

Introduction

AJ Smith

Business Development – Advanced Services (OGC)

ABB since 10/1997

3rd time at Anchorage User's Group

Advanced Services - Optimize stable performance, Increase declining performance

- Cyber Security
- Control Loop Performance
- Control System Performance
- Alarm Management
- Batch Optimization
- Boiler Optimization
- etc

Definition

"The first step in the risk management process is to acknowledge the reality of risk. Denial is a common tactic that substitutes deliberate ignorance for thoughtful planning."

Charles Tremper

Definition

Risk = (Threat x Vulnerability) x Consequence

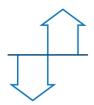
Threats:

- Operator Effectiveness
- Cyber Security
- Poor Process Control
- Device Failures
- Poor Alarm Management
- DCS System Performance

Introduction

"Risk is 'exciting' but management is 'boring'."

Keith Baxter


System Performance

On avarage 5% of global annual productivity is lost, due to unscheduled downtime.

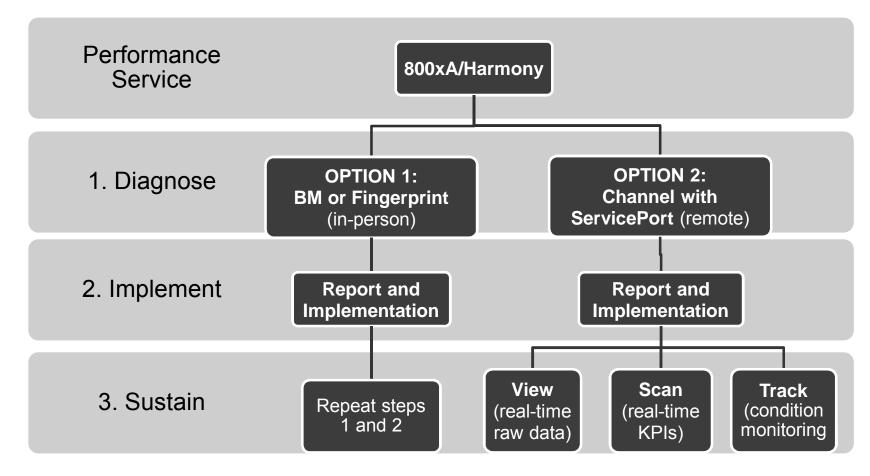
How do we tackle this opportunity to maximize production and quality, and minimize risks of accidents and unscheduled downtime?

System Performance

Issues may...

Be hidden until they become emergencies

- Running out of disk space
- Failed redundant components that no one notices
- Disk failure where backups are not usable
- Malware infection



Develop so gradually that poor performance seems normal

- Computer slowdowns due to disk fragmentation
- Deterioration in communications due to degraded connections
- Power glitches causing intermittent behavior

System Performance

System Performance

Benchmark Report

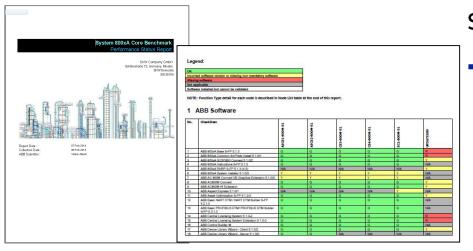
Status Overview

- Control system KPI status verification
- An easy to read 'Traffic Light ' control system report
- Effective tool for identifying performance issues
- Analyzes most relevant system parameters and KPI's
- Shows the system status and highlight deviations and potential risks

