Software Description Advant Controller 31
Intelligent Decentralized
Automation System

Operating Manual
907 AC 1131

4907 AC 1131- ampel_pro~ - [AMPEL [FB-FUF]]
ZW Datei Bearbeiten Projekt Einflgen Estraz Online Fenster Hilfe _|5|£|
el =L e (e el e (= i e e s K o R
IZIEIEI1|FUNCTION_EILOCKAMF‘EL —
-4 Bausteine 1| | r
..... @ 0001 r
..... @ I:I:INT.&'.I:T -
- COUNTER EQ
(3] PLC_PRG STATUS ——GRUEN;
w[Z] WARTEN 1
noonz
EQ CR
STATUSH ———GELR
7
E
STATLISH
EIEEE - =
4 | *l
| [OMLIME [LESEM

AL ID ED
Mipmw

Content

1 A Brief Introduction to 907 AC 1131 ... 1-1
1.1 What iS 907 AC 1187 oot e e et e e e e et e e e e e ennneeeeeeannees 1-1
1.2 Overview of 907 AC 1131 FUNCLONS........cooiiiiiiiii e 1-1
2 What is What in 907 AC 1131 ... s s 21
2.1 Project COMPONENTSuiiiiiiceeee e e e e e e e e e e e eeaeaes 2-1
2.2 =T g To [F= (o = PSP 2-10
2.2.1 INStruCtion LiSt (IL) ..coeeeeeeeeeee e 2-10
A 0 Lo (BT =To I = (S 1 S 2-12
2.2.3 Sequential Function Chart (SFC)cooeiiiiiie e 2-19
2.2.4 Function Block Diagram (FBD)uuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 2-25
2.2.5 The Continuous Function Chart Editor (CFC)ovviiiiiiiiicc e, 2-26
2.2.6 Ladder Diagram (LD)ooeiiiiiiiiiiiiiiiiiiiiie ettt 2-26
2.3 Debugging, Online FUNCLIONS.............uiiiiiiiiieeecee e 2-29
24 The Standard ... 2-31
3 We write a little Program ... s s s s s nmssssss s s eenens 31
3.1 Controlling a Traffic Signal Unit.......... 3-1
3.2 Visualizing a Traffic Signal Unit.............coooviiiiiiiiiiiiieeeeeeeeeeeeeee e 3-13
4 The Individual CoOmMPONENtS.....c...ciiiiieiiirrcr e ren e e e s s e e e emnaaas 4-1
4.1 The Main WINAOW ... 4-1
4.2 (@] 0] (o] o 1T PRSPPI 4-4
4.3 Managing PrOJECESooeiiiiiiiiiiiiiiiiii e 4-24
4.4 Managing ODbjects in @ Projectooiiiiiiiiiecee e 4-51
4.5 General Editing FUNCHONS........uuuiiiiiii e 4-67
4.6 General Online FUNCLIONScooiiiiiiiic e 4-76
4.7 o Lo 4-93

907 AC 1131/Stand: 02/03 0-1 Content m

4.8 LA e (o TS U o PRSP 4-96
4.9 Help When you Need it..........uiiiie e 4-97
5 The Editors in 907 AC 1131 ... 5-1
51 Declaration EdIitOr....... ... 5-2
5.2 B T IS = 11 o 5-15
5.2.1 The InStruction List EItOr..... ..o 5-20
5.2.2 The Editor for Structured TexXt 5-21
5.3 The GraphiC EAItOrseiiiiee e 5-22
5.3.1 The Function Block Diagram Editor.............cccoo 5-24
5.3.2 The Ladder EdItOr.......coouiieeee et 5-32
5.3.3 The Sequential Function Chart EAItOr..........ccooiiiiiiiiii e 5-38
5.3.4 The Continuous Function Chart Editor (CFC).......cccooiiiiiiiiiieee e 5-48
6 The RESOUICESccoiiiiiiiiieeiiii i s s s e s nm s s s e e e e e nmmma s nn s s e nnnns 6-1
6.1 OVEIVIEW .. 6-1
6.2 Global VariabIles oo 6-1
6.2.1 What are Global Variables............ ... 6-2
6.2.2 Variable ConfIQUIration ... 6-4
6.2.3 DOCUMENT Frame.......cooiiiiii et eeeeees 6-5
6.3 LiDrary Manageru s 6-6
6.4 oo PP 6-8
6.5 e IO T 0T SO 6-11
6.6 PLC Configurationccoiiiiiiiiiii e e e e e e e e e e e eeananns 6-15
GG T B © AV =T o 1 RSP 6-15
6.6.2 Working in the PLC Configurationooooiiii e 6-15
6.6.3 Doing the PROFIBUS-DP Configurationccccoooiiieeeeeeeeeeeeeeeeee e 6-16
6.6.4 PLC Configuration in Onling MOdecooiiiiiiiiiiii e 6-30
6.7 Task Configurationcoooiiiiiiiiiiii e 6-31
6.7.1 Taskconfiguration in Online MOdEccoiiiiiiiiiiii e 6-34
6.8 SAMPING TraCe ... 6-35
6.9 Watch and Receipt Manager...........o oo 6-41
A4 T3 ¥ = 11 1 o o 71
71 Creating a Visualization ObJecCtooovviiiiiiiiiic e 7-2
7.1.1 Inserting Visualization EIements...........ccooo 7-2
7.1.2 Positioning Visualization Elements..............oooomiiiiiii i 7-5
m Content 0-2 907 AC 1131/Stand: 02/03

7.2 Configuration of @ Visualization ... 7-9

7:2.1 Configuration of Visualization Elements.............ooooiiiiiiiiiice e 7-11
7.2.2 Configuration of Visualization ODJECLSuuuiuiiiiiiiiiiiiiiiis 7-35
7.3 Visualization in Online Mode.............coooiiiiiiiiieeee 7-40
7.4 Visualizations in IDraries..........oooo e 7-42
8 DDE CommuUNICAtIONcee s 8-1
8.1 DDE interface of the 907 AC 1131 programming SYStemcccccccuevmmiinnnnnnnnns 8-1
8.2 DDE communcation with the GatewayDDE Server............cccccceeiiiiiiiiiieiiiiiieee e, 8-2

9 The 907 AC 1131 ENI INterfacecceeveeeeeememmmmmmmmeeeeeeeeeeeeeeeeeseeeeeeennesnssnssnnnnnnsnsnnnnnnns 9-1
9.1 LT = L T = P 9-1
9.2 Preconditions for Working with an ENI project data baseccccccciiinnnnnns 9-2
9.3 Working with the ENI project data base in 907 AC 1131 ..., 9-3
9.4 Object categories concerning the project data basecccccociinees 9-3
L0 - X oY oY= Vo |G N 101
Appendix A: Use of Keyboard ... s s s 10-1
Key COMDBINAtIONS......cciiiiiieeee e e e e e e e e e e e e e e e e aeeennnnnans 10-1
Appendix B: Data TYPeS....ccuu i s ssssssssss s s sssss s s s s s s ssmsssssssssssssssnnnnnns 10-7
Standard Data tyPeSouuuuiii i ——————————— 10-7
Defined Data TYPeScoooiiiiieiee e 10-8
Appendix C: IEC Operators and other, norm-extending Functionsccc...cccccovvrrnnne 10-17
Arthmetic OPEIratOrScoo et e e e e e e e e et e e e e e eeeeeees 10-17
BitsStrinNg OPEratorscooooiiiiiii et a e e a e 10-21
Bit-Shift OPEIratorsScooiiiiii et e e e e e e e e e e e eeeeenannans 10-23
Y= =T i [o] g M O o 1= =1 (o] &= TP 10-27
(O] aaT =TT T @ oT=T =1 (o] = S 10-29
AdAreSS OPEIAtOrS. cciiiii ettt et e e e e e e e te e e e e et e e e e e et e e e eesaaaeaeens 10-32

