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INTRODUCTION 

Electric arc furnace (EAF) is an energy intensive process and one of major routes of steelmaking. EAF productivity and steel 
production cost are major concern for EAF technology development. ABB developed electromagnetic products for EAFs 
over 70 years ago. Over 150 units were installed worldwide with increased productivity, improved steel quality and operation 
safety. Since 2009, ABB has committed to the technology and product development of ArcSave®, a new generation of 
electromagnetic stirrer for EAF application. ArcSave has been investigated through numerical simulation [1], EAF water 
model experiments [2] and plant test with ABB previous electromagnetic stirrer [3]. ArcSave product was released in 2014 
and first was installed in a 90 ton Arc furnace. Hot test results show a significant iron yield increase and other process 
benefits which have been presented in the AISTech 2015 conference [4].  

In ABB’s current efforts, advanced control and optimization for ArcSave® have been investigated in order to obtain 
additional process improvements through controlling scrap melting and refining processes. Non-linear first principle dynamic 
simulation models with electromagnetic stirring have been developed. ArcSave process simulations using - plant 
measurement data were performed to cover complete 3-bucket charge processes. The models were verified with liquid melt 
tapping temperature and carbon content measurements. In this paper, an optimal control solution is described in detail. A 
Modelica model of an electric arc furnace with ArcSave has been developed to formulate an optimal control problem to 
provide the best possible inputs during either melting or refining processes. The objectives for melting includes the arc 
power, the natural gas, and the remaining solid scrap. The objective for refining includes produced liquid steel, the arc power, 
oxygen consumption, and decarburization. Two optimization problems are studied here; scrap melting for the first bucket and 
also the refining processes. 

 

DYNAMIC FIRST PRICIPLES MODEL 

A non-linear dynamic model of the electric arc furnace is described in [5]. It is a modification and extension of Bekker’s 
model [6]. Bekker’s model has also been further developed in [7]. The model has eight states and eight inputs. These are 
described in Table 1. Outputs are not considered here since the model will only be used for simulation and optimal control. 
Hence, feedback from measurements will not be considered. 
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Table 1. Definition of states x and inputs u  in the model 

 States ix   Inputs 
iu  

x1 mass of solid steel [kg] u1 electric arc power [kW] 

x2 mass of liquid steel [kg] (including both 
charged carbon and carbon in scrap) 

u2i oxygen injection flow [Nm3/min]   

x3 mass of dissolved carbon [kg] u3i carbon injection flow [kg/min] 

x5 mass of solid slag [kg] (lime, dolomite, etc. as 
slag additions) 

u4i EMS current [A] 

x6 mass of liquid slag [kg] (lime, dolomite, etc. 
as slag additions, not including FeO) 

u5i Natural gas flow [Nm3/min] 

x7 mass of FeO in slag [kg] u6i DRI addition flow [kg/min] 

x12 bath and molten slag temperature [K] u7i Slag addition flow [kg/min] (lime, dolomite…) 

x13 scrap and solid slag temperature [K] u8i Post-combustion oxygen flow [Nm3/min] 

 
The differential equations are listed below for sake of completeness. For a full description see [5]. The model is implemented 
in the Modelica language [8] which is very well suited for simulation and optimization. There are a number of free and 
commercial software tools available for Modelica models. Some to mention are OpenModelica [9], JModelica [10], 
MathModelica [11], and Dymola [12]. Here MathModelica with a specific ABB extension has been used but at least 
OpenModelica and JModelica include similar optimization functions. 

To be able to use the model for optimization a few modifications were needed. The main reason for these modification is to 
avoid non-physical conditions for states. Examples of such conditions are negative mass, temperature of liquid steel being 
lower than the melt temperature, temperature of solid steel being higher than the melt temperature. For simulation purposes it 
would be possible to equip the model with a number of if-statements that restricts some of the state derivatives to drive the 
states into non-physical regions. However, if-statements are not possible when using the model for optimization. To handle 
this situation, the model uses arc tangent based switching functions instead of the if-constructs. The function (1) switches 
from zero to one at x0. The width of the transition interval is controlled by a, a small a makes the interval larger and not so 
distinct, but numerically more pleasant. 
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This type of switching function will be used in the differential equations below for the model. Here a = 0.001 is chosen to 
give nice numerical properties. It is of course wise to minimize the use of the switching functions to limit the numerical 
complexity of the problem, so they will only be introduced where needed. The switching function (1) will be used for 
derivatives of x01, x05, x12 in the formulation of the optimal control problem to avoid negative masses, and liquid steel below 
the melt temperature.  

