EEEE

' B - m \ [
e ——— ~ S0 IIIHIIIIIID
= AT Ay —— 1 |
<] [b ‘ ShH = =
e ==
fio e =il =
. | I z‘ — —
[rema AN il (RN ——
S | . ‘ — o NE
i 1R | i
‘ = |& — ENPAND |
i - \\ 0/’ \ ") 7 ‘(\/ = < (5D
i 1 ! 11 T [T

System 800xA Control

AC 800M
Configuration

System Version 5.1 Feature Pack

System 800xA Control

AC 800M
Configuration

System Version 5.1 Feature Pack

NOTICE

This document contains information about one or more ABB products and may include a
description of or a reference to one or more standards that may be generally relevant to
the ABB products. The presence of any such description of a standard or reference to a
standard is not a representation that all of the ABB products referenced in this document
support all of the features of the described or referenced standard. In order to determine
the specific features supported by a particular ABB product, the reader should consult the
product specifications for the particular ABB product.

ABB may have one or more patents or pending patent applications protecting the intel-
lectual property in the ABB products described in this document.

The information in this document is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential
damages of any nature or kind arising from the use of this document, nor shall ABB be
liable for incidental or consequential damages arising from use of any software or hard-
ware described in this document.

This document and parts thereof must not be reproduced or copied without written per-
mission from ABB, and the contents thereof must not be imparted to a third party nor used
for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and
may be used, copied, or disclosed only in accordance with the terms of such license. This
product meets the requirements specified in EMC Directive 2004/108/EC and in Low Volt-
age Directive 2006/95/EC.

TRADEMARKS

All rights to copyrights, registered trademarks, and trademarks reside with their respec-
tive owners.

Copyright © 2003-2013 by ABB.
All rights reserved.

Release: February 2013
Document number: 3BSE035980-511

TABLE OF CONTENTS

About This Book

(€15 1 1<) 1 PSPPSRSOt 15
DoCUMENE CONVENMLIONS ..evvieriiieiieriieerieeniteeteestesteesteessteesseesiteesseessessseesssessseesssesssesssnens 16
Warning, Caution, Information, and Tip ICONS........cceceeriririeiiiiiieeeeee e, 16
TOIMNINOLOZY ..vevveeiieeiieetie ettt ettt ettt et et et et e et e e bt e sabeebeesebeeseenstesnbeenseesaseensaesasean 17
Related DOCUMENTALION ...c..vieiiieeieiiieeieecieesieeteesteeereeseeeeaeesieeesaeeseessseeseesessssaeseesssens 17

Section 1 - Basic Functions and Components

INEEOAUCTION ..ttt ettt ettt et sae et e sbeentesbeeneenaeans 19
Control Project TEMPIALEScevveriiirienieeriienieeitert ettt ettt ebaesteebeesebeeaeesanean 21
CONLLOL PrOJECLS ...ttt ettt sttt st sbeeaesaeeeesbeans 22
Program Organization Units, POUcccccooiiriiniiiiiiiiieeieeie ettt 23
Entities and Reservation (Multi-User Engineering)ccccoveeeveveeneneenenceeneeeeeeee 24
ENULES oo e 24
RESEIVALION ...ttt ettt et sttt seeeaeens 25
ENVITONMENTS ...ttt 27
Engineering and Production Environments..............ccoooeeveneenenenrieneeneneeienenne 27
Remove Environment Changesccccevcueevieniiiiiienieniieneenie et 29
System Firmware FUNCHONScoeeiiiriiiiiiieieiieeiee e 30
HATAWAIE ... 32
Standard System Libraries with Hardware............ccccoooeiiienininiiiecceee 33
Customized Hardware TYPES........cecueerierieenienieeiiente ettt sie ettt e s 35
Configuring the COntroller..........cocieieiiiiieiiiieeeeee ettt 35
Basic HArdWarec.cccoviiiiiiiiiiiiiicicicee e 38
Basic Library for APpliCAtIONScceeuerieiruirireriintenenieneeteteeeeeie oottt seesenenens 39
Application Types and INSLANCEScccueerueeriieriienieeiieste ettt e e eseeseeees 41

3BSE035980-511 5

Table of Contents

Types and INStances - CONCEPL.....ccceereirrieiriiriieiienteete ettt 42
Define a Type in the EditOrc.c.ooviiriiiiiieiiiciieieeeeeeeete et 43
Control Module Types, Function Block Types, and Diagram Types 52
TYPES N APPIICALIONS ..uvveiieeiiieriieeitenite st et e sttt ste et e st e siteebeesabesabeesaaeeaseenees 54
Types in User defined Library...........cocoeveiiiiininienieeseeese e 55
MOdify COmMPIEX TYPES..eeeviriieriieeiiiiieeieeiterite ettt sttt st e e sate e e saaeeaees 56
Diagram and Diagram TYPes.......ccceeeeruirieririereeiieie ettt 57
Decisions When Creating TYPEScevverveerienieeiiieniesieeneenie et seeesieesane s 64
Create and Connect INSLANCESccc.eeveirieiriiniiiienteeeetee et 65
Function Block EXECULIONc..cocuiriiiriiriiiineiicnceieieetcsieetenie ettt 70
Control Module EXECULIONccuieuiiriiriieieieeie ettt 72
Diagram EXECUION.cc.uiiiiiiriiiiiieiiesie ettt ettt ettt et e s e saeeseeas 73
Single Control ModUIEScceeieiirieiieieeeeeee et 75
FD POTt oottt st st s 77
ASPECE INSTANCESvvvreneetietiiiet ettt ettt et sttt sae st e e ee et et ere st eresre e 79
Variables and Parameters.........coccoeeieririeniiieniiieneeeeteetesiceeesee ettt 80
Variable and Parameter CONCEPLovuerieiiriiiriieieieeiesie et 82
VArTaADIES ..eeiiiiiiiieiiiiceteec ettt ettt 83
Variable BNyoo.eeiieieieee ettt et st 84
Specific Initial ValUES........coccveiiiiriieieiiiesieeieete ettt et s 92
External Variablescccoooeiiiiiiiiieieee ettt 94
ACCESS VariabIes.......coouiriiiiiiiiiiiiieieetctee ettt 95
Communication between Applications Using Access Variablescc.e.cune... 97
Communication in an Application Using Global Variables.........c..cccccecereenienneee 98
Communication Variablescccoeieriiieieniereeiee et 99
Control the Execution of Individual ObjectS.........cceevvverieriirriiienienienieereeniens 107
Link Variables in Diagrams..........ccceoereeienieiienieiene e 111
Project CONSLANTS.......eeiiiiiierieeieeriterie ettt ettt sttt st e st st esaaesnneenee 111
I/O Addressing GUIdEinesoccevueiuierierieriieieie e 116
Connecting Variables to /O Channelsccoceevierrieenieniieniienieeieeieeseeeiens 117
Extensible Parameters in Function BIOCKS..........ccccoiiiiininiiniieieeeee 122
Keywords for Parameter DesCriptions...........cecveereerieenieenieniieeneeneesieenreseeenne 123

3BSE035980-511 6

Table of Contents

Property PermiSSions.ccovierieiierieniieiesiee ettt 125
Property Attribute OVerTide.........covveviiriienieniieieerie ettt ettt et 126
Library Managementcccueeueeruerierieniieieeiteieeteeteeieesteesee e e eesteestesaeeaeesteeneenteeneeseeenes 127
CoNNECt LIDIATI®S ..ccuvevieniieieiiiiiieieritcteete ettt ettt 128
IMpPOrt/EXPOrt LIDrariescccovvererierieseeiesiceie ettt 133
Create LIDIariescocveiieieniirienieiienieetesieetesteeitest ettt st ae 133
LIDIAIY STALES ..uveeieniieiieit ettt sttt eb et eb e eae e 134
LiIDTAry VEISIONS ...eeeuviiiieiiieriieiieesitenitesttesite st esteesibesbeesibesateessaesnseenbeesasesseenns 135
Library Password Protectioncocceieererierienieieneesee e 138
Add Types to Libraries Used in Applicationsc.cceeveerveeriieneeneenieeneeneenns 139
Add Customized Hardware Types to Library.........ccccoeoeevenieienienenieeeceene 142
Device IMport WiIzardccc.eevieiiiiniienieeieeie ettt sttt 143
Additional Files for Libraries with Hardwarecccooceiiiiininieieniecee, 144
Delete Hardware TYPESeeeveeeiienienieeiienieeiienitesteesieesiesbeesteeseesteesseesseenns 147
Type Usage for Hardware TYPESc.ccueevueruieriinieieneeie e 147
Hide and Protect Control Module Types, Function Block Types, Diagram Types, and Data
TIPS ettt ettt ettt ettt ettt sttt b e e s ab e e bt e besab e e et e e beebaesabeebeen 149
Protect a Self-Defined TYPEocueeieriiieieeieseeee e 150
Protect MySupervision Type EXample........ccocveviiriiiiniiniieniiienieeieenieesieeieens 152
TASK CONLIOL ..ottt ettt et st e bt st e bt st e bt saaesbeenas 156
TaSK CONNECTIONS ..c..veveeniirieeiiniieieniteteniteteeieenteeree e sttt sae et sae et seeeaeene 156
TASK EXECULION <.ttt ettt sttt eb e eae e 160
TASK PLIOTILY .eevtieiieiieeiieie ettt ettt sttt e be e st eabeesanesaneens 161
INEEIVAL TIME ..ottt ettt et 163
OfFSEE ettt ettt s 164
EXECUtION TIME ..ottt e 169
OVerrun and LABNCYcccueeriiriiiiriieiieeiie ettt ettt ettt s saeesebeesaeesaneenes 169
OVEITUN SUPETVISION ...cuiiiiiiiriintietenienteteteteateiteie st ettt saeseeeen et et eneeresaesaenes 169
LatenCy SUPETVISION ...ccuiirieriieiieeieeitenite et eite st et e steesaeebeesreebeesbeesbeesseenes 172
TASK ADOITIOMN ...ttt ettt ettt et s b e e st et e sbe et e saeeeeeeee 174
L0ad BalanCingc.c.eevueeiiieiiieiieiieeieesiteeieesit ettt sttt e e saee st e saseesaeesane 175
Non-Cyclic Execution in Debug Mode.........cccoeieiirieninieieieeesceeeeeeeee 177

3BSE035980-511 7

Table of Contents

TASK ANALYSIS ...evteutitietietiete ettt ettt ettt ettt ettt et ettt e st et esbeestesae et e sbeeneenbeeneeeeeenes 178
EXploring the INtIface........cocuivrieiiiiiiienieeieee ettt 179
Modifying Task Execution Time...........ccccereeiiinieiiinienie e 183
Error and Warning CateZOTies.......ccuuerveerueerierrieeniienieeniiesitesieesiresveeseessesseens 183

SECUTIEY ettt ettt ettt ettt ettt et e st e et e be et e s tees e et e e st et e es e et e eaeesbeeseenbeeneenseeseebeeneans 186
Authentication at Download...........ccoccoeeveniinininniinieceeee 186
Confirmed Online WIIte..........covirieriiieienieseete e 188

Search and NaAVIZAtiONcecvuierieiiienierie ettt ettt ettt et sae e st ebeesitesebeesaaesaseennes 188
Search and Navigation Dialog..........ccceveverievieriininininininieeeeeceeeene s 189
SEATCH SEHNZS ...vveeiiieiieiiiieieete ettt ettt st bee st e e e e st e sbeesabesnseenns 190
Symbol and Definitionc.ceeeeririinierienieiieieinneeree ettt 192
REfEIEINCES ...ttt e 193
Navigation to EdItOTSc.cceviririirierienieieiniecntecse ettt e 198
Search and Navigation SELtNES.......ccecveervierieeiiienierieereenie et steereesieesreeseeenes 198
SArCh DIAtaeoiiiiiiiiieiieeeee et 202
REPOTES ettt ettt st et e sttt e st e et e e abeebee e 202

Analog Input and Output Signal Handlingccccoeieiieiininiiiniiieneeeeeeee e 203

BacKUp MEIa....cuviiiieeieeiieciieeeese ettt ettt ettt st st be e enees 206
Compact FIash......cooiiiiiiiiii e 207
SECUIE DIGItal...cueiiiieiieiiieiie ettt ettt st e e s b 207
Adding CF Card or SD Card to Hardwarecccecceeeerireenenieeneeieeceiee 208
Saving Cold Retain Values on Filesccccoviiriiiiiiiniieiienicieesieeieeve e 209
Downloading the Application to Removable Media..........ccccoeeeierinieniencennnnne. 211
Configuration Loadcocveriiiiiiniinieeieee ettt s 211
Upgrading Controller Firmware using Backup Media............ccccceveriininnennnne. 212
Restoring Formatted CF Cards to Original Sizeccccceeveviievienneenieeieeneen. 216

COMPILET SWILCRES. .. .eiiiiiiiieiiee ettt et s 217
SEUINES ceeeeiieeiieeieerte ettt et et e et e st e st e sbeesabeeabeesabeesseesaseenseesasesnbaesasesnseenes 217

REPOTES ..ttt ettt et sttt e sbe e e 221
DIfference RePOTTt.......ccuiiriiiriiiiieieeie ettt ettt ettt ae e 221
Source Code REPOTT ...c..ceriiiiiiriiiiiirieetesteetetc ettt 227
Reports Generated at DOWnloadcoceeviiriieniiiniiieniienieeeeseeeeesiee e 230

3BSE035980-511 8

Table of Contents

Portability VerifiCationcocceieeriiiieienieeeeieee e 233
Performance Management...........ccoceerierieeniienieeiienieeieesiee st ettt e e e sae e 233
Project DOCUMENTALIONcc.eevieiieiieiieie ettt ettt ettt st sbe et sbeenee s enes 235

ODJECES AN TYPES wevvieirieiieniiiiitertterte ettt et e ste st esbe st e e beesabesabeesasessseenns 237

EdItOr TEEMISeeeeeeeeecee et sttt 237

USEA TYPES -eveenrieiteeiiieiteeieestt st esteesite st e siteseteesbeesabessbeesabesaseessaesnseebaesnseenseenes 238

Section 2 - Alarm and Event Handling

INETOAUCTION ...ttt et e 241
Alarms and EVENLSccooiviviiiiiniiiiiiiciicieee ettt 242
Alarm and Event Library.........cccccoccooiiiiioniiiinininiceccenceeseeeseeeeeeeene 243

Process Alarm and Event GENerationcccceceeevirenieieieieinieiieieeeeeeee e 243
Process Alarms and EVENLSccccocueviieiieniieiiniiicnccicccene e 244
Detection of SImple EVENtS......c.ccoceviiiiieniiiiniiienceeee e 253
Built-in Alarm and Event Handling in Other Libraries.........c..cccccooeeeieninceennnne. 253
External Time Stamps (S800 I/O) ..cc..oouirieniiiiniiiiiniiieneeeeeeeee e 258
External Time Stamps (PROFINET IO)cccccciviiniiiiniiiiienecieeeeeee, 258
External Time Stamps (INSUM)....cocooiuiiiiniiiininienceeeee et 260
Choose Alarm Handling Method for INSUM Alarms..........cccceceveeieniinceenncnne. 265

System Alarm and Event Generationcooceveeieririenienieneniienceeenieseenieseesiesieens 266
Controller Generated System Alarms and System Simple Events..................... 267
User Generated System AlArmSc..ccoueveerierierinieneneeneeeeeetenieeeeeie e 269

Handling Alarms and EVENtscc.ccoviiiiniiiiinieiniceecese e 269
SIMPIE EVENLS....cuiiiiiiieiiiieie ettt ettt ettt et 270
System Alarms and EVENLS.......cceoviiriiriieiiieiieiecie ettt 270
TAME STAMIPS ...ttt ettt ettt sae et et sbe et esbeeaeeeaeenes 270

Alarm and Event CommMUNICAtIONc...coueeierririinirienieeienieeteneereteeete et esee e enees 273
SUDSCIIPLIONS ...ttt ettt ettt ettt ettt st ettt e b et e aeentesaeeneas 273
Configuration of OPC AE Communication — OVEIrVIeW.........ccccueevveenieerveenueens 273
BUffer QUEUESveeeeeeieeeeeeeeee e et e e e e aae e 275
Buffer Configurationcoceevieeiiienienieeeenie ettt st 276
| 0 To: 1 B 5 T 11055 ¢SSP 277
Print FOrmMat.........ccocoiiiiiiiiiiiiiiccc e 277

3BSE035980-511 9

Table of Contents

Sending an Alarm to the AppliCation..........cceeveeveiriririnineneneieeeeeeene s 279
Third Party OPC CHENLScccveevueeriiriieriieeieeite sttt et eieeieesreeieesbaesseeseee e 280
Translation — NLS Handling of Stringsccceeuereeiininiene e 280
ALArm EXAMPLESoouvieiiiiiiiiieeieece ettt ettt et ae 281
AlarmSimple_ M EXampleccoooeeoiiiiiiiiiieiee e 282
Alarm and Event Aspect Example (AlarmSimple_M)ccccevvveevienieriieeneens 287
Alarm Owner EXamPIESccueovueeriiriiiinienieeiienteeiee sttt 288
Condition State EXamPIE......c.cccvveriiieriiniiiniieniieieerieeieeste st sve e eniee e 292
Inhibit EXaMPIE...c..cceeiiiiiiiiiiiiniintiiceeeetee ettt e 294
Simple Event EXampPIesc.cocvevviieiieniiiiienieiieeite sttt st esiee v 296
Alarm and Event FUNCLIONScooiiuiiiiiiiiieiee et 300
SYStEM DIAZNOSTICS ...eeuveireiieiiiiieeiierieeieerite ettt ettt e stesbeesaesbeesbaesseenseenns 300
Acknowledgement Rules — State Diagrams...........cceceeveeeeneneeneneesiesieeieeene 301
AL SHEIVING ettt ettt sttt st e e e sate e beesaneentes 305

Section 3 - Communication

INETOAUCTION ...ttt e 307
Communication LIDIariesccocieiiiriiiiniinienienicieiccececce e 308
COMLI Communication Libraryccccccceeceevinienciioneenenenenecieiceeeeneeen 308
Foundation FIELDBUS HSE Communication Libraryccccceceevevienennene. 308
INSUM Communication Libraryc..ccccecceeceninieniiionieneneneneereneeeenneenes 312
MB300 Communication Librarycocceceveerinienenieenenienenienceieseeeeeenee 316
MMS Communication Library...........ccccocecervierinienciienenieeneereeeeieeeeee e 317
MODBUS RTU Communication Libraryccccoveeeeeneenenenneneeieneeeeene 318
MODBUS TCP Communication Library..........ccecceeeieviernerneeniieeneeniesieenieenns 318
Modem Communication Library...........cccceeeeririereniene e 318
Siemens S3964 Communication Libraryccecceevviervieerieniiienieenieeniiesieeieene 318
SattBus Communication LiDrary..........ccoceeeereriecienininininesesesieneeeeeeeneeneas 319
MTM Communication LADTArYcccceerieriiieniieniieieenieeieeiee e eiee e 319
Serial Communication Library............cooceeoerieieiieienieeeceescee e 320
TCP and UDP Communication Librariescocceecerveenerieneneeneneeniencennenne 322
SUPPOTLE PrOLOCOIS. c...eeeueiiniiiiiiieiieeiteeteee ettt et 324
Control NEtWOTKc..ccviiiiiiiiiiiiiieerccee e 325

3BSE035980-511 10

Table of Contents

Network Redundancycoceoieeiiiiiiiiiiiiienieeceeceeeeeee e 325
Statistics and Information on CommMuUNICAtION........c.cevvveevuierierrieenienieerreeieenne 326
Variable COMMUNICAIONccuvieieeiieireeieesteeieesteesreesteeseeebeesaeeseessseeseesssessessseesnses 327
ACCESS VATTADIES.....cueiiiiiiiiiieiiiiie ettt sttt ettt e 327
Communication Variablescccueeciierieeiiieiiesieeie et see e stee e evee e 327
SEATLAAAT .eeieiiieie e ettt sttt naee 329
Reading/Sending Dataccoueiuieiiiiiieiiieeeteeeee ettt et 332
ConNection MEhOMSccueevuieiiiiriierie sttt sttt st e e et e b e ebee e 334
CommunNiCation CONCEPLScveemeerueeietieienteeieeteete st etesteeeesbeetesteeneeseeeneeneeenes 336
Fieldbus COMMUNICALION......cccteriieiieriieeiteniteeteenieeeteesteesiteeteesebesebeesaeesabeesbeesabeenseenes 339
HART COMMUNICALION......tiiittieieeitieeieeiteesteeteesteesteesteessseeseessseeseesssesseessessssessseessens 342
SIL Certified COMMUNICALIONeeruviereieriieeniieeieeieenteeieesteesteesaeesereebeesseessteesseessnesnses 342
SIL Communication Using TACccoeoirieienieieieeereeeieee e 343
SIL Communication using MMSCommLib..........ccccceevieriiiinieniieniienieeieeieene 346

Section 4 - Online Functions

INETOAUCTION ...ttt e
Online Editors
Diagram Editor in Test Mode and Online Mode...........cc.ccocerercieninienincccnnnnne. 354
Dynamic Display of I/O Channels and FOrcingcocceceverviininiencnienenienenieniene 356
Forcing I/O Channels in SIL Applications........c..ccceeieeeriinieneneenreneereneenenne 358
Scaling Analog SIZNALS.......cccceririiiiiiiriiiee ettt ettt 359
SUPervising UNIt STATUScovuveiiiiriiiiieeitenie ettt ettt st eaee s 359
Find Out What is Wrong by Using HWStatuscccccoveriiiineninienceceeee 360
ATTUNIESTALUS ..ottt ettt ettt 361
Binary Chanmnelsoccooieieiiiieeeeceee ettt 362
Supervising Communication Variable Statusccccceviereieerieniieenieenieeneenie e 363
Supervising Communication Variable Using :Status Notationc..ccceeueeee. 363
Supervising Communication Variable Using GetCVStatus........cc.ccoeevvevuveneenne 363
Understanding the Complete Status Code.........ccevirrierieiieninieneiieeeeeeeeeene 365
Status INAICATIONS.......cviiiiiiiiiiieie e 368
Acknowledge Errors and Warnings...........cocceecveveeceririnienenienieneneneeeeeeeenennes 369
TASKS oo 369

3BSE035980-511 11

Table of Contents

INteraction WindOWScoueeiiiiiiiiiitieieet ettt sttt st ettt s ae e e e eesae e 370
Status and EITOT IMESSAZES....cvveruieriieriierieentiesieeieesiteeteesteesteesaeesitesseesseesaseesseesssesnses 372
Search and Navigation in Online and Test Modecccooeeoiinieiineeninieeeeeeeee 373
Project DOCUMENTALIONc.viiiieiiiiiieiieeie ettt sttt et eeeabeesaaesane e e 377

Section 5 - Maintenance and Trouble-Shooting

INETOAUCTION ...ttt e 379
Remote Desktop CONNECHIONcc.eiuieiiriieiiniieiiniceie ettt 380
Characteristics of Control Builder as Terminal Serverc..cccccoceeevereecuenneene. 380
Backup and ReESTOTEcocuevuiruiiiiirieiieiieieete ettt s 383
INrOAUCTION ...t 383
Files for Separate Backupc.cccoceevieiiiiiiniiiiiniiiencceeeeeceeeee e 384
Remove and Add FSD Server Filescccocociviniiniiiiniiincceneceeeeceee 384
IMHIGEALION ..ottt ettt sttt et et bt et st sbeeat e s b et e s bt eetenbe et e sbeeneenne 385
Migration from 800xA to Compact Control Builderc.ccccceeeecieniniennnnne. 385
Migration from Compact Control Builder to 800XAcccevevienenienienceneene 387
IMPOrt and EXPOTT......co.eoiiiiiiiiiiieieiicieeet ettt 389
INrOAUCHION ...ttt s 389
EXPOIt @ LIDIAIYoouvieiiiiiiiciiiieecceeecet e 389
Export an Application/Controller..........couererieriirieneiiienieeienieetesieeeeeie e 391
Import an Application/Controller..........coceeiecieriirvieniiieneereneeeenecrere e 391
Import and EXport AIterNativesc..cevererierierienienienieeeenie et 392
Applying Cold Retain Values when Importing Applications...........c.cceceevveneeee. 393
About Library Import/EXpPOrt.........cccecivirerinenenienieeeieeeeeteseneeseeeeereeeneeneenes 394
Detailed Difference Report During Importcccveecveevieeieeniieniieenienieeeenieens 395
Controller CONfIZUIATIONc..ccueveiririririinterertertctereeete ettt ettt 395
Controller Settings in Non-High Integrity Controllersccocceeveerverrueeneeens 396
Controller Settings in High Integrity Controllers..........ccccoceveveveneneeeeenennenne. 399
Error Handler Log ENtries........cooveeviiiieniiiiienieeiceite ettt 402
ONliNe UPZLadeooveiiiiieiieiieieee ettt ettt ettt e e et enbeeaeas 403
Why You Need to Read this First.......cccceevieriiiniieniiiiiiinienieeeeeeeee e, 403
Restrictions for Online Upgradecccceeveiieiinieninieiecee e 404
Preliminary Actions for Online Upgradecoceevieriieneenieenieenienieeieeneens 407

3BSE035980-511 12

Table of Contents

Online Upgrade ProCessooeviiiiriiieieiiesieeiee et 410
Running Online UPZradeceecveeriiriienieniienieenie ettt eieesteeteenieesve e e 416
Solving an Interrupted Online Upgradec.cceoveveeienerieniinieneeeee e 417
TTOUDIE-SNOOTIINZeeuveeiieeiiieiie ettt ettt sttt ettt et e s te et e sebeebeesabeebeesasesnbaenes 418
GENETAL oottt re e 418
LLOZ FILES .ottt sttt ettt sttt sttt ettt ene e 419
Crash Dumps for Analysis and Fault-Localization.............c.cccceeeeveeienieeniennnnne. 435
Remote Systems INfOrmation...........cecueeruiercieriiienieniiieniesie ettt 436
Diagnostics for Communication Variables...........ccccocceereneneneneneneneneneneenne 439
ANALYSIS TOOLS ..eiiiieiiieiiieiierte ettt ettt ettt st steebeesbeesbeebee e 445
SYStemM DIaZNOSLICS ..ccuveuieiertieiietieie ettt ettt sttt et eeeeesaeeaeas 447
Trouble-Shooting Error SYyMPtOmScceeeiierierieniienieeieeieesteeie e sve e 453
Common Reason for Shut-Down AC 800M HI Controller.............ccccevueeeennenne. 456
CoNNECtiON tO ASPECT SETVET ...ccuvieeuiieieeiieeieeiieeteeiee st eseesitesbeesaesebeesiaesareens 460
o) g 2] 10 £SO 461

Appendix A - Array, Queue and Conversion Examples

AATTAYS .ottt h et b et e bt et s bt e bt bt e bbb e bt e bt st hte bt eae et s bt e beeaten 463
SearchStructCOMPONENL........cccueruieieriieiiniiereneeteneere ettt 465
INSEITAITAY «.euvteniiiieiieitete ettt ettt ettt sttt st sbe et e e e e 469
SEATCHATITAY ...ceeiuiiieiieieiiet ettt et et 470

QUEBUES ...ttt ettt ettt ettt e e ettt e e ettt e e e te e e e tteeeeataeeetaaeeeateeeensseseeabaeeestaeeensseeenaseeeanseeans 474

Conversion FUNCHONScccoiiieiiiiieiinieieeccteecee sttt 478
DINETOBECD ...ttt ettt sttt 478
BODTODINE ...ttt ettt 479
ASCIL ettt 480
ASCIT CONVEISION ..c.euviniiiiiiiieiieiieiieic ettt s st 482

Appendix B - System Alarms and Events

GENETAL ...ttt ettt et e b et st et st e bt e nbee 489
OPC Server — SOTtWATE.......ccccuieriieiieeiieieciteree ettt e ere et e e steeaeesteesebeesseesssesseensaesnss 490
OPC Server — SUDSCIIPLIONc..cociiriiriiiieietieeetteere ettt s 492
CONLIOIIET — SOTEWATE ...veeuvieeeiieiieiiie ettt ettt e ettt e e aeeteesebeebeessaesnsaenseesnnas 494

3BSE035980-511 13

Table of Contents

(0007115001 [g § P21 (e A2 | (PRSP 526
Alarms and Events Common for all Unitsccooevvveeiieiiniiee e 528
Unit Specific Alarm and EVENtScc.eeouerieiiinieieneeiereeese e 532
INDEX

3BSE035980-511 14

General

About This Book

This manual describes how to use the basic 800xA programming and configuration
functions that can be accessed via the Plant explorer and Project Explorer interfaces.