800xA System Performance

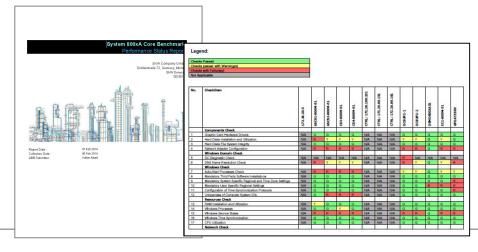
Benchmark Report

Status Overview


Automatic data collection Automatic data analysis Automatic report generation

Easy-to-use tool

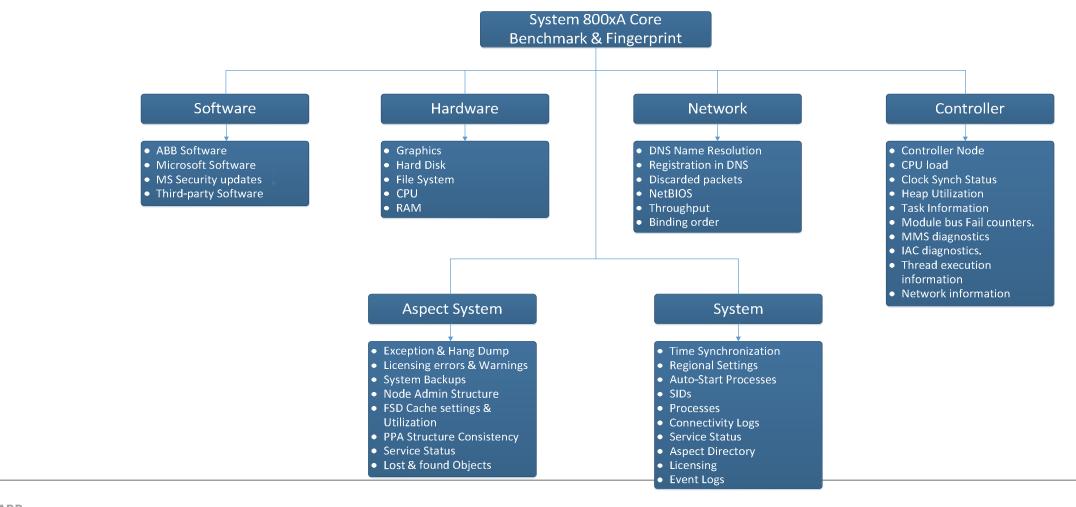
- Summarizing results in table format with short KPI definition
- Traffic light assessment
 - good
 - ambiguous
 - incorrect



800xA System Performance

Software Status Report

Validates the software installation against the requirements of ABB releases



Performance Status Report

 Validates hardware and software components and runtime parameters against system requirements and best practices

800xA System Performance

Harmony System Performance

- Shows the system status and highlights deviations and potential risks
- Traffic light assessment
 - good
 - ambiguous
 - incorrect

No.	Node ID							
		Node US/NS Firmware Status	Loop Channel 2 Receive Error Rate %	Node Output XR Saturation %	Node Memory Utilization%	Node VO Bus Saturation %	Received XRs per Packet Since Reset	US Pall Busy NAK Count
45	DefaultDCS.Loop 11.Node 98	N/A	N/A	N/A	N/A	N/A	N/A	N/A
46	DefaultDCS.Loop 11.Node 99	R	G	G	G	G	G	G
47	DefaultDCS.Loop 12.Node 1	G	G	G	G	G	G	G
48	DefaultDCS.Loop 12.Node 10	Y	G	G	G	G	G	G
49	DefaultDCS.Loop 12.Node 11	Y	G	G	G	G	G	G
50	DefaultDCS.Loop 12.Node 12	Y	G	G	G	G	G	G
51	DefaultDCS.Loop 12.Node 13	G	G	G	G	G	G	G
52	DefaultDCS.Loop 12.Node 14	G	G	G	G	G	G	G
53	DefaultDCS.Loop 12.Node 15	G	G	G	G	G	G	G
54	DefaultDCS.Loop 12.Node 16	G	G	G	G	G	G	G
55	DefaultDCS.Loop 12.Node 17	G	G	G	G	G	G	G
56	DefaultDCS.Loop 12.Node 18	G	G	G	G	G	G	G
57	DefaultDCS.Loop 12.Node 19	G	G	G	G	R	G	G
58	DefaultDCS.Loop 12.Node 2	Y	G	G	G	G	G	G
59	DefaultDCS.Loop 12.Node 20	G	G	G	G	G	6	G
60	DefaultDCS.Loop 12.Node 21	Y	G	G	G	G	G	G
61	DefaultDCS.Loop 12.Node 22	Y	G	G	G	G	G	G
62	DefaultDCS.Loop 12.Node 24	Y	G	G	G	G	G	G
63	DefaultDCS.Loop 12.Node 25	Y	G	G	G	G	G	G
64	DefaultDCS.Loop 12.Node 3	G	G	G	G	G	G	G
65	DefaultDCS.Loop_12.Node_38	G	G	G	G	G	G	G
66	DefaultDCS.Loop 12.Node 4	G	G	G	G	G	G	G

Example Benchmark Report

3 Summary of findings

3.1 Benchmark Gap Analysis

The system health is measured with <u>technical finding's checklist</u>. The summary of those finding is shown below.

Alarm Benchmark Summary per Evaluation Module

Name	Good	Warnings	Problems	Priority
Loop Channel 1 Receive Error Rate %	114	0	0	1
Loop Channel 2 Receive Error Rate %	113	0	1	1
Excessive Incoming GMI traffic (avg/sec)	113	0	1	2
LIS Poll Busy NAK Count	113	0	0	2
Average Node CPU Utilization %	113	1	0	3
Node I/O Bus Saturation %	100	6	1	3
Node Input XR Saturation %	100	7	0	3
Node Memory Utilization %	104	8	3	3
Node Output XR Saturation %	107	0	0	3
Received XRs per Packet Since Reset	107	0	7	3
Node LIS/NIS Firmware Status	49	52	14	4
Total	1133	74	27	