Heat loss due to convection from hot liquids depend on the temperature difference and the mass of the solids and of the 
liquids, whichever is the lowest. This involves a min-function in the equations. However, the min-function, min(x1; x2) is not 
differentiable. It is approximated using the switch function (1). 
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The function, g, is used both for convection for steel and for slag. The heat transfers due to convection becomes 
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The mass of solid scrap is given as 
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where solp is arc power affecting the solid steel and where emsk is a function of the stirring effect from EMS operating current.  
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It is described by 

14  uak iems     (5) 

where ai is EMS effect parameter. When EMS is switched off, the EMS specific effect, kems=1. 

The mass of the liquid steel is affected by melting, by iron oxidation to FeO through oxygen injections, and by recovery of 
FeO to Fe by carbon injections and by dissolved carbon.  
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The last term refers to DRI addition where it is assumed that DRI contains about 93% Fe [6]. Further we use 100 here. 

The switching function will set the melt rate to zero when there is no more material to melt. 

The mass of dissolved carbon is determined by the decarburization reaction rate. Since EMS has a positive effect on the 
decarburization reaction, the rate is proportional to EMS stirring power. The decarburization rate can be described by 
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The equations for mass of the solid slag and of the liquid slag are given by 
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Here 10 in the optimization. 

The mass of FeO in the slag is given by 
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Depending on the initial conditions, x7 may need to be restricted to be non-negative. However, this has not been found 
necessary with the initial conditions that have been used.  

The temperature of the liquid steel and slag must not be below the melt temperature. The power used for increasing the liquid 
temperature is a sum of power distributed to the liquid, chemical reaction power and various heat losses. The liquid 
temperature can be calculated as. 
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where 4x  is the mass of silicon in the liquid steel and it is treated as a parameter instead of a state. The model captures also 

power losses to cooling water pcool-wt and to leak air p6. These are assumed to be constant in the simulations. Power used to 
heat-up solid scrap, lime, dolomite, DRI, and extra carbon charge to the melting points is also accounted for, p7, p8, and p9.  
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The scrap and solid slag temperature is given by 
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The temperature of the solid steel and slag must not exceed the melt temperature. A limitation is provided for this in the 
optimization. 

 
The values of the parameters in the model have been determined to adapt the model behavior to logged data. These 
parameters have been used throughout optimizations presented here. Their values are found in the Appendix. 

 

OPTIMIZATION 

The above model was implemented in Modelica using MathModelica. The specific ABB extension was used to convert the 
model to an optimization problem to solve an optimal control problem. The solution is the optimal trajectories for the inputs 
that takes the electric arc furnace from a given initial state to a final state while minimizing a loss function and satisfying 
given constraints. This loss function could be to minimize the time for the state transition. The resulting optimization problem 
is solved using IPopt [13]. 

 

Figure 1 Model for melting optimization 

Melting 

The first example handles the melting of steel in the first basket. Figure 1 shows the model for melting optimization. The 
main block is the Modelica model which was exported from MathModelica. Eight inputs are defined to the model. These are 
either a nominal trajectory or the sum of a free variable and a nominal trajectory. The nominal trajectories were obtained 
from a simulation with nominal (constant) inputs to the model. The starting values at the collocation points for the 
optimization were obtained through interpolation in the simulation result. By this approach u=0 should be a feasible solution 
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to the optimal control problem since it describes the deviation from the nominal trajectory. The optimization problem 
becomes easier to solve then. Table 2 shows the initial states for the optimization of the melting of the first basket. Three 
inputs are free in the optimization here, u1, u4, and u5. 

