

Options for ABB drives

Original user's manual
Emergency stop, stop category 1 with opening main contactor
(option +Q952) for DCS8x0-A cabinet drives
equipped with DCS880 modules

Individual E-Stop

	E-Stop cat.0	E-Stop cat.1	POUS	forced MC opening
+Q951	x			х
+Q952		х		х
+Q963	x			
+Q964		x		
+Q957			х	

List of related manuals

General	Publication number	EN	DE	IT	ES	FR	PL	ZH	RU
DCS880 Quick guide	3ADW000545	<u>EN</u>	DE	IT	ES	FR			
Safety instructions all languages	3ADW000481	<u>EN</u>	DE	<u>IT</u>	ES	FR	PL	ZH	RU
DCS880 Manual set	DCS880 Manual set	EN							
DCS880 Units									
DCS880 Flyer	3ADW000475	EN	DE	IT	ES	FR		ZH	RU
DCS880 Technical catalog	3ADW000465	EN	DE	IT	ES	FR	PL	ZH	RU
DCS880 Hardware manual	3ADW000462	EN	DE	IT	ES	FR	PL		RU
DCS880 Firmware manual	3ADW000474	EN	DE	IT	ES	FR	PL		RU
DCS880 Service manual	3ADW000488	EN							
DCS880 Hardparallel manual (on request only)	3ADW000530	EN							
DCS880 12-pulse manual	3ADW000533	EN							
Instructions for mounting the SDCS-CMA-2	3ADW000396	EN							
DCS880 Current measurement aid (SDCS-CMA-2) manual	3ADW000745	EN							
ACS-AP-x assistant control panels user's manual	3AUA0000085685	EN							
DCS Thyristor power converter – Technical guide	3ADW000163	EN							
Functional safety									
Supplement for functional safety	3ADW000452	EN		Η	ES	FR	PL		RU
Functional safety for enclosed converter									
+Q957 Prevention of unexpected Start Up	3ADW000504	<u>EN</u>							
+Q951 Emergency stop, category 0 with MC opening	3ADW000505	EN							
+Q952 Emergency stop, category 1 with MC opening	3ADW000506	EN							
+Q963 Emergency stop, category 0 without MC opening	3ADW000507	EN							
+Q964 Emergency stop, category 1 without MC opening	3ADW000508	EN							
Enclosed converter									
DCS880-A Catalog	3ADW000531	EN							
DCS880-A Installation manual	3ADW000627	EN							
DCS800-A +S880 Enclosed converters, flyer	3ADW000523	EN							
Rebuild and upgrade systems									
DCS880-R Rebuild manual	3ADW000599	EN							
DCS880-U Upgrade manual	3ADW000719	EN							
Door mounting kits									
DPMP-01 mounting platform for ACS-AP control panel	3AUA0000100140	EN							
DPMP-02 mounting platform for ACS-AP control panel	3AUA0000136205	EN							
Serial communication									
FCAN-01 CANopen adapter module	3AFE68615500	EN	DE						
FDNA-01 DeviceNet™ adapter module	3AFE68573360	EN							
FECA-01 EtherCAT adapter module	3AUA0000068940	EN	DE		ES				
FENA-11/-21 Ethernet adapter module	3AUA0000093568	EN						ZH	
FEPL-02 Ethernet POWERLINK adapter module	3AUA0000123527	EN	DE						
FPBA-01 PROFIBUS DP adapter module	3AFE68573271	EN	DE				PL	ZH	
FSCA-01 RS-485 adapter module	3AUA0000109533	EN						ZH	
FDCO-01/02 DDCS communication modules	3AUA0000114058	EN							
FSPS-21 PROFIsafe safety functions module	3AXD50000158638	EN							
FSO-21 Safety functions module	3AXD50000015614	EN							
Tool and maintenance manuals and guides									
Drive Composer PC tool	3AUA0000094606	EN							
Drive application programming (IEC61131-3) manual	3AUA0000127808	EN							
Adaptive programming, Application guide	3AXD50000028574	EN							
NETA-21 remote monitoring tool	3AUA0000096939	EN							
NETA-21 remote monitoring tool guide	3AUA0000096881	EN							
DDCS branching unit NDBU-95 user's manual	3BFE64285513	EN							
Extension modules									
FIO-11 Analog extension module	3AFE68784930	EN	DE	<u>IT</u>					
FIO-01 Digital extension module	3AFE68784921	EN	DE	ΙΤ					
FAIO-01 Analog extension module	3AUA0000124968	EN	DE						
FDIO-01 Digital extension module	3AUA0000124966	EN							
FEN-01 TTL encoder interface	3AFE68784603	EN	DE	IT				ZH	
FEN-31 HTL encoder interface	3AUA0000031044	EN						ZH	
FEA-03 F series extension adapter	3AUA0000115811	EN							
· · · · · · · · · · · · · · · · · · ·	3AUA0000125635	EN							
Ethernet tool network for ACS880 drives appl. guide	3A0A0001L3033	-11							

Table of contents

List of related manuals	2
Safety Instructions	5
Introduction to the manual	6
Contents of this chapter	6
Applicability	6
Target audience	6
Contents	6
Related documents	6
Abbreviations	7
Exclusion of liability	8
Quick reference guide for implementing a safety system	8
Option description and instructions	9
Contents this chapter	
Overview	
Operation principle Single drive (+Q952 E-Stop cat.1 with opening MC)	
Timing diagram	
Group drive safety: Information and Operation principle	
Connection to safety bus X25 (+Q952)	
Connection of safety bus X25 to drives (+Q952)	
+Q952 Fault reaction function	
Parameter settings	
Hardware settings	
Customer wiring	
+Q952 Start-up and acceptance test	
Use of the safety function	
Activating	
Resetting	
Emergency stop indications	
+Q952 Fault tracing	
+Q952 Maintenance	
Proof test interval	
Diagnostic test interval	
Competence	
Residual risk	
Intentional misuse	
Decommissioning	
Safety data	
Safety data values	
Safety component types	
Safety block diagram	
Relevant failure modes	
Fault exclusions	
Operation delays	
General rules, notes and definitions	
Validation of the safety functions	
Ambient conditions Reporting problems and failures related to safety functions	
, •,	
Related standards and directives Compliance with the European Machinery Directive	
Comphance with the European Machinery Directive	29

4

Appendix	30
Single wiring inside cabinets (fault exclusion)	30
Long cables for E-Stop loop	30
Further information	31

Safety Instructions

Only a qualified electrician who has appropriate knowledge on functional/machine/process safety is allowed to install, start up and maintain the safety circuit.

WARNING!

This safety function does not disconnect the voltage of the main and auxiliary circuits from the drive. You must not work on the electrical parts of the drive or the motor before you have also disconnected the drive system from the electric supply and ensured by measuring that there is no dangerous voltage present.