The libraries described in this manual conform to the IEC 61131-3 Programming
Languages standard, except for control modules and diagrams, which are not
supported by this standard.

Section 1, Basic Functions and Components, describes all the basic functions
that are available via system functions, Basic library, and commands in the
Control Builder interface. This section also describes the type and object
concept, and how variables and parameters are used.

Section 2, Alarm and Event Handling, describes the types in the Alarm and
Event library and how to use them to add alarm and event functions to objects
that do not have alarm functionality built into them.

Section 3, Communication, describes the types in the Communication libraries
and how to use them to establish communication between controllers.

Section 4, Online Functions, describes Control Builder functions in online
mode.

Section 5, Maintenance and Trouble-Shooting, describes Control Builder
maintenance functions. It also describes how to use the Import/Export function,
how to write an error report, the location of various log files, how to read these
log files, and how to fix some common problems.

Appendix A, Array, Queue and Conversion Examples contains some examples
on how to use queues and arrays, and how to convert numbers from one format
to another.

Appendix B, System Alarms and Events describes system alarms and system
simple events from a controller perspective.

3BSE035980-511

15

Document Conventions About This Book

Before running SIL certified applications in a High Integrity controller, refer to
@ System 800xA Control AC 800M Getting Started (3BSE041880%*) manual.

Document Conventions

Microsoft Windows conventions are normally used for the standard presentation of
material when entering text, key sequences, prompts, messages, menu items, screen
elements, etc.

Warning, Caution, Information, and Tip Icons

This publication includes Warning, Caution, and Information where appropriate
to point out safety related or other important information. It also includes Tip to
point out useful hints to the reader. The corresponding symbols should be
interpreted as follows:

Electrical Warning icon indicates the presence of a hazard which could result in
electrical shock.

injury.

Caution icon indicates important information or warning related to the concept
discussed in the text. It might indicate the presence of a hazard which could
result in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design the project or how to use
a certain function

2 Warning icon indicates the presence of a hazard which could result in personal

Although Warning hazards are related to personal injury, and Caution hazards are
associated with equipment or property damage, it should be understood that
operation of damaged equipment could, under certain operational conditions, result

16 3BSE035980-511

About This Book Terminology

in degraded process performance leading to personal injury or death. Therefore,
fully comply with all Warning and Caution notices.

Terminology

A complete and comprehensive list of Terms is included in the Industria
Extended Automation System 800xA, Engineering Concepts instruction
(3BDS100972%). The listing included in Engineering Concepts includes terms and
definitions as they apply to the 800xA system where the usage is different from
commonly accepted industry standard definitions and definitions given in standard
dictionaries such as Webster’s Dictionary of Computer Terms.

lI T

Related Documentation

A complete list of all documents applicable to the 800xA Industrial'T Extended
Automation System is provided in Released User Documents, (3BUA000263 *).
This document lists applicable Release Notes and User Instructions. It is provided in
PDF format and is included on the Release Notes/Documentation media provided
with the system. Released User Documents are updated with each release and a new
file is provided that contains all user documents applicable for that release with their
applicable document number. Whenever a reference to a specific instruction is
made, the instruction number is included in the reference.

3BSE035980-511 17

Related Documentation About This Book

18 3BSE035980-511

Section 1 Basic Functions and Components

Introduction

Control Builder is a programming tool that contains:

Compiler

Graphical programming editors that provide graphical representation of the
whole logic.

Programming editors for IEC-61131 languages
Standard libraries for developing controller applications

Standard hardware types (units) in libraries for configuring the controller

The Control Builder tool also includes system firmware and common functions such
as control system templates, task supervision, security and access management.
Most of the application development can be accomplished using the basic functions
and components presented in this section.

This section is organized in the following manner:

Control Project Templates on page 21 describes the different templates that can
be used to create a control project.

Control Projects on page 22 describes how to create and work with control
projects.

Program Organization Units, POU on page 23 introduces the Program
Organization Unit (POU) concept.

Entities and Reservation (Multi-User Engineering) on page 24 introduces the
concept of reservation and entities.

Environments on page 27 introduces the concept of environments.

3BSE035980-511

19

Introduction

Section 1 Basic Functions and Components

System Firmware Functions on page 30 describes firmware functions included
in the system, which can be used in any application.

Hardware on page 32 describes the standard libraries for hardware types.

Basic Library for Applications on page 39 describes the objects of the Basic
library, which can be included in any project.

Application Types and Instances on page 41 introduces the very important,
object-oriented, types and objects concept. This subsection also describes how
to add user defined types and how to create objects (instances) from types.

Variables and Parameters on page 80 describes how to use parameters and
variables to store and transfer values in the control system.

Library Management on page 127 describes how to work with libraries.

Hide and Protect Control Module Types, Function Block Types, Diagram
Types, and Data Types on page 149 describes how to hide and protect objects
and types, using the Hidden and Protected attributes.

Task Control on page 156 describes how to set up tasks to control the execution
of the applications.

Overrun and Latency on page 169 describes how to configure overrun and
latency control for the tasks.

Task Analysis on page 178 describes the Task Analysis tool that detects the
possible task overrun/latency problems in an application before its download to
the controller.

Security on page 186 describes how to set up access to actions and objects, as
well as how to set up access rights for SIL certified applications.

Search and Navigation on page 188 describes how to use the search and
navigation function to find all instances of a type or to find out where a certain
variable is used.

Analog Input and Output Signal Handling on page 203 describes how to enable
over and under range for input and output objects.

Backup Media on page 206 describes how to use the Backup Media as a
removable storage.

20

3BSE035980-511

Section 1 Basic Functions and Components Control Project Templates

Compiler Switches on page 217 describes how to use Compiler Switches to
control the behavior of compiler.

Reports on page 221 describes the function of the Difference Report and
Source Code Report.

Performance Management on page 233 describes how to gather information of
the applications using the Compiler Statistics tool.

Project Documentation on page 235 describes how to use the Project
Documentation function to document standard libraries, user defined libraries,
and applications in MS Word format.

Control Project Templates

A control project template sets up the necessary features required to build a control
project. The control project consists of system firmware functions, basic library
functions, application functions and a pre-set of hardware functions.

The 800xA System provides the following AC 800M control project templates:

AC800M
Template for normal use, and for running non-SIL applications.

ACS800M_HighIntegrity SM810
Template for running both non-SIL and SIL1-2 applications.

AC800M_HighlIntegrity_ SM811
Template for running non-SIL, SIL1-2, and SIL3 applications.

EmptyProject
Template that requires a minimum configuration, with only the System folder
inserted. This template is rarely used.

SoftController
Template for developing software for simulating non-SIL applications without
a controller.

SoftController_HI
Template for developing software for simulating SIL applications without a
controller.

3BSE035980-511

21

Control Projects Section 1 Basic Functions and Components

For example, the AC 800M_HighlIntegrity_SM810 template prepares a control
project for a PM865 CPU and an SM810 module, while the AC 800M template and
the SoftController template have completely different settings. The EmptyProject
template contains only the compulsory system firmware functions, with no
additional application or hardware functions.

A control project template can be selected from a dialog, when creating a control
project. For more information about creating a control project, see Create and Open
a Control Project in Plant Explorer on page 22.

Control Projects

A control project combines the control applications and the controllers together in
the Project Explorer. Several control projects can be created for the same control
network.

The control projects can be created either from the Plant Explorer or from the
Project Explorer.

Before creating a control project, set up and configure a control network in the
Control Structure (Plant Explorer).

Create and Open a Control Project in Plant Explorer

1. In the Control Structure, right-click Control Network and select New Object
to open the New Object window.

2. Select a control project template and enter a name for the control project in the
Name field.

3. Click Create to create a new control project.

The 800xA system starts the Control Builder, and the control project opens in
Project Explorer.

It is not required to close the Control Builder each time when a new control
project is to be opened. Control Builder automatically closes the previous project
and opens the new project in the background.

A SIL application can only run in an AC 800M High Integrity (HI) controller.
Create SIL applications by selecting the High Integrity control project template
(AC800M_Highlntegrity). See Control Project Templates on page 21. A control

22

3BSE035980-511

Section 1 Basic Functions and Components Program Organization Units, POU

project containing a VMT library, a VMT application, and a CTA application is
obtained if this template is used.

that the High Integrity controller and the compiler work properly. These libraries
and the compiler test application are used for internal checks only. Do not try to
alter or remove these applications or the VMT library.

@ The VMT library, VMT application, and CTA application are created to check

For more information, refer to SIL Certified Applications in the manual System
800xA Control AC 800M Getting Started (3BSE041880%). Also, refer to System
800xA Safety AC 800M High Integrity Safety Manual (3BNP004865%*), which
contains guidelines and safety considerations for all safety life cycle phases of an
AC 800M High Integrity controller.

Program Organization Units, POU

The IEC 61131-3 standard describes programs, function blocks, and functions as
Program Organization Units (POUs). The Control Builder also considers

control modules and diagrams as POUs. All these units are helpful in organizing the
control project into code blocks, minimizing code writing, and optimizing the code
structure and code maintenance.

A POU is an object type that contains an editor to write code and declare parameters
and variables.

All POUs can be repeatedly used in a hierarchical structure, except for diagrams and
programs that can only be a 'top-level' POU, inside an application.

3BSE035980-511 23

Entities and Reservation (Multi-User Engineering) Section 1 Basic Functions and Components

Entities and Reservation (Multi-User Engineering)

Entities and reservation provide support for multi-user engineering (working within
a project development group that involves several people).

Before modifying the properties of an object, the object must be reserved. This
ensures that only one user can modify an object at a time. This also protects
configuration data from being unintentionally modified when multiple users are
working on one system.

Reservations do not protect any runtime data or prevent download of modified
applications to a controller. For example, if a controller is reserved by user A, and
an application is reserved by user B, it is still possible for user C to download the
application. However, reservations are indicated in the Download dialog.

A single user who has logged on to more than one client, and several users who
use the same user account, can unintentionally overwrite configuration data.

If a user releases the reservation on an object, another user can reserve and modify
the object. However, it is only possible to make a reservation of entities, that is, the
smallest subset of objects that can be reserved is an entity.

An entity is a set of objects (with aspects) that is reserved as a single unit.

Unless an entity is reserved, parts of the Project Explorer will be read-only. For
example, some context menu items are disabled, and dialog boxes are read-only.

If environments are used, and a user reserves an entity in one environment,
another user can reserve the same entity in another environment.

Entities
The following objects are grouped as entities:
* Projects, applications, controllers
* Libraries, libraries with hardware types
* Control modules types, except hidden control module types
* Function block types, except hidden function block types
* Diagram types
* Diagrams
24 3BSE035980-511

Section 1 Basic Functions and Components Reservation

An entity can be part of another entity. For example, applications and controllers are
part of a project, and control module types, function block types, and diagram types
are part of either an application or a library.

When an entity is reserved, all its objects are reserved. For example:

* When the user reserves a controller, all objects that are part of the controller
(objects such as hardware units and tasks) are reserved.

* When the user reserves an application, its programs and data types, but not
necessarily its diagrams, function block types or control module types, are
reserved.

ﬂ In case environments are used, the entity icons in Project Explorer show only the
reservation status. For example, the |=l, icon is shown for the current
environment; however, the Reservation dialog shows complete reservation status.

Reservation
The entity must be reserved before it can be modified.
To reserve an entity:

1. Right-click the entity (for example, an application), and select Reserve to open
the Reserve dialog box.

2. Select the entities to reserve. Click Help for more information on how to use
the dialog box.

ﬂ The same dialog box (with a different name) also appears when an operation that
requires the reservation of one or more entities is performed.

To release the reservation of an entity after modifying it:

1. Right-click the entity (for example, an application), and select Release
Reservation to open the Release Reservation dialog box.

2. Select the reservations to release. Click Help for more information on how to
use the dialog box.

ﬂ In case environments are used, the reservations in the current environment only
can be released.

3BSE035980-511 25

Reservation Section 1 Basic Functions and Components

Use the Reserve &% and Release Reservation 7 icons in the Project Explorer
toolbar to reserve entities or to release the reservation. Some offline editors also
have a Reserve button.

To take over a reservation, both the Plant Explorer and the Project Explorer can
@ be used. For more information, refer to the System 800xA Configuration
(3BDS011222%).

26 3BSE035980-511

Section 1 Basic Functions and Components Environments

Environments

In 800xA Systems, environments provide isolated engineering. Since different
environments can have different content, a control application can be modified
without affecting the running control application. For example, the Engineering
Environment can contain a modified application, while the Production Environment
contains the running application.

ﬂ Environments require a separate license and are not available to all users. The
Project Explorer shows the information about an environment only when it is
being used.

For more information, refer to the System 800xA Engineering Engineering and
@ Production Environments (3BSE045030%).

Engineering and Production Environments

When environments are used, the basic combination is to have one Engineering
Environment and one Production Environment:

* Engineering Environment is used for engineering (For example, to modify a
project or an application).

* Production Environment is used to download a project (or a single application)
to the controller and go online. An operator can then use an Operator
Workplace opened in this environment to control the process.

When an entity in an environment is modified, the changes are visible in that
environment only, and not in any other environment. All users working in the same
environment can see the changes made by each other.

The user can transfer the modified entities from one environment to another. This is
called Deploy.

When a modified application is deployed from the Engineering Environment to the
Production Environment, the Production Environment no longer contains the
running application. Instead, the Production Environment contains the modified
application, which can be downloaded to the controller.

To change to another environment in the Control Builder, re-open the project in
@ the relevant environment.

3BSE035980-511 27

Engineering and Production Environments Section 1 Basic Functions and Components

When a project is deployed from the Engineering Environment to the Production
Environment, there is a possibility that a new application was created only in the
Production Environment and not in the Engineering Environment. In this case,
this application is not deleted from the Production Environment.

Environment Workflows

For a new project, follow this workflow:

1.

Create a new project in the Engineering Environment, and modify the entities
as desired.

Deploy the project and all other modified entities from the Engineering
Environment to the Production Environment.

Re-open the project in the Production Environment and download the new
project to the controller.

To modify an exiting project, follow this workflow:

1.
2.
3.

Open the project in the Engineering Environment.
Right-click the project name, and select Refresh Project.

Modify the project without affecting the Production Environment, which
contains the project running in the controller.

Deploy the modified project to the Production Environment.

Re-open the project in the Production Environment, and download the
modified project to the controller.

28

3BSE035980-511

Section 1 Basic Functions and Components Remove Environment Changes

Deploying an Entity
ﬂ Deploy is only available in offline mode.

To deploy an entity (for example, an application):
1. Right-click the entity, and select Deploy.

2. Use the displayed Deploy dialog box to deploy the entity to the desired
environment.

The Deploy dialog box is the same as in Plant Explorer. For more information on
@ how to use the dialog box, click the Help button or refer to the System 800xA
Configuration (3BDS011222%).

Remove Environment Changes

When a project is opened in the Engineering Environment, the project may already
contain changes.

To start working with the same project as in the Production Environment:
Either

* Refresh the Engineering Environment, which recreates the entire Engineering
Environment as a copy of Production environment.

Or
* Replace selected entities.

In Engineering Environment, single entities can be selected and updated to be
identical with the Production environment. Refer to the manual System 800xA
Engineering, Engineering and Production Environments (3BSE045030%) for
more details.

3BSE035980-511 29

System Firmware Functions Section 1 Basic Functions and Components

System Firmware Functions

All system firmware functions are stored in the System folder, which is located at
the top of the library branch (in Project Explorer).

The System folder is not a library, even though it is always shown in the library
branch, together with the libraries (Basic library, Icon library, etc.)

The System folder contains fundamental IEC 61131-3 data types and functions,
along with other firmware functions, which can be used in firmware in the
controller. They are all protected and automatically inserted via the selected control
system templates.

The System folder cannot be changed, version handled or deleted from a control
project.

The system firmware functions that can be used in the application depends on the
Firmware version. To upgrade the Firmware, replace the BasicHWLib with the
latest version.

Table 1 contains the System firmware data types and functions. Refer the Control
Builder online help for more information and description.

30

3BSE035980-511

Section 1 Basic Functions and Components System Firmware Functions

To access the detailed online help and how-to-do instructions for a system
Q firmware function, select the data type or function, and press the F1 key.

Table 1. System Function Overview

System Functions Examples

Simple Data Types bool, dint, int, uint, dword, word, real, etc.

Structured Data Types time, Timer, date_and_time, etc.

Common Library Data Open structured data types like, BoollO, DintlO,

Types DwordIO, ReallO, HWStatus, SignalPar, etc.

Bit String Operations and, or, xor, etc.

Relational and Equality Equal to, Greater than, etc.

Functions

Mathematical Functions Trigonometric, Logarithmic, Exponential and
Arithmetic Functions.

Data Type Conversion Conversion of bool, dint, etc.

String Functions Handles strings like, inserts string into string,
deletes part of a string, etc.

Exception Handling Functions for handling zero division detection
integer and real values.

Task Functions SetPriority, GetPriority, etc,. Handles the priority of
the current task.

System Time Functions Exchanging time information between different
systems.

Timer Functions Functions to Start, Stop and Hold Timers.

Random Generation Functions for generating random numbers or values.

Functions

Variable Handling Functions | Reads and writes variable values.
Provides status information of communication
variables.

3BSE035980-511 31

Hardware Section 1 Basic Functions and Components

Table 1. System Function Overview (Continued)

System Functions Examples

Array Functions Handles arrays.

Queue Functions Handles queues.
Hardware

All hardware is defined as hardware types (units) in Control Builder. The hardware
types reflect the physical hardware in the system.

Hardware types are organized and installed as libraries. This makes it possible to
handle hardware types independently, with the following advantages:

* Since the libraries are version handled, different versions of the same hardware
type exist in different versions of the library. This makes it easy to upgrade to
newer system versions and also allows coexistence of new and old hardware
units.

* The new versions of a library (along with the hardware types) can be easily
delivered and inserted to the system.

A number of standard libraries with hardware types are delivered with the
system. A standard library is write protected and cannot be changed

* Only used hardware types allocate memory in the controller.

32 3BSE035980-511

Section 1 Basic Functions and Components

Standard System Libraries with Hardware

Standard System Libraries with Hardware

The standard system libraries with hardware are delivered by the system. Table 2
describes the standard libraries with hardware.

Table 2. Standard system libraries with hardware

Library

Description

ABBDrvFenaCl871HwLib

Optional device for ABB drives, which enables the
connection of the drive to a PROFINET IO
network.

ABBDrvNpbaCI854HwLib

ABB Drive NPBA and subunits for PROFIBUS

ABBDrvRetaCl871HwLib

Optional device for ABB drives, which enables the
connection of the drive to a PROFINET 10
network.

ABBDrvFpbaCl854HwLib

ABB Drive FPBA and subunits for PROFIBUS DP

ABBDrvRpbaCl854HwLib

ABB Drive RPBA and subunits for PROFIBUS

ABBMNSISCI871HWLIB

Motor control center solution that can be used in
PROFINET IO network.

ABBPNI800CI854HwLib

ABB Panel 800 for PROFIBUS

ABBProcPnICI854HwLib

ABB Process Panel for PROFIBUS

BasicHWLib

Basic controller hardware types for AC 800M and
SoftController

BasicHIHwLib

Basic controller hardware types for AC 800M Hi
and SoftController HI

Cl1853Serial ComHwLib

RS-232C serial communication interface

CI854PROFIBUSHwLib

Communication interface PROFIBUS DP-V1

C1855Mb300HwWLIib

Communication interface MasterBus 300

CI856S100HwLib

Communication interface S100 I/O system and
S100 I/O units

ClI857InsumHwLib

Communication interface INSUM

3BSE035980-511

33

Standard System Libraries with Hardware

Section 1 Basic Functions and Components

Table 2. Standard system libraries with hardware

Library

Description

C1858DriveBusHwLib

Communication interface DriveBus

CI860FFhseHwLib

Communication interface FOUNDATION Fieldbus
HSE

CI865SattiOHwLib Communication interface for remote 1/0
connected via ControlNet
Cl867ModbusTcpHwLib Communication interface MODBUS TCP
CI868IEC61850HwWLIib Communication interface IEC 61850
CI869AF100HwLib Communication interface for AF 100

CI1871PROFINETHwLIib

Communication interface CI871

CI872MTMHwLib

Communication interface for MOD5-to-MOD5

C1873EthernetIPHWLIb

Communication interface EtherNet/IP

ModemHwLib Modem unit

PrinterHwLib Printer unit

S200l0CI854HwLib S200 adapter and S200 I/O units for PROFIBUS
S800CI830CI854HwLIib S800 adapters and S800 1/0O units for PROFIBUS
S800CI1840CI854HwLib

S800CI1801CI854HwLib

S800loModulebusHwLib

S800 I/O units for ModuleBus

S90010CI854HwLib

S900 adapter and S900 I/O units for PROFIBUS

SerialHwLib
COMLIHWLib
ModBusHWLib
S3964HWLib
TCPHwLIib
UDPHwLib

Hardware libraries for direct controller
communication with external hardware, using
different communication protocols

34

3BSE035980-511

Section 1 Basic Functions and Components Customized Hardware Types

¢
i

For a complete list of the hardware types in the standard libraries, see Control
Builder online help.
If a suitable hardware type cannot be found in any of the standard system

libraries, it can be found in the Device Integration Library. The Device
Integration Library can be purchased separately from ABB.

Customized Hardware Types

Customized hardware types can be created in user-defined libraries, using the
Device Import Wizard. This is useful when the hardware types found in the standard
system libraries or the Device Integration Library are not sufficient.

The Device Import Wizard imports a device capability description file (for example,
a *.gsd file), converts the file to a hardware type, and inserts the type into the user-
defined library (See Create Libraries on page 133. Also see Device Import Wizard
on page 143 and Supported Device Capability Description Files on page 144).

User-defined libraries with hardware types are included while performing import
and export, and backup and restore, in the Plant Explorer. By using the import and
export function, it is possible to distribute the user-defined libraries with hardware
types. These libraries are developed centrally, or by ABB for a specific project to
other engineering systems. For further information, see Import/Export Libraries on
page 133.

In exceptional cases, it may be relevant to insert individual external customized
hardware types to a user-defined library (for example, to use a specific hardware
type, which have been converted and used in an earlier version of Control Builder).

The Source Code Report can be used to view the hardware types loaded in the
project. See Source Code Report on page 227.

Configuring the Controller

Before configuring the controller:

1. Insert the libraries, which contain the hardware types (units) to be used in the
controller configuration, into the control project.

2. Connect the libraries to the controller.

3BSE035980-511 35

Configuring the Controller

Section 1 Basic Functions and Components

See Connect Libraries on page 128 for information on how to insert and connect

libraries.

Add Unit to Hardware in Controller Configuration

Perform the following steps to add a new hardware unit into the controller
configuration in Project Explorer:

1. Make sure that the library, which contains the hardware type to be added, is
inserted to the project and connected to the controller.

2. Right-click the unit to which a new hardware unit is to be added, and select
Insert Unit to open the Insert Unit dialog.

m Insert Unit

==

E -] Connected Libraries
E| Eﬁ] CIZ54PROFIBUSHwLIb 2.0-10
B---“ Hardware types
[.
: . Eﬁ] CI372MTMHWLIDb 2.0-8
- I Libraries in Project

Properties

Description:
CI854: Communication Interface Profibus-DPV1

["| Enable redundant mode

Mame:

Selected item in Project Explorer

Marme: AC 800M
Position: NfA
Previous MNext
[Insert l [Close] ’ Help l

Figure 1. Insert Unit dialog for inserting hardware in a controller configuration

ﬂ It is not possible to select Insert Unit if the unit cannot contain any sub-units or if
no more positions are available.

36

3BSE035980-511

Section 1 Basic Functions and Components Configuring the Controller

3. Expand the relevant library folder under Connected Libraries, and select the
hardware type to be included.

ﬂ The Libraries in Project contains libraries that are added to the project but not
yet connected to the controller. If a unit is selected under Libraries in Project,
the option to connect the library to the controller appears.

4. From the Position drop-down list, select a position for the hardware unit.

By default, the first available position is chosen. If no more positions are
available, the Position drop-down list is empty and the Insert button is
disabled.

5. For units supporting redundancy, check the Enable redundant mode check
box, and select a position for the backup unit.

ﬂ Some redundant units have a fixed position offset. For these units, the backup
position is automatically calculated, and the user cannot change this position.