Table 5.Node Performance Issues

Name	Good	Warnings	Problems	Priority
Average System Free Time %	124	24	102	2
Maximum Segment Cycle Time Deviation %	214	8	23	2
Average Segment CPU Utilization %	189	35	21	2
Module Firmware Status	189	199	72	3
Controller RAM Utilization %	123	6	10	3
Controller NVRAM Utilization %	139	0	0	3
Segment Checkpoint Overrun Count	186	59	0	3
Total	1164	331	228	

Table 6.Module Performance Issues

Name	Good	Warnings	Problems	Priority
Node Environment Status	168	0	0	1
Control way Bus Failure	407	0	0	1
NVRAM Failure	250	0	0	1
Central Loop Received Errors on Channel 2	12	0	0	2
Serial Link 2 Bad	6	0	0	2
Digital Station Status Bad	250	0	0	3
Central and Satellite Ring I/O Out of Specification	8	0	10	4
Communication Status Problem	135	0	27	4
I/O Out of Specification	149	0	106	4
Total	1385	0	143	

Table 7.Module Status Issues

ABB

23

Harmony System Performance

Minimum Requirement to install Data Collector				
CPU	Dual Intel Pentium III, or single core Pentium 4 or higher			
Memory	256 MB free RAM			
Hard disk	50 MB of free space (after all prerequisites are installed)			
Communicatio n Ports	As required by CIU specification			
Harmony Rack equipment	Dedicated CIU (ICI03, ICI12, ICI13 or IET800) using SCSI, RS232 or TCP-IP			

Data Collector (HD200) supported platforms (*)

Windows 7 (32 and 64bit)

Windows Server 2008 (32 and 64bit)

Windows 8.1 (64bit)

Windows Server 2012 (64bit)

(*) Data Collector HD200 communicates with the Harmony hardware through HAPI 4.0, on 32 bit as well as 64 bit machines. HAPI 4.0 does not support Windows-XP.

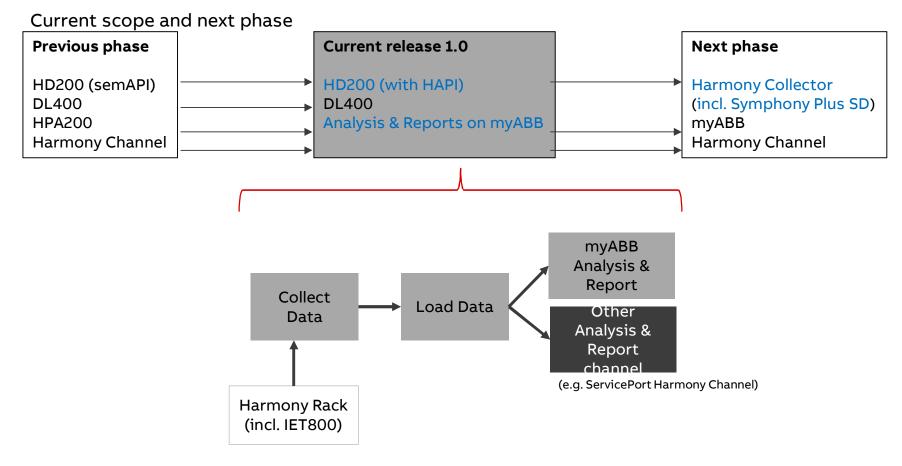
Harmony System Performance

Supported modules
(Harmony Rack)

INPIM01	
CTM01	
INAMM01	
IMAOM01	
NCOM	
IMCOM	
IMQRC	
CLC	
IMLMM01	
INNPM12/Plant loop	

NLSM01
INPCT01
INPCI02
NGCM01
CTT
CBC01
CSC01
INIPT01
INIPT02
HNCC
INICT01

IMMFP01/IMMFP11
IMMFP02/IMMFP12
IMMFP03
IMMFP04
BRC100
BRC200
BRC300
BRC400
HAC
INNPM01/11/12
INNPM22


BIM
NAMM02
NPTM01
NPCI01
MFC
MMFC
NLMM02
MMPC01
NBTM01
NLCM01

NICT01	
ICP02	
VICT03	
VIET800	
VICT12	
NICT13	
ISBM01	
SCM01	
VIIT01/02/03	

INNPM22
HNPM
HAC NPM
PBUG01
NLCM02
NLCM03
IMCPM02/03
INSEM01
CIC01
SLC01/21

Harmony System Performance

Definition

"If you do not actively attack the risks, they will actively attack you."

