* __i\
0 A oo O0udoOOoodood]
[—
I == NI 1 \ [L] N
=i 00 000 [T
———— —1— 7 i i
< [T %i\q’/ L(i] H‘
,l = T
[= =
’i W O 1] :

System 800xA Control

AC 800M
Binary and Analog Handling

System Version 5.1

System 800xA Control

AC 800M
Binary and Analog Handling

System Version 5.1

NOTICE

This document contains information about one or more ABB products and may include a
description of or a reference to one or more standards that may be generally relevant to
the ABB products. The presence of any such description of a standard or reference to a
standard is not a representation that all of the ABB products referenced in this document
support all of the features of the described or referenced standard. In order to determine
the specific features supported by a particular ABB product, the reader should consult the
product specifications for the particular ABB product.

ABB may have one or more patents or pending patent applications protecting the intel-
lectual property in the ABB products described in this document.

The information in this document is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential
damages of any nature or kind arising from the use of this document, nor shall ABB be
liable for incidental or consequential damages arising from use of any software or hard-
ware described in this document.

This document and parts thereof must not be reproduced or copied without written per-
mission from ABB, and the contents thereof must not be imparted to a third party nor used
for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and
may be used, copied, or disclosed only in accordance with the terms of such license. This
product meets the requirements specified in EMC Directive 2004/108/EC and in Low Volt-
age Directive 2006/95/EC.

TRADEMARKS

All rights to copyrights, registered trademarks, and trademarks reside with their respec-
tive owners.

Copyright © 2003-2013 by ABB.
All rights reserved.

Release: February 2013
Document number: 3BSE035981-510 A

Table of Contents

About This User Manual

(€15 1 1<) 1 PSPPSRSOt 15
User Manual CONVENTIONScoeveriierierieeniienieesieesteesieesieesieesssesseesaessesseessseensessseens 16
Feature PaCKccvieiiiiieciieeece ettt ettt ettt e eeera s 16
Warning, Caution, Information, and Tip ICONScccceevviviviiniiiiiieniinieeienieee 17
TOIMUINOLOZY ... enveeetetieite ettt ettt ettt sttt ettt et e b et esae et e eaee bt saeenseeseensesneaneeeneans 17
Released User Manuals and Release NOLES.......covveeiierieeriienieeieeee sttt 18

SIL Certified Applications

INrOAUCHION ... 19
SIL Information Can Be Disregarded by Non-SIL USersccoceeeeeveeeerenenncnn 19
STL APPICALIONS.....eeiieeiieiie ettt ettt ettt et e s be e bt estessbe e et e sabeesatesabeebaesasesseens 20
Setting STL-LEVELS.....ccuiiuiiiiiieieieee ettt et 21
Restricted SIL-Level ..o 23
INON-SIL PATAMELETS ...cuveeiieeiiieiieeieeieeetee ettt ettt 24
High Integrity CONIOLIETSccuveeiiiiieiiieieesiie ettt ettt ettt e ee st e ebeesbaeenseenaee s 24

Section 1 - Introduction

Extended Control SOftWATEcceeieriiriiriiiieieieeeneeee e s 27
Libraries and TYPES ...cc.eeeeriirieriieieiertenie sttt ettt st sttt st bt et sbeenee b ean 28
SIL @PPLCALIONS ...ttt ettt ettt ettt e ean e e e 29
Process Graphics 2 (PG2)......ccueiiiriirieiiiiieiiiee ettt 29

Section 2 - Libraries
| F018 06 L0 Te 510) s HUUR PRSP SPRRRTR 31

Libraries and TYPES ...cc.eeeueeeeiereeierieeetet ettt ettt st st nae e 32

3BSE035981-510 A 5

Table of Contents

Advantages of Using Libraries and TYPEesccccoveeriiririerinieriieiesteeeeeeeese e 38
TYPE SOIULIONS ...eeevieiiieiieiiieieeite ettt ettt aee bt e abesabeesaaesabeesseesaseenseens 38
LIDTATIES oevieiieiieiieeie ettt ettt sttt et e st et e b e eeas 39

Building Complex Solutions With TYPES......cccueerierierriienieniienieeieeieesie e eieeniee e 40

Library ManagemeNntcccueiueeiieruieienieetesteeite st te et eete st et e st eate et esteseeeaeenbeeneesaesaeeneeas 44
Tips and RecOMMENdationsScccuveruierieriiienieeieenieerieenteeiee et sre e eneee s 45
ReESEIved NAMES. ...ccueiiiiiiiiiieieeeee ettt 48
Parameter KeyWOrdsScc.ueeiiirieniiiiieeiecieeie ettt s 48
Library Version Handlingccceoieiirieiinieiineee e 50
Updating a Library without increasing the Library Major Versioncc........ 55

Library Command SUMMATYcc.eeuirieiierieiene et eeeentesstesteeteeeeeseeeeeeeetesaeeneesaeeneens 57

Section 3 - Standard Libraries

INEEOAUCHION ...ttt s s 61
Ready-Made Objects, Templates and Building Stones...........cccceeevenerceenennens 61
Standard Library TYPEeS.......ceceeeeririerenieienitetesttete sttt sttt sieens 63
Where to Find Information About Standard Library Types.......ccccceeveerveeruennneene 63
CoOmMMON PrOPEITIESevveeuiiiiiiiiriiiiirieeiere ettt ettt 64

LIDrary OVEIVIEWc..cocveriiiiiiiinieiiciieie ettt sttt ettt sae st eanens 66
SIL Certified TYPES ..ccuveeveeeiriieniiriieiesieestenieete sttt sttt sttt st sb s e 66
SUPPOTLLID ..ottt ettt et 67
ICON LIDIATY .ottt st 67
BasicGraphiCLibc..cocoiiiiiiiiiiiiiiicecce e 67
BaSic LDIAr ...co.coiueieiiieeieie ettt s 68
Alarm and Event LiDraryccccovvieiiieniiniiiiiieeiecce ettt 68
SINAL LIDIATIES ..ottt ettt ettt st ebe e e 68
Process ObJect LIDTariesccuuevverrieeiieeieeiieiieeniteste ettt st siteesieesne e 70
Synchronized Control Librarycccceceeeeierinieniiiee e 70
CONtrol LIDTAri€sccuevueiiiriiiiiriieieeieetiecete ettt sttt 71
SUPErVISION LiDIariescoieiiiruirieiieiesieeie et 73
Communication LADIariesc..coceeeeriinienineeninieenieieneetesceee e 74
BatCh LIDIar ..c..ooueeiieieeeeeee ettt st 75
VMT Library (High Integrity Controllers Only)ccoccceveeeviieneenciennieeneenieennes 75

6 3BSE035981-510 A

Table of Contents

HAardware OVEIVIEWcccuiiiciieiieeiiesiteeteesteeeteeteesreesteesteesteessseesseesssessseesseesssaessassssens 76
Basic HArAWArecooiiiiiiiiiiiieiiereceete ettt st s 76
PROFIBUS ..ottt ettt ae e s e e te e aae b e e aaeeabaessnaessaenses 76
PROFIBUS DEVICES ...cuvieiieeiiieiieeiiiitesie et esiie ettt sttt e itesbeesinesateesseesaneenses 77
PROFINET TO.....uiiiiiiiieiiieteee ettt ettt ae et e veeve e v e enbaesaaesbaesaaaennes 78
PROFINET IO DEVICESueeruiiriiieiieriieiienteeitesiteeieesitesteeieesereeseesaeesbeessnesnses 79
FOUNDATION Fieldbus HSEcoooiiiiiiiieieceeee et 79
MaASEETr BUS 300eeeiiiiiieiieeieeieeeteete ettt sttt sttt e aa et 79
INSUM ettt ettt et et e s ae et e e st beesbeessbeessaeseessseeseenssas 79
DIIVEBUS ettt sttt 80
MODBUS TCP ...ttt ettt ettt ae et e e e e b e enbeesaaesbeessneennas 80
TEC O1850 ..ottt ettt st ettt e st be e s abesbe e et 80
AF 100 ettt et e et e st e e e be e e rbeebe e s abe e aaenntas 80
IMODS ettt ettt ettt ettt s be e aaesats 80
EtherNet/IP and DeVICeNEL......ccc.cccviiiieiieeciieeiieeieecee et ee e v aeeseaeeaeesvee e 80
S200 T/O SYSLEIM ..c.vveeuiieeiiieiie ettt ettt ettt ettt e sebeesbeesibesbeesaeesebeeaeesasees 81
Satt RACK I/O SYSIEM ...couviiiiiiiiiiiiieeeee e 81
S800 T/O SYSLEIM ettt ettt ettt st e te e beesaeesebeeaeesasees 81
Serial COMMUNICAION.ccveerireieeeieeteerteeiteesteeereereessseesseesseessseesseesssessseesseens 83
Self-defined UDP CommUNICALIONc.eevuieriirniieniieniieniieniiesieenieesneeveeseeeseeees 84
Self-defined TCP CoOmMMUNICAIONeeivvierveerrieereeiieeseeesieesteesveesseesaeesreesseesssens 84
Printer and MOAEIM.........coouiiriiiiiiinienieeiteree ettt s 84
FOUNDATION Fieldbus Hl1.......ccccuiiiiieiiieieciie ittt 84

TOIMPIALES ..eevveeetee ettt ettt ettt et s e et e s abe et e e bt e eabe e bt e sabeebeesebeebeesaeesabeenaaeenteen 85
Execution of Copied Complex TYPES.....cccoeruerrirriririnenenerereeeeeene e 92

Section 4 - Analog Process Control

3T g ot L1 ot 4 o) s USSR PRUUS 99
(1011 161S] o | OO OO OO UOSTRPRRRPT 100
Control LibrarieS OVEIVIEW........c.ceeveriierieerieeriesieesieesseessesseesseesssessseesseessesnes 100
Functions and Other Libraries Used for Analog Control.........c.ccceeeevveriieennnne 103
CONTOICONNECHIONvveeeieevieeireeieeeteeteeeteeeteeseteesteessbeesseeseessseesseessseeseesssensses 103
CONTOIIET TYPES c.ueeneieriiieiieeiteeiee ettt sttt st ete e sbe e beebeesteebeesbbesnbeesaeenns 112

3BSE035981-510 A 7

Table of Contents

Basic Controller PrinCiplesccoecerieierieneeienieeesieeeeeeee et 115
Controller AIZOTITRIMScccueiiiiiiieiieitee ettt s 117
Hysteresis v Dead ZOMe..........cceeieriiiieienieieeieeese et 123
FUZZY CONIOL ...eiiiiiiiiieiiecitee ettt sttt sttt et 127
CONLOLIET MOES ...ttt st 134
FACEPIALES ...vieneieeiieiie ettt ettt et aeas 134
DIESIZI .ttt ettt ettt h et sttt e ae et bt e te st e beeaeenteeae 138
General Design ISSUES.....cccueiviiiriieiie ettt ettt 138
CONLIOL SEEALEZICS. ...veeeetieiieiieiieie ettt ettt ettt sttt be et sae et e sae e eees 141
Remarks on the Design of Control LoOPsSccceeveeriieniieniieiienieeeesieeieeeene 143
CONLTOLLET TYPES ..ttt ettt ettt ae e 144
Industrial Controller TYPESecvveeriieriieeriienitiieerte ettt 151
Signal Handlingccooeeieiiiiiiiieeieee ettt e 154
Getting Started with COntrolCONNECHION.......cccvierieerieeriieeieeite ettt 154
What is ControlConnection?............cceeeereruierienienieeeieeeseeeneeseeeeseeeeeseeeneeseens 154
Dealing with Data FIOW DIir€Ctionsc.cceecuieriieniirniienieeieenieeieeieeseeeeeeeen 155
Open the Gates to ControlCONNECHIONcc.eoveveieieieirenieene e 159
Creating a Control Module with ControlConnection (CC template)................. 161
WHAL NEXE? .ttt sttt es 175
AdVanced FUNCHONScouiriirieiiiienieeteneeteecet ettt 183
Anti-Integrator Wind-Up FUncCtionccccoceeieiiiiininene e 184
Bumpless Transferc.eevieeiierieeieete ettt sttt e 185
Deviation AJAITScecueeuieiiiiee ettt 190
Feedforwardocooiiiiriiiiiieectceeeee ettt 192
AULOTUNIINE .ottt ettt ettt ettt et ettt sae e e s et eneeneeueene s enenee 193
AdAPtive CONIOL....ccuiiriiiiieeiierieeeerte ettt sttt e st beesabe st e saaesareens 200
Gain SChEAUIINGetieiieiieeet et 204
Gain Scheduling versus Adaptation..........ceecueereeriernieenieerieenieseeesee e eeeeeeens 206
Additional Control FUNCIONSc.eeuieiirieiiiriieiieeeie et 208
Input and Output Signal Handlingcceecueevieniiiiiienienieeiienieeeenieeeee e 215
SUPETVISION ...entiiiiiieiit ettt ettt ettt e st e tesbe st et e e st ebe et esaeentesaeeneeeees 226
CalCUIALION ...ttt ettt sttt sttt et ettt 229

8 3BSE035981-510 A

Table of Contents

Signal Handling........coveiueeieniieieieiee ettt 231
TIME AVETAZE ...eeovveeniieiieeitenite et e ette st et e st e e beesatesateesbeessbesabeessseenseenbaesnseenseens 234
Branch ODJECESc.ueeuieiieiieiieiiere ettt ettt et st sae e 240
SEIECLOT ODJECES ..vveererurieriiieieeiieeteeriee sttt esiee sttt eteeieesabeesbtesaeessbeesasesnteeseesaseenne 244
LiMiter ODJECES..eutitieuiieiieteeiierie ettt ettt ettt ettt et te et e b entenbeentesaeeneene 250
CONVEISION......uiiiiiiiiiiiiiitiii ettt ettt st s s 253
MiScellaneous ODJECESccuevuerierieeieiieieste ettt ettt 256
CoNtrol LOOP SOIULONS ..co.veiiiiiiiieiiiieiieie ettt ettt ettt e st s esatesbeesaaesnes 257
INEEOAUCTION ...ttt ettt ettt et 257
COMCEPL ceeteeiieite ettt ettt ettt e te st e st e se b e esbeessbesabeesabesateesstesnbeebeesaseenseanns 257
DIESIGN i ettt eh et st eee 257
EXAMPIE oottt st sttt e re e 266
Basic Control Loop EXamples........cc.eeiieieiinieniiniee et 278
Signal Selection EXaAmPIEcccuevriiirieriiienienieeiterie et sveesbee e 280
Common Range EXamplecccooviiriiiiiiniiniieiciceieceneeee e 282
Split Range EXampPIescocveiriiiriiiiieniiieieenieeieete sttt st 283
Level Detection EXampPIecoooiieriiiiiiieniereeiieeecee e 285
APPlication EXAMPIEScovvieriieniiiiienieeieerite ettt ettt sttt et sne et esanesne e e 287
Simple Loop EXAMPIESc.coeeviririniiiiieieiniecrieesetcteeeeeeee e 290
Cascade Loop EXAMPIEScceeviiiriiiniiiiieniecieesiteee ettt sttt 292
Fuzzy Control Loop EXamples...........cccooiiiiiiiiiiiniiiiiicccccecceee 295

Section 5 - Binary Process Control

3T g ot L1 ot 4 o) s USSR 297
(1011 161S] o | OO OO OO UOSTRPRRRPT 298
Process Object Libraries OVEIVIEWcc.ccueeveerirreriniineneneeneereneeeeneeeene e 299
Process Object Template Concept (Core ObJECES) ..cvververreerreerieenieenieeieenieenns 306
Core Object Functions and Parameters (UniCore and BiCore)cccucu...... 310
Control Module ICOMSooviriieriieeiieiierie ettt st 327
FaCEPIALES ..ot 328
INteraction WINAOWScccveeiiiiiiieiieiienie et etceiee sttt st esae e ens 331
Interaction Parameters.........coeeviieeiieeiiie ettt 332
| T 4 H OO OO OO TTRPRRPT 333

3BSE035981-510 A 9

Table of Contents

Choose the COorrect TYPE.....ceruiirrieeriiiiieetertt ettt 334
Use Standard Library TYPeS......cccveeveerierieiiiienieeieenieesieeieesteeieesieesreesaeeneee s 336
Use Standard Library Types to Create Self-defined Types......ccccocceveevereenenne. 336
Group Start INTETTACE.ccouviiiieieeiieteseee e 337
VOting INEEITACEcoueieieiieieiiei e 338
Alarm Handlingcocveeeieiiiinieniieteeteeeese ettt sttt 339
Generic Uni- and Bi-Directional Controlccceeeveeeieeniescieeneeeieesieeeeeeveens 341
Motor and Valve COontrolccccoeevierieieniniienieienceeenceeenieee e 345
EXAMPIES ..ttt s ettt s st 352
Create a Library and Insert a Copy of a TYPe....covcvvvviierierciienieiieeeenieeeeeeene 352
Add Functions to Self-defined TYPes.......ccceceeririererieiiniee e 357
Connect Faceplate EIEMEeNtSccc.cocierieeiiienienieeie et 361
Edit @ FACEPIALe......eeuiieeeieeiieetee e 364
Connect to a Control Panel in Panel Mode..........c.ccocceevenirieiiniennicncenicneeneene. 374
AdVaANCEd FUNCHONSeocuiiiiieiie ettt ettt st e e tae v e e e e sveebeessaesssaessaesnseenes 378
Level Detection, Commands and Alarm TEXTSuuvvvvvieieieeiiiiiiiiiiiiieieieieneennens 378
ABB DIiVeS CONLIOL.....cuiiiiiiiiieeiieeieesiteeteeeteeeeeeteesieeeaeesteesreeseessseensaesseesnseas 381
INSUM CONLIOL ..ottt ettt sttt ettt 401

Section 6 - Synchronized Control

INETOAUCTION ...ttt e 419
Sequence Start LIDIarycocoiiiieiiiiiniinieceeeer ettt st 422
OVEIVIBW .ottt ettt ettt e st st s eae e 422
Sequence Start CONCEPLcovveiriirriiniieeenee ettt ettt ereesaee e 422
Sequence Start ODJECES ...cc.veeruierieeiierieeieeree sttt e ste st e st e s beesbeeeeeeneee s 423
SEFC VIEWET LANKooiiiiiiiiiiiiiee e 424
Group Start LIDTATYcccveeruiiiiiiiieieeie ettt sttt et ae e e b e e 427
Group Start CONCEPL ..couveeuieriiiiieeiiieite ettt ettt sbe et bee e esveesaeeeas 428
Group Start CONTIGUIAIONeevveeriierieeriienieiieenee sttt este st e seeesaeesbeesaeeeareens 428
Example for Template Configurationc..ccceceeceeverenenenenienienieneeeeenenennens 429
GrouP StATt ODJECLS ..vevuveeiieriieriieeieeieeste et ettesteeteesiteeteesbeesreesseessesseesaeenns 431

Section 7 - Surveillance

10 3BSE035981-510 A

Table of Contents

INEFOAUCTION ..ottt ettt st ettt b ettt be et e sae et e sbeeneas 435
Signal and Vote LoOP CONCEPL ...ccueiriieriieriiiiienieeitentesieestteeteeiee e ebeesaeesbeesaeesane s 435
OVEIVIEW .ttt ettt ettt ettt at et ettt e e e s bt e tesaeeteebe e beeseeteeseenteeneenaeenes 435
EXAMPIE oottt st et sttt e ne e 441
Standard Object Types that Support Voting LOZIC.......cccevuieriieienirierieieieee. 443
Vote Control Module TYPEScccveeeieriieniieniieiienteeieestteeiesiee e ereenteeseeeseenes 449
Vote Structure Control Module TYPES......ccccevvierieriiriiienieniieieeeieeieeeieeieee 450
SDLevelM Control Module TYPES ...cc.veecveerieeriieniiniienieenieeieesteeieesireeieeseeeens 450
SDLEVEIOIAttt ettt sttt et a et et e b st esaeeaeas 456
SDLEVEIANAAeoiiiiiiiiieieeteteeet ettt sttt st st 457
SDLeVEIBranchacc..oociiiiiiii et 458
Latching input object quality information.............ceceeeviieriieriienienieenieeieeieene 459
Supervision and Fire&Gas LiDraryccccoceeiiiiriiinieieneeeeee e 461
OVEIVIBW .ttt ettt ettt et ettt st et st et sae e b sbe et e saeenaeeae 461
(071 1o o TSRS 461
DESIZN ettt et sttt et ebe e 463
Fire Area EXAMPIEcooieiiiiiiieieeieeee ettt 465
CaAUSE GAS ..ottt ettt et sttt 470
Cause SMOKE ..ottt 479
Cause MANUAL ALARM CALLPOINTccccoiiirinieenteeeeeeeeeiesiese e 484
Feedback Signals........cccooiiieiiiieieeeeeee e 487
Waterspray/DELUGE Press SWitCh......c.oovieviiiniencieiiieniecieceeeieeiee e 487
Completing the FireArea EXample.........cccccveeririnienenencnenenenenenenenene e 493

Appendix A - Customized Online Help

Online Help Files for User-defined Libraries and Applications...........cccccceeuveerenennenn 495

Online Help Files for User-defined Libraries with Hardware and Non-standard hardware
496

Access Customized Online Help from Control Builderc.cccoevenienveciicinienenennenn 496

Context-Sensitive LINKINGc.cooviiriiinienieiiieriecieesteee ettt st 499

Appendix B - Library Objects Overview
SIL-Level 0n FUNCHIONS.......c.vvviiiieeiiiee ettt e et e e 501

3BSE035981-510 A 11

Table of Contents

SYSTEIM ¢ttt ettt ettt ettt et ea bt e s bt e et e bt e st e e bt e sht e e bt e sube e bt e esbesbeesabeenbeenaees 502
Basic LADTAIY ...ceoiiiiiiiiieiecee et sttt et b ettt 522
CommUNICAION LADIAIIES.....c.veeetiiiiieiieciieeitesee et ere et re et e sebeesreesseeenbeesasaenseeeens 535
MMSCOMMLID.....oitiiiiiiiieie ettt sttt st e esareens 535
ModemMCOMMLID........cciiiiiieiieeiecie ettt et ae et e re e b e s beebaessaeenreas 541
COMLICOMMLIDoovviiieiieeeee ettt ettt sbe e sseessesesseesseesaessesnnennas 542
MOdBUSCOMMLIDoeeiiieiieiieeieciee sttt et e e e e e be b sebeeveesenas 543
MTMCOMMLD ...eiiiiiiieeiieie ettt et eb e s esbeenaee e 543
MB300COMMLIDcuviiiiiiiieiieeiecie ettt ae et ve s reebaesaaeenseas 544
MoOdBUSTCPCOMMLIDcooiiiiiieiieiieeieeie ettt 545
S3964RCOMMLIDccviiiiieiieeiieceeete ettt e e ve et esveebe e taeesbaesaneenns 546
SattBuSCOMMLID.coouiiiieiiierieeieete et 546
SerialCOMMLID.....cciiiiiiiiecie ettt s beebe e taeebeesaneeens 548
INSUMOCOMMLIDeeiiiiiieiieeieeteeeese ettt sttt s 549
FFHSECOMMLID ...ccviiiiiiiiiciieiteeis ettt et s ve v e e sane e as 551
FEFHTCOMMLID......oiiiiiiiiiitiiieieeie ettt sttt st e 553
UDPCOMMLIDviiiiiiiiccie ettt seve e aaeeveessaeensaens 554
TCPCOMMLID ...ttt ettt ettt sabe e e 555
Alarm and Event LibDrary..........coocooioiirioniiieieeee ettt 558
CONTOL LIADTATIES ...eeuvieiiiieiieeiiieiteeteeit ettt sttt et et et st e et e sateebeesaeesnbeensnesnnas 563
COoNrOIBASICLIDccviiciiieieeciiieie ettt eae e e et sebaeveeeae s 563
ControlSIMPIELADviiiiiiiieiiicieee et n 567
ControlStandardlLibceociieciieiie it s 570
CONTOIODIECLLAD ..ottt ettt ettt st e e e saee s 582
CoNtrolSOIUHONLADcocuvieiieciiieieee ettt ae e eereesaeenese s 586
ControlEXtendedLib........cocueeriiiiiiiiieiieeieerie ettt 588
Control AdvanCedLib.........c.cociieviieciieiiiee et r e ae e 592
CONTOIFUZZYLID ..ottt st s 594
BatCh LIDIarycc.coveoiiriiiiiiieieinneeteeetet ettt bbb s 598
Process ObJECt LIDTATIESccuvivvveerieriieiienieeiteieesie st site st ettt estesaeeseeeenbeeeees 599
ProcessObjBasiCLib ..ottt 599
ProcessObjEXtendedLib..........coviiriiiiiiinieiiieieeieeee et 607

12 3BSE035981-510 A

Table of Contents

ProcessOBJDIIVELIDcouieiiiieieieee e 613
ProcessObjINSUMLIDcc.civiiiiiiiieieciteee et 616
SUPETVISION LIDIATYeeiiiiieiiiieieet ettt ettt enen 620
SupervisionBasiCLiDc.c.coiiiiiiiniiiiiciece e 624
FAr@GaSLID ...t et 625
SIZNAT LIDTATIES .veveeuvieeiiieiieiiiieieesite ettt sttt ettt ete st e siteeae e bt e sabeesaeesateenaaesnnesnnes 627
SIGNALLAD .ttt st 627
SigNAIBASICLIDveeiiieiiieiiieciccte ettt 634
Synchronized Control LIDIariescccevieriiririeniinierieeiieeeice e s 635
SEGSTATTLAD ..ceeteeiieitieee ettt sttt sb et e b e 635
GroupStarthib «...oo.eeiiiee et 637

Appendix C - Process Graphics 2 Migration

Migration of VB Graphics in User Defined Object TYPesccoceevvererveeneeienieeeennenne. 639

UPAAtes OT PG2oo.eiiiiiiie ettt ettt st st 643
Adding ObJect t0 OVEIVIEWocuerieriirierienienieeiieie ettt sttt 643
Connect Faceplate EIEMENtSsccceecvevieiiiniiniinieiciieneeeeecrenreseereeeene e 645
Edit @ FACEPIALecoueeiiriiiiieiieieeeittee et 645
Using a Faceplate in Online Mode...........ccceoieviinvieniiiieniiieneceneeeeieeecneee 652
Example for Template Configuration...........cccceeevuereeneneenenennienenienieeceneeene 653

INDEX

Revision History

INEFOAUCTION ..ottt ettt ettt st ettt e b et e sae et e sbeeneas 667

REVISION HISTOTY ..viiiiiieiieiiieciieeie ettt sttt st ettt e e st eenbeesabesaneeneee 667

Updates in Revision INAEX Accoeiiiiiieiieieiieee ettt 668

3BSE035981-510 A 13

Table of Contents

14

3BSE035981-510 A

About This User Manual

General

Any security measures described in this User Manual, for example, for user

@ access, password security, network security, firewalls, virus protection, etc.,
represent possible steps that a user of an 800xA System may want to consider
based on a risk assessment for a particular application and installation. This risk
assessment, as well as the proper implementation, configuration, installation,
operation, administration, and maintenance of all relevant security related
equipment, software, and procedures, are the responsibility of the user of the
800xA System.

This manual describes how to create re-usable automation solutions using the ABB
standard libraries that are supplied with the 800xA system. It is a continuation of the
two manuals System 800xA Control, AC S00M, Configuration (3BSE035980%), and
System 800xA Control, AC 800M, Planning(3BSE043732%*), which describes basic
configuration and programming functions that are accessed through the Plant
Explorer and Project Explorer interfaces.

The libraries described in this manual conform to the IEC 61131-3 Programming
Languages standard, except for control modules and diagrams, which are an
extension to this standard.

If you intend to run SIL certified applications in a High Integrity controller, see
@ SIL Certified Applications on page 19.

There are four general sections:

* Section 2, Libraries, which describes the concepts of using libraries when
developing automation solutions.

* Section 3, Standard Libraries, which contains a general description, usage, and
common properties of the libraries delivered with the system.

3BSE035981-510 A 15

User Manual Conventions About This User Manual

Section 4, Analog Process Control, which describes creating control loops and
other analog control functions using the Control libraries.

Section 5, Binary Process Control, which describes creating binary control
solutions using the Process Object and Signal Object libraries.

In addition to the above sections, there are two more specific sections:

Section 6, Synchronized Control, which describes how creating start and stop
sequences for different automation solutions using the Group Start Library and
Sequence Start libraries.

Section 7, Surveillance, which describes the Signal and Vote Loop Concept and
creating supervisory applications using the Supervision and FireGas libraries.

User Manual Conventions

Microsoft Windows conventions are normally used for the standard presentation of
material when entering text, key sequences, prompts, messages, menu items, screen
elements, etc.

Feature Pack

The Feature Pack content (including text, tables, and figures) included in this
User Manual is distinguished from the existing content using the following
two separators:

Feature Pack Functionality

<Feature Pack Content>

Feature Pack functionality included in an existing table is indicated using a

table footnote (*) :
* Feature Pack Functionality

Feature Pack functionality in an existing figure is indicated using callouts.

16

3BSE035981-510 A

About This User Manual Warning, Caution, Information, and Tip Icons

Unless noted, all other information in this User Manual applies to 800xA Systems
with or without a Feature Pack installed.

Warning, Caution, Information, and Tip Icons

£\
A\
®
H
0

This User Manual includes Warning, Caution, and Information where appropriate to
point out safety related or other important information. It also includes Tip to point
out useful hints to the reader. The corresponding symbols should be interpreted as
follows:

Electrical warning icon indicates the presence of a hazard that could result in
electrical shock.

Warning icon indicates the presence of a hazard that could result in personal
injury.
Caution icon indicates important information or warning related to the concept

discussed in the text. It might indicate the presence of a hazard that could result
in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design your project or how to
use a certain function

Although Warning hazards are related to personal injury, and Caution hazards are
associated with equipment or property damage, it should be understood that
operation of damaged equipment could, under certain operational conditions, result
in degraded process performance leading to personal injury or death. Therefore,
fully comply with all Warning and Caution notices.

Terminology

A complete and comprehensive list of terms is included in System 800xA System
Guide Functional Description (3BSE038018%). The listing includes terms and
definitions that apply to the 800xA System where the usage is different from
commonly accepted industry standard definitions and definitions given in standard
dictionaries such as Webster’s Dictionary of Computer Terms.

3BSE035981-510 A 17

Released User Manuals and Release Notes About This User Manual

Released User Manuals and Release Notes

A complete list of all User Manuals and Release Notes applicable to System 800xA
is provided in .

updated each time a document is updated or a new document is released. It is in pdf
format and is provided in the following ways:

* Included on the documentation media provided with the system and published
to ABB SolutionsBank when released as part of a major or minor release,
Service Pack, Feature Pack, or System Revision.

* Published to ABB SolutionsBank when a User Manual or Release Note is
updated in between any of the release cycles listed in the first bullet.

ﬂ A product bulletin is published each time

18

3BSE035981-510 A

SIL Certified Applications

Introduction

SIL stands for “Safety Integrity Level”, as specified in the standard IEC-61508. To
run SIL certified AC 800M applications, a SIL certified AC 800M High Integrity
controller is required.

@ It is also possible to run non-SIL applications in a High Integrity controller.

Certified applications comply with SIL 1-2 and SIL 3.

The Safety Manual, AC 800M High Integrity (3BNP004865*) Manual contains
guidelines and safety considerations related to all safety life cycle phases of an AC
800M High Integrity controller.

SIL Information Can Be Disregarded by Non-SIL Users

Part of the information provided in this manual applies to SIL applications only.
This is indicated, wherever applicable. If SIL applications are not run and the
AC 800M High Integrity controller is not used, then disregard any SIL-specific
information.

SIL is a standard for applications with very high demands on reliability. SIL
applications should only be used where specifically required.

For information on restrictions regarding SIL applications and High Integrity
@ controllers, see online help and System 800xA Control, AC 800M Getting Started
(3BSE041880%) Manual.

3BSE035981-510 A 19

SIL Applications

SIL Certified Applications

SIL Applications

SIL application

A SIL application is always marked with a SIL icon when shown in the
programming interface.

Eb- WY Libraries

D System

.. [BasicLib 1.6-8
- [lconLib 1.3-3

- P YMTLib 1.1-0 ™

&~ W Hardware
[@ Applications

3] H?, Application_1 - (Controller_1.Marmal)
"3 Application_2 - (Controller_1.5IL)

[VMT_Controller_1 @
S @ ®
[xi) Controllers

Figure 1. SIL application in Project Explorer

When an AC 800M High Integrity controller is used, there is always an additional
standard library, with two additional applications (see Figure 1):

e VMTLib (1) is the Virtual Machine Test library, containing types used when
running the VMT application.

e VMT_Controller_1 (2) is an application used to make sure that the HI
controller works properly. The name of this application is formed as the prefix
VMT_ and the name of the controller.

* CTA (3) is the Compiler Test Application, used to make sure that the compiler
works properly.

Never delete the above libraries and applications when running a High Integrity
controller. The VMT library, the VMT application, and the CTA application are
needed to make sure that the High Integrity controller and compiler work
properly.

20

3BSE035981-510 A

SIL Certified Applications Setting SIL-Levels

A SIL application may only use library types that are SIL certified. SIL certified
library types are marked with SIL icons in the programming interface. The compiler
also checks for constructs in the code (for example, loops) that are not allowed
according to the SIL standard. If a SIL-marked application contains any types,
objects or constructs that are not allowed, the application cannot be downloaded due
to compilation errors. For details on SIL icons and Restricted SIL see Restricted
SIL-Level on page 23.

Setting SIL-Levels

The safety level Non-SIL, SIL1-2, and SIL3 can be set on Function Blocks,
Control Modules, Single Control Modules, Programs, Diagram and Diagram types,
Applications and Tasks according to the requirement.

Feature Pack Functionality

The safety level Non-SIL, SIL.1-2, and SIL3 can be set on Function Blocks,
Control Modules, Single Control Modules, Diagrams, Diagram Types, Programs,
Applications and Tasks according to the requirement.

Right-click on the object (except for tasks where the setting is performed in the Task
Dialog), select Properties, and then select Safety Level as shown in Figure 2.
Select the required SIL Level.

ﬂ Before changing to SIL1-2 or SIL3 ensure that the objects are SIL compliant.

If you create your own function block type based on SIL standard blocks, the new
function block will not automatically be SIL compliant. To achieve SIL you need
to verify that your connections between the SIL standard blocks are correct.
Using SIL certified standard block will make it easier as you can rely on the
certifiation and content within the standard blocks.

3BSE035981-510 A 21

Setting SIL-Levels

SIL Certified Applications

File Edit View Teools Window Help

A RES FIE @

=

..... gg CriticalReactorl
W) Libraries
3, Applications

% Application_2 - (Controller_1.5IL)
(¥ VMT_Controller_L

[cTa

|4 Controllers

.....

E Pv Application_l - (Controller_1.Normall

Reading project ACBOOM_Highlntegrity_SME11
Reading application Application_1

Reading application Application_2

Reading controller Controller 1

Figure 2. Setting SIL-Level

Editor Enter

CMD Editor

& Reserve...
< Release Reservation...