Click Previous or Next to navigate to another unit in the Project Explorer
@ hardware tree.

6. In the Name field, enter a name for the unit. After the unit is inserted in the
hardware tree, this name appears along with the name of the selected type.

7. Click Insert to apply the changes made.
8. Click Close to close the dialog.

To rename the unit after it is inserted, right-click the unit, and select
@ Rename Unit.

H-- 4 Hardware ACE00M

0 PM&64/ TPE30
CI72
CI54

= 2 CIB30

o 1 Pressure Sensor AIB20

Figure 2. Example of a hardware tree with a name for the AI820 unit

3BSE035980-511 37

Basic Hardware Section 1 Basic Functions and Components

Replace Hardware in a Controller Configuration
Perform the following steps to replace a hardware unit in a controller configuration:

1. Make sure that the library, which contains the hardware type to be added, is
inserted to the project and connected to the controller.

2. Right-click on the unit to be replaced, and select Replace Unit to open the
Replace Unit dialog.

The Replace Unit dialog works in the same way as the Insert Unit dialog, except
that it is not possible to change the position of the unit in the Replace Unit dialog.

While the hardware unit is being replaced in a controller configuration, the system
retains the settings and connections, and also retains the units in the existing
subtrees. For example, replacing a CPU with a similar one can be done without any
connection loss or data loss.

Basic Hardware

The two Basic Hardware Libraries: BasicHwLib and BasicHIHwLib, contain
standard system hardware types that are used when configuring the AC 800M
controller and SoftController. The standard system hardware types are installed
along with the Control Builder.

Only one version of a Basic Hardware Library can be connected to a controller.

The BasicHwLib contains the following basic controller hardware:

e Controllers (AC 800M and SoftController)

e Compact Flash (CF) units

* Secure Digital (SD) units

* CPU units (PM8xx and CPU)

* Ethernet links, serial Com ports, and PPP ports
* ModuleBus

« IP

« JAC MMS

The BasicHIHwLib contains the following basic controller hardware:

e Controllers (AC 800M HI and SoftController HI)

38

3BSE035980-511

Section 1 Basic Functions and Components Basic Library for Applications

e CPU unit (PM865 HI)

e SMS810 and SM811 units

* Ethernet links, serial Com ports, and PPP ports
* ModuleBus

« TP

« [AC MMS

Basic Library for Applications

The Basic library contains basic building blocks for AC 800M control software. It
contains data types, function block types and control module types with extended
functionality, designed by ABB.

The contents inside the Basic library can be categorized as follows:
* IEC 61131-3 Function Block Types.

e Other Function Block Types.

* Control Module Types.

For a complete list of data types, function block types, and control module types
@ in the Control Builder standard libraries, refer to the manual System 800xA
Control AC 800M Configuration (3BSE035980%*)

3BSE035980-511 39

Basic Library for Applications

Section 1 Basic Functions and Components

Table 3. Basic Library Overview

Basic Functions

Examples

IEC 61131-3 Function Block
Types

Standard bistable function block types (SR, RS).

Standard edge detection function block types
(R_TRIG, F_TRIG).

Standard counter function block types (CTU, CTD,
etc.)

Standard timer function blocks type (TP, TOn, etc.)

Other Function Block Types

ACOF (Automatic Check Of Feedback) functions,
converters, pulse generators, detectors, system
diagnostics, timers, compares, etc.

Control Module Types

Connection module for group start sequences
(GroupStartObjectConn), ControlConnection inputs
and outputs, Error Handler, Forced Signals, and
acknowledgment of ISP values for communication
variables.

40

3BSE035980-511

Section 1 Basic Functions and Components Application Types and Instances

Application Types and Instances

Types and instances form the basis of the application structure. This subsection
contains an overview of the following:

The type and instances concept, see Types and Instances - Concept on page 42.

The editors that are used to create and configure the types, see Define a Type in
the Editor on page 43.

Important differences between control module types, function block types, and
diagram types, see Control Module Types, Function Block Types, and Diagram
Types on page 52.

How to create types directly in an application, and how to create types in the
library for re-use in applications. See Types in Applications on page 54 and
Types in User defined Library on page 55.

How to create complex types so that they are flexible enough for future
upgrades, see Modify Complex Types on page 56.

What to consider and what to set up before creating types and using them, see
Decisions When Creating Types on page 64.

How to create objects from types and connect the object to the surrounding
application or type, see Create and Connect Instances on page 65.

Details about diagrams and diagram types, see Diagram and Diagram Types on
page 57.

How different objects are executed, see Function Block Execution on page 70,
Control Module Execution on page 72, and Diagram Execution on page 73.

How to use single control modules as containers for control modules, see
Single Control Modules on page 75.

The aspect object setting, see Aspect instances on page 79.

3BSE035980-511

41

Types and Instances - Concept Section 1 Basic Functions and Components

Types and Instances - Concept

Types are used to represent motors, valves, tanks, etc. that are located in a plant
area, and then turn them into manageable units in a control project (for example,
motor types, valve types, mixer types, and so on). Instances are created based on
each of these types.

A type is the source (the blue print) for a unit (motor, valve, tank, etc), while an
instance represents the unit(s) in libraries and applications. There is an inherited
mechanism between a type and all its instances, where all instances have the same
performance as the type, and changes performed in the type affect all instances
simultaneously.

A type is a generic solution, which can be used by many instances, and contains
programming code with variables, functions, connection parameters (textual and

graphical), graphical instances, and formal instances.

Figure 3 shows the relationship between a type located in a library and two
instances created in an application.

Library

type
If A = 10then
B:= A+1;
end_if;
Application instancet ¢ N instance2
Al 3 A [10
B|7 B |11

Figure 3. Relationship between a type and two instances.

The type contains the code, whereas each instance contains a list of computed
variable values. The instance does not contain any code; it uses the code inside the
type for manipulating its own local variable values.

1. Formal instances are instances of another type located inside a type. These, along with instances based on that
type are executed in applications.

42

3BSE035980-511

Section 1 Basic Functions and Components Define a Type in the Editor

A type is always static and cannot run by itself in applications. To execute the code
inside the type, an instance based on the type (an instance) must be created. The
instance executes the code located inside the type. To create an instance, point to a
type either in a library or in an application.

All instances based on the same type have the same characteristics, which means
they have equal access to everything in the type. An instance does not contain a
programming editor or code blocks; hence the code cannot be written inside an
instance. All logic must be created in the type.

The allocated memory for creating a type solution (for example, a motor type
solution that contains one motor type and 20 motor instances) is distributed mainly
on the programming code inside the type. Therefore, the cost (allocated memory)
for each new instance (motor) is very small, compared to the type itself. The
instance only needs to allocate memory for variables, as the code is located and
executed from the type. However, the number of instances are relevant for
considering the total CPU memory.

It is easier to update the application while working with newer version of types,
since the inherited mechanism takes care of changes that often concern hundreds of
instances. A code change (for example, declaring additional connection parameters)
can be done once for the type, and this change is inherited by all instances
simultaneously.

Control Builder also contains a number of structured data types. For more
information, refer to the System 800xA Control AC 800M Planning (3BSE043732%)
manual. A type described in this sub-section is a function block type, a control
module type, or a diagram type.

Define a Type in the Editor

Select the type from Project Explorer and open the corresponding Editor to declare
the necessary parameters for the type.

The editor of a type contains several declaration panes that can be opened from the
following tabs:

. Parameters
. Variables
J Function Blocks

3BSE035980-511 43

Define a Type in the Editor

Section 1 Basic Functions and Components

* Control Modules (only for diagram type editors)
* Diagrams (only for diagram type editors)

Apart from the declaration panes, the editor contains:

* Programming editor for programming the code using IEC-61131 languages
(see Figure 10).

* Graphical editor called CMD Editor (only for control module types, see
Figure 13).

* Graphical programming editor for FD (Function Diagram) (only in diagram
type editor, see Figure 12)

Declaration Pane for Parameters

To open the declaration pane for parameters, double-click the type (to open the
editor), and then select the Parameters tab.

Figure 4 shows the editor for My_MotorType, with the declaration pane for
parameters selected. These parameters can be used for connecting variables outside
the instance.

MName |Data Type |Attributes |Direction |FD Port |Initial Value|Description o
1 joutd BoollO
2 |FB1 |BoollD
3
L -
< v Parameters £ Variables »_EsxternalVariables A _Function Blocks /| « [r

Figure 4. Declaration pane for creating connection parameters

Declaration Pane for Local Variables

To open the declaration pane for variables, double-click the type (to open the
editor), then select the Variables tab. If the editor is already open, simply select the
Variables tab.

Figure 5 shows the declaration pane for creating local variables inside the type. The
local variables can be used by the code inside the type.

44

3BSE035980-511

Section 1 Basic Functions and Components Define a Type in the Editor

Mame Data Type Attributes Initial %alu |Description 1=
1 MotorStanTime time retain 105 |-
2
3
4
= -
| + [\ _Parameters » Variables /4 Euernal Variables Function Blocks /T« | »
Row 1, Caol 1
Figure 5. The declaration pane for creating local variables
Declaration Pane for External Variables
External variables are pointers to global variables. An instance can declare an
external variable locally and then use this variable to access the value in a global
variable located in the application. External variables and global variables are
discussed in External Variables on page 94.
Declaration Pane for Communication Variables
Communication variables are declared in top level Diagram editor, Program editor,
or top level Single Control Module editor. For details about communication
variables, see Communication Variables on page 99.
Figure 6 shows the declaration pane for communication variables in a Diagram
editor.
Name |Data Type |Attributes |Direction |Initial Value|ISP Value |Acknowledge Group |Interval Time |IP Address Expected SIL |Unique Id |Description
1 a1 real retain in 1 0 1 fast 172.16.18.3 same 201
2 b1 real retain in 11 2 auto very fast auto SIL3 1202
3 el real retain out 1 slow 1203
4
« v % Variables 5 Communication Variables Function Blocks A Control Modules A Diagrams 7 I« &

Figure 6. Declaration pane for communication variables

3BSE035980-511 45

Define a Type in the Editor Section 1 Basic Functions and Components

Declaration Pane for Function Blocks

To open the declaration pane for function blocks, double-click the type (to open the
editor), and select the Function Blocks tab. If the editor is already open, simply
select the Function Blocks tab.

Figure 7 shows the declaration pane for declaring function blocks inside the type.

Mame Function Block Type (Task Connection|Description -

Ol on

e | e [b | —

» i _Parameters p Vatiables p Exdernal Variables p Function Blocks [[«| | »

Fow 1, Cal 1

Figure 7. Declaration pane for creating function blocks inside a type

Enter the name of the function block in the Name column, and select the cell in the
Function Block Type column. Press CTRL+J to open a context menu with all
function block types available.

Connect all libraries with the required function blocks types to the application.
Only then, the available function block types are listed in the context menu
(CTRLH])

Declaration Pane for Control Modules

To open the declaration pane for control modules, double-click the diagram or
diagram type (to open the editor), and select the Control Modules tab. If the editor
is already open, select the Control Modules tab.

Figure 8 shows the declaration pane for declaring control modules inside the
diagram or diagram type.

46

3BSE035980-511

Section 1 Basic Functions and Components Define a Type in the Editor

MName Contral Module Type [Task Connection |Description
1 |Alarm_2322 |AlarmCondM
2
3
4
b
« v % Variables 4 Communication Variables » Function Blocks 4 Control Modules ;H 4 [
Figure 8. Declaration pane for creating control modules inside a diagram type
Enter the name of the control module in the Name column, and select the cell in the
Control Module Type column. Press CTRL+]J to open a context menu with all
control module types available.
Connect all libraries with the required control module types to the application.
@ Only then, the available control module types are listed in the context menu
(CTRL+)).
Declaration Pane for Diagrams
To open the declaration pane for diagrams, double-click the diagram type or
diagram (to open the editor), and select the Diagrams tab. If the editor is already
open, select the Diagrams tab.
Figure 9 shows the declaration pane for declaring diagrams inside the diagram type
or diagram.
MName Diagram Type Description
1 [Valve101 Diagram_Area
2
3
4
q‘: v % Variables 4 Communication Variables »_ Function Blocks A _ Control Modules 4 Diagrams ﬂ *

Figure 9. Declaration pane for creating diagrams inside a diagram type

3BSE035980-511 47

Define a Type in the Editor Section 1 Basic Functions and Components

Enter the name of the diagram in the Name column, and select the cell in the
Diagram Type column. Press CTRL+J to open a context menu with all diagram
types available.

Connect all libraries with the required diagram types to the application. Only
@ then, the available diagram types are listed in the context menu (CTRL+J).

Code Pane for Control Module Types and Function Block Types

The code pane in the editor for programs, control module types, function block
types, and single control modules supports five programming languages that
conforms to the IEC 61131-3 standard. The code pane is always active, and can be
accessed irrespective of which tab is selected (parameters, variables, function
blocks, etc.).

The code pane can be expanded using more code blocks for structuring the code.
These code blocks are then executed either in a predetermined order as decided by
the compiler (control modules), or from left to right (function blocks).

Figure 10 shows a part of the code pane of a control module type editor. This code
block uses Structured Text (ST) as the language. This editor contains two code
blocks: Control and Start_Code.

MNarne Function Block Type [Task Connection|Description ﬂ
1 Jn1 on
| * |\ Fararmeters A Wariables A External Variables A Flﬂ 1 |]
if not outl Forced then -
outl I0Valuse = outl Valus;
end_1f:
Tonli{ In = outl. IOValue,
FT := HotorStartTime)
ftbl . I0OValue := TOnl.Q:
if not fbl Forced then
ftbl Value:= fbl . IOValue:
end_if:
Control A Start_Code /f | 4 »

Rownd, Cal 1

Code blocks Code pane
Figure 10. A code pane with two code blocks.

48

3BSE035980-511

Section 1 Basic Functions and Components Define a Type in the Editor

A brief description of code blocks in general and Start_ code blocks :

* Code blocks are very useful for structuring the code. Dividing the
programming code into a number of code blocks, improves the overall code
structure and readability. Examples of code blocks are Control, Object Error,
Operators, etc.

ﬂ Code block names cannot contain certain characters. See Online help for
information on characters that cannot be used in code block names.

e There is no limit to the number of code blocks that can be created in a type.
Create only the required number of code blocks, since each code block affects
the memory consumption and the execution time of the type.

e Start_

A code block with the prefix Start_ is always executed first in an application
and only once, at the application startup (after a warm and cold start, but not
after a power failure).
ﬂ The Start_ code block is valid only for single control modules and control module
types.

This code block must be used for initiating alarm strings, converting project
constants to strings, etc.

However, there are some limitations while using the Start_ code block:

— Itis not suitable to place functions, function blocks, etc, in a Start_ code
block.

— Itis valid only for the code blocks in control modules, and not for the code
blocks in SFC (Sequential Function Chart).

— The FirstScanAfterApplicationStart function must not be used in the
block.

— Function blocks for communication must not be used in the block.

If the application contains a very large chunk of code that has to be run in the first
scan (for example, alarms in the Start_ code block), the execution time can be so
high that overrun occurs. This leads to the eventual shut-down of the controller.

3BSE035980-511 49

Define a Type in the Editor Section 1 Basic Functions and Components

Code Block Context Menu

Right-click a code block tab to access the code block context menu.

Start_Caode 3 Control
Insert..,

Delete '

moduls_type Change Language. ..

Rename..,

Arrange...

Select. ..

Figure 11. Code block context menu

Graphical Code Pane for Diagram Types

The code pane in the editor for diagram type supports the FD (Function Diagram)
language. The FD code block in this editor allows mixing of functions, function
blocks, control modules and other diagrams, through graphical connections, to
create the logic. Variables and parameters can also be connected graphically. This
represents a complete graphical overview of the whole logic.

The FD code block is always active, and can be accessed irrespective of which tab is
selected in the declaration pane (parameters, variables, function blocks, control
modules or diagrams).

The logic created in the default FD code block can be expanded using optional ST
and SFC code blocks, which can be invoked in the FD code block or sorted
separately.

To open this editor, right-click the diagram type, and select Editor. Figure 12 shows
an example logic created in the FD code block of diagram type editor.

50 3BSE035980-511

Section 1 Basic Functions and Components Define a Type in the Editor

- AnalogOuCC 1:4
(AnalogDutCC

AnalogInCC_11 PICEE = Mame Qut
(BnaloginCC '“\| SpPICES ={Sp VoteOut— :\IEITE AnalogDutput = Out11
Name Qut Pv A =
In11 = Analoglnput -

ERF
= Feedforward
= VotedCmd

add-2 TrackValue
add A
Tt [N

1o N2

Figure 12. Example logic created in the graphical code pane of diagram type editor

Graphical Editor - CMD Editor

The graphical editor, Control Module Diagram Editor (CMD Editor) is also a
combined editor for drawing and programming. The term ‘diagram’ refers to the
graphical view of control modules and connections.

Use this editor to create and edit control modules, code, and graphics, and to
connect variables and parameters.

To open the CMD Editor, right-click the control module type 42k and select CMD
Editor. Figure 13 shows part of the graphical editor (CMD Editor).

3BSE035980-511 51

Control Module Types, Function Block Types, and Diagram Types Section 1 Basic Functions and

c

KB 0RE o0 i

HBERREE® DO

o
=

Figure 13. Graphical objects created in the CMD Editor.

The drawing functions in the CMD editor include basic auto shapes (lines,
rectangles, etc.), ready-to-use interaction instances (option buttons, check boxes,
etc.), and composite instances (trend graphs, string selectors, etc.). The graphical
instances are dynamic, that is, with changing variable values, the points move,
colors change, and numerical values are presented.

Control Module Types, Function Block Types, and Diagram Types

A type can be a control module type, a function block type or a diagram type. The
usage of different types can be mixed. For example, a control module can be created
inside a function block type (to add graphics), or a function block can be created
inside a control module type (to execute a list of basic functions). In a diagram type,
it is possible to create function blocks, control modules, and diagrams, to define the
entire logic.

52 3BSE035980-511

Section 1 Basic Functions and Components

Control Module Types, Function Block Types, and

Table 4. Differences between types

Property

Differences

Function Block Type

Control Module Type

Diagram Type
(supports mixing
function blocks, control
modules, and nested
diagrams)

Container POU

Programs, Diagrams

Diagrams or Single

Diagrams

inside the or Single Control Control Modules

application Modules

Graphical Yes Yes Yes, including graphical

connections connection to

between objects parameter/variable
objects.

Code sorting No Yes Yes.

All code blocks, in control
modules inside the
diagram type, are sorted
together with the code
blocks outside the diagram
type in the container
Diagram.

Execution

Function blocks are
executed from code.
Therefore, a function
block is executed once
or several times per
scan, or it is not
executed at all.

Control modules are
executed only once
per scan.

The execution order
shown in the diagram is
followed. Codeblocks from
control modules are sorted
into the diagrams
execution order according
to control module sorting
rules (writing into a
variable is sorted before a
read).

3BSE035980-511

53

Types in Applications Section 1 Basic Functions and Components

Additionally, the following properties apply to function block types:

* Parameter values on function block types are copied (except In_Out parameters
and parameters having by_ref attribute, see Function Block Execution on page
70).

* Function block types are required when using extensible parameters (see
Extensible Parameters in Function Blocks on page 122).

The choice between control module types, function block types, and diagram types
depends on the context and environment. For guidelines about the use of control
modules, function blocks and diagrams, refer to the System 800xA Control AC 800M
Planning (3BSE043732%*) manual.

Types in Applications

Creating a type in an application is the quickest and easiest way to get started.
Before creating types in an application, no new libraries need to be created; use the
available methods like connect libraries, create user defined data types, and select
the object type to use (see Decisions When Creating Types on page 64). However, if
a type is created directly in an application, it can only be used inside that
application.

- @) Applications
= H?, Application_1 - (Contreller_1.Nermal)
----- I, Connected Libraries

S~ =) Function Block Types

E b Jab PumpType
= [Centrel Module Types

b [2L PumpMotor_Type

B ----- ¢ Diagram Types

----- @My_Mntor_T}rpe
----- i Diagrams

----- M, Programs

Figure 14. Types created under an application

To gain access to standard libraries (or user defined libraries), insert them into the
control project (see Library Management on page 127), and connect them to the
application. This allows the creation of instances in the application, from existing
types in the connected libraries.

54 3BSE035980-511

Section 1 Basic Functions and Components Types in User defined Library

Types in User defined Library

The advantage of creating types inside a library, instead of creating them directly in
an application, is the possibility to re-use them in other applications. If the types are
created in a library, all the necessary functionality can be stored in this library. The
library can then be connected to any application.

If a new library is created, user defined types can be created in that library (the
800xA System does not allow creation of types in a standard library).

=P 7 My Typelib 1.0-0

- W Connected Libraries

o I BasicLib 17-2 Functionality from the
i [ControlAdvancedLib 1.5-5

. [P ControlStandardLib 1.5-6 Control libraries
. e [0 ControlSupportLib 1.4-4
Bl ¢ Diagram Types

Type ——M MyControlLocp
o ﬁAnalogInCC_l ControlStandardLib.AnaloginCC
- ﬁAnalogOutCC_l ControlStandardLib.AnalogQutCC
- ﬁ PidAdvancedCC_1 ControlAdvancedLib.PidAdvancedCC

Figure 15. A Type (MyControlLoop) created in MyTypeLib library. This example
shows a control loop created as a diagram type, while the components are ready-
made instances from the standard libraries

3BSE035980-511 55

Modify Complex Types Section 1 Basic Functions and Components

Modify Complex Types

This subsection describes a use case where it is preferable to copy two types, instead
of keeping a single and very large type in a library.

Refuse Incinerator Type - Problem
In this example, assume that a plant area has two identical refuse incinerators.

A type solution like this is manageable if a Refuse Incinerator type is created in a
library with several underlying types. This type can then be re-used twice (as two
objects), in two separate applications, by connecting the library to each application.

The following are the examples of underlying types inside the Refuse Incinerator
type:

* A Feeder type containing 10 conveyors.

* A Combustion type.

* An Ash Handling type.

* A Flue Gas type.

After building the Refuse Incinerator type in the library, connect the library to both
Application_1 and Application_2. This helps in creating an Incinerator] instance in
Application_1 and an Incinerator2 instance in Application_2.

If the Incinerator2 instance running in Application_2 suddenly needs an individual
change (for example, 20 conveyors instead of 10 conveyors), edit the library and
change the Feeder type inside the Refuse Incinerator type. But, changing anything
inside the Refuse Incinerator type affects both incinerators due to the type and
instance inherit mechanism.

By changing the Feeder type to include 20 conveyors, both the Incinerator instances
are changed suddenly to contain 20 conveyors, which is not the intended use.

56 3BSE035980-511

Section 1 Basic Functions and Components Diagram and Diagram Types

Refuse Incinerator Type - Solution

To avoid the problem, once the type is ready, consider the possible individual
(instance) changes in the future. If an individual instance needs to be changed, copy
the type on the highest type level (in this example, Refuse Incinerator Typel and
Refuse Incinerator Type2).

Create an Incinerator10 instance in Application_1, based on Refuse Incinerator
Typel, and then create an Incinerator20 instance in Application_2, based on the new
type copy, Refuse Incinerator Type2. This increases the memory consumption in the
controller, but allows individual changes. For example, the number of conveyors in
the feeder for one of the applications can be changed, without affecting the other.

Diagram and Diagram Types

Diagrams are created under an application, and diagram types (which can be reused
as instances in a diagram) are created under a library or under the same application
as the diagram.

The FD code blocks in diagrams and diagram types allow mixing of functions,
function blocks, control modules, and other diagrams, and graphically connect them
to achieve a particular logic.

Figure 16 shows the workflow for using diagrams and diagram types.

3BSE035980-511 57

Diagram and Diagram Types

Section 1 Basic Functions and Components

Create

Create Library Application

. 1

Create
) Create
Diagram Type Diagram
for reuse
Diagram Type Editor Diagram Editor

k.

Extend the FD logic, by
invoking other ST or
SFC code blocks
created within the
same Diagram Editor
or Diagram Type Editor

Create the logic in FD language in the first code
block, by:

Inserting instances of Function Block Types,
Contral Madule Types, and Diagram Types
available in the libraries in the project

Inserting Functions from System library

Graphically connecting the instances and

functions through the ports

Inserting variables and connecting them to

other ports

F Inserting parameters for external connection

‘_.‘

In Diagram Editor, extend
the FD logic across
different applications {in
same controller or in
different controllers) using
Communication Variables

{only applicable to Diagram Type Editor)

Connect the application to controller and
define task connection for the Diagram

I

Connect the /O Variables to the required
hardware channels through hardware editors

!

| Download all the required applications to controllers

Figure 16. Workflow for using Diagrams and Diagram Types

58

3BSE035980-511

Section 1 Basic Functions and Components Diagram and Diagram Types

Figure 17 shows the editor for a diagram POU under an application.

Diagram - Application_l.Diagram1 | S
Editor Edit View Insert Tools Window Help
R H 2 & (-0 A & B A, @ L8 Lzt i@ 2 [100%
Name Data Type Attributes Initial Value [IV0 Address |Access Variables [Description -
|
2
« » % Variables 4 Communication Variables A _ Function Blocks _» Control Module]| « [»

][4] 1 LIRS mn
<« + % Code

Figure 17. Editor for Diagram POU

The diagram editor consists of declaration pane and code pane. The code pane
contains a grid area where you add the objects and create graphical connections.

The editor for diagram type also looks similar.

The editor for a top level diagram (under the application) differs from a Program
editor in following ways:

* The first code tab is always a FD language tab.
* Additional code block tabs can be created, but only for ST and SFC.

* Two additional tabs — Control Modules and Diagrams — are available in the
declaration pane.

The editor for a diagram type (under the application or library) differs from a
diagram editor in following ways:

J There is a Parameter tab instead of a Communication Variables tab in the
declaration pane.

. There are no I/O Address or Access Variables columns in the Variables tab.

3BSE035980-511 59

Diagram and Diagram Types Section 1 Basic Functions and Components

ﬂ The diagram editor or diagram type editor has one mandatory FD code block.
Only one FD code block is allowed within this POU. It is allowed to have several
optional ST and SFC code blocks in the diagram editor or diagram type editor.

Figure 18 shows the editor for a diagram after it is edited (to create an example
logic).