WARNING!

After making additions to the drive safety circuit or modifying it, or changing circuit boards inside the drive, always test the functioning of the safety circuit according to the acceptance test procedure. Any changes in the electrical installations of the drive may affect the safety performance or operation of the drive unexpectedly. All customermade changes are on the customer's responsibility.

WARNING!

Read and obey all safety instructions given for the drive in its hardware manual. If you ignore them, injury or death, or damage to the equipment can occur.

This manual does not repeat the complete safety instructions of the drive but it only includes the instructions related to the scope of this manual.

Introduction to the manual

Contents of this chapter

This chapter describes the manual in short and gives some general information for the reader. The chapter also contains a quick reference for implementing a safety system.

Applicability

The manual applies only to DCS880-A cabinet drives and to DCS800-A cabinet drives with option +S880 (exchange of DCS800 with DCS880 drives modules) which have option +Q952: Emergency stop, stop category 1 with STO. It also applies to group drives with this option (option added to the cabinet containing the safety circuit). In this emergency stop option, the main contactor breaker of each drive is opened after STO. It is realized with safety relays.

Target audience

The manual is intended for people who install, start up, use and service the safety option of the drive. Read the manual before working on the drive. You are expected to know the fundamentals of electricity, wiring, electrical components, electrical schematic symbols, and functional safety.

Contents

The chapters of this manual are briefly described below.

Introduction to the manual (this chapter) introduces this manual.

Option description and instructions describes the safety option and instructs how to wire, start up, test, validate, use and maintain it. The chapter also contains the safety data.

Related documents

- Product manuals (see the inside of the front cover)
- Circuit diagrams delivered with the drive
- Safety data (if the safety circuit is application engineered)

Abbreviations

Abbreviations used in this manual are listed below.

Abbreviation	Description	Reference
Cat.	Category 1. Stop category according to EN/IEC 60204-1 The stop categories are: 0 (uncontrolled stop) and 1 (controlled stop) 2. Classification of the safety-related parts of a control system in respect of their resistance to faults and their subsequent behavior in the fault condition, and which is achieved by the structural arrangement of the parts, fault detection and/or by their reliability. The categories are: B, 1, 2, 3 and 4.	EN/IEC 60204-1 EN ISO 13849-1
CCF	Common cause failure (%)	EN ISO 13849-1
DC	Diagnostic coverage	EN ISO 13849-1
DI	Digital input	
E-stop	Emergency stop	
Frame (size)	Relates to the construction type of the drive in question. For example, several drive types with different power ratings can have the same basic construction, and a frame size is used in reference to all those drive types.	
HFT	Hardware fault tolerance	IEC 61508, EN/IEC 62061
PFH	Probability of dangerous failures per hour	IEC 61508, EN ISO 13849-1, EN/IEC 62061, EN/IEC 61800-5-2
PL	Performance level (levels are: a, b, c, d and e). Corresponds to SIL.	EN ISO 13849-1
RO	Relay output	
SC	Systematic capability	IEC 61508
SIL	Safety integrity level	IEC 61508, IEC 61511, EN/IEC 62061, EN/IEC 61800-5-2
SILCL	Maximum SIL that can be claimed for a safety function or subsystem	EN/IEC 62061
SS1	Safe stop 1	EN/IEC 61800-5-2
STO	Safe torque off	EN/IEC 61800-5-2
T ₁	Proof test interval or lifetime (the smaller one)	IEC 61508, EN/IEC 62061
Off3	Function in Drive: Emergency stop with configurable deceleration time according to Cat. 1.	Profibus standard

Exclusion of liability

ABB is not responsible for the implementation, verification and validation of the overall safety system. It is the responsibility of the system integrator (or other party) who is responsible for the overall system and system safety. The system integrator (or other responsible party) must make sure that the entire implementation complies with all relevant standards, directives and local electrical code, and that the system is tested, verified and validated correctly.

Quick reference guide for implementing a safety system

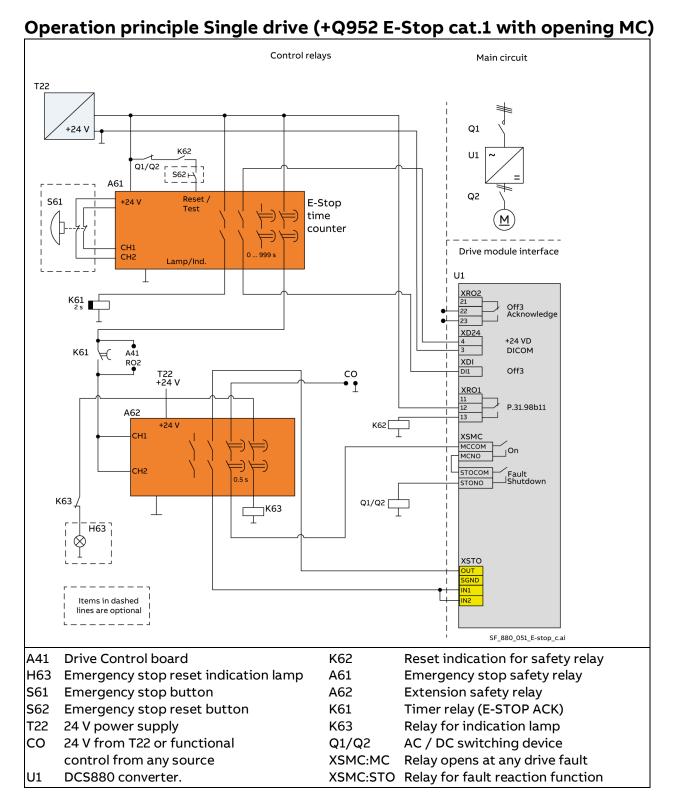
\checkmark	Task
	Select the appropriate functional safety standard for the implementation: EN ISO 13849-1, EN/IEC 62061, IEC 61511 or other
	If you select EN/IEC 62061 or IEC 61511, make a safety plan. See EN/IEC 62061.
	Assess safety: analyze and evaluate risks (estimate SIL/PL) and define risk reduction strategies. Define the safety requirements
	Design the safety system. The part of the design made by ABB is described in chapter Option description and instructions on page 9.
	If you made any changes to the delivered safety system, verify the achieved SIL/PL with, for example, FSDT-01 Functional safety design tool or similar. See <i>Functional safety design tool user's manual</i> (3AXD10000102417 [English]).
	Connect the wiring. See section <i>Wiring</i> on page 18.
	Set the parameters. See section <i>Parameter settings</i> on page 16.
	Validate that the implemented system meets the safety requirements: – Do the acceptance test. See section <i>Start-up and acceptance test</i> on page 19
	Write the necessary documentation.