&7 Take Over Reservation...
+4 Refresh

Documentation...
Statistics

& Search Alt+F12

Task Connection

Protection

Simulated

[v Mon-siL
slL1-2
SIL3

Rebuild Search Data

Mew '
Paste
75 Delete Del
=] Rename F2

Check

The SIL-level is displayed as a black number on top of the icon for the intended
object. If no number is displayed the level is Non-SIL. This marking is also

available on Functions.

22

3BSE035981-510 A

SIL Certified Applications Restricted SIL-Level

Restricted SIL-Level

It is not allowed to use output parameters from Function Blocks, Control Modules
or Diagram type instances marked with Non-SIL in the parameter description in a
way that can influence the safety function of a SIL classified application. If such
code affects an output from a SIL3 application, it might result in a Safety Shutdown.

Feature Pack Functionality

It is not allowed to use output parameters from Function Blocks, Control Modules,
or Diagram Types marked with Non-SIL in the parameter description in a way that
can influence the safety function of a SIL classified application. If such code affects
an output from a SIL3 application, it might result in a Safety Shutdown.

Some of the objects in standard libraries have a restricted

SIL-marking for both SIL2 and SIL3 objects. These functions are allowed to be
used in a SIL application with few restrictions. Using a restricted object or function
to affect I/O or to be used in MMS communication and IAC (Inter Application
Communication), might result in a malfunctioning application or a safety shutdown.

Restricted objects and functions are identified by a special icon in the project tree in
the Control Builder project explorer. They must not be used as a part of the critical
loop for a safety function. The color of the SIL-digit in the icon is grey

on a restricted object and function, compared to the black digit on regular
SIL-classified objects and functions. Examples of Restricted icons is as shown in
the figure below.

It is not allowed to use Functions, Function Blocks, Control Modules or Diagram
type instances marked as SILxRestricted in a way that can influence the safety
function of a SIL classified application.

3BSE035981-510 A 23

Non-SIL parameters SIL Certified Applications

Non-SIL parameters

Some SIL marked objects and functions in the standard libraries have one or more
parameters with the Non-SIL comment in the description field. These parameters
are considered as outputs from the restricted objects, described in

Restricted SIL-Level on page 23.

High Integrity Controllers

An AC 800M High Integrity (HI) controller consists of a PM865 processor unit and
a number of HI-specific objects that are added to the hardware tree, see Figure 3.

B |4 Controllers
=W IN Controller 1 (17216.0.0)
|_:_| 3, Connected Applications
....... 3 Application_1
....... %Application_}!
. [vMT_Controller 1——(3)
[+ W Connected Libraries
[} |4 Hardware AC300M HI
w- [F 0 PMEGS HIS TRPE30

....... 1 sven——— (D)

....... W, vmT @

....... % Slow

- S Access Variables

Figure 3. AC 800M High Integrity controller

The following objects are only added for a HI controller:
1. SMS81X is a module that supervises the function of the controller.

2. The VMT task is used to run the VMT application. Note that the VMT
application is connected to HI controllers automatically, and should not be

removed.

24 3BSE035981-510 A

SIL Certified Applications High Integrity Controllers

3. The VMT application is automatically connected to the controller.

In addition to the objects listed above, a High Integrity controller also has
High Integrity specific firmware, which ensures that the controller works as
specified in the SIL 1, SIL2 and SIL3 standards.

3BSE035981-510 A 25

High Integrity Controllers

SIL Certified Applications

26

3BSE035981-510 A

Section 1 Introduction

Extended Control Software

This manual describes Extended Control Software. The term ‘extended’ comes from
the fact that standard libraries that are not integrated with or based on AC 800M
firmware can be seen as extensions to the 800xA system, and to AC 800M control
software, see Figure 4.

Basic (closely
-q—— integrated with

Extended (not
dependent on —_—

|
|
firmware) | firmware)
|
|
|
|
|
| IEC 61131-3
| code
— [R—| —_— | — —] — —_— _| ____________________
| Batch Control Fire Group Process Seq AC 800M
Gas Start Object Start firmware
Comm. |
A&E |
|
Basic |
|
System

Figure 4. Basic and extended control software - standard libraries (some support
libraries are not included)

3BSE035981-510 A 27

Libraries and Types Section 1 Introduction

Functions and types belonging to the Basic part of the system are described in the
manual System 800xA, Control, AC 800M, Configuration (3BSE035980%*).

This manual contains the following sections and supporting appendixes.

* Section 2, Libraries discusses the considerations when to create own library
structure, and using the standard libraries that are installed with the 800xA
system.

. Section 3, Standard Libraries, contains an overview of the AC 800M standard
libraries. It also explains the use of templates.

e Section 4, Analog Process Control, describes the types of the Control libraries
and the methods to build control loops using these types.

* Section 5, Binary Process Control, describes the types of the Process Object
libraries and the methods to build process object control solutions using these

types.

* Section 6, Synchronized Control, gives a short introduction to the Group Start
and Sequence Start libraries.

* Section 7, Surveillance, describes the Signal and Vote Loop Concept, the
FireGas and Supervision libraries, and the methods to build supervision
systems using these libraries.

* Appendix A, Customized Online Help, describes the requirements for creating
help for the libraries and applications.

* Appendix B, Library Objects Overview, provides an overview of all library
objects.

* Appendix C, Process Graphics 2 Migration, describes the steps for migrating
user defined copies from Visual Basics (VB) to PG2, and also contains updates
to some sections in this manual when PG2 is used.

Libraries and Types

A library is a collection of type solutions, which can be connected to applications
and other libraries, so that they can create instances from those types. However, the
Library>Hardware folder, in Project Explorer, contains libraries with hardware

28 3BSE035981-510 A

Section 1 Introduction SIL applications

types, which can be connected to controllers only. Libraries and types are discussed
in detail in Section 2, Libraries.

Throughout this manual, there are two library categories:

* Standard libraries are installed with the 800xA system. The AC 800M-specific
standard libraries are installed with the AC 800M Connect extension.

. User-defined libraries are created to store own type solutions, so that they can
be re-used.

SIL applications

When SIL certified applications are run in an AC 800M High Integrity controller,
use the library types that are SIL certified. SIL certified library types conform to the
IEC 61508 standard.

For more information on SIL applications and High Integrity Controllers, see SIL
Certified Applications on page 19.

Process Graphics 2 (PG2)

From System Version 5.1, the Visual Basic (VB) graphics is replaced by PG2.

Appendix C contains the updates due to the implementation of PG2. The references
to this appendix are also included in the subsections of this manual, wherever
applicable.

3BSE035981-510 A 29

Process Graphics 2 (PG2)

Section 1 Introduction

30

3BSE035981-510 A

Section 2 Libraries

Introduction

This section describes the library concept, as implemented in the 800xA system.
This section contains:

An introduction (this subsection), which introduces some important concepts
like type and library, different kinds of types and their intended use, and the
appropriate use of type solutions and libraries.

Advantages of Using Libraries and Types on page 38, which contains a
summary of the advantages of using types and libraries as a basis for all
automation system development.

Building Complex Solutions With Types on page 40, which describes the three
different basic ways of building automation solutions using types from the
standard libraries. This topic covers important concepts such as templates.

Library Management on page 44, which describes planning the library
structure and maintaining the libraries over a longer period of time, including
version handling. It also describes some risks and potential problems that the
user must be aware of.

Library Command Summary on page 57, which lists useful actions and
commands when working with libraries.

3BSE035981-510 A

31

Libraries and Types Section 2 Libraries

Libraries and Types

A library is a collection of types, which can be connected to applications and other
libraries, so that they can create instances from those types. However, a library in
the Hardware folder contains hardware type(s), which can be connected to
controller(s) only. In such a case, only the controller(s) can create instances of
hardware types.

For a detailed discussion of types and objects, refer to the System 800xA, Control,
@ AC 800M, Configuration (3BSE035980*) manual.

Types Defined in Applications and Libraries

A type is a solution to a small or big automation problem. A type can be a simple
counter or a complete control loop. It is defined in an application, or in a library.

ﬂ Types contain instances of other types. These instances are often referred as
formal instances. Types from another library can be used when building types, as
long as this library is connected to the application and the library.

A type is used to create instances in an object oriented manner. Each instance points
to the type on which it is based. When an instance is executed, the code stored in the
type is executed every time. The variables and other data are instance-specific.

Since the same code is executed in all instances and the instances inherit the
properties from their type:

* Re-use is made possible and this makes the automation solution flexible, since
the behavior of many instances can be changed by changing the type.

@ The changes made to a type affect all instances.

32 3BSE035981-510 A

Section 2 Libraries Libraries and Types

* The memory consumption for each instance is smaller, compared to the
memory needed to execute the type itself. For example, a MotorUni function
block type consumes about 65 kB, while each additional instance only needs
another 12 kB.

If types are created on a very high level and there is a need to change something for
a particular object, this change affects other objects of the same type.

This can partly be solved by including copies of certain types (as some types in
these libraries are templates, that is, they can be copied to the libraries and
applications and the code can be modified to suit a particular process). These copies
can then be changed without affecting the corresponding part of other types.
However, these copies result in increased memory consumption, as well as create
problems when upgrading types and libraries.

Hardware Types

Hardware types represent the physical hardware units and communication protocols
that can be added to AC 800M (HI). It can be a CPU unit, a communication
interface or an I/O unit (see Hardware Overview on page 76). Hardware types can
be defined in libraries only.

The following are the advantages when hardware types are organized in libraries:
* Easy to upgrade to newer system versions

* Allows a new version of a hardware type to coexist with an older version (but
in different versions of the library).

* Allows new library versions to be delivered and inserted to the system.

* Ensures that only used hardware types in controller configuration(s) allocate
the memory in the system.

A hardware type contains a hardware definition file, which is the source code of the
hardware unit. Changing and replacing a type in a library affects all instances of the
hardware unit. For example, changing a hardware type of an I/O unit that is used in
more than one positions in a controller, affects all positions where the I/O unit is
used in the hardware tree (I/O connections and parameters may be incorrect).

@ The changes made to a hardware type affect all instances.

3BSE035981-510 A 33

Libraries and Types Section 2 Libraries

Libraries

A library is a collection of objects. Libraries are presented as objects in both Plant
Explorer (Figure 5) and Project Explorer (Figure 6).

E |(Enter search name) j |N.;. Filker ﬂ ff_- ‘
B Library Struckure j aspects of 'ABEDrvMpbacIss1
¥ Alarm & Event a Library Definition
+ Diefault Visw Class, Default Yiew Class %a Library Structure
+-W: History Log Templates, History Log Template Library Library Type Reference
=g Libraries, Library Callaction B Name

+ i) ABEDrvMNphaCIES 1HWLIb, Library & object Icon

Eﬂ ABBDryhpbaZI354HwLb, Library
@ ABEDrvRpbaC I35 1HwWLb, Library
Eﬂ ABBDryRphaZ1854HwLb, Library
m ABBProcPlCIZS1HwLIb, Library
@ BBBProcPRlCIZs4HwLIb, Library
Eﬂ AlarmEventLib, Library

m BasiciataphicLib, Library

m BasicHwLib, Libraty

Eﬂ BasicLib, Library

@ Batchlib, Libraty

{ill C151PROFIBUSHwLL, Library

@il CIe5zFFhiHwL, Library J (@ - |ABEDrNpb:
@ CI8535erialComHwLib, Library

o Wersions l
Eﬂ CIBS4PROFIBUSHwLIb, Library
m CIE55MEB300HwLIb, Library
@ 185651 00HwLb, Library Ohject Type Struckure insert
il C1857InsumHLib, Library [Object Types/Control Syste

m CI8SE0riveBusHwLIb, Library
{ill CIBEOFFHSEHwLib, Library
(i CoOMLICommLib, Library

{i@ CoMLIHWLIL, Library

ﬁi ContraladvancedLib, Library

Wersion
ABBDrvMpbaCIss1HwLib 1,

e e e e e e

Figure 5. Libraries in Plant Explorer (Library Structure)

34 3BSE035981-510 A

Section 2 Libraries

Libraries and Types

S] L ibraries

..... ' System

..... EF]BasicLibl.ﬁ-S

..... (! IconLib1.3-3

..... ! ModBusCommlLib1.3-3

B W Hardware
..... [P BasicHwlib 5.1-0
..... Eﬁ]C]ﬁSSBSerialComeLibl.ﬂ—U
..... [P Cla54PROFIBUSHwLIb 2.0-10
..... [P s800CI301CI854HwLib 1.1-5
..... [P 5800CI340CI854HwLib 1.1-5
..... Eﬁ]SSOOIDMDduIebUSHwLib1.1—10
..... [P SerialHwlib11-0

=l @) Applications

. [BasicLib16-8

e) ModBusCommLib1.3-3

& @) Programs

: E Pregraml - (Contreller_1.Fast)

; E Pregram2 - (Contreller_1.Nermal)
----- E Pregram3 - (Contreller_1.5low)

Figure 6. Libraries in Project Explorer

By default, all standard libraries are added to the Library and Object Type Structure
at installation. If one of the self-defined libraries is missing, use the Import/Export
tool to import it. For more details, refer to the Online help for Plant Explorer.

For a library to appear in Project Explorer, it must be added to the Libraries folder of
the project (see Figure 6). Right-click the Libraries/Hardware folder and select
Insert Library. If the library does not show up in the selection list, it has to be
added to the Library Structure in Plant Explorer (see Figure 5).

v

For a summary of useful library commands, see Library Management on page 44.

3BSE035981-510 A

35

Libraries and Types

Section 2 Libraries

A library in the Libraries folder in Project Explorer may contain the following (see
Figure 7):

Data types

Diagram Types

Function block types

Control module types

Project constants (not shown in Figure 7).

&

i Libraries

Eﬁ] Systemn

2 [AlarmEventlib 1.6-0
= W Connected Libraries

- [0 BasicLib 1.7-3
- [0 Iconlib 1.4-0

= & Data Types

b 4 EventQueueltem

E\ ----- &l Function Block Types

....... -aﬂ: AlarmCond

....... -aﬂ: AlarmCondBasic

....... £|: AttachSystemAlarm
....... £|: DataToSimpleEvent

....... £|: Print&larms

....... £|: PrintEvents

....... % ProcessObjectAE

....... Jaf SignalAE

....... -aﬂ: SimpleEventDetector
....... % SystemAlarmCond

- &) Control Module Types

ﬁl AlarmCondBasicM
ﬁl AlarmCondM

Figure 7. Contents of a library in the Libraries folder

36

3BSE035981-510 A

Section 2 Libraries

Libraries and Types

A library in the Hardware folder contains (see Figure 8):

Figure 8. Contents of a library in the Hardware folder

Hardware types (*.hwd files)

Device capability description files (for example*.gsd files)

EI W Hardware

- [} BasicHwLib 5.1-0

1] Hardware types
e] AC BOOM
. Bl CF Card
. == (CF Reader
- = Com
. = Com
- o CPUPA
. == Ethernet
- Ethernet
- T IAC MMS
- [P
= ModuleBus
= hoduleBus
= hoduleBus
« ModuleBus
PMESL / TRE30
PMESE / TRE30
PMBEB0 / TRE30
PME61 / TPE30
PIE64 / TPE30
PMB65 PAS TPE30
PME66 / TPE30
e (2] PMBIL
e S§= PPP
e S PPP
- A sD Card

. = S0 Reader
- _u Soft Controller

3BSE035981-510 A

37

Advantages of Using Libraries and Types Section 2 Libraries

If a type from a library is used, it has to be connected to the application, library or
controller (libraries with hardware types) in which the type is used.

Right-click the Connected Libraries folder for the application, library or controller
in question, and select Connect Library. If the library does not show up in the list,
it must be added to the Libraries folder of the project.

Advantages of Using Libraries and Types

The advantage of using type solutions in the automation system is enhanced if the
types are organized in libraries. This is true if the organization is big and develops
automation solutions for a number of plants and processes. The following two
subsections provide a summary of the advantages of using types and libraries.

Type Solutions

Use type solutions whenever an automation solution contains a large number of
similar objects that perform similar functions, but in different locations or contexts.

Before programming the automation solution, identify the types needed, by
considering the following:

* The parts of the plant that are likely to change. Typically, something might be
added to a production line, or another production line might be added.

* The objects that can be variations on a theme (instances of a certain type
solution). Typically, this would be objects such as motors, tanks, valves.

* The objects that correspond to the types already contained in the standard
libraries that are installed with the 800xA system. If such objects are identified,
configure them for use in the particular environment.

* The situations where one object changes, while all other similar objects remain
the same.

* The standard libraries as well as the self-defined libraries might be upgraded,
which causes problems in running applications.

38

3BSE035981-510 A

Section 2 Libraries Libraries

The benefits of using type solutions are:
* Re-usable solutions save development time, as well as memory.

* Well-tested type solutions increase the reliability of the automation system. It is
also easier to test a system that is based on type solutions.

* Itis possible to change the type in one place and this affects all instances,
instead of having to make the same change for many identical objects.

Libraries
Well-defined libraries provide the following advantages:

e All automation engineers within the organization have access to the same type
solutions. This saves the development time and results in consistent automation
systems.

* The knowledge of experienced programmers and specialists can be packaged
and distributed to all automation engineers through libraries.

* A common standard can be implemented via the libraries (for example, a name
standard).

* Complex solutions can be built with a high degree of control by using library
hierarchies.

* A large number of applications can be updated by updating a library.

* Version control of libraries makes it possible to upgrade some applications,
without affecting other applications. This applies if the major version number
is changed between the both library versions. This is made only in cases when
the compatibility is broken and the library guids are different.

3BSE035981-510 A 39

Building Complex Solutions With Types Section 2 Libraries

Building Complex Solutions With Types

As mentioned in the introduction to this section, there are two basic ways to build
automation solutions from the types in the standard libraries:

* Use ready-made types that only have to be configured and connected to the
environment.

* Use template types that are modified to fit the process requirements. Using a
template also requires adding functions by using other objects from the
standard libraries, or by writing code. See Templates on page 85.

When you cannot find a ready-made type or a template that fits your needs, then you
must build your own solution. A complex type or application-specific solution can

be built using a number of types from the standard libraries, together with your own
types. In some cases, the best option is to use a template and then add functions to it.

An example of a Complex solution, where types from the standard libraries are used
as building blocks, is a cascade control loop.

The cascade loop in Figure 9 is an example of a complex solution. A similar cascade
loop can be found in the Control Solution library.

fMaster

—— Slave cC
Al | i
cC AQ
Al
cC

Figure 9. Cascade loop built from control modules

40 3BSE035981-510 A

Section 2 Libraries Building Complex Solutions With Types

The cascade loop contains two control modules of type PidCC, one used as master,
and the other used as slave (Figure 9). The input consists of two AnalogInCC
control modules and one Level6CC control module. The output consists of an
AnalogOutCC control module.

= 3 Cascadeloop - (TankController. Normal 2)
----- Y Connected Libraries

o & Data Types

t | Function Block Types

= & Control Module Types

e 4 Cascadeloop
- j_# ControllerQutput ControlStandardLib, AnalogOutCC
----- j_# MasterController ControlStandardLib,FidCC
----- j_# ProcessValueMaster ControlStandardLib, AnalogInCC
----- 18} ProcessValueSlave ControlStandardlib. AnalogInCC
{8 slaveController ControlStandardLib.PidCC
b 1# Supervision ControlStandardLib.LevelaCC

[+ & Control Modules

- &l Programs

Figure 10. Cascade loop in Control Builder

The heart of all automation solutions is the actual control of the process and the
equipment. These types can be found in the Control, the Process Object,
Supervision, and FireGas libraries.

However, there are a number of supporting libraries, which can be used to create
specific solutions for part of the system, or to add functions by using other function
blocks or control modules:

* Signal Handling
Signal handling types are not only found in the Basic and Signal libraries, but
also inside the Control and Process object libraries. It might, for example, be
necessary to add a selector if there are several input signals to choose from.
Other examples of signal handling objects that might be added are limiters and
filters, if the input signals are outside the desired range or contain undesired
components.

3BSE035981-510 A 41

Building Complex Solutions With Types Section 2 Libraries

* Alarm and Event Handling
The Alarm and Event library contains a number of types that can be added for
alarm and event handling. These types can interact with existing alarms, or can
be added as a separate alarm function.

* Communication
Objects from the Communication libraries can be added to establish
communication with other applications or even to other controllers.
Communication variables may be used to establish communication between
applications in the same controller where the communication variable is
created, and also between applications in other controllers even if that
controller is outside the actual configuration. Communcation variables may be
used in top level Diagrams, Programs and top level Single Control Modules.

In addition to the types in the standard libraries, you can also define your own types,
both on a higher level and low-level objects.

Most low-level objects are already available as types in the Basic library and via
system firmware functions. Before designing new types, ensure that there is no
similar type or function that fulfills the needs.

An application can be based on a mix of types from standard libraries, self-defined
types from your own libraries, and locally defined types. See Figure 11 for an
example.

42

3BSE035981-510 A

Section 2 Libraries Building Complex Solutions With Types

Library A User Library X
L Type A1
—— Type A3 —— Type X2

X21 (based on B1
() T Library B
X22(based on B2) —

X23 (based on C2)
\Librar
y C

Application Y (connected to Library A and User Library X)

L Type Y1 (locally defined in application)

—— YObject1 (instance) (based on Type A3)

Library A
—— YObject2 (instance) (based on Type A3) —
—— YObject3 (instance) (based on Type Y1)
—— YObject4 (instance) (based on Type X2) User Library X

Figure 11. Building complex solutions based on standard libraries, self-defined
libraries, and locally defined types

3BSE035981-510 A 43

Library Management Section 2 Libraries

Library Management

When working with libraries, it is important to consider the following:
e Version handling
* Connection

* Change to a certain library

See also the manual Library Objects Style Guide, Introduction and Design,
@ (3BSE042835%*).

The following important rules apply:

* Libraries may exist in different versions in the same project (only if the
libraries have different GUID's). Different versions of libraries with hardware
types may coexist in a controller, but it is not possible to connect libraries with
different versions to the same application.

dialog is displayed, showing the library and the versions that cause the problem.

@ If you try to connect multiple versions of a library to an application, a warning
Multiple versions might occur through dependencies.

* Libraries in the Libraries folder may depend on each other in a number of
layers.

Do not interconnect libraries unless it is absolutely necessary. There is always a
@ risk of upgrade problems if there are many dependencies between libraries.

e Circular dependencies of libraries in that are used in applications are not
allowed. Control Builder checks and will warn you if you try to connect a
library that create circular dependencies.

* Libraries can be imported and exported from Plant Explorer using the
Export Library button in the Library Version Definition aspect of the library
object in the Object Type Structure or in the Library Structure.

For details, refer to the manual System 800xA Control, AC 800M,
Configuration (3BSE035980%).

* Library versions are indexed using MajorVersion.MinorVersion-Revision,
for example, BasicLib 1.2-3. A new library has the initial version number
1.0-0.

44 3BSE035981-510 A

Section 2 Libraries

Tips and Recommendations

Standard libraries cannot be changed by the user. This applies to both the
library itself and the types inside.

Libraries have three possible development states:
— Open,

— Closed,

— Released.

If a library has the state Released, it can be changed to state Open. However,
revision index of the version number is increased with one.

If a library has the status Open, it can be changed to Closed or Released.

If a library has the status Closed, it can be changed to Open or Released.

Tips and Recommendations

The following list contains tips and recommendations intended to help you build an
effective library structure and make good use of the standard libraries:

All new libraries should have the suffix ‘Lib’, for example, “TankLib’.

Libraries with hardware types should contain the suffix ‘HwLib’, for example,
‘S800ModulebusHwLib’.

Libraries belonging to the same family should have a common prefix to their
name, for example, ‘TankBasicLib’, “TankExtendedLib’.

You can password protect your libraries, see Library Command Summary on
page 57.

All type names should follow the Control Builder naming standard and the
IEC61131-3 standard.

For detailed information on naming conventions, see the manual AC S00M
@ Planning..

Short names are important for function block types since there is less space to
show names in the Function Block Diagram (FBD) editor.

3BSE035981-510 A

45

Tips and Recommendations Section 2 Libraries

Feature Pack Functionality

Short names are important for function block types, control module types and
diagram types since the names are displayed in the graphical code block of
Diagram editor.

When naming parameters, do not use very long names. This might have
undesired effects in graphical displays.

Use easy-to-understand and descriptive names.

Avoid reserved names, such as IF, THEN, ELSE. See also Reserved Names on
page 48.

Make sure that descriptions for parameters provide the user with enough
information. Also, see Parameter Keywords on page 48.

Hide or protect objects that you do not want the user of your libraries to modify
(or even see).

For detailed information on hiding and protecting types, see the manual
System 800xA, Control, AC 800M, Configuration (3BSE035980%).

When creating a new version of a library, use the version handling rules, see
Tips and Recommendations on page 45.

When creating data types, separate between two cases:

— If adata type is closely connected to a certain type, store it in the same
library as the type.

46

3BSE035981-510 A

Section 2 Libraries

Tips and Recommendations

— If a data type is used in many different types, and these types are stored in

several libraries, there are two alternatives:

a. Data types that are only used internally should be hidden and stored in a
separate support library containing hidden types only. The name of the
library should then include the word ‘Support’, for example,
‘TankSupportLib’.

b. Data types that are used for parameters that are connected to other types
and to the surrounding code should be stored in a common library
containing visible types. The name of this library should then include the
word ‘Basic’, for example, ‘“TankBasicLib’.

Simple function block types, control module types, and diagram types that are
used as formal instances' in several complex types, in several libraries, should
be placed in a separate support library (this library then has to be connected to
all libraries where these types are used).

Document your libraries. Use the Project Documentation function, see Where
to Find Information About Standard Library Types on page 63.

1. Formal instances are objects (instances of another type) that are located inside a type. Formal instances are
executed when the objects based on the type are executed in applications.

3BSE035981-510 A

47

Reserved Names Section 2 Libraries

Reserved Names

In addition to names reserved for use in code (IF, etc. see online help or System
800xA Control, AC 800M Planning (3BSE043732%*) Manual, the use of the
following names is also reserved!, and should be avoided for other purposes.

Table 1. Reserved names

Name Description

Template Use for templates only.

Core Use for Core objects only.

HSI Use for graphics calculation objects only.
Icon Use for icons only.

Faceplate Use for faceplates only.

Info Use for interaction windows only.

Parameter Keywords

All parameters in control module types and diagram types, and all IN_OUT
parameters in function block types, are recommended to contain an indication of its
use in the corresponding Description field. The use is indicated by keywords, see
Table 2. They must contain at least one of the first four keywords. The keyword
should be placed before the following descriptive text, see Figure 12.

Table 2. Keywords for parameters

Keyword Description (start parameter description with keyword)
IN The parameter is only read.

ouT The parameter is only written.

IN(OUT) The parameter is both read and written, but mostly read.
OUT(IN) The parameter is both read and written, but mostly written.

1. These names are intended for use in instance names, for example, an UniCore instance would be called Core.

48 3BSE035981-510 A

Section 2 Libra

ries

Parameter Keywords

Table 2. Keywords for parameters (Continued)

Keyword Description (start parameter description with keyword)

NONSIL Some of the Certified Function Block Types and Control
Module Types, contains SlLx Restricted sub-objects.

NONSIL is used in SlLobjects on output parameters where the
output value originates from any internal restricted object.

It is not allowed to use output parameters from

Function Blocks, Control Modules or Diagram Types marked
with Non-SIL in the parameter description in a way that can
influence the safety function of a SIL classified application. If
such code affects an output from a SIL3 application, it might
result in a Safety Shutdown.

NODE Used when the parameter has a graphical connection node
(control modules only).

EDIT The value of the parameter is used the first scan after transition
from Edit to Run mode without initialization. Online changes
will not influence the executing code until a warm-start is
performed.

2 |AckRule dint 1 IN EDIT Acknowledge rule. 1=Normal ack. 2=No ack., 3=Ack. reset

3 |FilterTime time 0= IM Positive pulses on Signal shorter than this is not noted. Range 0-2

4 |[EnDetection bool true IM If true, the Signal is currently being checked

5 |JAckCond boal falze IM{OUT) Acknowledge alarm condition on positive edge

6 |DizCond bool falze IN{OUT) Disable alarm condition on positive edge

7 |EnCond boal false IN{OUT) Enable alarm condition an positive edge

8 |CondState dint Default QUT Alarrm condition state [0-6) .
_D;Sp_arammers 1 1 | Li 1LIT | M bl 'i'|<_ }

Figure 12. Keywords used in editor Description field

3BSE035981-510 A

49

Library Version Handling

Section 2 Libraries

Library Version Handling

The syntax of the library version number is:
MajorVersion.MinorVersion-Revision

For example, 2.0-1 (X.Y-2).

Table 3 describes the rules that are applicable while creating new versions of a

library.
Table 3. Version handling rules for libraries
Compatibility with
Increase of Rule Previous Library

Versions(!)

Major version X | The major version number of a library is

increased, if:
* The library has types that have changed their
behavior.

e The library is dependant on a new system
version (for example, the library is using new
system functions).

e A connected library has increased its major
version number, and the new functionality of
this new library version is needed in the
library.

The library with changed
major version number is
not system compatible and
not application compatible.

50

3BSE035981-510 A

Section 2 Libraries

Library Version Handling

Table 3. Version handling rules for libraries (Continued)

Increase of

Rule

Compatibility with
Previous Library
Versions(!)

Minor version Y

The minor version number of a library is
increased, if:

¢ New types have been added to the library.
e An already existing type has undergone
functional changes.

e The minor version number is updated for
each new system version to be able to keep
versional changes possible also for the
previous system version.

The library with changed
minor version number is
system compatible and
application compatible.

The increased minor
version number reflects
extended, modified, or
added functionality.

Revision Z

The revision index is increased also when only
bug fixes (from the previous system release) have
been done to the library.

The revision index is automatically increased by
one when the library state is changed from
Released to Open (in the Plant Explorer).

The library with changed
revision index is system
compatible and application
compatible.

The functions may have
changed their behavior,
since they are working as
intended. This affects the
application behavior.

(1) Two versions of a library are system compatible, if both of them can run on the same system version.
Two versions of a library are application compatible, if the same application can use any of them and pass a
compilation for download to a controller.

See also the subsection Updating a Library without increasing the Library Major
Version on page 55.

If a version number is changed, all the trailing numbers are reset.

ﬂ This means, if the minor version number is increased, the revision index is reset
to zero, and if the major version number is increased, both the minor version
number and the revision index are reset to zero.

3BSE035981-510 A

51

Library Version Handling Section 2 Libraries

The 800xA system has three functions for changing the version of a library. It is
important to understand the difference between them:

Create New Library Version (Plant Explorer)

This operation creates a new version of the library. This new version exists in
parallel with the old version. All connections to control projects, applications,
other libraries and controllers are preserved in the old version, but the new
version does not preserve any connections.

The two versions cannot be connected the same application or library, but they
can be inserted into the same control project. However, two versions of same
library with hardware types can be connected to the same controller.

This is the function that should normally be used when working with project-
specific libraries, that is, libraries that are developed for a specific plant or
application.

Change Library Version (Project Explorer)

This operation only works on libraries with state Open. This operation does not
create a new copy of the library. It simply updates the version number (that is, it
changes the version label of the library). The new version replaces the old and
all connections to other objects are intact.

This function should be used in centralized development of libraries that are to be
used throughout an organization. It gives a new version of the library that is
compatible with the old version and keeps all connections. If this function is used
to create new versions, there is normally no need to upgrade library versions
using the Create New Library Version function. See Version Handling Strategy
for Central Development of Libraries with Hardware Types on page 53.

Creating a new Extension Library Version

When a new Extension Library Version object is created in the Library
Structure of plant explorer. select the base library version to which the new
extension library version should be connected. If it is the same base library
version as before (or a minor version with same object IDs), then the old
extension library version is inactivated, and a new version is loaded that is the
same as the old one. The only difference is that the new extension library
version is open and active, and the aspects are assigned to the new version.

52

3BSE035981-510 A

Section 2 Libraries Library Version Handling

Instead, if the new extension library version is connected to a new major base
library version, then all the aspects from the previous extension library version
are copied to the same positions on the new base library version. If a
corresponding object has been removed in the new base library version, then a
warning message is displayed and the aspect is skipped.

Version Handling Strategy for Central Development of Libraries with Hardware
Types

When a new library version is created, all connections to applications and other
libraries are lost. This causes extra work and might also lead to mistakes when re-
connecting the new version.

In organizations with centralized development of libraries, the libraries are used by
different departments and projects. The strategy shown in Figure 13 allows library
versions to retain their connections, as long as the major version number (see
Table 3 on page 50) is not incremented.

3BSE035981-510 A 53

Library Version Handling Section 2 Libraries

Organization/
Customer

(Other engineering

Internal Development

v

station)
State = Open Develop
v Export libr. Import and
State = Closed Freeze | toothereng. > change state
station | to released
Y | Y
State = Open Update Export to
version | user eng.
number | stations
v | State = Released
|
State = Open Develop |
v |
Export libr. | Import and
State = Closed Freeze —| toothereng. p| Change state
station | to released
State = Open Update | Export to
version | user eng.
number | stations
|

\

(etc.)

State = Released

Figure 13. Version handling strategy for central development of libraries

54

3BSE035981-510 A

Section 2 Libraries Updating a Library without increasing the Library Major Version

The control code in a library which has the state Released is locked and cannot be
modified at all. However, control code in a library which is password protected,
cannot be modified neither.

A library in a released state affects all parts of the library (added aspects in Plant
Explorer), whereas a password protection only affects the control code.

Updating a Library without increasing the Library Major Version

®

It is often necessary to make modifications to a library without having to update the
Library Major Revision. This is because importing a new Major version will not
automatically update the project(s) that uses the library. Applications/libraries in the
project will still use the old version of the library. This means that the user first has
to disconnect the old version from the project and then connect the new version.
Otherwise the project cannot access the new modifications and corrections that
come with the new library, due to new Major version.

During an import, the new Major version will be placed beside the older version,
and not overwrite the existing library. Instead they will co-exist in the system.

If there is a need to make modifications to a library without updating to a Major
version, a number of restrictions must be considered. If the library is kept
compatible, the Major version can be retained and this makes it possible to import
an updated library and overwrite the existing library in a System. The modifications
and corrections will then automatically be part of the project that uses the library.

In order to support this functionality for libraries in released state, the library
must be imported with a system extension.

Restrictions to Consider

For compatibility, the following modifications are not allowed in a function block
type, control module type or diagram type:

* Deleting or renaming sub-objects.

This is only relevant when the sub-objects are visible inside the composite object.
This is not possible if the composite object is protected.

* Deleting or renaming a parameter.

3BSE035981-510 A 55

Updating a Library without increasing the Library Major Version Section 2 Libraries

* Changing the data type of a parameter.
* Deleting or renaming non-hidden variables.
* Changing the data type of non-hidden variables.

* Changing the protection properties to ‘Hidden’ or ‘Protected’ for a function
block type or a control module type.

* Changing the ‘Aspect Object’ property of sub-objects.
The following modifications are not allowed in a library:

* Deleting or renaming an aspect in a library.

* Deleting or renaming data types.

* Deleting or renaming function block types, control module types or
diagram types.

* Changing the control module types using the ‘Replace Type’ option.

Allowed modifications

The following modifications are allowed in a function block type, control module
type or diagram type:

* Changing the IEC 61131-3 code.

* Changing connections to sub-objects.

* Adding variables or parameters.

* Adding a sub-object.

e Changing order of parameters.

* Delete or rename hidden variables.