60 3BSE035980-511

Section 1 Basic Functions and Components Diagram and Diagram Types

([—r— " =)
ﬁ Dlagram-Appllcatlon_l.DlagramZ‘ —~ - - § =1L
Editor Edit View Insert Tools Window Help
RHZy @0 ac)k [A&R PR LA S 29 T4
LE E B L
Name Data Type Attributes Initial Value IO Address |Access Variables [Description -
1 |vart bool retain
2 |var2 bool retain
3 |var3 bool retain
4
N s 2
|| « v Variables £ Communication Variables #_Function Blocks _»_ Contre]| « [

varl and:1 r% New_Diagram_Type 13
—bool - ‘and
-

and —ICD Q}—
:m; load CV
2| -Iw

New_Control_module type 15

| _Control_module_type
[var3

4] 4] - (B[] < D

m

« + % Code A4 SFC1 /

Figure 18. Editor for diagram POU with an example logic created

3BSE035980-511

61

Diagram and Diagram Types Section 1 Basic Functions and Components

Characteristics of Diagrams and Diagram Types
The following are the main characteristics of diagrams and diagram types:

* A diagram or diagram type can contain other diagrams (which are the instances
of other diagram types), in addition to functions, function blocks, and control
modules.

* The objects inserted in the diagram editor or diagram type editor can be
connected graphically through ports, to create the logic.

* The port of an object inserted in the diagram editor or diagram type editor can
be connected to variable by entering the name of the variable or by graphically
connecting the port to the variable object.

* The FD code block in the editor also supports Split blocks and Join blocks to
work with objects having structured data types:

— A Split block splits the structured data type variable, connected as its
input, to its components that are displayed as output connection ports.
These output connection ports can be connected to variables based on the
data types.

— AlJoin block displays input connection ports, which are the components of
the structured data type, and these can be connected to variables. The
output connection port is connected to the structured data type variable.

ﬂ Split and Join blocks does a copy of the variable in run-time. To avoid a copy,
create a variable and make the components visible, or do component connections
directly.

Split and Join blocks must not be used if the structured data type has components
ﬂ with reverse attribute.
For the Split block, if reverse components are used, a change in the extracted
(split) data of a reverse component does not result in a change of this component
in the structured variable. For the Join block, if reverse components are used, it is
not possible to write to an out variable using Join, even if the attribute is reverse.

* The FD code pane supports creation of additional pages for adding more
objects and connects the objects graphically across pages. This helps to extend
the logic from the default page.

62 3BSE035980-511

Section 1 Basic Functions and Components Diagram and Diagram Types

* The logic created in the FD code pane can be extended through connections to
other ST and SFC code blocks in the editor.

* The FD logic can be extended across different applications by using
communication variables declared in the diagram editor. These variables
support cyclic communication between the top level diagrams, top level
single control modules and programs in different applications.

* The FD code block in a diagram is the only code block in Control Builder that
supports a lower SIL input signal to be used in a higher SIL application. This is
done using graphically connected communication variables in the editor.

3BSE035980-511 63

Decisions When Creating Types Section 1 Basic Functions and Components

Decisions When Creating Types

This subsection describes the decisions to be made about the types before
programming the code, and declaring parameters and variables. Many functions and
type solutions have been developed already, and the Control Builder helps to set up
and access these options before programming. Read more about design analysis in
the System 800xA Control AC 800M Planning (3BSE043732%).

The following decisions must be made before creating the types:
* Whether there is a need to create instances in user defined type(s).

These types are based on other types located in external libraries. In that case,
those external libraries must be connected to the library or application.

* Whether there is a need to create self-defined structured data types for passing
parameters through several layers of instances.

The data types are automatically connected to the library or application.
Structured data types are often useful in more complex type solutions, with a
deep hierarchical structure.

* Whether a function block type or a control module type or a diagram type
should be used.

— If the code is programmed in the Program pouU! only, select
function block types.

— If a graphical editor is preferred for programming the code, and automatic
code sorting is also preferred, select control module types.

— If a graphical editor is preferred for programming the code, and automatic
code sorting as well as mixing of functions, function blocks, control
modules and nested diagrams are also preferred, select diagram types.
This helps you to overcome the limitations when using a single type.

For information on how to access these methods, refer to the Control Builder
@ online help. Select one of the folders in Project Explorer and press F1.

1. See Program Organization Units, POU on page 23.

64 3BSE035980-511

Section 1 Basic Functions and Components Create and Connect Instances

Create and Connect Instances
An instance is a function block, control module or diagram, based on a type.

Each time a new instance is created, the Control Builder prompts for a type. The
type can be located in an inserted library (inserted into the control project), user
defined library, or directly in an application. In any case, a type and its location must
always be selected.

Once the type is selected, connect the connection parameters.

Figure 19 shows the creation of an instance (Pump10) based on My_MotorType,
which is a diagram type located in the application. The instance needs the location
(Application_1) and the type (My_MotorType).

3BSE035980-511 65

Create and Connect Instances Section 1 Basic Functions and Components

Dialog for creating an instance of a type in
Diagram editor

Type name and its location

= @ Applications
o | H H - (
o @ Applicaion. - Contraler LlomaD {58 Diagram - applicaion. LDisgram
; é Function Block Types Editor Edit View Insert Tools |Window Help
@ & Control Module Types 5gaﬂmotﬁect o — = ——"—
= ¥ Diagram Types
61 My_Motor_Type 1| [Ust | Tree [Recent | Favbrtes|
=, Diagrams 2 :
B8 Diagrami - (Controller_1.Fast) 3 &
2 Diagram2 - (Controller_1.Normal) 1 :
@ @8 Diagram3 - (Contreller_1.Slow) :
@ H Programs =
@ |4 Controllers L
- |
Properties
Ot My Mt Type
Name: pump10
Description i
)f |
3 EN bize: |0 7 |
. [mset][Close |[Hep | ||
4

Instance name

Figure 19. Creating instance of a diagram type in Diagram editor

66

3BSE035980-511

Section 1 Basic Functions and Components Create and Connect Instances

Connections Using Parameters

The instances can be connected either through graphics or through text, using the
parameters in their respective types.

Control Modules

For control modules (instances of control module types), graphical connections are
done directly in the Control Module Diagram (CMD) editor and textual connections
are implemented in the Connection editor.

Diagrams

For diagrams (which support instances of diagram types, function block types, and
control module types), both graphical connections and textual connections of
instances are done directly in the FD code block of the diagram editor.

Graphical Connections in CMD Editor

Graphical nodes and graphical connections in CMD editor connects the control
modules effectively.

The control module parameters, which can be graphically connected, contains
NODE in the beginning of the parameter description. This is the standard for all
control modules located inside the standard libraries.

Nodes for graphical connections can also be created for self-designed control
modules. Graphical connections are suitable for obtaining a comprehensive view of
main flows, for example, in a PID controller or for group start of several motors.
Figure 20 shows three graphical connections for group starting motors. The
modules are connected using the Graphical Connection function (located in the
CMD Editor).

3BSE035980-511 67

Create and Connect Instances Section 1 Basic Functions and Components

Figure 20. Two motor instances that have been graphically connected with a Start
and Next instance located in the Group Start library. The circles symbolize the
connection nodes

Textual Connection for Control Modules

To open the Connections editor via the Connections entry, right-click the
control module (instance of control module type) and select Connections.

Parameters can be connected to the actual variables presented in the Connections
editor. Textual connection is the only way to connect parameters when the control
module is subordinate to a function block, since there are no surrounding graphics.

ﬂ It is not possible to connect the same parameter both graphically and textually.

68

3BSE035980-511

Section 1 Basic Functions and Components Create and Connect Instances

Connect an instance of Control Module in Connections Editor

The Connections editor is a parameter/variable interface between the instance and
its closest surrounding. The Connections editor displays the parameters that are
declared in the type, with reference to the control module instance, and connects the
surrounding parameters/variables to the instance.

If a control module instance is created in an application (see Figure 21), then the
application can be seen as the closest surrounding, and the variables in the
application must be connected to the instance.

If a control module instance is created in a type (located in a library), then the type
can be seen as the closest entity, and parameters/variables in the type must be
connected to the instance.

To connect the parameters to instances located several hierarchical layers away
@ (not the closest), use structured data types that simplifies the connections (instead

of passing corresponding parameters). For more information on structured data

types, refer to the System 800xA Control AC 800M Planning (3BSE043732%)

A Motor Type

FB1
] |_ouTt
Name
? :F Code [—
I -
Application
motor object
appfb1 - — — —
o FB1 I 1
P Motor — |OUT1 appout1
umpMotor’ == [
—1 —
_ — — —

k surrounding area /

Figure 21. A control module instance connected to variables in an application. The
application is the ‘surrounding area’ with the variables appfbl, Name (initial value
‘PumpMotor’) and appoutl connected to the instance.

3BSE035980-511 69

Function Block Execution Section 1 Basic Functions and Components

In Figure 21, the connection parameters for the motor instance connect the
parameters (FB1, Name and OUT1) to the variables (appfbl, appoutl, Name; Name
has the initial value PumpMotor) that have been declared in the application.

Function Block Execution

There are three types of function block parameters: In, Out, and In_out.

The input and output parameters are passed by value, which means that the function
block creates copies of each variable value, before and after the function block is
executed. The In_Out parameters are passed by reference, which means only a
reference to the actual variable outside the function block is passed to and from the
function block.

Input parameters create a copy of each variable before the function block executes,
and the output parameters create a new copy after the function block is executed and
pass the new values to the surrounding variables outside the function block.

For complex data types and strings, a reference to the data instance can be passed in
the function block call. This is achieved by setting the attribute of the parameter to
by_ref.

/ surrounding area (Program or in a type) \
Function block
before execution var after execution
o | ovarr__glout O var

. /

Figure 22. In and Out parameters for a function block. This example illustrates how
In and Out parameters copies the variable (var).

Using by_ref on parameters enhances the performance. It takes a lot of execution
time to copy parameters in each scan.

70

3BSE035980-511

Section 1 Basic Functions and Components Function Block Execution

There are some limitations when using by_ref:
* Itis not possible to connect expressions or literals to a reference parameter.

* If areference parameter is not connected in one invocation, it cannot be
connected in other invocation (if the instance has multiple invocations).

* Itis not possible to read or write the parameter from outside the function block
(except in the invocation). The example expressions like fb.par_in :=2; or k :=
fb.par_out; are not allowed for reference parameters.

By using by_ref, it is still possible to use init values, in which case the init value is
the default value. If the parameter is not connected, the default value is used.

The code generated for connecting by_ref parameter is identical to an in_out
parameter; but they differ in what is allowed inside the function block.

For example, it is not allowed to write onto an in parameter regardless of whether it
is a reference or value parameter. The ownership analysis detects that a variable is
read only if an in parameter by reference is used instead of in_out. It is therefore
preferable to use direction=in and attribute=by_ref (instead of in_out), if the
parameter is actually an in parameter.

The In_Out parameters are passed by reference, and only a reference to the actual
variable outside the function block is passed to and from the function block. The
local representation of the parameter does not exist inside the function block.
Performing operations on an /n_QOut parameter inside a function block means
performing operations directly on the actual variable connected to the function
block. See also Connecting Variables to I/O Channels on page 117.

/ Function block \

code

varRef <q— -0 In_Out o<a—p VarRef

o /

Figure 23. In_Out parameter for a function block. This example illustrates how the
In_Out parameter points as reference to the value in the variable varRef.

3BSE035980-511 71

Control Module Execution Section 1 Basic Functions and Components

A structured data type having components with reverse attribute must not be used
for communication between function blocks. The components with reverse
attribute does not work as intended when used with function blocks.

Control Module Execution

Control modules provide data flow-driven execution, which makes the code design
much easier for solutions where several types and formal instances are needed. All
control modules communicate with each other, and can therefore determine when
each individual instance can send and receive information. A data flow-driven
design prevents possible mistakes, when trying to foresee the correct execution
order, since the compiler rearrange or sort all the code behind the scenes. This is
called code sorting.

Direction for Control Modules

In control module types, a parameter can have any of the following direction:

. In
. Out
. In_out

* Unspecified.

These control module parameters follow different access rules from the code inside
the control module and offer limitations to the methods used to connect them.

All of them are passed by reference, which means only a reference to the actual
variable outside the control module is passed to and from the Control module.

The rules governing their functioning are as follows:

* Input parameters are read only.

* QOut, In_Out and Unspecified are read and edit.

* Control modules on the same level can connect only In to Out.

* A sub control module inside could only connect its In parameters to In
parameters in the surrounding control module and so on.

* In_out must be connected to a variable (on any level). This is not the case if the
control module is used in FD code block in a diagram.

72

3BSE035980-511

Section 1 Basic Functions and Components Diagram Execution

» If the control module is used in FD code block in a diagram, the In_out
parameters can be connected to each other in FD code block. It is also possible
to connect one Out parameter to an In_Out parameter, and an In_Out to an In
parameter.

* One Out can be connected to Several In parameters. But, it is not possible to
have multiple data connections from the same source on control module
parameters of structured data types that have reverse components. See Table 9.

* A control module is allowed to write to an output parameter. An exception is
the case of output parameters that are of structured data type containing
components with the reverse attribute. It is an error if a control module writes
to a reverse component of an output parameter.

* A control module is not allowed to write to an input parameter. An exception is
that it is allowed for a control module to write to a reverse component of an
input parameter.

These rules apply to connecting parameters to communication variables as well.
Communication Variable In should be connected to In parameters and the
corresponding for Out. The compiler (and check) warns if rules are broken.

Unspecified parameters can be used without limitations for compatibility reasons.

For more information on Code Sorting, see the System 800xA Control AC 800M
@ Planning (3BSE043732%).

Diagram Execution

The execution of the content in a diagram or diagram type is mainly configured
using the Data Flow Order of different invocations within the FD (Function
Diagram) code block. The Data Flow Order is a number that specifies the intended
order of execution. In the FD code block, the Data Flow Order is given to invoke
functions, function blocks, diagram instances, control modules, code blocks, split
blocks and join blocks.

Control modules in a diagram are sorted based on access of variables to enable both
forward and backward calculations and data flows to be executed in the same task
scan. Therefore code blocks in invoked control modules will not always be executed
in the order specified by the Data Flow Order.

3BSE035980-511 73

Diagram Execution Section 1 Basic Functions and Components

The Structured Text and SFC code blocks can be defined without invoking them
from the FD code block. These code blocks are then sorted together with code
blocks of invoked control modules.

Direction for Diagram Types

In diagram types, a parameter can have any of the following direction:

. In
. Out
. In_out

The diagram type parameters are shown as ports when the type is instantiated in the
diagram editor.

All of them are passed by reference, which means only a reference to the actual
variable outside the diagram type is passed to and from the diagram type.

The rules governing their functioning are as follows:

» Each port has an attribute that determines if it is visible in the diagram or not.
e Input ports are shown on the left side.

* Output ports are shown on the right side.

* In_out ports are normally shown on both sides with a connecting line through
the block. They can also be shown on the left side only, depending on the
FD Port property on the corresponding parameter declaration.

e One Out can be connected to Several In parameters. But, it is not possible to
have multiple data connections from the same source on diagram type
parameters of structured data types that have reverse components. See Table 9.

* A diagram type is allowed to write to an output parameter. An exception is the
case of output parameters that are of structured data type containing
components with the reverse attribute. It is an error if a diagram type writes to a
reverse component of an output parameter.

* A diagram type is not allowed to write to an input parameter. An exception is
that it is allowed for a diagram type to write to a reverse component of an input
parameter.

74

3BSE035980-511

Section 1 Basic Functions and Components Single Control Modules

These rules apply to connecting the parameters to communication variables as well.
Communication Variable In should be connected to In parameters and the
corresponding for Out. The compiler (and check) warns if rules are broken.

Single Control Modules

A special kind of control module type, the single control module, provides a way of
grouping graphical instances, variables, parameters, and control modules into a
single unit.

Compared to the previous discussions about types and instances, a single control
module can be considered as a hybrid of them both (see Figure 24). First of all,
create a single control module as an instance under the control module folder (not
the control module type folder) in an application.

Once a single control module is created, it starts acting as both a type and an
instance. It contains code, editors for declaring parameters, function blocks,
instance information, etc. just like a regular type or instance. A single control
module can never be reusable as a type that can be used to create many instances.
However, it can be copied to a new single control module, and then be modified.

3BSE035980-511 75

Single Control Modules Section 1 Basic Functions and Components

Application)
Single Control Module
Control Module Types type
Control Modules IfAa =10then
B:=A+1;
end_if;
object1
A3
B |7

Figure 24. A single control module. This module is not reusable, hence intended to
be used only once for grouping instances into a single unit.

76 3BSE035980-511

Section 1 Basic Functions and Components

FD Port

Single control modules can be used as a framework and attach control module
instances inside, like an application does with instances. Figure 25 illustrates this,
where three single control modules (Transport, Heating, and Crushing) form the
framework for the control modules (Motor_1, etc.).

=[] Libraries
-] SystemLib
=1 [, MyMatarLib
@ Datka Types
I} Function Black Types
=-4=F Control Maodule Types
= % Millsrinder Type
7k Transport {Single control module)
IPE Heating {Single contral madule)
Crushing (Single control module)
=) ﬂ Motar_1 MyMotorType
P MotorPanel 1 MyMotorPanelType
=47 Mokor_2 MyMotorType
4P MotorPanel_L MyMaotorPanelType
El ﬂ Motor_3 MyMotorType
I MotorPanel 1 MyMotorPanelType
2 MyMatarPanelType
El % MyMokar Type
FFE MotorPanel_1 MyMotorPanelType

'I,E_'gNew Control Module EI

Contral module type:

|MiIIGrinderT vpe

MillGrinderT ype
Myt otorPanelType
Myt atorTvpe

Inztance name: IMilIGrinder2 ﬂ

[¥ Connect parameters

Cancel |

Libraries/application:

MybdatarLib

Figure 25. Single control modules form the framework for the control modules

FD Port

The FD Port column appears in the editor for function block types, control module

types, and diagram types. This column is only significant for the types that are
instantiated in a Function Diagram (FD) code block.

The normal choice is Yes or No. The value specifies if the parameter shall be visible
when the function block type, control module type, or diagram type is instantiated in
an FD code block. The default value is Yes.

There are extra choices (Left or Right) for control module parameters with direction
unspecified and parameters with direction in_out. These choices are related to the
placement of the parameter port in the FD code block.

3BSE035980-511 77

FD Port

Section 1 Basic Functions and Components

Unspecified parameters are placed on the left side by default, and in_out parameters
are placed on both sides by default.

There are some types with structured parameters that are mostly output, but also
contain some input components. Such a parameter must be either an Unspecified
parameter (control module types only) or an In_Out parameter.

The following list of alternatives are available for parameters of direction
unspecified:

* No - Not visible as a port. The parameter will be placed on the left side of the
object if the user decides to show it later on.

* No Left - Not visible as a port. The parameter will be placed on the left side of
the object if the user decides to show it later on.

* No Right - Not visible as a port. The parameter will be placed on the right side
of the object if the user decides to show it later on.

* Yes - Visible as a port on the left side of the object.

* Yes Left - Visible as a port on the left side of the object.

» Yes Right - Visible as a port on the right side of the object.

The following list of alternatives are available for parameters of direction in_out:

* No - Not visible as a port. The parameter will be placed on both sides of the
object if the user decides to show it later on.

* No Left - Not visible as a port. The parameter will be placed on the left side of
the object if the user decides to show it later on.

* No Right - Not visible as a port. The parameter will be placed on the right side
of the object if the user decides to show it later on. This is only available for
parameters of function block types.

* Yes - Visible as a port on both sides of the object.
* Yes Left - Visible as a port on the left side of the object.

* Yes Right - Visible as a port on the right side of the object. This is only available
for parameters of function block types.

78

3BSE035980-511

Section 1 Basic Functions and Components Aspect instances

ﬂ It is not recommended to use a function block type parameter of direction in_out
with its FD Port property set to Yes Right. In this case, it is only possible to
connect this type of parameter to a variable, parameter, or
communication variable.
Therefore, it is recommended to use parameter with direction out and attribute
by_ref, instead of in_out with Yes Right option, so that this parameter can be
connected to input port of another object.

Aspect instances

Aspect instance is an attribute that decides whether the instance will be visible in
Plant Explorer, or not.

The instances not interacting with other instances in Plant Explorer should have the
aspect instance attribute set to False for not loading the Aspect Server performance.

ﬂ Function blocks and control modules created from Plant Explorer will be aspect
instances by default, regardless of the type is an alarm owner or not.

Set Aspect instance Attribute
To set the aspect instance attribute:

1. In Project Explorer, right-click the function block or control module and select
Properties > Aspect Object. Use the check box to set the attribute
(checked=True, unchecked=False).

Properties ¥ Task Connection
" ispect Object i
% Delete Del Asp . @ Aspect Object True
3k _1.Marmal)
— Go ko 4
ika
Check

Figure 26. Aspect Object

Every time the Aspect Object menu item is selected, the aspect instance property
@ is toggled on/off (true/false).

3BSE035980-511 79

Variables and Parameters Section 1 Basic Functions and Components

Suppress Aspect Object (Set Attribute to False)

If the attribute is set to false, the instance will not be visible in Plant Explorer and no
live data can be fetched from the instance. If the instance has the aspect object
attribute set to false, it cannot be accessed from Plant Explorer.

If the aspect object attribute is set to false, added aspects will be deleted without

@ warning. Also, ensure that all editors are closed before changing this attribute in
Project Explorer, otherwise there is a risk that aspect object settings are
overwritten when the editor is closed.

Aspect Object (Set Attribute to True)

If the attribute is true, the instance will be visible in Plant Explorer (provided that
the surrounding type is not hidden or protected). See also Hide and Protect Control
Module Types, Function Block Types, Diagram Types, and Data Types on page 149.

Set Instantiate as Aspect Object Attribute for a Type

* In Project Explorer, right-click the type and select Properties > Instantiate as
Aspect Object. Use the check box to set the attribute (checked=True,
unchecked=False).

Variables and Parameters
Variables and parameters are the carriers of data throughout the system. This section
describes how to use parameters and variables in the best way possible:

* Variable and Parameter Concept on page 82 gives an overview of variables and
parameters and how they are used.

* Variables on page 83 gives an overview of the different variable types.

e Variable Entry on page 84 describes how to declare variables.

* Specific Initial Values on page 92 describes how to use specific initial values.
» External Variables on page 94 describes how to define external variables.

* Access Variables on page 95 describes how to define and use access variables.

80 3BSE035980-511

Section 1 Basic Functions and Components Variables and Parameters

e Communication between Applications Using Access Variables on page 97 and
Communication in an Application Using Global Variables on page 98 describe
how communicate between applications.

* Communication Variables on page 99 describes how to define communication
variables.

* Control the Execution of Individual Objects on page 107 describes how to use
variables and parameters to control the execution of objects.

* Link Variables in Diagrams on page 111 describes the use of link variables for
graphical connections in diagram editor.

* Project Constants on page 111 describes the use of project constants and how
to update them.

* I/O Addressing Guidelines on page 116 describes the rules for addressing /O
channels.

e Connecting Variables to I/O Channels on page 117 describes how to connect
I/O variables to I/O channels.

» Extensible Parameters in Function Blocks on page 122 describes extensible
parameters (these can only be used in function blocks).

* Keywords for Parameter Descriptions on page 123 describes keywords used in
description in editors to identify the function of a parameter.

* Property Permissions on page 125 describes how to set permission for variables
and objects.

* Property Attribute Override on page 126

3BSE035980-511 81

Variable and Parameter Concept Section 1 Basic Functions and Components

Variable and Parameter Concept

Variables

Variables are used in Control Builder to store and compute values.

Variables are the carriers of values at object level, application level, and network
level:

* Local variables — These are mainly used inside objects as carriers of local
values. They belong to the code and can only be accessed within the same
function block, control module, diagram or program.

* Global variables — These are declared in the application and holds values that
can be accessed by any object (function block, control module, diagram or
program) in the application. However, to reach a global variable, each object
that intends to use a global variable must have declared a corresponding
External variable, see also External Variables on page 94).

* Access variables and Communication variables are used as carriers for
communication between several applications and controllers in a network:

— Access variables allow data exchange between controllers, that is, access
variables can be accessed by other controllers. See Communication
between Applications Using Access Variables on page 97.

— Communication variables are used for cyclic communication between
top level diagrams, programs, and top level single control modules.
Communication variables support both inter application communication
and inter controller communication in a system network. For more
information, see Communication Variables on page 99.

All variables are defined by their names and data types. The data type (dint, bool,
real, string, and so on) defines the characteristics of the variable.

Parameters

Parameters cannot store any values, but the variables are assigned to parameters of
function blocks, control modules, diagrams and functions. Variables store the value
of the corresponding (connection) parameters.

82 3BSE035980-511

Section 1 Basic Functions and Components

Variables

Use parameters for connecting objects and to point to variable values that need to be

read into code blocks and written from code blocks.

When function blocks read from a variable and write to a variable, they use input
and output parameters that temporarily copy the variable value, before and after

execution. In this case, one may claim that parameters can temporarily hold a
value. See Function Block Execution on page 70 for more details.

Variables

Table 5 lists available variables in Control Builder.

Table 5. Variable types in Control Builder.

Variable type

Scope

Where to declare

Local variable

Object level. Can only be
accessed within the function
block, control module or
program in which it is
declared.

Application editor (for passing
parameters between control
modules) or,

Programs editor (for access in
the program).

Function block editor (for
access inside the function
block).

Control module editor (for
access inside the control
module).

Global variable

Application level. Can be
accessed from anywhere in
the code within an
application, except from
diagrams. An object that
intends to use a global
variable must declare an
external variable locally that
will point at the corresponding
global variable.

In the application editor. See
also Communication in an
Application Using Global
Variables on page 98.

3BSE035980-511

83

Variable Entry

Section 1 Basic Functions and Components

Table 5. Variable types in Control Builder. (Continued)

Variable type

Scope

Where to declare

Access variable

Network level. Variable that
can be accessed by remote
systems for communication
between controllers. See also
Access Variables on page 95
and Communication between
Applications Using Access
Variables on page 97.

Access Variable editor of a
controller.

Communication
Variable

Network Level. Variable that
can be accessed by remote
systems for communication
between applications and
controllers. See
Communication Variables on
page 99

Editor for top level Diagram,
Program, or top level Single
Control Module.

Variable Entry

Control Builder helps the user to declare variables in applications, programs,
function block types and control module types. This section covers the entries:
Name, Data Type, Attributes, Initial Value and Description.

Name

It is recommended that variables are given simple and explanatory names, and that
they begin with a capital letter. Names consisting of more than one word should

have capital letters at the beginning of each new word. Examples of recommended
variable names are DoorsOpen, PhotoCell.