Option description and instructions

Contents this chapter

This chapter describes the +Q952 emergency stop option and instructs how to wire, start up, test, validate, use and maintain it.

Overview

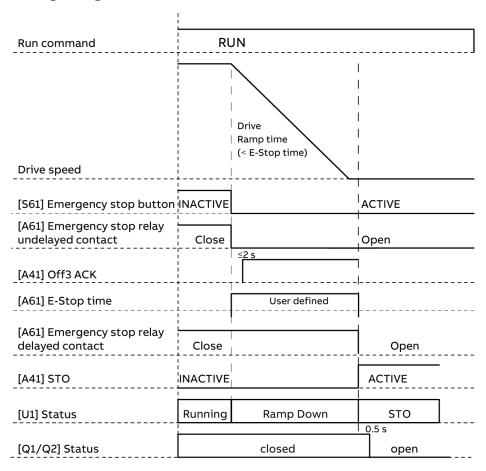

Option +Q952 corresponds to a controlled stop in accordance with stop category 1 (EN/IEC 60204-1). The option corresponds to the Safe Stop 1 (SS1) function. After the emergency stop command has been given, each drive first decelerates the motor to zero speed according to a preset ramp time. Then, the option activates the Safe torque off (STO), this prevents the drive(s) from generating the torque required to rotate the motor(s). The main contactor or breaker of each drive opens.

For a detailed description of the Safe torque off function, see the appropriate hardware manual. The SS1 and STO functions comply with EN/IEC 61800-5-2:2016. Option +Q952 has been designed according to the principles of EN ISO13850.

For a complete list of related standards and European directives, see section *Related standards and directives* on page 29.

Note: Drives with the Prevention of unexpected start-up (POUS) option (+Q957):

If the user activates the POUS function during the emergency stop deceleration ramp (Off3 function in the drive), it overrides the emergency stop function. POUS activates the Safe torque off (STO) function of the drive(s) immediately and the motor coasts (motors coast) to a stop. For more information on the POUS safety function, see Prevention of unexpected start-up (option +Q957) for DCS800-A +S880 (3ADW000504R0101).

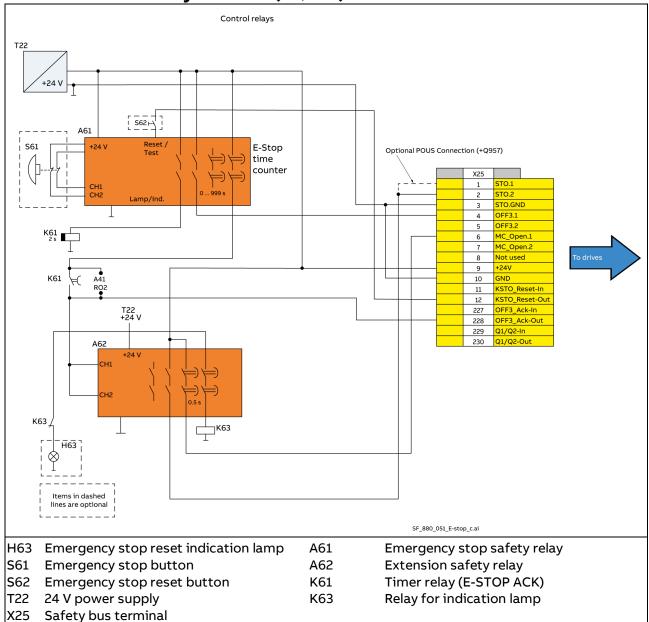


Note: The DCDS880-A cabinet-internal wiring is done with a single wire, (see chapter Single wiring inside cabinets (fault exclusion)).

Initial status: The (group) drive is in operation and the motor(s) is running

Step	Operation
1.	The user activates the emergency stop with the emergency stop button [S61].
2.	The emergency stop safety relay [A61] switches off the digital input on the drive control board (A41) giving the emergency stop command. The emergency stop safety relay [A61] switches off the power supply for the timer relay [K61]. The timer of the emergency stop safety relay [A61] starts counting down (useradjustable delay). The E-Stop time counter of the timer relay [K61] starts (non-user-adjustable delay).
3.	The drive acknowledges the emergency stop command by energizing the relay output RO2. The relay output RO2 bridges relay contacts of [K61] keeping the command inputs of the second safety relay closed. Note: If the drive fails to acknowledge the reception of the emergency stop command in 2 seconds, the STO cuts off the drive control pulses preventing motor control and torque generation.
4.	The drive decelerates the motor to zero speed in emergency stop deceleration time (parameter setting).
5.	The E-Stop time counter of the emergency stop safety relay [A61] trips after the specified time (see page 17) and the relay switches off the control inputs for the extension safety relay [A62]. The extension safety relay [A62] switches off the Safe torque off (STO) control signals on the drive control board [A41]. The STO cuts off the drive control pulses preventing motor control and generation of torque.
6.	The delayed contacts of extension safety relay [A62] opens the AC or DC switching device [Q1/Q2] 0,5 s later.
7.	At the same time, the power is taken away from relay K63. This energizes the indication lamp [H63].
8.	Normal operation resumes after the user: - releases the emergency stop button [S61] to normal (up) position - resets the emergency stop circuit with the emergency stop reset button [S62] (the user must push the button for 0.1 to 3 seconds) - resets the drive (if the STO indication parameter 31.22 has been set so that a fault is generated) - makes sure that the drive has received the start signal (depends on the configuration, see the firmware manual).

Timing diagram

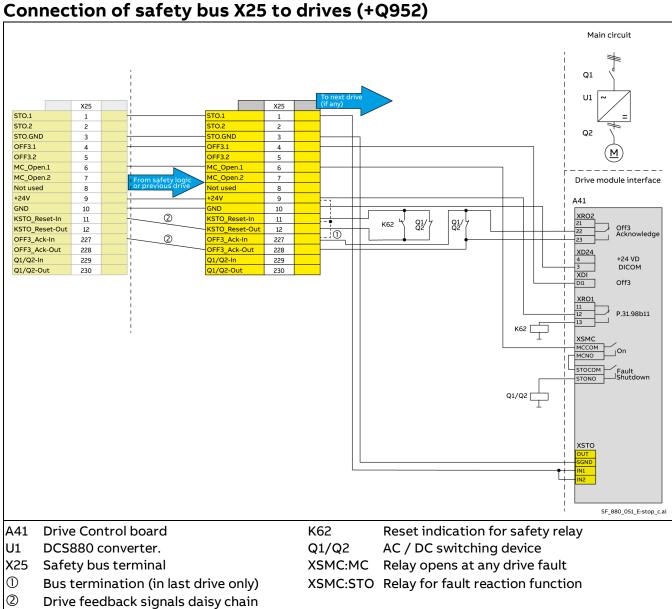

DZ_LIN_075_E-stop timing_a.ai

Group drive safety: Information and Operation principle

DCS880-A cabinet drives are structured in line-ups. Functional safety group drives behave like single drives with regard to functional safety. However, the safety logic for a group is located in the incomer or in an empty cabinet.