* Changes in graphic aspects for a library type.
The following modifications are allowed in a library:
* Adding an aspect in a library.

* Adding data types.

* Adding function block types, control module types or diagram types.

56

3BSE035981-510 A

Section 2 Libraries

Library Command Summary

* Connecting a library.

Library Command Summary

The following table is intended as a quick guide to library management. For detailed
information on how to work with libraries, see the Control Builder online help and
to the manual System 800xA, Control, AC 800M, Configuration (3BSE035980%).

Table 4. Library command summary

Action

Command/Procedure

Comment

Add library to Library
Structure

In Plant Explorer, use the Import/Export
tool.

The library must exist as an .afw
file.

Add library from
Control Builder

From the Control Builder: Tools-
Maintenance-Compact CB-Open from
Compact Control Builder format.

In this kind of project import, the library
which do not exists in the aspect
directory, will also be visible in the library
structure.

or

A new library can also be made from the
project explorer in the Control Builder.
This added library will also be visible in
the library and the object type structure.

Connect library to
control project

In Project Explorer, right-click the
Libraries/Hardware folder and select
Insert Library

or

In Plant Explorer, find the project in the
Control Structure, select the Project
aspect, select the Libraries tab, click
Insert and select the library from the
Select a Library dialog

The library must exist in the
Library Structure in Plant Explorer

3BSE035981-510 A

57

Library Command Summary

Section 2 Libraries

Table 4. Library command summary (Continued)

Action

Command/Procedure

Comment

Connect library to
application, library or
controller

In Project Explorer, right-click intended
Connected Libraries folder and select
Connect Library

The library must have been
inserted to the project.

Change library
version

In Project Explorer, right-click the library
and select Properties > Version, then
set the new version number(")

If the library state is Open, the
new version will replace the old.

Create new library
version

In Plant Explorer, go to the Library
structure, right-click the library and
select New Object. Select Library
Version and enter a number for the new
version (for example, 2.0-0). Click
Create and a new version is created(!)

Do not do this unless you are
absolutely sure that you want to
create a new library version. The
new version will not have any
connections to applications and
other libraries.

This function can only be used on
libraries with the state Released.

Change library state

In Project Explorer, right-click the library
and select Properties > State, then set
the new state

If the state is Released, it is only
possible changing to state Open.
In this case the index revision
number is increased with one.

Set protection for
library

In Project Explorer, right-click the library
and select Properties > Protection,
then enter a password

If the library already is password
protected, you must enter the old
password before changing it.

Disconnect library
from library,
application or
controller

In Project Explorer, go to the Connected
Libraries folder, select the library and
press Delete

If there are objects that use types
from this library, a warning dialog
is shown

Remove library from
control project

In Project Explorer, go to the Libraries
folder, select the library and press
Delete

If there are applications or
libraries that depend on this
library, a warning dialog is shown

58

3BSE035981-510 A

Section 2 Libraries Library Command Summary

Table 4. Library command summary (Continued)

Action Command/Procedure Comment
Delete library In Plant Explorer, go to the Library If the library is connected to a
Structure, select the library and press control project, an error message
Delete is shown and the library is not
deleted.
Library Usage In Project Explorer, right-click the library | The function shows if and where
and select Library Usage the library is connected to an
application, library, or controller.

(1) The difference between Change Library Version and Create New Library Version is that the former creates a new
version that replaces the old one, while the latter creates a library version that can be used in parallel with the old
version. Also, Change Library Version only works on libraries with the state Open.

3BSE035981-510 A 59

Library Command Summary

Section 2 Libraries

60

3BSE035981-510 A

Section 3 Standard Libraries

Introduction

This section describes the standard AC 800M libraries, that is, the AC 800M
libraries that are installed with the two 800xA system extensions —
AC 800M Connect and AC 800M HI.

V

This part of the section, the Introduction, describes the different types in the
standard libraries, including ready-made types, templates, and types intended
to be used as building-stones in complex solutions.

Library Overview on page 66 gives an overview of all standard libraries, with a
short description of each.

Hardware Overview on page 76 gives an overview of all libraries with
hardware types.

Templates on page 85 describes the template concept, and how to use template
objects and libraries to create re-usable and flexible solutions.

The library concept and how to build and manage a library structure for your
organization is described in Section 2, Libraries.

Ready-Made Objects, Templates and Building Stones
Standard AC 800M libraries contain:

Ready-made objects that simply have to be connected to your environment to
work. Typical examples are the simple control loops in the Control libraries,
and some of the motor and valve objects in the Process Object libraries. See
Standard Library Types on page 63.

3BSE035981-510 A

61

Ready-Made Objects, Templates and Building Stones

Section 3 Standard Libraries

Objects that should be seen as templates. These template types are not
protected and they can therefore be copied to your application, or to your own,
self-defined library. They can then be modified to fit your specific
requirements. The SIL mark is always set to non-SIL in a copied object and
may be altered by the programmer (user) to an required SIL mark that must be
a part of the user SIL certification.

In a template type, there are core functions that are protected. These core
functions cannot be changed (with the exception of parameter connections), but
you can add other functions, both by using other types from the standard
libraries, and by adding code.

Typical template objects are the objects in Control loop solution library. Other
objects are Uni and Bi process objects in the Process Object Extended library,
which can be used to build process control objects for any uni- or bi-directional
object. See Group Start Library on page 70 and Control Libraries on page 71.

Low-level objects that can be seen as building stones to be used for building
more high-level, complex solutions. These objects can be used to add functions
to an existing template, or to build a complex solution from scratch.

Typical building stones are types for signal handling, which can be added to the
output and input of, for example, control loops. See Building Complex
Solutions With Types on page 40.

If the standard libraries do not contain any type that fits one of your specific
requirements, you have two options:

You can build your own type, based on objects from the standard libraries. If
the type is application-specific, you can define it directly in the application.
However, if it is likely that you in the future want to use it in other applications
as well, then you should create a library and store your type solution in this
library. Then, all you have to do to use the type in another application is
connect the library to that particular application.

Say that you discover that you want to use a type in another application, but you
have defined it in an application only. Then you should simply create a library
and copy the type to this library (you can, of course, also copy it to one of your
existing libraries). Then you can connect the library to all applications where you
want to use the type and make sure that all instances refer to the library type. You
can then delete the original type definition from your application.

62

3BSE035981-510 A

Section 3 Standard Libraries Standard Library Types

You can build your own type from scratch. This is not recommended, but might
be necessary if you have a process with very specific requirements. In this case,
it is strongly recommended that you store your types in a self-defined library.

Standard Library Types

When using ready-made types from the standard libraries, there are a number of
things that you should know:

When connecting parameters, the minimum requirement is that you connect the
parameters that do not have default values.

For control modules and diagram types, the information on individual
parameters is given in the description field of the connection editor.

For the in/out declared parameters in function blocks, the information on
individual parameters is given in the description field of the connection editor.

For more complex types, there is often additional parameter information in the
corresponding online help file. Select the type and press F1 to display online
help for a certain type.

There is information for most ready-made types, both in manuals and in online
help, see below.

Where to Find Information About Standard Library Types

For details on concepts, design and configuration for a specific type, there are
several sources:

How to use types from the Alarm and Event library and the Communication
libraries is described in the manual System 800xA, Control, AC 800M,
Configuration (3BSE035980%).

The Basic library and system firmware functions are also described in System
800xA, Control, AC 800M, Configuration (3BSE035980%)..

3BSE035981-510 A

63

Common Properties Section 3 Standard Libraries

. The other standard libraries are all described in this manual:

— For information on the Control libraries and the Signal library, see Section
4, Analog Process Control.

— For information on the Process Object libraries, see Section 5, Binary
Process Control.

— For information on the Group and SequenceStart Libraries, see Section 6,
Synchronized Control.

— For information on the Signal and Vote Loop Concept, Fire&Gas and
Supervison libraries, see Section 7, Surveillance

* All libraries have a corresponding help file. Each object has context-sensitive
help, which is accessed by selecting a type and pressing F1.

» Itis also possible to generate project documentation for a library. In project
Explorer, select the library and select File > Documentation. This will provide
you with an MS Word file, containing short descriptions of all objects in the
library, including a list of all parameter descriptions.

For more information on how to generate project documentation, see online help
@ and the manual System 800xA Control, AC 800M, Configuration (3BSE035980%).

Common Properties

InteractionPar

Most function block types and control module types having an interaction window
also have a parameter, called InteractionPar. This parameter is a structured data type
with components where some of them have the attribute coldretain.

Things that can be done in interaction windows/faceplates can also be done via the
InteractionPar parameter from the surrounding application code. However, if no
such code is implemented you should not connect the InteractionPar parameter (in
the connection editor), just leave the connection field empty while using control
modules. While using function blocks, you need to connect the InteractionPar
parameter to a variable.

64 3BSE035981-510 A

Section 3 Standard Libraries Common Properties

Consider InteractionPar as an option for connecting a local variable that can, from
the application code, reach any of the components inside the InteractionPar
parameter. But remember, connecting the InteractionPar to your code, means that
you also take over the responsibility of handling coldretain values etc.

The main purpose of InteractionPar parameter is to manipulate values from graphics
(interaction windows and faceplates) only, thus not from code. Calling the
InteractionPar (in code) will override any inputs given by the operator. The
InteractionPar should be controlled by graphics, and only in exceptional cases from
code.

continuously writes to it, the corresponding faceplate or interaction window
entrance will be locked. Such writing need to be made only on an event to prevent
the described unwanted behavior.

@ Writing to components in InteractionPar must be done with care. If a user code

ParError

ParError parameter performs diagnostic tests inside an object in run-time mode. You
recognize if an object contains ParError, by the output parameter ParError.

The parameter returns a Boolean output value if the object parameters are out of
range'. The principle of the test on each such parameter is noted in the
corresponding parameter description. For example, severity and class for alarms are
wrong, or a high level input value is lower than the low level value in a level monitor
module, etc. These are two common examples but basically it could test all kinds of
input values.

The general idea of ParError is to provide you with a possibility to anticipate certain
actions and handle them from your code. For instance one can call the Error handler
function and perform a controller shut-down.

However, ParError requires some CPU load each time the diagnostics are executed.
For that reason, all objects that contain ParError also may have an input parameter
EnableParError which is set to false by default. The input parameter guarantees that
ParError will not be executing in non-SIL applications unless you want to (change
the input parameter EnableParError to true).

For a SIL application the EnableParError input parameter is ignored. Hence, the
ParError will always be executed in a SIL application.

3BSE035981-510 A 65

Library Overview Section 3 Standard Libraries

Library Overview

This part describes each standard library briefly. For a list of all types in a library
and a short description of each type, see the Appendix B, Library Objects Overview.

In addition to the standard libraries, there are also firmware functions that can be
@ used in your applications. You find these in the System folder in Project Explorer.
For a complete list of the system functions, refer to Control Builder online help.

SIL Certified Types

For a type to be used in a SIL certified application, the type itself has to be SIL
certified, that is, it has to be certified that the type executes according to the

demands of the SIL standard. SIL1-2 certified types are marked with the number
¢2’, and SIL3 are marked with the number ‘3’°, see Figure 14.

= @ Libraries

IL Certified T
4 [System SIL Certified Type
= [BasicLib 1.6-6
+ I Connected Libraries

L
+- % Data Types 2".‘_1: ACOFAct
—--) Function Block Type
Za ACOFAct

Figure 14. SIL marked object in Project Explorer

3BSE035981-510 A

Section 3 Standard Libraries SupportlLib

The objects and functions in standard libraries can have a restricted SIL-marking for
both SIL2 and SIL3 functions. These functions are allowed to use in a SIL
application with few restrictions, see Figure 15.

S [l AlarmEventLib 1.5-5
+-- W Connected Libraries
+-- % Data Types
= @ Function Block Types
af AlarmCend

?- Restricted SIL T}'pﬁ
daf AlarmCendBasic

1=f AttachSystemAlarm
i=F DataToSimpleEvent

Figure 15. Restricted SIL marked objects in Project Explorer

For information on which types are certified for use in SIL applications, see
Appendix B, Library Objects Overview.

SupportLib
SupportLib contains sub Process Portal graphics, that are used commonly in the
most Process Portal graphic in the standard libraries.

Icon Library

The Icon Library (IconLib) contains icons that are used in interaction windows and
CMD graphics in most other libraries.

The Icon library is automatically added to all control projects, via the control project
template.
BasicGraphicLib

BasicGraphicLib contains Control Builder sub graphics that are mainly used in
ControlObjectLib.

3BSE035981-510 A 67

Basic Library Section 3 Standard Libraries

Basic Library

The Basic library (BasicLib) contains basic objects such as converters, counters,
timers, pulse generators and edge detectors. This library is described in more detail
in the manual System 800xA Control, AC 800M, Configuration (3BSE035980%).

The Basic library is automatically added to all control projects, via the control
project template.

Alarm and Event Library

The Alarm and Event library (AlarmEventLib) contains function block and control
module types for setting up alarm and event handling for objects that do not have
built-in handling of alarms and events. This library is described in detail in the
manual System 800xA, Control, AC 800M, Configuration (3BSE035980%*).

Signal Libraries

SignalLib

The Signal library (SignalLib) contains types for adding supervision, alarm
handling and error handling to I/O signals. SignalLib also contains types to define
different rules that make it possible to control the process to predetermined states
(vote objects). Types from this library can be used together with both binary and
analog control applications.

SignalBasicLib

The SignalBasicLib library contains function block types suitable for SIL3 safety
applications. All objects in this library are without alarm and event handling. These
simple function block types are used for overview and forcing of boolean and real
signals. The easy design makes these function block types perform fast with low
memory consumption.

68 3BSE035981-510 A

Section 3 Standard Libraries Signal Libraries

SignalSupportLib

SignalSupportLib contains sub control builder objects, for example SignalBasicLib
and SupervisionBasicLib. The function blocks are protected. They are used by, for
example, SupervisionBasicLib objects to simplify code in these (parent) objects.

Graphics for objects in Signal Libraries

The indication of abnormal situations in an object is displayed in the faceplate
indicator row on the object mode position. In case of abnormal situations, the
ordinary icon appears with the warning color (yellow) as its background color.

An abnormal situation for an object occurs if:
* Any value in the object is simulated from the external environment.

* Any value from an input I/O or any value to an output I/O uses the
predetermined value (ISP/OSP).

* The IO-channel is of redundant type and the inactive channel fails.

* The object is not a specialized I/O object and the signal is forced from the
external environment.
If the object is specialized, the force indication uses the force icon with a
transparent background to indicate this situation, which is normal indication.

The information specific to the signal concerning the above abnormal situations is
also displayed in the extended faceplate together with the signal value. The
information appears as an yellow text string if the used value is of good quality. If
the used value is of not of good quality, the information about the abnormal
situations appears as a red text string.

3BSE035981-510 A 69

Process Object Libraries Section 3 Standard Libraries

Process Object Libraries

The Process Object libraries contain function block types and control module types
for controlling motors, valves, ABB Drives and Insum Devices. Some types in these
libraries are templates, that is, you can copy them to your own libraries and
applications and modify the code to fit your particular process (see Templates on
page 85). Only Core objects are protected.

There are a number of Process Object libraries:

Process Object Basic Library (ProcessObjBasicLib)

The Process Object Basic library contains the basic Core types that form a basis for
valve and motor control objects in other Process Object libraries. It also contains
two simple types with reduced functionality and lower memory consumption.

Process Object Extended Library (ProcessObjExtLib)

The Process Object Extended library contains a number of function block and
control module types for general-purpose uni- and bi-directional control, and a
number of types for valve and motor control. Most types in this library can be
copied to your own libraries and be used as templates.

Process Object Drive Library (ProcessObjDriveLib)

The Process Object Drive library contains types for building ABB Drives control
and supervision.

Process Object INSUM Library (ProcessObjinsumLib)

The Process Object INSUM library contains types for building INSUM control and
supervision.

Synchronized Control Library

Group Start Library

The Group Start Library (GroupStartLib) contains control module types used to
control and supervise the sequential startup of process objects.

70 3BSE035981-510 A

Section 3 Standard Libraries Control Libraries

Sequence Start Library

The Sequence Start library (SeqStartLib) contains Function blocks and Control
modules with associated Faceplate to control a configured and loaded SFC function
inside the controller AC 800M.

Control Libraries

The Control libraries contain types and ready-made solutions for analog control.
See Section 4, Analog Process Control. There are a number of Control libraries:

Control Simple Library (ControlSimpleLib)

The Control Simple library contains a number of types that are intended to be used
for building simple control loops.

Control Basic Library (ControlBasicLib)

The Control Basic library contains function block types that are customized PID
loops. These function blocks shall be connected to the I/O variables.

Control Standard Library (ControlStandardLib)

The Control Standard library contains control module types for building control
loops, both stand-alone loops and cascade loops using master and slave
configurations. They can be used together with types from other Control libraries, as
well as together with objects from other libraries.

Control Extended Library (ControlExtendedLib)

The Control Extended library contains a number of control modules for arithmetics
and signal handling. These types are intended to be used for building advanced
control loops, together with objects from other Control libraries.

Control Advanced Library (ControlAdvancedLib)

The Control Advanced library contains control module types intended to be used to
build control loops with advanced PID functions and decouple filter functions. The

3BSE035981-510 A 71

Control Libraries Section 3 Standard Libraries

v

types from this library supports adaptive control and can be used to build dead-time
control loops.

Control Object Library (ControlObjectLib)

The ControlObjectLib provides function blocks and control modules to define
templates for using the control connection data type.

This library also contains template objects with control connection where user
defined transfer function can be developed. It also contains voting input to alter the
user defined functionality.

Control Solution Library (ControlSolutionLib)

The Control Solution library contains a number of ready-to-use control templates
(for example handling cascade, feed-forward, mid-range, etc.). These templates are
intended to be used directly in an application, as they are, but may also be copied to
a self-defined library and modified, to comply an intended usage.

Control Fuzzy Library (ControlFuzzyL.ib)

The Control Fuzzy library contains types intended to be used for building fuzzy
control solutions. It also contains a number of fuzzy control templates that you can
copy to your own libraries, modify and use.

Control Support Library (ControlSupportLib)

The Control Support library is an internal library that stores the types used by other
Control libraries. When the Control Support library is needed, it is automatically
connected.

For a description of how to build analog control solutions from the types in these
libraries (and from other types), see Section 4, Analog Process Control.

72

3BSE035981-510 A

Section 3 Standard Libraries Supervision Libraries

Supervision Libraries

Supervision Library

The Supervision library (SupervisionLib) contains control module types for detector
input, system control and monitoring, overview presentation, and output handling.
The modules are applicable for general detection systems as well as SIL
applications. All control module types can be used in SIL classified applications.

SupervisionBasic Library

Supervision Basic Library contains the function blocks intended for safety
(shutdown) logic, which have one normal condition and one safe condition. The
boolean activation signal is set, when an input object detects an abnormal condition.
This signal is connected, through the shutdown logic, to the activation order input
on an output object. When this is set, the output object is set to the defined safe
condition. The central functionality is placed in the core function blocks in
SignalSupportLib and AlarmEventLib.

The following blocks are not protected: SDBool, SDInBool, SDInReal, SDOutBool,
SDReal and SDValve. This means that it is possible to make project specific copies,
but the copies loose SIL and correct SIL must be set manually (if SIL is required)
after copying the object. Before changing to SIL1-2 or SIL3 make sure that the
objects are SIL compliant.

FireGas Library

The FireGas library (FireGasLib) contains control module types for monitoring and
control of protection systems that are typically used in a Fire & Gas system. All
modules can be used in SIL2 classified applications. The FireGas library use types
from the Supervision library. This means that when you use the FireGas library, the
Supervision library has to be connected as well.

3BSE035981-510 A 73

Communication Libraries Section 3 Standard Libraries

Communication Libraries

The communication libraries contain function block types and control module types
for reading and writing variables from one system to another. Typical
communication function block types are named using the protocol name and
function, for example, COMLIRead or INSUMConnect.

Communication is described in more detail in the manual System 800xA, Control,
@ AC 800M, Configuration (3BSE035980%)..

All supported protocols are described in the manual AC 800M Communication
Protocols (3BSE035982%).

There are a number of Communication libraries:

* COMLI Communication Library (COMLICommLib).

* Foundation FIELDBUS H1 Communication Library (FFH1CommLib).
e Foundation FIELDBUS HSE Communication Library (FFHSECommL.ib).
e INSUM Communication Library (INSUMCommLib).

e MB300 Communication Library (MB300CommL.ib).

* MMS Communication Library (MMSCommLib).

* ModBus Communication Library (ModBusCommLib).

* Modbus TCP Library (ModBusTCPCommL.ib).

e MODS5-to-MODS Communication Library (MTMCommLib).

* Modem Communication Library (ModemCommLib).

e Siemens S3964 Communication Library (S3964CommLib).

* SattBus Communication Library (SattBusCommLib).

* Serial Communication Library (SerialCommLib).

Feature Pack Functionality

e Self-defined UDP Communication Library (UDPCommLib).
e Self-defined TCP Communication Library (TCPCommLib).

74 3BSE035981-510 A

Section 3 Standard Libraries Batch Library

Batch Library

The Batch library (BatchLib) contains control module types for batch control and
for control of other discontinuous processes. It can be used together with any batch
system which communicates via OPC Data Access and which supports the S88 state
model for procedural elements.

The control module types in the Batch library are used for the interaction between
the control application for an Equipment Procedure Element (for example, a phase
or an operation) and the Batch Manager.

This library is described in more detail in Control Builder online help (select the
library in Project Explorer and press F1).

The BatchLib also contains functionality for Batch Handling using batch advanced
control modules. Templates for these control module types are provided in this
library.

VMT Library (High Integrity Controllers Only)

The VMT library (VMTLIib) is automatically added if you run your applications in
an AC 800M High Integrity (HI) controller. The VMT (Virtual Machine Test)
library contains item used to test the HI controller, in order to verify that it is not
corrupt.

These tests are run continuously and the VMT library is constantly in use.

ﬂ Together with the VMT library, a HI controller also requires two applications:
VMT and Compiler Test Application (CTA). The VMT and CTA applications are
used to test the controller and compiler, respectively.

3BSE035981-510 A 75

Hardware Overview Section 3 Standard Libraries

Hardware Overview

This part describes each standard hardware library briefly. For a list of all hardware
types in a library and a description of each type, see Control Builder online help.

Hardware libraries that contain Profibus CI851 or Foundation Fieldbus CI852 are
included for updating reasons. Hence, they must not be used in new projects.

Basic Hardware

PROFIBUS

The Basic Hardware Library (BasicHWLib and BasicHIHwLib) contains basic
hardware types such as controller hardware (for example, AC 800M), CPU units,
Ethernet communication links, Com ports, ModuleBus, and so on.

The BasicHwLib is automatically inserted to all control projects and automatically
connected to the controller, if the control project template AC 800M or
SoftController is used.

The BasicHIHwLIib is automatically inserted to all control projects and
automatically connected to the controller, if the control project template
AC 800M HI or SoftController HI is used.

The PROFIBUS hardware libraries contain PROFIBUS DP communication
interfaces for the AC 800M or the AC 800M HI.

e The CI851 PROFIBUS hardware library (CI851PROFIBUSHWLIb) contains
the communication interface for PROFIBUS DP-VO0 (CI851).

The firmware available in Control Builder 5.1 does not support CI851. To run
this module, the corresponding firmware available in Control Builder 5.0.2
must be downloaded to the connected PM8xx units.

* The CI854 PROFIBUS hardware library (CI854PROFIBUSHwLIib) contains
the communication interface for PROFIBUS DP, with redundant PROFIBUS
lines and DP-V1 communication.

76

3BSE035981-510 A

Section 3 Standard Libraries

Feature Pack Functionality

PROFIBUS Devices

PROFIBUS

The PROFIBUS hardware libraries contain PROFIBUS DP communication
interfaces for the AC 800M or the AC 800M HI.

The CI854 PROFIBUS hardware library (CI854PROFIBUSHwLib) contains
the communication interface for PROFIBUS DP, with redundant PROFIBUS
lines and DP-V1 communication.

PROFIBUS Devices

The PROFIBUS device libraries contain hardware types that can be used to
configure ABB Drive hardware and ABB Process Panels.

The ABB Drive NPBA CI851 hardware library (ABBDrvNpbaCI851HwLib)
contains hardware types to be used when configuring ABB Drive NPBA-12,
using PROFIBUS DP-V0 (CI851).

The ABB Drive NPBA CI854 hardware library (ABBDrvNpbaCI854HwLib)
contains hardware types to be used when configuring ABB Drive NPBA-12,
using PROFIBUS DP (CI854).

The ABB Drive RPBA CI851 hardware library (ABBDrvRpbaCI851HwLib)
contains hardware types to be used when configuring ABB Drive RPBA-01,
using PROFIBUS DP-V0 (CI851).

The ABB Drive RPBA CI854 hardware library (ABBDrvRpbaCI854HwLib)
contains hardware types to be used when configuring ABB Drive RPBA-01,
using PROFIBUS DP (CI854).

The ABB Process Panel CI851 hardware library (ABBProcPnlCI851HwLib)
contains hardware types to be used when configuring ABB Process Panel,
using PROFIBUS DP -VO0 (CI851).

The ABB Process Panel CI854 hardware library (ABBProcPnlCI854HwLib)
contains hardware types to be used when configuring ABB Process Panel,
using PROFIBUS DP (CI854).

3BSE035981-510 A

77

PROFINET 10

Section 3 Standard Libraries

Feature Pack Functionality

The ABB Panel 800 CI851 hardware library (ABBPnl800CI851HwLib)
contains hardware types to be used when configuring ABB Panel 800, using
PROFIBUS DP -VO0 (CI851).

The ABB Panel 800 CI854 hardware library (ABBPnl800CI851HwLib)
contains hardware types to be used when configuring ABB Panel 800, using
PROFIBUS DP (CI854).

PROFIBUS Devices

The PROFIBUS device libraries contain hardware types that can be used to
configure ABB Drive hardware and ABB Process Panels.

The ABB Drive FPBA CI854 hardware library (ABBDrvFpbaCI854HwLib)
contains hardware types to be used when configuring ABB Drive FPBA-01,
using PROFIBUS DP (CI854).

The ABB Drive NPBA CI854 hardware library (ABBDrvNpbaCI854HwLib)
contains hardware types to be used when configuring ABB Drive NPBA-12,
using PROFIBUS DP (CI854).

The ABB Drive RPBA CI854 hardware library (ABBDrvRpbaCI854HwLib)
contains hardware types to be used when configuring ABB Drive RPBA-01,
using PROFIBUS DP (CI854).

The ABB Process Panel CI854 hardware library (ABBProcPnlCI854HwLib)
contains hardware types to be used when configuring ABB Process Panel,
using PROFIBUS DP (CI854).

The ABB Panel 800 CI854 hardware library (ABBPnl800CI851HwLIib)
contains hardware types to be used when configuring ABB Panel 800, using
PROFIBUS DP (CI854).

PROFINET IO

The CI871 PROFINET IO hardware library, CI871PROFINETHwLib contains the
communication interface for PROFINET IO. It also contains other hardwares that
are used for configuring PROFINET.

78

3BSE035981-510 A

Section 3 Standard Libraries PROFINET IO Devices

PROFINET IO Devices

The PROFINET IO device libraries contain hardware types that can be used to
configure ABB Drive hardware and ABB PROFINET IO device.

* The ABB Drive RETA-02 CI871 hardware library (ABBDrvRetaCI871HwLib)
contains hardware types to be used when configuring ABB Drive RETA-02,
using PROFINET IO (CI871).

* The ABB MNS iS CI871 hardware library (ABBMNSiSCI871HwLib)
contains hardware types to be used when configuring ABB MNS iS, using
PROFINET IO (CI871).

Feature Pack Functionality

* The ABB Drive FENA-11 CI871 hardware library
(ABBDrvFenaCI871HwLib) contains hardware types to be used when
configuring ABB Drive FENA-11, using PROFINET IO (CI871).

FOUNDATION Fieldbus HSE

The FOUNDATION Fieldbus HSE hardware library (CIS60FFHSEHWL.ib)
contains the communication interface for the FOUNDATION Fieldbus HSE link
(CI860).

Master Bus 300

The CI855 Master Bus 300 hardware library (CI855MB300HwLib) contains the
communication interface (CI855) for and other hardware types to be used when
configuring Master Bus 300.

INSUM

The CI857 INSUM hardware library (CI857InsumHwLib) contains the
communication interface (CI857) and other hardware types to be used when
configuring INSUM.

3BSE035981-510 A 79

DriveBus

Section 3 Standard Libraries

DriveBus

The CI858 DriveBus hardware library (CI858DriveBusHwLib) contains the
communication interface (CI858) and other hardware types to be used when
configuring DriveBus.

MODBUS TCP

IEC 61850

AF 100

MODS5

The CI867 MODBUS TCP hardware library (CI867ModbusTcpHwLib) contains
the communication interface (CI867 with two Ethernet ports) and other hardware
types to be used when configuring MODBUS TCP.

The CI868 IEC 61850 hardware library (CIS68IEC61850HwLib) contains the
communication interface (CI868 with two Ethernet ports) and other hardware types
to be used when configuring IEC 61850.

CI868 interface is used for the horizontal communication between the
AC 800M controller and different substation IEDs.

The CI869 AF 100 hardware library (CI869AF100HwLib) contains the
communication interface (CI869) and other hardware types to be used when
configuring the Advant Fieldbus 100 bus.

The CI872 hardware library (CI872MTMHWwWLIb) contains the communication
interface (CI872 with three optical ports) and the Remote MODS controller under
each port.

EtherNet/IP and DeviceNet

The CI873 EtherNet/IP-DeviceNet hardware Library, CI873EthernetlPHWLib,
integrated with AC 800M consists of the communication interface (CI873 with two
Ethernet ports) and other hardware types to be used when configuring EtherNet/IP
and DeviceNet.

LD 800DN is the linking device between EtherNet/IP and DeviceNet.

80

3BSE035981-510 A

Section 3 Standard Libraries S200 I/0O System

$100 I/O System

The CI856 S100 hardware library (CI856S100HwLib) contains the S100
communication interface (CI856), S100 Rack and S100 I/O units.

$200 I/O System
The S200 1/0 libraries contain S200 adapter and S200 I/O units.

* S200 CI851 hardware library (S200CI851HwLib) contains S200 slave and I/O
units for PROFIBUS DP-VO0 (CI851).

* S200 CI854 hardware library (S200CI854HwLib) contains S200 slave and I/0O
units for PROFIBUS DP (CI854).

Satt Rack I/O System

* CI865 Satt ControlNet hardware library (CI865SattlOHwLib) contain the
communication interface (CI865), S200 adapters, S200 units for
Satt ControlNet, Satt Rack IO and 200RACN.

S800 I/0 System
The S800 1/O libraries contain S800 adapters and S800 I/O units.

* The S800 I/O Modulebus hardware library (S800ModulebusHwLib) contains
the S800 I/0 units for ModuleBus.

e The S800 CI830 CI851 hardware library (S800CI830CI851HwLib) contains
the adapter (CI830) and S800 I/O units for PROFIBUS DP-V0 (CI851).

e The S800 CI830 CI854 hardware library (S800CI830CI854HwLib) contains
the adapter (CI830) and S800 I/O units for PROFIBUS DP (CI854).

e The S800 CI840 CI854 hardware library (S800CI840CI854HwLib) contains
the adapter (CI840) and S800 I/O units for PROFIBUS DP (CI854).

e The S800 CI801 CI854 hardware library (S800CI801CI854HwLib) contains
the adapter (CI801) and S800 I/O units for PROFIBUS DP (CI854).

3BSE035981-510 A 81

S800 I/0 System Section 3 Standard Libraries

Feature Pack Functionality

$800 I/0 System
The S800 I/0 libraries contain S800 adapters and S800 I/O units.

* The S800 I/O Modulebus hardware library (S800ModulebusHwLib) contains
the S800 I/O units for ModuleBus.

* The S800 CI830 CI854 hardware library (S800CI830CI854HwLib) contains
the adapter (CI830) and S800 I/O units for PROFIBUS DP (CI854).

* The S800 CI840 CI854 hardware library (S800CI840CI854HwLib) contains
the adapter (CI840) and S800 I/O units for PROFIBUS DP (CI854).

e The S800 CI801 CI854 hardware library (S800CI801CI854HwLib) contains
the adapter (CI801) and S800 I/O units for PROFIBUS DP (CI854).

S900 I/O System

The S900 1I/0 libraries contain field communication interfaces, adapters and S900
I/O units.

e The S900 CI851 hardware library (S900CI851HwLib) contains PROFIBUS
DP fieldbus communication interface, adapter and S900 I/O units for
PROFIBUS DP-VO0 (CI851).

* The S900 CI854 hardware library (S900CI854HwLib) contains PROFIBUS
DP fieldbus communication interface, adapter and S900 I/O units for
PROFIBUS DP (CI854).

82 3BSE035981-510 A

Section 3 Standard Libraries Serial Communication

Feature Pack Functionality

$900 I/0 System

The S900 I/0 libraries contain field communication interfaces, adapters and S900
I/O units.

* The S900 CI854 hardware library (S900CI854HwLib) contains PROFIBUS
DP fieldbus communication interface, adapter and S900 I/O units for
PROFIBUS DP (CI854).

Serial Communication

The Serial Communication libraries contain hardware types for serial
communication.

* The CI853 Serial Communication hardware library (CI853Serial ComHWLib)
contains the communication interface for RS-232C serial.

* The Serial hardware library (SerialHWLib) contain the serial communication
protocol for SerialLib.

* The COMLI hardware library (COMLIHWLIib) contain the serial
communication protocol for COMLI.

* The ModBus hardware library (ModBusHWLib) contain the serial
communication protocol for ModBus.

* The S3964 hardware library (S3964HWLib) contain the serial communication
protocol for Siemens 3964R.

3BSE035981-510 A 83

Self-defined UDP Communication Section 3 Standard Libraries

Feature Pack Functionality

Self-defined UDP Communication

The UDP hardware library (UDPHwLib) contains the UDPProtocol hardware type
that is used for self-defined UDP communication.

Self-defined TCP Communication

The TCP hardware library (TCPHwLIb) contains the TCPProtocol hardware type
that is used for self-defined TCP communication.

Printer and Modem

The Printer hardware library (PrinterHwLib) and Modem hardware library
(ModemHwLib) contain the printer and modem protocol respectively.

FOUNDATION Fieldbus H1

The CI852 FOUNDATION Fieldbus H1 hardware library (CI852FFh1HwLib)
contains the communication interface for the FOUNDATION Fieldbus H1 bus
(CI852) and FF Devices.

ﬂ The firmware available in Control Builder 5.1 does not support CI851. To run this
module, the corresponding firmware available in Control Builder 5.0.2 must be
downloaded to the connected PM8xx units.

84 3BSE035981-510 A

Section 3 Standard Libraries Templates

Templates

A template is characterized by the fact that it is not protected. It is intended to be
copied to one of your own libraries, and modified inside that library. For an example
of how to copy a template object to one of your own libraries, see Create a Library
and Insert a Copy of a Type on page 352.

template type is lost. This means that your copy does not reflect updates to the

@ The moment you copy a type to your own library, the connection to the original
template.

