ООО «АББ»

Вводы типа BRIB с твердой RIP-изоляцией для баковых масляных выключателей, класс напряжения 110 кВ

Руководство по эксплуатации

ГКСЛ 680205.014 РЭ

Выпуск 6

Информация по технике безопасности

Данная инструкция должна быть всегда доступна для использования лицами, отвечающими за установку, техобслуживание и эксплуатацию вводов.

При установке, эксплуатации и техобслуживании вводов возникают многочисленные потенциально опасные условия, которые включают в себя, помимо прочего, следующие факторы:

- Высокое давление.
- Напряжение, опасное для жизни.
- Подвижные механизмы.
- Тяжелые компоненты.
- Вероятность поскользнуться, споткнуться или упасть.

При работах на таком оборудовании требуется соблюдение специальных процедур и инструкций. Несоблюдение инструкций может привести к тяжелым травмам, летальному исходу персонала и/или к повреждению ввода или другого оборудования.

Кроме того, персонал, обеспечивающий установку, эксплуатацию, техобслуживание и/или утилизацию вводов, должен соблюдать все действующие правила техники безопасности, включая региональные или местные правила или положения по технике безопасности и методы безопасной работы.

В данной инструкции понятие безопасности означает предотвращение двух ситуаций:

- 1 Телесное повреждение или смерть.
- 2 Повреждение ввода или другого оборудования, а также сокращение срока службы ввода.

Символы безопасности предназначены для предупреждения персонала о возможной травме, опасности для жизни или риске повреждения оборудования. Они вставлены в текст инструкции перед описанием шага процедуры, при выполнении которого может возникнуть одна из таких ситуаций. Описание условий безопасности предваряется указанием одного из трех уровней степени опасности, которые определяются следующим образом:

ОПАСНОСТЬ:

Непосредственная опасность, которая может привести к тяжелому телесному повреждению, смерти персонала или повреждению оборудования.

предупреждение:

Опасность или небезопасное действие, которые могут привести к тяжелому телесному повреждению, смерти персонала или повреждению оборудования.

ВНИМАНИЕ: Опасность или небезопасное действие, которые могут привести к легкому телесному повреждению персонала или повреждению оборудования.

СОДЕРЖАНИЕ

1	Общие указания	4
2	Назначение	4
3	Классификация	4
4	Конструкция	5
5	Маркировка	5
6	Упаковка, транспортирование и хранение вводов	8
7	Монтаж вводов	9
8	Контроль после монтажа	11
9	Техническое обслуживание вводов	11
10	Испытания вводов	13
11	Анализ результатов испытаний	15
12	Утилизация	16
13	Комплектация	16
14	Адрес завода – изготовителя	16

1 Общие указания

Требования настоящего руководства распространяются на вводы типа BRIB с твердой RIP-изоляцией на напряжение 110 кВ для баковых масляных выключателей.

Руководство предназначено для эксплуатационного и ремонтного персонала электростанций и электрических сетей, а также персонала монтажно-наладочных организаций.

Руководство содержит основные указания по монтажу и обслуживанию вводов типа BRIB. Вопросы связанные с ремонтом вводов в настоящем руководстве не рассматриваются. В случае серьёзного повреждения ввода при транспортировке, монтаже или в эксплуатации рекомендуем связаться с фирмой **ООО** «**АББ**» для решения вопросов ремонта и повторного тестирования.

2 Назначение

Вводы с твердой RIP-изоляцией (resin impregnated paper - электроизоляционная бумага, пропитанная смолой) типа BRIB - проходные изоляторы, предназначенные для вывода высокого напряжения из бака масляного выключателя, являются конструктивно самостоятельными изделиями. Вводы предназначены для работы в условиях, климата О категории 1 в соответствии с ГОСТ15150-69.

3 Классификация

Вводы BRIB выпускаются на ток 2000 А. Основные технические характеристики вводов представлены в табл. 1.