Certain names, however, are reserved by the system and cannot be used for other
purposes, for example true. An error message appears if such a word is used. For
naming guidelines and information on relevant tools, refer to the System S00xA

Control AC 800M Planning (3BSE043732%).

84

3BSE035980-511

Section 1 Basic Functions and Components

Variable Entry

Data Types

A data type defines the characteristics of a variable type. There are both simple and
structured data types in Control Builder. A variable of simple data type contains a
single value, while a structured data type contains a number of components of
simple or structured data types.

Table 6 presents the most common simple data types and the initial value when the

variable is declared.

Table 6. Simple data types

Data type Description Bytes aII_ocated Initial value
by variable (default)
bool Boolean 4 False, O
dint Double integer 4 0
int Integer 4 0
uint Unsigned integer |4 0
string(” Character string(z) 10 bytes + string “
length [n]
word Bit string 4 0
dword Bit string 4 0
time Duration 8 T#0s
date_and_time(") |Date and time of |8 1979-12-31-
day 00:00:00
real Real number 4 0.0

(1) Itis allowed to use variables of string and date_and_time also in SIL3 applications; however, the
result must never influence the safety function of a SIL certified application. The variables
cannot be send via safe peer to peer MMS, as SIL data.

(2) String length is 40 characters by default, but can be changed by entering string[n] as the data
type, where n is the string length. The number of bytes allocated for string[40] will be (40 +10)
50. The maximum string length is 140.

3BSE035980-511

85

Variable Entry

Section 1 Basic Functions and Components

®

®

Comparison of variables of unsigned data types (uint, word, and dword) will not
work properly if the most significant bit is set. Internally, they are handled as
signed, where the most significant bit is used as the sign. This means that a word
variable with a value above 32767 will be considered to be smaller than a word
variable with a value below 32768.

When declaring variables or parameters of the data type string, always define the
required length within square brackets (for example, string[20]), to minimize
allocated memory. If the string length is not defined, then Control Builder
automatically allocates memory for a 40 character string length.

Use variables of data type string with care. Strings occupy a great deal of
memory, and require much execution time to be copied or concatenated.

A structured data type contains a number of components of simple or structured data
type. For bidirectional communication using structured data types, a reverse
attribute must be set to indicate which components communicate in the opposite
direction (see also Bidirectional Communication Variable on page 104).

There are a number of predefined data types in Control Builder (for example
BoolIO and ReallO) that are structured data types. User-defined structured data
types can also be created, see Decisions When Creating Types on page 64.

The word “default” can be used as an initial value for a parameter in a control
module type or diagram type. This works for both simple and structured data
types. For a structured data type, the initial value “default” gives the default value
of the data types for all components.

This is useful when creating types; for input parameters of a structured data type
that do not have to be connected, and for output data types that do not have to be
connected.

More information is given in Control Builder online help. Search the index for
“structured data type”.

86

3BSE035980-511

Section 1 Basic Functions and Components Variable Entry

Attributes

Attributes are used to define how variable values should be handled at certain
events, such as after cold restart, warm restart, etc. Variables that are supposed to
hold values over several downloads must for example, have a retain attribute in
order to keep their values after a warm start. Any of the attributes in Table 7, can be
given to a variable. For parameter attributes see Table 8.

Table 7. Variable attributes

Name

Description

no attribute

The variable value is not maintained after a restart, or a download of
changes. Instead, it is set to the initial variable value. If the variable
has no initial value assigned, it will be assigned the default data type
value, see Table 6 on page 85.

retain

The variable value is maintained after a warm restart, but not after a
cold restart. Control Builder sets retain on all variables by default. To
override this, the attribute field must be left empty in declaration pane.

coldretain

The variable value is saved in the aspect directory, and retained after
warm or cold restart.(")

Coldretain overrides the retain attributes in a structured data type.

constant

The user cannot change the value online once assigned.

This attribute overrides the coldretain and retain attributes in a
structured data type.

hidden

The variable will be hidden for an OPC client connected to an OPC
server for AC 800M. This attribute is used for variable values not
necessary to a supervisory system.

nosort

This attribute suppresses the code sorting feature for control module
types. It is advisable not to use the nosort attribute if the user do not
know the data flow characteristics in detail.

state

This attribute will let the variable retain its old value between two
scans for control module types. The old and new value can be read by
adding :old and :new to the variable name.

3BSE035980-511

87

Variable Entry

Section 1 Basic Functions and Components

(1) When an application is downloaded the very first time, variables will get their initial data type
values, even though they have been declared with the attribute coldretain, and, that the controller
has done a cold restart. Hence, no variables can receive their coldretain values before they have
been stored in the aspect directory. Correspondingly, will variables that have been declared later
on, contain their initial values until they have been saved in the aspect directory.

Table 8. Parameter attributes

Name

Description

no attribute

The parameter value is not maintained after a restart, or a download
of changes. Instead, it is set to the initial parameter value. If the
parameter has no initial value assigned, it will be assigned the default
data type value, see Table 6 on page 85.(1)

retain

The parameter value is maintained after a warm restart, but not after a
cold restart.(V

coldretain

The parameter value is saved in the aspect directory, and retained
after warm or cold restart.(!)

Coldretain overrides the retain attributes in a structured data type.

hidden

The parameter will be hidden for an OPC client connected to an OPC
server for AC 800M. This attribute is used for variable values not
necessary to a supervisory system.

by_ref

This attribute is used for controlling the passed value. For in and out
parameters the value is usually copied into the called instance at the
invocation. But for non simple data types and strings it is time
consuming. In that case, a reference to the data instance is passed in
the function block call. This is achieved by setting the attribute of the
parameter to by_ref.

(1) These attributes are valid if the parameter is not connected, if connected it is the attributes of
connected variables.

ﬂ In case of power failure, SIL3 applications are restarted using cold retain marked
values which are periodically saved in the controller with a cycle time set by the

user.

88

3BSE035980-511

Section 1 Basic Functions and Components Variable Entry

ﬂ Coldretain is not allowed in SIL3 application on restricted parameters. This could
lead to a failing coldretain save and that the controller shuts down after a power
fail restart. A system alarm is generated if coldretain fails and the controller log
gives information on the problematic POU and variable.

It is possible to assign several attributes to a variable for example, retain, nosort,
and hidden can be assigned as (retain nosort hidden) attribute.

An intermediate variable (a variable which is automatically generated when
making a graphical connection between function blocks) in FBD or LD is always
assigned the attribute retain (even if the parameters on both sides of the graphical
connection have the attributes coldretain).

In addition to the general attributes, the data type editor supports two special
attributes for the components (see Table 9).

Table 9. Special attributes for data types

Name Description

displayvalue This attribute is applicable for a component in a structured data
type, which is used in the FD code block of a diagram. In the
FD code block, the online value label is not shown for graphical
connections of structured data type. However, if one of the
components of the structured data type is marked with the
displayvalue attribute, the online value label is shown for this
component.

Note: The displayvalue attribute can be assigned to only one
component in a structured data type. It also possible to assign
this attribute through a combination of other attributes

(for example, coldretain displayvalue, nosort retain displayvalue,
and so on). In this case also, only one component can have this
type of attribute (with displayvalue).

If a nested structured variable is used, the displayvalue attribute
is needed on each level down to the value that should be
shown.

3BSE035980-511 89

Variable Entry

Section 1 Basic Functions and Components

Table 9. Special attributes for data types

reverse

The reverse attribute can be used while declaring sub elements
in a structured data type. This attribute is used when declaring
structured data types that are intended to represent a
connection between different program organization units in the
applications. The signals in the connection can pass data in
different directions, and the reverse attribute specifies that the
direction of this signal (component) is opposite to the normal
flow (forward or backward).

It is an error if a sub element of a structured data type has the
reverse attribute and the sub element itself is of a structured
data type containing a reverse attribute at any sub level in that
sub element.

The reverse attribute affects the usage of control module
parameters, diagram parameters and communication variables.

Note: All components that have the reverse attribute must be
placed consecutively in the data type editor.

Restrictions with reverse attribute for Split and Join blocks
in FD code block

In the FD code block in Diagram and Diagram Type POUs, the
Split and Join blocks must not be used for structured data types
with reverse components.

Restrictions with reverse attribute for function blocks

If structured data type is used for communication between
function blocks, ensure that the type does not contain any
reverse components.

Restrictions with reverse attribute for data exchange
between control modules or diagrams using Access
Variables

It is also not possible to write to out direction variables using
Access Variables in Structured Text, even if the attribute is
reverse.

90

3BSE035980-511

Section 1 Basic Functions and Components

Variable Entry

Attribute Example

The following example tries to illustrate how a variable will be handled, depending
on different attribute settings. Suppose the variable valveC has the attribute

coldretain, valveR has the attribute retain and valve has no attribute. Also, suppose
that these three variables have the initial value = True (see Figure 27 for the variable

declaration).
Mame Data Type Attributes Initial “alue
1 |valweC biool coldretain true
2 |valveR biool retain true
3 |valve biool true
4

Figure 27. Three variables with different attributes settings

According to the attribute settings in Figure 27, the variables will be read or written
on different occasions in the given code example below, (read the comments under
each IF statement):

IF valveC THEN
(*Code in this position is only executed once after the very
first cold restart¥*)
valveC := false;
END_IF

IF valveR THEN
(*Code in this position is only executed once after a cold
restart*)
valveR := false;
END_IF

IF valve THEN
(*Code in this position is only executed once after a cold restart
and once after a warm restart¥*)
valve := false;
END_TIF

Note that execution does not have to take place during the first scan after restart, for
example, when IF valve is embedded in another IF statement.

3BSE035980-511 o1

Specific Initial Values Section 1 Basic Functions and Components

Variables and parameters should have the attribute retain, unless they are written at
each scan. When a change has been made to the application, the entire application
will be (warm) restarted and in doing so, variables without the attribute retain will
be set to their initial values, and there is a chance that the change will not be totally
bumpless. It is recommended that In and Out parameters to function blocks always
have the attribute retain.

More information is given in Control Builder online help. Search the index for
“attribute”.

Initial Values

It is possible to give the variable an initial value, which will be assigned to the
variable the first time the application is executed. This setting overrides the default
data type value. Table 6 shows default initial values for the most common data

types.

Descriptions

The description field describes and provides information about the variable. A short
descriptive text may include an explanation of the cause of a condition or a simple
event, for example “Pump 1 is running”. Since the description is not downloaded to
the controller, the size of the description is irrelevant.

Specific Initial Values

In the Control Properties aspect, the user has the possibility to set instance-specific
initial values for variables and parameters in a POU that are different from the ones
defined for the type. These values are compiled and applied to the instances when
Control Builder downloads the project to the controllers. Specific initial values can
be set for the following types of objects in the Control Structure:

* Applications (for variables and global variables),

* Program (for variables)

* Single control modules (for variables and parameters that are default-marked
and not connected)

* Control modules (for variables and parameters that are default-marked and not
connected)

92

3BSE035980-511

Section 1 Basic Functions and Components Specific Initial Values

* Function blocks (for variables and parameters with direction in or out, but not
for the direction in_out)
* Diagrams and instances of diagram types

Set Specific Initial Values

Specific initial values are set in Plant Explorer, via the Control Properties aspect in
the Control Structure. To enter an initial value:

1. Select the Control Properties aspect for the object.
2. Select the Properties tab.

3. Select the corresponding item with the Init_Val suffix, then enter the initial
start value in the Property Value field.

4. Click Apply.

If Control Builder finds errors when compiling instance-specific initial values
before download, Control Builder presents a dialog where errors can be corrected.

Priority Order

Initial values are applied in the following order:

1. Coldretain value from the latest saved set.

2. Instance-specific initial value (init_Val property).
3. Initial value declared in the type.

4. Default value of the data type.

3BSE035980-511 93

External Variables

Section 1 Basic Functions and Components

Retain Attributes—Effect on Initial Values

The retain attribute decides how initial values are applied.

Table 10. Application of initial values, depending on retain attributes.

Initial Value Applied

Attribute Situation (_Init_Val)
No attribute Cold restart download Yes
Warm restart download Yes
Retain attribute Cold restart download Yes
Warm restart download No

ColdRetain attribute

Init_Val will be applied at the very first download.

For all other situations, Init_Val will not apply if
there are saved coldretain values.

External Variables

External variables are not really variables, in the sense that they carry a value.
Instead, external variables work like parameters, that is, they point to a variable
value (in this case a global variable). In order for an object to reach a global variable
(located at the top of the application) it must use a pointer, or more specifically, an
external variable. By declaring an external variable inside an object, it is possible to
access global variables efficiently from a deep code design, without having to pass
variable values through parameters.

94

3BSE035980-511

Section 1 Basic Functions and Components

Access Variables

variable z

—

.\lparameter z
—

parameter z

value of z

{ 3

—

variable z [global]

~

—

~

~

™ @ valueofz
[external]

Figure 28. The variable z can be accessed deep down in the structure, using several
parameters. (Bottom): Using external (and global) variables, the variable z is

accessed directly, without having to use parameters.

Access Variables

Access variables are needed when the system works as a server. Allowed protocols
are MMS, COMLI, MODBUS TCP and SattBus. MMS and SattBus variables are
declared in the Access Variable Editor under the corresponding tab, COMLI and
MODBUS TCP variables under the Address tab. The variable name must be unique

within the physical control system.

Open the Access Variable Editor by right-clicking the ‘Access Variables’ icon under
the respective Controller and select Editor.

To limit the access to a variable, set the attribute to ReadOnly. If the attribute is
@ left blank, it is possible to both read and write.

3BSE035980-511

95

Access Variables Section 1 Basic Functions and Components

MMS
MMS variables can only be accessed by name.

An MMS access variable name can be up to 32 characters long and contain letters,
digits and the characters dollar($) and underscore(_). However, an access variable
name cannot begin with a digit or the dollar ($) character.

All data types for single and structured variables are allowed, with the exception of
ArrayObject and QueueObject.

To limit the access to an MMS variable, set the Attribute to ReadOnly. If the
attribute is left blank, both read and write is possible.

SattBus
SattBus variables can be accessed in three ways:
e Standard SattBus name such as Valve:

— the name must consist of exactly five ASCII characters, but may not begin
with a percentage sign (%).

* COMLI direct addressing (see Address),
* JEC 61131-3 standard representation for variables.
— IEC61131-3 address must be entered under the COMLI tab

Allowed data types for a single variable are, bool, dint, int, uint, real or string.
Whereas a structured variable does not allow string data type.

Address

Address variables can be accessed in two ways only, either direct addressing with
capital X and the number for boolean, or capital R and the number for registers (RO-
R65535 for PA controller and 65000 for HI controller) beginning with a percentage
sign or not, or according to IEC 61131-3 standard representation for variables.

Allowed data types for a single variable are bool, dint, int, or uint, whereas
structured variables must all be of same data type. A structured variable is allowed
to contain more than 512 booleans and contain more than 32 components of integer
data type. Overlapping areas are not allowed.

96

3BSE035980-511

Section 1 Basic Functions and Components Communication between Applications Using Access

Example

An access variable name "X0" is defined and connected to a variable which contains
544 Boolean components at octal address 0-1037. The next available address is then
1040 to ensure that areas do not overlap.

At least one of the variables in the access variable table has to be defined. For
missing variables, requested data of boolean data type will be returned with the
value False and requested data of integer data type will be returned with the value
"0". Writing to undefined variables is ignored.

Communication between Applications Using Access Variables

Two applications may communicate with each other via variables, but these
variables must be declared as access variables (see, Access Variables on page 95).
This also applies when two applications are downloaded to the same controller (see

Figure 29).
Controller Controller 1 Controller 2
Application 1 dle
> Application Application
Application 2

Figure 29. Variables for communication between applications must always be
declared as access variables.

When transferring access variables, it is important to use the same data type range
for the client (dint), as for the server (dint).

It is, however, possible to connect variables with different ranges, such as a dint
variable on the server and an integer variable on the client.

3BSE035980-511 97

Communication in an Application Using Global Variables Section 1 Basic Functions and

As long as the variable values are within the range of an integer, this will work, but
once the value goes outside the integer range, it will not.

If an access variable is the only user of a variable that is connected to an I/O

@ channel, this variable is by default updated every second. To update this variable
with another interval, create a statement that involves the variable, but is never
executed.

A statement that is never executed, but still updates the variable x could look like
this:
if false then
X:=X;
end_if;

Connect this program to a task that executes with the desired interval. The
variable is updated every time the task is executed.

Communication in an Application Using Global Variables

In Programs

Global variables are declared at application level, in the Global Variables tab of the
application editor. They can be accessed directly, without any declaration in the
program editor. Variables that are not declared in the declaration pane in the
program editor are assumed to be global variables. A global variable can be used in
any program, without having external variables declared in a program.

In Function Blocks or Control Modules

In order to reach a global variable from either a function block type or a control
module type, each type must have either an external variable declared or a

parameter. Thus, the types access the global variable value by using an external
variable or a parameter to point at the global variable located in the application.

98 3BSE035980-511

Section 1 Basic Functions and Components Communication Variables

Communication Variables

The communication variables are used for cyclic communication between top level
diagrams, top level single control modules, and programs, in the system network
that uses MMS communication protocol.

ﬂ Communication variables can be used in SIL 1-2, SIL3, and Non-SIL
configurations.

Communication variables are declared in the Program editor, top level Single
Control Module editor, or top level Diagram editor. Communication variables
support both inter application communication and inter controller communication in
a system network.

ﬂ Communication variables are not supported in distributed applications. If an
application that contains communication variables is running in a controller, it is
not possible to download the same application to another controller.

A communication variable can be either a communication input variable or a
communication output variable.

If the direction of a communication variable is in in a POU, the POU can read the
variable, but cannot write to the variable. If the direction of a communication
variable is out in a POU, the POU can write to the variable and read the variable.

A communication variable can be either an elementary type or a structured data
type. It cannot be a generic or built-in type.

If a communication variable is of structured data type, it must not contain
@ components that are declared with the CONSTANT type qualifier and it must not
contain CONSTANT components at any sub-level of the variable.

Communication variables use a name based resolution to connect a communication
output variable to one or several communication input variables.

In a system network with Non-SIL configuration, all communication output
variables must be declared with unique names.

In a system network with SIL1-2 or SIL3 configuration, all communication output
variables must be declared with unique names and unique IDs.

Communication variables cannot be connected to the channels of an I/O unit.
Therefore an application code has to be entered to transfer values between
communication variables and local variables, which are connected to 1/O.

3BSE035980-511 99

Communication Variables Section 1 Basic Functions and Components

Declaration pane for communication variable

The declaration pane for communication variables consists of:

Name

The name of the communication variable. For communication output variables
(direction - out), the name must be unique on the network to resolve the
IP-address during compilation.

Data Type

The supported simple data types are Bool, Dint, Uint, Int, Dword, Word, Real,
and String. The data types Time and Date_and_time are also supported. The
string data type is not used in SIL3 communication and it is not allowed to
declare a communication variable of type string in SIL3 or with Expected SIL
set to SIL3.

Structured data types having components of simple data types are also
supported, with maximum size of 1000 components or 1400 bytes for non-SIL
communication, and 78 bytes for SIL. communication. Each component
occupies different size depending on type (bool 1 byte, uint int word 2 bytes,
dint dword real 4 bytes). In SIL, all components of the structured data type
must have a configured ISP value.

Communication variable with a structured data type can also be nested inside
another structured communication variable.

Attributes

Possible attributes to specify are:
— retain

— coldretain

— hidden

— hidden retain

— hidden coldretain

If no attribute is specified when the communication variable is declared,
retain is filled in automatically by the editor.

Direction

The possible values are in or out. If no direction is specified when the
communication variable is declared, in is automatically filled in by the editor.

100

3BSE035980-511

Section 1 Basic Functions and Components Communication Variables

Initial Value

An initial value is assigned to the variable when the application is executed first
time. This setting overrides the default data type value.

In a SIL application, ISP Values are set initially instead of the Initial Value.
ISP Value

Applicable only to communication input variables. This field defines the ISP
(Input Set as Predetermined) value to be set for the in variable. This value can
only be set for simple data types. For non-SIL applications, if no ISP value is
specified, the default value is the last good value, or if no last good value exists
(because of no communication), the init value is applied.

ISP values are mandatory in SIL applications.

For structured data types, the ISP values can only be set in the data type for
each individual component (in the Data Type editor). Hence, it is not possible
to configure instance specific ISP values for structured data types.

ISP could be used in a structured variable to detect communication failure or
bad quality, by using a Boolean Valid component with ISP set to false.

Interval Time

Communication cycle time for peer-to-peer communication. The possible
values are fast, normal, slow, very fast, and very slow. The default value is
normal.

The time interval (in milliseconds) for each of these cycle times is defined in
the hardware editor for IAC MMS in the Control Builder. The IAC MMS
object is located at position 5.1 under the controller object in the hardware tree
in Control Builder.

IP Address

Applicable to communication input variables, and also applicable for
communication output variables if bidirectional. This field defines the IP
address of the controller that contains the corresponding communication output
variable (with the same name) in any of its applications.

When no value for the IP address is entered, the editor automatically fills in the
default value auto. This means that the IP address is resolved during
compilation.

3BSE035980-511

101

Communication Variables Section 1 Basic Functions and Components

However, it is not possible to resolve the IP-address during compilation if the
in- and out-variable resides in different 800xA systems in the network.
The IP-address must then be entered manually in this column.

Unique ID

Applicable to SIL applications. It is also applicable in a non-SIL application,
when reading data from higher SIL. Unique ID is an integer (32-bit unique
identifier) that logically connects an in variable to an out variable. Ensure that
the value of the UniquelD is unique on the entire network. An in variable with
a certain UniquelD can only read from an out variable with the same
UniquelD. This field therefore provides an additional safety feature, apart from
the unique name of the communication variable. The default value for Unique
ID is 0. This value is not accepted for SIL communication, and valid value for
the unique ID must be set.

Even if the in variable is located in a SIL3 or SIL2 application and the out
variable is located in a non-SIL application, the Unique ID must be specified
for the SIL3 or SIL1-2 communication variable.

Even if the in variable is located in a non-SIL application and the out variable
is located in a SIL3 or SIL2 application, the Unique ID must be specified at
both ends.

ExpectedSIL

Applicable to communication input variables, and also applicable for output

variables if bidirectional. ExpectedSIL specifies the expected SIL of the server

application that holds the output communication variable. The client checks if

the ExpectedSIL matches with the SIL in the received response (if included).

The following values can be selected for ExpectedSIL:

— Same - can only be used if client and server have the same SIL. This is the
default value.

— Non-SIL - used if in variable is located in SIL2 or SIL3 and out variable
is in non-SIL.

— SIL2 - used if in variable is located in non-SIL or SIL3 and out variable
is in SIL2.

— SIL3- used if in variable is located in non-SIL or SIL2 and out variable
is in SIL3.

102

3BSE035980-511

Section 1 Basic Functions and Components Communication Variables

* Acknowledge Group

Applicable to communication input variables, and also applicable for output
variables if bidirectional. Acknowledge group is used to categorize the
communication variables in different groups for acknowledgement purpose
after their ISP values get latched. This avoids unexpected restart of
communication after fault detection. The possible settings are auto or a

group ID.

— auto - The communication resumes automatically after the error situation
is resolved. This is the default value for non-SIL applications.

— Specifying a group ID - This enables the communication variable for an
acknowledgement after fault detection. For SIL1-2 or SIL3
communication, the default value is zero, which is not allowed in a SIL
application. Therefore, it is mandatory to configure the Acknowledge
Group to a value (either auto or a specific group ID). If a group ID is
specified, the acknowledgment is performed through the CVAckISP
control module, for a particular group or cascaded groups.The CVAckISP
control module is available in BasicLib.

A maximum of 32 Communication Variables can be grouped together with the
same group ID per application. This is also checked during application
compilation.

One control module instance of CVAckISP is used to reset all the latches in one
group of communication variables. If several such groups are to be reset
simultaneously, the control module instances of CVAcKISP for each group may
be interconnected in a cascade configuration. The reset order is distributed to
all members in the configuration.

* Description

User documentation of the variable.

Source and Sink for Communication Variables

The term ‘source’ is used for the POU that declares a communication output
variable. The term ‘sink’ is used for the POU that declares a communication input
variable.

If a sink is located in one application, a source can be located in any of the
following:

3BSE035980-511 103

Communication Variables Section 1 Basic Functions and Components

* In the same application as the sink.

* In another application but in the same controller as the sink.
* In another application and in another controller.

Multiple sinks can be linked to the same source.

For example, for every communication output variable with a unique name, there
can be multiple communication input variables with the same name as the
communication output variable. The communication input variables can reside in a
different POU, in a different application, or in a different controller.

There is no need to declare the location of the source (communication output
variable) while configuring the sink (communication input variable). This is because
the binding between them is based on the name of the communication variable.

The Control Builder checks whether the name of a communication output variable
is unique in the 800xA System, only during the download of the application. The
download is aborted if the variable name is not unique.

Unresolved Communication Variable

A communication input variable is unresolved if there is no communication output
variable (source) with the same name, during compilation.

The Control Builder allows the execution of an application that contains
unresolved communication variable. When a reconfiguration of the system is
done (for example, at a warm restart), the source can be created and the
unresolved communication variable becomes resolved.

A resolved communication variable does not become unresolved if the source is
removed. It gets unresolved the next time, when that particular application is
reconfigured.

Bidirectional Communication Variable

Bidirectional communication variables have communication in both directions and
can be configured for one-to-one connections only. These variables can be created
for structured data types only.

104

3BSE035980-511

Section 1 Basic Functions and Components Communication Variables

The configuration parameters that are used for the in variables can also be specified
for the out variables, if bidirectional. This allows the configuration of a
communication variable with a different communication setup in either directions
(for example, different interval times).

Reverse attribute

For bidirectional communication using structured data types, a reverse attribute
must be set to indicate which components communicate in the opposite direction to
the in/out declaration of the communication variable.

ﬂ The reverse attribute is configured in the data type editor.

The reverse attribute can only be set such that all in variables are located
consecutively and also all out variables are located consecutively in memory.
Hence, it is not possible to configure reverse for every other component in a data

type.

The reverse attribute can be set in both top level and sublevel of a structured data
type, but cannot be nested.

This means, the reverse attribute cannot be set for a structured data type component
Struct? inside a structured data type Structl. But, Struct2 can have reverse
components inside it.

For example, for a ControlConnection data type, which consists of one forward
structure and one backward structure, the reverse attribute is set on the whole
backward structure. All components in the backward structure inherits the reverse
attribute automatically.