However, a template type often consists of a number of objects from the standard
libraries. Some of those might be protected (or even hidden), while some of them
can be modified to suit the requirements of a particular organization, plant, or
process. This also means that sometimes standard libraries still have to be
connected to your library, due to the fact that they contain sub-types used inside
the template type you copied. See Figure 20 on page 91

ﬂ Even if the template objects are SIL1-2 or SIL3, it is possible to make project
specific object copies, but the copies lose SIL levels and the desired SIL should
be set manually. Before changing to the desired SIL, ensure that the object is SIL
compliant and it meets the SIL level requirements.

For information on the execution of objects based on template types and copies of
template types, see Execution of Copied Complex Types on page 92.

To help you understand how this works, we will study a typical template type, the
Uni function block from the Process Object Extended library.

3BSE035981-510 A 85

Templates Section 3 Standard Libraries

S [0 ProcessObjExtLib 2.4-6

+ W Connected Libraries

+-- 4 Data Types

—-- @ Function Block Types
o 25
....... g:l. LevelDetection
I g:l. MotorBi
I g:[: MatorlUni
I ;j: MotorValve
....... Za OETextBi
....... Za OETextUni
....... Jaf OETextValveBi
....... 24 OETextValveUni

| Z=f Uni
------- E Core ProcessObjBasicLib.UniCore Based an the type
------- E DetectOverride DetectOverrideUni GroupStartObjectConn
v £f Faceplate ProcessObjExtLib.FaceplateUniM In Basic library

&gk G5C BasicLib.GroupStartObjectConn

------- -ﬁ InfaOverride ProcessObjBasicLibInfoOverrideUni
- -ﬁlnfopar ProcessObjBasicLib.InfoParlUniM

- -ﬁlnfoparﬂroupStart InfoParlUniGroupStart

....... 25 ObjectAE ProcessObjectAE

------- E OEText ProcessOb)ExtlLib.OETextUni

-------- -ﬁ Pres GroupStartlconUni

Figure 16. Uni function block type, with sub types and formal instances

The Uni function block type contains the following objects (formal instances):

* GSC (based on the type GroupStartObjectConn from the Basic library),

» Faceplate (based on the type FacePlateUni from the Process Object Extended
library),

* InfoPar (based on the type InfoParUni, from the Process Object Basic library),

* InfoParGroupStart (based on the type InfoParUniGroupStart, from the Process
Object Basic library),

* Pres (based on the type GroupStarticonUni),

* OEText (based on the type OETextUni from the Process Object Extended
library)

* Core (based on the UniCore type from the Process Object Basic library),

* ObjectAE (based on the type ProcessObjectAE).

86 3BSE035981-510 A

Section 3 Standard Libraries Templates

This means that the Uni type depends on the Basic library, the Process Object Basic
library, and Process Object Extended library.

If we create our own library, TemplateLib, and copy the Uni function block type to
this library, with the intention of modifying the Uni template into a uni-directional
type that fits our process, it will look like Figure 17. The new function block type
has been named TemplateUni.

[TemplateLib 1.0-0
I Connected Libraries
E uﬁ] BaziclLib 1.6-6
& = Function Block Types
E&:} Templatellni
------- E Core ProcessObjBasiclib.UniCore
------- E DetectOvernide DetectOverridelni
------- ﬁ Faceplate ProcessObjExtlib.Faceplatelnii
------- ‘ﬁ G5C Basiclib.GroupStartObjectConn
------- ﬁ InfoOverride ProcessObjBasiclib.InfoCverrideUni
------- ﬂ InfoPar ProcessObjBasiclibInfoParlnibd
------- ﬁ InfoParGroupStart InfoParUniGroupStart
....... B ObjectAE ProcessObjectAE
------- E OEText ProcessObjBxtLlib. OETextUni
....... ﬂl Pres GroupStartlconlini

B

Figure 17. Uni, copied into a self-defined library TemplateLib. No connections to
other libraries (red triangles on a number of types)

The red error triangles on the type and sub types appear because the new library,
TemplateLib, is not connected to the libraries that contain some of the sub types.

If those libraries are connected to the new library, the red triangles disappear. After
creating a copy of Uni, it can be modified to fit the specific requirements. For an
example of how to add functions to a type, see Add Functions to Self-defined Types
on page 357.

Once we are done adding to and modifying our type, we can use it in an application,
see Figure 18. All we need to do to be able to use our new type in the application is
to connect TemplateLib to the application and create an instance (TestUni) from the
TemplateUni type.

3BSE035981-510 A 87

Templates

Section 3 Standard Libraries

B [Applications
B Ei, Application_1 - (Controller_1.Marmal)

El I Connected Libraries

. [BasiclLib 1.6-6

- [P Templatelib 1.0-0
El # Programs
E E Pregraml - (Controller_1.Fast)
E Programa2 - (Contreller_1.Mormal)
E| E Program3 - (Contreller_1.5low)

‘ E PowerFailurelnfos PowerFailurelnfos
E SystemDiagnostics SystemDiagnostics
P setTime SetDT
P setTimeZone SetTimeZonelnfo
i E Applicationlnfo ApplicationInfo
= E Testni Ternplateldni
- -ﬁ Core ProcessObjBasiclib.UniCore
% DetectOverride DetectOverridelni
[ﬁ Faceplate ProcessObjExtLib.FaceplateUnih
ﬁ GSC BasiclLib.GroupStartObjectConn

[-ﬁInfoF‘ar ProcessOhbjBasiclib.InfoParUnil
[-ﬁInfoParGroupStart InfoParlUniGroup5tart
.. 48k ObjectAE ProcessObjectAE

-ﬁ OEText ProcessObjExtLib. OETextUni
ﬁ Pres GroupStarticonUni

Figure 18. TemplateUni used in an application

-ﬁ InfoOverride ProcessObjBasicLib InfoOverrideUni

88

3BSE035981-510 A

Section 3 Standard Libraries

Templates

Feature Pack Functionality

Once we are done adding to and modifying our type, we can use it in a diagram
under the application, All we need to do to be able to use our new type in the
diagram is to connect TemplateLib to the application and create an instance
(TestUni) from the TemplateUni type in the diagram editor. Figure 19 shows the tree
strucure after the instance is inserted in the diagram editor.

- @) Applications

Il Connected Libraries

. [Basiclib1.7-3

[0 TemplateLib 1.0-0

i Diagrams

E Diagraml - (Controller_1.Fast)

@ Diagram? - (Controller_1.MNarmal)

@ Diagram3 - (Controller_1.5low)

-'5; ApplicationInfo ApplicationInfo

E PowerFailurelnfos PowerFailurelnfos
{5 setTime SetDT

{5 setTimeZone SetTimeZonelnfo

E SysternDiagnostics SystemDiagnostics
E TestUni TemplateLib. Termplatelni

------- ﬂ Core ProcessObjBasicLib.UniCore
------- ﬂ DetectOverride DetectOverridelni

------- -ﬁ GSC BasicLib.GroupStartObjectConn
------- -ﬁ InfaOverride ProcessObjBasicLib InfoOverrideUni

....... Z5f ObjectAE ProcessObjectAE
------- ﬂ OEText ProcessObjExtlib.OETextUni
------- -ﬁ Pres GroupStartlconUni

Figure 19. TemplateUni used in a diagram under the application

3BSE035981-510 A

89

Templates

Section 3 Standard Libraries

Note that there is no need to connect the libraries that are connected to
TemplateLib (the reference from instances to types is there anyway). The only
time this would be necessary is when a library contains a type that is used for a
parameter connection to the surrounding code or to another object outside our

type

90

3BSE035981-510 A

Section 3 Standard Libraries Templates

Note that all sub types (the formal instances) retain a relation to their corresponding
types. For example, a change to the OETextUni type in the Process Object Basic
library will also affect the TemplateUni type, since this type contains an instance of

OETextUni.
Library A
I Type A1
— Type A2
—— Type A3
A31 (based on B1) \Library B
Copy A32(based on B2) —
A33 (based on C2)
. . T~ Library C
Type A3 is copied to
User Library X,
where it becomes
type X2
User Library X
Type X1
Type X2

X31 (based on B1
() — Library B
X32(based on B2) —

)
T~_Library C

X33 (based on C2

1.User Library X will still depend on Library B and Library C, since X31 and X32 are instances
of Bland B2, and X33 is an instance of C2.

2.User Library X will not depend upon Library A. Changes to A3 will not affect X2.

Figure 20. Overview of the template concept

3BSE035981-510 A o1

Execution of Copied Complex Types Section 3 Standard Libraries

Execution of Copied Complex Types

Code

It is important to understand what happens when you copy and modify a type that
contains instances of other types (formal instances). We start with a template type
from one of the standard libraries, as shown in Figure 21.

! Template type T1

| A ‘ ‘ B | | C ‘ <a— Formal instances
L - - - — I_ - I_ — 4
Y

‘ T1A‘ ‘T1B | | T1C‘ -q—— Types corresponding to the
formal instances

Figure 21. Template type with formal instances

Each formal instance has a corresponding type. These types are normally stored in
the same library as the template object, or in a connected library (of the Basic or

Support type).

92

3BSE035981-510 A

Section 3 Standard Libraries Execution of Copied Complex Types

! Template type T1

;— If Condition Then |
| a:=a+1 |
o |
| |
| |
]

Tl Ty yea ycal

[’T1A‘ ‘T1B | | T1C‘

call \
N

\;— __________ —; Instance InstT1
| |
| |
| |
| |
| |
Lo - - . . . |

Figure 22. Execution of an instance of a template type with formal instances

When an object (a formal instance) is created from this type and the formal instance
is executed, what happens is the following, see Figure 22:
1. The object (InstT1) calls the type (T1).

2. When the type T1 is called, the code executes and calls are made to all types
(T1A, T1B and T1C) corresponding to the formal instances (A, B and C).

3. Each type that is called (T1, T1A, T1B, T1C) executes, operating on data from
the corresponding object (T1) and formal instances (T1A, T1B, T1C).

3BSE035981-510 A 93

Execution of Copied Complex Types Section 3 Standard Libraries

This relation is affected if a copy of a Complex template type is created and the
copied type is modified by adding code or by replacing one of the formal instances.

First, we create a new type (MyT1) by copying the template type (T1), see

Figure 23.
Code @ -———— - — — -
\ If Condition Then | Template type T1

a:=a+1 |
| |
| |

| | A ‘ ‘ B | | C ‘ | <@—— Formalinstances
| |
Lo o _ L.

‘ T1A‘ ‘T1B | | T1C‘ -a—— Types corresponding to the
formal instances
Make a copy of T1 and name it MyT1
Code - — — — — — — — — — — -
\ If Condition Then | Template type MyT1
a:=a+1

Lo |
| |
| |

| | A ‘ ‘ B | | C ‘ | <@—— Formalinstances
| |
L _l - _I_ - l_ — 4

‘ T1A| ‘T1B ‘ | T1C‘ -a¢—— Types corresponding to the
formal instances

Figure 23. Copying a template type with formal instances

94 3BSE035981-510 A

Section 3 Standard Libraries Execution of Copied Complex Types

When an object based on MyT1 is executed, the call is to MyT1, and not to the type
T1. However, each formal instance retains its connection to their corresponding
type. The call to MyT1 will also generate calls to T1A, T1B and T1C, see Figure 24.

;_ It Condition Then —; Type MyTH1
| a:=a+1 |
o |
| |
| |
]]

Tl Ty yea g cal

[‘T1A‘ ‘T1B | | T1C‘

call \
AN

\;— __________ —; Instance InstMyT1
| |
| |
| |
| |
| |
Lo J

Figure 24. Execution of an object based on a template type copy

The purpose of copying a template type is to modify this type to fit your specific
requirements. Say, for example, that we need an object that works differently from
one of the formal instances. We might, for example, want to replace a valve with a
valve of a different type than the original one.

If T1B is the original valve type, replace it with the new valve type V2B, and
connect the new type to the MyT1 type, see Figure 25.

3BSE035981-510 A 95

Execution of Copied Complex Types Section 3 Standard Libraries

Code A
Type MyT1

|
|
|
|
| -¢—— Formal instances
|

-g—— Types corresponding to the
formal instances

Figure 25. Copy of template type with formal instances, modified by replacing one
of the formal instances (circled in the figure)

ﬂ It is of course also possible not only to replace formal instances, but also to
modify your copied type by adding or removing formal instances, and by adding
to the code or changing it.

When an object based on this type is executed, what happens is the following, see
Figure 26:

1. The object (InstMyT1) calls the type (MyT1).

2. When the type MyT1 is called, the code executes and calls are made to all types
(T1A, V2B and T1C) corresponding to the formal instances (A, B and C).

3. Each type that is called (T1, T1A, V2B, T1C) executes, operating on data from
the corresponding instance.

96 3BSE035981-510 A

Section 3 Standard Libraries Execution of Copied Complex Types

;_ It Condition Then —; Type MyT1
| a:=a+1 |
T |
| |
| |
A B 3]
’L __________ -
/ Call v vCaII v Call
[’T1A‘ ‘vzs | | T1C‘
call \
\
N
\;— __________ —; Instance InstMyT1
| |
| |
| |
| |
| |
Lo - - . . . |

Figure 26. Execution of an instance of a modified template type copy

The following are the features of a copied template type:

* When a copy is made of a template type, the connection to the original
template type is lost.

* However, all formal instances keep their connection to their corresponding
types.

* Modifications to a copy do not affect the original type.
* Modifications to the template type do not affect the copy.

* Modifications to formal instances (that is, to their corresponding types), always
affect both the original template types and its copies (as long as that particular
formal instance is still used in the copy).

3BSE035981-510 A 97

Execution of Copied Complex Types

Section 3 Standard Libraries

98

3BSE035981-510 A

Section 4 Analog Process Control

Introduction

This section describes how to use types from the Control libraries to create analog
control solutions for your automation system. The section contains:

A description of the concept behind the Control libraries, see
Concept on page 100.

Advice and instructions on how to implement analog control solutions using
the types in the Control libraries, see Design on page 138.

Examples on how to implement analog control solutions using the types in the
Control libraries, see Getting Started with ControlConnection on page 154.

Detailed information on individual library types for signal handling, see
Advanced Functions on page 183.

A description and an example on how to use control module type templates
from the Control Solution library (ControlSolutionLib), see Control Loop
Solutions on page 257.

For a discussion on the difference between function blocks and control modules,
@ and how to choose between the two, see the manual System 800xA Control,
AC 800M, Configuration (3BSE035980%).

ﬂ Throughout this section, the word “controller” refers to a type used in control
loops, for example, a PID controller.

3BSE035981-510 A

99

Concept

Section 4 Analog Process Control

Concept

The Control libraries contain a number of function blocks and control modules that
are designed to help you construct complex signal systems and control loops with
high functionality and flexibility. Some of them can be used as is, while some of
them have to be combined to suit a specific application.

The Control libraries contain the PID controllers and analog signal handling
functions. These functions are needed to handle analog signals and to construct
control loops, both simple control loops (including cascade control loops) and very
advanced ones.

This section describes the concept behind the Control libraries, split on the
following sub-sections.

* Control Libraries Overview on page 100 gives an overview of all Control
libraries.

* Functions and Other Libraries Used for Analog Control on page 103 is a
summary of AC 800M firmware functions and functions from other libraries
that can be used in connection with analog control. Here, you will find
references to other parts of the manual that describe individual function and
objects.

* ControlConnection on page 103 describes the ControlConnection structured
data type, which is used to simplify communication between different control
objects and their environment.

Control Libraries Overview

The Control libraries for AC 800M are standard libraries that are installed with the
800xA system. There are a number of Control libraries:

* Control Basic library,

* Control Simple library,

e Control Standard library,
* Control Extended library,
e Control Advanced library,
* Control Object library,

* Control Solution library,

* Control Fuzzy library.

100

3BSE035981-510 A

Section 4 Analog Process Control Control Libraries Overview

For a short description of each of these libraries, see the following sub-sections.

The Control libraries are also supported by a number of firmware functions that are
included in AC 800M firmware and in other libraries. For information on those, see
Functions and Other Libraries Used for Analog Control on page 103.

Control Basic Library

The Control Basic library contains function blocks for a number of ready-made
complete control loops, simple as well as cascade, to be connected directly to I/O.

Control Simple Library

The Control Simple library contains function block types that can be used to build
control loops using function blocks only. These have to be connected by the user, for
forward and backward signal directions.

Control Standard Library
The Control Standard library has control module types for:

e astandard PID controller

* 1/Osignals

* signal conversion

* manual control

* branches, as well as supervision of levels, selections, and limitations.

Control Extended Library

The Control Extended library has control modules types for arithmetics and signal
handling. Together with the Control Standard library control modules, it is possible
to construct control loops with more control functions, for example, PID loops.

3BSE035981-510 A 101

Control Libraries Overview Section 4 Analog Process Control

Control Advanced Library

The Control Advanced library has a control module type for an advanced PID
controller, containing all the functionality of the PID controllers in the other control
libraries and decouple filter functions. In addition, the controller may be configured
for continuous adaptation of controller parameters. It may also be configured as a
predictive PI, that is a PPI controller, and it has a gain scheduler. There is also a
control module for adding a stiction compensator function and decouple filter to an
output signal.

Control Object Library

The ControlObjectLib provides control modules to define templates for using the
control connection data type. The control modules will have function blocks as sub
objects. The library contains advanced multiple inputs/outputs with up to 4 inputs
and outputs created as control module templates. These templates also provide
manual override and bumpless transfer.

Control Solution Library

The Control Solution library (ControlSolutionLib) contains control module types
for a number of ready-made complete control loop solutions. A control module
solution provides a complete loop control solution with control, signal monitoring,
alarm handling, cascade, feed-forward, mid-range, trending, operator graphics and
also a possibility to add asset optimization functionality.

Control Fuzzy Library

The Control Fuzzy library contains control module types for definitions of fuzzy
logic rules for process control, and for constructing multi-variable fuzzy controllers
which are able to handle many inputs and outputs. The fuzzy controller also has the
additional functions of a PID controller.

102

3BSE035981-510 A

Section 4 Analog Process Control Functions and Other Libraries Used for Analog Control

Functions and Other Libraries Used for Analog Control

Functions that can be used in connection with types from the Control libraries can
be found in the 800xA system (AC 800M firmware functions), as well as in the
Basic library (counters, timers, latches) and in the Signal library.

For more information on system functions and basic functions in other libraries,
@ see the System 800xA, Control, AC 800M, Configuration (3BSE035980%*) and
online help. This manual also discusses how to use types from the Alarm and
Event library to set up additional alarm and event handling, and how to set up
control network communication using types from the Communication libraries.

Functions and library types that are not included in the Control libraries, but can be
used for signal handling in connection with control loops, are described under
Advanced Functions on page 183.

ControlConnection

ControlConnection is a data structure which contains all signals that are sent
between the objects of a signal system or control loop. Some of the signals are sent
in the forward direction of the loop and some are sent backwards, such as value,
status and range. The complexity of the signal systems and control loops can then be
reduced considerably for the signals between the objects.

Introduction

Data is generated by a source, computed in one or several objects, and finally
forwarded to a consumer of data. This is the most common kind of data flow. If each
object is to operate independently, and be able to connect with the other objects, a
number of conditions must be fulfilled.

Learn how to build your own control module types with ControlConnection in
@ Getting Started with ControlConnection on page 154 and Creating a Control
Module with ControlConnection (CC template) on page 161.

Each object has to ask its succeeding object if it is ready to receive data and do
whatever it is that the object does. The succeeding object must issue an acceptance
when ready to receive data.

3BSE035981-510 A 103

ControlConnection Section 4 Analog Process Control

This means that the question must be computed, before it is possible to give the
answer. This is achieved by using code sorting. To interconnect objects of this type,
you have to use the type of parameters that simply carry data, irrespective of their
direction. These type of parameters cannot have values of their own.

This is the basis for connections between the control modules in the control
libraries, and the interconnecting data type called ControlConnection.

Source |g——®| Handler |———® Handler ———p|Consumer
-+ <+ -—

Figure 27. The principle of the data flow between control modules

Signal Flow between Control Modules

Simple and advanced control loops with various functions can be built from the
control modules in the control libraries. A typical constellation is described in
Figure 28. It consists of a number of input signal control modules, connected to
calculation and controller modules, which are connected to an output signal control
module.

There are two ways of sending information between control modules; via a
graphical connection and via a parameter connection. Graphical connection is
described in Graphical Connection of Control Loops on page 107.

SP

PID
Al \’ PID AO

Al

Figure 28. Example of graphical connections between control modules making a
control loop

104 3BSE035981-510 A

Section 4 Analog Process Control ControlConnection

When connected to each other, the control modules have the following

characteristics.

. Information is transferred between the modules, forward as well as backward
in the control loop, during the same cycle of execution. This is used, for
example, to achieve bumpless transfer upon a change from Manual to Auto
mode, and to prevent integrator wind-up in the entire control loop.

* Signal flow without delay, in both directions, is obtained through automatic
sorting of code blocks in the control modules.

» If asignal is not valid, for example < 4 mA, it is possible to consider this in
succeeding control modules. Examples of this are transfer to Manual mode or
setting a predetermined value on the output.

The chain of control modules in a control loop and/or during analog handling
must start with a control module handling input signals, and the chain going to
the right must end with a control module handling output signals.

©

A ControlConnection output from a control module must normally only be
@ connected to one input in another succeeding control module.
A ControlConnection output from a control module must not be connected as a
feedback to a previous control module in the chain, unless, in exceptional cases,
a State control module is connected in between. See Miscellaneous Objects on
page 256.

3BSE035981-510 A 105

ControlConnection Section 4 Analog Process Control

When using non-graphical connections of ControlConnection parameters you must
be careful not to connect one output to several inputs, except, for example, for a
presentation signal of Level6Connection type, which must be parameter-connected
from the Level6CC control module to several control modules. See section,
Miscellaneous Objects on page 256.

Al \ / Branch AO

Graphical connection

Al MAX AO

Figure 29. A chain of connected control modules for analog signal handling

In the chain of connected control modules, as seen in Figure 29, the main signal
flow is from left to right, as illustrated by the bold arrows in Figure 30. The main
signal flow may have divergent and convergent branches. Thin vertical arrows
represent operator interactions.

! }

—3 A ———3 B — C

—
b) E — F

Figure 30. The main signal flow between the control modules

Information propagates during one scan, without any delay in the main signal flow.
For example, the effect of an event in control module A is perceived in control
module F in the same scan.

106

3BSE035981-510 A

Section 4 Analog Process Control ControlConnection

The connected control modules are influenced by their surroundings, for example,
the operator interface or the surrounding application program. The effect of such an
influence propagates ,without delay in the main signal flow, to outside of the control
module in which the influence occurs.

The effect of such an influence also propagates, without delay, in the opposite
direction to the main signal flow, to outside of the control module in which the
influence occurs. This is called backtracking (see Backtracking on page 110). This
effect does not, however, influence the main signal flow until one scan later. For
example, the effect of an influence, shown by the thin arrow on block E, propagates
to F in the same scan. It also propagates to D, B and A in the same scan, but not to
C. In B, calculations are carried out on the effect before it is forwarded to A. In the
next scan, the effect is used in the calculation of the main flow.

Graphical Connection of Control Loops

To create a control loop the control modules are connected to form chains by means
of graphical connections from left to right, which is also the direction of the main
signal flow.

Backtracking calculations are performed in all control modules in the control loop,
when in Backtracking mode. The value may be transferred backward in the chain, if
the chain before the backtracking-initiating control module has a member with an
internal state able to collect the backtracked value. Information about the presence
of such an internal state is given in the ControlConnection.

A control module has an internal state when its output is determined not only by the
input signal, but also by its history.

In control modules with an internal state, the output signal might be limited, for
example, when a succeeding control module is in Backtracking mode or has reached
a maximum or minimum value. Information on this situation is passed backwards in
the control loop chain in the ControlConnection data structure. The preceding
control module with an internal state then stops further increase or decrease of the
signal value.

3BSE035981-510 A 107

ControlConnection

Section 4 Analog Process Control

Control module with
an internal state

Output

increase omitted

Control module in Backtracking mode
or output maximum value reached

-

L

Figure 31. Example of when a succeeding control module has reached a limit value;
the preceding control module stops further integration (anti-windup)

ControlConnection Data Type

The control-loop-specific ControlConnection data type handles both forward and
backward signal flow and contains information about, for example, the signal value,
status, and unit, as well as the measuring range of the signal to prevent the signal

from exceeding its limits (in any situation), see Figure 32.

A~
\J

Value & Status
el
Range & Unit

Value
Range & Unit

- -
Backtracking
information

-

Figure 32. A graphical connection of ControlConnection type with its main signal

flow forward and a flow backward

The Value component in the forward structure represents the main signal flow of the
loop. The Status component contains information about the quality of the loop.

108

3BSE035981-510 A

Section 4 Analog Process Control

ControlConnection

Ranges and Units

A control module limits its output signal to within the output range. When using
graphical connection between control modules, signal ranges and units are generally
calculated automatically, and sent forward, as well as backward, through the
ControlConnection structure data type. according to the following rules.

1. Ranges and units from inputs and outputs propagate forward and backward in
the control module chain until they reach a control module whose output range
and unit can not be automatically defined using the input range. Such control
modules may be a controller, an integrator, or a filter. More information may
then be supplied by manual setting of range and unit for this control module
output. If range and unit values are not entered, the default values 0—-100% are

used.

2. If a control module receives overlapping ranges and units from the input and
output directions, then the range and unit from the preceding control module
are used.

Al

=~

PID

The Al and AO control modules start to transmit their
ranges in the forward and the backward directions,
respectively.

Some control modules simply allow the ranges to pass
through. Other control modules calculate and suggest a
range. The range can also be set by the operator.

Control modules with an internal state receive the same
output as the signal sent backward from the succeeding
control module, unless a range and unit are entered
manually.

The output range is visible in some control modules, such
as PID controllers, and arithmetic modules etc., and may be
changed. The range can be changed in the interaction
window in Online or Test mode.

3BSE035981-510 A

109

ControlConnection Section 4 Analog Process Control

Backtracking

The behavior of a control module that has ControlConnection connections depends
on which mode the succeeding control module in the chain is in. A control module
in Backtracking mode when succeeding control modules indicate that they, for
example, are in Manual mode. This means that integrator wind-up of a controller is
prevented (see section, Anti-Integrator Wind-Up Function on page 184) and that
bumpless transfer, for example, between Manual and Auto, is achieved (see
Bumpless Transfer on page 185).

In Control Builder, control modules are dimmed if backtracking is active.

Enter Range Value and its Unit of Measure

In control modules where it is possible to enter an output range value and its unit of
measure in the interaction window, you can override the propagated or calculated
default values of the range value and its unit of measure. Select and enter maximum
and minimum values and their unit of measure of the output signal.

Fraction

In all interaction windows of control modules, which have a ControlConnection,
you can set the fraction, which is a local variable in each control module for setting
of the decimals shown in the interaction window(s).

When an I/O signal from, for example a PT100 transmitter, has a wider physical
range than desired you can enter a narrower range in the AnalogInCC control
module.

When signals go through a number of arithmetic calculation control modules the
ranges can easily take large positive or negative values. Also, units of measure may
become long compound words that are unabridged, for example in multiplications.
Therefore, it is important to set the range to acceptable values. Also, check that the
unit of measure is correct and simplify it by abridgement. This must be checked in
the last calculation control module before the signal goes to a control module that
does not send range value and its unit of measure backward, such as the controller,
derivative, integral or piecewise linear control module types.

110

3BSE035981-510 A

Section 4 Analog Process Control ControlConnection

If a constant value, unchangeable in Online mode, is required in the calculations,
use a RealToCC control module in which you set the maximum and minimum
values equal to the in value given for the constant, in Offline mode.

Limitation of Controller Output

It may be necessary to limit the controller output to a narrower interval in Auto
mode, for example, when you test new controller parameter settings. Limitation of
the controller output then ensures that the process is not upset if the controller is
poorly tuned.

Do this limitation from the parameter interaction window and the limits are only
active in Auto mode. When you deselect the limitation, the limits are returned to the
normal endpoints of the range. Bumpless transfer is ensured whenever the limits are
changed.

ControlConnection between Applications Using Control Modules

The MMSToCC control module along with the CCToMMS control module can be
used when transferring signals of ControlConnection between applications.

System "A" System "B"

Access variables

Actuator "alvel"
Reads opdlcaly e
i:\thl'!i dak=

| —

r
Fomerd 1 Fomerd
1
wg:g::nl i m;fp;;:nl
FIC — CCToMMS E MMSToCC o—a A
Bacwe H Tacwa
comporenl ! componenl
kol [~ s iy e

ha\:lw.lz_l'd dak=
Access variable)

Figure 33. ControlConnection using control modules

3BSE035981-510 A 111

Controller Types Section 4 Analog Process Control

ﬂ It is recommended to parameterize the control connection to fulfil the IAC needs
and to use IAC in prior of the MMS mechanism.

ControlConnection Using Communication Variables

The ControlConnection data type can be used for cyclic communication between
top level diagrams, programs, and top level single control modules that use
communication variables. The communication variables are declared in the top level
diagram editor, program editor or top level single control module editor.

If the data type of the communication variable is ControlConnection, the backward
component is marked with a reverse attribute, and a bidirectional communication is
acheived.

Controller Types

This section describes controller principles and main controller functions. Advanced
built-in functions and objects for signal handling are described under Advanced
Functions on page 183.

A process may be of many types. The process may be rapid or slow, have dead time,
involve non-linear process characteristics, have many different cases and/or
conditions of operation, or depend on valve characteristics. The process may also
involve viscous media, the process may be exothermic, or dependent on various
calculations, etc.

The process requirements may also be to achieve a certain production quality.
Manual intervention must be carried out in a smooth, so-called bumpless way. In
addition, there are information and communication demands on the operators and/or
other systems regarding momentary values, alarms, data history in short and long
perspectives, and the presentation of these in a clear way.

To fulfill all the process demands, many functions must be carried out by the
controller. The solution may involve anything from a single controller to several
controllers with internal relationships, for which the system has complete control
modules and function blocks.

The core of the PID controllers in the control libraries is based on PID algorithms.
The only exception is the fuzzy controller, which has a design of its own. Additional

112 3BSE035981-510 A

Section 4 Analog Process Control Controller Types

functions are added by setting parameters, or by combining a controller with other
control modules.

PID, PI, P, and PD Controllers

The basic, classical PID, PI, P, and PD controllers of ideal type are based on the
control algorithms described in the section Controller Algorithms on page 117.
When discussing these controllers as a group, the term PID controller is used.

Generally, with the aid of built-in functions, the system performs mode transfers and
other changes in a bumpless way, see Bumpless Transfer on page 185. An anti-
integrator (sometimes called reset) wind-up function is included, to prevent the
output signal from drifting away, see Anti-Integrator Wind-Up Function on page
184.

In addition to controller algorithms and built-in functions, the standard libraries
contain additional functions and types for creating almost any other controller type.

PPI Controller

If a process has long dead time in comparison with the process time constant, a
predictive PI controller configuration, PPI (based on a simplified Otto Smith
controller), can be used. The process dead-time delay is added, but the parameter
values for P and I correspond to the same values as in a PI controller.

Fuzzy Controller

The fuzzy controller can handle one input and one output, as well as many inputs
and many outputs. You may be able to use a fuzzy controller where PID control
fails, or does not work well.

A fuzzy controller has most of the functions of a PID controller, together with the
possibility of defining fuzzy logic rules for process control.

Functionality in PID Controllers

A survey of the following eight PID Controllers is presented in Table 5.
1. PidLoop (Function block)

2. PidLoop3P (Function block)

3BSE035981-510 A 113

Controller Types Section 4 Analog Process Control
3. PidCascadeLoop (Function block)
4. PidCascadelLoop3P (Function block)
5. PidCC (Control module)
6. PidAdvancedCC (Control module)
7. PidSimpleReal (Function block)
8. PidSimpleCC (Control module)

Table 5. Functionalities in the PID Controllers

Included Function 1 2 | 3 4 | 5|6 |7 |8
Belongs to ControlSimpleLib No |[No |[No |[No [No |No |Yes |Yes
Belongs to ControlBasicLib Yes |Yes |Yes |Yes |[No [No [No |No
Belongs to ControlStandardLib No |[No |[No |No |Yes |No |No |No
Belongs to ControlAdvancedLib No |[No |[No |No [No |Yes |No |No
PID algorithm Yes | Yes |Yes |Yes |Yes |Yes | Yes |Yes
Tunable Beta-factor No |[No |[No |No |Yes|Yes |[No |No
Backtracking Yes | Yes |Yes |Yes |Yes |Yes | Yes |Yes
Setpoint Backtracking Yes | Yes |Yes |Yes |Yes |Yes | Yes |Yes
Integrator wind-up prevention Yes |Yes |Yes |Yes |Yes | Yes |Yes | Yes
Bumpless transfer Yes |Yes |Yes |Yes |Yes | Yes |Yes | Yes
Tracking Yes | Yes |Yes |Yes |Yes |Yes | Yes |Yes
Internal setpoint ramping No [No |[No [No |Yes |Yes [No |No
Offset Adjustment No [No |[No |No |Yes |Yes [No |No
Deviation alarm limits Yes |Yes |Yes |Yes |Yes |Yes [No |No
Pv alarm limits No |[No |[No |No |Yes|Yes |No |No
Limitation of output Yes |Yes |Yes |Yes |Yes | Yes |[No |No
Feedforward Yes |Yes |Yes |Yes |Yes |Yes [No |No
P-start Yes |Yes |Yes |Yes |Yes |Yes [No |No

114

3BSE035981-510 A

Section 4 Analog Process Control

Basic Controller Principles

Table 5. Functionalities in the PID Controllers (Continued)

Included Function 1 2 3 4 | 5 6 7 8
Predictive PI control No [No |[No |[No [No |Yes [No |No
ERF No [No |[No |[No |Yes |Yes INo |No
Disable PD at limited windup No |[No |[No |No |Yes|Yes [No |[No
Enable out ramp in manual No |[No |[No |No |Yes|Yes [No |[No
Autotuner relay Yes |Yes |Yes |Yes |Yes | Yes |[No |No
Autotuner extension (step) No [No |[No |[No [No |[Yes [No |No
Autotuner structure and design No [No |[No |[No |Yes |Yes INo |No
selection

Oscillation detection No [No |[No |[No [No |Yes [No |No
Sluggish control detection No [No |[No |[No [No |Yes [No |No
Gain scheduler No [No |[No |[No [No |Yes [No |No
Adaptive control No |[No |[No |[No [No |Yes [No |[No
Compensation for redundant I/O Yes |Yes |Yes |Yes |[No |[No [No |No
deviation on process value

Trend curve display Yes |Yes |Yes |Yes | Yes | Yes | Yes | Yes
Asset optimization Yes |Yes |Yes |Yes | Yes | Yes | Yes | Yes

Basic Controller Principles

Basically, a controller has three signals, the setpoint signal (Sp), the process value
signal (Pv) and the output signal. The P controller, PI controller, and PID controller

3BSE035981-510 A

115

Basic Controller Principles Section 4 Analog Process Control

are different types of analog controllers. The basic controller configuration is the P
controller, where P stands for proportional.

Setpoint, S
p4p> PID OUtpUt

. controller

| Process

Process value, Pv

Figure 34. A control loop with the function block of a PID controller

The most simple P controller may be described as follows. The controller compares
the setpoint value with the process value and the difference is called the control
deviation, €. This is amplified by G (the amplification or gain factor) and an offset
signal is added to obtain a working point. See figure below. The result is the output
signal.