Таблина 1

Тип ввода	BRIB-90-110-550/2000
Габаритный чертеж	КН 1.9.008У
Класс напряжения, кВ	110
Наибольшее рабочее напряжение ввода, кВ	135
Максимальное фазное напряжение ввода, кВ	78
Испытательное одноминутное напряжение в сухом со-	
стоянии, кВ	265
Выдерживаемое напряжение под дождем (50 Гц), кВ	230
Напряжение грозового испытательного импульса, кВ	550
Номинальный ток, А	2000
Уровень частичных разрядов при напряжении	
2,0*U _{max} /√3, пКл	< 2
Предельный угол установки к вертикали в градусах	90
Испытательная (1 мин) консольная нагрузка, Н	2500
Номинальный ток отключения выключателя, кА	50
Предельный ток термической стойкости	
(в течение 3 с), кА	50
Предельный сквозной ток короткого замыкания (ам-	
плитудное значение), кА	135
Предельный сквозной ток короткого замыкания	
(начальное эффективное значение периодической со-	
ставляющей), кА	50
Длина пути утечки, мм и соответствующая ей степень	4105 (TV)
загрязнения по ГОСТ 9920-89, не менее	4195 (IV)
Устойчивость к сейсмическим воздействиям, в баллах	0
по шкале MSK-64	9
Высота установки над уровнем моря, м	Не более 1000

Расшифровка условного обозначения вводов:

BRIB-90-110-550/2000

B - bushing (ввод);

R - resin; (смола)

I - impregnated (пропитанный);

В - breaker (выключательный);

90 - допустимый угол наклона к вертикали в градусах;

110 - класс напряжения, кВ;

550 - напряжение грозового испытательного импульса, кВ;

2000 - номинальный ток, А.

4 Конструкция

Основой ввода (рис.1) является твёрдое изоляционное тело (поз.1), состоящее из электроизоляционной бумаги, пропитанной смолой и намотанной на латунную трубу (поз.2). При намотке тела, через определенные промежутки вставляются алюминиевые обкладки, служащие для выравнивания электрического поля. Фарфоровый изолятор (поз.3) прижат к фланцу (поз.4) посредством пружинной системы (поз.5), находящейся в верхней части ввода (поз.6).

Для защиты изоляционного тела от увлажнения между ним и фарфоровым изолятором находится упругий наполнитель "Микагель" (поз.7).

Последняя обкладка внутренней изоляции соединена с измерительным выводом (поз.12), который служит для измерения тангенса угла диэлектрических потерь (tgδ), ёмкости (C) и частичных разрядов (ЧР) ввода. Конструкция измерительного вывода такова, что последняя обкладка автоматически заземляется при навинчивании на него крышки. Она разземляется после отвинчивания крышки для присоединения тест-адаптера, служащего для подключения измерительных цепей. Внутри латунной трубы проходит токоведущий медный сердечник (поз.8)

Токоведущий сердечник фиксируется на трубе в верхней части ввода (рис.2) при помощи гайки (поз.3). Внешняя контактная шпилька (поз.4) наворачивается на токоведущий стержень и фиксируется контргайкой (поз.7).

В нижней части ввода (рис.3) сердечник фиксируется от возможного проворота вокруг своей оси с помощью штифта (поз.4), а от возможного поперечного люфта - центрирующим изоляционным кольцом (поз.5). Токоведущий сердечник соединен с медным фланцем (поз.6), к которому крепится дугогасительная камера выключателя.