Interval Time

Out of the five different cyclic categories (VerySlow, Slow, Normal, Fast, VeryFast),
the default interval time for a communication variable is Normal.

The interval time for a communication variable can be changed only when the
Control Builder is offline. The changes takes effect during the download.

The time interval (in milliseconds) for each cyclic category is defined using the
hardware editor for JAC MMS. The IAC MMS object is available at position 0.5.1
under the controller object. Position 5 contains the IP object.

3BSE035980-511 105

Communication Variables Section 1 Basic Functions and Components

Hardware Simulation with Communication Variables

It is possible to use hardware simulation for IAC, except when the client is a real
(non-simulated) HI controller.

A HI controller, which is a non-simulated IAC client, only accepts data from a
non-simulated server and that is not a soft controller. If a server is found to be
simulated, ISP is set for the communication variable.

In a PA controller, which is an IAC client, the data from a simulated server is copied
in to the application, but the status of the communication variable shows that the
server is simulated.

When using hardware simulation, the communication variables use real
communication and real copying of input variables. This is also the case when
downloading a simulated AC 800M to a Soft Controller.

Application Download

The communication variable configuration is downloaded when the application is
downloaded to the controller. It is possible to download an unresolved In (or
bidirectional) communication variable, even though the communication will not
happen. To resolve an unresolved communication variable that already exists in a
controller, the new configuration with the Out variable must be downloaded.

When an out variable is removed, only in variables that are defined in applications
which are downloaded, shows communication variables as unresolved. Other
communication variables (in other applications) will timeout.

To support multi user engineering, all the affected controllers are reserved during
last step of the communication variable analysis, until the configuration is
downloaded.

106 3BSE035980-511

Section 1 Basic Functions and Components Control the Execution of Individual Objects

Communication from Lower SIL to Higher SIL using Diagrams

For communication between different applications, the only way to use a signal
from a server application with lower SIL (lower than the SIL of the client
application) is by using a graphically connected communication variable reference
in the FD code block of a top level diagram. This means that the FD code block in a
diagram is the only code block in Control Builder that supports a lower SIL signal
input.

Compared to an ordinary communication variable reference, there are two
differences for this type of communication variable:

* Itis displayed in yellow.

* The Expected SIL value is also displayed as a label below the object.

The indication is shown in both Offline and Online modes.

add:1
cvlowerSIL add
dint — N —
MenSIL wl={IN2

Figure 30. Communication variable with lower Expected SIL displayed in yellow

Control the Execution of Individual Objects

Sometimes there is a need to execute specific sub function blocks and/or sub control
modules, with a time interval and priority different from the task connected to the
application. Depending on the requirement, this can be done in two ways:

1. To create a new task and connect this task to all the following objects, read the
sub-section 'Using a Global Variable Connected to an External Variable on
page 108.

2. To choose a new task for each individual object (and for that object only), read
the sub-section 'Using a Global Variable Connected to a Parameter on page
109.

3BSE035980-511 107

Control the Execution of Individual Objects Section 1 Basic Functions and Components

Using a Global Variable Connected to an External Variable

Assume that the user has added a new task, for example SuperFast, to the other
tasks in the Project Explorer.

Steps to use global variable:

1. Declare a global variable (for example Speed) of data type string, with the
attribute constant and the initial value 'SuperFast'.

2. To reach objects that have been created in the application, start by declaring an
external variable in the type (open the type editor and select the external
variable tab).

3. Declare an external variable with the same name, data type and attribute as the
global variable. In this example, an external variable called Speed of data type
string and with the attribute constant is used.

Finally, connect the new task SuperFast to the object by right-clicking the object
and selecting Task connection. Type the variable name Speed in the task field. All
the following objects that are created will have this task connection, that is,
SuperFast.

The advantages with this method of using a global variable connected to an external
variable (declared in the type) is that every following object will be connected to the
same task (SuperFast). If the user later on need to change the task connection for all
the objects (perhaps hundreds of objects), change only the initial value for the global
variable in the application (see Figure 31). The present task connection for all
objects will point, via the external variable to the task declared by the global
variable.

108 3BSE035980-511

Section 1 Basic Functions and Components Control the Execution of Individual Objects

Tasks Global variable
SuperFast = 2/’/ Speed initial value = ‘SuperFast’
-
- /

Fast - ////// type

@ P P < 4 External
Normal 7 s variable = Speed

e

p 7 , 7 objects

Slow Y Task connection = Speed

7
t y 3 Y on the first created object.
/
/

Current task is SuperFast
SuperSlow / for all following objects. /
ST
Figure 31. All objects will have the same task connected (SuperFast), once the first
object has connected Speed.

Using a Global Variable Connected to a Parameter

Assume that the user has added a new task, for example SuperSlow, to the other
tasks in the Project Explorer.

The main advantage of this method, compared to the previous method with external
variables, is that the user can change the task connection on each following formal
instance, by simply connecting a parameter to a different global variable. (See
Figure 32).

Q For more information on formal instances, see Types and Instances - Concept on
page 42.

This method is based on declaring two global variables (for example, Slowly and
Learning) of the data type string, with the attribute constant, and the initial values
'SuperSlow' and ‘Slow’, respectively.

In order to reach the following objects that have been created in the application, start
by declaring a parameter in the type (open the type editor and select the parameter

3BSE035980-511 109

Control the Execution of Individual Objects Section 1 Basic Functions and Components

tab). Declare a parameter, for example Sleepy, of data type string. Select the formal
instance (object) inside the type:

1. Right-click the object and select Property > Task connection.
2. Type Sleepy in the task field.

Every created object that is based on the type (containing the formal instance) can
be connected via the connection parameter Sleepy and one of the global variables
Slowly or Learning, located in the application.

Tasks Global variables

SuperFast _ Slowly with initial value = ‘SuperSlow’
Learning with initial value = ‘Slow’

Fast type

- -
~
e
~
Normal -~
et

Slow

.

SuperSlow

Parameter = Sleepy

formal instance/D

Task connection = Sleepy
on the formal instance.

object1 Ewleepy connects = Slowly

object2 Sleepy connects = Learning
Current task is SuperSlow \:I

Current task is Slow

Figure 32. Each object can be connected to a different task via the parameter Sleepy
declared in the type and task connected in the formal instance.

The advantage of this method is that the objects of the formal instance, located
inside the type can be connected to different tasks (global variables with a different
task name as init value).

110

3BSE035980-511

Section 1 Basic Functions and Components Link Variables in Diagrams

Link Variables in Diagrams

For a graphical data connection in a diagram editor, it is possible to set a
link variable. A local variable of the same data type as the connected ports can be
used.

To create a link variable, right-click the required graphical connection to open the
context menu, and select Link Variable. Enter the name of the link variable.

The link variable name is not displayed in the graphics; it is only visible if you open
the Link Variable dialog.

Normally, link variables are not needed. The compiler auto-generates variables
when necessary. But, if it is needed to access the intermediate value via OPC, a link
variable is required. The declared link variables are available via OPC.

If an output port has multiple graphical connections, all these connections share the
same link variable (if any).

If a block has an in_out port that is graphically connected on both sides, both
connections share the same link variable (if any). This means that if several blocks
have graphically interconnected in_out ports and a link variable is set for one of the
graphical connections, the link variable is forwarded and set to all the graphical
connections in the in_out chain.

Project Constants

Project constants are declared at the top level of libraries and projects. They are
globally visible, and can be used wherever a constant value is permitted, for
example, in program code and for variable initialization. With project constants, it is
possible to create settings for an individual project, without having to modify any
source code, or having to introduce parameters which have to be passed on to all
concerned types.

Project constants are suitable to use for library items that the user wants to change.
Examples are, date and time formats, logical colors and logical names. Do not use
project constants to change the functionality of an object, for example, initial values
and comparisons in code.

Typically, project constants are declared in a library and given default values. They
are then used, for example, in code located inside types.

3BSE035980-511 111

Project Constants Section 1 Basic Functions and Components

Project constants are allowed to have the same names as variables and parameters.
Control Builder will, however, choose the variable or parameter name if a name
conflict exists. This must be considered when adding, renaming or deleting
variables or parameters in an already running application.

Follow the naming convention, which says that project constants should begin
with the letter “c” (for example “cColors”). Use structured project constants, if
possible.

Note that project constants cannot be used to control the execution of function
blocks or control modules. Use a global variable or a parameter instead. For more
information see, Control the Execution of Individual Objects on page 107.

If a project constant connected to a retain parameter (or variable) is changed
online, then the change does not effect on existing instances until a cold restart is
performed.

Project constants declared at library level (user-defined libraries) can only be edited
and deleted from the library, that is, they cannot be deleted from the Project constant
dialog that is reach by right-click the control project folder (root object). To edit or
delete a library-declared project constant, right-click the library in Project Explorer
and select Project Constants.

Naming conflicts between project constants appears when the same project
constant name exists in more than one library at the same time.

The only way to avoid a naming conflict is either to delete one of the constants or
not using the constant at all. A type conflict can never be overridden.

Structured Project Constants

It is advisable to create one single structured project constant for an entire project or
library, where the project constant name is a concatenation of “c” and the project
name (or library name).

An example:

If the project name is “ACMEToothpaste”, the structured project constant should be
named “cACMEToothpaste”. Using a structured project constant makes sure that
there is little chance of conflict with variable and parameter names. Using a
structured project constant (“cACMEToothpaste”) enables the user to, for example,

112

3BSE035980-511

Section 1 Basic Functions and Components Project Constants

use “Max” without causing problems due to a variable or parameter called “Max”,
since the full path to the project constant “Max” would be
“cACMEToothpaste.Max™.

Define only one project constant per library. This project constant can, and should,
be a structured project constant the concatenation of “c” and the library name in
which it is contained. For example, if the library name is “ACMEValveLib” the
(structured) project constant should be “cACMEValveLib”.

ﬂ All project constants defined in libraries and projects must have been given
unique names.

Typical Use
There are two typical use cases for project constants:
1. To satisfy the need for constant values in all project applications.

Some values might have to be constant throughout the entire project. To change
such a “constant” value, change it once. There is no need to change it at every
occurrence. For such cases, use a project constant. The project constant is
defined in one place only, and can be used throughout the project. Changes to
the project constant will be reflected throughout the project.

An example:

To be able to change the severity for all “High level alarms” in the entire
project, set up a project constant that defines the severity and use the project
constant in all alarm blocks in all applications. To change the severity, just
change the value of the project constant.

In this case, project constants should be defined on control project level, not in
a library.

2. To be able to change library type solutions without having to make changes in
the library itself.

A method commonly used in control application engineering/programming is
to construct libraries, in which re-usable code is placed. It is good practice to
make the library as general as possible, to maximize its usefulness. The use of
project constants is an excellent solution for such situations.

3BSE035980-511 113

Project Constants Section 1 Basic Functions and Components

Example 1: Easy Translation

Assume that the user has created a library that makes extensive use of text strings.
Instead of including strings (in the user’s native language) statically in the library,
use project constants. This allows another engineer to change the values of these
project constants and to translate the strings to another language.

For example, a project constant that was originally set to “Stop” can easily be
translated by a German engineer to “Halt”, simply by changing the value of the
project constant. This would not be the case if the user had typed “Stop” in the
library. Such string constants that are to be translated are best stored as a structured
project constant under the component .Settings.

The string “Stop” would, for example, be defined as the structured project constant
“cACME ValveLib.Settings.StopLabel” or, even more levels;
“cACME ValveLib.Settings.Labels.Stop”.

Example 2: Combination of Dynamic and Static String Constants

Consider the following function block, in Figure 33, that controls high alarms.
Signal is of ReallO type, Alarmlevel is of real type, and Message is of string type.

Signal —

AlarmCond

Message —

Alarm level —

Figure 33. The function block AlarmCond located in the Alarm library.

Now, we want a “customized” message to be passed to Message, such as
High Level (> 75 °C)

The message consists of five important elements that make up the message.

1. “High Level”

2. “(> “(note the spaces)

114

3BSE035980-511

Section 1 Basic Functions and Components Project Constants

3. 75 (avalue set by Alarm level)

4. °C (a value set by Signal.parameters.unit)

5.9

All in all, three strings (1, 2, and 5) and two values (3 and 4).

Defining these 3 strings locally would be poor design, since the strings would be
defined for every object that is created from the type. To create a dynamic
environment, use project constants, or, more specifically, structured project
constants.

In the example above, we actually have different string categories — “High Level”,
6‘(> 13 and 6‘)’,.

The first one is a (dynamic) string that a user may want to translate, depending on
target customer nationality, whereas the other two are static and independent of
language. This calls for two different views of project constant.

Using structured project constants, and the naming convention mentioned earlier in
this section, a defined structured project constant for “High Level” could be:
cACME ValveLib.Settings.HighLevelLabel.

As described in the first example (Example 1 above), we make use of the component
“Settings” in the structure. Underneath this component, we define the constants that
are to be translated, or changed, depending on circumstances.

Next, we define the structured project constant cACMEValveLib.Internal.Str1 and
cACME ValveLib.Internal.Str2 to contain “(> “and ““)”. Note the component
“Internal”, which implies that components (constants) under this level are not to be
changed by the user. Of course, the user can use the structure
cACMEValveLib.Settings.Labels.HighLevel, as described earlier, if the user prefers
more levels.

3BSE035980-511 115

I/O Addressing Guidelines Section 1 Basic Functions and Components

I/0 Addressing Guidelines

A good 1/0 variable structure is the key to being able to debug and change an
application. A good structure also makes the connection of the application to system
I/O easier to read and understand.

Below are some hints and tips to ensure that the I/O connections have a good
structure.

* A good I/O connection structure requires a good application program structure,
and also a realistic translation of the process to be controlled, into the
application program.

e Try to collect I/O of the same process object in the same controller, and even in
the same object in the application program.

* Try to divide the application program into process cells, with contents similar
to the real process.

These hints are basic rules for object-based programming for real processes, and
once the application has a good structure, it is easier to divide I/O signals into
groups or cells of the process.

116 3BSE035980-511

Section 1 Basic Functions and Components Connecting Variables to I/0 Channels

Connecting Variables to I/0 Channels

Only one variable can be connected to each I/O signal, and vice versa. This is not a
problem for output signals, but for input signals it may be necessary to read the
same input signal from different programs, or even from different places in the same
program. This can be done by placing the connected IO variables in a common area,
for example, in the application. Then the variables can be read by the program(s).

Note that the result of an IO copying is different depending on whether the
parameter is IN or IN_OUT. An IN parameter will result in a copy of the value,
whereas an IN_OUT parameter will result in a reference to the current value. While
different tasks can copy the same I/O signal, a task with a higher priority may
update the signal value in the middle of a scan. See also Function Block Execution
on page 70 and the information on connected I/O channels in a task in the System
800xA Control AC 800M Planning (3BSE043732%).

If the same I/O signal must be read by different applications, the I/O copying must
be done from one of the applications. The copied value can then be moved to other
applications through ordinary communication services. See also Communication
between Applications Using Access Variables on page 97.

The address for a hardware unit is composed of the hardware tree position numbers
of the unit and its parent units, described from left to right and separated by dots.
For example, channel 1 on the I/O unit DO814 in Figure 34 has the address
Controller_1.0.11.1.1.

Figure 34 illustrates an example of a controller hardware position.

3BSE035980-511 117

Connecting Variables to I/O Channels Section 1 Basic Functions and Components

=[] Controllers
[T Controller_1 (172.16.54,124)
+ Connected Applications
Controller_1 + Connected Libraries

Hardware pos. 0 \;ﬂj Hardware AC S00M
S 0 PM364 [TPE30

Position 11
. - ZF Reader
Unit 11.1 1 Ethernet
2 Ethernet
Channel 1 3 com
+- 4 Cam = Controller_1.0.11.1.1

MaoduleBus

2 DISO

Figure 34. An example of how 10 channel addresses are created in a control project.

All I/O access is done via variables connected to I/O channels and these variables
are connected in the hardware configuration editor. The Connections tab displays all
channels that can be connected.

118 3BSE035980-511

Section 1 Basic Functions and Components

Connecting Variables to I/0 Channels

O =

I/0 Data Types

Variables connected to I/O can be of any of the simple data types, bool, dint, dword
or real, or any of the system-defined I/O data types. For example, an IO unit input
can be connected to a variable of bool data type or a variable of BoollO data type.
For applications that only require a simple channel value, it is enough to connect a
variable of simple data type. But for applications that need comprehensive
information like forcing IO channels, reading status, or validate analog channel
values, must connect variables that is of system defined (structured) IO data type.

It is possible to force I/O values, and display forced and non-forced values from
an engineering station, regardless of whether the channel is of a simple data type
or an I/O data type.

It is not possible to assign the forced component of a system defined I/O data type
in a SIL certified application, but it is possible to reset a specific force using the
firmware function ResetForced Value.

The user can always choose a variable that is of the simple data type bool, dint,
dword, or real, and connect it directly to the I/O channel, as long as the user is
content with a simple value in return. However, such a connection does not take
advantage of certain auxiliary signals which come with structured data types. A
predefined structured data type includes signals for I/O forcing, analog signal status,
maximum and minimum values, etc.

Always use In_Out parameters when writing to output I/O variables from a
function block. This will prevent unintentional overwriting of I/O variable
component values, such as scaling. Do not use Out parameters for this purpose.

Figure 35 presents as an example the available components inside the structured
data type BoollO.

MName Data Type Attributes Initial Value ISP Value |Description =
1 |Value bool retain displayval false Walue in the application
2 [IOValue bool retain false Value from /O before forcing
3 |Forced bool retain false Tells if the input is forced or not
4 [Status dword retain 16#00C0 16#00C0 |Error status
£ -
4 % Components | [3

Figure 35. Components inside the structured data type BoollO

3BSE035980-511 119

Connecting Variables to I/O Channels Section 1 Basic Functions and Components

A structured data type (for example, the BoollO data type) contains four
components. Declare a local variable MylOVar as a BoollO data type, and then
connect MyIOVar to an IO channel to automatically access these four component
values at the same time.

By declaring a structured data type, more information can be accessed from the
@ IO channel, which can be read/written in code.

Declaring MyIlOVar as a simple data type, Bool, provides access to the channel
value. In other words, the user cannot read or write other values from the code.

When connecting a structured data type to an I/O channel, always connect the
data type (like MylOVar). Do not try to connect one of the components inside
(like Value, 1/O Value, Forced etc.) directly on the I/O channel.

Table 11 shows the (hardware editor) entries to different IO channels. The Type
column presents the IO channel data type in the hardware editor, whereas the
Variable column presents possible data type connections (simple, structured).

Table 11. Possible variable (data types) connections to 10 channels.

Channel |Name Type Variable

IX, QX Boolean. input (1X) and BoollO bool, BoollO
output (QX)

W, QW Non-boolean. input (IW) and | ReallO real, ReallO
output (QW)

W, QW Non-boolean. input (IW) and | DintlO dint, DintlO
output (QW)

W, QW Non-boolean. input (IW) and | DwordIO | dword, DwordlO
output (QW)

IWo, QWO | (WAl Inputs, All Outputs DwordIO | dword, DwordIO

IWO0 Channel status DwordlO | dword, DwordlO

IWO0 UnitStatus HWStatus | dint, HWStatus

(1) ISP and OSP values are not set for variables connected to All Inputs/All Outputs!
For more information see also Access All Inputs and All Outputs on page 362.

See Figure 36 and the corresponding structured data types in Table 11.

120 3BSE035980-511

Section 1 Basic Functions and Components Connecting Variables to I/0 Channels

Channel Mame Type Yariable 10 Description -
[+0.11.21 Input 1 BoollO Anplication_1.Program? MylObar I
PO.1122 Input 2 Huall0 4
M01123 Input 3 Boall0 /

/
Settings Cu;mémiuns A Properties A Status A Unit Statys / K | b
7
/ Row 1, Col 3 B00xainstaler
/
IO channel of type boolIO. MyIOVar of BoollO (correct connection).

Figure 36. A correct way of connecting 10 variables. The structured data type
MyIOVar connected to an 10 channel.

Example of /0 Channel Representation

The IO channel in Figure 36, IX0.11.1.1, interpreted from Table 11, gives the
following: IX is a Boolean input, whereas 0.11.1 represents the hardware address
and .1 represents the I/O channel.

Monitoring the Status for Hardware and 1/O

UnitStatus is a hardware connection to individual hardware and I/O units in the
Project Explorer. The user can connect a variable to Unit Status by selecting the
Unit Status tab in the hardware editor.

If the user chooses to connect a variable to Unit Status this must be either of a dint
data type or of an HW Status structured data type. The simple data type dint will
return one of the unit status value 0 (OK), 1 (Error) or 2 (Warning). Whereas, a
variable of HWStatus provides more extended unit status information. See the
contents inside the Unit Status tab in Figure 37.

3BSE035980-511 121

Extensible Parameters in Function Blocks

Section 1 Basic Functions and Components

MNarne alue Description -
HW\'State W arning

HYWstateChangeTime 2004-08-16-14:03:58 |Tirme when ertor ar warning occurred
ErrorsAndWarnings 030

Extended=tatus 00

LatchedErrorsAndWarnings |0x100 Forced

LatchedExtendedStatus 00 "

% Settings A Connections A Properties A Status 2 Unit Status fﬂ

Row 1, Col 1

Figure 37. The components available inside the HWStatus.

In addition to the Unit Status there is a 'collective' hardware connection,
AllUnitStatus, which contains errors and warnings regarding all hardware units
connected to the controller.

Similar to Unit Status, the user can choose to connect a variable of simple data type
dint or a variable of the structured data type HW Status. The simple data type dint
will return one of the unit status value 0 (OK), 1 (Error) or 2 (Warning). Whereas, a
variable of HWStatus provides more extended unit status information.

Channel \Mame

Type

“ariable

IY0 Description a3

AllUnitStatus

dint

ShopDoors ST Mormal HardwareStatus [Status of all hardware units

Settings

Connections 4 Unit Status /7

Paw 1, Cal 3

Figure 38. The AllUnitStatus connection gives access to the status of all units.

ﬂ For information about supervising IO channels and unit status in online mode, see
Supervising Unit Status on page 359.

Extensible Parameters in Function Blocks

Some function block types have extensible parameters, such as MMSRead,
COMLIRead, etc. This means that the number of input/output parameters is
changeable, and must be specified while declaring the function block in the function
block tab.

122

3BSE035980-511

Section 1 Basic Functions and Components Keywords for Parameter Descriptions

The editor automatically inserts [1] when the user specifies a function block type
with extensible parameters. Change the number within the brackets to the required
number of parameters.

To see which function block types can have extensible parameters and the maximum
number of parameters for each type, see the Control Builder online help.

ﬂ In the Function Block Diagram (FBD) and Ladder Diagram (LD) languages, a
maximum of 32 extensible parameters per function block can be shown.

There is no support for online values on Extensible Parameters. No such values
@ will be presented in online editors or in the project documentation and
consequently it is not recommended to trust these values.

Keywords for Parameter Descriptions

Types that are located in standard libraries contain keywords in the description
column for parameters. These keywords help the user to organize the parameters
and document the purpose of parameters.

Table 12. Type description keywords.

Keyword Description

IN The parameter direction is IN (read).

ouT The parameter direction is OUT (write).

IN(OUT) | The parameter direction is both IN and OUT, but mainly IN (read).

OUT(IN) | The parameter direction is both IN and OUT, but mainly OUT (write).

NODE Applies only to control modules. Used to indicate that the parameter has
a graphical connection.

3BSE035980-511 123

Keywords for Parameter Descriptions

Section 1 Basic Functions and Components

Table 12. Type description keywords.

Keyword

Description

EDIT

Applies only to IN parameters. The parameter, which must have a value,
is only read following changes to the application, warm restart or cold
restart.

Be careful not to connect a variable to a parameter with the keyword
EDIT. Use a literal instead.

NONSIL

Some of the Certified Function Block Types and Control Module Types,
contains SILx Restricted sub-objects.

It is not allowed to use output parameters from Function Blocks or
Control Modules marked with Non-SIL in the parameter description in a
way that can influence the safety function of a SIL classified application.
If such code affects an output from a SIL3 application, it might result in a
Safety Shutdown.

124

3BSE035980-511

Section 1 Basic Functions and Components Property Permissions

Property Permissions

Parameters and variables that are not needed for HSI, configuration, etc., should
have the attribute Hidden, but for all other variables that will be exposed via the
OPC Server, property permissions must be properly set. Note that components
inside a data type should also have property permissions. The user can set
permissions from both Project Explorer and Plant Explorer.

The following five property permissions are the frequently applicable. However,
there are several other property permissions available, along with self-defined
property permissions.

* Read
e Operate
e Tune

* Configure
* Administrate
For more information about creating self-defined Property permissions, see the
@ System 800xA Administration and Security (3BSE037410%).

In some cases, there is also a need for setting authentication levels, besides the Read
and Write property permissions.

Re-authenticate

Re-authenticate means that the user will be asked for UserIld and Password before
changing the property.

ﬂ This function requires a separate license and is not available to all users.

Double Authenticate

Double authenticate means that two separate Userlds and Passwords have to be
entered before changing the property.

ﬂ This function requires a separate license and is not available to all users.

3BSE035980-511 125

Property Attribute Override Section 1 Basic Functions and Components

Set Property Permissions and Authentication Level

The property permissions and the authentication level can be set from both Plant
Explorer and Project Explorer.

To set permissions from Project Explorer:
1. Double-click the object. The corresponding editor opens.
2. Select Tools > Edit Permissions. The Edit Permissions dialog is displayed.

3. Click a variable under Property, and select (Read/Write) permissions and
authentication level from the drop-down menus.

The user can set the same property permission for several variables in one
operation, by selecting the variables (Ctrl + mouse click) and then select
permission from the drop-down menu.

4. Click OK.

Property permissions and authentication levels can only be set on variables and
parameters of simple data type. Hence, property permissions and authentication
level attributes for structured data types will display (N/A). Corresponding
settings for components must be repeated inside each Data Type.

Property Attribute Override

Property Attribute Override is an aspect that allows the user to override existing
property permissions and authentication flags on both types and objects, inside
libraries. For more information, refer to the System 800xA Administration and
Security (3BSE037410%) manual.

126

3BSE035980-511

Section 1 Basic Functions and Components Library Management

Library Management

From the user point of view, there are two main types of library:

* Standard libraries, that are installed with the product. These are protected and
cannot be changed.

* User-defined libraries, in which users can add their own types. Copies of
template types (data types, function block types, control module types, and
diagram types), from the standard libraries can be modified and also added into
the user-defined libraries.