P controller

Setpoint
— v Adder

K‘{'\g G * € //F\ Output

\ {+ Z) >

\\\: _— /

/ +/
Process value A —
4>, J—
G = Gain factor
Offset

€= Setpoint — Process value
Output value = G * € + Offset

Figure 35. The basic P controller

116

3BSE035981-510 A

Section 4 Analog Process Control Controller Algorithms

In a PI controller, the offset is replaced by the Integral part (I part).

In a PID controller the Derivative part (D part), acting on the filtered process value,
is also added to the output.

Controller Algorithms

The PID controller algorithms used are of ideal type. The controller input from the
process Pv and the setpoint Sp are regularly read by the controller. A read is also
called a sample, and the time between two samples is called the sampling time. The
required output signal value is calculated, for each sample, by comparing samples of
the input and setpoint values. The sample time is equal to the task cycle time of the
current task. The process value may be filtered before it enters the derivative part of
a control algorithm, by a first-order, low-pass filter. See the algorithms below, and
Figure 36 and Figure 37.

1. The P controller has the following algorithm:

Out = G x(Sp—Pv)+ Offset

3BSE035981-510 A 117

Controller Algorithms Section 4 Analog Process Control

2. The PD controller has the following algorithm:

Out = Gx ((Sp—Pv) +T;x %(FilterOf(—Pv, T))) + Offset

3. The PI controller has the following algorithm:
Out = Gx ((BxSp—Pv)+1/T,x J’(Sp—Pv)dr)
4. The PID controller has the following algorithm:

Out = Gx((BxSp—Pv) +1/T,x J’(Sp — Pv)dt + T x %FilterOf(—Pv,)

5. The PPI controller has the following algorithm:

Out = Gx ((BxSp—Pv)+1/T,x j(sp—Pv)dt)— 1/T, I(Out(t)—Out(t—L))dt

Abbreviations in the Describtion
Algorithms P
Sp Setpoint
Pv Process value
G G is defined as:
G = Gain x (OutRange) / (PvRange)

118 3BSE035981-510 A

Section 4 Analog Process Control Controller Algorithms

Abbreviations in the Describtion

Algorithms P

Gain The gain you enter in the interaction window
or by code via the InteractionPar parameter.
Gain is normalized and dimensionless
according to the above definition.
Thus the gain can be influenced by the
settings of the ranges for the process and the
output values.

OutRange The range (maximum — minimum) of the Out
value

PvRange The range (maximum — minimum) of the Pv
process value

B Setpoint weight

T; Integral time of the controller

Ty Derivative time of the controller

T Filter time of the low-pass filter for the
derivative part

FilterOf (x,y) The expression x is sent through a low-pass
filter.
The filter time is equal to y.

Out Output from the controller

Out(t-L) Output value delayed by the dead time, L.

3BSE035981-510 A 119

Controller Algorithms Section 4 Analog Process Control

G x T, x L(FilterOf(—Pv, T,))
—Pv d dt s
T = Fiter | G Tyx %
_Out

P

*S — Pv G Sp—-P /
pxsp el G x (B> Sp-Pv) -z e

> G I/T[xfdt —T

G x 1/Ti><I(Sp—Pv)dt

Sp — Pv

Figure 36. The principle of an ideal PID controller

B*Sp —Pv Gx(BxSp-pPv)y . Out
> G P > X

G x I/TixI(Sp—Pv)dt— I/Tixj(Out(t)—Out(t—L))dt

Sp—P 7N
L\L\ilvi T >‘ 1/ T, x [dt
4 E - Out(t)
Out(t - L) Delay - Out(t)

Figure 37. The principle of a PPI controller

Parameter values can be set or changed via the interaction window, or in the
application. When the control deviation is within a dead zone, specified in the
parameter window, the output is constant.

120 3BSE035981-510 A

Section 4 Analog Process Control Controller Algorithms

Offset Adjustment

The P and PD controller types do not have an integrator, but they have an offset
instead. The offset is a tuning parameter of the controller and used to determine its
working point. It is normally constant, but may be automatically adjusted if the
offset adjustment function is enabled.

If offset adjustment is enabled the offset is automatically adjusted in some modes
and also when the controller parameters, for example the gain, is changed. The
adjustment of the offset is always done in such a way that the output of the
controller becomes continuous.

Details on how the offset is adjusted are discussed in the section Bumpless Transfer
on page 185.

The offset adjustment function must be used with care. When offset is adjusted,
the behavior of the controller changes. For example, the control deviation at a
certain working point may change. This is not acceptable in many cases.

Internal Setpoint Backtracking

Internal setpoint backtracking adjusts the setpoint automatically, while in internal
mode (provided that the function is enabled). The purpose is to make sure that the
output of the controller is continuous at mode changes. In some cases, process value
tracking is also achieved. See Bumpless Transfer when Enabling or Disabling the
Limitation of the Output on page 189.

The adjustment is done the same way as in external mode, when a control module
with backtracking capability is connected to the setpoint.

Reduced Effect of Setpoint Changes

For controllers with an integrator (PI, PID, PPI), the setpoint influence on the
proportional term is governed by a setpoint weight, the beta (J3) factor, to make the
output as smooth as possible. These controllers have two setpoint weight factors
which are used when the setpoint is considered continuous or discontinuous,
respectively. An abrupt, discontinuous change in the setpoint should not be allowed
to have full effect on the output. The setpoint is considered to be discontinuous, for
example, when the internal setpoint is selected and the operator enters a setpoint
value manually, or when a preceding control module is in Manual mode.

3BSE035981-510 A 121

Controller Algorithms Section 4 Analog Process Control

The switching between the two setpoint weight factors is automatic, depending on
whether the setpoint signal is continuous or discontinuous. The setpoint weight is in
the discontinuous case by default O (zero). Otherwise, at continuous setpoint signals,
the setpoint weight factor is by default 1 (one).

At normal usage, the controller provides the appropriate default value for the
setpoint weight factors. However, in PidCC and PidAdvancedCC, these two
parameters are editable. In some special cases, the user may tune the setpoint weight
factor by editing these parameters to real values between the 0 and 1 limits. An
example is when an externally calculated tuning is to be applied to the controller.

Internal Setpoint Ramping

Internal setpoint ramping smoothens setpoint changes for PidCC and
PidAdvancedCC. When activating this function, a target setpoint can be entered.
The ramping can be started and stopped, only if internal setpoint is selected. Once
the ramping is started the setpoint will change smoothly to the targeted setpoint. The
ramp increase and decrease rates can be set separately. The time to reach the target
setpoint is displayed. When the target is reached, the ramping is deactivated and
stopped.

The ordinary internal setpoint field can be disabled to prevent discontinuous
setpoint changes. The user can then only enter setpoints as target setpoints.

If, in the meantime, the setpoint is switched to external setpoint, the ramping is
stopped. The transfer to the external setpoint will be bumpless if the external
setpoint is able to receive a backtracking value. The target setpoint is left
unchanged. If the controller enters Backtracking mode, ramping is aborted, and
backtracking starts instead.

Limitation of Controller Output

Generally, maximum and minimum values for the controller output signal are
specified using the I/O connection editor. These values are the endpoints of the
vertical axis in bar graph and trend curve windows for the signal. In Auto mode, the
user can limit controller output to a narrower interval from the parameter window, as
long as the limiting functions are enabled. An example of when it may be necessary
to limit the output is when testing new controller settings.

122

3BSE035981-510 A

Section 4 Analog Process Control Hysteresis vs Dead Zone

The controller output may then be limited, to ensure that the process is not badly
disrupted if the controller is poorly tuned. The output range may also be changed in
the controller parameter window. This is usually done when there is no I/O
connection editor.

Hysteresis vs Dead Zone

The concepts hysteresis and dead zone are explained as follows.

Hysteresis

To avoid frequent activations at a level, a hysteresis value can be set in some control
modules, for example, when a signal is close to an alarm limit.

In Figure 38, activation is desired when a signal exceeds a high alarm level. The
activated and the deactivated conditions are separated by the hysteresis below the
high alarm level. Depending on the direction of the signal, the hysteresis is added to
either the activated or deactivated condition.

The alarm is first deactivated and the signal increases to the high alarm level. The
alarm is then activated. It remains activated until the signal falls below the hysteresis
and is then deactivated. The next time the signal exceeds the high alarm level, the
alarm is activated. For a low alarm level, the situation is the reverse with the
hysteresis above it.

Activated alarm Alarm activation

High alarm level ,,O//\
L \/

Hysteresis Signal

h 4
/ Alarm deactivation

Deactivated alarm The signal must fall
below the hysteresis

Figure 38. Activation is desired when a signal exceeds a high alarm level

3BSE035981-510 A 123

Hysteresis vs Dead Zone Section 4 Analog Process Control

Dead Zone

To allow a signal a certain noise level without causing activation, a dead zone can be
set around it in some control modules, for example, for a control deviation. A small
fluctuation in the signal is then allowed. The signal is not active when it is within the
dead zone. When the signal exceeds or falls below the dead zone limits the signal is
active. Figure 39 showing a dead zone on both sides of a desired signal value.

Activation when the signal IS
outside the dead zone

Dead zone I M \
Mo activation when the

signal is within the dead zone

Feature Pack Functionality

Figure 39. A dead zone on both sides of a desired signal value

If PidCC or PidAdvancedCC is used, the calculation of the derivative part has
no dependecy to the selected dead zone. This means that the output signal may
change even if the difference between Sp and Pv is less than the dead zone value.
Small changes in Pv is filtered by a special low pass filter assigned for the
derivative part.

ERF

This input node of type ControlConnection can be found in the controllers PidCC
and PidAdvancedCC. It is used in rare cases instead of the IRF Internal Reset
feedback that is delivered in the backward direction of the Out node on the
controllers. This signal is used as the limiting signal related to max and min reached
situations and as a backtracking value when backtrackinf occurs.

124

3BSE035981-510 A

Section 4 Analog Process Control Hysteresis vs Dead Zone

Disable PD at limited windup

This is used in override control configurations, when known disturabances occurs
on the process values on any of the constraint controllers. An example on such a
situation is when the pressure suddenly changes, then the deviation of the constraint
controller has moved this controller out of selection.

This setting is made either in the interaction windows or in the faceplate of the
controller.

Here we can find the time value, Tw, for A recc: S e
the anti windup function. The time factor, r';‘:" i 3
Tw Factor, can be user defined. The Fip C sPD
default value is 2.0. The time value is % scam smas 4
calculated as \\
Tw=TiTwFactor

The ERF node input can be
enabled or disabled, This requires
that the node has a connaction to

and object that send a {5 o
ControlConnection structure. |l SDISABLE PO AT LWATED WiHOUP
| 5_pEAnTonE Com
3 am

If e.q. the pressure flickers under !

normal circumstances the
influence from the proportional
and derivative part during windup !
may be disabled to avoid
unexpected controller switches. et T T

i

Figure 40. The EDIT interaction window of a PidCC or PidAdvancedCC

Enable Out Ramp Manual

The setting for enabling ramping of the output signal of a controller is implemented
in PidCC and PidAdvancedCC objects. The intension is to limit the derivative of the
output in manual mode. The derivative is defined by the OutlncLim and the
OutDecLim InteractionPar components.

This setting is to be made by the user either in the interaction windows or in the
faceplate of the controller.

3BSE035981-510 A 125

Hysteresis vs Dead Zone Section 4 Analog Process Control

e ==

M ARG TR 55

AP TLTAC THOM

Here we find the derivative limiting soowx [e
values _SP_MN [om
A_SP_FLAMPING:
I 5 ouanLE_se,

T T

45 RATE_DEC [120

This setting enables the manual ,j,ﬂ.:mm', 7 :Ts
change ramping metodology I 5_SP_RAMP_OMLY

| s mTERRAL sP_BT

[$_CAFSET_ADJUSTMENT
S_UMIT_OUTPUT

j_CUIT_MAX. 10000

_CUIT_tan 0.00
| T
| 10000
\ w0
T_RATE . s

_ouT_paTEpec [1m0 1w
$_ENABLE_OUT_RAMP_MaM

|| s oevmon_auams
sposuom [e @)
[s_ENALE_POS §_POS DISABLED)
=]

Figure 41. The interaction window of a PidCC or PidAdvancedCC

126 3BSE035981-510 A

Section 4 Analog Process Control Fuzzy Control

Fuzzy Control

A fuzzy controller is based on fuzzy logic which is a generalization of the common
Boolean logic.

i E EDiFfNeq EDifZern EDiffFar
SpPvin

EDiff
E

EHeq

EMeoq &HD EDiffHoq
EHea BHD EDiFiZern
EHea SN EDiFiFar

EZero ANHD EDiFfHeq
EZero AHD EDiFFZern

EZero AHD EDiFFFor
EFor AHDEDFFMeq

EFor AHDEDNFF2ern
EF or ANMD EDiFFF ar

>
B
>
>

AN B VAN

Fouls- Fouls- Foule Fouls- Foule Our

Hallararey Tulfiey MalZers OulPan CullararFan

Figure 42. The fuzzy controller window
A fuzzy controller consists of a linear part and a fuzzy logic part. The linear part has
many of the functions of the PID controller, for example:

* Computation of the control deviation & = Setpoint — Process value and its
derivative (even the second derivative).

* Computation of the derivative of the process value.
* A low-pass filter for derivative of the process value and the control deviation.

* Internal and external setpoint.

3BSE035981-510 A 127

Fuzzy Control

Section 4 Analog Process Control

Handling of absolute and relative alarms.

An integrator with anti-integrator wind-up function.

Manual and automatic output.
Tracking function for the output.

A feedforward function.

The fuzzy logic part of the controller contains the functions that define the rules for
control of the process, for example:

Computation of the degrees of membership of a number of signals to a number

of fuzzy sets.
Computation of fuzzy conditions.

Computation of fuzzy rules.

Computation of output membership functions for a number of controller

outputs.

Defuzzyfication of the output membership functions.

The fuzzy controller works as follows:

One or more process values, and possibly also external setpoints, are entered
into the linear part of the controller. The process values may be low-pass
filtered. If no setpoint is used, the first derivative of each process value is
computed. The result is made available to the fuzzy logic part of the controller.

If setpoints are used, the control deviations, € = Setpoint — Process Value, and
their two first derivatives are computed for each process value. These two
results are also made available to the fuzzy logic part of the controller.

128

3BSE035981-510 A

Section 4 Analog Process Control Fuzzy Control

The fuzzy logic part of the controller receives one or more signals from the
linear part. It may receive the control deviation, the process value or their
derivatives from the linear part. Each of these signals is entered into a number
of input membership functions. The output from an input membership function
is a signal, which assumes values between 0 and 1. This value indicates the
degree of membership of the signal from the linear part to this particular
membership function.

The outputs from the input membership functions are combined into fuzzy
conditions using the fuzzy operators NOT and AND. The fuzzy operator NOT
is defined as NOT X = 1 — X. The fuzzy operator AND is defined as X AND Y
= Min(X,Y). The result has a value between 0 and 1.

The fuzzy conditions may then be combined into fuzzy rules using the fuzzy
operators NOT and OR. The fuzzy operator OR is defined as X OR Y =
Max(X,Y). The output from a fuzzy rule also has a value between 0 and 1 and
is called the degree of satisfaction of the rule.

ENeg AND EDiffPos
-OR EZero AND EDiffZero
OR EPos AND EDiffNeg

THEN OutZero

Figure 43. A fuzzy rule

The degree of satisfaction of each fuzzy rule is then used to compute the
current output membership function for the rule.

There may be a number of output membership functions associated with each
output from the controller. All output membership functions associated with
the same output from the controller are combined into one output membership
function. This is done by computing the envelope (the maximum value of all
the functions at every point) of all the membership functions.

3BSE035981-510 A

129

Fuzzy Control

Section 4 Analog Process Control

* The resulting output membership function for a certain controller output is
used to compute the value of the output. This is called defuzzyfication and is
done by computing the center of gravity of the output membership function.

* The defuzzyfied outputs from the fuzzy logic part of the controller are then
entered into the linear part of the controller.

* Each output may then be integrated and is limited by an anti-integrator wind-up
function.

There are also functions for feedforward, output tracking and Manual mode.

The fuzzy controller also has a simulation facility. The values of the control
deviation, the process value and their derivatives may be simulated. Simulation can
be used to evaluate the behavior of the fuzzy logic part of the controller.

Relation to Other Libraries and Modules

The fuzzy controller is designed to operate together with the control library modules
in the same way as the PID controller does. The fuzzy controller has, to a large
extent, the same parameter interface as the PID controller. It should be connected to
the other control modules in exactly the same way as the PID controller, i.e. using
ControlConnection data type connections.

FuzayController1CC
PIDAdvancedCC

Al CC
i 4
CC AD
Al
l
cC

Figure 44. Fuzzy control relations

Typical configuration where a fuzzy controller is used as part of the control loop. A
fuzzy controller operates as a master controller, the output of which is connected to
the setpoint of a PidAdvancedCC.

130

3BSE035981-510 A

Section 4 Analog Process Control Fuzzy Control

How to Use Fuzzy Controller Templates

Introduction

Your copy of a template can be modified in the following ways: the number of
inputs, outputs, membership functions, conditions and rules can be changed, and
these items can be grouped in different ways.

The fuzzy control modules have one input and one output, but they can be
configured for many inputs and many outputs.

Select the fuzzy control module which best suits your needs.
Step-by-Step Instructions for Using Templates

1. Copy a fuzzy controller template from the library. Select a template (for
example FuzzyControllerCC). For more information, refer to Templates on
page 85.

2. Paste the copied fuzzy controller in the Control Module Types in the
applications folder.

3. Rename it, for example, Own_FuzzyController].

4. Create a new empty control module called, for example, SM1 and take
Own_FuzzyController1 into use by the Create/Control Module command.

It is now possible to make changes to the fuzzy controller. You can change the
number of inputs, outputs, membership functions, conditions or rules. These items
can also be grouped in different ways.

ﬂ The steps presented above describe how the user is able to make a new control
module type in an application, but if the modified fuzzy controller is needed in
many projects it is recommended that the user creates a module type in a new
library which can then be included in many projects.

3BSE035981-510 A 131

Fuzzy Control

Section 4 Analog Process Control

Internal Data Flow of Fuzzy Controllers

The sub-modules in the fuzzy controller templates are connected as shown in the
illustration below.

| InputMembership ‘ FuzzyRule Defuzzyficaton

Fuzzy SpPvIn
ar

Fuzzy Condition | OutputMembership | FuzzyOut

Fuzzy PvIn

f"‘d"

L

X\dl I Ll II\\.,/\ [.

L
L

/\
O
/\

L | L] @ 1
\

e

©,

/\ — |\ T3 /
1
Y

@ = Submodule

FuzzyProgram connection
Control nurm ber

Figure 45. Sub-module connections in the fuzzy controller templates

1.

The connection between FuzzySpPvIn and InputMembership: The
FuzzySpPvIn control module computes the control deviation EOut (Setpoint-
Process value) and its first and second derivatives. These signals are inputs to
the InputMembership control modules. If a setpoint is not desired for some of
the inputs FuzzyPvIn control modules are used instead of FuzzySpPvIn control
modules.

132

3BSE035981-510 A

Section 4 Analog Process Control Fuzzy Control

2. The connection between InputMembership and FuzzyCondition: The control
module defines an input membership function for the fuzzy logic part of the
controller. The output, DegreeOfMembership, should normally be connected to
all FuzzyCondition control modules. If the InputMembership control module is
not connected to a certain FuzzyCondition control module then the
membership function can, of course, not be used in the corresponding
condition.

3. The connection between FuzzyCondition and FuzzyRule: The output
parameter Condition of a number of FuzzyCondition control modules should
be connected to the condition parameters of a number of FuzzyRule control
modules. The fuzzy rules may then be defined from any of the connected fuzzy
conditions.

4. The connection between FuzzyRule and OutputMembership: The output
parameter DegreeOfSatisfaction should be connected to the corresponding
parameter of an OutputMembership control module.

5. The connection between chained OutputMembership functions: The
OutputMembership control modules are connected in a chain. The chain must
always end with a Defuzzyfication control module. The control modules of the
chain are connected via the parameters InputCurve and OutputCurve.

6. The connection between OutputMembership and Defuzzyfication: The
Defuzzyfication control module should appear as the last link in a chain of
OutputMembership control modules. The OutputMembership functions are
connected to the chain via the parameter InputCurve.

7. The connection between Defuzzyfication and FuzzyOut: The parameter Output
should be connected to the Input of the FuzzyOut control module.

8. The connection between FuzzyProgramControl and all the fuzzy logic part
control modules: The Program control parameter should be connected to the
corresponding parameter of all the InputMembership, FuzzyCondition,
FuzzyRule and OutputMembership control modules.

3BSE035981-510 A 133

Controller Modes

Section 4 Analog Process Control

Controller Modes

A controller has a number of different working modes. The controller may be
switched from one mode to another with a minimum of disturbance in the process.
The modes are listed in the table below with the lowest priority first.

Controller Mode

Priority

Function

Auto

Lowest

Auto is the normal automatic control mode.

Backtracking

The controller output is connected to a control
module chain in which at least one of the
succeeding controllers is in Manual mode.

Tracking

In Auto mode, the controller output tracks a signal
value from the application when the Track
parameter is True, except in Manual mode, which
has higher priority.

Upon changing from Auto mode to Tracking mode,
or vice versa, the output is changed bumplessly,
since it follows a ramp, limited by the maximum
increase and decrease output ramp speed
settings, until it reaches the track value.

Manual

The output signal can only be changed manually
by a user in an interaction window, or via an
application.

Tuning™

Highest

The Autotuner is started and active.

(1) Not available in PidSimpleCC and PidSimpleReal.

Faceplates

All controllers also have faceplates, which allow the user to tune the controller and
to view controller and process data. Control faceplates are similar for all controllers.
The below example shows the extended faceplate for the Pid AdvancedCC control
modules, which contains most control functions that are shown in faceplates.

134

3BSE035981-510 A

Section 4 Analog Process Control Faceplates

mPidAdvancedlIl : MainFacePlate =10] x|

| PidAdvancedCC1 r_\
@

Contral |Active | Trim Curves |GS | Edi | Ture 4 | » Trim Curvesl GS Edit |Tun£ 4 | }|
10000 Pv 40,00 100,00 v Py v Sp 00,00 Edit Set 2

Sp 40,00 ™| Controller type |ﬂ| 'I
Qut 59.00 i 1.00/
Ti 20,00 s
Td | 000
Dead zone 0,00|
N Offset ’T.l]l]
Derivation fiter time 000 =
Feedtorsward gain | 0,00
PPl dead time | 000 s
. I | I NEeeiBarkaiaption Reset
0,00 ol u_lng ¥ Out D,DD_ I REeedionvand Sadaption S EEsE
T T T T T 1
Py Sp 0,00 100,00 - 40 | I crid 0MsS Stare | DRestara] 10 a—d 1 0w 1)
JEE N

T e

Figure 46. The extended faceplate for the PidAdvancedCC control module with trim
curves and parameter settings

For manual tuning set the parameters under the Edit tab, see Basic Controller
Principles on page 115 and Controller Algorithms on page 117. For feedforward see
Feedforward on page 192.

For gain scheduling below in Figure 47, see Gain Scheduling on page 204.

3BSE035981-510 A 135

Faceplates Section 4 Analog Process Control

i PidAdvancedCC1 : MainFacePlate

Figure 47. PidAdvancedCC control module with gain scheduling (GS) when Set 2 is
active

For autotuning below, see Autotuning on page 193. The tuning phases are indicated
and the results are presented under their respective tabs.

Figure 48. Autotuning in a PidAdvancedCC control module

136 3BSE035981-510 A

Section 4 Analog Process Control Faceplates

For deviation alarms, see Deviation Alarms on page 190. For the supervision
functions, see Oscillation Detection on page 211.

Figure 49. The settings of deviation alarms, common and limit settings in a
PidAdvancedCC control module

For Voted Commands, see Signal and Vote Loop Concept on page 435.

‘SpRamping. A

Figure 50. Voted Commands in a PidAdvancedCC control module

3BSE035981-510 A 137

Design

Section 4 Analog Process Control

Design

Before using objects from the Control libraries, there are a number of choices that
have to be made regarding which type of object to use for a specific purpose. The
following information is designed to help you design reliable and effective analog
control solutions:

* General Design Issues on page 138 describes things to consider and choices to
be made before starting to create your analog control solutions.

For a more general discussion of design issues, see the System 800xA Control, AC
800M Planning (3BSE043732%*) Manual.

* Control Strategies on page 141 discusses what control strategy (what type of
control loop, etc.) to use for different types of processes.

* Controller Types on page 144 contains an introduction to all controller types in
the Control libraries.

e Industrial Controller Types on page 151 discusses how to build common
industrial controller applications, such as cascade controllers, using types from
the Control libraries.

* Signal Handling on page 154 gives an overview of where to find signal
handling information.

General Design Issues

Analog signal handling and building of control loop applications using objects such
as system functions and function blocks will often result in high functionality and a
high degree of flexibility.

However, it requires a good deal of knowledge of control loop design and of the
function of the participating objects, to construct and maintain signal systems and
control loops.

Function Blocks or Control Modules?

An important choice is whether to use function blocks or control modules. For an
extensive discussion of this topic, see the manual in System 800xA, Control, AC
800M, Configuration (3BSE035980%)..

138

3BSE035981-510 A

Section 4 Analog Process Control General Design Issues

More specifically, you have to consider the following questions:

1. What is your general programming environment?
What has already been done?
What skills are required for present and future demands?

2. What kind of applications are you going to make, now and in the future? Is it
a. signal handling
b. advanced or simple control loop applications

c. or a combination of these?

Table 6. Guide for choosing between function blocks and control modules.

Method for signal handling in control loop applications

Suitable for calculations and Suitable for control loops when
when the signal information the signal information forward
forwards is sufficient. Low is sufficient. Low memory
memory consumption. consumption.

Function Blocks

Can be used when preceding | Functions best when signal
Control modules |and succeeding objects also |information forward and
are control modules. backward is required.

3. Which method is most suitable for designing a control loop?

Basically, there are four methods of designing a control loop by means of the
available libraries containing control functions, control function blocks, and
control modules:

— A ready-made control loop in function blocks,
— System functions and function blocks,
— Function blocks containing control modules,
— Control modules.

A good basic strategy would in many cases be:

* Start with system functions and function blocks.

3BSE035981-510 A 139

General Design Issues Section 4 Analog Process Control

* When you need more control functions in many small, isolated islands of
program code, you can create function blocks that contain control modules
solving the control functions. Such a local group of control modules is then
executed in the function block, according to its isolated terms, and blocks out
influences from other function blocks.

* If your control system grows, so that it has to be coordinated and the code must
be co-sorted, then programming with control modules is recommended, for
example, in the case of several distributed cascade controllers.

Feature Pack Functionality

4. Whether to use diagrams and diagram types for designing a control loop?

If diagrams are used, it is possible to include the entire object-oriented design
in a single diagram as it allows mixing control modules, function blocks, and
functions, by means of graphical connections. The number of re-usable
elements can also be reduced to a minimum as all of them can be included in a
single re-usable diagram type, and used in many diagrams.

Diagrams and diagram types allow you to configure the control logic in the
project in a comprehensive graphical language called FD (Function Diagram).
They allow mixing of the functions, function blocks, control modules, and
other diagrams, in the same graphical editor. The diagrams also support cyclic
communication between different applications, using communication
variables.

The diagrams provide a graphical overview of the application. In addition to
the graphical code block that supports FD, the diagram and diagram type also
supports SFC and ST code blocks, which are invoked from the main code block
or sorted separately.

140 3BSE035981-510 A

Section 4 Analog Process Control Control Strategies

Control Modules and ControlConnection

In signal systems and control loops, a large amount of information is sent between

different objects, both in the forward direction and backward. The main signal flow
works well in normal operation. However, in exceptional situations ,there may be a
need to handle, for example, the following situations.

* Integrator wind-up.

* Bumpless transfer.

e Signal quality.

* Signal measure ranges.

The complexity of such signal systems and control loops can be reduced
considerably if the ControlConnection standard interface is used for signals between
the objects, which then will have to be control modules. See ControlConnection on
page 103.

By means of control modules it is possible, in addition to a high functionality and
flexibility, to achieve a simplicity of configuration, which makes the control loops
easy to configure and maintain. The risk of making mistakes when configuring
control loops is drastically reduced, which increases the reliability of the loop.

Control Strategies

When a process is to be controlled, one of the most important questions is to select a

controller strategy. Control strategies can be classified into the following main

groups:

* Processes with no or short dead time, see Processes with No or Short Dead
Time on page 142.

* Processes with long dead time, see Processes with Long Dead Time on page
142.

* Processes that do not fit the above two descriptions, see Special Processes on
page 143.

* Rules of Thumb and Limitations on page 143 gives advice when using several
controllers.

3BSE035981-510 A 141

Control Strategies

Section 4 Analog Process Control

Processes with No or Short Dead Time

A process with no or short dead time can be of a number of types, for which the
strategy is slightly different:

Process with Constant Process Dynamics

For a process with constant process dynamics and short dead times, that can
have constant parameters in the whole working range, which is one of the most
common processes, the proper strategy is to select a PID controller. Simpler
variants P, PI or PD may also be sufficient.

The process engineer’s trimming tool for PID controllers is the Autotuner,
which suggests settings for the parameters of the controller.

Process with Changing but Predictable Process Dynamics

For a process with changing but predictable process dynamics and short dead
time that requires different parameters in different parts of the working range,
the proper strategy is to use a PID controller with gain scheduling.

The Autotuner is used to tune the parameters in each working range.
Process with Changing but Unpredictable Process Dynamics
For a process with changing but unpredictable process dynamics which vary

slowly the proper strategy is to use an adaptive PID controller with or without
gain scheduling.

The Autotuner is used to tune the initial parameters. See the section Adaptive
Control on page 200.

Processes with Long Dead Time

A process with long dead time can be of a number of types, for which the strategy is
slightly different:

Process with Constant Process Dynamics
For a process with constant process dynamics with long dead times you may
select a predictive PI controller, called a PPI controller.

The PPI is started when configuring the PID controller and by selecting a
maximum dead time. As a rule of thumb, a PPI controller is used when the
dead time is longer than the dominating time constant in the process.

When running a PPI controller it is still possible to run Autotuner and gain
scheduling.

142

3BSE035981-510 A

Section 4 Analog Process Control Remarks on the Design of Control Loops

e Process with Changing but Predictable Process Dynamics
For a process with changing but predictable process dynamics and long dead
time, which requires different parameters in different parts of the working
range, the proper strategy is to use a PPI controller with gain scheduling.

Special Processes

In special processes with several input and output signals which may not be possible
to control, or when the strategies above, have proved unsuccessful, you may try a
fuzzy controller.

The fuzzy controller is based on fuzzy logic which is a generalization of the
common Boolean logic by something between true and false. See the section Fuzzy
Controllers on page 150.

Rules of Thumb and Limitations

If you plan to use several controllers for a process, you should consider how the
number of controllers influences the choice of processor for the control system. The
following factors must be weighed against each other:

* The process time constant should not be less than 100 ms.

* When the time constant for a process is such that the controllers must execute
faster than every 100 ms you should give execution times some extra thought,
and ensure that the controller really has the time it requires, keeping in mind
the associated program code.

Remarks on the Design of Control Loops

Configuration of Control Loops

The recommended configuration strategy for creating a control loop is to connect
the control modules in chains from the left to the right, which is the direction of the
main signal flow. If sufficient space is not available in the Control Module Diagram
window, the control module icons may be turned in other directions. Their
interaction windows are not influenced.

Control modules are preferably connected by means of graphical connections. This
is done in Offline mode.

3BSE035981-510 A 143

Controller Types

Section 4 Analog Process Control

Connection to Tasks

The basic strategy for connections to tasks is to have all the control modules in a
control loop running in the same task. If there is a need for faster action, particularly
at the end of the control loop, these control modules can be connected to a quicker
task, for example, in three-position control or for the slave controller in a cascade
control loop.

Backtracking

In a control loop with several PID functions, where backtracking occurs, try to
locate control modules that have an internal state as late as possible in the control
loop chain. Otherwise when backtracking, a control module with internal state
influences any succeeding TapCC and TapRealCC control module in a faulty way.
The latter control modules would then tap off values and set levels based on the
backtracked value (which is collected by the control module with an internal state)
instead of a value from the preceding control module as expected.

Controller Types

Table 7 shows all controller types in the Control libraries

Table 7. Controller types in the Control libraries

Controller Library As Control Module Type | As Function Block Type
Simple Simple Control PidSimpleReal
Standard Control PidSimpleCC
Standard Basic Control PidLoop
PidLoop3P
PidCascadelLoop
PidCascadeLoop3P
Standard Control PidCC
Extended Control BiasCC
RatioCC
Advanced Advanced Control PidAdvancedCC

144

3BSE035981-510 A

Section 4 Analog Process Control Controller Types

Table 7. Controller types in the Control libraries (Continued)

Controller

Library As Control Module Type |As Function Block Type

Template(")

Control Solution SingleLoop
Cascadeloop
OverrideLoop
FeedforwardLoop
MidrangelLoop

Template'

Control Object Mimo22CC
Mimo41CC
Mimo44CC

Fuzzy

Fuzzy Control FuzzyController1CC, etc.

(1) Control loop templates can be used directly in an application.

Getting Information on Individual Parameters

If you want to study individual parameters for a controller type, refer to online help
for the type in question. To display online help for a controller type, select it in
Project Explorer and press F1.

The corresponding online help topic will also contain an Editor button, which will
open the corresponding editor, where you can see short descriptions for each
parameter, as well as the corresponding data type.

It is also possible to generate project documentation for a library or part of it, by
using the built-in Project Documentation function.

The Project Documentation is accessed from Project Explorer. Select a library or
object and select File > Documentation. For more information on how to
generate project documentation, see online help and the manual System S800xA,
Control, AC 800M, Configuration (3BSE035980%)..

3BSE035981-510 A 145

Controller Types Section 4 Analog Process Control

Simple Controllers

Simple controller objects work according to Basic Controller Principles on page

115.
Table 8. Simple controllers
Type Name Library Type Description
PidSimpleReal Simple Function PidSimpleReal is a simple PID controller that
Control Block supports backtracking, tracking and manual

control. All transitions from limiting, tracking, and
Manual mode are bumpless. Interaction graphics
are also available, to support set-up and
maintenance of the controller.

PidSimpleCC Standard | Control PidSimpleCC is a low-functionality PID controller,

Control module which is less time and memory consuming than
the full-functionality versions. Interaction graphics
are also available, to support set-up and
maintenance of the controller. The main inputs
and the output are of ControlConnection type,
which means that backtracking and limiting are
managed automatically.

146 3BSE035981-510 A

Section 4 Analog Process Control

Controller Types

Standard Controllers

Standard controller types work according to Basic Controller Principles on page

115.
Table 9. Standard controllers
Type Name Library Type Description
PidCC Standard | Control PidCC is a full-function PID controller.
Control module

PidLoop Basic Function PidLoop, PidLoop3P, PidCascadelLoop, and
PidLoop3P Control block PidCascadelLoop3P are ready-made complete

. control loops that you can connect to 1/O signals
PidCascadelLoop

. of ReallO type.