907 AC 1131/Stand: 02/03 0-3 Content m

CalliNG OPEIATON ... 10-33

Type Conversion FUNCLONS........coiii it e e e e e e e eeeenees 10-33
N[0T =Ty T U g e i < 10-39
Appendix D: Standard Library Elements.............cooiiiiiiimiicccciicrrrrrreessss e 10-45
SHANG FUNCHIONS ... e 10-45
Bistable FUNCHON BIOCKSccooiiiieiie e e 10-49
TGO e, 10-51
701U o) (= PSPPSR 10-52
LI .01 RS 10-55
Appendix E: Operands in 907 AC 1131 ... reess e rrns e e s res s e s e nmn s e enns 10-59
Constants IN 907 AC 118 oo e e e e e e e e e e s 10-59
[T T =1 o] [RPN 10-62
o Lo =TT Y= PPN 10-63
U] o 1o o 1= ST 10-64
Appendix F: Command Line / Command File Commandsccccceevrvvrrirrinnnneennnnnn. 10-65
Command Line COMMANGAS.........uiiiiiiiiiiieee e e e e e e et e e e e e e e e e e eaaa s e e e e aeeenennes 10-65
Command File (cmdfile) Commandsccoooiiiiiiee e 10-65
Appendix G: Overview Operators and Library Elements............ccccveeeccciiiiiiriseeennnnnn. 10-73
Appendix H: Compiler Errors and Warningscccoveeeeecninnniimnmnnssssssss s sssssssssssnns 10-79
LAV L 11T S URRPPRPPRRRRPN 10-79
(0] o] 71 1= gl 4 o] 10-81
T [o = i

m Content 0-4 907 AC 1131/Stand: 02/03

1 A Brief Introduction to 907 AC 1131

1.1 What is 907 AC 1131

907 AC 1131 is a complete development environment for your PLC.
(907 AC 1131 stands for Controlled Developement System).

907 AC 1131 puts a simple approach to the powerful IEC language at the
disposal of the PLC programmer. Use of the editors and debugging functions is
based upon the proven development program environments of advanced
programming languages (such as Visual C++).

1.2 Overview of 907 AC 1131 Functions

How is a project structured?

A project is put into a file named after the project. The first POU (Program
Organization Unit) created in a new project will automatically be named
PLC_PRG. The process begins here (in compliance with the main function in a
C program), and other POUs can be accessed from the same point (programs,
function blocks and functions).

Once you have defined a Task Configuration, it is no longer necessary to create
a program named PLC _PRG. You will find more about this in the Task
Configuration chapter.

There are different kinds of objects in a project: POUs, data types, display
elements (visualizations) and resources.

The Object Organizer contains a list of all the objects in your project.

How do | set up my project?

First you should configure your PLC in order to check the accuracy of the
addresses used in the project.

Then you can create the POUs needed to solve your problem.
Now you can program the POUs you need in the desired languages.

Once the programming is complete, you can compile the project and remove
errors should there be any.

How can | test my project?

Once all errors have been removed, activate the simulation, log in to the
simulated PLC and "load" your project in the PLC. Now you are in Online mode.

Now open the window with your PLC Configuration and test your project for
correct sequence. To do this, enter input variables manually and observe
whether outputs are as expected. You can also observe the value sequence of
the local variables in the POUs. In the Watch and Receipt Manager you can
configure data records whose values you wish to examine.

907 AC 1131/Stand: 03.99

1-1 We write a little Program m

Debugging

@ Note: POUs of external libraries are not processed in simulation mode.

In case of a programming error you can set breakpoints. If the process stops at
such a breakpoint, you can examine the values of all project variables at this
point in time. By working through sequentially (single step) you can check the
logical correctness of your program.

Additional Online Functions

Further debugging functions:
You can set program variables and inputs and outputs at certain values.
You can use the flow control to check which program lines have been run.

A Log records operations, user actions and internal processes during an online
session in a chronological order.

The Sampling Trace allows you to trace and display the actual course of
variables over an extended period of time.

Optional a PLC Browser is available to request certain information from the
PLC.

Once the project has been set up and tested, it can be loaded down to the
hardware and tested as well. The same online functions as you used with the
simulation will be available.

Additional 907 AC 1131

Features

Summary

The entire project can be documented or exported to a text file at any time.
Also it can be translated into another language.

907 AC 1131 has a symbolic and a DDE interface. A gateway server together
with an OPC server and DDE server are parts of the 907 AC 1131 standard
installation.

ENI: The 'Engineering Interface' can be used to access an external data base
via the independent ENI Server, where 907 AC 1131 POUs resp. compile files
are managed. Those elements then are also available for other clients of the
ENI Server. Thus multi-user-operation on 907 AC 1131 projects is possible as
well as a common data pool for any tools besides 907 AC 1131 and a version
management for 907 AC 1131 projects.

907 AC 1131 is a complete development tool used to program your PLC which
will save you a measurable amount of time setting up your applications.

m We write a little Program 1-2 907 AC 1131/Stand: 02/03

2 What is what in 907 AC 1131

This chapter contains a list of the most important concepts to make starting
easier.

2.1 Project Components

Project

A project contains all of the objects in a PLC program. A project is saved in a
file named after the project. The following objects are included in a project:

POUs (Program Organization Units), data types, visualizations, resources, and
libraries.

POU (Program Organization

Unit)

Function

Functions, function blocks, and programs are POUs which can be
supplemented by actions.

Each POU consists of a declaration part and a body. The body is written in one
of the IEC programming languages which include IL, ST, SFC, FBD, LD or
CFC.

907 AC 1131 supports all IEC standard POUs. If you want to use these POUs
in your project, you must include the library IEC_S90 V41.LIB in your project.

POUs can call up other POUs. However, recursions are not allowed.

A function is a POU, which yields exactly one value or variable (which can
consist of several elements, such as fields or structures) when it is processed,
and whose call in textual languages can occur as an operator in expressions.

When declaring a function do not forget that the function must receive a type.
This means, after the function name, you must enter a colon followed by a type.

A correct function declaration can look like this example:
FUNCTION Fct: INT

In addition, a result must be assigned to the function. That means that function
name is used as an output variable.

A function declaration begins with the keyword FUNCTION.

Example in IL of a function that takes three input variables and returns the
product of the first two divided by the third:

907 AC 1131/Stand: 03.99

2-1 We write a little Program m

D007 FUNCTION Fet: INT “
0002[vAR_INPUT
0003 PARTINT,
0004 PARZINT,
0005 PARZINT,
n0oe| ErD_WAR

nonz LD PART =

non3 LIl PARZ

L O PAR3 b

Q005 ST Fct

nnnel hd
KN M

Image 2.1: Example of a function in IL

The call of a function in ST can appear as an operand in expressions.