The following operations are relevant to both library types:

» Libraries must be inserted into the control project in which they are used, see
Insert Libraries into Control Projects on page 130.

* A library that contains types for applications must be connected to all libraries
and applications that use types from the library. Libraries containing the
hardware types (units) used in the controller configuration have to be
connected to the controller. See Connect Library to Application, Library or
Controller on page 130.

* Alibrary can be disconnected from, an application, library or controller, see
Disconnect Libraries on page 132.

* Alibrary can be imported/exported to/from an 800xA system, see
Import/Export Libraries on page 133.

The following operations are relevant to non-standard libraries only, since standard
libraries are protected and cannot be changed:

* A new library can be created, see Create Libraries on page 133.
* The state of a library can be changed, see Library States on page 134.
* The version of a library can be changed, see Library Versions on page 135.

* Types can be added to a library, as long as its state is Open, see Add Types to
Libraries Used in Applications on page 139 and Add Customized Hardware
Types to Library on page 142.

* Alibrary can only be deleted if it is not connected to any application, library or
controller, or if any type is in use in any project in the system (see Delete
Libraries on page 133).

3BSE035980-511 127

Connect Libraries

Section 1 Basic Functions and Components

* A library can be password-protected, see Library Password Protection on page

138.

Connect Libraries

All libraries have to be present in the Library Structure in Plant Explorer, in order
for them to be connected to control projects, other libraries, and applications.

All AC 800M standard control software libraries are added to the Library Structure
when the AC 800M Connect is added to the 800xA system, see Figure 39. In Project
Explorer, libraries connected to a control project are stored in the Libraries folder,
while libraries connected to applications and libraries are stored in the Connected

Libraries folder, see Figure 40.

FE |(Enter search name) j |N0 Filter
"Ej Library Struckure j

BT

Aspects of ‘AlarmEventLib'

+ Q Alarm & Event Configurations, Alarm & Event Configuration Group A
+ Alarm Collection Definitions, Alarm Collection Definition Group
+ g Default Yiew Class, Default View Class

Q External Alarm Globals
+ E;‘ History Log Templates, History Log Template Library
= Q Libraries, Library Collection

+ @ AlarmEventLib, Library

+ @ Basiclib, Library

+ @ Batchlib, Library

-l COMLICommLib, Library

+ @ CommunicationLib, Library

+ @ ControladvancedLib, Library

+ @ ControlBasicLib, Library

+ @ ControlExtendedLib, Library

+ @ ControlFuzzyLib, Library

+ @ ControlSimpleLib, Library

+ @ ControlStandardLib, Library

+ @ ControlSupportLib, Library

+ @ Djormelib, Library

+- (il FFH1CommLib, Library

(il FFHSECommLib, Library

+ @ FireasLib, Library

+ @ GraphicTemplateLib, Library

+ @ GroupStartLib, Library

+ @ IconLib, Library

Figure 39. Libraries in Library Structure.

Library Definition
2 Library Structure
Library Type Reference

@Object Icon

Qo (il = | AlarmEventLib:Li

Identification l

Category: |Mame
AlarmEventLib

Mame:

Description:

128

3BSE035980-511

Section 1 Basic Functions and Components

Connect Libraries

=~ W Libraries

@ system

P AlarmEventLib 1.6-0

Y BasicLib1.7-2

[P ControlStandardLib 1.5-6

P ControlSupportLib 1.4-4

Y Iconlib14-0

[P ProcessObjBasicLib 2.5-1

P ProcessObjExtLib 2.5-0

W, Hardware

P BasicHwLib 5.1-1

P C1853SerialComHwLib 1.0-0

P CI854PROFIBUSHWLib 2.1-3

P s800CI801CIB54HWLIb 1.3-1

P s800CIB40CIB54HWLIb 1.3-1

P ssooloModulebusHwlLib 1.3-0
@ [SerialHwlib 2.0-9

@ Applications

ha .

O-&-F-8-F-0-0-8-5

B8008-8

-

= W Cennected Libraries

Y BasicLib1.7-2

[P ProcessObjBasicLib 2.5-1

i) ProcessObjExtLib 2.5-0
@) Dhagrams

= 4 Controllers

- 3 Controller_1 (172.16.0.0)

- @ Connected Applications

= @ Cennected Libraries
il BasicHwLib 51-1
i) CIB54PROFIBUSHwLIb 2.1-3
P s800CIB40CI854HwLib 1.3-1
il s800loModulebusHwLib 1.3-0

Figure 40. Libraries in Project Explorer

Libraries inserted
in the Project

Libraries connected
to the application

Libraries connected
to the controller

3BSE035980-511

129

Connect Libraries Section 1 Basic Functions and Components

Insert Libraries into Control Projects

A library always has to be inserted into the control project before it can be
connected to an application or a controller. To connect a library to a control project:

1. In Project Explorer, expand the Project folder.

2. Select the Libraries/Hardware folder, right-click it and select Insert Library.

Libraries can also be inserted in Plant Explorer. Find the project in the Control
Structure, select the Project aspect, select the Libraries tab, click Insert and
select the library from the Select a Library dialog box.

Connect Library to Application, Library or Controller
To connect a library to an application, a library or a controller:

1. In Project Explorer, expand the corresponding Library, Application or
Controller folder.

2. Select the corresponding Connected Libraries folder, right-click and select
Connect Library.

It is also possible to connect a library using drag-and-drop operation. Select the
library to be connected, and drag it to the required application, library, or
controller folder.

Replace Connected Library

A connected library can be replaced, for example, when the user wants to update to
a newer library version. Replacing to a newer version, results in that all instances of
a type in the new library will be used instead of the type in the old version.

To replace a connected library:

1. In the corresponding Connected folder, right-click the library and select
Replace Library.

2. Press the Yes button and select a library from the drop-down list in dialog box.

3. Click the Replace button to confirm.

130

3BSE035980-511

Section 1 Basic Functions and Components Connect Libraries

Library Usage

The Library Usage function displays the list of places where a library is used, and
where it is connected. For ordinary libraries the Library Usage function searches
applications and other libraries. For libraries with hardware, it searches controllers.

1. Right-click the library and select Library Usage as in Figure 41. The Library
Usage dialog box is displayed with list of applications where the library is
connected.

W& Control Builder M Professional - LibUsageTe
File Edit View Tools Window Help

Dz BB e]

=] y:?, LibllsageTest3
Libraries

+ a Syskem

oo

3 Andreasli & Reserve..

Basiclib 1 &2 Release Reservation...
- ELib 1.0-0 &P Take Over Reservation. ..
JClb L0 pp

Iconlib 1.
[E| Hardware Properties s
pplcations @) prjiect Constants
Applicatiol

B_App Docurnentation, ..
]

Ef] Cortrollers | @ Search alt+F12
Rebuild Search Data

¥ Remoye Del
Rename Fz2

Figure 41. Library Usage

3BSE035980-511 131

Connect Libraries Section 1 Basic Functions and Components

2. Select System to search all projects in Aspect Directory. Click Refresh as
shown in Figure 42 to see the library used in several projects.

Wi Library usage - ALib 1.0-0 |
- Search result
Path [Redation |
LiblsageTest1 The library s inserted in the project
LiblUsageTest3 The library s inserted in the project

LiblUsageTest1, Applications.Bapplication The library is connected to the application
LiblUsageTest1, Applications. Capplication The library is connected to the application

LiblUsageTests, Applications.&_App The library is connected to the application
LiblUsageTests. Applications.C_App The library is connected to the application
Libraries,Bib 1,0-0 The library is connected to the library
Libraries,CLib 1.0-0 The library is connected to the library

Mumber of hits: 8

[~ Search

© Current project

& System

= Hep

Figure 42. Library Usage dialog box when the System search option is selected

Disconnect Libraries

A library can only be removed if the library and its types are not used within the
system.

To remove a library from a control project:

* In the Libraries/Hardware folder, right-click the library and select Remove.
The library is removed from the control project, but it can be inserted at any
time, since it is still present in the Library Structure.

» If the Library is in use the following dialog box displays.

Remove Library |

@ The library is in use, it can not be removed, Do You wish to see where the library is used?

* Click Yes to see the Library Usage dialog box.

Libraries can be disconnected from both applications, libraries and controllers:

132 3BSE035980-511

Section 1 Basic Functions and Components Import/Export Libraries

* In the corresponding Connected folder, right-click the library and select
Disconnect (Library). The library is disconnected, but it can be re-connected
at any time, since it is still inserted to the control project.

Delete Libraries

Standard libraries cannot be deleted. Other libraries can be deleted only if they are
not connected to any application, library or controller. If you attempt to delete a
library with connections to other objects, you will get an error message.

To delete a library from the Library Structure:

1. In the Libraries, Library Collection folder, right-click the library and select
Delete.

Import/Export Libraries

Libraries can be imported to and exported from an 800xA system. This makes it
possible to develop libraries centrally, after which they can be added to other
engineering stations at other sites.

For detailed information on how to import/export libraries, see Import and Export
@ on page 389.

Create Libraries
To create a new library:

1. In Project Explorer, right-click Libraries or Hardware and select New
Library... The New Library dialog box is displayed.

FE New Library

M amne: ||

[ok][Eancel]

Figure 43. New Library dialog box

3BSE035980-511 133

Library States Section 1 Basic Functions and Components

2. Enter the name of the new library and click OK. The new library is created and
inserted into the control project. It is also inserted into the Library Structure in
Plant Explorer.

For information on naming conventions for libraries, see System 800xA Control
@ AC 800M Planning (3BSE043732%*), and AC 800M Library Object Style Guide
(3BSE042835%).

Library States

A library is always in one out of three possible states:

* Open
The contents of the library can be changed. This is the normal state for a library
when it is under development.

e Closed
The contents of the library cannot be changed. However, the state can still be
changed back to Open.

* Released
The contents of the library cannot be changed. However, in Plant Explorer the
state can be changed to Open, but with the Revision index of the version
number increased.

To change the library state:

1. In Project Explorer, right-click the library and select Properties>State. The
State dialog box is displayed.

Stake of TankLibl04 1.0-0
'@} Open
) Closed
) Released
[Ik l [Cancel] [Help

Figure 44. State dialog box

134 3BSE035980-511

Section 1 Basic Functions and Components Library Versions

2. Select the desired state and click OK. The library state is changed.
The library state can only change:
* From Open to Closed or Released.

* From Closed to Open or Released.

Library Versions

The following rules should be used when creating new versions of a library. The
version number syntax is MajorVersion.Minor Version-Revision (X.Y-Z), for
example, 2.0-1.

Table 13. Version handling rules for libraries.

Compatibility with

Increase of Rule b .
previous versions
Major vers. X The major version number is increased if the The library is system or
library has types which have changed their application incompatible.

behavior, or if it is dependant on a new system
version, for example, using new system functions.

The major version number is also increased if a
connected library has increased its major version
number, and the new functionality of this new
library version is needed.

The maximum limit for the major version number of
a library or a hardware library is 32767.

3BSE035980-511

135

Library Versions

Section 1 Basic Functions and Components

Table 13. Version handling rules for libraries.

Increase of Rule Com.patlblllty w ith

previous versions

Minor vers. Y The minor version number is increased if new The library is compatible.
types have been added to a library, or an already | The increased minor
existing type has increased functionality. version number reflects
The minor version number is also increased if a extended, modified, or
connected library has increased its minor version |added functionality.
number, and the new functionality, which is the
reason for the change, is needed.

Rev. Z The revision index is increased when only bug The library is compatible.
fixes have been done or when library state is Functions may now have
changed from Released to Open. changed their behavior,
The revision number is also increased if a since they are working as
connected library has increased its revision intended. This may affect
number, and this new version is needed. the application behavior.

The library version can be changed in two ways:

* Change Library Version (Project Explorer)
This operation only works on libraries with state Open. This operation does not
create a new copy of the library. It simply updates the version number (that is, it
changes the version label of the library). The new version replaces the old and
all connections to other objects are intact.

* Create New Library Version (Plant Explorer)
This operation creates a new version of the library. This new version exists in
parallel with the old version. All connections to control projects, applications
and other libraries are preserved in the old version, but the new version does
not preserve any connections.

The two versions cannot be connected the same application or library, but they
can be inserted into the same control project.

136 3BSE035980-511

Section 1 Basic Functions and Components Library Versions

Change Library Version

The library version can only be changed for libraries with state Open. To change the
library version:

1. In Project Explorer, right-click the library and select Properties>Version. The
Version dialog box is displayed.

¥ yersion

Werzion of TankLib104 1.0-0

Major version Minar version Fewvizian
[& - [oE] -
[] l [Canicel] [Help]

Figure 45. Version dialog box

2. Set the new version number, according to the version handling rules, see
Table 13 on page 135.

3. Click OK. The version number of the library changes.

Create New Library Version
To create a new library version:

1. In the Library Structure in Plant Explorer, expand the Libraries, Library
Collection folder.

A new version can only be created if the library state is Released. If you try to
create a new version of a library with state Closed or Open, you will get an error
message.

2. Click the library and select Library Version Definition aspect. The Aspect
preview pane opens.

3. Click New Version button. A ‘New Version’ dialog box opens (Figure 46).

3BSE035980-511 137

Library Password Protection Section 1 Basic Functions and Components

Library: | TankLib

Major version Minor wersion Revision

| 25 . [o -] 04
| Create | Zancel |

Figure 46. New Version dialog box

4. Enter a new version number according to the version handling rules, see
Table 13 on page 135.

5. Click Create. A new version of the library is created.

The new library version are not used anywhere by default, thus you must
@ connect/replace the library yourself.
Advanced Library Version Handling in Applications

For a detailed discussion on how to work with library versions (libraries that have
types to be used in applications), see the System 800xA Control AC 800M Binary
and Analog Handling (3BSE035981%).

Library Password Protection
To password protect the libraries:

1. Right-click the library and select Properties > Protection.
The Protection Properties dialog opens.

2. Click Set Password. The Password dialog opens, see Figure 47.

138 3BSE035980-511

Section 1 Basic Functions and Components Add Types to Libraries Used in Applications

Enter old password: ||

|
Enter Mew Password: m |
|

Werfy new pazsword: ||

[Ok,][Eancel]

Figure 47. Password dialog box

3. Enter the new password and confirm it in the Verify new password field.

ﬂ If the library is already password protected, you have to enter the old password
before entering a new one. A password may consist of both letters and digits. It
must be at least 6 characters long.

4. Click OK. The library can now not be changed without entering the password.

Add Types to Libraries Used in Applications
Types can only be added if the library state is Open.
Follow the steps below to add the following functions in a library:

1. In Project Explorer, expand the corresponding library folder.

B~ W Libraries

----- W] Systern

..... W] BasicLib 1.6-8
..... {0 IconLib13-3

: e Wl Connected Libraries
..... i, Hardware

Figure 48. Library with sub folders

3BSE035980-511 139

Add Types to Libraries Used in Applications Section 1 Basic Functions and Components

2. To the library (see Figure 48), add the following:

a. To connect another library to library, right-click the Connected Libraries
folder and select Connect Library.

|_:_| W Libraries

..... ﬁ]_]] S}rstem

..... ﬁ]_]] Basiclib 1.6-8

..... P Iconlib13-3

2 [TankMainLib 1.0-0

Connect Library

Documentation...

..... i Hardware
- @) Applications
@ 4] Controllers

Figure 49. Connecting a Library

b. To add project constants to library, right-click the library folder and select
Project Constants.

E| I Libraries

: ﬁw System

[0 Basiclib1.6-8
[0 IconLib 1.3-3
- I Connected L Reserve..

..... W Hardware & Release Reservation...
H-- @) Applications & Take Over Reservation...
S} |4 Controllers 44 Refresh

..... 1) Controller 1 (1721

Properties L4
[i Consaris |

Documentation...

Figure 50. Adding Project Constants

c. Toadd atype to the library, right-click the folder corresponding to the type
you want to add and select the command for creating a new type.

140 3BSE035980-511

Section 1 Basic Functions and Components Add Types to Libraries Used in Applications

= W Libraries
B i]_]] System

i & Data Types
..... il Functicns
- [l BasicLib1.7-1
- [IconLib 1.4-0
(=2 74 TankMainLib 1.0-0
e W) Connected L| 37 Reserve...
e EE Testlib 1.0-0 < Release Reservation...

- | Hardware &7 Take Over Reservation...

= @, Applications o
: : Deploy...
G @@ application 1 - (02 %
+4 Refresh
..... 4 Controllers
Properties b

(€ Project Constants

Documentation...

& Search Alt+F12
Rebuild Search Data
Library Usage
& Data Type...
Paste %= Function Block Type...
7% Remove Del | % Control Module Type...
=] Rename F2 | l&% Diagram Type..

Figure 51. Adding a type

3BSE035980-511 141

Add Customized Hardware Types to Library Section 1 Basic Functions and Components

Add Customized Hardware Types to Library

For more information on working with types and project constants, see
@ Application Types and Instances on page 41.

Customized hardware types can only be added to the library if the library state is
Open. To add a customized hardware type to a library:

1. In Project Explorer, expand Libraries > Hardware.

2. Right-click Hardware types folder under your chosen library, and select
Insert/Replace Hardware Type(s).

B W Libraries
e E]_l] System
o [l AlarmEventLib 1.6-0
- [l BasicLib 1.7-2
i [} ControlStandardLib 1.5-5
- E]_l] ControlSupportLib 1.4-4
- [IeonLib 1.4-0
i [} ProcessObjBasicLib 2.5-1
7 [} ProcessObjExtLib 2.5-0
= W Hardware
..... [l BasicHwLib 5.1-1
- [My_IOHwLib 1.0-0

: i Hardware types
_____ Eﬂ S800TaMadulehusHw Insert/Replace Hardware Type(s)... |

Figure 52. Inserting hardware types in library

oy OO e JOORY o O g OO s OO e O e OO

3. Browse and select the device capability description file (for example a *.gsd
file) you want to add as hardware and click Open. (See also Supported Device
Capability Description Files on page 144).

4. The Device Import Wizard starts. Follow the instructions in the wizard.

The usual way to distribute and share customized hardware types is to Export and
Import the complete library (with the customized hardware type(s)), in Plant
Explorer. In exceptional cases, it is possible to insert individual external customized
hardware types to a user-defined library, for example, a hardware type of a *.gsd file
that have been converted and used in an earlier version of Control Builder.

142 3BSE035980-511

Section 1 Basic Functions and Components Device Import Wizard

In this case, right-click the Hardware types folder under your chosen library and
select Insert/Replace Hardware Type(s) and browse to the hardware type (*.hwd
file) to be inserted. With Insert/Replace Hardware Type(s) it is also possible to
replace same hardware type.

If a hardware definition file (*.hwd) is re-imported with changed parameters,
@ Control Builder must be restarted so that the changes take effect.

ﬂ If changes are made to existing *.hwd files, a new GUID is created for them to
coexist after the re-import.

Device Import Wizard

You use this wizard to import a device capability description file. The wizard will
convert this file to a hardware type and insert the type into a user-defined library.
The appearance of some wizard dialog boxes will be different depending on the file
type to import.
Always complete the wizard, even if you are not finished. Then, you can re-
@ import the file and continue where you left off.
ﬂ When a wizard dialog box is displayed, relevant information is read from the

device capability description file. If it is large this may take a while, and a
progress bar will be shown.

* You can import a new device capability description file, as described above
(Add Customized Hardware Types to Library on page 142).

* You can change conversion settings for a previous import, as described in
Wizard on page 146.

* When you receive an updated device capability description file, you may want
to replace the previous import. Import the new file the same way as the old one,
as described above.

For more information on the Device Import Wizard, refer to the online help.

V

3BSE035980-511 143

Additional Files for Libraries with Hardware Section 1 Basic Functions and Components

®
i

Supported Device Capability Description Files

You can only import supported device capability description files. The following
files are supported:

e PROFIBUS GSD files
e PROFINET IO GSD files
. Ethernet/IP and DeviceNet EDS files

For PROFIBUS GSD-files, *.gs? is the standard file extension. However, a file can
also have a different extension that specifies its language, for example, *.gse
(English) or *.gsg (German).

For PROFINET IO GSD files, *.xml is the standard file extension. PNIO uses
GSDML, an XML based markup language to describe the characteristics of the
PNIO devices.

For Ethernet/IP and DeviceNet, *.eds is the standard file extension. The wizard will
convert the EDS file to a hardware definition file (HWD File) and insert it as a
hardware type into the user-defined library.

You can only import PROFIBUS GSD-files with hardware types for CI854, and
not for CI851. (However, when you upgrade a previous system offering, any
included hardware types for CI851 will be upgraded as well.)

For more information on using Device Import Wizard for importing gsd, xml and
eds files into the Control Builder, refer to:

. AC 800M, PROFIBUS DP, Configuration (3BDS009030%).
* AC 800M, ProfiNet I/0, Configuration (3BDS021515%*).

e AC 800M, EtherNet/IP DeviceNet, Configuration
(9ARD000014%*)

Additional Files for Libraries with Hardware

There are a number of files associated with libraries for hardware and hardware
types. For standard system libraries, it is not possible to perform any operation on
these type of files. For a user-defined library there are some files that can be
managed.

144

3BSE035980-511

Section 1 Basic Functions and Components Additional Files for Libraries with Hardware

The file types, described below, are associated with the hardware definition and
cannot be changed or replaced.

File Types Associated with Hardware Types
To display the Additional Files dialog box for a hardware type:

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Files.

The only file type (in a user-defined library) that the user can perform any
operations on is the Help File. See Help File on page 146.

The file types, listed in Table 14, are associated with the hardware type and cannot
be modified by the user.

Table 14. File Types Associated with Hardware Types

File Type Description

Firmware File Firmware file for CPU or communication interface unit.
Update File Update file for firmware; a download support file.
Firmware ldx File Idx file for firmware, used when analyzing a crash dump.
Protocol Handler Protocol handler used by Control Builder.

Control Builder File

Protocol Handler Controller | Protocol handler used by controller.
File

Protocol Handler ldx File Idx file for controller protocol handler, used when analyzing a
crash dump.

File Types Associated with Libraries
ﬂ It is only possible to manage Additional files for a user-defined library.

To display the Additional Files dialog for a library with hardware types:

3BSE035980-511 145

Additional Files for Libraries with Hardware Section 1 Basic Functions and Components

1. In Project Explorer, browse Libraries > Hardware.

2. Right-click the library and select Properties > Files.

The file types, listed in Table 15, are associated with the library.

Table 15. File Types Associated with Libraries

File Type Description

Help File A help file (of *.chm or *.hlp type) can be added, replaced, deleted
or extracted, See Help File on page 146

Import File Import file is a device capability description file (for example a

*.gsd file) that has been added with the Device Import Wizard.
This type of file can be deleted (Delete button), or extracted
(Extract button) to a file on disk. By pressing the Wizard button it is
also possible to change the previous done settings. See Wizard .

Wizard

Settings for a previously added device capability description file can be changed.

1. In Additional Files for a library, select the row with the device capability
description file (Import File) and press the Wizard button.

2. Inthe displayed Device Import Wizard, define the new conversion settings.

Help File

A help file (of *.chm type) can be added, replaced, deleted or extracted for a
customized hardware type, as well as for a user-defined library.

Adding a help file to a customized hardware type or a user-defined library provides
access to the associated help file when you press Flon the user-defined library or on
the customized hardware type, in Project Explorer. For further information about
requirements on customized online help, see the System 800xA Control AC 800M
Binary and Analog Handling (3BSE035981%).

To add a help file to a user-defined library or to a customized hardware type:

1. In Additional Files dialog box, select the Help File row and press the Add
button.

146

3BSE035980-511

Section 1 Basic Functions and Components Delete Hardware Types

Browse to the help file (of *.chm type) and click Open.

Replace and Delete

A help file that has been added can be replaced and deleted by selecting the row
with the help file and pressing Replace and Delete button respectively. It is also
possible to delete a device capability file (Import File) for a user-defined library.

Extract and Save a Copy of a File

A help file can be extracted and saved on disk by selecting the row with the help file
and press the Extract button (to the right of the grid). Browse to a place on disk and
save a copy of the file by pressing Save button.

In some exceptional cases there is a need to extract an individual customized
hardware type to a hardware definition file (*.hwd file). In this case, press the
Extract button under Hwd File.

Properties on Hardware Types

In Additional Files for a customized hardware type, it is possible to set a version
information text of maximum 18 character to the help file, by pressing the
Properties button.

Delete Hardware Types
A hardware type in a library can be removed.

ﬂ It is not possible to remove a hardware type from a library, if it is used in a
hardware configuration, in any project of the system (aspect directory).

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Remove.

Type Usage for Hardware Types

It is possible to display a list of which controller(s) that use(s) the hardware type
together with hardware tree position numbers.

3BSE035980-511 147

Type Usage for Hardware Types Section 1 Basic Functions and Components

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Type Usage.

¥E Type Usage

The instances of the type

Cortroller Path
Controller _1 1.1
Controller _1 1.2
Controller _1 1.3

Figure 53. Type Usage for a selected hardware type.

148 3BSE035980-511

Section 1 Basic Functions and ComponentsHide and Protect Control Module Types, Function Block

Hide and Protect Control Module Types, Function Block
Types, Diagram Types, and Data Types

When you create libraries with self-defined control module types, function block
types, diagram types, and data types, Control Builder provides you with two
protection features (attributes). These two attributes are called Hidden and
Protected, and can only be set from Project Explorer.

Hidden

Setting the Hidden attribute will completely hide your code from other users. To
hide the code makes it easier to improve your type as often as you like. This is a
common situation when developing types that will be re-used over and over again in
different library solutions.

ﬂ All types with the Hidden attribute disappear from their normal position in the
Object Type Structure, and can only be located in the Internal Types folder, as a
Hidden aspect.

Protected

Setting your type to Protected will protect the internal type structure from being
seen. This means that only the type itself will be visible, and thus your type
definition will be protected from external exposure, as well as any attempt to
duplicate it. This is extra valuable when you create a type solution for re-use
engineering.

When a protected type is opened in an editor, only the parameter declaration is
visible (read-only). Other declarations like variables and function blocks are not
visible. Only code block tab is shown as a blank page, that is, the IEC 61131-3 logic
is protected. The complete type structure will still be protected from external
exposure.

The attribute available on protected control modules and function blocks types "Sub
Objects visible in PPA" makes formal instances in the protected type visible in Plant

3BSE035980-511 149

Protect a Self-Defined Type Section 1 Basic Functions and Components

Explorer if they are configured as aspect objects. It does not make the subobjects
visible in Control Builder.

The Hidden and Protected attribute can also be used for structured data types.