If more than one drive can pose a danger at a specific place according to functional safety standards, a functional safety group drive is required. It consists of several drives but behaves like a single drive with regard to functional safety. This means, that a (ramp) stop command (+Q951, +Q952, +Q963, +Q964) or POUS command (+Q957) is valid for all drives at once. Examples of functional safety group drives are drives working on the same roll / shaft, such as a master follower drive. For more information on possible safety configurations, please refer to the DCS880-A catalog.

For functional safety group drives, option +Q952 is added only in the incomer cabinet or empty cabinet. The operation principle is similar to that of a single drive. However, for transmitting the signals to more than one drive, a safety bus is used. It consists of multiple X25 terminals with wired connections. For each drive, plus code +S925 is required. The safety relays of the safety option provide the signals such as STO, ramp start (Off3) and open MC command to the safety bus. Also, diagnostic information is returned to the safety relays using the safety bus, such as the reset indication and Off3 acknowledge.



Connection to safety bus X25 (+Q952)

Note: If the cabinets of the drives of a group are not physically connected with each other, the electrical drawing of the safety bus is more complex. For this so-called line-up splitting, the extra plus codes +S926 safety transmitter and +S927 safety receiver are needed. The safety transmitter can connect one safety group via two channel field wiring to up to two safety receivers. Please see delivered diagrams for reference.

Each individual drive in a group is connected in the same way to the safety bus:

The safety bus X25 provides these signals to all drives and collects the feedback signals from these drives (daisy chain structure). The interconnections of these terminals are created according to the grouping in document 3ADT077036 Safety function configuration for group drives, which has to be filled in as a part of the project specification for all safety groups.

Note: It is not necessary to check the status of the breaker Q1/Q2 in the reset circuit, as the breaker is not a part of the safety function. It is omitted for group drives as it doesn't work together with the resetting

circuit (see chapter Resetting).

+Q952 Fault reaction function

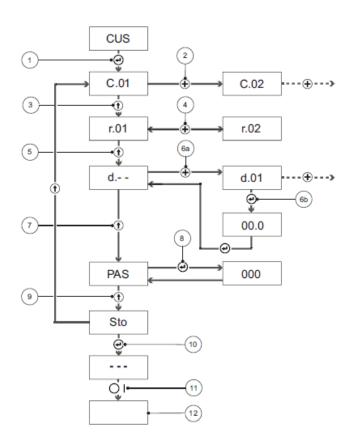
Definition: A safety function requires a 'fault reaction function' that attempts to initiate a safe state if the safety function's diagnostics detect a fault within the hardware/software that performs the safety function.

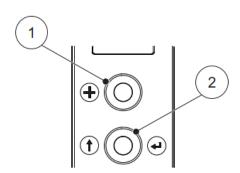
The fault reaction function of the emergency stop safety relay [A61] trips if it detects a failure (short circuit between signals, open circuits, redundancy fault when the emergency stop button is pushed) in the safety circuit. The fault reaction function shifts the drive immediately into the safe state by switching on the drive emergency stop command, activating the Safe torque off (STO) function and keeping it on until the detected fault has been repaired. The emergency stop indication lamp is on until the fault has been repaired.

The emergency stop reset circuit must be open when the user releases the emergency stop button. The emergency stop safety relay [A61] detects if the reset circuit is closed and the relay does not close. The user must reset the safety relay, see section *Fault tracing* on page 21. For a detailed description of the emergency stop safety relay [A61], see section *Hardware settings* on page 17.

The DCS880 STO function has its own internal fault diagnostics and fault reaction function (see <u>Supplement for functional safety</u>).

Parameter settings


This table lists the drive parameters settings for the +Q952 option. For more information, see the firmware manual.


No.	Name	Value	Description
10.24	RO1 source	STO Reset indication (P.31.98b11)	Selects a drive signal to be connected to relay output RO1. In this case, the RO1 is energized if the Drive is in STO state and no STO related fault is active.
10.27	RO2 source	P06.16b9	Selects a drive signal to be connected to relay output RO2. In this case, the RO2 is energized if the Drive is acknowledging Off3.
21.03	Emergency stop	2: Emergency Ramp Stop / 3: Torque limit	Selects the way the motor is stopped when an emergency stop command is received.
20.05	Emergency stop source	DI1	Selects the source of the emergency stop signal. In this case, the source is DI1.
23.23	Emergency stop time	User-defined	Select a suitable value. Only used for Emergency Ramp Stop. See the firmware manual and section Hardware settings on page 17.
31.22	STO indication run/ stop	Fault/ Warning	Selects which indications are given when one or both Safe torque off (STO) signals are switched off or lost, depending on whether the drive is Running / Stopped, when they occur. Fault/Warning is the recommended setting. When a fault occurs in the drive, the mains contactor, AC-B or DC-B is opened by the relay XSMC:1/2.
46.01	M1 Speed scaling	User-defined	Used to define the deceleration ramp rate. Choose the larger value of the absolute value of 30.11 M1 minimum speed and 30.12 M1 maximum speed).

Hardware settings

A61 setting

Appropriate hardware settings have been preset at the factory for the safety function. Set the time delay of the emergency stop safety relay [USR22] according to the application needs (see instruction 6). It must be a longer than the emergency stop deceleration time defined by parameters 23.23 and 46.01 (see section *Parameter settings* on page 16) of the drive(s).

- Increment button
- 2. Select button

Instructions

- 1. Push and hold the Select button when "CUS" appears on the display to start with the custom settings.
- 2. Push the Increment button to select the type of input configuration, C.01 (Equivalent contacts, default),
- 3. Push the Select button to confirm the selection and move to the selection of the reset mode r.01 (Manual reset, default)
- 4. Push the Increment button to select manual or automatic reset.
- 5. Push the Select button to confirm the selection and move to the timer functions, d.01 (No on-delay, default)
- 6. Select the timer function type and set the time for the delay:
 - a. Push the Increment button to step between the timer functions.
 - b. Push and hold the Select button to confirm and enter the time value setting.
 - c. Push the Increment button to change the flashing segment.
 - d. Push the Select button to change what segment (or decimal point) of the display is flashing
 - e. Push and hold the Select button to confirm the time value.
- 7. Push the Select button to confirm the timer settings and move to the password settings.
- 8. Set password. (optional, PW=000 as default).
 - f. Push and hold the Select button to enter the password selection.
 - g. Push the Increment button to change the flashing digit.