Tom Gib

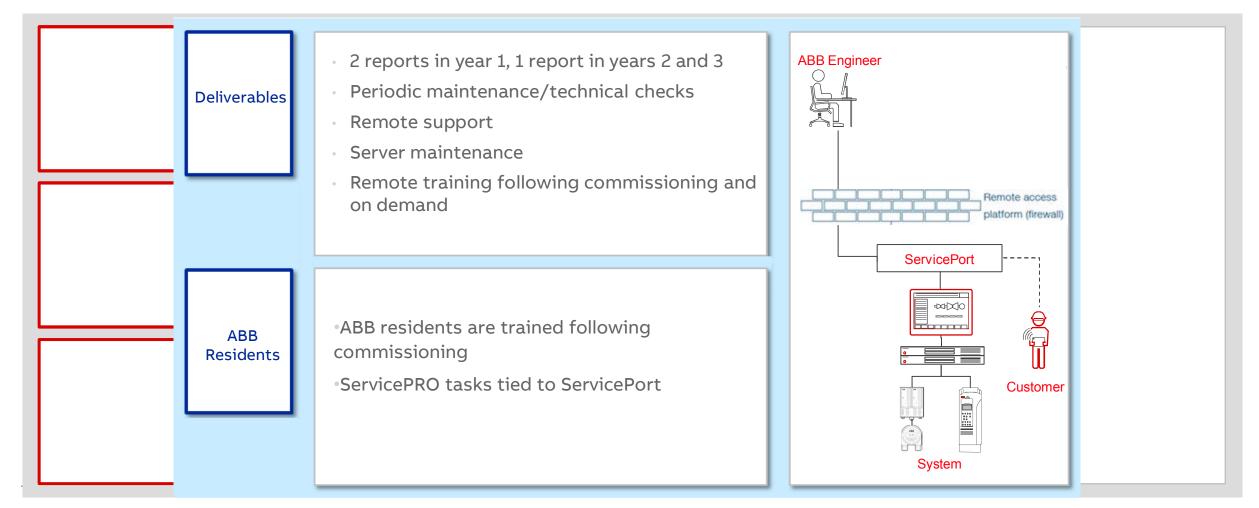
Definition

Safety Culture:

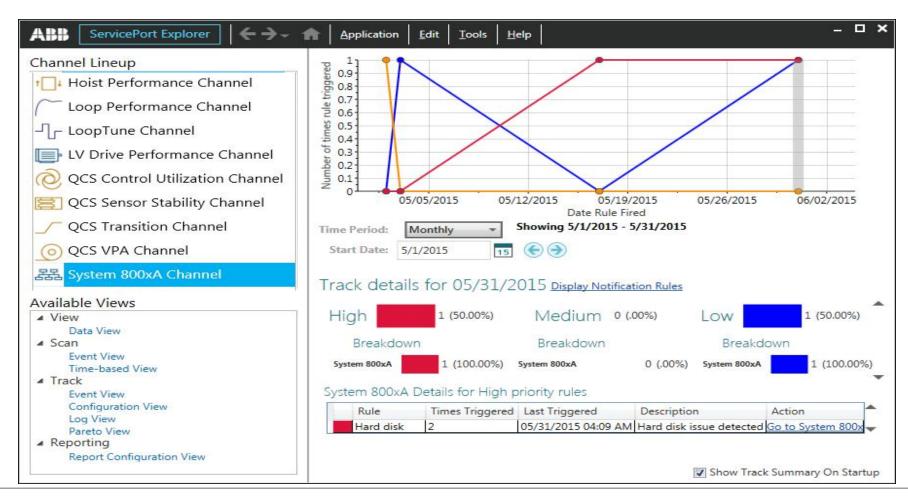
"Risk is like fire: If controlled it will help you; if uncontrolled it will rise up and destroy you." Theodore Roosevelt

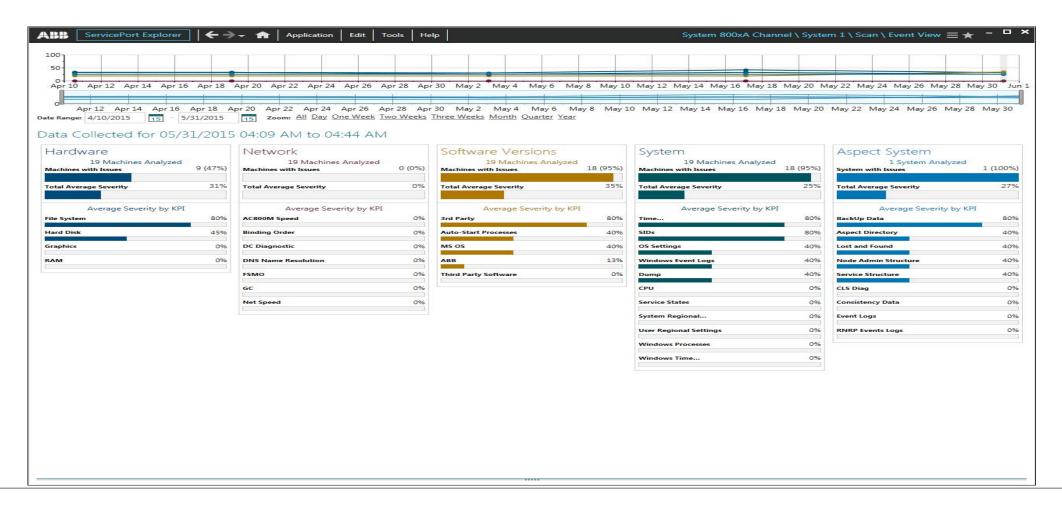
"You want a valve that doesn't leak and you try everything possible to develop one. But the real world provides you with a leaky valve. You have to determine how much leakiness you can tolerate." Arthur Rudolph