5 Маркировка

На фланце каждого ввода имеется табличка, на которой указываются:

- товарный знак предприятия-изготовителя;
- страна;
- условное обозначение ввода;
- номер габаритного чертежа;
- заводской номер;
- год выпуска;
- номинальное напряжение и номинальный рабочий ток;
- масса;
- предельный угол монтажа к вертикали;
- ёмкость C₁ и tgδ₁;
- ёмкость С₃ и tgδ₃;

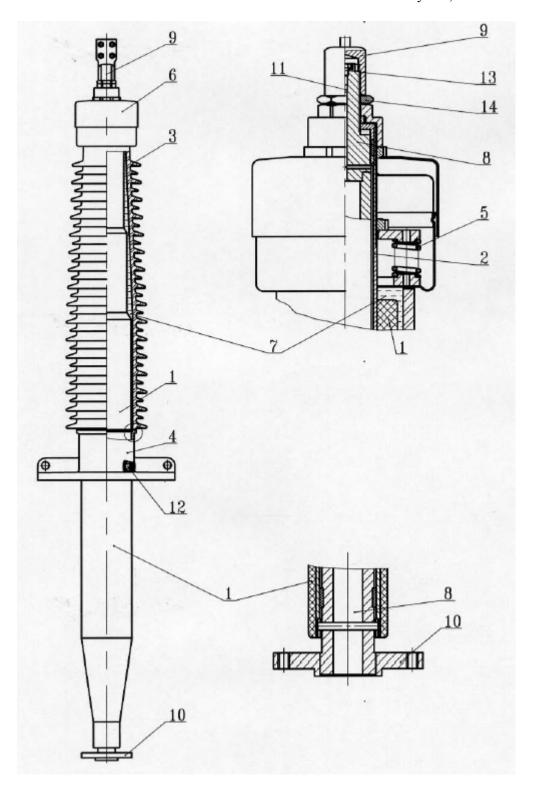


Рис. 1 Конструкция ввода

1) тело ввода; 2) латунная труба; 3) фарфоровый изолятор; 4) фланец; 5) пружинная система; 6) верхняя часть ввода; 7) наполнитель "Микагель"; 8) токоведущий медный стержень; 9) внешняя контактная шпилька; 10) медный фланец; 11) деаэрационное отверстие в токоведущем стержне; 12) измерительный вывод; 13) винт-заглушка; 14) контргайка;

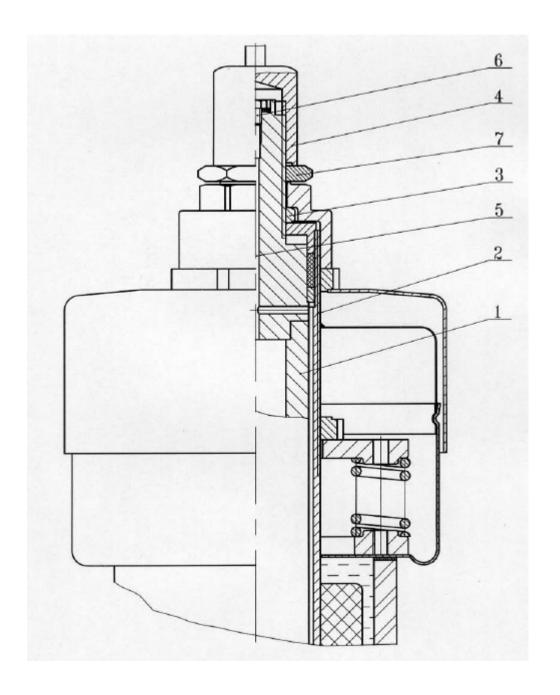


Рис.2 Верхняя часть ввода

1) токоведущий сердечник; 2) латунная труба; 3) фиксирующая гайка; 4) внешняя контактная шпилька; 5) деаэрационное отверстие; 6) винт-заглушка; 7) контргайка;

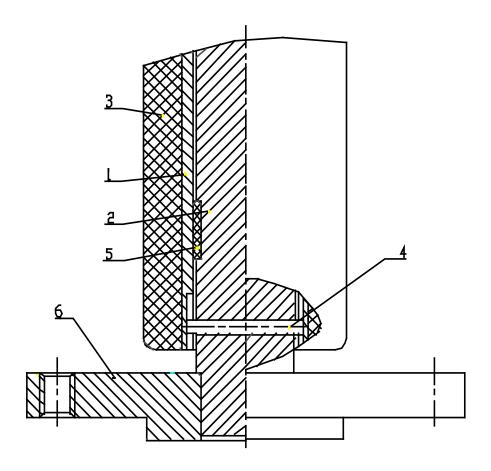


Рис. 3 Нижняя часть ввода

- 1) труба ввода; 2) токоведущий сердечник; 3) тело ввода; 4) штифт; 5) центрирующее кольцо;
- 6) медный фланец

6 Упаковка, транспортирование и хранение вводов

6.1 Ввод в состоянии поставки

Вводы поставляются в деревянных ящиках, в которых они посредством распорок жёстко закреплены на ложементах с эластичными прокладками.