Functions do not have any internal conditions. That means that calling up a
function with the same argument (input parameters) always produces the same
value (output).

Examples for calling up the function described above:

in IL:

LD 7
Fct 2,4
ST Result

in ST:
Result := Fct(7, 2, 4);
in FBD:

Fct
PAR1
PAR2
PAR3

Ergebnis

ol ol =]
11 1

In SFC a function call can only take place within a step or a transition.

@ Note:

If you define a function in your project with the name CheckBounds, you can
use it to check range overflows in your project! The name of the function is
defined and may have only this identifier (see Appendix B: Data types) .

If you define functions in your project with the names CheckDivByte,
CheckDivWord, CheckDivDWord and CheckDivReal, you can use them to
check the value of the divisor if you use the operator DIV, for example to avoid
a division by 0 (see Appendix C: IEC operators).

m We write a little Program 2-2 907 AC 1131/Stand: 02/03

If you define functions with the names CheckRangeSigned and
CheckRangeUnsigned, then range exceeding of variables declared wit
subrange types (see Appendix B: Data types) can be intercepted.

All these check function names are reserved for the described usage.

Function Block
A function block is a POU which provides one or more values during the
procedure. As opposed to a function, a function block provides no return value.
A function block declaration begins with the keyword FUNCTION_BLOCK.

Example in IL of a function block with two input variables and two output
variables. One output is the product of the two inputs, the other a comparison
for equality:

%, FBD [FE-FED] M=l

Q007 FURCTICORN_BLOCK FUB -

WAR_IMPUT
PART:IMT,
PARZIMT,

EMD_WaR

WAR_COUTPUT
MULER(GIIMT;
YERGL:BOOL,

EMD &R

WAR

EMD AR

o
(]
=]
[

o
(]
=
Ll

[}
[}
(]
=

o
(]
]
Lh

o
(]
=]
o

[}
[}
]
=

o
(]
]
oo

=
=
]
w

[
]
=
=

[
]
=
—

o]
[
o
=
-
=

PART
PAR2
MULERG

o
[
=]
]
=
[
=

EE
| I» I;I<

o]
[
=)
[%5]
Ll
i

[}
[}
(]
=

o]
[
=]
ch
-
=

P&R1
PAR2
WERGL -

o
[
=]
o
m
(]

[}
[}
]
=
[y
i

A
i
S

Image 2.2: Function Block

Function Block Instances

Reproductions or instances (copies) of a function block can be created.

Each instance possesses its own identifier (the Instance name), and a data

structure which contains its inputs, outputs, and internal variables. Instances are

declared locally or globally as variables, whereas the name of the function block

is indicated as the type of an identifier.

Example of an instance with the name INSTANCE of the FUB function block:
INSTANCE: FUB;

Function blocks are always called through the instances described above.

Only the input and output parameters can be accessed from outside of an
function block instance, not its internal variables.

907 AC 1131/Stand: 03.99 2-3 We write a little Program m

Example for accessing an input variable:

The function block FB has an input variable in1 of the type INT.

PROGRAM prog
VAR
inst1:fb;
END VAR
LD 17
ST inst1.in1
CAL inst1
END PROGRAM

The declaration parts of function blocks and programs can contain instance
declarations. Instance declarations are not permitted in functions.

Access to a function block instance is limited to the POU in which it was
declared unless it was declared globally.

The instance name of a function block instance can be used as the input for a
function or a function block.

% Note: All values are retained after processing a function block until the next
it is processed. Therefore, function block calls with the same arguments do not
always return the same output values!

@ Note: If there at least one of the function block variables is a retain variable,
the total instance is stored in the retain area.

Calling a function block

The input and output variables of a function block can be accessed from
another POU by setting up an instance of the function block and specifying the
desired variable using the following syntax:

<Instance name>.<Variable name>

If you would like to set the input parameters when you open the function block,
you can do this in the text languages IL and ST by assigning values to the
parameters after the instance name of the function block in parentheses (this
assignment takes place using ":=" just as with the initialization of variables at
the declaration position).

Please regard, that the InOutVariables (VAR _IN_OUT) of a function block are
handed over as pointers. For this reason in a call of a function block no
constants can be assigned to VAR IN_OUTs and there is no read or write
access from outside to them.

VAR
inst:fubo;
var:int;

END_ VAR

m We write a little Program 2-4 907 AC 1131/Stand: 02/03

var1:=2;
inst(instout1:=var1?);

not allowed in this case: inst(instout1:=2); or inst.inout1:=2;

Please regard when calling a function block in a function that the parameters
are handed over in the "stack" which is limited to 4KB.

Examples for calling function block FUB described above:

The multiplication result is saved in the variable ERG, and the result of the
comparison is saved in QUAD. An instance of FUB with the name INSTANCE is
declared.

In IL the function block is called as shown in the following image:

4, AWLCall (PRG-IL) =]
000 |PROGE &M 2L Call -
Qoo AR

0ons aUat: BOOL; b
oon4 INSTAMCE: FUB;

0o ERG IMT:=0,

DODG|ERD &R

0ood CAL INSTAMCE(PART =5 PARZ:=5)
o0z LD INSTAMCE WERGL

0on3 =T SN]

oon4 LD IMSTAMCE MULERG

Qo0 ST ERG

:
it

Image 2.3: Function Block Call in IL

In the example below the call is shown in ST. The declaration part is the same
as with IL:

: 5Tcall [PRG-ST) M=l E3
0001| PROGRAM STeall

4I|-

:

O001[INSTAMNZIPART =5 PAR2:=5);
0002 QUAD=INSTANZ VERGL,
0003 ERG:=INSTANZ MULERG:

:il_l S

|»

vl]

Image 2.4: Function Block Call in ST

In FBD the instance of a function block is called as shown in the following image
(declaration part the same as with IL):

907 AC 1131/Stand: 03.99

2-5 We write a little Program m

: FBDcall [PRG-FED) =] E3
0001 |PROGRAM FEDCA -
0002 AR —
000 Instance: FUE; b
0004 ERG: INT,

000 QUAD: BOOL;

00ag| Instanz: FIG,

0007|END_v 2R -
— 4 | on
0001 -
.......... stanz

B | b
. {5-{PAR1 MULERG——FR3

. |54PARZ WERGL|QUAD

-
<] H

Image 2.5: Function Block Call in FBD

In SFC function block calls can only take place in steps.

Program

A program is a POU which returns several values during operation. Programs
are recognized globally throughout the project. All values are retained from the
last time the program was run until the next.

i PRGExample [PRG-IL) Mi=] E3
0001|PROGRAM PRGExample
0002|veR
0003 PARINT,
D004|EMND_vAR

Y

ool LD PAR
o0z ADD 1
oD ST PAR

Al

e

- -
S B DT

Image 2.6: Example of a program

Programs can be called. A program call in a function is not allowed. There are
also no instances of programs.

If a POU calls a program, and if thereby values of the program are changed,
then these changes are retained the next time the program is called, even if the
program has been called from within another POU.