PidCascadel.oop3P The controllers in these control loops can be
configured as P, PI, PD, or PID controllers, with
the same functions as PidCC. However, these
function block types cannot be connected to other
function blocks or have any function block or
control module inserted into the control loop.

The PidCC control module type has the following main functions:

Autotuner of relay type, see Autotuning on page 193.

Feedforward, see Feedforward on page 192.

Tracking, see Backtracking on page 110.

Deviation alarm generation, see Deviation Alarms on page 190.

Limitation of output, see Limitation of Controller Output on page 122.

Anti-integrator wind-up, see Anti-Integrator Wind-Up Function on page 184.

Bumpless transfer, Bumpless Transfer on page 185.

Dead zone for the control deviation, Additional Control Functions on page 208.

Setpoint ramping, see Internal Setpoint Ramping on page 122.

Autotuner structure selection, see Autotuning on page 193.

3BSE035981-510 A

147

Controller Types Section 4 Analog Process Control

* Automatic offset adjustment, see Offset Adjustment on page 121.

* EREF see ERF on page 124.

* Disable PD at limited windup, see Disable PD at limited windup on page 125.
* Enable Out Ramp Manual, see Enable Out Ramp Manual on page 125.

* Epsilon, see Gain Scheduling on page 204.

To supervise the control deviation, relative alarms can be given by two control
deviation alarm limits, one for positive and one for negative deviation. Information
is given for each level in two forms; as alarms and as Boolean parameters.

Code

Extended Functions
Input with Control Modules Controller Output

.

Figure 51. A control loop with all functions defined by control modules from the
control libraries

Controller Function Block

p=| Input Output

Figure 52. A control loop defined by a function block

148 3BSE035981-510 A

Section 4 Analog Process Control Controller Types

Advanced Controllers

PidAdvancedCC works according to Basic Controller Principles on page 115.

Table 10. Advanced controllers

Type Name Library Type Description
PidAdvancedCC |Advanced |Control PidAdvancedCC is the most advanced controller
Control module in the Control libraries, see list below.

3BSE035981-510 A 149

Controller Types

Section 4 Analog Process Control

®

In addition to the main functions of PidCC, PidAdvancedCC has the following,
more advanced functions:

* Configurable as a PPI (Predictive PI controller), see PPI Controller on page

113.

e Autotuning using relay and step response methods, see Autotuning on page

193.

* Gain scheduling, see Gain Scheduling on page 204.

* Adaptive control, Adaptive Control on page 200.

* Oscillation detection, see Additional Control Functions on page 208.

* Sluggish control detection, see Additional Control Functions on page 208.

PidAdvancedCC generates an event each time a parameter is changed. This
means that you must be careful so that you do not flood the alarm and event
servers by connecting a parameter to a variable that changes very often.

Fuzzy Controllers

A fuzzy controller may handle the case of one input and one output, as well as many
inputs and many outputs. It has most of the functions of a PID controller together
with the possibility of defining fuzzy logic rules for process control.

Table 11. Fuzzy controllers

Type Name Library Type Description

FuzzyControllerX | Fuzzy Control For additional information, see online help for the

CcC Control module Fuzzy Control library and Fuzzy Control on page

127.
A fuzzy controller should not be used in cases where PID control works well. In
these cases it is much easier to tune a PID controller.
However, in cases where PID control fails or works poorly, a fuzzy controller may
be successful. For example, the fuzzy controller may be successful:
150 3BSE035981-510 A

Section 4 Analog Process Control Industrial Controller Types

* When the process is truly multi-variable, with many coupled inputs and
outputs.

ﬂ This may also have a solution using two PID controllers combined with a
decoupling filter (PidCC and DecoupleFilterCC).

* When the process has non-linearities that are difficult to handle with PID
control and gain scheduling.

* When the process is difficult to describe analytically, and operators control it
manually, by experience.

@ For a short introduction to fuzzy control, see Fuzzy Control on page 127.

Industrial Controller Types

Controllers regarded as common in industry can easily be constructed by means of
the control modules in the Control libraries according to the typical examples below.
For more in formation, see Control Loop Solutions on page 257.

Cascade Controller

A cascade controller is constructed as a combination of control modules, using input
and output modules, and two controller modules. Two controllers are connected in
cascade; the output of one controller, called the master, is connected to the external
setpoint of the other controller, called the slave.

Sp2 Master OUt2=Sp1 Slave
p ut2=Sp
—»_outer [®| _ Inner | Outl

———® /controller Pvi controller
Inner loop

Outer loop

Pv1 Pv2

Process 1 Process 2 —

Figure 53. lllustration of two controller modules connected in cascade

3BSE035981-510 A 151

Industrial Controller Types Section 4 Analog Process Control

Two controllers connected in cascade must be tuned in the correct sequence. The
inner loop should be faster than the outer loop. Ready-made function blocks are
available for applications in which a fixed cascade loop is suitable.

Three-Position Controller

A three-position controller is constructed as a combination of control modules: a
controller module, an analog input module and a three-position output module,
which gives two digital output signals. Use a three-position controller when digital
output are required for an increasing, decreasing or no digital signal at all to be sent,
for example, to an electrical actuator. See the section Three-Position Output on page
208. For setting of ranges in a SplitRange or a MidRange object, see Split Range
Examples on page 283.

Pulse Controller

A pulse controller is constructed as a combination of control modules: a controller
module, an input module and an output module, which gives a digital output signal
with a pulse width proportional to the analog controller output.

Sp

=—® \PID Output Pulse -
Pv T ! I Digital
——® controller width Output

Figure 54. Pulse control with the digital pulse width output proportional to the
analog output

Ratio Controller

A ratio controller can be constructed from a combination of control modules: input
and output modules, controller modules, arithmetic modules and tap modules. The
ratio between two different process values may be controlled by two or more
controller modules, according to Figure 55. A RatioCC control module is then used
for the ratio between the setpoints. Ratio controllers are often used for recipe
handling.

152

3BSE035981-510 A

Section 4 Analog Process Control Industrial Controller Types

Sp1

- PID Output
Pv1 >
—> controller 1
— X Sp2
4>
PID Output
Ratio >

RatioCC controller 2
Pv2

Figure 55. Example of ratio controllers where the setpoint from the first controller is
multiplied by a factor to obtain the setpoint for the second controller

Split-Range Controller

A split-range controller is constructed as a combination of the following control
modules: input and output modules, a controller module and any of the branching
modules. The output from a controller is then divided into two ranges which can be
set independently, and may overlap each other. An example of the use of split-range
control is when two control valves are used. The valves may be of different sizes
working in the same direction. The lower range is connected to the smaller valve
and when it is fully open, the upper range opens the larger valve. The valves may
also work in opposite directions. For example, when a tank level is to be controlled.
At lower levels, one valve opens, and at higher levels, the other valve opens.

> Analog
s Output
P .\ PID Output | spiit-
Pv >
— P controller range
> Analog
Output

Figure 56. Example of split-range control where the output range from the
controller is divided into two branches with different ranges

3BSE035981-510 A 153

Signal Handling Section 4 Analog Process Control

Signal Handling

V

The Control libraries contain a number of function blocks and control modules for
signal handling. There are also types for signal handling in the Basic and Signal
libraries.

For a list and description of available signal handling objects, see Advanced
Functions on page 183.

Control Builder online help also contains additional information on specific
signal handling objects. Select the object in Project Explorer, and press F1 to
display online help for a type.

Getting Started with ControlConnection

This section describes how to create a control module template that can connect to
ControlConnection, thus talk to other objects with ControlConnection.

After reading this subsection you will learn:
* The relationship between code-blocks and data flow directions.
* The concept of ControlConnection Gate modules.

* Step-by-step for creating a ControlConnection template.

What is ControlConnection?

ControlConnection is a structured data type for handling signals between control
modules in both forward and backward directions. It is a very effective structured
data type from the outside, but difficult to connect inside an object.

The difficulties lie in the structure itself, which means that other control modules
must fulfil the relation and condition specification for (ControlConnection) signal
traffic. For that reason you are going to be introduced to the ControlConnection
Gate modules that will transform your local signals automatically to
ControlConnection.

At the end of this subsection you will also learn how to create a ControlConnection
template (CC template) from scratch. The template will help you overcome the most
common difficulties there is by having local code reading/writing signals to/from
ControlConnection.

154

3BSE035981-510 A

Section 4 Analog Process Control Dealing with Data Flow Directions

For a more theoretical presentation of ControlConnection, see ControlConnection
on page 103.

Dealing with Data Flow Directions

In order to process signals of ControlConnection your control module must be
designed to handle data in both forward and backward directions. The best way to
accomplish this is to assign one code block for each direction. Thus one code block
Forward and one code block Backward.

My created CC template

r—— - - - - - - — — al
| Forward |
| code block |
cc | I cc
- |
| |
| code block |
| Backward |
- - .

Figure 57. A control module prepared with two code blocks for handling forward
and backward directions

This guideline of having one code block for each direction, should apply to all
control modules that are processing signals of Control Connection. However, there
are some exceptions (as always), first object in the chain, the Source (Al object) and
the last object the Sink (AO object) only needs one code block. You will learn more
about this under Code Sorting Order Backwards on page 156.

3BSE035981-510 A 155

Dealing with Data Flow Directions

Section 4 Analog Process Control

Outer Objects

Code Sorting Order Forward

After establishing the need for two code-blocks (Forward and Backward) in the
control module, it is time to study how the code sorting order works for
ControlConnection. Remember, it is not just the two (Forward and Backward)
blocks alone that should be sorted, but all the outer code blocks as well. However,
the key is the ControlConnection's sort order mechanism which is very helpful.
Provided that we have made all the necessary in/out arrangements, it will always
execute forward directions before backward directions.

You will learn all about In/Out parameter connections later in Creating a Control
Module with ControlConnection (CC template) on page 161.

This means that ControlConnection will always start from left with the first forward
block in a chain of control modules (Figure 58). As long as the module is positioned
correctly in the control module chain, it will be automatically sorted.

My created CC template

Forward Forward

Forward code block Forward Forwar

1

| |
2 : ’ 3 : 4 5
| | -

Figure 58. ControlConnection will always start with forward block (1), and then
execute forward block (2), your forward block (3) and then (4), (5) etc.

Code Sorting Order Backwards

Next step is to learn which object that will change the data flow direction, or start
passing information backwards via the backward blocks. Just as before with the
forward block's code sorting order, the same principle applies for the backward
blocks, but now only backwards.

There are two (predictable) things that can stop further forward executions. It is
either a Sink object at the end of the chain (most common solution) or a code sorting
variable in the backward block.

156

3BSE035981-510 A

Section 4 Analog Process Control Dealing with Data Flow Directions

Therefore, before building your ControlConnection module, consider if your control
module should have a generic solution (continue to passing forward information
through the chain) or if your module should be the end object.

Generic Solution with a Sink Object

A generic solution continues to passing the information to the next forward block,
which means that it relies on a Sink object (AO) at the end of the chain. A Sink
Object (AO) is the most common to use at the end of the chain in a generic solution.
It is the Sink that will change the data flow direction to go backwards (Figure 59).

My generic CC template

r— - - - - - - - — - — T)

| Forward code block | Sink
5 Forward | | Forward
= T] — 2 e
(2 | | ¢ 4
£ 7 lea— | | 5
3 T 6 <

Backward | Backward code block | Backward

Figure 59. My generic CC template object has a generic solution which simply
passes information forward to the next forward object

As you can see in Figure 59 the Sink object contains both forward code and
backward code in one code block. The backward direction sort order starts at the
end of the Sink’s common code block. The Sink is writing to the backward block, in
this case No (5) in Figure 59.

End Object Solution
To build an end object means basically two things;

1. Your forward block will be executed last among all outer forward blocks in the
chain of control modules.

2. Your backward block will be executed first among all outer backward blocks.

3BSE035981-510 A 157

Dealing with Data Flow Directions Section 4 Analog Process Control

Building an end object solution is done by start declaring a "dummy" variable (for
example CodeSortVar). Then you let the variable CodeSortVar read (in the
backward code block) a value that was previously written (for example OldValuel)
in the corresponding forward code block. See Figure 60.

My end CC template

| Forward code block |

% Forward Forward Forward | OldValuel (a written variable) 4 |
-_?:—')- 1 - 2 —p 3 //|V |
: | Al
§ 8 /7 1 6 ‘\:‘ CodeSortVar := OldValuel 5 :
Backward Backward Backward | Backward code block |

Figure 60. My end CC template object has an end solution. It stops passing
information forward and begins passing information backwards to the next
backward block

The end CC template object has created a dependency between the forward block
and the backward block. Since the backward block is reading the variable
(OldValuel) must the forward block be executed before the backward block. The
variable OldValuel was previously written in the forward block.

You will be able to study more of this in the subsection Creating a Control Module
with ControlConnection (CC template) on page 161.

Next, you will learn about the Gate modules and how they transform local signals to
ControlConnection.

158

3BSE035981-510 A

Section 4 Analog Process Control Open the Gates to ControlConnection

Open the Gates to ControlConnection

The main difficulties of having own control modules talking ControlConnection is
to fulfil the specification for ControlConnection. However, by using Gate modules
you do not have to worry about that. As the name applies a Gate module check the
signals that come in and out from your control module and capsulated your execute
code safely between them.

An IN Gate module will for example read an In signal of ControlConnection and
pass it over to one of your local variables. An OUT Gate will transform the executed
code value to a ControlConnection signal.

In short, you use the Gate modules to fulfil the specification for Control Connection.

My CC template

r—— - - - - - — — — 1 .

| Forward | Sink
= Forward | 5 | Forward
o] Vad "\ 3
O <»| In Gate Out Gate e - 4
2|7 | A\ e’ | 5
© Backward | Backward | Backward

Figure 61. My CC template object is protected by the Gate modules on both sides to
ensure a secure signal traffic with ControlConnection

There are no code-blocks illustrated in the Gate modules (see Figure 61) although
they contain both forward and backward blocks. They are merely there in the
background for syntax control reasons.

Ownership of the Gate Variables

When you are working with the Input Gate and the Output Gate you are going to
deal with two variables for each Gate. These two variables will have different
ownership, or write permission when reading and writing to your code blocks (see
Figure 62).

3BSE035981-510 A 159

Open the Gates to ControlConnection Section 4 Analog Process Control

CC template
r——— - - - - - - - - - - - - — — — A
| |
| |
| InForward F OutForward |
| |
CClIn | | CC Out
€4+—p <= In Gate Out Gate|=»
| |
| |
: InBackward B OutBackward :
| |
L _I

Figure 62. Gate Variables writing permission

These four local variables (InForward, InBackward, OutForward and OutBackward)
are local variables that are connected to the Gate parameters Forward and Backward
respectively. However, these local variables have different permissions.

From Figure 62:

e InForward which is connected to the In Gate’s Forward parameter, is own by
the Gate, thus writing is not allowed in the forward code block.

* InBackward which is connected to the In Gate’s Backward parameter, is own
by your control module (CC template), thus writing is allowed in backward
code block.

* QOutForward which is connected to the Out Gate’s Forward parameter, is own
by your control module (CC template), thus writing is allowed in forward code
block.

* OutBackward which is connected to the Out Gate’s Backward parameter, is
own by the Gate, thus writing is not allowed in the backward code block.

160 3BSE035981-510 A

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

There are four Gates provided for you in the standard library BasicLib,
CCInputGate, CCOutputGate, CCInputGateExtended and CCOutputGateExtended.
You can learn the differences between the Gates in Control Builder online help.

Creating a Control Module with ControlConnection (CC template)

This step-by-step example builds a control module that calculates the average value
of the four latest forward values on a ControlConnection node. The
ControlConnection node always involves only the control module types, and not the
function block types.

Although you can choose a single control module, it is strongly recommended that
you create your CC template from a control module type. A control module type can
be re-used in many applications, but a single control module cannot be reused.

This example assumes that you have experience of (at least) basic Control Builder
skills, involving creating and connecting new objects based on types, etc.

The instructions in this example are merely providing you with an idea of a working
order. They do not always represent the exact order of events you will meet in
Control Builder (instructions handling context menus, buttons, Save before close
etc. have been intentionally neglected).

For information about working with types, see the manual Library Objects Style
@ Guide, Introduction and Design.

Create a new CC template object

From the Project Explorer:

1. Create a new Project with a AC 800M template and name it CCTemplate.
2. Create a New Library and name it CCTemplateLib.

3. Connect the BasicLib into your new CCTemplateLib.
4

Create a new control module type and name it CCTemplate.

3BSE035981-510 A 161

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

File Edit View Teools Window Help
A RES FIE @
=5 gg CCTemplate

= W Libraries

- ﬁ]_]] System

- [l BasicLib1.6-8

£l W Connected Libraries
. e [P Basiclib16-8
= & Control Module Types

BN CCrermpae

Declare parameters and variables

Open the declaration editor for the CCTemplate object.

1.

Declare an In and Out parameter of data type ControlConnection.

.
@ Control module type - CCTemplatelib.CCTemplate™

Editor Edit View Insert Tools Window Help

‘RHZEy = 9L] ARR & D el
MName Data Type Direction [FD Port |Initial Value [Description

1 |In ControlConnection

2 |Out ControlConnection

3

« » % Parameters 4 Variables A External Variables A Function Blocks

162

3BSE035981-510 A

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

2. Next, declare your local variables according to Figure 63.

Marne Data Type Attributes Initial %alu |Description
InForward CCLoclnForward |retain Local IM forward data structure
InBackward CCLocIinBackwa |retain Local IN backward data structure
CutForward CCLocOutForwa |retain Local OUT forward data structure
CutBackward (CCLocOutBackw|retain Local OUT backward data structure
Oldv'aluel real retain Old forward walue frorm previous scan
Oldvaluel real retain Old forward value two scans ago
Oldvalued real retain Old forward value three scans ago
FirstScan boaol retain First scan indicator

[Parameters Variables 4 Extemal Variahles Function Blocks /7 IS

Figure 63. Declared variables in the CClemplate object

As you can see, the Gate variables InForward, InBackward, OutForward and
OutBackward are of structured data types. It is these four local variables that will
talk directly to the Gate modules. You will learn about their components when you
are programming the forward and backward code blocks. The other four variables
are used in the code blocks.

You can also learn the naming convention for parameters and variables in the
@ manual Library Objects Style Guide, Introduction and Design (3BSE042835%).

Connecting the Gate modules

Next, create instances of the Gate modules in the CCTemplate. The Gate modules
(CClInputGate and CCOutputGate) are located in the BasicLib.

1. Right-click CCTemplate and create an instance of CCInputGate. Name it
CClnputGate.

2. Connect the Input Gate module according to Figure 64.

3BSE035981-510 A 163

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

Mame Data Type Initial %'alu |Parameter
1 |In ControlCaonnectic In
2 |Forward CCLoclnForeard InForeard
3 |Backward CCLocinBackwa InBackward
4 |EnableParError |bool false
5 |ParError bool default

£ | » % Parameters
Figure 64. CCInputGate connected to the CCTemplate module

3. Right-click CCTemplate and create an instance of CCOutputGate. Name it
CCOutputGate.

4. Connect the Output Gate module according to Figure 65.

MNarme Data Type Initial %alu |Pararneter
1 [Out ControlConnectic Ot
2 |Forward CCLocOutForea OutF oreard
3 |Backward CCLocOutBackw DutBackward
4 |EnableParError |bool falze
5 |ParError bool default

< | » 4 Parameters
Figure 65. CCOutputGate connected to the CCTemplate module

After connecting the two Gate modules to the CCTemplate, the result in Project
Explorer should look like Figure 66.

164 3BSE035981-510 A

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

File Edit View Tools Window Help
O R 8% S5y @
(= EB CCTemplate
5 W Libraries
[EWSystem
- [Basiclib 1.6-8
2 [l CCTemplatelib 1.0-0
9 I Connected Libraries
e [Basiclib16-8
9 2 Control Module Types
------- -ﬁCCInputGate BasicLib.CCInputGate
- -ﬁCCOutputGate BasicLib.CCOutputGate
- [0 leonLib13-3
-~ W Hardware
- @ Applications
[4] Controllers

Figure 66. The Gates to ControlConnection are connected to the CCTemplate
module

Programming Forward and Backward Code

1.
2.
3.

Open the Programming Editor for CCTemplate.
Re-name the code block Code to Forward.

Right-click the Forward tag and select Insert from context menu. A dialog
will open.

Accept default Languages selection (ST) and name the new code block
Backward.

Select the Forward tag and write the following programming code.

Each variable of a structured data type (e.g. InForward) has a component menu
attached. Open the menu by typing a dot (InForward.) directly after the variable
in the code block and select the component.

(* Handling FirstScan - Initializing old values *)
IF FirstScan THEN

3BSE035981-510 A

165

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

Oldvaluel := InForward.Value;
Oldvalue2 := InForward.Value;
Oldvalue3 := InForward.Value;
FirstScan := false;

END_TF;

(* Forward the information to the Output Gate *)
OutForward.BacktrackingPossible := InForward.BacktrackingPossible;
OutForward.Continuous := InForward.Continuous;
OutForward.Range := InForward.Range;

OutForward.Status := InForward.Status;

OutForward.Value := (InForward.Value + OldvValuel + Oldvalue2 +
Oldvalue3l3)/4.0;

(* Updates *)

Oldvalue3 := Oldvalue2;
Oldvalue2 := Oldvaluel;
Oldvaluel := InForward.Value;
|< | » [Parameters » Variables 4 External Variables »_Function Blocks 7 =

(# Handling FirstScan — Initializing OldValues *)
IF FirstScan THEW

0ldValuel := InForward. Value;

01ldValus2 InForward . Values;

01dValuesl InForward. Values;

Fir=tScan false:
END_IF:

(#* Forward information to the Output Gate =)

OutForward BacktrackingPos=sible = InForward.BacktrackingPossible:
CutForwvard Continuous = InForward. Continuous:

OutForward Range = InForward.Range:

OutForward Status = InForwvard. Status;

OutForward . Value .= (InForward. Valus + (ldValuel + 0OldValuesz + 0ldValue=3)~4.0;

(* Updates *)

0ldValueld = OldValue2;

0ldValu=s2 .= 0ldValuel;

Cldwvalusl = InForward. Value:
< | % Forward A Backward <

Figure 67. Programming code in the Forward code block

6. Select the Backward tag and write the following programming code.

166 3BSE035981-510 A

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

(* Backward information to the Input Gate *)
InBackward.Backtrack := OutBackward.Backtrack;
InBackward.BacktrackValue := OutBackward.BacktrackValue;
InBackward.LowerLimit := OutBackward.LowerLimit;
InBackward.LowerLimitActive := OutBackward.LowerLimitActive;
InBackward.Range := OutBackward.Range;

InBackward.UpperLimit := OutBackward.UpperLimit;
InBackward.UpperLimitActive := OutBackward.UpperLimitActive;

| € | »_Parameters » Variables £ External ariables »_Function Blocks 7

{*® Backward information to the Input Gate *)
InBackward . Backtrack := OutBackward.Backtrack:

InBackward. BacktrackValue := CQutBackward. BacktrackValue;
InBackward. LowerLimit := OutBackward. LowerLimit:

InBackwvard. LowverLinitActive = OutBaclkward.LlowverlimitActive:
InBackward.Range = OutBaclward.Range;

InBackward.Upperlimit := OutBackward.UpperLimit:

InBackward. Upperlinitictive = OutBaclward. Upperlimitictive;

¢ | % N Forward A Backward / <

Figure 68. Programming code in the Backward code block

If you need the End module functionality, then add the following to your code.
Declare the CodeSortVar variable as a real with no attribute (empty field) in the
declaration editor.

(# 0ldValuel written to in Forward block, and read here #*)
CodeSortWar = 0Old¥aluel:

Backward / £

Figure 69. Code added for End module functionality

¢ | % Forward

3BSE035981-510 A 167

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

Adding Graphical Nodes

ﬂ This topic is not applicable if only the diagram editor, and not the CMD editor,
is used for creating the control loop. See Create an Instance of CCTemplate in the
Diagram on page 171.

After you are done with this subsection your CC Template will contain a name area,
two connected graphical nodes in the CMD Editor (Figure 70).

__

‘\Graphical nodes /
Outward line in CMD Editor

Figure 70. CCTemplate in the CMD Editor

From Project Explorer with the programming editors closed.
1. Right-click CCTemplate module and select CMD Editor in the context menu.

2. Select icon for Rectangle (Figure 71) and mouse-click a rectangle over the
outward line (see the outward line in Figure 70).

168 3BSE035981-510 A

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

New Control Module — g

i e [

=

Text ——

A\l

FLEE HoFRepE w00

Rectangle———»

Graphical Node ——pt

o
h=3

Figure 71. Icon menu in the CMD Editor

3. Select icon for Text (Figure 71) and write CCTemplate (Figure 70).

Before you can add a graphical node, first declare the corresponding parameters. In
this case you have already declared your parameters (In and Out) in the CCTemplate
parameter editor.

Adding a graphical node is done with three (left) mouse-clicks. First click will add a
node, second click will start a rectangle field (move the cursor), and third mouse-
click will release the rectangle. After the third click, type in the parameter name.

3BSE035981-510 A 169

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

Select icon for Graphical Node (Figure 71) and add two nodes on both sides of
your Text area (see exact location in Figure 70). Type in parameter In and Qut
in the rectangle.

Close the CMD Editor when done. The CMD Editor should look like
Figure 70.

Create an Instance of CCTemplate in the Application

Next, you will learn how to create an instance (control module) of your CCTemplate
control module type in the application.

1.
2.

Connect your CCTemplateLib to the application.

Declare two global variables (InCC and OutCC of ControlConnection) in the
Application according to Figure 72.

3 Application - Application_1*

Editor Edit View Insert Tools Window Help

RHZ =] 9040 A8k & o

MName Data Type Attributes Initial Value
1 |InCC ControlConnection [retain

OutCC ControlConnection [retain
3
« + % Global Variables A Variables 7

Figure 72. Global variables for connecting the CClemplate object in the

application

3. Open the CMD Editor in the Application and select the icon for New Control
Module (see Figure 71).

4. In the dialog select CCTemplateLib and then select CCTemplate as your
control module type. Name your Instance to CCTemplate.

5. Click OK.

6. Left mouse-click a box to a suitable size and release left mouse-click. A
connection window opens.

7. Connect In and Out with InCC and OutCC, respectively. Save and Close.

170

3BSE035981-510 A

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

@ n CCTemplate o« 0

Figure 73. Instance of CCTemplate in the CMD editor of application.

Feature Pack Functionality

Create an Instance of CCTemplate in the Diagram

In this topic, you will learn how to create an instance (control module) of
CCTemplate control module type in a diagram under the application.

The default application, Application_I, contains three diagrams. Let us create an
instance of CCTemplate in Diagram?.

1. Connect CCTemplateLib to the application.
2. Right click Diagram?2 and select Editor.

3BSE035981-510 A 171

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

3. In the declaration pane of diagram editor, declare two variables (InCC and
OutCC of ControlConnection) according to Figure 74.

Diagram - Application_l.Diagram2

Editor Edit View Inset Teols Window Help

ki 23 & &0 4 Ad®R & =
MName Data Type Attributes Initial Value|l

1 [nCC ControlConnection |retain

2 |OutCC ControlConnection |retain

3

4

< 1 % Variables 4 Communication Variables _» _Function Blocks

il

Figure 74. Variables for connecting the CCTemplate object in the diagram

4. In the graphical code block Code, insert an instance of CCTemplate
control module type:

Right click in the grid area, and select New > Object.

b. In the New Object dialog box, select CCTemplate under the List tab.
In the Name field, enter the name of the instance as CCTemplate (see
Figure 75)

c. Click Insert. The CCTemplate control module is inserted as shown in
Figure 76.

172 3BSE035981-510 A

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

»
s# New Object o | B |-ede

List |Tree I Recent I Fa\rorite5|

Only show names that contain:

Filter
Object Libre o
Only connected libraries
E CCInputGate Basi)
E CCInputGateExtended Basi [C] Functions
ECCOLﬂpLﬂGEﬂB Basi| [Function block types
= CCOutputGateExdended Basi
; | Control module ty
12 cCTemplate ccl . e
{=rcvackise Basi || Disgram types
E EmorHandleri Basi
E ForcedSignalsM Basi
E GroupStatCbjectConn Basi
] [T P

Properies
Object: CCTemplate Add to Favorites

Mame: CCTemplate
Description

[Inzert J[Close H Help

Figure 75. New Object dialog box

3BSE035981-510 A 173

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

Diagram - Application_l.Diagram2*

Editor Edit View Insert Tools Window Help

BHZy =] 9 : C] + A&BA
MName Data Type Attributes Initial v

1 (InCC ControlConnection |retain

2 |OutCC ControlConnection |retain

3

4

« » % Variables 4__ Communication Variables _»_ Function Block:

CCTemplate:1
CCTemplate

In Out

Figure 76. CCTemplate inserted in the graphical code block

5. Connect the In and Out ports to the variables InCC and OutCC, respectively:

a. Right click In port, and select Connect. In the Connect dialog, type InCC.
Click OK.

b. Right click Out port, and select Connect. In the Connect dialog, type
OutCC. Click OK.

CCTemplate:1
CCTemplate
INCC ={|n Out = OutCC

Figure 77. CClemplate object with variables connected

6. Save and Close the diagram editor.

174 3BSE035981-510 A

Section 4 Analog Process Control What next?

What next?

After completing the CC template example, you learned how the Gate modules
work and how to adapt the CC template to your own solutions on
ControlConnection.

However, if you need more functionalities, the Control Object library contains three
additional ControlConnection templates (Mimo22CC, Mimo41CC, and
Mimo44CC) with more advanced functionalities. See Control Object Control
Modules on page 585 for more details on these templates.

Connecting a Mimo22CC Object to a New Application

This topic is not applicable if only the diagram editor, and not the CMD editor, is
used to connect the MimoXXCC object. See Connecting a Mimo22CC Object in
a Diagram under the Application on page 176.

As an example, follow the steps below to connect a Mimo22CC object to a new
application:

1. Create the new application in Control Builder.
2. Connect the application to the controller.

3. Connect the application to a task.
4

Connect BasicLib, ControlStandardLib and ControlObjectLib to the
application.

91

Instantiate the Mimo22CC object (in the ControlObjectLib).

6. Instantiate two AnalogInCCs and two AnalogOutCCs (in the
ControlStandardLib).

7. Create one variable for each AnalogInCC or AnalogOutCC of type "ReallO"
in the application, and connect these to the AnalogInCCs and AnalogOutCCs.

8. Connect the control modules correctly. Figure 78 shows the completed
connection for the Mimo22CC object.

3BSE035981-510 A 175

What next? Section 4 Analog Process Control

=] Application - HowToUse {Control Module Diagram)

File Edit Yiew ControlModule Create ‘Window Help
S [& ¥ | KIKIYK
& |
&
A T Ll PN !
oo 5 = =
5 @ Al : p CC
&l G e S 4 p———— 4 &
= m | CC | i AO
=l F
| (X) e
M ([A 4 AN cc 18
A L T 4 NP Foid
CC = AD

£ > |!

HowTolse Control module bype

Figure 78. Connection of the Mimo22CC object

Feature Pack Functionality

Connecting a Mimo22CC Obiject in a Diagram under the Application

As an example, follow the steps below to connect a Mimo22CC object in a new
diagram under the application:

1. Create a new diagram under the application.
2. Connect the application to the controller.

3. Connect the diagram to a task.

176 3BSE035981-510 A

Section 4 Analog Process Control What next?

10.

11.

Connect BasicLib, ControlStandardLib and ControlObjectLib to the
application.

Right click the new diagram, and select Editor.

In the graphical code block of diagram editor, instantiate the Mimo22CC object
(from the ControlObjectLib).

Instantiate two AnalogInCCs and two AnalogOutCCs (from the
ControlStandardLib).

Create graphical connections (drag-and-drop) from the output ports of the two
AnalogInCCs to the two input ports of Mimo22CC.

Create graphical connections (drag-and-drop) from the input ports of the two
AnalogOutCCs to the two output ports of Mimo22CC.

Create one variable for each AnalogInCC or AnalogOutCC of type "ReallO" in
the diagram, and connect these to the AnalogInCCs and AnalogOutCCs.

Connect the control modules correctly. Figure 79 shows the completed
connection for the Mimo22CC object in the diagram editor.

3BSE035981-510 A

177

What next? Section 4 Analog Process Control

Diagram - Application_l.Diagram4

fitor Edit View Inset Teols Window Help

RH B SO 00 h [AAm e BT A0 T8 Q[

MName Data Type Attributes Initial Value|l/O Address |Access Variables |Description
| |lnput1 ReallO retain
! lInput2 Reall> retain
i |Outputt ReallO retain
b |Output2 Reall> retain
y |MimaControl string retain
1

"y % Variables £ Communication Variables _» Function Blocks _»_ Control Modules _»_Diagrams /

AnalogOuiCC_1:4

i - 1: AnalogOutCC
Inputl B Qutputl

Input?

Figure 79. Mimo22CC connected in diagram editor

178 3BSE035981-510 A

Section 4 Analog Process Control What next?

Creating a New MimoXXCC Object from Another MimoXXCC object

Follow the guidelines below to create a new MimoXXCC object from another
MimoXXCC object:

* Create appropriate variables, parameters, and data types to pack the data to
different channels to gain an easy overview of the control module structure.

e Create function blocks for CC-component calculation in both forward code
block and backward code block. Create additional function blocks in both
forward and backward direction when dealing with voted functionality.

The new code must be easy to understand and well structured, with the required
inputs and outputs.

Creating a new Mimo33CC object from a Mimo44CC object

Follow the steps below to create a new Mimo33CC object from a Mimo44CC
object:

1. Create datatypes
a. Create the Coeff3 datatype by deleting a variable from Coeff4.

Coenponent Dda type Aitributa Tilial value Descripiion

a ted coldretan nn Crait oningnat 1
h tedl coldetan n.n Craity o gt 2
c ted coldretan nn Graity oningnt 3
d redl coldretan 0o Gan on gt 4

—

Figure 80. Coeff4 before it is changed to become Coeff3

Delete this variable

b. Create the Mimo33CCPar data type by deleting variables from
Mimo44CCPar.

3BSE035981-510 A 179

What next?

Section 4 Analog Process Control

Namne Fhta Type Altributes Inihal Descriphon
value

Inl ChannelPar InChanre]Par Interac ionPar for the first
Tt

In2 ChannelPar InChannelPar Interac tionPar for the second
Inpnt

In3 ChannelPar InChanre]Par Interac tonPar for the thad
[t

Ind ChannelPar InChannelPar Interac tionPar for the fourth
Tt

Oul Cnutd] Charme]Par Interac ionPar for the first
Chtpnt

Owut? ChannelPar Crtel ClarmelPar Interac tionPar for the second
Chtpnt

Out¥ ChanmelPar \ Cnutd] Charne]Par Interac tonPar for the thad
Ot puat

Owutd ChannelPar V.\MlChim&]Par Interac tionPar for the fourth
Chtpnt

N

Delete these wariables from MimoddCCPar
and create Mimo33CCR ar

Figure 81. Creating Mimo33CCPar from Mimo44CCPar

180

3BSE035981-510 A

Section 4 Analog Process Control What next?

c. Create the Out31Channel data type by changing the Out41Channel data
type.

Equation Coeffd Active gains on each

~ -
N\

Replace this data type with the newly
constructed data type Coeffd.

Figure 82. Changing the Out41Channel to create Out31Channel

d. Create the Out31ChannelPar by changing the Out41ChannelPar.