Вводы транспортируются и хранятся в горизонтальном положении. Нижняя часть ввода защищена от увлажнения полиэтиленовым чехлом с вложенным в него мешочком с силикагелем, часть из которого является индикаторным силикагелем.

При хранении вводов один раз в шесть месяцев производится проверка целостности полиэтиленового чехла и цвета силикагеля. Изменение цвета индикаторного силикагеля с голубого на розовый свидетельствует о его увлажнении. В этом случае необходимо заменить весь силикагель.

6.2 Правила хранения вводов

Вводы могут храниться снаружи только в защищенном от дождя месте, либо внутри помещения. При этом необходимо учитывать время хранения (см. табл. 2).

ВНИМАНИЕ: Защитный чехол, предохраняющий ввод от проникновения влаги, не должен сниматься в течение всего периода хранения.

Таблица 2

Период хранения	Снаружи, в защищенном от дождя ме-	Внутри сухого помещения (конденсации	
	сте	влаги нет)	
До 6 месяцев	В упаковочном ящике поставщика, покрытом пленкой. <u>Рекомендуется:</u> Надеть дополнительный мешок из полиэтиленовой пленки с мешочком силика-	В упаковочном ящике поставщика и оригинальной упаковке	
7.10	геля внутри него на нижнюю часть ввода.		
До 12 месяцев	Не допускается	В упаковочном ящике поставщика и оригинальной упаковке. Только в сухом помещении (относительная влажность < 80 %), и, по возможности, при постоянной температуре. Необходимо регулярно проводить контроль цвета силикагеля. При изменении цвета силикагеля с голубого на розовый, он должен быть заменен, по крайней мере, тем же количеством.	
Длительный период, более, чем 1 год	Не допускается	Нижняя часть ввода в контейнере для хранения, заполненном маслом или су- хим азотом.	

6.3 Действия в случае нарушения правил хранения

Если имеется подозрение, что условия хранения не соответствуют указанным в выше приведённой таблице, то существует возможность проникновения влаги в изоляцию в результате диффузионного процесса. Это может быть выявлено путем измерения ёмкости C_1 и $tg\delta_1$ при напряжении 10 кВ. Если расхождение в $tg\delta_1$ больше паспортного значения на 0,1% по абсолютной величине, то, пожалуйста, свяжитесь с OOO «АББ» для получения рекомендаций по процедуре сушки.

7 Монтаж вводов

7.1 Такелажные работы

При распаковке ввода соблюдайте осторожность во избежание повреждения фарфорового изолятора. Освободите ввод от крепления в упаковке, используя для этого систему строповки, изображенную на рис.4: один конец стропа охватывает шейку фланца, а второй между ребер фарфорового изолятора в верхней части ввода, вблизи его головы. При размещении ввода в горизонтальном положении, следите за тем, чтобы ввод опирался на те же точки, что и в ящике. Проведите внешний осмотр ввода и убедитесь в целостности фарфорового изолятора, снимите полиэтиленовый чехол с нижней части ввода и убедитесь в целостности тела ввода.

Для выведения ввода в вертикальное положение удобнее всего использовать два крана и мягкие стропы (см. рис. 5). При этом один строп охватывает петлей фланец и закрепляется на крюке одного из кранов. Два других стропа фиксируются за рым-болты фланца и направляются вдоль фарфорового изолятора. Вблизи головной части стропы должны быть продеты внутри петли из стропы, обвязанной вокруг изолятора, и прикреплены ко второму подъёмному устройству. Ввод двумя кранами поднимается в горизонтальном положении на необходимую высоту, затем фланцевый конец опускается вниз.