This is different from calling a function block. There only the values in the given
instance of a function block are changed.

These changes therefore play a role only when the same instance is called.

A program declaration begins with the keyword PROGRAM and ends with
END_PROGRAM.

Examples of calls of the program described above:

m We write a little Program 2-6 907 AC 1131/Stand: 02/03

PLC PRG

Action

In IL:

CAL PRGExample
LD PRGexample.PAR

ST ERG

in ST:

PRGExample;

Erg := PRGexample.PAR;
In FBD:

PRGbeispiel
-{PAR PAR Erg

Example for a possible call sequence for PLC_PRG:

LD 0

ST PRGexample.PAR (*Default setting for PAR is 0%)
CAL IL call (*ERG in IL call results in 1%)

CAL STcall (*ERG in ST call results in 2*)

CAL FBD call (*ERG in FBD call results in 3%)

If the variable PAR from the program PRGexample is initialized by a main
program with 0, and then one after the other programs are called with above
named program calls, then the ERG result in the programs will have the values
1, 2, and 3. If one exchanges the sequence of the calls, then the values of the
given result parameters also change in a corresponding fashion.

The PLC_PRG is a special predefined POU. Each project must contain this
special program. This POU is called exactly once per control cycle.

The first time the 'Project' 'Object Add' command is used after a new project
has been created, the default entry in the POU dialog box will be a POU named
PLC_PRG of the program type. You should not change this default setting!

If tasks have been defined, then the project may not contain any PLC_PRG,
since in this case the procedure sequence depends upon the task assignment.

A Attention: Do not delete or rename the POU PLC_PRG (assuming
you are not using a Task Configuration, see Chapter 6.7: Resources)!
PLC_PRG is generally the main program in a single task program.

Actions can be defined to function blocks and programmes. (For this purpose
mark the function block or program in the Object Organizer and perform the
command 'Project' 'Add action'. The new action will be inserted below the
corresponding POU in the Object Organizer.) The action represents a further
implementation which can be entirely created in another language as the
"normal” implementation. Each action is given a name.

907 AC 1131/Stand: 03.99

2-7 We write a little Program m

An action works with the data from the function block or program which it
belongs to. The action uses the same input/output variables and local variables
as the "normal” implementation uses.

0001 FUNCTION_BLOCK Counter &

_0002WAR_INFUT |

0003 in:BOOL;

D004 EMD_WAR

_000svAR_QUTPUT

0006 outINT,

0007 EMD_WAR -

_ r

EETEEEY =

0002 aut:=out+1; | booffout:=0; =

0003 ELSE 0002 I

0004 aut:=out - 1; D003

0008/ END_IF .| o004 .
< | P 4| ap

Image 2.7:Example for an action of a function block

In the example given, calling up the function block Counter increases or
decreases the output variable "out”, depending on the value of the input variable

in”. Calling up the action Reset of the function block sets the output variable to
zero. The same variable "out” is written in both cases.

An action is called wup with <Program_name>.<Action_name> or
<Instance _name>.<Action_name>. If it is required to call up the action within its
own block, one just uses the name of the action in the text editors and in the
graphic form the function block call up without instance information.

Examples for calls of the above described action from another POU:

Declaration for all examples:
PROGRAM PLC_PRG

VAR
Inst : Counter;
END VAR
Callin IL:
CAL Inst.Reset(In := FALSE)
LD Inst.out
ST ERG
Call in ST:

Inst.Reset(In := FALSE);
Erg := Inst.out;

Callin FBD:
Inst
Counter.Reset
FALSEHIN out Erg

m We write a little Program 2-8 907 AC 1131/Stand: 02/03

Resources

Libraries

Data types

Visualization

@ Note: Actions play an important role in blocks in sequential function charts,
see Chapter 2.2.3, Sequential Function Chart.

The IEC standard does not recognise actions other than actions of the
sequential function chart.The IEC standard does not recognise actions other
than actions of the sequential function chart.

You need the resources for configuring and organizing your project and for
tracing variable values:

o Global Variables which can be used throughout the project

o Library manager for adding libraries to the project

e Log for recording the actions during an online session

e PLC-Browser as controller monitor

o PLC Configuration for configuring your hardware

o Task Configuration for guiding your program through tasks

o Sampling Trace for graphic display of variable values

« Watch and Receipt Manager for displaying variable values and setting
default variable values

See Chapter 6, 'The Resources'.

You can include in your project a series of libraries whose POUs, data types,
and global variables you can use just like user-defined variables. The library
IEC_S90 _V41.LIB is a standard part of the program and are always at your
disposal.

See Chapter 6.3, 'Library Manager'.

Along with the standard data types the user can define his own data types.
Structures, enumeration types and references can be created.

See Appendix B, Data Types.

907 AC 1131 provides visualizations so that you can display your project
variables. You can plot geometric elements off-line with the help of the
visualization. In Online mode, these can then change their form/color/text output
in response to specified variable values. A visualization also can be used as a
pure operating interface for an application program in AC1131HMI.

See Chapter 7, Visualization.

907 AC 1131/Stand: 03.99

2-9 We write a little Program m

2.2 Languages
907 AC 1131 supports all languages described by the standard IEC-61131:
Textual Languages:

e Instruction List (IL)
e Structured Text (ST)

Grafic Languages:

e Sequential Function Chart (SFC)
« Function Block Diagram (FBD) and Continuous Function Chart Editor (CFC)
e Ladder Diagram (LD)

2.2.1 Instruction List (IL)

An instruction list (IL) consists of a series of instructions. Each instruction
begins in a new line and contains an operator and, depending on the type of
operation, one or more operands separated by commas.

In front of an instruction there can be an identification mark (label) followed by
a colon (:).

A comment must be the last element in a line. Empty lines can be inserted
between instructions.

Example:
LD 17
ST lint (* comment *)
GE 5
JMPC next
LD idword
EQ istruct.sdword
STN test
next:

Modifiers and operators in IL

In the IL language the following operators and modifiers can be used.

Modifiers:

oC with JMP, CAL, RET: The instruction is only then executed if the result
of the preceding expression is TRUE.

o N with JMPC, CALC, RETC: The instruction is only then executed if the result
of the preceding expression is FALSE.

o N otherwise: Negation of the operand (not of the accumulator)

m We write a little Program 2-10 907 AC 1131/Stand: 02/03

Below you find a table of all operators in IL with their possible modifiers and the
relevant meaning:

Operator Modifiers Meaning

LD N Make current result equal to the operand

ST N Save current result at the position of the operand

S Then put the Boolean operand exactly at TRUE if the
current result is TRUE

R Then put the Boolean operand exactly at FALSE if
the current result is TRUE

AND N, (Bitwise AND

OR N, (Bitwise OR

XOR N, (Bitwise exclusive OR

ADD (Addition

SUB (Subtraction

MUL (Multiplication

DIV (Division

GT (>

GE (>=

EQ (=

NE (<>

LE (<=

LT (<

JMP CN Jump to the label

CAL CN Call programor function block or

RET CN Leave POU and return to caller.

)

Evaluate deferred operation

You find a list of all IEC operators in the appendix.