 

Table 2 Initial states for melting optimization 

State Initial Value Unit Description 

x01 49745 kg Solid steel 

x02 15000 kg Liquid steel 

x03 670 kg Dissolved carbon 

x05 1578 kg Solid slag 

x06 1000 kg Liquid slag 

x07 2.3 kg FeO in liquid slag 

x12 1800 K Bath and molten slag temperature 

x13 300 K Scrap and solid slag temperature 

 
The objective is to minimize sum of three components: 

 Cost of electric arc power, cel. 

 Cost for added natural gas for burners, cng. 

 Cost of remaining solid scrap, csc. This is an artificial cost to force the steel melting. 

Mathematically we have 

 T

el dtuc
0

1
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 (15) 

 T

ng dtuc
0

23305.0601000
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 T

sc dtxc
0

1
1000

560
10

 (17) 

where T is the end time. The integrals and the variables in the model are discretized over 100 collocation points were evenly 
spread over a 1400 s long interval. The constants before the integrals reflect the price. 

The loss function penalizes the amount of solid scrap. Hence, this loss function will drive the solid scrap to zero as fast as 
possible. Figure 2 shows the trajectories for the inputs and Figure 3 shows trajectories for the solid scrap (x1). Each figure 
shows two trajectories; solid lines show the optimal trajectory and dashed lines shows the simulation with nominal inputs. 

In the melting phase it seems beneficial to use all available power, i.e. maximize the arc power (u1) and the natural gas flow 
(u5). The electromagnetic stirrer (u4) will also use as high current as it is allowed to. In the beginning it is constrained to be 
switched off for the first 420 s, since there is not enough liquid steel. There is not much difference between the initial and the 
optimal trajectory. Melting time is affected by the added power. For fastest melting, use all available power. 
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Figure 2 Input trajectories for optimal melting (solid) and for nominal melting (dashed). 

 

 

Figure 3 Optimal melting trajectory (solid) and nominal melting (dashed). 

Refining 

This example handles the refining of steel after the third basket has been loaded. Table 3 shows the initial states for the 
optimization of the refining. Four inputs are free in the optimization here, u1, u2, u3, and u4. The refining phase is completed 
when the liquid steel has reached the desired temperature and the carbon content of the steel reaches a certain value. To reach 
this in an optimal way an optimization problem is defined using an objective function and some constraints. The objective 
function minimizes a sum of four components: 

 Cost of electric arc power, cel. 

 Cost for added oxygen, co2. 

 Cost for added carbon, cc. 

 Negative value of produced liquid steel, cst. This component is the profit, and therefore has negative sign in the cost 
function. 

Table 3 Initial states for optimization 

State Initial Value Unit Description 

x01 7860 kg Solid steel 

x02 107000 kg Liquid steel 

x03 250 kg Dissolved carbon 

x05 920 kg Solid slag 

x06 3240 kg Liquid slag 

x07 273 kg FeO in liquid slag 

x12 1809 K Bath and molten slag temperature 

x13 1218 K Scrap and solid slag temperature 
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The discretized loss function which will be minimized in the optimal control problem becomes 
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where Ts is the time discretization step and (sc) are additional penalties to the loss function to satisfy soft constraints in the 
optimization. The following soft constraints were defined: 

 The final temperature for liquid steel, x12, should stay between 1940 K and 1960 K. 

 The final carbon content of the steel should be below 0.1%. 

There is no requirement of FeO content since a high value here would lead to decreased yield which would lead to a smaller 
final x2 and a higher value of the objective function. The cost functions and soft constraints can be seen in Figure 4, where 
also some hard constraints on the inputs are defined. Here, 100 collocation points were evenly spread over an 1100 s long 
interval. Figure 5 shows the trajectories for the inputs (left) and the trajectories for some of the states (right). 

An optimal control law will in many cases lead to control signals that switch between their extreme values during the period 
for the optimization. This is also the case here. The optimization maximizes the oxygen flow (u2) and minimizes the graphite 
flow (u3) up to the time when the liquid steel has reached the desired temperature. For some reason, yet to be investigated, the 
electromagnetic stirring is turned off for a short period. The behavior of these inputs is somewhat different compared to what 
is seen during a normal refining phase for this EAF where the desired tapping temperature is reached in about 1400 s. With 
the optimal inputs, obtained here, the tapping temperature is reached in less than 1100s. The resulting mass of liquid steel, x2, 
will be higher and the final FeO content will be kept low. The oxygen addition is stopped after a certain interval, which also 
could be seen as a reduction of the total amount of added oxygen. A cautions assessment of the oxygen reduction could be 
estimated through the following way: Figure 5 shows that the added oxygen is constant throughout the refining period. If we 
here compare the 1100 s long refining period with full oxygen addition with the optimal oxygen addition, which is turned off 
after 900 s, then the oxygen reduction is 200/1100 (about 18%).  