На рис. 6 изображен подъем ввода под определенным углом.

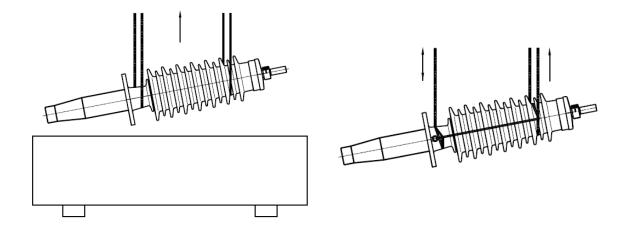


Рис. 4 Извлечение ввода из упаковки

Рис.5 Выведение ввода в вертикальное положение с помощью двух кранов

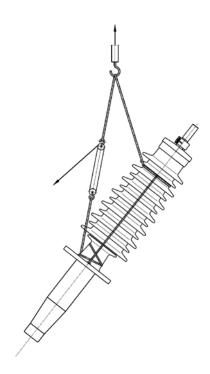


Рис.6 Подъём ввода под определенным углом.

7.2 Очистка поверхности ввода и стыков

Поверхности расположения уплотнений на баке выключателя и поверхность фланца ввода не должны иметь следов коррозии и загрязнений и иметь высокую степень обработки (макс. Ra 3.2). Очистите эти поверхности под уплотнения смоченной в чистящей жидкости и не оставляющей ворса тканью и протрите.

Незащищённая часть ввода (изоляционный остов на масляной стороне) не должны быть поцарапаны. Если рым-болты выступают за нижнюю поверхность фланца, они должны быть демонтированы до крепления фланца. Крепление фланца ввода должно быть выполнено таким образом,

чтобы не могла возникнуть в нем деформация. Опорная поверхность выключателя должна иметь допуск по плоскостности макс. 0,3 мм (ступеньки не допускаются).

До установки ввод должен быть адаптирован к температуре окружающей среды таким образом, чтобы предотвратить выпадение конденсата на поверхности ввода.

Внимание!

Не повредите поверхность фланца, где располагается уплотнение!

7.3 Установка на масляный выключатель

Вводы типа BRIB не содержат трансформаторного масла и поэтому могут устанавливаться на выключатель после транспортирования и хранения без предварительного выдерживания в вертикальном положении. Вводы полностью собраны и готовы к установке на выключатель.

При установке на ввод дугогасительной камеры соблюдайте осторожность во избежание повреждения тела ввода не имеющего в этой части фарфорового изолятора.

ВНИМАНИЕ:

Токоведущий медный сердечник (поз. 1, рис. 2) крепится к латунной трубе (поз. 2) с помощью гайки в верхней части ввода (поз. 3). Соответствующая затяжка этой гайки во время сборки ввода обеспечивает герметичность этого узла и механическую настройку сердечника ввода. Во избежание нарушения герметичности, а также механической настройки сердечника, недопустимо при установке ввода прибегать к откручиванию этой гайки.

Зачальте ввод стропами, как это показано на рис.5 или 6, и осторожно, без рывков установите на выключателе. Затяжку болтов на опорном фланце производите равномерно по окружности. После заполнения бака выключателя маслом, для выравнивания уровня масла в нем и в зазоре между трубой ввода и токоведущим сердечником, необходимо снять с ввода внешнюю контактную шпильку (поз. 4, рис. 2) и вывернуть из деаэрационного отверстия токоведущего сердечника (поз. 5) винт-заглушку (поз. 6). После этого заверните обратно винт-заглушку (поз. 6) и установите на ввод внешнюю контактную шпильку (поз. 4).