- h. Push the Select button to change what segment of the display is flashing
- i. Push and hold the Select button to confirm the password.
- 9. Push the Select button to change to the store stage, [STO].
- 10. Push and hold the Select button to store and confirm the configuration.
- 11. Power cycle (power off and on) the safety relay.
- 12. The safety relay is in operation mode with a customized configuration.

For more information refer to original manual 2TLC010002M0201

A62 setting

The hardware reset of the extension safety relay [SSR32] is preset to automatic (Dip Switch).

Use the switch (1) to change settings between automatic reset (2) and manual reset (3).

Power cycle (power off and on) the safety relay when a setting has been changed.

Customer wiring

At least one emergency stop button and one reset button need to be installed at a suitable place near the machine. There must be double contacts in the emergency stop button and double wiring (two-channel connection) between the button and the emergency stop safety relay [A61]. The safety relay detects cross faults and faults across one contact from the emergency stop button.

If needed, install additional emergency stop buttons on site and wire them to the appropriate terminal block inside the drive cabinet. See the circuit diagrams delivered with the drive. Follow the rules below:

- 1. Use only double-contact buttons approved for the emergency stop circuits.
- 2. Connect the emergency stop buttons with two conductors (two-channel connection).

Note: Keep the channels separate. If you use only one channel, or if the first and second channels are connected together (for example, in a chain), the cross fault detection of the emergency stop safety relay trips and activates the emergency stop command of the drive as it detects a redundancy fault.

- 3. Use shielded, twisted pair cable. We recommend a double-shielded cable and gold-plated contacts in the emergency stop button.
- 4. Ensure that the sum resistance for one channel (loop resistance) does not exceed 850 Ω and that the used cable does not exceed a capacity of 100 nF to ground. If very long cables are required, see chapter Long cables for E-Stop loop
- 5. Follow the general control cable installation instructions given in the drive hardware manual. You can also install additional reset buttons and indication lamps for the emergency stop circuit on site. We recommend gold-plated contacts in the reset button. Wire the buttons to the appropriate terminal block inside the drive cabinet. See the circuit diagrams delivered with the drive. Follow the rules below:
 - 1. Sum resistance of the external reset circuit may not exceed 800 Ω .
 - 2. Follow the general control cable installation instructions given in the drive hardware manual.

+Q952 Start-up and acceptance test

This acceptance test has to be done as part of the testing procedure whenever a STO function is in use. It is valid for functional safety single drives and complete functional safety group drives. You need the Drive composer PC tool or a control panel to perform the start-up and acceptance test.

For group drives, this test must be done for each group. The assignment of the drives to each group can be found in document 3ADT077036 Safety function configuration for group drives protected. This document must be signed together with the test.

See also document 3ADP078579 (on request) with further test instructions for shipping splits and line-up splits (applicable to group drives with plus codes +S926 and +S927).

Initial status: Make sure that the drive is ready for use, that is, you have done the tasks of the drive start-up procedure. See the hardware manual.

Action		V
	WARNING! Follow the <i>Safety instructions</i> , page 5. Otherwise, serious injury, death, or damage to the equipment can occur.	
Checks and setti	ngs with no voltage connected	
of additional em	ns of the emergency stop circuit have been changed on site (such as wiring ergency stop buttons, connection of shipping splits of large drives, etc.), onnections are correct with the appropriate circuit diagrams.	
	ave been made, check that the hardware settings of the safety relays afety function are set as defined in section <i>Hardware settings</i> on page 17.	□ OK (A61) □ A (A62)
Settings with vo	ltage connected	
	arameters of the drive(s) relevant to the safety function are set as defined neter settings on page 16.	
Ensure that the i	motor(s) can run and be stopped freely during the test.	
	drive and ensure that the motor is (motors are) running. If possible, use a se to the maximum speed of the application.	
Push the emerge	ency stop button [S61] (if installed).	
For a description	drive stops the motor by decelerating and displaying a warning. To of the messages, see the firmware manual of the drive. After the ramp The K61 delay of 2 seconds) STO must be signaled by the drive.	Event:
	mains contactor, AC breaker or DC breaker has opened. If it is not part of roject, check the auxiliary contactor K10 instead.	
Ensure that the i	ndication lamp [H63] switches on (if installed).	
_	ncy stop button [S61] until it releases and returns to the up position. tions (+Q957) are activated, reset the corresponding relay(s), before	
-	cannot start the (group) drive and motor from any control location, even if tart signal off and on or push the start key of the panel.	
=	cannot close the mains contactor, AC breaker or DC breaker from any liary contactor K10 accordingly).	
_	ency stop reset button [S62]. Ensure that the emergency stop reset [H63] switches off (if installed).	

If there are drives that are part of the group but not in operation (switched off, e.g. via Q1, Q10,), they must not affect the reset process described above.	
Switch off the (group) drive start signal. If a fault message is generated, reset the affected drive(s). See section <i>Parameter settings</i> on page 16.	
Restart the (group) drive and motor and check that they operate normally.	
Repeat the test from each operating location (each emergency stop button and reset button).	
Sign the acceptance test report and 3ADT077036 Safety function configuration for group drives protected table which together verify that the safety function is safe and approved for operation.	

Use of the safety function

Activating

1. Push the emergency stop button [S61]. The emergency stop activates and the button locks in "ON" (open) position.

Resetting

- 1. Turn the emergency stop button [S61] until it releases.
 - **Note:** If any POUS functions of the same drive or group (+Q957) are activated, reset the corresponding relay(s), before proceeding.
- 2. Push the emergency stop reset button [S62]. The emergency stop indication lamp [H63] goes out, the emergency stop deactivates.
 - Note: You must push the reset button [S62] for 0.1 to 3 seconds.
- 3. Reset the drive(s) if necessary.
- 4. Make sure that the drive has (drives have) received the start signal (depends on the configuration, see the firmware manual).
- 5. You can now restart the drive(s).

Note: You have to reset the emergency stop circuit with the reset button [S62] also after you have powered up the drive.

Note for group drives: If one or more drives are switched off via mains contactor, AC-breaker or DC-breaker (see Q1/Q2 in chapter <u>Group drive safety: Information and Operation principle</u>), resetting the safety relay is possible. For this, the feedback loops RO1 (K62) and RO2 (Off3 acknowledge) are bridged. This allows to use the other drives of a group drive, even if a drive is faulted or under maintenance.

Emergency stop indications

When the emergency stop is on:

- The drive(s) control program show(s) the warning Safe torque off or warning Emergency stop (Off3) active.
- The emergency stop indication lamp [H63] is illuminated after the emergency stop deceleration ramp time is elapsed and the mains contactor has opened.
- The mode LED of the emergency stop safety relay [A61] is flashing blue (during ramp) or steady blue (STO state).