Override

After you have protected your types, you can always override the hidden and
protected attribute temporarily, while you work on improvements. The override
protection property can only be set in Project Explorer.

For self-made libraries with password protection, you must enter the password
before you make an override, see Library Password Protection on page 138

ﬂ The protection cannot be overridden for Control Builder standard libraries. They
cannot be updated or changed by the user.

Setting an override on a library for corresponding hidden and/or protected types
@ will only have impact in Project Explorer. In Plant Explorer, hidden and/or
protected types will remain hidden and/or protected.

Protect a Self-Defined Type
To protect a self-defined type:

150 3BSE035980-511

Section 1 Basic Functions and Components Protect a Self-Defined Type

1. In Project Explorer, right-click the type and select Properties > Protection
and Scope. A Protection and Scope window opens.

m Protection and Scope for MyMotor_type ﬂ
I e

Protection Scope

] Protected () Private
Sub Obiects wisible in PP4 © Public

] Hidden

Figure 54. Protection and scope

2. Check the desired protection radio button(s) and click OK.

Override Protection Attributes

To override protection for a library or application:

3BSE035980-511 151

Protect MySupervision Type Example Section 1 Basic Functions and Components

1. In Project Explorer, right-click the library (or application) and select
Properties > Protection. A Protection Properties window opens.

ﬁ Protection Propeiiel ﬁ1

Protection
Set Pagzword Clear Password

Ovenide protection for TankkainLib, that iz, make
pratected objects unpratected, hidden objects
vizible, and allow modifications for thiz pazsword
pratected unit.

Figure 55. Protection properties

2. Check the Override check box (see figure above) and click OK. The Override
feature will have impact in Project Explorer only.
Protect MySupervision Type Example

The following example will show the impact that the Hidden and Protected

attributes may have on a self-defined type called MySupervision_type, which is part
of the library MyTankLib.

A Simplified Library Solution

The library MyTankLib contains three different types, MyMotor_type,
MySupervision_type and MyTank_type. The Motor10 object is located inside

152 3BSE035980-511

Section 1 Basic Functions and Components Protect MySupervision Type Example

MyTank_type, see Figure 56. As you can see, Motor10 has inherited its definition
from the type MyMotor_type.
= i My TankLib <\ H = ﬁ M;u'TankLil.J i.D,l’D, Library Wersion
+ |:| Connected Libraries MyTankle /' —-42E Cantral Module Types, Control Module Types
—-FE MyMotor_type, Control Module Type

@ Data Types
1 Function Block Types MyMOtOI’ type / = @ Control Structure, Formal Instance List
- 42k Cortrol Module TypesA/ --FE MyMotor_type, Control Module Type
= ﬂ MyMotor_type ﬂ SpeedSupervision, MySupervison_type
¥ FeedbackError AlarmEventLib. AlarmCondt L. —-FE MySupervison_type, Contral Module Type
4FE SpeedSupervision MyTankLib,MySupervison_type MySupel’VISIon ’[ype /' + @ Control Structure, Formal Instance List
-«

42E MySupervison_type —-FE MyTank_type, Control Module Type
-4k MyTark_type <\ = @ Control Structure, Formal Instance List
—-4FE Motorl0 MyTankLib,MyMotor_type MyTank type —-FE MyTank_type, Control Module Type
¥ FeedbackError AlarmEventLib. AlarmCondt —-FE Motorl0, MyMotor_type
4FE SpeedSupervision MyTankLib,MySupervison_type IFE SpesdSupervision

ZFE Hilevelalarm AlarmEventLib, AlarmCondr
FE Lowlevelalarm AlarmEventLib, AlarmCondM

Figure 56. A Library structure before any protection attributes have been set.
(Left) Project Explorer tree. (Right) Object Type Structure in Plant Explorer.

Protect MySupervision Using the Hidden Attribute

MyMotor_type contains a SpeedSupervision object (and a Feedback error object).
The SpeedSupervision object is of the type MySupervision_type. Both
MyMotor_type and the MyTank_type therefore depend on MySupervision_type. To
hide the code inside the MySupervision_type, we must set the attribute Hidden on
MySupervision_type, see Figure 57.

= |:| My TankLib = cﬂ MyTankLib 1,040, Library Yersion
+ |:| Connected Libraries - 42 Control Module Types, Control Module Types
@ Data Types —-FE MyMotor_type, Control Module Type
1 Function Black Types MyMOtOI’ type / = @ Control Structure, Formal Instance List
-1-42F Contral Module Types gFE MyMaotor_type, Control Module Type
—-42E MyMotor_type —-FE MyTank_type, Control Module Type
¥ FeedbackError AlarmEventLib. AlarmCondt = @ Control Structure, Formal Instance List
4FE SpeedSupervision MyTankLib,MySupervison_type —-FE MyTank_type, Control Module Type
--42E MyTank_type -— MyTank type ZFE Motor10, MyMotor_type

—-4FE Motorl0 MyTankLib,MyMotor_type
¥ FeedbackError AlarmEventLib. AlarmCondt
4FE SpeedSupervision MyTankLib,MySupervison_type
ZFE Hilevelalarm AlarmEventLib, AlarmCondr
FE Lowlevelalarm AlarmEventLib, AlarmCondM

Figure 57. MySupervision_type is not shown in Plant Explorer after setting the
hidden attribute. (Left) Project Explorer with SpeedSupervision still visible. (Right)
Object Type Structure where both MySupervision_type and SpeedSupervision are
hidden.

After Hidden is set on the Supervision type, it disappears from both the Project
Explorer and the Plant Explorer. However, MySupervision type can still be traced

3BSE035980-511 153

Protect MySupervision Type Example Section 1 Basic Functions and Components

MyMotor type

via calls from the SpeedSupervision object inside the motor type to our hidden
supervision type in Project Explorer, see Figure 58.

= ﬂ MyMotor_type
¥ FeedbackError AlarmEventLib. AlarmCondt

g %Tsai:etdj::ervision My TankLib, MySupervison_type Speed S u per’ViSion Object
- 9P Mot;rlD My TankLib. MyMator_tvpe Of MySU perViSion type

¥ FeedbackError AlarmEventLib. AlarmCondt
¥ Speedsupervision MyTankLib,MySupervison_type

Figure 58. The hidden MySupervision type can still be traced via the
SpeedSupervision object in both the motor type and the motor object.

Setting the Protected Attribute for MyMotor_type

If we do not like to expose SpeedSupervision, why not hide the motor type as well?
The major reason is that it would be impractical to set hidden on the motor type, just
to conceal the function calls from SpeedSupervision (expose the existence of
MySupervision_type).

Besides, SpeedSupervision would still be visible in the motor object (Motor10, etc.)
inside the tank type, see Figure 59.

+-] Connected Libraries
@ Data Types
1 Function Black Types
-1-42F Contral Module Types
|- JaE MyTank_type . .
—-FFE Motor10 MyTankLib,MyMotar_type SpeedSupeI'VISIon ObJeCt

FFE FeedbackError AIarmEventLib.AIarmCondM/ inside M0t0r1 0

4FE Speedsupervision MyTankLib,MySupervisofi_type
ZFE Hilevelalarm AlarmEventLib, AlarmCondr
FE Lowlevelalarm AlarmEventLib, AlarmCondM

Figure 59. The Hidden attribute on MyMotor type would still allow showing objects
(children) of the MySupervision type in any new motor object.

Furthermore, we must be able to select the motor type every time we create a new
motor object.

Therefore, for re-usability reasons, we cannot hide the motor type like we did with
the supervision type, but, we can set the Protected attribute, since a protected type
will still be visible in Project Explorer, while the type definition is hidden according
to Figure 60.

154

3BSE035980-511

Section 1 Basic Functions and Components Protect MySupervision Type Example

= i MyTankLib 1.0/0] ;ﬂ MyTankLib 1,00, Library Yersion
+ |:| Connected Libraries - 42 Control Module Types, Control Module Types
@ Data Types —-4FE MyMator_type, Contral Madule Type
1 Function Black Types = Q Control Struckure, Formal Instance List
-1-42E Contral Module Types4/ MyMOtor type FFE MyMotor_type, Control Madule Type
AT ‘ s .-
EF Iy Motor_type aﬂer Protected FFE MyTark_type, Control Module Type
—-42E MyTank_type = Q Control Struckure, Formal Instance List
4FE Motor1d MyTankLib,MyMokor_bype - 4FE MyTark_type, Control Module Type
ZFE Hilevelalarm AlarmEventLib, AlarmCondr FFE Motor10, MyMator_type

FE Lowlevelalarm AlarmEventLib, AlarmCondM
Figure 60. Protected attribute on MyMotortype, which will hide the type definition.

In this case, a protected motor type will still let the user create new motor objects of
the type MyMotor_type in other libraries, like the one in Figure 61, but without
knowing about the background calls from SpeedSupervision.

MySecondLin 1,000
-] Connected Libraries
Bl slarmEventlib 1.0/0
Bl mMyTanklib 1.0/0
@ Data Types
1 Function Black Types
-1-42F Contral Module Types
--42E MySecondTank_type
4FE Motor100 MyTankLib,MyMotor_type

Figure 61. Motor100 object of the MyMotor_type, re-used in another library with
MyMotor_type protected and MySupervision_type hidden.

ﬂ For more information about control module types and function block types, see
System 800xA Control AC 800M Planning (3BSE043732%).

3BSE035980-511 155

Task Control Section 1 Basic Functions and Components

Task Control

A task is defined as an execution control element that is capable of starting, on a
periodic basis, the execution of a set of POUs (Programs, Function blocks, functions
etc.).

The Control Builder setup three tasks (Fast, Normal and Slow) by default, provided
that an AC 800M Control Project template has been selected. The tasks are
connected to their respective diagrams (one task per diagram). The tasks serve as
'work schedulers' for the diagrams and contain settings for interval time and priority.
However, setting interval time and priority is not enough; you must also tune your
tasks.

ﬂ To learn how to tune tasks, see System 800xA Control AC 800M Planning
(3BSE043732%*) manual.

If a diagram does not have a task connected, it will run by the task connected to the
corresponding Application.

You may create and connect several tasks to a controller, but experience show that
more than five tasks in each controller makes it difficult to overview.

The Control Builder provides a Task Analysis tool that predicts the execution of an
application by the controller before loading it onto the controller. See Task Analysis
on page 178 for more information.

Task Connections

A task can be connected to a program, a function block, a control module or a single
control module, a diagram, and several tasks may execute in the same controller. An
application can also be connected to a task, and all POUs in an application execute
in this task, unless otherwise specified. A task can only execute POUs in one
application. Hence, POUs from different applications can not be connected to the
same task.

disrupt the task execution during reconfiguration. Else change the parameters of
the connected task (to fit the needs). A SIL3 task reconnection might lead to a
shut down of the controller.

f Do not re-connect tasks to applications unless it is necessary, as this might

156 3BSE035980-511

Section 1 Basic Functions and Components Task Connections

Create a New Task
To create and configure a new task:

1. Expand the Hardware tree, until you find Tasks.
- Controllers
[l Controller_t {172.16.0.0)
+ Connected Applications
+ Connected Libraries
+ Hardware AC S00M

- ‘@ Tasks
@1 Fast
£&1 Mormal
=

"= Access Variables
2. Right-click Tasks and select New Task. A ‘New Task’ window opens.
3. Name the task.

MName: |Superfast

[ak.][Eancel]

4. Click OK.
= ‘@ Tasks
i

Superfask
@I Fast

£81 Maormal
£81 slow

Figure 62. A new task has been created.

After the task has been created, it is time to configure the task with new properties.

5. Right-click the new task (Superfast) and select Properties. A “Task Properties’
window opens.

3BSE035980-511 157

Task Connections Section 1 Basic Functions and Components

Task Properties - Controller_1 - Superfast

Tazk Values
Reguested: Uszed: Actual: b &

Interval Time [me]: 1000 1]

Execution Time [ms]:

Offset [ms]: 0 0
Pricrity: 2 - High

[] Enable latency supervision

[)

Firzt zcan execution time [mz):

Output Signals [Debug
Figure 63. A Task Properties window for configuring a task.

6. Change the interval time to 40 ms and Priority to 1-Highest. Click Apply
followed by Close.

7. Right-click Tasks and select Editor to view the new task. A ‘Task Overview’
window opens.

MNarme Priority Interval |[Actual [Max [Actual Max Offset |Actual |Max |Accepted |[Actual [Max Latency |First

Time (Interval Interval [Execution |Execution Offset |Offset |Latency |Latency [Latency |[Alarm [Scan
Time [Time |Time Time Limit |Execution

Tirme
1 |Superfast|1 - Highest 40 0 0 0 0 0 0 0 TR, 0 0 [£A 0
2 |Fast 2 - High a0 0 0 0 0 0 0 0 TR, 0 0 [£A 0
3 |Mormal 3 - Maormal 250 0 0 0 0 15 0 0 TR, 0 0 [£A 0
4 | Slow 4 - Lowr 1000 0 0 0 0 25 0 0 TR, 0 0 [£A 0
€15\ Tasks @@ >

Servicedccounk

The Task Overview window lists all the tasks with each property settings. To change
the settings for a certain task:

8. Select a task in the Task Overview window and open Tools > Task Properties.

Right-click a task directly in the hardware tree and select Properties to open the
@ Task Properties window directly.

158 3BSE035980-511

Section 1 Basic Functions and Components Task Connections

ﬂ Select Tools > Reset Max, to reset all tasks that appear in the editor.

Connect a Task to a Program
To connect the task SuperFast to Program1:

1. Right-click Program1 and select Properties > Task Connection. A ‘Task
Connection’ dialog box opens.

¥X Task Connection

Inztance: Application_1.Programi

Task:

Controller_1.5uperfas hd

[1]4] [Cancel]

2. Select a task from the drop-down menu (here SuperFast) and click OK.

= Progrars
Program] - (Caontroller_1,Superfask)
Programz - (Caontraller_1,Marmal)
Program3 - (Caontraller_1, Show

Figure 64. Programl has changed task to Superfast.

Function Blocks with Different Task Connections

You can connect function blocks inside a program to a task different from the one
connected to the program, (right-click on the function block and select “Task
Connection’).

However, variables inside the function block that pass values to and from the
function block are controlled by the program task. The code in the function block
will run according to its task, but the parameters will be updated according to the
program task. This means, in practice, that the function block in a program can only
run at a slower, or a least at the same, speed as the program. However, if you use

3BSE035980-511 159

Task Execution

Section 1 Basic Functions and Components

v

external variables or connect I/O directly to the function block, there will be a direct
reference, independent of the task cyclicity of the function block.

To set-up specific time intervals and task priority different from the task connected
to the application whilst for example, designing libraries, can be done by declaring
and using global variables, or by using parameters.

For more information, see Control the Execution of Individual Objects on page
107.

Task Execution

This sub-section describes priority, interval time and offset for task execution.
The next sub-section, Overrun and Latency on page 169, describes handling of
too long task executions, delays, and load balancing etc.

There are four important task parameters that can be set to optimize program
execution:

* Priority, which sets the execution order for tasks, see sub section Priority
below.

» [Interval time, sets the task intervals during the program is executed, see sub
section Interval Time on page 163.

* Offset, a parameter that helps you to avoid unexpected delays in execution
when tasks are scheduled to execute at the same time. See sub section Offset on
page 164.

* Execution time, for best real time behavior and communication performance,
avoid extensive continuous execution. See Execution Time on page 169 and
also Communication Considerations on page 167.

All POUs connected to a task execute with the same priority, interval time, offset,
and execution time.

Task Priority

There are six levels of priority: Time Critical, Highest, High, Normal, Low, and
Lowest, numbered from 0 to 5. The tasks are executed according to their priority,
where the time-critical task has the highest priority. A task with higher priority may
interrupt any task with lower priority, but a task cannot interrupt another task with

160

3BSE035980-511

Section 1 Basic Functions and Components Task Priority

the same priority. There can only be one time-critical task. Such a task may interrupt
the execution at any point, while other tasks may only interrupt execution at defined
points.

An ordinary (non-time-critical) task can be interrupted:

e at the start of any code block,

e at backward jumps, for example for, while, repeat statements.
A time-critical task has special properties.

* The task is not driven by the same scheduler as the rest of the tasks. Instead, the
task is driven from the system’s real-time clock (hence the high precision).

* The tasks have high precision in execution time. The resolution is 1 ms.
* A change to/from time-critical priority in Online mode is not possible.

* A change to/from time-critical priority in Offline mode requires re-compilation
of the application.

Consider the following points, when using the time-critical priority.
* Only one time-critical task per controller is allowed.

* The execution time for a time-critical task (priority 0) must not exceed 100ms.
This restraint prevents the task from blocking other functions, for example
communication.

* All functions cannot be called from the program connected to the task. You
cannot set time-critical priority if the code contains invalid instructions (this is
checked during compilation). The time-critical task interrupts execution at any
time, which means that execution might be interrupted mid-statement.

* If a power failure occurs while the time-critical task is running, the execution of
the current code block is completed (assuming that it can be completed within
1 ms). For a warm start to be possible, no code block in the time-critical task
may take more than 1 ms to execute.

ﬂ Task priorities 1-5 can be set by using the firmware function SetPriority. This
function is located in the System folder.

Consider the following points, when using task priority in HI controller:

e In HI controller VMT has the highest possible task priority. SIL3, SIL2 and
non-SIL can not share the same priority and have the priority in order listed.

3BSE035980-511 161

Task Priority

Section 1 Basic Functions and Components

Only one task can be connected to a SIL3 application. If more than one task is
connected, compilation error is generated. To download remove all tasks except
SIL3 task.

The SIL3 tasks must have higher priority than non-SIL and SIL1-2 tasks in the
controller. If not compilation error is generated. Decrease the priority of the
non-SIL and SIL1-2 tasks or increase the priority of the SIL3 task to enable
downloading.

It is not recommended to have a task with the same or higher priority than the

VMT task, regardless of SIL level. If the VMT task is not the only task with the
highest priority, a compilation warning is generated. The user should decrease
the priority of any task (SIL or non-SIL) which has the same, or higher priority
than the VMT task.

Firmware functions that tries to manipulate task parameters from 1131 code
does not work for SIL tasks that is SetPriority and SetIntervalTime.

162

3BSE035980-511

Section 1 Basic Functions and Components Interval Time

Interval Time

The interval time, during which the program is executed, is set in the Task
Properties dialog box. Default values are 50 ms (Fast), 250 ms (Normal) and 1000
ms (Slow). You can change these values at any time. For a time-critical task, the
interval time can be as short as 1 ms. The interval time of tasks of priority 1-5
cannot be less than 10 ms. The resolution is 1 ms.

ﬂ If two tasks have the same priority, and they both wait for execution, the task with
the shortest interval time will be executed first.

All task intervals must be multiples of each other. The shortest interval is the
@ "time base".

Execution Example

Figure 65 shows two tasks executing in the same system. Task 1 and task 2 have
interval times of 30 and 200 ms, and execution times of 10 and 50 ms, respectively.

When the tasks have been assigned the same priority, the execution start time of task
1 is very much delayed. It also drops one execution.

D Task 1. Execution time: 10 ms, Interval time: 30 ms
A . Task 2. Execution time: 50 ms, Interval time: 200 ms, Offset: 80ms

N,
T T T 1 »
30 90 150 210 270 330 390 450 510 Time (ms)

Figure 65. Execution of two tasks with the same priority.

In Figure 66, task 1 has higher priority than task 2, and interrupts the execution of
task 2. Hence task 1 is not delayed much by task 2.

3BSE035980-511 163

Offset Section 1 Basic Functions and Components

D Task 1. Execution time: 10 ms, Interval time: 30 ms
A . Task 2. Execution time: 50 ms, Interval time: 200 ms, Offset: 80ms

N
T T 1 >
30 90 150 210 270 330 390 450 510 Time (ms)

Figure 66. Execution of two tasks with different priorities.

Offset

@ The compiler will detect inappropriate offset settings.

The offset of each task must be equal or greater than the sum of the execution
times of all higher-priority tasks.

If your tasks are scheduled to execute at the same time you will receive a warning
during download. However, this compiler function is merely calculating theoretical
periodic executions, which means that it will not warn you for task collision caused
by, for example a too close offset time. Therefore, consider the compiler warning as
a first preliminary check provided to you and not as a guarantee that will prevent
task collisions.

Two tasks will be scheduled to start execution at the same time if the greatest
common divisor of the tasks interval times divides the difference in the tasks offsets.

Turning off Task Collision warnings
You can turn off the task collision warning from the Project Explorer.

1. Right-click the Project item and select Settings > Compilation Warnings
from the context menu. A Compilation warnings dialog box will open.

2. Click to clear Task Collisions check box and then OK.

164 3BSE035980-511

Section 1 Basic Functions and Components Offset

When tasks are scheduled to execute at the same time, the task with the highest
priority will be executed first. If tasks have the same priority the task with the
shortest interval time will be executed first. Offset is a mechanism that can be used
to avoid unexpected delays in execution when tasks are scheduled to execute at the
same time.

Do not change task offset for a controller with a running application. This may
@ result in that the task executes one more time than expected.

In Figure 67 and Figure 68, the execution of two tasks with the same priority with
interval times of 50 ms and 100 ms is shown. When both tasks have a 0 ms offset
(Figure 67), the execution start time of task 2 is delayed, and the actual interval time
for task 2 is influenced by variations in the execution time of task 1.

[Task 1

A W Task2

A -
7
50 100 150 200 250 Time (ms)

Figure 67. No offset. The two tasks have the same priority, but different interval
times (50 and 100 ms).

If task 2 is assigned an offset, as in Figure 68, neither task is delayed, and the actual
interval time for task 2 will not be affected by task 1.

3BSE035980-511 165

Offset

Section 1 Basic Functions and Components

[Task 1

A I Task2

N
L

50 100 150 200 250 Time (ms)

Figure 68. Offset is set on task 2. The two tasks have the same priority, but different
interval times (50 and 100 ms) and are thus executed at the requested times.

An application starts to execute by scheduling all tasks in the application to execute
at the same time. The task with highest priority is executed first, and if tasks have
the same priority, the task with the shortest interval time will be executed first.

Execution Synchronization

When a task has finished execution of the first scan after application start at time ¢,
the start of its next execution is synchronized to time O (the time the controller
started to execute).

t=n * (interval time) + d, 0 <d < interval time

d is the time from the start of the current interval time, to when the task finished
execution in the current interval. The synchronization to time zero (0) implies that
the start of the next execution will be at the first start point after the current time.

If offset = 0, the task will be scheduled to execute at time (n + 1) * (interval time).
However, if the time to the start of the next execution, (interval time) - d, is less than
10 ms, the task will be scheduled to execute a time (n + 2) * (interval time).

If offset > 0, then if offset > d, the start of the next execution will be at a time

n * (interval time) + offset. If offset < d, the start of the next execution will be at a
time (n + 1) * (interval time) + offset. If the time to the start of the next execution is
less than 10 ms, the interval time will be added to the start time of the next
execution.

166

3BSE035980-511

Section 1 Basic Functions and Components Offset

The same synchronization of execution time will be performed after a change in
interval time or offset.

Time critical task is not synchronized to time zero (0).

Communication Considerations

POU execution has higher priority than other functions, such as communication.
These functions are performed in the gaps between the execution of different tasks.
If several tasks with long execution times are executed immediately, one after the
other, the time gaps are few but long (see Figure 69).

[Task 1
A M sk
. Task 3
Ta+ Tb
A -
I L
50 100 150 200 250 Time (ms)

Figure 69. The result of having no offset for three tasks with long execution times.
The gap (T,+T)) is the time available for the execution of other functions, for
example communication.

3BSE035980-511 167

Offset Section 1 Basic Functions and Components

The offset mechanism can be used to make the time gaps more frequent (see
Figure 70).

D Task 1
A . Task 2
D Task 3

Ta Tb

N
T L
50 100 150 200 250 Time (ms)
Figure 70. The result of assigning offset to tasks 2 and 3, is that the time available
Sfor the execution of other functions occurs more often (T,).

The same processor handles communication and IEC 61131-3 code. This means
that you have to consider how much code you include in each task, when you tune
the tasks.

Assume that we have a task running code with an execution time of 500 ms and an
interval time of 1000 ms. This means a cyclic load of 50%

(load = execution time / interval time). But, this also means that no communication
can be performed during the 500 ms execution (since communication has lower
priority than the task).

Now, assume that we have divided the code into 4 tasks such that each one
corresponds to 125 ms of the execution time. The interval time is still 1000 ms,
hence the load is still 50%. But, if we set the offset for the 4 tasks to 0, 250, 500, and
750 ms, the result will be completely different. Now, code will be executed for

125 ms, after which there will be a pause when communication can be performed.
Following this, code will be executed for another 125 ms followed by another pause
when further communication can be performed. Hence, we still have the same cyclic
load, but the possibility for communication has increased considerably.

To conclude, try to tune your tasks using offsets before you change the priority.
Actually, the only time you have to change the priority, is when two tasks have so
much code that their execution cannot be “contained” within the same time slot, that
is, the total execution time exceeds the length of the time slot. It is then necessary to
specify which of the two tasks is most important to the system.

168 3BSE035980-511

Section 1 Basic Functions and Components Execution Time

ﬂ More information about task tuning can be found in the System 800xA Control AC
800M Planning (3BSE043732%).

Execution Time

The maximum allowed execution time for time-critical tasks must not exceed
100ms. This is also recommended for the other tasks in the controller. The execution
time for each individual task should be kept feasible to 100 - 200ms.

ﬂ The maximum allowed execution time does not include the first scan execution
time.

It is preferred to split the execution of a program or application into different tasks,
if the execution time is high and good real time behavior is needed. See
Communication Considerations on page 167.

Overrun and Latency

Overrun and Latency are two functions for supervising a task. Overrun checks if
each task finishes before it is supposed to start the next time, and detects if the task
runs for too long. Latency on the other hand, checks that a task starts on time (on
each cyclic start), and detects if the task starts too late.

The Overrun function is configured per controller via the Controller Settings dialog
box, while the Latency function is configured per task (and SIL classification per
task) via the Task Properties dialog box. Both Overrun and the Latency function
uses the Error Handler to report any errors.
ﬂ For High Integrity controllers:
Overrun Supervision is automatically enabled and cannot be switched off. Load
balancing is not available in High Integrity controllers.

Latency Supervision is mandatory and therefore automatically enabled for all
SIL tasks.

Overrun Supervision

Overrun occurs when the execution of a task takes too long, that is, the task is still
executing when the next execution of the task is scheduled to start.

3BSE035980-511 169

Overrun Supervision Section 1 Basic F