7.4 Порядок затяжки и динамометрические усилия

После установки фланца болты / гайки должны быть затянуты от руки насколько это возможно, как первый шаг. Крепление фланца должно быть выполнено с учетом следующей последовательности затяжки:

- 1 Слабое крепление с использованием гаечного ключа.
- 2 Затяжка до 25% рекомендованного усилия затяжки.
- 3 Затяжка до 75% рекомендованного усилия затяжки.
- 4 Затяжка до 100% рекомендованного усилия затяжки.
- 5 Контрольная последовательность затяжки с применением 100% рекомендованного усилия затяжки.
- 6 Если возможно, то повторить шаги 4 и 5 после 24 часов, т.к. предварительное усилие могло ослабнуть в течение 24 часов.

Для того, чтобы не пропустить болт / гайку, затянутые болты / гайки должны быть промаркированы фломастером.

Для наглядности порядок крепления изображён на рис. 7.

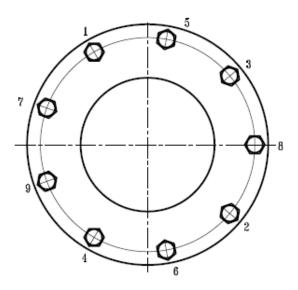


Рис. 7 Порядок крепления фланца

7.5 Заземление фланца

предупреждение:

Крайне важно наличие эффективного заземления!

Вводы имеют одно или два резьбовых отверстия М12 для заземления фланца.

После затяжки болтов, крепящих ввод к баку выключателя, необходимо заземлить фланец. Это позволяет предотвратить электрические разряды между фланцем ввода и баком выключателя в нормальных условиях эксплуатации. Заземление произвести гибким проводом, один конец которого присоединяется болтом М12 к фланцу ввода с усилием 40 Нм, другой - к бобышке заземления на баке выключателя.

8 Контроль после монтажа

После установки ввода на выключатель необходимо измерить ёмкость C_1 и $tg\delta_1$ сравнивая измеренные значения со значениями, приведёнными в протоколе приёмо-сдаточных испытаний ввода. Если после установки вводов производится регулировка подвижных частей выключателя, то измерения емкости C_1 и $tg\delta_1$ и сравнение их с заводскими данными должны проводиться после завершения этих регулировок и проведения испытаний выключателя. Существенное отличие значения ёмкости C_1 от указанного в протоколе приемо-сдаточных испытаний (более 5%) может указывать на повреждение (транспортное или при монтаже). Следует сообщить об этом заводу-изготовителю, эксплуатация такого ввода до согласования с заводом - изготовителем не допускается.

9 Техническое обслуживание вводов

Рекомендуемое техническое обслуживание и надзор:

- Чистка поверхности фарфорового изолятора.
- Измерение ёмкости C_1 и $tg\delta_1$.
- Тепловизионный контроль за локальным перегревом контактов.

10 Испытания вводов

10.1 Общие положения

Измерения ёмкости C_1 и $tg\delta_1$ проводятся до и после установки ввода на выключатель, а также при проведении периодической проверки выключателя. Периодичность таких измерений в соответствии с требованиями «Объемы и нормы испытаний электрооборудования» - не реже 1 раза в 4 года. Если эти величины начинают увеличиваться, то периодичность измерений может быть сокращена до 6 месяцев или менее, когда они становятся критичными или демонстрируют прерывистый тренд.

Внимание!

В целях диагностики состояния изоляции ввода используются значения C_1 и $tg \delta_l$. Рекомендуемое напряжение для измерения C_1 и $tg \delta_l - 10$ кВ.

Мы не рекомендуем измерять значения C_3 и $tg\,\delta_3$ для диагностики изоляции C_3 , т.к. результат измерения этих величин в сильной степени зависит от загрязненности и влажности окружающей среды. Кроме того, в процессе эксплуатации внешняя обкладка ввода заземлена, поэтому в изоляции между внешней обкладкой и фланцем отсутствует электрическое поле, а значит, отсутствуют электрические потери вызывающие ее нагрев и старение. При необходимости, значения C_3 и $tg\,\delta_3$ могут быть измерены при напряжении 1 кВ.