+Q952 Fault tracing

This table describes the error codes of the emergency stop safety relay A61 [USR22].

Error code	Error type	Procedure for correction	
E.10 – E.14	Internal error.	 Power cycle the safety relay. If the error code remains, contact your ABB Jokab Safety representative. 	
E.15	Relay hardware error.	 Power cycle the safety relay. If the error code remains, contact your ABB Jokab Safety representative. 	
E.16	+24 V power error.	Check the supply voltage.	
E.17	Temperature error.	Check the ambient temperature.	
E.20 – E.26	Input/Output (I/O) error.	 Power cycle the safety relay. If the error code remains, contact your ABB Jokab Safety representative. 	
E.30 – E.34	System error.	 Power cycle the safety relay. If the error code remains, contact your ABB Jokab Safety representative. 	
E.50	Internal error.	 Power cycle the safety relay. If the error code remains, contact your ABB Jokab Safety representative. 	
E.51	External error. Signal short on T1.	Examine T1 for short circuits.	
E.52	External error. Signal short on T2.	Examine T2 for short circuits.	
E.53 – E.58	Internal error.	 Power cycle the safety relay. If the error code remains, contact your ABB Jokab Safety representative 	

This table describes the status LEDs of the safety relay A61 [USR22].

CH1	Mode	CH2	Comment	Action
off	off	off	The safety relay is not powered.	Check A1–A2 voltage and
				connections.
green	green	green	CH1 and CH2 accepted.	
			Reset done and outputs activated.	
off	flash	off	CH1 and CH2 unaccepted. A timer	
	green		function is counting down while the	
			safety relay remains activated.	
off	flash	green	CH1 unaccepted and CH2 accepted. A	
	green		timer function is counting down while	
			the safety relay remains activated.	
green	flash	off	CH1 accepted and CH2 unaccepted. A	
	green		timer function is counting down while	
			the safety relay remains activated.	
off	blue	off	No channels accepted.	Check CH1 and CH2
off	blue	green	CH1 unaccepted, CH2 accepted	Check CH1
green	blue	off	CH1 accepted, CH2 unaccepted	Check CH2
green	blue	green	CH1 and CH2 accepted, the safety	Check reset settings, wiring
			relay wait for reset.	and reset circuit.
green	blue	fast flash	Two-channels error: CH2 has been	Check installation. Restore
		green	unaccepted and then accepted again	by opening and closing
			while CH1 remained accepted.	both CH:s at the same time.
fast flash	blue	green	Two-channels error: CH1 has been	Check installation. Restore
green			unaccepted and then accepted again	by opening and closing
			while CH2 remained accepted.	both CH:s at the same time.
fast flash	blue	fast flash		Check installation. Restore
green		green		by opening and closing
				both CH:s at the same time.
off	flash blue	off	CH1 and CH2 unaccepted, a timer	
			function is counting down while	
			remaining deactivated.	
off	flash blue	green	CH1 unaccepted and CH2 accepted, a	
			timer function is counting down while	
			remaining deactivated.	
green	flash blue	off	CH1 accepted and CH2 unaccepted, a	
			timer function is counting down while	
			remaining deactivated.	
red	fast flash	red	Failsafe mode, a new setting has	Power cycle the unit to use
	blue		been stored.	the stored setting.
red	flash red	red	Failsafe mode, the system is waiting	Enter and store a new
		<u> </u>	for a new setting.	setting.
red	fast flash	red	The safety relay is in failsafe mode.	Check error codes and
	red			installation.
red	fast flash	fast flash	Failsafe mode due to short circuit	Check error code.
	red	red	between CH2 and 24 VDC or T1	Check and remove the short
				circuit.
fast flash	fast flash	red	Failsafe mode due to short circuit	Check error code.
red	red		between CH1 and 24 VDC or T2	Check and remove the short
				circuit.

This table describes the status LEDs of the extension safety relay A62 [SSR32].

CH1	Mode	CH2	Status	Action
				Check A1–A2 voltage and
off	off	off	The safety relay is not powered.	connections.
			CH1 and CH2 accepted. Reset made	
green	green	green	and outputs activated.	
			CH1 and CH2 unaccepted. A timer	
	flash		function is counting down while the	
off	green	off	safety relay remains activated.	
			CH1 unaccepted and CH2 accepted.	
			A timer function is counting down	
	flash		while the safety relay remains	
off	green	green	activated.	
			CH1 accepted and CH2 unaccepted.	
			A timer function is counting down	
	flash		while the safety relay remains	
green	green	off	activated.	
off	blue	off	No channels accepted.	Check CH1 and CH2
off	blue	green	CH1 unaccepted, CH2 accepted	Check CH1
green	blue	off	CH1 accepted, CH2 unaccepted	Check CH2
			CH1 and CH2 accepted, the safety	Check reset settings, wiring
green	blue	green	relay waits for reset.	and reset/test circuit
			Two-channels error: CH2 has been	Check installation. Restore by
		fast flash	unaccepted and then accepted	opening and closing both
green	blue	green	again while CH1 remained accepted.	CH:s at the same time.
			Two-channels error: CH1 has been	Check installation. Restore by
fast flash			unaccepted and then accepted	opening and closing both
green	blue	green	again while CH2 remained accepted.	CH:s at the same time.
				Check installation. Restore by
fast flash		fast flash		opening and closing both
green	blue	green	Reading error on R1 and R2.	CH:s at the same time.
	fast flash		Failsafe mode, a new setting has	Power cycle the unit to use
red	blue	red	been stored.	the new setting.
			Failsafe mode, the system is waiting	Change the timer setting
red	flash red	red	for a new setting.	switch.
	fast flash			Check installation and power
red	red	red	The safety relay is in failsafe mode.	cycle.
	fast flash	fast flash	Failsafe mode due to short circuit	Check and remove the short
red	red	red	between CH2 and 24 VDC or T1	circuit.
fast flash	fast flash		Failsafe mode due to short circuit	Check and remove the short
red	red	red	between CH1 and 24 VDC or T2	circuit.

For more information see 2TLC010002M0201

+Q952 Maintenance

After the operation of the circuit is tested at start-up, it does need scheduled maintenance testing during its specified lifetime depending on its usage.

In addition to proof testing, it is a good practice to check the operation of the function when other maintenance routines of the machinery are carried out.

If you change any wiring or component after the start up, or restore parameters to their default values:

- Use only ABB approved spare parts.
- Register the change to the change log for the safety circuit.
- Test the safety function again after the change.
 Follow the rules given in section +Q952 Start-up and acceptance test on page 15.
- Document the tests and store the report into the logbook of the machine.

