Impact test report Quick-Guard® Standard

Date	Place	Testing Company	
2015-10-05	Kungsbacka, Sweden	ABB Jokab Safety	
Report No:	Test method	-	
QG-TR-35	Test method stated in EN ISO 14120:2015 Annex C		

Test object data

Test object	Infill material / panel	Panel fixation	Post profile
Quick-Guard Standard	JSM YGP1A9 Steel panel 1,0 mm	JSM G2/PL1_ Cellular rubber/infill-	JSM A44A Aluminum profile 44x44
	X-reinforced	securing strip	
Test object height	Test object width		Manufacturer
2000 mm	2000 mm		ABB Jokab Safety
Othor			

Cellular rubber mounted inside hazard zone and infill securing strip on the outside

Test equipment and conditions

Test method	Impact body	Impact side	Height of impact point
Pendulum test	Hard body	Inside hazard zone	1340 mm
Body mass	Drop height	Calculated impact energy [E]	Floor fixation
34 kg	380 mm	127 J	M10x68 expander shell bolts

Other

Pendulum speed: 9,8km/h (2,7m/s)

$$E = mgh = 34 * 9.82 * 0.38 = 127 J$$

or

$$E = \frac{mv^2}{2} = \frac{34 * 2,7^2}{2} = 124 J$$

Where

E is the calculated impact energy in Joule [J] m is the pendulum mass [kg] g is 9,82 m/s² (constant) h is the drop height in meters [m] v is the pendulum speed [m/s]

Test result

Result:

The fence absorb and resist the energy impact caused by the pendulum body, and obtain a remaining deformation. Total deflection of the fence was approximately 90 mm, no penetration or parts departed.