Example of an IL program while using some modifiers:

LD
ANDN

JMPC

LDN
ST
label:
LD
ST

TRUE
BOOLA1

mark

BOOL2
ERG

BOOL2
ERG

(*load TRUE in the accumulator®)

(*execute AND with the negated value of the BOOL1
variable®)

(*if the result was TRUE, then jump to the label "mark"*)

(*save the negated value of *)
(*BOOL2 in ERG¥)

(*save the value of *)
*BOOL2 in ERG¥)

It is also possible in IL to put parentheses after an operation. The value of the
parenthesis is then considered as an operand.

907 AC 1131/Stand: 03.99

2-11 We write a little Program m

For example:

LD 2
MUL 2
ADD 3
ST ERG

Here is the value of Erg 7. However, if one puts parentheses:

LD 2
MUL (2
ADD 3

)
ST ERG

Here the resulting value for Erg is 10, the operation MUL is only then evaluated
if you come to ")"; as operand for MUL 5 is then calculated.

2.2.2 Structured Text (ST)

Expressions

The Structured Text consists of a series of instructions which, as determined in
high level languages, ("IF. THEN..ELSE) or in loops (WHILE..DO) can be
executed.

Example:

IF value <7 THEN
WHILE value <8 DO
value:=value+1;
END_ WHILE;
END_IF;

An expression is a construction which returns a value after its evaluation.

Expressions are composed of operators and operands. An operand can be a
constant, a variable, a function call, or another expression.

Valuation of expressions

The evaluation of expression takes place by means of processing the operators
according to certain binding rules. The operator with the strongest binding is
processed first, then the operator with the next strongest binding, etc., until all
operators have been processed.

Operators with equal binding strength are processed from left to right.

m We write a little Program 2-12 907 AC 1131/Stand: 02/03

Below you find a table of the ST operators in the order of their binding strength:

Operation Symbol Binding strength
Put in parentheses (expression) Strongest binding
Function call Function name
(parameter list)
Exponentiation EXPT
Negate -
Building of complements | \oT
Multiply *
Divide /
Modulo MOD
Add +
Subtract -
Compare <> <=>=
Equal to =
Not equal to <>
Boolean AND AND
Boolean XOR XOR
Boolean OR OR Weakest binding

There are the following instructions in ST, arranged in a table together with

example:
Instruction type Example
Assignment A:=B; CV := CV + 1; C:=SIN(X);
Calling a function block and |CMD_TMR(IN := %IX5, PT := 300);
use of the FB output A:=CMD_TMR.Q
RETURN RETURN;
IF D:=B*B;
IF D<0.0 THEN
C:=A;
ELSIF D=0.0 THEN
C:=B;
ELSE
C:=D;
END IF;
CASE CASE INT1 OF
1: BOOL1 := TRUE;
2: BOOL2 := TRUE;
ELSE
BOOL1 := FALSE;
BOOL2 := FALSE;
END CASE;

907 AC 1131/Stand: 03.99 2-13 We write a little Program m

FOR

J:=101;
FOR I:=1 TO 100 BY 2 DO
IF ARR[l] =70 THEN

J:=l;
EXIT;
END_IF;
END FOR,;

WHILE

J:=1;

Ji=Jd+2;
END WHILE;

WHILE J<= 100 AND ARR[J] <> 70 DO

REPEAT

J:=-1;
REPEAT
Ji=d+2;

END_REPEAT,

UNTIL J=101 OR ARR[J] =70

EXIT

EXIT,;

Empty instruction ;

Instruction in Structured Text

The name already indicates, the Structured Text is designed for structure
programming, i.e. ST offers predetermined structures for certain often used
constructs such as loops for programming.

This offers the advantages of low error probability and increased clarity of the

program.

For example, let us compare two equally significant program sequences in IL

and ST:

A loop for calculating powers of two in IL:

Loop:

LD Counter
JMPC end

LD Var1
MUL 2

ST Var1

LD Counter
SUB 1

ST Counter
JMP Loop
End:

LD Var1

ST ERG

The same loop programmed in ST would produce:

m We write a little Program

907 AC 1131/Stand: 02/03

WHILE counter<>0 DO
Var1:=Var1*2;
Counter:=counter-1;

END WHILE

Erg:=Var1,

You can see, the loop in ST is not only faster to program, but is also
significantly easier to read, especially in view of the convoluted loops in larger
constructs.

The different structures in ST have the following significance:

Assignment operator

On the left side of an assignment there is an operand (variable, address) to
which is assigned the value of the expression on the right side with the
assignment operator :=
Example:

Var1 :=Var2 * 10;
After completion of this line Var1 has the tenfold value of Var2.

Calling function blocks in ST

A function block is called in ST by writing the name of the instance of the
function block and then assigning the values of the parameters in parentheses.
In the following example a timer is called with assignments for the parameters
IN and PT. Then the result variable Q is assigned to the variable A.

The result variable, as in IL, is addressed with the name of the function block, a
following point, and the name of the variable:

CMD_TMR(IN := %IX5, PT := 300);
A:=CMD_TMR.Q

RETURN instruction
The RETURN instruction can be used to leave a POU, for example depending
on a condition

IF instruction

With the IF instruction you can check a condition and, depending upon this
condition, execute instructions.

Syntax:

IF <Boolean_expression1> THEN
<IF_instructions>

{ELSIF <Boolean_expression2> THEN
<ELSIF_instructions1>

iELSIF <Boolean_expression n> THEN
<ELSIF_instructions n-1>

907 AC 1131/Stand: 03.99 2-15 We write a little Program m

ELSE
<ELSE_instructions>}
END_IF;

The part in braces {} is optional.

If the <Boolean_expression1> returns TRUE, then only the <IF_Instructions>
are executed and none of the other instructions.

Otherwise the Boolean expressions, beginning with <Boolean_expression2>,
are evaluated one after the other until one of the expressions returns TRUE.
Then only those instructions after this Boolean expression and before the next
ELSE or ELSIF are evaluated.

If none of the Boolean expressions produce TRUE, then only the
<ELSE_instructions> are evaluated.

Example:

IF temp<17

THEN heating_on := TRUE;
ELSE heating_on := FALSE;
END_IF;

Here the heating is turned on when the temperature sinks below 17 degrees.
Otherwise it remains off.
CASE instruction

With the CASE instructions one can combine several conditioned instructions
with the same condition variable in one construct.

Syntax:
CASE <Var1> OF
<Value1>: <Instruction 1>
<Value2>: <Instruction 2>

<Value3, Value4, Value5>: <Instruction 3>
<Valueb .. Value10>: <Instruction 4>

<Value n>: <Instruction n>

ELSE <ELSE instruction>
END_CASE;

A CASE instruction is processed according to the following model:

¢ If the variable in <Var1> has the value <Value i>, then the instruction
<Instruction i> is executed.

e If <Var 1> has none of the indicated values, then the <ELSE Instruction>
is executed.

¢ If the same instruction is to be executed for several values of the
variables, then one can write these values one after the other separated
by commas, and thus condition the common execution.