Proof test interval

After the operation of the safety function is validated at start-up, the safety function must be maintained by periodic proof testing. In high demand mode of operation, the maximum proof test interval is 20 years. In low demand mode of operation, the maximum proof test interval is one year (high or low demand as defined in IEC 61508, EN/IEC 62061 and EN ISO 13849-1).

Diagnostic test interval

Regardless of the mode of operation, it is a good practice to check the operation of the safety function at least **once** a year. Do the test as described in section +Q952 Start-up and acceptance test on page 15. The person responsible for the design of the complete safety function should also note the Requirements from IEC61800-5-2:2016 / EN61800-5-2:2017 for the drives STO circuit:

6.2.2.1.4: Diagnostic test interval when the hardware fault tolerance is greater than zero The diagnostic test interval of any subsystem of the PDS (SR) shall be appropriate to meet the required PFH (see 6.2.2.1.1).

NOTE 2: For redundant parts of a PDS (SR) which cannot be tested without disrupting the application in which the PDS (SR) is used (machine or plant) and where no justifiable technical solution can be implemented, the following maximum diagnostic test intervals can be considered as acceptable:

- one test per year for SIL 2, PL d / category;
- one test per three months for SIL 3, PL e / category 3;
- one test per day for SIL 3, PL e / category 4 (not applicable).

PL and category according to ISO 13849-1.

The noted DC Values are taken from SS-EN ISO 13849-1:2016 (E) chapter 4.5.3.

Competence

The maintenance and proof test activities of the safety function must be carried out by a competent person with adequate expertise and knowledge of the safety function as well as functional safety, as required by IEC 61508-1 clause 6.

Residual risk

The safety functions are used to reduce the recognized hazardous conditions. In spite of this, it is not always possible to eliminate all potential hazards. Therefore, the warnings for the residual risks must be given to the operators.

Intentional misuse

The safety circuit is not designed to protect a machine against intentional misuse.

Decommissioning

When you decommission an emergency stop circuit or a drive, make sure that the safety of the machine is maintained until the decommissioning is complete.

Safety data

The safety data given below is valid for the default design of the safety circuit. In case the final design differs from the default, it is the obligation of the changing person to calculate new safety data and deliver it separately to the customer.

Safety data values

Drive module frame size	SIL / SILCL ¹⁾	SC	PL	PFH ²⁾ [1/h]	DC [%]	Cat.	HFT	CCF	Lifetime [a]	T1 ³⁾⁴⁾ [a]
H1 H8	3	3	е	5.2E-8	>90	3	1	80	20	20/1
(Hard) parallel drive / Master-Follower	3	3	е	≤ 5.7E-8	>90	3	1	80	20	20/1

- 1) The drive may be used for applications with the given SIL / PL only if the function is tested regularly (see chapter: test interval above).
- 2) PFH values are according to EN ISO 13849. PFH assumes a standard E-stop push button with a lifetime of 50 000 operations, that is used once per day. Differing from these assumptions can change the PFH value. The system integrator (or other responsible party) must redo the calculation, if the lifetime of the used E-Stop button is shorter, the button is used more often, additional drives or and / or additional safety relays are added to the safety system.
- 3) See the recommendation of use CNB/M/11.050 published by the European co-ordination of notified bodies for lower T1 requirement and also IEC61800-5-2:2016 / EN61800-5-2:2017 6.2.2.1.4 Note 2 for guidance.
- 4) T1 = 20a is used with high demand mode of operation. See also section *Proof test interval* on page 24.

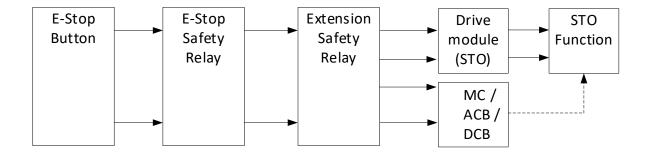
Note for functional safety group drives: To calculate the total PFH value of a group, the PFH values of the drives (see <u>safety supplement</u>) excluding the first have to be added to the PFH value above. PL e requires the PFH value to remain below 1.0E-7 1/h.

Including a safety margin, the following number of H7/H8 drives can be in one group with SIL 3 / PL e:

Option Q952: Possible number of drives with SIL 3 / Pl e

Single line-up 1 Split 2 Splits 27 20 17

The splits refer to the so-called line-up splitting with one split (plus codes +S926 and +S927) and two splits (plus codes +S926 and twice +S927).


Safety component types

Safety component types as defined in IEC 61508-2:

- emergency stop button: type A
- safety relays: type A
- drive STO circuit:
- frame sizes H1 ... H8: type A

Safety block diagram

The components that are included in the safety circuit are shown in the safety block diagram below.

Parallel to the Drive STO function the MC / ACB / DCB is forcibly opened by the safety relay. However, this is not part of the safety calculation as it is not needed for the safety function STO. The Drive module already provides a hardware fault tolerance of 1 with a sufficient PFH - value. Therefore, the calculation gives a worst-case approximation and excludes the typically worse and often unknown safety values of the MC / ACB / DCB.

Relevant failure modes

Internal failures of safety relays, the emergency stop button and STO. These failures are included in the PFH value of the function.

Fault exclusions

Fault exclusions (not considered in the calculations):

- any short and open circuits in the cables inside the cabinet
- any short and open circuits in the cabinet terminal blocks of the safety circuits.

Operation delays

The following maximum delay times apply (measured from the time, when the input to the safety relay is '0 V):

Action	Response time / reaction time
Ramp delay: Delay to trigger the ramp stop	30 ms
Total emergency stop time (STO is achieved)	540 ms + Emergency stop deceleration ramp time (0.1 to 999 s ramp time as set by safety timer relay)
Electrical disconnect	Total emergency stop time + 500 ms + delay time of the mains contactor or other switching device.

Note: If plus code +S927 is used in the incomer (line-up-splitting), to each action an additional response time of 40 ms has to be added.

General rules, notes and definitions

Validation of the safety functions

You must do an acceptance test (validation) to validate the correct operation of safety functions.

Validation procedure

You must do the acceptance test using the checklist given in section *Start-up and acceptance test* on page 19:

- at initial start-up of the safety function
- after any changes related to the safety function (wiring, components, safety function related parameter settings etc.)
- after any maintenance action related to the safety function.

The acceptance test must include at least the following steps:

- you must have an acceptance test plan
- you must test all commissioned functions for proper operation, from each operation location
- you must document all acceptance tests.

Acceptance test reports

You must store the signed acceptance test reports in the logbook of the machine. The report must include, as required by the referred standards:

- a description of the safety application (including a figure)
- a description and revisions of safety components that are used in the safety application
- a list of all safety functions that are used in the safety application
- a list of all safety related parameters and their values
- documentation of start-up activities, references to failure reports and resolution of failures
- the test results for each safety function, checksums, date of the tests and confirmation by the test personnel.