Figure 6 shows a close up of the carbon percentage in the steel and the FeO percentage in the liquid slag. Here we see that the 
optimal solution decreases the final FeO content, while the final carbon content is affected very little. 

 

 
Figure 4 Model for refining optimization 
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Figure 5 Input (left) and output (right) trajectories for optimal refining 

The drop in stirring current for optimal refining in Figure 5 is somewhat difficult to explain. Also it would be interesting to 
see how much the arc power would decrease at the end, if the lower bound of it was decreased. To investigate the impact of 
this, four additional optimizations were done with slightly modified bounds on the inputs. The result is shown in Table 4. The 
first row corresponds to the bounds used in Figure 5, and the second row corresponds to a case where the stirring current is 
forced to be almost at it maximal value. The difference in final values is small. 

Rows three and four in Table 4 show similar cases, but here also the arc power is allowed to become zero. This causes the 
value of the objective function to decrease with about 7% since the arc power becomes low in the end of the optimization. 
The arc power does not become zero, but rather takes values about 18000 kW in the end. This is seen in Figure 7. It is also 
worth to mention that no carbon was added in the optimizations corresponding to rows three and four. 

 

Table 4 Final values for different limits on arc power and stirring current. 

u1 u4 x01 x02 x13 x12 x07 %C %FeO J 

39-46 0-1700 51 113792 1790 1952 1108 0.105 21.0 6.26e6 

39-46 1690-1700 50 113781 1790 1953 1065 0.105 20.4 6.28e6 

0-46 1690-1700 51 113744 1789 1940 1106 0.104 21.0 5.89e6 

0-46 0-1700 52 113757 1789 1940 1148 0.105 21.6 5.88e6 
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Figure 6 Optimal refining trajectory 

 

 

Figure 7 Input trajectory for arc power for optimal refining for zero low limit on arc power 

 

CONCLUDING DISCUSSION 

A Modelica simulation model has been developed to simulate complete EAF scrap melting and refining processes with 3-
bucket charge, and to optimize EAF operation to reach optimal total cost saving of electric arc power, natural gas, oxygen 
and added carbon. The model is validated using plant measurement data and it has been used to evaluate the effect of stirring 
during melting and refining. The optimal control problems were solved to suggest optimal trajectories for the inputs to EAF 
during melting and refining. The results showed that the approach for finding the optimal input trajectories for EAF is 
valuable to understand what could be achieved, and how the ideal control of the electric arc furnace would be. The stirring 
power obtained from the optimal control problems indicates that it is beneficial to stir as much as possible. In the practical 
operation, a dynamic stirring profile has to be optimized based on the individual arc furnace process.  
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APPENDIX 

Model parameters are defined in the table below. These relate to a specific electrical arc furnace. 

 

Parameter Value/Unit Description 

a1 - EMS gain factor for melting 

kdC 12 Bath decarburization rate 

kdCeq_ems 1 EMS effect on Xceq 

kgr 0.76 Graphite injection effect of FeO in slag 

kpostliq 0.2 Factor for post-combustion effect on liquid steel 

kther1 0.4 kW/K m2 Heat transfer coefficient 

kther5 0.2 kW/K m2 Solid slag melting rate 

ku1 0.2 Factor for arc effect on liquid steel 

ku5 0.5 Factor for arc effect on liquid steel 

ku5liq 0.2 Factor for burner effect on liquid steel 

kwater 12 Heat transfer coefficient 

kXC 0.000491 Equilibrium concentration constant 

Tair 298 K Air temperature 

TDRI 293.15 K DRI temperature 

Tmelt 1800 K Scrap melting temperature 

x14 7 Pa Absolute pressure 

x4 av 118 kg Silicon in solution in steel 

x8 600 kg Silicon dioxide in slag 
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