¢ If the same instruction is to be executed for a value range of a variable,
one can write the initial value and the end value separated by two dots
one after the other. So you can condition the common condition.

m We write a little Program 2-16 907 AC 1131/Stand: 02/03

FOR loop

Example:

CASE INT1 OF

1,5 BOOL1 := TRUE;
BOOL3 := FALSE;

2: BOOL2 := FALSE;
BOOL3 := TRUE;

10..20: BOOL1 := TRUE;
BOOL3:= TRUE;

ELSE
BOOL1 := NOT BOOLA1,
BOOL2 := BOOL1 OR BOOLZ2;

END_CASE;

With the FOR loop one can program repeated processes.

Syntax:
INT_Var :INT;

FOR <INT_Var> := <INIT_VALUE> TO <END_VALUE> {BY <Step size>}
DO
<Instructions>
END_FOR;

The part in braces {} is optional.

The <Instructions> are executed as long as the counter <INT_Var> is not
greater than the <END_VALUE>. This is checked before executing the
<Instructions> so that the <instructions> are never executed if <INIT _VALUE>
is greater than <END_VALUE>.

When <Instructions> are executed, <INT_Var> is always increased by <Step
size>. The step size can have any integer value. If it is missing, then it is set to
1. The loop must also end since <INT_Var> only becomes greater.

Example:

FOR Counter:=1 TO 5 BY 1 DO
Var1:=Var1*2;

END FOR;

Erg:=Var1,

Let us assume that the default setting for Var1 is the value 1. Then it will have
the value 32 after the FOR loop.

@ Note: <END_VALUE> must not be equal to the limit value of the counter
<INT_VAR>. For example: If the variable Counter is of type SINT and if
<END_VALUE> is 127, you will get an endless loop.

907 AC 1131/Stand: 03.99

2-17 We write a little Program m

WHILE loop

The WHILE loop can be used like the FOR loop with the difference that the
break-off condition can be any Boolean expression. This means you indicate a
condition which, when it is fulfilled, the loop will be executed.

Syntax:

WHILE <Boolean expression>
<Instructions>
END_WHILE;

The <Instructions> are repeatedly executed as |Ilong as the
<Boolean_expression> returns TRUE. If the <Boolean_expression> is already
FALSE at the first evaluation, then the <Instructions> are never executed. If
<Boolean_expression> never assumes the value FALSE, then the
<Instructions> are repeated endlessly which causes a relative time delay.

@ Note: The programmer must make sure that no endless loop is caused. He
does this by changing the condition in the instruction part of the loop, for
example, by counting up or down one counter.

Example:

WHILE counter<>0 DO
Var1 := Var1*2;
Counter := Counter-1;

END_WHILE

The WHILE and REPEAT loops are, in a certain sense, more powerful than the
FOR loop since one doesn't need to know the number of cycles before
executing the loop. In some cases one will, therefore, only be able to work with
these two loop types. If, however, the number of the loop cycles is clear, then a
FOR loop is preferable since it allows no endless loops.

REPEAT loop

The REPEAT loop is different from the WHILE loop because the break-off
condition is checked only after the loop has been executed. This means that the
loop will run through at least once, regardless of the wording of the break-off
condition.

Syntax:

REPEAT

<Instructions>
UNTIL <Boolean expression>
END_REPEAT;

The <Instructions> are carried out until the <Boolean expression> returns
TRUE.

If <Boolean expression> is produced already at the first TRUE evaluation, then
<Instructions> are executed only once. If <Boolean_expression> never

m We write a little Program 2-18 907 AC 1131/Stand: 02/03

assumes the value TRUE, then the <Instructions> are repeated endlessly which
causes a relative time delay.

@ Note: The programmer must make sure that no endless loop is caused. He
does this by changing the condition in the instruction part of the loop, for
example by counting up or down one counter.

Example:

REPEAT

Var1 :=Var1*2;

Counter := Counter-1;
UNTIL

Counter=0
END_REPEAT;

EXIT instruction

If the EXIT instruction appears in a FOR, WHILE, or REPEAT loop, then the
innermost loop is ended, regardless of the break-off condition.

2.2.3 Sequential Function Chart (SFC)

The Sequential Function Chart is a graphically oriented language which makes
it possible to describe the chronological order of different actions within a
program. For this the actions are assigned to step elements and the sequence
of processing is controlled by transition elements.

”ﬁ

- TRUE
permanent| |Counting nothing
—gin_test —walk_light
un_sin_te run_walk_
—Hsin_test —+—Hwalk_ligh
nothing?
-+ TRUE
I

Init

Image 2.8: Network in SFC

907 AC 1131/Stand: 03.99 2-19 We write a little Program m

Step

A POU written in a Sequential Function Chart consists of a series of steps
which are connected with each other through directed connections (transitions).

There are two types of steps.

¢ The simplified type consists of an action and a flag which shows if the step
is active. If the action of a step is implemented, then a small triangle
appears in upper right corner of the step.

e An |IEC step consists of a flag and one or more assigned actions or
boolean variables. The associated actions appear to the right of the step.
(see below: IEC Step).

Action

An action can contain a series of instructions in IL or in ST, a lot of networks in
FBD orin LD, or again in Sequential Function Chart (SFC).

With the simplified steps an action is always connected to a step. In order to
edit an action, click twice with the mouse on the step to which the action
belongs. Or select the step and select the menu command 'Extras’ 'Zoom
Action/Transition'. In addition, one input or output action per step is possible.

Actions of IEC steps hang in the Object Organizer directly under their SFC-POU
and are loaded with a doubleclick or by pressing <Enter> in their editor. New
actions can be created with '‘Project' 'Add Action'. Not more than nine actions
can be assigned to one IEC step.

Entry or exit action

Additional to a step action you can add an entry action and an exit action to a
step. An entry action is executed only once, right after the step has become
active. An exit action is executed only once before the step is deactivated.

A step with entry action is indicated by an "E" in the lower left corner, the exit
action by an "X" in the lower right corner.

The entry and exit action can be implemented in any language. In order to edit
an entry or exit action, doubleclick in the corresponding corner in the step with
the mouse.

Example of a step with entry and exit action:

|
Schalt?

E]]

Transition / Transition condition

Between the steps there are so-called transitions.

A transition condition must have the value TRUE or FALSE. Thus it can consist
of either a boolean variable, a boolean address or a boolean constant. It can
also contain a series of instructions having a boolean result, either in ST syntax
(e.g. (i<= 100) AND b) or in any language desired (see 'Extras' 'Zoom

m We write a little Program 2-20 907 AC 1131/Stand: 02/03

Active step

IEC step

Action/Transition'). But a transition may not contain programs, function blocks or
assignments!

Note: Besides transitions, inching mode can also be used to skip to the next
step; see SFCtip and SFCtipmode.

After calling the SFC POU, the action (surrounded by a double border)
belonging to the initial stepis executed first. A step, whose action is being
executed, is called active. In Online mode active steps are shown in blue.

In a control cycle all actions are executed which belong to active steps.
Thereafter the respective following steps of the active steps become active if
the transition conditions of the following steps are TRUE. The currently active
steps will be executed in the next cycle.

@ Note: If the active step contains an output action, this will only be executed
during the next cycle, provided that the transition following is TRUE.

Along with the simplified steps the standard IEC steps in SFC are available.

In order to be able to use IEC steps, you must link the special SFC library
lecsfc.lib into your project.