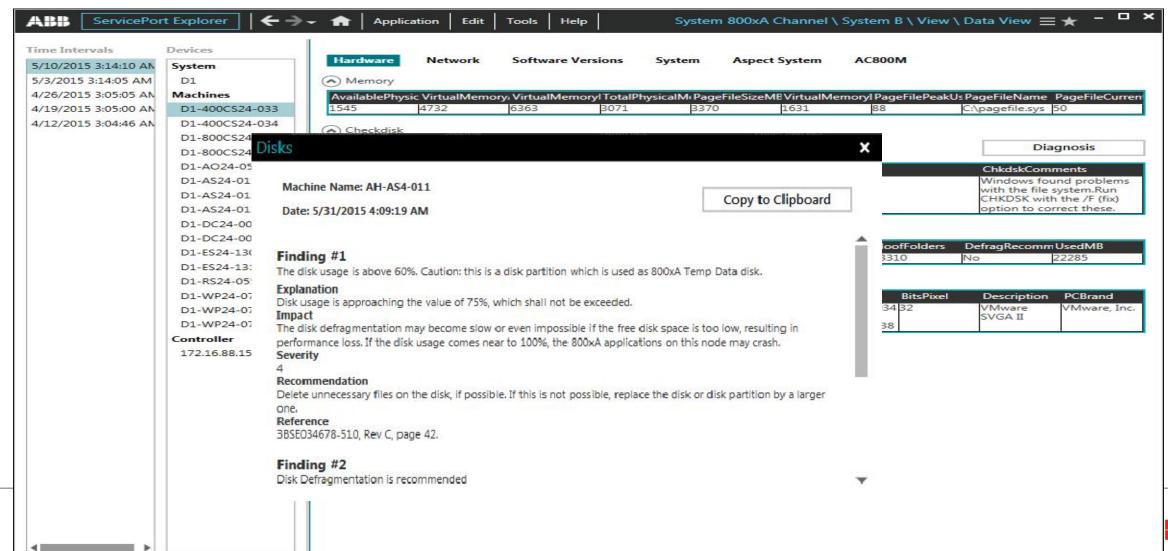
"By definition, risk-takers often fail. So do morons. In practice it's difficult to sort them out." Scott Adams


"To make a mistake is only human; to persist in a mistake is idiotic." Roman Cicero

"Luck is unreliable." Amanda Ripley

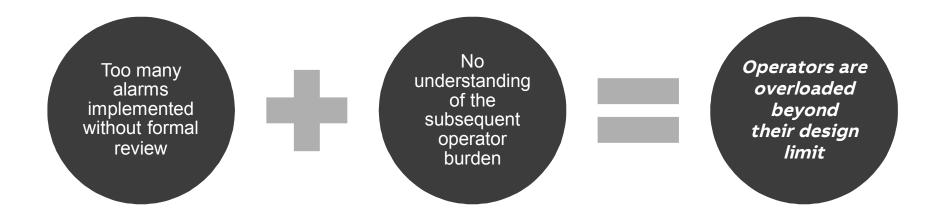






©ABB

Risk Management Tools


Alarm Management

""If you treat risk management as a part-time job, you might soon find yourself looking for one."

Deloitte

Alarm Management

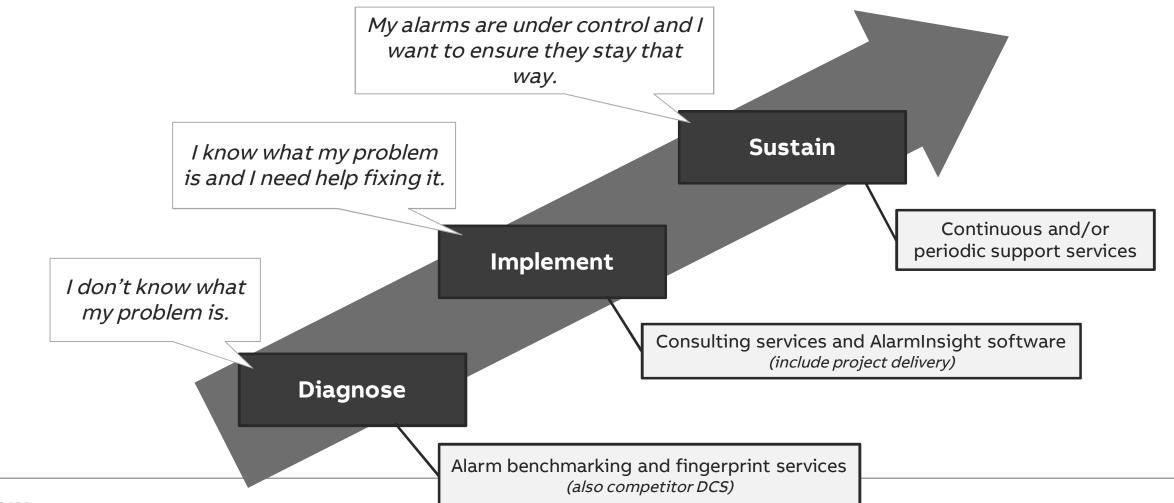
Pre-digitization (1960) = 100 alarms per operator Digitized (2000+) = 4,000 alarms per operator

