each module
is run as a separate container and process.

Containerization implementations like Docker and
runc have become available on any range of
hardware and processors and established
themselves as a natural choice.

The minimum edge environment consists of:
• A broker module that provides a common

messaging bus, such as an MQTT broker
• A proxy that is able to connect the edge securely

with the target IoT infrastructure in the cloud
• An agent module that manages the configuration

of the edge and controls the lifecycle of module
deployments

—
Figure 3
Device driver
architecture

Edge Module (Device Driver)
• Distributed and bundled as an

image and runs as a container
• Communicates with the

devices using the
corresponding protocol such
as OPC-UA, Modbus, Serial,
etc.

• Communicates with the
runtime using the message bus
client. Optionally can use SDK
that provides higher level
abstraction for the interfaces
such as outbound messages,
model CRUD, method
invocations, file upload/
download, inter module local
communication

All other modules are optional to either connect
devices to the edge, autonomously process the
data locally, or assist the user by providing user
interfaces (UIs) and other applications.

To write a module, the vendor may choose one of
the available device driver SDKs to implement the
necessary functions that translate from the device-
specific protocol to a common messaging format
as well as control the configuration and the device
lifecycle.

Device drivers are deployed as containers and
follow the best practices for containerizations,
including minimal image, single process,
unprivileged user, immutability and others.

Message
Bus

Messaging

Device Driver

Protocol

(Implements responding to configuration
changes, normalization and other business logic)

Message Bus Client

SDK

Modbus,
OPC-UA, BLE etc

File ModelLocal Msgs Methods

6 M A K I N G TH E C A SE FO R OT D E V I CE D R I V ER S

In addition, the democratized edge adheres to the
industry best practices regarding monitoring,
logging, auditing, and connection management.
For example, device driver modules are prevented
or at least discouraged from connecting to
anything other than the devices they manage; all
access is audit logged and role based.

How the devices are managed remotely from the
cloud is subject of a later article.

Here are some of the functions that are covered
by the device driver SDK:
• Type Definition

Each model requires a type definition and an
identity. We will explore the details of this in a
later article of the series.

• Connecting to the MQTT broker
Each module container is injected with the URI of
the broker and the module specific credentials.
The credentials are stored in a local key vault and
protected from external access.

• Persistence
Each module container has a mounted directory
with read/write access which allows it to store
any files that need to be persisted between
restarts. The local file system is encrypted and
protected from external access.

• Receiving configuration updates
Modules can subscribe to a specific topic to
receive updates to their device or configuration
definitions.

• Direct method invocations
Modules can subscribe to a specific topic that
contains messages with details of an operation
that it is instructed to perform. The permitted
operations are defined in the module definition.

• Module-to-module communication
Each module defines an input and output queue.
With the proper permissions configured, any
module can put a message into the input topic of
another module.

• Device-to-cloud communication
Modules can send data to the cloud by publishing
messages into an outbound topic. These
messages can contain:
 - Telemetry data
 - Events
 - Alarms
 - Configuration data
 - Events intended for an external management

application, such as deviceCreated,
deviceUpdated, deviceDeleted

• File upload
Files can be uploaded to a file storage in the cloud
by posting the local file location on a topic with
the broker. A flag determines whether to remove
the local file after transmission or not.

• File download
Used for firmware update and remote patch
management.

MAKING THE CASE FOR OT DEVICE DRIVERS 7

AFP BGP DHCP

DNS FTP HTTP

IMAP Kerberos LDAP

LDP MS-SQL NTP

NetBIOS OpenRDA POP3

PVSS Radius RDP

RFB/VNC RPC/DCOM RTSP

SMB SMTP SNMP

SSDP SSH SSL

SunRPC Telnet TFTP

Standard OT protocols* Proprietary OT protocols

BACnet CSLib (ABB 800xA)

DNP3 DMS (ABB AC 800F)

EtherNet/IP + CIP MMS (ABB AC 800 M)

Foundation Fieldbus HSE PN800 (ABB)

IEC 60870-5-104 ADS/AMS (Beckhoff)

ICCP TASE.2 CygNet SCADA (CygNet)

IEC 61850 (MMS, GOOSE, SV) DeltaV (Emerson)

IEEE C37.118 Ovation (Emerson)

Modbus/TCP SRTP (GE)

OPC-DA Experion (Honeywell)

OPC-AE ADE (Phoenix Contact)

PROFINET(RPC,RTC,RTA,DCP,PTCP) CIP Extension (Rockwell/AB)

OASys (Schneider Electric)

Modbus Extensions (Schneider Electric)

Telnet Extensions (SEL)

Step7 (Siemens)

S7COMM+/OMS (Siemens)

Vnet/IP (Yokogawa)

While some of these protocols can be
addressed by generic device drivers
(Modbus/TCP and IEC 61850 are fairly
well described and transferable), the
more proprietary counterparts or
extensions will require those vendors to
supply the binding to their protocol.

By supplying the device driver as a
container on the marketplace, this can
be done entirely without exposing their
intellectual property.

Next Steps
In the next installment of this series of articles, we
will dive deeper into understanding the devices and
their data models. We will explain and motivate the
need for a common device information meta model
that allows the modules to communicate with each
other while the models for the device data are sup-
plied by the vendors and not commonly shared.

However, this set of protocols will only
cover the IT network that in a typical
factory environment will be isolated
from the actual devices operating on the
floor or sensing humidity in the room.

The majority of devices will be con-
nected using standard or proprietary OT
protocols over different networks not
limited to TCP/IP over Ethernet. These
are listed below in Table 2.

—
Table 1
IT protocols

—
Table 2
OT protocols

In a later article we will examine the specifics of the
connectivity from the edge to the cloud provider
and what this means to the device provisioning
flows and lifecycle. After that, we will look into a
reference architecture in the cloud that is able to
provide value to consumer applications indepen-
dent of the cloud provider and devices, based on
the data from the edge.

Who is out there to connect?
The easiest and most straightforward protocols to write device drivers for are those we are familiar with
from IT environments, listed below in Table 1.

—
ABB Inc.
3055 Orchard Drive
San Jose, CA 95134
USA
ability.abb.com

© Copyright 2020 ABB. All rights reserved.
Specifications subject to change without notice.