Not more than nine actions can be assigned to an IEC step. IEC actions are not
fixed as input, step or output actions to a certain step as in the simplified steps,
but are stored separately from the steps and can be reused many times within a
POU. For this they must be associated to the single steps with the command
'Extras"Associate action'.

Along with actions, Boolean variables can be assigned to steps.

The activation and deactivation of actions and boolean variables can be
controlled using so-called qualifiers. Time delays are possible. Since an action
can still be active, if the next step has been processed, for example through the
qualifier S (Set), one can achieve concurrent processes.

An associated boolean variable is set or reset with each call of the SFC block.
That means, that with each call the value changes from TRUE or FALSE or
back again.

The actions associated with an IEC step are shown at the right of the step in a
two-part box. The left field contains the qualifier, possibly with time constant,
and the right field contains the action name respectively boolean variable name.

An example for an IEC step with two actions:

Step —F Licht1
g Licht2

907 AC 1131/Stand: 03.99

2-21 We write a little Program m

In order to make it easier to follow the processes, all active actions in online
mode are shown in blue like the active steps. After each cycle a check is made
to see which actions are active.

Pay attention here also to the restrictions on the use of time-qualifiers in actions
that are repeatedly re-used within the same cycle (see “Qualifier”) !

@ Note: If an action has been inactivated, it will be executed once more. That
means, that each action is executed at least twice (also an action with qualifier
P).

In case of a call first the deactivated actions, then the active actions are
executed, in alphabetical order each time.

Whether a newly inserted step is an IEC step depends upon whether the menu
command 'Extras’ 'Use IEC-Steps' has been chosen.

In the Object Organizer the actions hang directly underneath their respective
SFC POUs. New actions can be created with 'Project’ 'Add Action’.

In order to use IEC steps you must include in your project the special SFC
library IECSFC_S90_V41.LIB.

3 POUS 5
Ea Lightring o
=EE

- Light1

=] Light2 -

- JET =R

Image 2.9: SFC POU with actions in the Object Organizer

Qualifier
In order to associate the actions with IEC steps the following qualifiers are
available:
N Non-stored The action is active as long as the step
R overriding Reset The action is deactivated
S Set (Stored) The action is activated and remains active until
a Reset
L time Limited The action is activated for a certain time,
maximum as long as the step is active
D time Delayed The action becomes active after a certain time

if the step is still active and then it remains
active as long as the step is active.

m We write a little Program 2-22 907 AC 1131/Stand: 02/03

P Pulse The action is executed just one time if the step

is active
SD Stored and time The action is activated after a certain time and
Delayed remains active until a Reset
DS Delayed and Stored The action is activated after a certain time as

long as the step is still active and remains
active up to a Reset

SL Stored and time limited The action is activated for a certain time

The qualifiers L, D, SD, DS and SL need a time value in the TIME constant
format.

@ Hinweis: After an action has got deactivated it will be executed once
more. Thus each action will be executed at least twice (even an action with
qualifier P):

Implicit variables in SFC

SFC Flags

There are implicitly declared variables in the SFC which can be used.

A flag belongs to each step which stores the state of the step. The step flag
(active or inactive state of the step) is called <StepName>.x for IEC steps or
<StepName> for the simplified steps. This Boolean variable has the value
TRUE when the associated step is active and FALSE when it is inactive. It can
be used in every action and transition of the SFC block.

One can make an enquiry with the variable <ActionName>.x. as to whether an
IEC action is active or not.

For IEC steps the implicit variables <StepName>.t can be used to enquire
about the active time of the steps.

Implicit variables can also be accessed by other programs. Example:
boolvar1:=sfc1.step1.x; Here, step1.x is the implicit boolean variable
representing the state of IEC step step1 in POU sfc1.

Flags can be used to control the operation of SFC POUs. These flags are
created implicitely. You have to define appropriate global or local input resp.
output variables to get access to the flags. Example: If in a SFC POU a step is
active for a longer time than defined in the step attributes, then a flag will be set,
which is accessible by using a variable "SFCError" (SFCError gets TRUE in this
case).

The following flag variables can be defined:

907 AC 1131/Stand: 03.99

2-23 We write a little Program m

SFCEnableLimit: This variable is of the type BOOL. When it has the value
TRUE, the timeouts of the steps will be registered in SFCError. Other timeouts
will be ignored.

SFCInit: When this boolean variable has the value TRUE the sequential
function chart is set back to the Init step. The other SFC flags are reset too
(initialization). The Init step remains active, but is not executed, for as long as
the variable has the value TRUE. It is only when SFClInit is again set to FALSE
that the block can be processed normally.

SFCReset: This variable, of type BOOL, behaves similarly to SFCinit. Unlike
the latter, however, further processing takes place after the initialization of the
Init step. Thus for example the SFCReset flag could be re-set to FALSE in the
Init step.

SFCQuitError: Execution of the SFC diagram is stopped for as long as this
boolean variable has the value TRUE whereby a possible timeout in the
variable SFCError is reset. All previous times in the active steps are reset when
the variable again assumes the value FALSE. It is a pre-condition that the flag
SFCError has been defined also, which registers any timeout in the SFC.

SFCPause: Execution of the SFC diagram is stopped for as long as this
boolean variable has the value TRUE.

SFCError: This Boolean variable is TRUE when a timeout has occurred in a
SFC diagram. If another timeout occurs in a program after the first one, it will
not be registered unless the variable SFCError is reset first. It is a pre-condition
that SFCError is defined, if you want to use the other time-controlling flags
(SFCErrorStep, SFCErrorPOU, SFCQuitError, SFCErrorAnalyzation).

SFCTrans: This boolean variable takes on the value TRUE when a transition is
actuated.

SFCErrorStep: This variable is of the type STRING. If SFCError registers a
timeout, in this variable is stored the name of the step which has caused the
timeout. It is a pre-condition that the flag SFCError has been defined also,
which registers any timeout in the SFC.

SFCErrorPOU: This variable of the type STRING contains the name of the
block in which a timeout has occurred. It is a pre-condition that the flag
SFCError has been defined also, which registers any timeout in the SFC.

SFCCurrentStep: This variable is of the type STRING. The name of the step is
stored in this variable which is active, independently of the time monitoring. In
the case of simultaneous sequences the step is stored in the branch on the
outer right. No further timeout will be registered if a timeout occurs and the
variable SFCError is not reset again.

SFCErrorAnalyzation: This variable, of type STRING, provides the transition
expression as well as every variable in an assembled expression which gives a
FALSE result for the transition and thus produces a timeout in the preceding
step. A requirement for this is declaration of the SFCError flag, which registers
the timeout. SFCErrorAnalyzation refers back to a function called

m We write a little Program 2-24 907 AC 1131/Stand: 02/03

AppedErrorString in the analyzation.lib library. The output string separates
multiple components with the symbol “|”.

SFCTip, SFCTipMode: This variables of type BOOL allow inching mode of the
SFC. When this is switched on by SFCTipMode=TRUE, it is only possible to
skip to the next step if SFCTip is set to TRUE. As long as SFCTipMode is set to
FALSE, it is possible to skip even over transitions.