Alarm Management

"... the more reliable and greater the scope of automation, the greater the demand on the operator when it fails."

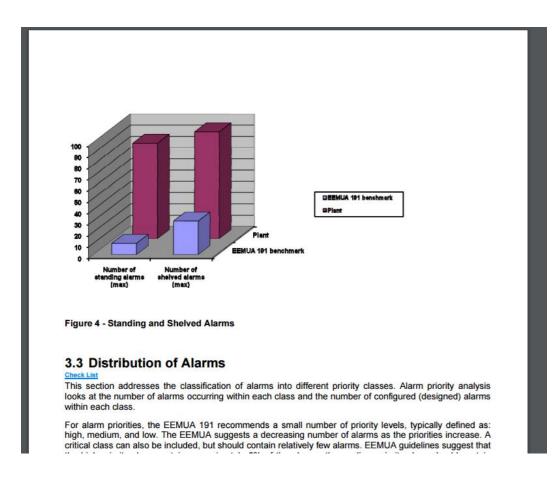
- Users are being pacified.
- Important clues are overlooked or misinterpreted.

Modern digital control systems hide most of the process from the operator and alarms are required to direct the operator's attention as well as annunciate problems.


Alarm Management

Impact

- Long lists of alarms make it difficult to identify important alarms
- Nuisance alarms move in and out of alarm states, reduce operator confidence, and can be overlooked
- Control room environment, layout, sound, and HMI can affect alarm management
- Government regulators and Insurers are now trained in identifying good alarm management.
- Studies show a re-design of alarm management can produce up to 5-8% of process throughput in potential benefit, which can be up to \$8M for a typical plant
 - By making operators more aware of critical alarms
 - Quicker response


Alarm Management

Alarm Management

Alarm Benchmark and Fingerprint reports analyze gathered alarm data against ISA 18.2 and EEMUA 191 standards and report on the gaps.

Analysis:

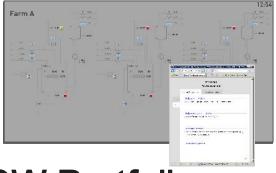
- Average & Peak Alarm Rates
- Standing & Shelved Alarms
- Distribution of Alarms
- Nuisance Alarms
- Operator Response Time

Definition

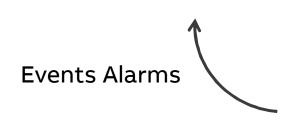
"To make a mistake is only human; to persist in a mistake is idiotic."

Cicero

Alarm Management - AlarmInsight


Event Log & Alarm Analysis & KPI

Alarm Change Recorder


Alarm Helper

Alarm Rationalization Tool

AlarmInsight®SW Portfolio

Operator response / attributes

Alarm Management – AlarmInsight

Alarm monitoring and analysis

Basic and enterprise data logging

- KPI-Report/.pdf (KPI)
 - Automatically generated KPI reports: daily, weekly, monthly
- AlarmAnalysis (AA)
 - Manually set filters, analyze and generate reports
- EventLog Viewer (EL)
 - Manually set filters, find root cause and sequence of events
- Expert Tool (ET)
 - Service tool for ad-hoc, deep-dive analysis supporting improvement work: used in all phases (client)

Alarm management

Lifecycle management

- Alarm Rationalization Tool
 - Alarm Rationalization and Continuous Alarm reviews, Management of change/ Master Alarm Database (SQL)
 - Input for Alarm Helper and DCS bulk updates
 - Both a services tool and on-site server implementation
- Alarm Change Recorder (ACR)
 - Monitor changes to alarm attributes/ values in the distributed control system
 - Track changes during operation and modifications