Для измерения сопротивления изоляции измерительного вывода должен использоваться мегаомметр на напряжение не выше 1000B!

10.2Измерения ёмкости и tg δ

При обесточенном выключателе снимается крышка измерительного вывода и с помощью тест-адаптера измерительное оборудование подсоединяется к измерительному выводу, а испытательный источник напряжения - к контактной клемме ввода.

Значение $tg\delta_1$ изменяется в зависимости от температуры тела ввода и, следовательно, для сравнения с первоначально измеренной величиной, измеренную величину $tg\delta_1$ нужно привести к 20°С. Для этого её нужно разделить на корректирующий коэффициент, приведённый в табл. 3 или взятый из графика на рис.8.

Таблина 3

Коэффициент
1.20
1.00
0.85
0.77
0.75
0.77
0.82
0.90

При этом принимается допущение, что средняя температура тела ввода определяется по следующей формуле:

$$T = \frac{2 \cdot T_{\mathcal{B}} + T_{\mathcal{M}}}{3}$$
, где:

Т – средняя температура тела ввода;

Т_в – температура окружающего воздуха;

Т_м – температура масла в выключателе.

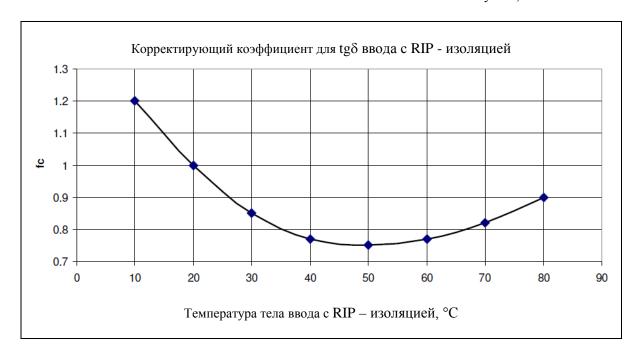


Рис. 8

Ёмкость C₁ зависит от температуры ввода и увеличивается приблизительно на 0,04% при увеличении температуры на 1°C.

Значение ёмкости C₁, приведенное к 20°C:

$$C_{1,20^{\circ}C} = C_{1, \text{изм.*}} (1 - \Delta T_{*} \, 0{,}0004)$$
 , где разница температур $\Delta T = T_{\text{ввода}} - 20^{\circ}C$

10.3 Измерительное оборудование

10.3.1 Измерительный мост

Для измерения ёмкости и тангенса угла диэлектрических потерь используется измерительный мост (мост Шеринга) с переменным отношением плеч или измеритель параметров изоляции. Существует несколько конструкций мостов такого типа, выпускаемых различными изготовителями. Примеры измерительных мостов:

Таблица 4

Изготовитель	Модель
Doble Engineering Company, CIIIA	M2H
Haefely, Швейцария	2820a
ФГУП «НИИЭМП», г. Пенза, Россия	Тангенс 2000
ООО НПО «Техносервис-Электро», г. Москва,	Вектор-2.0 М
Россия	
ГНПП «Спецавтоматика», г. Киев, Украина	P-5026 M
ГНПП «Спецавтоматика», г. Киев, Украина	CA7100-1, CA7100-2

По вопросам использования моста необходимо ознакомиться с инструкцией изготовителя.

10.3.2 Источник напряжения

При измерении ёмкости и tgδ необходимо иметь источник напряжения, как минимум на 10 кВ. Источник может быть независимый, либо встроенный в измерительное оборудование.

10.4Установка и подключение моста

ОПАСНОСТЬ: Убедитесь, что выключатель не работает и обесточен!

Руководствуясь инструкцией на измерительный мост, подключите его к измерительному выводу ввода.

В зависимости от того, какая изоляция испытывается - C_1 или C_3 , испытательное напряжение подается соответственно к контактной клемме ввода или измерительному выводу.

Измерительные провода должны быть как можно короче и не должны касаться заземлённых объектов. Бандаж и перемычки крепления должны быть сухими и чистыми.