You must store any new acceptance test reports performed due to changes or maintenance in the logbook of the machine.

Competence

The acceptance test of the safety function must be carried out by a competent person with adequate expertise and knowledge of the safety function as well as functional safety, as required by IEC 61508-1 clause 6.

The test procedures and report must be documented and signed by this person.

Ambient conditions

For the environmental limits for the safety functions and the drive, refer to the hardware manual.

Reporting problems and failures related to safety functions

Contact your local ABB representative.

Related standards and directives

Standard	Name
EN 60204-1:2006 + AC:2010 IEC 60204-1:2005 + A1:2008	Safety of machinery – Electrical equipment of machines – Part 1: General requirements
IEC 61508-1:2010	Functional safety of electrical/electronic/programmable electronic safety related systems - Part 1: General requirements.
IEC 61508-2:2010	Functional safety of electrical/electronic/programmable electronic safety related systems - Part 2: Requirements for electrical/electronic/ programmable electronic safety related systems.
EN 61800-5-2:2017 IEC 61800-5-2:2016	Adjustable speed electrical power drive systems – Part 5-2: Safety requirements – Functional
EN 62061:2005 + AC:2010 + A1:2013 + A2:2015 IEC 62061:2015	Safety of machinery – Functional safety of safety-related electrical, electronic and programmable electronic control systems
EN ISO 12100:2010	Safety of machinery – General principles for design – Risk assessment and risk reduction
ISO 13849-1:2015	Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design
EN ISO 13849-2:2012	Safety of machinery – Safety-related parts of control systems – Part 2: Validation
EN ISO 13850:2015 ISO 13850:2015	Safety of machinery. Emergency stop. Principles for design
IEC 61511-1:2016	Functional safety – Safety instrumented systems for the process industry sector
IEC 61326-3-1: 2008	Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 3-1: Immunity requirements for safety-related systems and for equipment intended to perform safety-related functions (functional safety) – General industrial applications
2006/42/EC	European Machinery Directive
Other	Machine-specific C-type standards

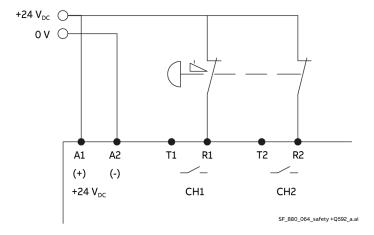
Compliance with the European Machinery Directive

The drive is an electronic product which is covered by the European Low Voltage Directive. However, the drive internal safety function of this manual (option +Q952) is in the scope of the Machinery Directive as a safety component. This function complies with European harmonized standards such as EN/IEC 61800-5-2. The declaration of conformity is delivered with the drive.

Appendix

Single wiring inside cabinets (fault exclusion)

The DCS880-A cabinet safety functions can achieve up to SIL 3 / Pl e.


- Functional safety customer interfaces are designed in double wiring.
- Functional safety devices work with dual channels (double contacts);
 examples are E-Stop buttons, safety relays and the DCS880 STO function.
- Functional safety relevant connections inside the cabinet are designed with single wires; for example, the connection from the safety relay (orange) to XSTO terminal (yellow), see picture in chapter Operation principle Single drive (+Q952 E-Stop cat.1 with opening MC).

Single wiring inside cabinets is permitted based on the following two standards (fault exclusion): According to IEC 62061, claiming Hardware Fault Tolerance (HFT) 1 does not require that two physical channels are needed, but depends on the safe failure fraction of the safety function subsystem (6.7.6). Possible faults are divided into safe and dangerous failures. The only dangerous failure for the STO circuit is a short circuit of a wire to 24 V. This 24 V short circuit is very unlikely, compared to other faults (such as broken cables or connectors or loss of 24 V supply), due to the fixed routing of "separate" isolated cables inside the cabinet.

Similarly, in ISO 13849, architectures 3 and 4 do not necessarily require two physical channels but a fault tolerance of 1. For dangerous failures (short circuit to 24 V) in wiring (and terminals), it is possible to claim a fault exclusion to achieve a fault tolerance of 1, if the requirements of ISO 13849-2 table D.4 (and table D.6) are fulfilled. That means for the wiring, that the cables are permanently fixed, protected against damage, with separate isolation and are located in an electrical enclosure.

Long cables for E-Stop loop

There are applications which require long cables and might have a higher capacity than 100 nF to ground for each channel, even with low-capacity cables (see chapter Customer wiring). The inputs A61: T1 /T2 are equipped with test pulse function, which do not work with high-capacity cables, i.e. with long cables. In this case connecting the E-stop button without test pulses (terminal A1 instead of T1/T2) according to the picture below is possible.

2 channels connection with equivalent contacts, +24 V_{DC} static signal

This solution can achieve PL d level without fault exclusion, see configuration *2-channel sensor* (equivalent) of AC500-S manual page 74 3ADR025091M0208 for reference.)

Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/searchchannels.

Product training

For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB manuals

Your comments on our manuals are welcome. Navigate to new.abb.com/drives/manuals-feedback-form.

Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet at www.abb.com/drives/documents.

DCS Family

DCS550-S modules The compact drive for machinery application

... 1,000 A_{DC} 610 V_{DC} 230 ... 525 V_{AC} IP00

- Compact
- Robust design
- Adaptive and winder program
- High field exciter current

DCS880 modules For safe productivity

... 5,200 A_{DC} ... 1,600 V_{DC} 230 ... 1,000 V_{AC} IP00

- Safe torque off (STO) built in as standard
- Compact and robust
- Single drives, 20 A to 5,200 A, up to 1,600 $\rm V_{\rm DC}$
- IEC 61131 programmable
- Intuitive control panel and PC tool with USB connection and start up assistant
- Wide range of options to serve any DC motor application

DCS880-A enclosed converters Complete drive solutions

... 20,000 A_{DC} ... 1,500 V_{DC} 230 ... 1,200 V_{AC} IP21 - IP54

- Individually adaptable to customer requirements
- User-defined accessories like external PLC or automation systems can be included
- High power solutions in 6- and 12-pulse up to 20,000 A, 1,500 V
- In accordance to usual standards
- Individually factory load tested
- Detailed documentation

DCT880 modules Thyristor power controller

20 ... 4,200 A_{AC} 110 ... 990 V_{AC}

- Precise power control in industrial heating applications
- Two or three phase devices
- Power optimizer for peak load reduction
- Built on ABB's all-compatible drives architecture
- Intuitive control panel and PC tool with USB connection and start up assistant
- Application control programs and drive application programming with IEC 61131 programming

Wallstadter-Straße 59 68526 Ladenburg • Germany Tel: +49 (0) 6203-71-0

dc-drives@de.abb.com www.abb.com/dc-drives