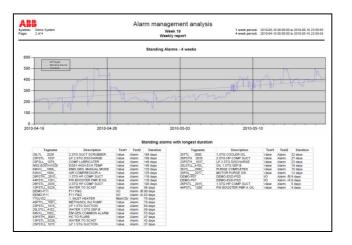
Real-time information

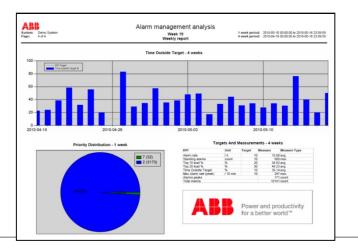
Per site / for control room operator

- AlarmHelper (AH)
 - Operator support: How to react to an alarm and collect feedback from operators
 - Context-sensitive presentation of input from Rationalization, design and modification work

Basic: Logging and alarm KPI reporting, log collection from multiple sources

Enterprise features: Multi-site alarm consolidation, office network reports, large datasets

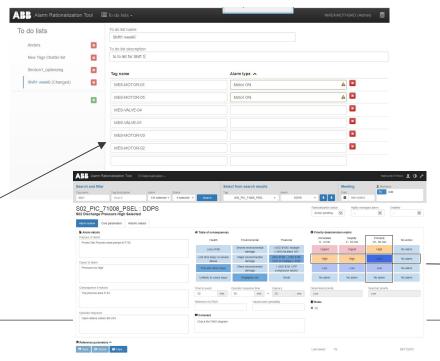



Alarm Management - AlarmInsight

Alarm and Event historian – providing long term storage of data for analysis

Alarm Performance KPI reports according to EEMUA 191 and ISA 18.2, available on web or distributed via email

Ease-of-use and ease-ofdistribution make these reports an efficient tool for communicating alarm system health in the organization

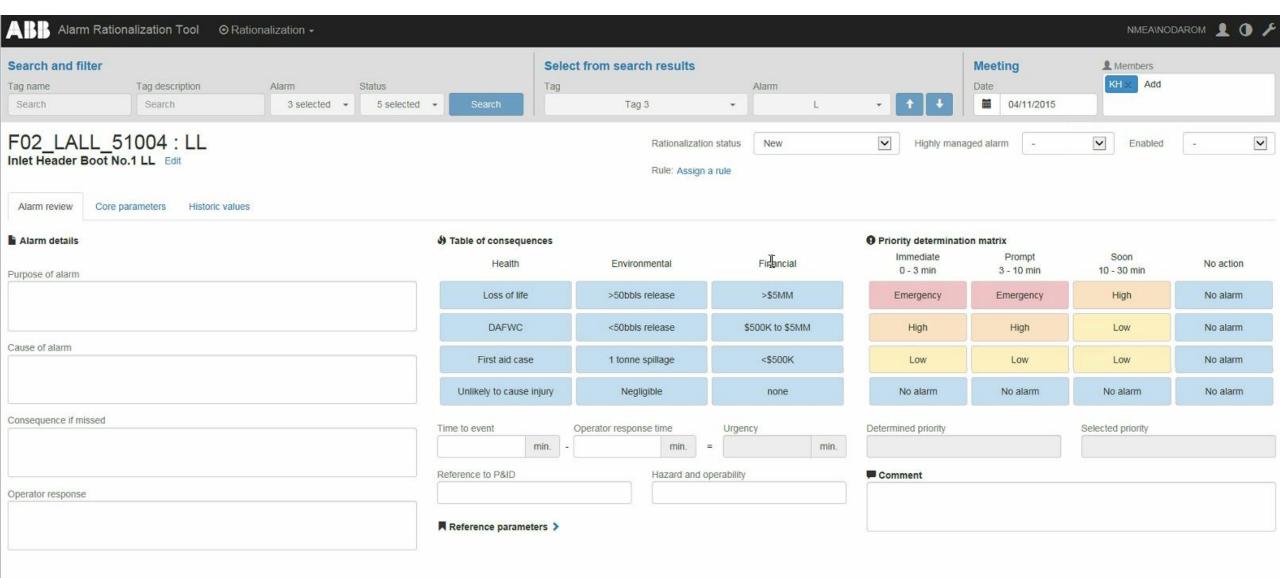


Alarm Management - AlarmInsight

1. Monitor Alarm rates, pick top 10 alarms

2. Enter top 10 alarms in "to do" lists into ART and have the last shift review the alarms.

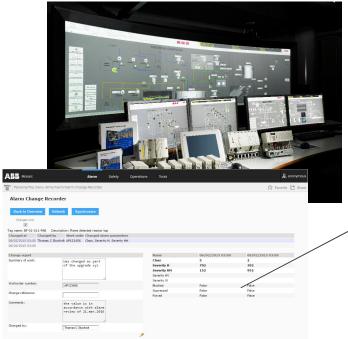
3. Update Alarm Helper texts & DCS with optimized attributed/ priorities