Equation Caeffd Equation displayed
on the faceplate

N

Replace this data type with the newly
constructed data type Coeffs.

Figure 83. Changing Out41ChannelPar to Out3 I ChannelPar

3BSE035981-510 A 181

What next?

Section 4 Analog Process Control

Create the following necessary parameters:
— Inl

- In2

— In3

— Outl

— Out2

— Out3

Many other parameters, which are common for all MimoXXCC objects, must
be already present.

Create the following variables:
— InlChannel

— In2Channel

— In3Channel

— OutlChannel

— Out2Channel

— Out3Channel

Many other variables, which are common for all MimoXXCC objects, must be
already present.

Modify the following function blocks to reflect the changes from Mimo44CC
object to Mimo33CC object:

— AssignBTInputsX
— OutX1BackwardFunction
— OutX1Function

For example, change the Out41Function to Out31Function by following the
same principles for CC component calculation, but considering only three
inputs instead of four inputs.

182

3BSE035981-510 A

Section 4 Analog Process Control Advanced Functions

5.

Modify the code to suit the 33CC object, by deleting or replacing the lines in
the existing code of 44CC object:

a. Modify the forward code.
b. Modify the backward code.
c. Modity the Set_Outputs code block.

Advanced Functions

This section describes a number of functions that are built into the types in the
Control libraries. It also describes of a number of functions and library types from
other standard libraries that can be used when building control loops. The
description is split on the following functional areas:

Anti-Integrator Wind-Up Function on page 184 describes the anti-integrator
windup function that is built into the control types.

Bumpless Transfer on page 185 describes the bumpless transfer function,
which is used to smoothen controller output.

Deviation Alarms on page 190 describes the alarm and event functions that are
built into standard and advanced controller types.

Feedforward on page 192 describes the feed-forward function, which is used to
accelerate controller response by adding to or subtracting from controller
output.

Autotuning on page 193 describes how to use autotuning functions to improve
controller settings.

Adaptive Control on page 200 describes how to achieve adaptive control, for
complex processes.

Gain Scheduling on page 204 describes how to use gain scheduling to adapt
settings to predictable variations in your process.

Gain Scheduling versus Adaptation on page 206 discusses when to use gain
scheduling, and when to use adaptation.

Additional Control Functions on page 208 collects information on a number of
special functions that are offered by the Control library types, such as three-

3BSE035981-510 A

183

Anti-Integrator Wind-Up Function Section 4 Analog Process Control

position output, stiction compensation, oscillation detection, reduction of
friction influence, and detection of sluggish control.

* Input and Output Signal Handling on page 215 describes objects used for input
and output signal handling.

* Supervision on page 226 describes objects used for supervision, that is, level
detectors, supervision objects, and signal objects.

* Calculation on page 229 describes objects used for calculations of medians,
mean, and majority, as well as other mathematical calculations. The 800xA
system in itself also contains a number of basic mathematical calculations,
such as trigonometry, logarithms, exponentials, etc.

* Signal Handling on page 231 describes objects used to detect changes in
signals, in order to be able to predict control actions, such as derivative objects,
integrating objects, flow calculators.

* Branch Objects on page 240 describes objects used to split signals into several
components.

* Selector Objects on page 244 describes objects used to select one out of several
signals.

* Limiter Objects on page 250 describes objects used to limit signals.

» Conversion on page 253 describes objects used to convert signals from one data
type to another.

* Miscellaneous Objects on page 256 describes some additional functions that
might be useful in control loops, for example, an object that can be used to
break up control loops.

Anti-Integrator Wind-Up Function

The anti-integrator wind-up function is an internal function in the controller
modules that stops the integral part in certain situations. It is used, for example, in a
cascade (master/slave) configuration, when the slave is in Manual mode, to prevent
the master from integrating.

Problems with integrator wind-up may occur when a controller containing an
integrator is not able to bring the control deviation (Sp — Pv) to zero fast enough,
compared with the integral action of the controller. The controller output would

184

3BSE035981-510 A

Section 4 Analog Process Control Bumpless Transfer

probably reach one of its limits and remain there for a while, even after the control
deviation has changed sign once ,after the process value has passed the setpoint. The
result would be a large overshoot and therefore a slow response.

The reason for this unfavorable behavior is that the integrator winds up to a large
(positive or negative) value when the control deviation has the same sign for a long
time and the controller output reaches its limit.

When the control deviation changes its sign, it may take a long time for the
integrator to wind down enough for the controller output to leave its limit.

To prevent this, integrator wind-up is limited by the anti-integrator wind-up
function. A small wind-up is allowed to avoid the risk of small oscillations of the
controller output, close to its limit. The size of the allowed integrator wind-up is
determined by the size of the control deviation and the integration time of the
controller. This is to initially achieve a fast response from a maximum (or
minimum) value of the controller output.

When the anti-integrator windup is active, this is indicated in the faceplate by means
of an icon that also shows the direction of the windup.

Feature Pack Functionality

External Reset Feedback for Handling Anti-Integrator Wind-up

In PidCC and PidAdvancedCC control modules, it is also possible to use an external
value, ERF (External Reset Feedback), instead of using the limiting value for
anti-integrator wind-up,

If ERF option is used, ensure that the gain of the feedback path is the inverse of the
signal path. The feedback path indicates backtracking because it is not an output
path.

Bumpless Transfer

Bumpless transfer means that the controller output is made as smooth as possible,
even when conditions within the controller change abruptly. Examples of such
changes are mode changes and parameter value changes.

3BSE035981-510 A 185

Bumpless Transfer Section 4 Analog Process Control

Bumpless transfer may be achieved in different ways. First of all, the integrator, if
one exists, of the controller is adjusted so that the output becomes as smooth as
possible. For controllers without integrator, the same effect is achieved (if offset
adjustment is enabled) by adjusting the offset.

If the controller has no integrator, but any of the control modules preceding the
controller has an integrator, this integrator is adjusted instead. If none of these
options are available, the output may be temporarily ramped to achieve smoothness.
In some cases, discontinuities in the output may be accepted.

process. If they are too slow, it might take a very long time before the ramp

@ The maximum increase and decrease ramping speed must be adapted to the
terminates. If they are too fast, the control actuator may be damaged.

Bumpless Transfer during Mode Changes

The result of changes from one mode to another is described in Table 12, where
Auto has the lowest priority, and Tuning the highest. The numbers refer to the
outcome described in the list below the table. Impossible changes are indicated with
an X.

There is, however, one exception. It is not possible to go to Tuning mode when
Backtracking is requested (that is, the object would have been in Backtracking
mode, were it not in Tracking or Manual mode).

186 3BSE035981-510 A

Section 4 Analog Process Control Bumpless Transfer

Table 12. Bumpless transfer during mode changes

From/To Auto Backtracking | Tracking Manual Tuning
Auto - 4 1 2 5
Backtracking 3 - 1 2 X
Tracking 3 4 - 2 5
Manual 3 4 1 — 5
Tuning 6 4 6 6 -

1. The output is ramped, at the rate of change set by the parameters OutlncLim
and OutDecLim, until the output tracking value (TrackValue) is reached.

2. The manual value attains the value of the output upon the change to Manual
mode.

3. The mode change can behave in any of the following ways:

a.

If the controller has an integrator (PI, PID, PPI) and the Pstart parameter
is disabled, or if offset adjustment is enabled for P and PD controllers, the
controller starts controlling from the value of the output, before the mode
change. In this case, Pv Tracking may occur. See Process Value Tracking
on page 188.

If the controller has an integrator (PI, PID, PPI) and the Pstart parameter
is enabled, then the case is the same as above, but with the Pstart function
added. At the instant of the mode change, Pstart internally adds a step (=
G(Sp — Pv)), to which the output is then ramped.

If the controller has no integrator (P, PD), and offset adjustment is
disabled, the following will occur:

If external setpoint is used and the connected control module can
backtrack, or if internal setpoint is used and internal setpoint backtracking
is enabled, then the setpoint will be adjusted so that the output becomes
continuous.

Otherwise the output may be discontinuous.

The output of the controller becomes equal to the backtracking value.

5. Tuning starts from the current value of the output.

6. The output returns to the value before tuning started.

3BSE035981-510 A

187

Bumpless Transfer Section 4 Analog Process Control

Process Value Tracking

Tracking of the process value, Pv Tracking, is an internal function in the controller
that copies the process value Pv to the value sent back to an external setpoint Sp, or
if enabled to the internal setpoint. Pv Tracking may occur for controllers with
integrator or with offset adjustment enabled. It occurs when the controller is in
Backtracking, Tracking or Manual mode.

Output Change Rate Parameters

Two controller InteractionPar components, OutincLim and OutDecLim, determine
the output change rate of the ramp used during the mode changes described above.
They are also used for the ramp, which prevents the output from changing abruptly,
when output limits are narrowed.

These parameters do not limit the velocity change rate of the output in general,
the change rate is only affected temporarily, in the cases described above.

In the PidCC and PidAdvancedCC controllers, the change rate in manual mode
may be limited by these two interaction parameters. This setting is found in
'Enable out ramp man(ual)'

Bumpless Transfer during Parameter Changes

If the value of a controller parameter changes, for example the gain, the output will
be continuous if the controller has an integrator, or if offset adjustment is enabled.
Otherwise the output may be discontinuous.

Bumpless Transfer during Internal and External Setpoint Changes

Bumpless transfer between internal and external setpoints is achieved in the
following ways. See first Reduced Effect of Setpoint Changes on page 121 and then
Internal Setpoint Ramping on page 122.
1. Upon transfer to internal setpoint:
The internal setpoint value is initially set equal to the current value of the
setpoint.
2. Upon transfer to external setpoint:
If the setpoint is connected to a preceding control module with an internal
state, it will be continuous. The internal state is adjusted so that the
setpoint becomes continuous.

188

3BSE035981-510 A

Section 4 Analog Process Control Bumpless Transfer

Otherwise the setpoint is in general not continuous.

Bumpless Transfer when Enabling or Disabling the Limitation of the Output

Bumpless transfer is obtained when the limitation of the controller output is enabled
or disabled in the following way. If you narrow the limits, and the controller output
is outside the new limits, the output follows a ramp until it reaches the new limit,
using the set change rate. See the section Output Change Rate Parameters on page
188. When you expand the limits, controller output is continuous for a controller
with an integrator. It may be discontinuous for a controller without an integrator.

Bumpless Transfer when Forcing the I/O Signal to the Process

When the output I/O enters Forced mode, it will request the controller to go into
Backtracking mode. The reaction of the controller depends on the priority of the
modes for the controller, as described above.

When the output I/O leaves Forced mode, it will no longer require the controller to
be in Backtracking mode.

If two PidLoop function blocks are used to build a cascade loop, the bumpless
transfer function does not work properly. Use the PidCascadeLoop function
block instead.

Bumpless Transfer at Switchover to Redundant I/O

To get bumpless transfer of I/O signals of ReallO data type, at switchover from
active to redundant I/O, a RedundantIn function block can be used. It is used in the
standard control modules and function blocks using the ReallO data type as an input
parameter. To achieve the bumpless transfer, RedundantIn ramps the ReallO signal
by using a real input value for the change rate of the signal.

ﬂ All controller types that have an in signal of the type ReallO have a built-in
function block of this type. The only exception is MotorBi, MotorUni,
MotorBiM, and MotorUniM, where the Reall/O signal is used for surveillance
only.

3BSE035981-510 A 189

Deviation Alarms Section 4 Analog Process Control

Deviation Alarms

Deviation alarms are generated by the standard and the advanced controller objects,
but not by the simple ones. The control deviation is defined as the difference
between the process value and the setpoint value.

An alarm condition state and a Boolean alarm condition parameter are set when the
deviation is higher or lower than the positive or negative limits set. To prevent alarm
flicker, a suitable time filter and degree of hysteresis are used. Before going to Auto
mode, you can set a certain start delay time, to give the controller time to tune
before alarms are activated.

For information on the use of the inhibit and disable parameters for the alarm
@ functions, see alarm and event information in the System 800xA Control,
AC 800M, Configuration (3BSE035980*) manual.

190 3BSE035981-510 A

Section 4 Analog Process Control Deviation Alarms

+ Deviation Alarm
Deviation alarm
A positive

R _ | _Deyiation limt
Hysteresis

| Deviation limit

- Deviation

A Positive deviation alarm

Start <

-«

delay time Delay time

A Negative deviation alarm

Start L
delay time

Figure 84. Overview of the controller deviation alarm limits

3BSE035981-510 A 191

Feedforward Section 4 Analog Process Control

Feedforward

The feedforward signal is used to compensate for measurable disturbances, to
achieve faster and smoother control of a process. Feedforward means that a signal is
either added to or subtracted from the output signal of the controller. The
feedforward signal may also be amplified or reduced.

The feedforward process accelerates the controller response by anticipating changes
and acting to neutralize any disturbance, before it occurs.

Feedforward can also be used to suppress changes in the input signal that must not
be allowed to influence the controller output.

Feedforward is selected as a positive (+) or a negative () value of FF,;, in the
algorithm.

OMIPID = Outfrom PID algorithm + FFGain *FF

PID controller

iFF = Feedforward

I:FGain
Sp
- P PID *
. Limitations [Outp|p Py
o—>@> and anti- Process
Py " algorithm ut wind-up
— from PID
algorithm

Figure 85. The feedforward principle in the controller

192 3BSE035981-510 A

Section 4 Analog Process Control Autotuning

Autotuning

Introduction

Autotuning is a simple way to obtain suitable controller parameters. It is
recommended to use the Autotuner function, otherwise, a great deal of time can be
spent in manual tuning of many controllers in large process plants. Manual tuning
time can be increased even more when retuning becomes necessary, due to changes
in the process conditions.

Several autotuning iterations do not improve the information from one tuning to
the next iteration. However, it does increase the speed for next autotuning
iteration.

You are advised to repeat autotuning a couple of times to rule out possible
disturbances that might have affected the first autotuning iteration. Furthermore,
if a number of controllers affect the same process, it is necessary that all
controllers have been correctly autotuned and holds accepted process values
while autotuning a single controller.

When the process is in steady state, start the Autotuner. It then identifies the
dynamic parameters of the process automatically, and from these, the Autotuner
calculates and suggests appropriate PID parameters. When autotuning is complete,
the controller reverts to previous mode. It uses the old controller parameters, but
suggests the new autotuned parameters, and you have the choice to apply them.

The user may also select another controller structure and design than used for
calculating the controller parameters from the autotuning results. Some users want a
specific controller structure, for example, a PI controller, and that the result of an
autotuning should comply with this selection. Then, the autotuner recalculates the
controller parameters based on the autotuning results. This means that any new
tuning is not necessary as the already executed tuning has measured the dynamics of
the process. The autotuner uses these measured values while re-calculating the
changed controller algorithm.

Autotuning is based on a relay (ON/OFF) identification method, with feedback
measurements, as illustrated in Figure 86. To obtain extended autotuning, it is also
possible to complete process identification by means of an automatic subsequent
setpoint step. Choose between the following three autotuning methods.

3BSE035981-510 A 193

Autotuning Section 4 Analog Process Control

1. Relay only. This normally gives acceptable controller parameters, particularly
if the time needed for autotuning is critical.

2. Setpoint step only. After you have performed autotuning with the relay method,
you may, at a later time, perform setpoint step identification, when you want to
compensate for dead time in the process.

3. Relay and setpoint step. This is the complete autotuning alternative.

@ Perform autotuning when the process is in steady state only.

PID controller

Output
Setpoint y PID
S S algorithm
—
| Parameter . Process
ZEJC:SS | > ? values ?
—p L
/ Autotuner

Figure 86. The principle of autotuning in a PID controller with the Autotuner
Jfunction

Autotuning with Relay Method

When the system is in steady state, and the Autotuner has been started, the PID
controller is temporarily disconnected.

First, the Autotuner measures the noise of the process value.

Secondly, the output is generated and changed by the relay, with a hysteresis
function, to implement a disturbance in the process, of a small amplitude, according
to the figure below. The effect of the relay function is an ON/OFF control which, by

194 3BSE035981-510 A

Section 4 Analog Process Control Autotuning

means of a square wave signal, generates a controlled and stable oscillation in the
process value. The response is observed, and the amplitude of the oscillation is
automatically controlled to a minimum value by adjustment of the relay amplitude.

From the period and amplitude of the process value oscillation, suitable P, I and D
parameters are calculated. The controller is then ready to operate and the PID
algorithm is reintroduced into the control loop.

Process
value Autotuning oscillation
| ! /\
-
| Noise | \/ \/
| measurement |
Output | : Relay with hysteresis
| l
I |
! | -
| |
Start of -
. Exponential increase
autotuning

Figure 87. The process value oscillation

Extended Autotuning with the Setpoint Step Method

To improve the autotuning, a small setpoint step can be carried out automatically, or
at your request, with the relay autotuned PID controller. Static gain, dead time and
the time constant of the process are obtained from the setpoint step response, and
the PID parameters can be adjusted.

ﬂ The step tuning method is only available in the PidAdvancedCC controller as
stated in Table 5.

3BSE035981-510 A 195

Autotuning

Section 4 Analog Process Control

Autotuning Process

Autotuning can be started with the controller in Manual or Auto mode. During the
autotuning process, the Autotuner controls the output. The following three
conditions must be checked before starting autotuning:

* The process must be in steady state. It is not possible to start the Autotuner
during a load disturbance or a setpoint change.

* Itis also important that no major load disturbance occurs during the autotuning
process.

* The control deviation (Sp — Pv) must be less than 5% of the actual Pv range.

The value of control deviation or error (Sp -Pv) with respect to the dead zone
value is also available as an output in PidCC and PidAdvancedCC control
modules.

When these conditions are fulfilled, you can start the Autotuner. If the process is not
in a steady state, autotuning may fail. Autotuning is interrupted by a load
disturbance.

In PidCC and PidAdvancedCC control modules, there is also an output parameter
that indicates whether the autotuner is active or not.

During the first part of the autotuning process, the output signal is kept constant and
the noise level is measured, in order to calculate the necessary oscillation amplitude.
Note that it is important to choose a shorter sampling time (task cycle time) for fast
processes than for slow processes, otherwise, the period used for noise calculation
will be unnecessarily long, autotuning will be less accurate, and the resulting control
will be unnecessarily slow. If the process is not stationary, the Autotuner will
interrupt and give a warning that the noise level is higher than the true level.

When the noise level has been calculated, the Autotuner determines the relay
hysteresis, no larger than necessary, but sufficiently above the noise level.
Subsequently, the output from the relay is introduced into the loop, but no larger
than the maximum relay value set. This causes the process value to oscillate around
the setpoint, and the relay output amplitude is adjusted to give the desired amplitude
of the process value. It may be necessary to limit the amplitude of the first output
signal increase, for example, in processes with significant dead times.

196

3BSE035981-510 A

Section 4 Analog Process Control Autotuning

The period and amplitude of the oscillation are determined for the process value.
Slow processes can have oscillation periods between minutes and hours, while fast
processes have oscillation periods of a few seconds. When the oscillation amplitude
is stable, the PID parameters are calculated. If the autotuning method selected is
relay only, autotuning is complete at this point. The new parameter values may be
applied. If tuning fails, the controller continues to use the old parameters.

After the relay method has been used, you may select setpoint step identification
only, or relay and setpoint step identification. After the user has started a setpoint
step, the process value will finally reach the new setpoint according to the figure
below. When steady state is reached, the output signal is restored to its previous
value. The process goes back to its initial state and autotuning is complete. The
process gain, time constant and dead-time are calculated from the setpoint step
response. With these process parameters identified, the Autotuner recalculates the
PID parameters obtained from the relay method. When autotuning is complete, the
new parameters are shown in the interaction window. If you want to accept the
suggested PID parameters, apply them before closing the interaction window.

Process
A

value .
Setpoint step Steady state

Pv

_+~ Steady state
s

Output Output restored

Figure 88. Setpoint step identification and output restoration

3BSE035981-510 A 197

Autotuning

Section 4 Analog Process Control

The Autotuner saves the values of the noise level and the relay amplitude from the
previously performed autotuning. Autotuning may then be repeated more quickly.
To start from the beginning, reset the Autotuner. Autotuning using the relay and/or
step method can be made individually in each part of a controller with gain
scheduling. This applies only for the PidAdvancedCC controller type.

Pl or PID Controller

During relay tuning, the Autotuner chooses a controller type, PID or PI,
automatically. The normal Autotuner choice is a PID controller. In some cases,
where processes contain integrators, for example, for level control, the Autotuner
may decide to use a PI controller.

PPI Controller

If Setpoint step only, or a complete relay and Setpoint step autotuning is performed,
the Autotuner compares the process dead time with the process time constant. If the
dead time dominates (about twice the time constant) the Autotuner may suggest the
PPI design. A PPI controller is never chosen if autotuning is configured for relay
only. The Autotuner detects the process dead-time during the setpoint step method
only. However, you may manually select the PPI type to handle processes with a
known dead-time, which then has to be specified.

Controller Response Speed

The choice of controller speed influences the behavior of the control loop. In certain
processes, high speed is necessary and overshoots are acceptable, whereas in other
cases, a slower control sequence can be accepted. In the Autotuner, it is possible to
select one of three controller response speeds: Slow, Normal, or Fast, and thus
determine the method of operation. Upon speed changes, the controller PID
parameters are updated immediately. Apply the new parameters to accept them.

198

3BSE035981-510 A

Section 4 Analog Process Control Autotuning

Pre-settings
For successful autotuning, some pre-settings can be made as follows.

* The maximum limit of the relay amplitude, expressed in engineering units, is
initialized to 10% of the output range. The Autotuner automatically chooses a
suitable relay amplitude, so that the parameter for maximum relay amplitude
needs to be used only if too high output signal levels cause critical situations.

* The maximum limit of the setpoint step, expressed in engineering units, is
initialized to 10% of the process value range. The Autotuner automatically
chooses a suitable step amplitude, so that the parameter for maximum step
amplitude needs to be used only if too high setpoint values cause critical
situations.

* Warning time is selected, if you want a warning for excessive autotuning time.

Resetting

If you set the InteractionPar component Reset, the values of the noise level and the
relay amplitude saved by the Autotuner from the previous autotuning are rejected. A
new estimate of the noise level is then made. Reset is recommended when a
condition of the process, such as dynamics or noise properties, has changed. It
should also be used when earlier autotuning has failed.

Direct or Reverse Direction

The direction of the process gain is either direct or reverse. The default direction is
reverse. This means that when the process value increases, the controller output
decreases. If the direction you have set is not the same as that automatically detected
by the Autotuner, a warning text is displayed, indicating that the controller direction
may be wrong.

However, in cases where the process is of extreme “non-minimum phase” type, and
the process starts to respond in the wrong direction to an output step, the Autotuner
will also give a warning.

3BSE035981-510 A 199

Adaptive Control Section 4 Analog Process Control

Maximum Sampling Time

When you have autotuned a controller, the Autotuner calculates a maximum
sampling time and indicates it in the interaction window. This time is 1/8 of the
process oscillation time. If the current sampling time (task cycle time) is longer than
the calculated maximum sampling time, then you should decrease the current
sampling time.

If your sampling time is too long, the suggested maximum sampling time may be
shorter than the current sampling time. This means that the current sampling time is
too long in relation to the signal changes the Autotuner has detected.

A suitable strategy for decreasing the sampling time is to halve the current sampling
time, and autotune again, to see the new maximum sampling time given by the
Autotuner.

This method can be repeated until you reach the point where the current sampling
time is shorter than or equal to the maximum sampling time.

Adaptive Control

There are many kinds of processes. Some are very simple to control, and some are
far more complex, with changing dynamics. An example of a complex system is
maintaining a constant value of the pH in a tank. A combination of an adaptive
controller and gain scheduling gives good results in such applications.

An adaptive controller is used to continuously update controller parameters. The
variations in process dynamics must, however, be slow in comparison with the time
constant of the process. An adaptive controller adapts the PID and feedforward gain
parameters.

The adaptation function is enabled by the operator. The operator must first perform
an initial start-up autotuning. When the tuned parameters have been accepted,
adaptive supervision is started by continuously monitoring the input and output
signals to/from the process. Adaptation is then activated only when both signal
values exhibit large enough variations. The activated adaptation function then
calculates and implements new controller parameters.

200 3BSE035981-510 A

Section 4 Analog Process Control Adaptive Control

Enabled, ongoing adaptation is deactivated on the following occasions.

1.
2.

N kW

The operator disables adaptation.

The Autotuner is activated.

When autotuning is complete, adaptation continues, either with the new initial
tuning values, if they have been accepted, or the old ones, if no choice of tuning
values was made by the operator.

Upon changes to Manual mode.
During backtracking.

Upon output tracking.

When the sampling time is too long.

For a feedback adaptive controller also:
— in the case of load disturbance,

— when there is no integrator (I) part,
— when a PPI controller is chosen.

3BSE035981-510 A

201

Adaptive Control Section 4 Analog Process Control

Feedback Adaptive Controller

Feedback adaptation modifies the PID parameters of the controller. The feedback
adaptive controller has the ability to continuously follow a specified point on a
Nyquist curve, as the process dynamics change. The principle of the feedback
adaptive controller is shown in the following figure.

Feedback adaptive PID controller

Specification

Sp
4>

Pv

Pv
Controller . -y BPFE BP; |
design ~— Estimator Outgpg .
Limitations Out Pv
and anti- Process

wind-up

/PID

algorithm

Figure 89. The principle of the feedback adaptive PID controller
After initial autotuning, feedback adaptive supervision is achieved by monitoring
the band-pass-filtered PID controller Outgpg signal and the process value Pvgpg

The user specifies Slow, Normal, or Fast response. The adaptive controller then
gives the resulting PID or PI parameters.

Enabled, ongoing adaptation is deactivated when a load disturbance is detected in
the Pv signal.

The reason for this is that the process value (Pv) is not relevant in relation to the Out
signal from the PID controller, and would give incorrect values for PID parameters.

When the load disturbance has disappeared, adaptation supervision continues.

202

3BSE035981-510 A

Section 4 Analog Process Control Adaptive Control

Sp

Pv

Feedforward Adaptive Controller

If it is possible to measure load disturbances in the process, you can use standard
feedforward control. If the relation between the measured and the real load
disturbance varies, you can use a feedforward adaptive controller as shown in the
figure below, for example, when the flow characteristics of a pump are changed, due
to fouling in the pipe system. Feedforward adaptation then modifies the feedforward
gain, FFg,;,, of the controller.

Feedforward adaptive PID controller

| Estimator ¢¢

Load
disturbance
FF
OUtFF=FFGain*FF
Limitations ~ {OUt Pv
PID dant- — Process
algorithm Outtrom PID and ant
wind-up

Figure 90. The principle of the feedforward adaptive PID controller

Feedforward adaptive supervision is carried out by monitoring the process value, Pv,
and the feedforward signal, FF, representing the load disturbance. This is done
through the high-band-filters, BP;. The parameter estimator is also influenced by the
PID controller Outg,,, pip signal. Adaptation starts when both the filtered signals
are large enough.

The feedforward gain, FFg,;,, which can be positive or negative, is continuously
calculated as long as the feedforward adaptive function is active.

The signal, Outgg = FFg,;,*FF, is added to the PID controller output signal
Outg,om pip to compensate for the load disturbance.

3BSE035981-510 A 203

Gain Scheduling Section 4 Analog Process Control

Gain Scheduling

Gain scheduling can be used when the process has predictable non-linear dynamics,
time variations, or demands on changes in operating conditions. To use the gain
scheduling technique, you first have to choose a reference signal that correlates well
with the changes in process dynamics. The reference signal can be:

* Pv —the process value signal
* Out - the output signal
* Sp - the setpoint signal

* Ext - an external signal

Feature Pack Functionality

* Epsilon - control error (Sp - Pv)

The reference signal can be divided into up to five ranges, separated by adjustable
limits. The gain scheduling function is a table, containing one set of all the
parameters for the PID controller for each range. One set of parameters is active
when the reference signal is within the current range. When the reference signal
passes a value between two parameter set ranges, the next set of parameters takes
over.

Parameter Set Ranges

As soon as the gain scheduling is selected in the interaction window, two parameter
sets are available to start with. If more parameter sets are needed, insert a new one
above the one selected. The limit value is given between the ranges as half the
previous range. It is possible to change the limit manually. The selected parameter
sets can also be deleted in the same way. The range then includes the deleted range.

204 3BSE035981-510 A

Section 4 Analog Process Control Gain Scheduling

Tuning the Parameter Sets

The Autotuner (see Autotuning on page 193) should be used to set controller
parameters in each parameter range set. A parameter set is active when the reference
signal is between its range limits. Autotuning can only be performed in an active
parameter set range. When the reference signal is close to a limit, autotuning may
give poor results. All tuning values, including adaptive controller values, are stored
in the gain scheduling table. You may also set the controller parameters manually.

A small hysteresis function is built in, to avoid frequent switching between two
parameter sets when a noisy reference signal passes a limit.

Example of Inserting and Tuning Parameter Sets
The following are the examples of inserting and tuning parameter sets.

1. Initially, we have a single parameter set (Set 1) that is Autotuned to T1. When
gain scheduling is activated, a second set (Set 2) is added above Set 1, with the
same Autotuned T1. You can then select Set 2 and Autotune this to T2. The
limit is by default set to half the height of the set that is divided. You can
change this before autotuning the new set.

100
Set 1 Set 2 Set 2
75 T T2
©
c
K=
]
S 50 T1
o Set 1 Set 1
2
[0
o
25 T T1
0

Procedure steps

Figure 91. Example of the procedure for gain scheduling in two sets

3BSE035981-510 A 205

Gain Scheduling versus Adaptation Section 4 Analog Process Control

2. You can then split Set 2 in half. Set 3 is added above Set 2, with the same
autotuned T2. You can then select Set 3 and autotune this to T3. The limit is by
default set to half the height of the set that was divided. You can change this
before autotuning the new set.

10
Set 2 Set3 Set 3
T2 T3
75 T2
< Set 2 Set 2
2 T2 T2
§ 50
[Set 1 Set 1 Set 1
8
25 T1 T1 T
0

Procedure steps

Figure 92. Example of the procedure for gain scheduling in three sets

Gain Scheduling versus Adaptation

When configuring a controller, you can choose between constant controller
parameters, gain scheduling, adaptation, or a combination of those, depending on
the process dynamics, as follows, and according to Figure 93.

Process with Constant Process Dynamics

For a process with constant process dynamics, which is the most common, a
controller with constant parameters can be chosen. The correct strategy is then to
select a PID controller or a PPI controller if the dead time is long.

The process engineer’s trimming tool for PID and PPI controllers is the Autotuner,
which suggests settings for the parameters of the controller.

As arule of thumb, a PPI controller is used when the dead time is longer than the
dominant time constant in the process.

206

3BSE035981-510 A

Section 4 Analog Process Control Gain Scheduling versus Adaptation

Processes with Changing but Predictable Process Dynamics

For a process with changing but predictable process dynamics, which requires
different parameters in different parts of the working range, the proper strategy is to
use a PID controller or a PPI controller with gain scheduling. See the section Gain
Scheduling on page 204. Use the Autotuner to tune the parameters in each
parameter set range.

Processes with Changing and Unpredictable Process Dynamics

For a process with changing but unpredictable process dynamics, which vary slowly,
the proper strategy is to use an adaptive PID controller. See the section Adaptive
Control on page 200. The Autotuner is used to tune the initial parameters. A PPI
controller is able to run gain scheduling, but not adaptation.

Processes with Changing and Partly Predictable Process Dynamics

For a process with changing, unpredictable process dynamics, which vary slowly,
and partly predictable process dynamics, the proper strategy is to use a combination
of adaptation and gain scheduling.

3BSE035981-510 A 207

Additional Control Functions Section 4 Analog Process Control

Process dynamics

Varying Constant
Use a controller with Use a controller with
varying parameters constant parameters
Unpredictable Predictable
variations variations
Partly
Use an adaptive controller pre.dlgtable Use gain scheduling
variations

Use an adaptive controller
and gain scheduling

Figure 93. Procedure used to decide which controller to use, adaptive control
and/or gain scheduling

Additional Control Functions

Three-Position Output

Three-position action from a controller with increasing, or decreasing, or no signal
at all, for example, to an electrical motor actuator, is achieved by a function with
two digital output signals, which are never active at the same time.

This three-position output control module is an extension of a controller, when two
digital outputs are required. A comparison is made between the controller’s analog
output signal and an analog signal from the control device or actuator, which gives
the so-called position feedback signal.

208 3BSE035981-510 A

Section 4 Analog Process Control Ad(ditional Control Functions

When the difference is greater than a set dead zone, either of the two digital output
signals, Increase (increment output) or Decrease (decrement output) of BoollO
type, is activated in the following manner, see Table 13.

Table 13. Three-position output.

Comparison Increase Decrease
Output=Position feedback False False
Output>Position Feedback True False
Output<Position Feedback False True

A position feedback signal is not always available. It can, however, be estimated
internally by the module, to represent the current position of the control device by
the following calculation. The time during which the increasing or decreasing pulse
has been active is divided by the total action time between the actuator end positions
which you can declare, and then multiplied by the controller output range. The
minimum output signal pulse length that you can set is the sampling time.

The dead zone is the tolerated difference between the output signal from the
controller and the position feedback signal. A difference within the dead zone will
not affect any digital output.

The minimum time for switching between the two output signals can be set in
seconds, as short as the sampling time, or longer, depending on the actuator.

3BSE035981-510 A 209

Additional Control Functions Section 4 Analog Process Control

Three-position digital output

controller

Active H
Not active

\. PID e » Increase

Decrease

[
v

* Active H ﬂ
Not active

Position feedback signal from control
device or internal estimate.

Figure 94. The principle of the three-position digital output function

Stiction Compensator

It is always important to know how a control loop will perform, because it
influences the process output. Performance checks may be carried out in many
ways. One method of detecting deficiencies in the process control is to detect
oscillations. Oscillations above a certain amplitude and within a certain frequency
range are probably caused by sticking control valves, due to too high static friction,
called stiction. This phenomenon usually increases gradually during operation with
fluids that are difficult to handle, for example, viscous fluids. Stiction then gives rise
to oscillations of a particular character in the process control loop.

There may also be other reasons for the oscillations, for example, badly tuned
control loops or oscillating load disturbances. However, in this section, only
methods of detecting and minimizing stiction problems will be dealt with. Methods
implemented in the PID controllers and as an add-in control module, are described
in the figure below and in the succeeding sections.

If the process handles products which cause friction problems in a pneumatic
control valve, an add-in function, called a stiction compensator, should be added to
the analog output signal used in the control loop.

This method of keeping pneumatic valves free from clogging and seizing involves
activating them regularly by adding short pulses, to “knock” the valve. The stiction

210

3BSE035981-510 A

Section 4 Analog Process Control Ad(ditional Control Functions

compensator function compensates for static friction and hysteresis which may
increase gradually with time.

Enable .
> Stiction
Advanced PID controller module - compensator
r
_ \
Setpoint \ PID ‘
— - algorithm
| AO
‘r Output 1 »@
| .
Process value |] Autpmgtlc -
oscillation

—) Output if oscillations
Enable |_detector —@ are detected

Pneumatic
process valve at
risk of stiction

Figure 95. Principles for detecting and solving friction problems

Oscillation detection starts when the user has enabled the automatic oscillation
detector in the PID controller module. If an oscillation is detected an output is set
and a warning is given. If it is obvious that there is friction in the valve, the user
should enable the stiction compensator function to keep the valve moving until it
can be repaired or replaced.