Измерительный вывод должен быть чистым и сухим.

10.5 Процедура измерения

Клемму заземления моста подсоединить к контакту заземления на выключателе. При измерении на не установленном на выключатель вводе его фланец должен быть заземлён.

Для обеспечения возможности сравнения результатов измерений со значениями протокола приёмосдаточных испытаний прилагаемого к каждому вводу, ёмкость C_1 и $tg\delta_1$ измеряются при напряжении 10~kB. Мы рекомендуем проводить это измерение пошагово: 2, 4, 6, 8, 10~kB. Результаты измерений должны быть очень близкими. Существенные отличия могут указывать на влияние внешних наводок на измерительную цепь или плохой контакт в измерительной цепи, например, в присоединении к измерительному выводу.

Методика измерений должна соответствовать инструкции на измерительный мост.

После завершения измерений тест-адаптер с измерительного вывода снять и навернуть защитную крышку, предохраняющую измерительный вывод от попадания воды и загрязнения (при этом измерительный вывод автоматически заземляется).

ВНИМАНИЕ: Измерительный вывод не должен оставаться открытым ни во время эксплуатации, ни при хранении ввода.

11 Анализ результатов испытаний

Измеренное и скорректированное значение $tg\delta_1$ сравнивается с данными протокола приёмо-сдаточных испытаний. В состоянии поставки полученное значение $tg\delta_1$ должно быть близким к паспортному значению.

Существенное отличие значения ёмкости C_1 от указанного в протоколе приёмо-сдаточных испытаний (более чем на 5%), может указывать на повреждение в процессе транспортировки или при монтаже, поэтому этот ввод не должен ставиться в эксплуатацию.

Значение ёмкости C_3 зависит от того, как ввод встроен в выключатель и не используется для диагностики. Значение $tg\delta_3$ также не используется для диагностики изоляции ввода (см. π .10.1).

В процессе эксплуатации происходит старение изоляции ввода, о чем свидетельствует увеличение значения $tg\delta_1$. Предельная величина $tg\delta_1$ не должна превышать 0.7%.

Увеличение ёмкости C_1 в процессе эксплуатации может означать пробой одного или нескольких слоев изоляции ввода.

При достижении предельной величины $tg\delta_1$ или увеличении ёмкости C_1 более, чем на 5% просим связаться с ООО «АББ» для получения рекомендаций о возможности дальнейшей эксплуатации ввола

Срок эксплуатации ввода – не менее 30 лет.

12 Утилизация

При достижении конца срока службы это изделие должно быть утилизировано точно в соответствии с местными законами и правилами.

Все содержащиеся вещества и материал до повторного использования должны быть рассортированы. Изделие в целом и какие-либо его отдельные части не содержат токсических веществ.

Предохранение дыхательных путей, защита кожи или какие-либо другие меры предосторожности не требуется. Применяйте общие или надлежащие правила техники безопасности для предотвращения несчастных случаев в процессе работы. В случае неопределенности, пожалуйста, свяжитесь с ООО «АББ» для получения дальнейшей информации и инструкций.

13 Комплектация

В комплект поставки каждого отправляемого ввода входят следующие документы и комплектующие детали:

Документация:

- паспорт формуляр;
- руководство по эксплуатации;
- габаритный чертеж;
- упаковочный лист.

Комплектующие детали:

• тест-адаптер;

14 Адрес завода - изготовителя

По всем вопросам, связанным с установкой и эксплуатацией данных вводов обращайтесь на заводизготовитель по следующему адресу:

Россия, 141371, Московская область, г. Хотьково, ул. Заводская, 1, а/я 8 тел: (495) 7772220, доб.1200.

www.abb.ru

Сервисный центр высоковольтного оборудования ООО «АББ»:

Адрес: 117997, г. Чебоксары, пл. Речников, 3

Тел.: +7(8352) 220-07-22. Факс: +7(8352) 220-07-22. E-mail: HVservice@ru.abb.com