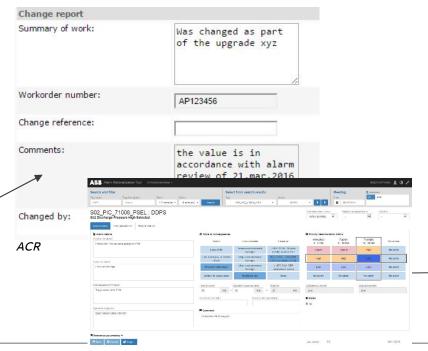


ART Excel file

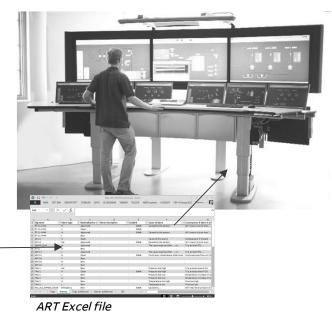
Alarm KPI reports & Alarm Analysis © ABB

February 27, 2017

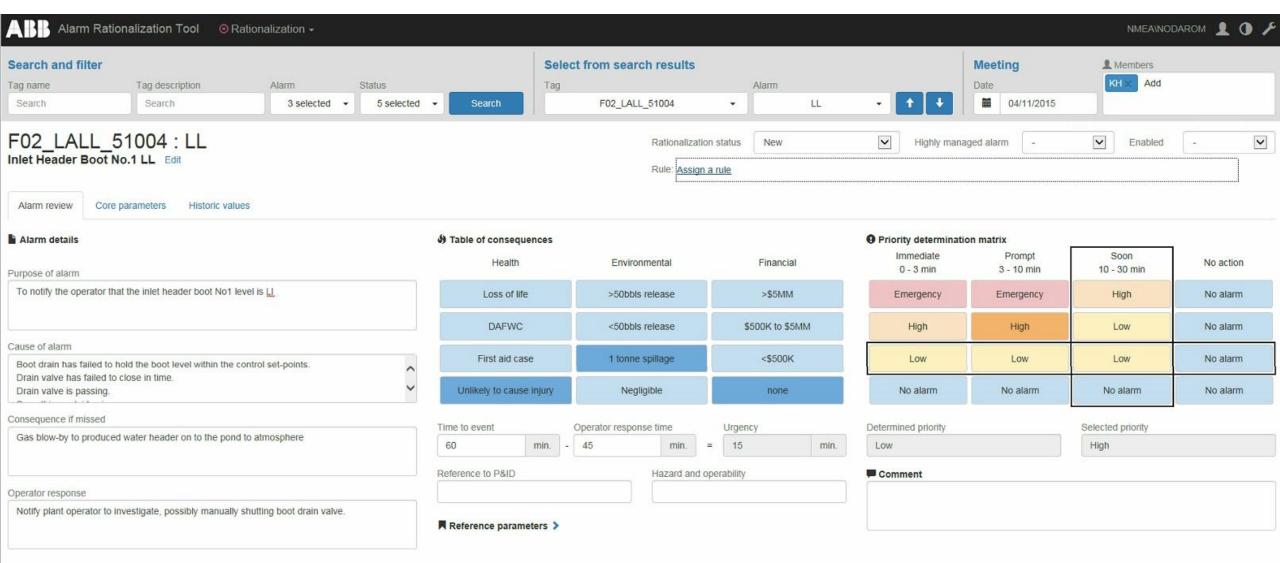



Run the Video !_ Operator Response & Determining alarm priority

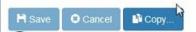
Alarm Management - AlarmInsight


1.Monitor Alarm Attribute changes in the DCS (using ACR)

2. Approve changes in ACR and compare with design values in ART



3. Look for alarms not present in ART, or with missing Alarm Helper texts. Add to "To-do" list in ART.



Alarm Change Recorder (ACR)

© ABB

Run the Video! _ Time saving features

Last saved: KH 04/11/2015

Alarm Management

Gas processing, Egypt

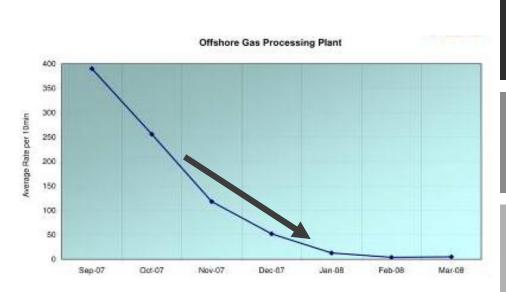


Figure 1. Alarm rate reduction over time

Problem

- Too many alarms / safety issue
- Numerous plant shutdowns led to lost production

Solution

 ABB lead alarm diagnosis, alarm rationalization and implementation of new design

Benefits

- Alarm rates reduced
 - 400 → 8 alarms/10 min
- Improved plant uptime
 - From $25 \rightarrow 6$ shutdowns/yr
- Higher production per year
 - Estimated USD 2M/yr

Risk Culture vs Safety Culture

"An 'At-Risk' system is an unsafe system"

AJ Smith

#