ﬂ The StictionCompensater object is designed to be added to the AnalogOutCC
output control module.

Oscillation Detection

Automatic monitoring of control loop performance is built into the advanced PID
controller module. When activated, this oscillation detector function detects
oscillations in the process value around the setpoint, often caused by friction in a
control valve. Oscillation is detected when the process value oscillates a certain
number of times around the setpoint with an amplitude of about 1% or greater, and
with a period of about the length of the process time constant.

3BSE035981-510 A 211

Additional Control Functions Section 4 Analog Process Control

If you are uncertain about the cause of oscillation, you may undertake a diagnostic
procedure according to the flow chart in Figure 96, which helps you to find and
eliminate the source of oscillation.

Oscillation detection can be sent from the PID AdvancedCC object (parameter
VoteOut) to receiving Voting objects (parameter /nx). You then configure the value
of Inx parameter to be for example oscillation detection from the Vote object's
parameter InxLevelConfig. See also Signal and Vote Loop Concept on page 435.

Put controller in
manual mode

No Still oscillating?

e 1

b Search for the source

Check the valve

b

4—‘(&5
" FPTI
o Friction® Eliminate
disturbances
Mo
Check - J
controller
l Reduce disturbances
by controller tuning

Undertake valve
maintenance

Figure 96. Flow chart for oscillation diagnosis

Perform the following steps to determine what kind of oscillation has been detected:

212 3BSE035981-510 A

Section 4 Analog Process Control Ad(ditional Control Functions

Activate the oscillation detector function in the loop assessment settings of the
advanced PID control module, to detect any oscillation in the process value
around the setpoint.

If an oscillation is detected, a warning text is shown in the More parameters
interaction window and an output signal from the PID control module is set to
true.

If you are uncertain of the reason for the oscillation you may undertake a
stiction diagnostic procedure according to the succeeding steps. These guide
you in finding and eliminating the oscillation.

Put the output signal to the pneumatic valve into forced mode.

If the oscillation stops, check the pneumatic valve for friction. If the valve is
sticking, perform the required maintenance to retrieve the problem, or replace
the valve.

If it is not suitable at the moment to carry out maintenance on the valve, wait
for a later occasion. Meanwhile, you are advised to activate the stiction
compensator to reduce the influence of static friction in a pneumatic valve.

If there is no friction, check the tuning of the controller. There may have been
accidental changes in the process parameters.

If the oscillation persists, the process value may be influenced by a disturbance.
Search for the source. It may be useful to use the feedforward function.

Reduction of the Influence of Friction

The stiction compensator function signal is superimposed on the analog output
signal to the process, according to the figure below. A short pulse sequence is added
to the controller output signal, inside the analog output control module. This signal
is of equal amplitude and duration in the direction of the output signal’s change rate.
Thus, when the signal increases, the pulse is directed upwards (and vice versa). See
Figure 97. In this way, it is possible to handle sticky valves. (Industrial tests show
that the procedure reduces the control deviation during stick-slip motion
significantly, compared with standard control without friction compensation.)

3BSE035981-510 A

213

Additional Control Functions Section 4 Analog Process Control

The stiction compensator function may be varied and the following parameters can
be set: pulse amplitude, pulse width, and the pulse period factor multiplied by the
pulse width, giving the pulse period time. A stiction compensator pulse is only given
when the output signal changes by an amount greater than a set hysteresis limit.

Pulse width

Output A > <
signal

Pulse amplitude

J # Hysteresis

Pulse period
Time
-

Figure 97. The stiction compensator signal is superimposed on the analog output
signal

Sluggish Control Detection

Sluggish control, which should be avoided, means that a controller responds too
slowly to load disturbances or setpoint changes, as in the figure below.

Desired optimal control

Sluggish control

Figure 98. lllustration of sluggish control

Sluggish control loops may occur with conservatively or poorly tuned controllers.
This may cause losses in production and quality. A sluggish response to load
changes or disturbances is therefore undesirable. Slow behavior with unnecessarily

214 3BSE035981-510 A

Section 4 Analog Process Control Input and Output Signal Handling

large and long deviations from the setpoint should be avoided. A well-tuned
controller gives a fast response to load disturbances. The loop assessment function,
which works according to the Idle index, can detect sluggish control. When you have
completed the commission of a control loop and you have tuned it, you can
supervise the loop for the detection of sluggish control. Sluggish control may occur
after a certain operating time.

Perform the following steps to detect sluggish control.

1. Activate the sluggish control detector function in the loop assessment settings
of the advanced PID control module, to detect any sluggish control in the
process.

2. If sluggish control is detected, a warning text is shown in the More parameters
interaction window and an output signal from the PID control module is set to
true.

Perform a new autotuning sequence and ensure that faster control is achieved.

Sluggish control can be sent from the PID AdvancedCC object (parameter VoteOut)
to receiving Voting objects (parameter /nx). You then configure the value of Inx
parameter to be for example sluggish control from the Vote object's parameter
InxLevelConfig. See also Signal and Vote Loop Concept on page 435.

Input and Output Signal Handling

Signals start and end in I/O units with I/O channels of the ReallO data type.
Between input and output I/O units, signals are handled in I/O function blocks of the
ReallO data type, or directly in various function blocks, or in control modules of the
ControlConnection data type.

In open loop control, information mainly goes forward, for example, formula
calculations, indications, comparisons, or presentations.

/0 Code or I /0
unit | [nput ’ presentation Output unit

Figure 99. Signal handling in open loop control

3BSE035981-510 A 215

Input and Output Signal Handling Section 4 Analog Process Control

1/0
unit

In closed-loop control, applications that contain one or several controllers, it is
necessary for information to go both forward and backward. This places much
higher demands on the solution of such applications.

PID control, code I/0
L | INpuUt | — ! ’ TR - -
npu or presentation Output unit

Figure 100. Control loop application in closed-loop control

When combining and connecting various objects, you should be able to predict the
resulting functions and behavior.

It is often necessary to measure values for later calculations in the application and
for presentation. Analog signals are then transferred from measurement transmitters
in a process, to I/0 units. The signal interface objects for input and output signals
read values from, and write values to, the I/O systems, respectively. Further on in
the loop, the signal is directed to application code, or to a presentation. The signal
connected to an analog input interface which transforms it into a ControlConnection
type signal for further direction, for example, to a PID controller, application code,
or a presentation, see ControlConnection on page 103.

Over and under range measurement

Signal objects of real type and AnalogInCC in ControlStandardLib are equipped
with an option to increase the signal range with a fixed pre-selected factor of +-15%
of the specified range.

You can select individual Signal Objects connected to variables of data type ReallO
on the controller and set the input parameter EnableOverUnderRange to true.

The default value on EnableOverUnderRange depends on a global project
constant from BasicLib. The default value for this project constant is false and
Over and Under range feature is disabled.

216

3BSE035981-510 A

Section 4 Analog Process Control Input and Output Signal Handling

The Signal Object enabled with over and under range feature, displays the output
parameter OverUnderRangeEnabled as true to inform the surrounding code about
the extended range.

Input objects connected to I/O.

To enable signal range extensions on input signals, in Project Explorer, refer
System 800xA Control, AC 800M, Configuration (3BSE035980%) .

ﬂ Connected PID controllers need to be re-tuned for optimized operation.

The default value of project constant for inputs is set to false.

The objects of SignalLib and ControlStandardLib supporting signal range extension
feature are:

* Functional blocks:
— SignallnReal
— SignalSimpleInReal

. Control modules
— SignallnRealM
— SignalSimpleInRealM

* AnalogInCC in ControlStandardLib

Output objects connected to I/0.

To enable signal range extensions on output signals, in Project Explorer, refer
System 800xA Control, AC 800M, Configuration (3BSE035980%) .

The default value of project constant for outputs is set to false.

The extended range is also applicable in forced mode. The operator can set forced
values directly to the I0-unit from the operator interaction windows.

The objects of SignalLib and ControlStandardLib supporting signal range extension
feature are:

e Functional blocks:
— SignalOutReal

3BSE035981-510 A 217

Input and Output Signal Handling Section 4 Analog Process Control

— SignalSimpleOutReal

. Control modules:
— SignalOutRealM
— SignalSimpleOutRealM

* AnalogOutCC in ControlStandardLib

Input Signal Handling

Input objects receive a value from the I/O unit, which receives it from the process.
I/O input units are represented in the hardware configuration section in the Project
Explorer, where you can configure the measuring range and units of measurement.

Interface
objects .ot e e s
I/0 i Code or
. |—p| Input —p .
unit npu i presentation

Figure 101. Handling of input signals

218 3BSE035981-510 A

Section 4 Analog Process Control Input and Output Signal Handling

Table 14. Standard library types for input signal handling

Type Name Library Type Description

SignallnReal(M) SignalLib Function SignallnReal has an analog input, of
block and | ReallO data type, with several supervision
Control functions, such as alarm and event levels,

module(M) | and faceplates. SignallnReal has a first-
order, low-pass filter built in. The input is
intended to be connected to an analog
input 1/0 variable. The signal output is of
real data type (Function blocks) and
ControlConnection (Control modules).

SignalSimplelnReal(M) | SignalLib Function SignalSimplelnReal is a version of
block and | SignallnReal (SignalSimplelnRealM is a
Control version of SignallnRealM) that only

module(") | handles one high and one low level. This
simple type consumes less memory than
SignallnReal.

3BSE035981-510 A 219

Input and Output Signal Handling

Section 4 Analog Process Control

Table 14. Standard library types for input signal handling (Continued)

Type Name

Library

Type

Description

SignalBasiclnReal

SignalBasicLib

Function
block

SignalBasicInReal is used for overview
and forcing of analog input signals of data
type ReallO.

The input signal value is filtered, i.e. rapid
changes are delayed according to the
FilterTime value in InteractionPar.

If a redundant switchover occurs, the
output value change is smoothened
according to the RedIincDecLim
parameter.

Error is set to true when input 10 status is
error marked.

AnalogInCC

ControlStandard
Lib

Control
module

AnalogInCC receives the measured
analog input value from the I/O unit and
converts the input signal of ReallO data
type to the common ControlConnection
data type.

AnalogInCC has a built-in first-order, low-
pass filter. The analog input signal may be
supervised by a Level6CC control module
type with alarm levels, see Supervision on
page 226. The analog input signal may
also be supervised in bar graphs or
histograms and controlled manually.

In a control loop application, AnaloginCC
normally precedes a PidCC controller.

(1) The control module type has a voting parameter that can be connected to a vote control module type. See Vote Control Module

Types on page 449.

Output Signal Handling

The chain of objects in a control loop must end with one of the following objects
(excluding function blocks) for the output signals, see Table 15 and Table 16.

220

3BSE035981-510 A

Section 4 Analog Process Control Input and Output Signal Handling

Signals or values from the code can go directly to an I/O unit, or be handled in
control modules before the output signal goes further to an output interface and then
on to an I/O unit, and finally out to an actuator in the process.

Interface
i - objects
f i I/O
, Code — Output —®» unit

Figure 102. Handling of output signals

Table 15. Standard library types for analog output

Type Name Library Type Description
SignalOutReal(M) SignalLib Functio | SignalOutReal has an analog input of real
n block |data type and SignalOutRealM has an input
and of ControlConnection data type. Both object
Control |types have outputs of ReallO data type and
module | are equipped with signal quality supervision
(1) with alarm functions and faceplates.
The signal output, of ReallO data type, is
intended to be connected to an analogoutput
I/O variable.
SignalSimpleOutRea | SignalLib Functio | SignalSimpleOutReal has analog output of
(M) n block |ReallO (Function blocks) and
and ControlConnection (Control modules)
Control | signalSimpleOutReal is a version of
gnodule SignalOutReal and SignalSimpleOutRealM
is a version of SignalOutRealM. This simple
type consumes less memory.

3BSE035981-510 A 221

Input and Output Signal Handling Section 4 Analog Process Control

Table 15. Standard library types for analog output (Continued)

Type Name Library Type Description

SignalBasicOutReal |SignalBasicLib Functio | The function block SignalBasicOutReal is
n block |used for overview and forcing of analog
output signals of data type ReallO.

The input value is transferred to the output
signal value and is limited within the range of
the output parameter. Error is set to true
when output 10 status is error marked.
Warning is set when the input is out of range
defined by the output parameter. ParError is
set to true when the range components of
the output parameter are erroneous like that
the maximum is less than the minimum.

AnalogOutCC ControlStandardLib | Control | AnalogOutCC writes, scales, or converts the
module |following, from the ControlConnection signal
type, to the ReallO signal type:

- analog output signals to actuators via
I/O units,

- variables to the local system or a
distributed system.

The analog output may be supervised with a
control module of the Level6CC, LeveldCC,

or Level2CC type, see Supervision on page
226.

AnalogOutCC has an extension possibility
for stiction compensation, see Stiction
Compensator on page 210. The analog
output may also be supervised in bar graphs
or histograms and controlled manually in a
faceplate.

AnalogOutCC often succeeds a PID control
module.

(1) The control module type has a voting parameter that can be used for connections to a vote control module type. See Vote
Control Module Types on page 449.

222 3BSE035981-510 A

Section 4 Analog Process Control

Input and Output Signal Handling

v

Backtracking function in analog output objects

A backtracking function can be activated in Local mode via the parameter
FeedbackPos. A local value from (for example) a level indicator can be sent (via an
analog input object) with ControlConnection back to the analog output object's
backtracking function.

This function will provide a bumpless transfer when the analog output object
switches back from local mode to auto mode.

This function is valid only for control modules SignalOutRealM,
SignalSimpleOutRealM and AnalogOutCC.

Converting Controller Output to a Digital Output Signal

Sometimes it might be desirable to convert controller output to a digital output
signal, see Table 16.

In some cases, PulseWidthCC or ThreePosCC can be used for signal handling.
ThreePosCC or PulseWidthCC usually follow upon a PID control module.

Table 16. Standard library types for digital output signals

Type Name Library Type Description
ThreePosCC Control Control ThreePosCC should be used as the end of a
StandardLib | module three-position control loop. (This is described in

more detail in section Additional Control Functions

on page 208. Digital signals are used to modify

the state of connected devices. The digital outputs

cannot be activated at the same time and when

there is no need to change the output, neither of

them is activated.

3BSE035981-510 A

223

Input and Output Signal Handling Section 4 Analog Process Control

Table 16. Standard library types for digital output signals

PulseWidthCC Control Control PulseWidthCC converts the analog signal from
StandardLib |module the control loop into a digital output signal. The
digital signal is periodic with a selectable pulse
width proportional to the value of the analog

signal.
ThreePosReal Control Function ThreePosReal is a three-position converter from a
SimpleLib block real input to two Boolean outputs (increase/

decrease), similar to the ThreePosCC control
module. The function block can be used with or
without feedback from the actuator.

224 3BSE035981-510 A

Section 4 Analog Process Control Input and Output Signal Handling

Manual-Auto Control

The Manual AutoCC control module lets you view the status of a signal of
ControlConnection data type, at any location, but preferably before an output, and
then change its value in Manual mode.

Table 17. Standard library objects for Manual-Auto control

Type Name Library Type Description
ManualAutoCC | Control Control ManualAutoCC makes is possible to enter values
StandardLib | module manually into a control loop, for example, range,

units of measurement or limits, and to supervise
the control values graphically in bar graphs and
trim curves.

Normally, ManualAutoCC is configured in series
on the ControlConnection line between two other
control modules. If ManualAutoCC is located first
in a control loop, it can be in Manual mode only,
and when located last in a control loop, it can be in
Auto mode only.

After many different calculations, the unit of
measurement of a signal may require
simplification, which can be entered in a
ManualAutoCC control module. See

Table 43 on page 446.

3BSE035981-510 A 225

Supervision

Section 4 Analog Process Control

Supervision

A level detector is a trip switch (low or high) for supervision of an analog signal. A
low-level trip indicates when the input signal drops below any of several defined
low detect levels, and a high trip correspondingly indicates when the supervised
signal exceeds any of several defined high detect levels.

Table 18. Standard library types for supervision

Type Name Library |Type Description
LevelHigh and BasicLib |Function | LevelHigh and LevelLow are trip switches for the
LevelLow block supervision of an analog signal of real type at an
optional number of levels.
The input signal may be given a certain degree of
hysteresis, which prevents the level detector output
signal from repeatedly changing state when the
supervised input signal varies near the detection
level.
SignalReal SignalLib | Function | SignalReal has an analog input and an output, both
block of real data type, with several supervision functions,
such as alarm and event levels, and faceplates. The
input and output are intended to be connected to
real variables in an application.
SignalRealCalcOutM(") | SignalLib | Control | SignalRealCalcOutM is a version of SignalReal that
Module |handles input connections from a vote control
module. Input/Output is ControlConnection.
SignalRealCalcInM’ SignalLib | Control | SignalRealCalcInM is a version of SignalReal that
Module |handles connections to a vote control module.

Input/Output is ControlConnection.

226

3BSE035981-510 A

Section 4 Analog Process Control

Supervision

Table 18. Standard library types for supervision (Continued)

Type Name

Library

Type

Description

LevelecC(")

Control
Standard
Lib

Control
module

Level6CC is a supervisor object for level detection
of a ControlConnection signal with six configurable
alarm and event detection levels:

H (High), HH, HHH, L (Low), LL, and LLL.
Supervision may be absolute or relative to a
reference signal. Level6CC also has hysteresis and
filter time for alarm and event levels.

The H and L levels are mainly used for logical
circuits. The HH and LL levels are intended to be
used as conditions for alarm generation. The HHH
and LLL levels are intended to stop processes, but
there are no limitations on their use.

All levels may generate alarms. The presentation
color of levels and graphs is defined by project
constants. Each level has a logical color, and for
each color, there is a color setting. See online help
for more information.

Three information types are given for each level:
alarm condition state,

a Boolean alarm condition parameter,

a presentation signal of Level6Connection type.

The latter, which is parameter connected only, may
be used in control objects, in analog and digital
interface control modules, and in ManualAutoCC, to
show alarm levels in graph windows.

Level6CC handles connections to vote control
module.

Level4cC) and
Levelocc()

Control
Standard
Lib

Control
module

Level4CC and Level2CC are simplified versions of
Level6CC, restricted to 4 and 2 levels, respectively.
These types consume less memory and should be
used when 4 or 2 level supervision is enough.

Level4CC and Level2CC handles connections to
vote control module.

3BSE035981-510 A

227

Supervision

Section 4 Analog Process Control

(1) See also Vote Control Module Types on page 449.

Signal Quality and Status

The supervision of signal quality and handling of signal errors from, for example, a
transmitter, or from the I/O interface system, is important in many processes.

Normally, the quality of a signal has its origin in the signal interface. The quality of
a signal is defined as either GOOD, UNCERTAIN or BAD. A signal underflow or
overflow gives an UNCERTAIN signal quality. A hardware error gives a BAD

signal quality.

Table 19. Standard library objects for signal quality supervision

Type Name Library Type Description
SignalSupervisionCC | Control Control SignalSupervisionCC supervises the
StandardLib | module ControlConnection signal quality and handles

signal errors with configurable alarm and event
settings. SignalSupervisionCC has three different
modes.

e Through mode lets the signal pass without
any action.

* Freeze mode may freeze the output. If the
input signal is not of GOOD quality, the
output is frozen and an alarm is given.

¢ Predetermined mode. If the input signal is not
of GOOD quality, the output is set to a preset
value and an alarm is given. The pre-
determined value is reached by ramping.

228

3BSE035981-510 A

Section 4 Analog Process Control

Calculation

Calculation

There are a large number of system functions and control modules for mathematical
calculations of signals as well as mean, median and majority calculations.

Table 20. Standard library objects for mathematical calculations

Type Name Library Type Description
MedianReal and |Basic Function MedianReal and MedianDint calculate the median
MedianDint block value of an optional number of input values of real
and dint types, respectively.
MajorityReal Basic Function MajorityReal calculates the mean value of a
block number of signals of the real type, within a
selectable deviation value.
MajorityReal can, for example, be used to exclude
a divergent value in a redundant calculation or to
measure a number of signals.
AddCC Control Control AddCC executes the addition Out = In1 + In2.
ExtendedLib | module
SubCC Control Control SubCC executes the subtraction Out = In1 - In2.
ExtendedLib | module
MultCC Control Control MultCC executes the multiplication Out = In1 * In2.
ExtendedLib | module
XRaisedToYCC | Control Control XRaisedToYCC executes the xy function
ExtendedLib | module Out = In1 raised to the power of In2.
SqrtCC Control Control SqrtCC executes the square root Out = Sqrt(In).
ExtendedLib | module
DivCC Control Control DivCC executes the division Out = In1 / In2.
ExtendedLib | module

3BSE035981-510 A

229

Calculation Section 4 Analog Process Control

Table 20. Standard library objects for mathematical calculations (Continued)

Type Name Library Type Description

Mean4Exclude Control Control Bad values collected by several transmitters can
BadCC ExtendedLib | module be excluded by using MeanXExcludeBadCC
control modules to analyze the status and value of
Mean8Exclude a signal.

BadCC Which module type to use depends on the
number of input signals.

Bad signals are excluded, and the mean value is
calculated for the remaining signals.

If status is not GOOD or if a value is extreme, it is
omitted. The mean value of the remaining inputs
is then taken as the output value. When only one
valid input value exists, this value is used as the
output signal. If no input signal is accepted, the
output is a value with status BAD.

For example, this might be useful when a number
of temperature transmitters are placed at the
bottom of a boiler, and some have been covered
with dust, and therefore return significantly higher
or lower values than the others. If a transmitter is
broken, the corresponding valid information is
false and this value is omitted by this reason. If the
transmitter however transmits a valid signal but
the value has a significant difference from the
others, this value will also be omitted.

Mean12Exclude
BadCC

Q MeanXExcludeBadCC may also be used for processing values to controllers.

230 3BSE035981-510 A

Section 4 Analog Process Control Signal Handling

Signal Handling

Derivative Objects

Derivative objects are normally used to detect changes in a signal, to predict a
control activity. A derivative object may also act as a high-pass filter.

Table 21. Derivative standard library objects

Type Name Library Type Description
DerivativeReal Control Function DerivativeReal is a combined first-order, low-pass
SimpleLib block filter and a differentiator. The filter is used to

smoothen the derivative action. The output may
be forced to track an external signal. Transition
from tracking is bumpless. The transition to the
tracking value is dependent on the deviation from
the current output value when tracking is enabled.
DerivativeReal and DerivativeCC (below) have
similar functionality.

DerivativeCC Control Control DerivativeCC is a derivative control module with
ExtendedLib |module adjustable filter time. The input is filtered by a first-
order, low-pass filter which determines the time
during which the derivative action is to decline.
The sampling time must be considerably shorter
than the filter time, at least 3 to 10 times. The filter
output is then differentiated.

During feedforward control, when the signal
changes, there is a need for an amplification of
short duration. The DerivativeCC filter can be
used to smoothen the derivative action.

3BSE035981-510 A 231

Signal Handling

Section 4 Analog Process Control

Integrator Objects

Integrators accumulate the input signals and present the sum as an output. For
instance, a flow may be integrated, in order to compute a volume. The input signal is
integrated as long as the integrator is enabled. See Figure 103.

Output

signal

1 Set at
a level

Settoa
preset
value

Enable=
FALSE

Time

o

Figure 103. The integrator function sums the input signal (In) value over time

Table 22. Integrator standard library objects

Type Name Library Type Description
IntegratorReal Control Function The IntegratorReal output can be limited, and may
SimpleLib | block be forced to track an external signal. Transitions
from tracking and limiting are bumpless. Further
increase or decrease of the output can be
inhibited. At reset, the integral part is set to zero.
IntegratorCC Control Control IntegratorCC offers the same functions as the
ExtendedLib | module IntegratorReal function block type.
It can also be reset to a selectable, predetermined
output value.

232

3BSE035981-510 A

Section 4 Analog Process Control

Signal Handling

Flow Calculation

Flow measurements can be made by meters giving an analog signal directly

proportional to the flow, or by differential pressure measurement across a measuring
flange.

Table 23. Standard library objects for flow calculation

Type Name Library Type Description
FlowCC Control Control FlowCC calculates the value directly proportional
ExtendedLib | module to the flow, or by differential pressure

measurement across a orifice plate.
FlowCC has compensation inputs for the

surrounding temperature and pressure. Given the
maximum flow, the flow can be calibrated for other

operational cases with real measurements.
FlowCC may be used as input to various

calculations, or as a process value in a controller.

3BSE035981-510 A

233

Time Average Section 4 Analog Process Control

Feature Pack Functionality

Time Average

The time average value of the input over a specified number of samples can be
calculated.

Table 24. Standard library objects for time average calculation

Type Name Library Type Description

TimeAverageCC | Control Control | TimeAverageCC reads a parameter of

ExtendedLib | module | ControlConnection data type, and calculates the
moving average value over a specified number of
samples.

There is also a parameter in TimeAverageCC that
helps to configure the module to calculate the average
in three different ways:

e Continuous sampling based on the configured
number of samples

e Setting a sample time for calculation. This sample
time can be equal to or greater than the
modules’s execution scan time

e Sampling based on request.

234 3BSE035981-510 A

Section 4 Analog Process Control Time Average

Signal Reshaping

If a transmitter signal is non-linear, a piecewise linear signal object can be used to
reshape and linearize it. Linearization is performed before the signal is connected to
the controller or a calculator function. A piecewise linear signal object is also useful
in cases of non-linear relations between values in one or two dimensions, for
example, absolute and relative humidity, or pressure versus density for a liquid or
for steam.

Table 25. Standard library objects for flow signal reshaping

Type Name Library |Type Description
PiecewiselLinearReal Control Function | PiecewiseLinearReal has a number of
SimpleLib | block predefined input-output pairs. Values between

these pairs are calculated by linear interpolation.

PiecewiselLinearReal can be used to define a
non-linear function y=f(x). The maximum
number of data points is 21, and there is an
interaction window making data input easier.
Intervals between different break points do not
have to be equal.

X values must be increasing. Below the first
point, and above the last point, linear
extrapolation to infinity is used. The pseudo
inverse of the defined function can be calculated
for a given input.

PiecewiseLinear2DReal |Control Function | The PiecewiselLinear2DReal function block type
SimpleLib | block takes two inputs, which means that a non-linear
surface, z=f(x,y) can be specified. The restriction
on the x, and the y values is that they must be
increasing. A maximum of 21 x values and 11y
values can be specified, that is 231 data points.
An interaction window can be used to edit the
data.

The functionality of PiecewiseLinear2DReal is
the same as for the PiecewiselLinear2DCC
control module below.

3BSE035981-510 A 235

Time Average Section 4 Analog Process Control

Table 25. Standard library objects for flow signal reshaping (Continued)

Type Name Library |Type Description

PiecewiseLinearCC Control | Control | PiecewiselLinearCC has the same functions as
Extended | module |the PiecewiselLinearReal (see above).
Lib If a transmitter signal is non-linear,

PiecewiselLinearCC can be used to linearize it.
Linearization is performed before the signal is
connected to a controller. The controller can
then be tuned for optimized function,
independent of the non-linearity of the
transmitter. If, in the future, the transmitter is
replaced, the new one may have other
characteristics. The new function, given in the
transmitter manufacturer’s technical information
data sheet, may then be entered in this
PiecewiseLinearCC control module and the
control loop will work the same with the new
transmitter.

You can also connect PiecewiselLinearCC to a
controller output to linearize a non-linear valve
characteristic.

PiecewiseLinearExtension | Control Control |PiecewiseLinearExtension modules are used as
Extended | module |add-ons to PiecewiselLinearCC, in order to add

Lib multiples of 20 points, for large numbers of data.
PiecewiselLinear2DCC Control | Control |PiecewiseLinear2DCC has the same functions
Extended | module |as PiecewiselLinear2DReal (see above).
Lib
The above control modules are suitable for changing signals according to non-
Q linear static functions.

A setpoint curve may be generated by a PiecewiseLinearCC control module to a
succeeding controller by having a preceding IntegratorCC control module.

236 3BSE035981-510 A

Section 4 Analog Process Control Time Average

The inverse of the f(In) function can be calculated with the Inlnverse and Outlnverse
parameters:

The relation is OQutlnverse = f - (Inlnverse). The inverse calculation is
performed on the specified data points, where Outlnverse is in the interval x1 -
xn, and xn is the last point used. All functions can of course not be inverted. In
such cases a pseudo inverse is calculated using the curve between the
maximum and minimum defined values of y.

If the inverse is still not unique, the smallest value is chosen. This is illustrated
in Figure 104, which shows the inverse calculation for two different Inlnverse
values, y1 and y2. For y1 there are two possible inverse values. The rightmost
is chosen, since the inverse is calculated from the curve between the maximum
and minimum values. For y2, there are four possible inverse values, three of
which are inside the inverse range. The leftmost of these is chosen. If Inlnverse
is greater than the maximum defined value of y or less than the minimum
defined value of y, the inverse calculation is based on using the maximum or
minimum value respectively.

| |
| |
fion

k

—af

Ratuge for inverse caloulation

fx)

Figure 104. Calculation of the inverse function f{x)

3BSE035981-510 A

237

Time Average

Section 4 Analog Process Control

Filters

First-order, low-pass filters can be used to, for example, reduce the amount of high-
frequency noise in analog signals created by an analog transmitter or the control
system environment. A filtering time can be set.

Table 26. Standard library objects for filtering

Type Name

Library Type Description

FilterReal

Control Function FilterReal is a single-pole low-pass filter. The
SimpleLib block transfer function is:

G(s) =1/(1 + s*FiltT)
where FiltT is the filter time constant.

Filter2Real

Control Function Filter2PReal is a low-pass filter with one zero and
SimpleLib block two complex poles. Their outputs can be forced to
track an external signal. The transition from
tracking is bumpless. The transfer function is
G(s) = (1+s*ZFiltT) /

(1+ s*2*Damping*PFiltT+s2*PFiltT2)

where ZFiltT is the time constant for the
derivation. Damping is the damping factor and
PFiltT is 1/the resonance angular frequency.

LeadlLagReal

Control Function LeadLagReal is used as a lead or a lag function,
SimpleLib block that is, a derivative or an integration limiter,
respectively, determined by the relation between
two input time constants. LeadLagReal, of real
type, can be forced to track an external signal and
the transition from tracking is bumpless. The
transfer function is:

G(s) = (1+s*LeadT)/(1+s*LagT)
where LeadT is the time constant for the

derivative lead and LagT is the time constant for
the integration lag.

FilterCC

Control Control FilterCC is a first-order, low-pass filter for
ExtendedLib | module ControlConnection signals. The transfer function
is the same as in FilterReal (see above).

238

3BSE035981-510 A

Section 4 Analog Process Control

Time Average

Table 26. Standard library objects for filtering (Continued)

Type Name Library Type Description
Filter2PCC Control Control Filter2PCC is a low-pass filter with one zero and
ExtendedLib | module two complex poles. The transfer function is the
same as in Filter2PReal (see above).
DecoupleFilterCC | Control Control The DecoupleFilterCC is used to dynamically
AdvancedLib | module decouple cross coupled systems with two input
signal. In a system with two inputs and two
outputs which are cross coupled i.e. that one input
affects both outputs, this leads to a difficult
controlling problem. By introducing a
DecoupleFilterCC, the interaction between these
inputs and outputs can be shaped so that only
one input affects one output. Thus by using
DecoupleFilterCC, one can transform a Two In -
Two Out system (TITO) into two Single In - Single
Out systems (SISO).
LeadLagCC Control Control LeadLagCC has the same functions and transfer
ExtendedLib | module function as LeadLagReal (see above).
Low-pass filter control modules may be used to flatten a signal step with a high
@ derivative component into a continuous signal, without steps. This filter function

is also included in the analog input control module described in Input and Output
Signal Handling on page 215.

3BSE035981-510 A

239

Branch Objects

Section 4 Analog Process Control

Delays

Dead-time control and loop calculation are required in control systems with long
transport lags, such as conveyor feed systems.

Table 27. Standard library objects for signal delays

Type Name Library Type Description
DelayCC Control Control DelayCC, in combination with other control loop
ExtendedLib | module control modules, delays a ControlConnection

signal for a predetermined time. The delay time
may also be a calculated variable, or a controller
output.

Branch Objects

There are a number of branch objects that split signals into two or several branches
and manage different aspects of the splitting procedure.

Also, many processes work with large differences in product flows. It may then be
necessary to use two valves in parallel, one for small flows and one for large flows.
In other processes, there might be a need to split a signal into two branches, one
slow and one fast.

To ensure that two process valves working in parallel, together give the required
flow a signal range might need to be divided into two output signal ranges, each of
which is an output part of the input signal.

240

3BSE035981-510 A

Section 4 Analog Process Control Branch Objects

The Control libraries contain a number of types for these purposes.

Table 28. Standard library signal branch objects

Type Name Library Type Description
BranchCC Control Control |BranchCC and Branch4CC split a signal of
Branch4CC StandardLib | module |ControlConnection type into two or four branches,

respectively, with output signals equal to the input
signal, with the same backtracking functions.

A signal of ControlConnection type can be
duplicated for calculation with several other signals
using these control modules.

A measured signal value can be duplicated for use

as an input signal to several controllers using these
control modules.

SplitRangeCC Control Control | SplitRangeCC splits the output signal to the valves
StandardLib | module |into two output signal ranges; one branch for each
valve. You can scale the output signal ranges
independently.

A SplitRangeCC split range control module can be
used in a controller output signal.

3BSE035981-510 A 241

Branch Objects

Section 4 Analog Process Control

Table 28. Standard library signal branch objects (Continued)

Type Name

Library

Type

Description

MidRangeCC

Control
StandardLib

Control
module

MidRangeCC splits a ControlConnection signal into
two branches, one slow and one fast branch.

For example, if two valves act in parallel on the
same flow, there is a need to split a signal into two
branches. One valve may be bigger and slower and
have a larger operating range. The other may be
small and fast and used to control small
perturbations in the flow.

The fast branch reacts faster to changes in the
signal and then works around an approximate
middle setpoint for its operating range. Meanwhile,
the slower branch takes control.

CommonRangeCC

Control
StandardLib

Control
module

CommonRangeCC splits a ControlConnection
signal into two branches which, when added
together, give the value of the input signal.

CommonRangeCC is used to ensure that two
valves in parallel, with a specified ratio between the
outputs, give the required flow, when added.

The input signal range is divided into two output
signal ranges, each of which is an output part of the
input signal, for example, in a 20/80% ratio.

If one output signal is in Manual mode and is
changed (for example, 20% is changed to 10%),
the other output signal overrides its default value
(80%) and sets its output to 90% in order to
maintain the total output (100%).

CommonRangeCC can also be used for quotient
control. In such applications the input for the first
output is connected to an output from a quotient
controller. The input is connected to an output from
a controller for the addition of the outputs.

242

3BSE035981-510 A

Section 4 Analog Process Control

Branch Objects

Signal Tapping

There are functions for tapping off signals in the same signal range. One function
taps off signals of the ControlConnection type. Another can tap off signals of the
real type from a signal of the ControlConnection type. A signal tap is a kind of
listening control module on the main signal flow. The tapped signal is an exact copy
of the input signal. Modules connected to the tap output must not, under any
circumstances, influence the