Alternative branch

Parallel branch

Jump

Two or more branches in SFC can be defined as alternative branches. Each
alternative branch must begin and end with a transition. Alternative branches
can contain parallel branches and other alternative branches. An alternative
branch begins at a horizontal line (alternative beginning) and ends at a
horizontal line (alternative end) or with a jump.

If the step which precedes the alternative beginning line is active, then the first
transition of each alternative branch is evaluated from left to right. The first
transition from the left whose transition condition has the value TRUE is opened
and the following steps are activated (see 'Active step').

Two or more branches in SFC can be defined as parallel branches. Each
parallel branch must begin and end with a step. Parallel branches can contain
alternative branches or other parallel branches. A parallel branch begins with a
double line (parallel beginning) and ends with a double line (parallel end) or with
a jump. It can be provided with a jump label.

If the parallel beginning line of the previous step is active and the transition
condition after this step has the value TRUE, then the first steps of all parallel
branches become active (see 'Active step'). These branches are now processed
parallel to one another. The step after the parallel end line becomes active
when all previous steps are active and the transition condition before this step
produces the value TRUE.

A jump is a connection to the step whose name is indicated under the jump
symbol. Jumps are required because it is not allowed to create connections
which lead upward or cross each other.

2.2.4 Function Block Diagram (FBD)

The Function Block Diagram is a graphically oriented programming language. It
works with a list of networks whereby each network contains a structure which
represents either a logical or arithmetic expression, the call of a function block,
a jump, or a return instruction.

An example of a typical network in the Function Block Diagram as it could

907 AC 1131/Stand: 03.99

appear in 907 AC 1131 :
2-25 We write a little Program m

Inst

oR AND R TRIG
AQ — — 51 Q0D
B_
MUL GE
A_
B L

Image 2.10: Network in Function Block Diagram

See also Chapter 5.3.1 for more information and see also the Continuous
Function Chart Editor.

2.2.5 The Continuous Function Chart Editor (CFC)

The continuous function chart editor does not operate like the function block
diagram FBD with networks, but rather with freely placeable elements. This
allows feedback, for example.

An example of a network in the continuous function chart editor, as it would
typically appear in 907 AC 1131:

o —ror O
% o Dowen
TH2= I— T#= I—

Image 2.11: A network in the continuous function chart editor

See also Chapter 5.3.4 for more information.

2.2.6 Ladder Diagram (LD)

The Ladder Diagram is also a graphics oriented programming language which
approaches the structure of an electric circuit.

On the one hand, the Ladder Diagram is suitable for constructing logical
switches, on the other hand one can also create networks as in FBD. Therefore
the LD is very useful for controlling the call of other POUs.

The Ladder Diagram consists of a series of networks. A network is limited on
the left and right sides by a left and right vertical current line. In the middle is a
circuit diagram made up of contacts, coils, and connecting lines.

Each network consists on the left side of a series of contacts which pass on
from left to right the condition "ON" or "OFF" which correspond to the Boolean
values TRUE and FALSE. To each contact belongs a Boolean variable. If this
variable is TRUE, then the condition is passed from left to right along the
connecting line. Otherwise the right connection receives the value OFF.

m We write a little Program 2-26 907 AC 1131/Stand: 02/03

Contact

Coil

Example of a typical network in the Ladder Diagram as it could appear in

907 AC 1131 :
IN1 IN2 SCHALT1 %0x3.0
e i — a0
STELL1 STELL2 MOTOR1
I— | —()—
SCHALT2 SCHALT3 SCHALT4
— —— |
2=2.7
— |
ZIx2.8 Z1x2.0
| — |

Image 2.12: Network in a Ladder Diagram made up of Contacts and Coils

Each network in LD consists on the left side of a network of contacts (contacts
are represented by two parallel lines: | |) which from left to right show the
condition "On" or "Off".

These conditions correspond to the Boolean values TRUE and FALSE. A
Boolean variable belongs to each contact. If this variable is TRUE, then the
condition is passed on by the connecting line from left to right, otherwise the
right connection receives the value "Out".

Contacts can be connected in parallel, then one of the parallel branches must
transmit the value "On" so that the parallel branch transmits the value "On"; or
the contacts are connected in series, then contacts must transmit the condition
"On" so that the last contact transmits the "On" condition. This therefore
corresponds to an electric parallel or series circuit.

A contact can also be negated, recognizable by the slash in the contact symbol:
|/|. Then the value of the line is transmitted if the variable is FALSE.

On the right side of a network in LD there can be any number of so-called coils
which are represented by parentheses:(). They can only be in parallel. A coil
transmits the value of the connections from left to right and copies it in an
appropriate Boolean variable. At the entry line the value ON (corresponds to the
Boolean variable TRUE) or the value OFF (corresponding to FALSE) can be
present.

Contacts and coils can also be negated (in the example the contact SWITCH1
and the coil %QX3.0 is negated). If a coil is negated (recognizable by the slash
in the coil symbol: (/)), then it copies the negated value in the appropriate
Boolean variable. If a contact is negated, then it connects through only if the
appropriate Boolean value is FALSE.

907 AC 1131/Stand: 03.99

2-27

We write a little Program m

Function blocks in the Ladder
Diagram

Along with contacts and coils you can also enter function blocks and programs
In the network they must have an input and an output with Boolean values and
can be used at the same places as contacts, that is on the left side of the LD
network

Set/Reset coils

Coils can also be defined as set or reset coils. One can recognize a set coil by
the "S" in the coil symbol: (S)) It never writes over the value TRUE in the
appropriate Boolean variable. That is, if the variable was once set at TRUE,
then it remains so.

One can recognize a reset coil by the "R" in the coil symbol: (R)) It never writes
over the value FALSE in the appropriate Boolean variable: If the variable has
been once set on FALSE, then it remains so.

LD as FBD

When working with LD it is very possible that you will want to use the result of
the contact switch for controlling other POUs. On the one hand you can use the
coils to put the result in a global variable which can then be used in another
place. You can, however, also insert the possible call directly into your LD
network. For this you introduce a POU with EN input.

Such POUs are completely normal operands, functions, programs, or function
blocks which have an additional input which is labeled with EN. The EN input is
always of the BOOL type and its meaning is: The POU with EN input is
evaluated when EN has the value TRUE.

An EN POU is wired parallel to the coils, whereby the EN input is connected to
the connecting line between the contacts and the coils. If the ON information is
transmitted through this line, this POU will be evaluated completely normally.

Starting from such an EN POU, you can create networks similar to FBD.

M1 M2 ouT?
| /1 | | { {1
IJ"IIII 11 L
AND
EM
IENE —OuT3
M2

Image 2.13: Part of a LD Network with an EN POU

m We write a little Program 2-28 907 AC 1131/Stand: 02/03

2.3 Debugging, Online Functions

Sampling Trace

Debugging

Breakpoint

Single step

Single Cycle

The Sampling Trace allows you to trace the value sequence of variables,
depending upon the so-called trigger event. This is the rising edge or falling
edge of a previously defined Boolean variable (trigger variable). 907 AC 1131
permits the tracing of up to 20 variables. 500 values can be traced for each
variable.

The debugging functions of 907 AC 1131 make it easier for you to find errors.

In order to debug, run the command 'Project’ 'Options' and in the dialog box
that pops up under Build options select activate option Debugging.

A breakpoint is a place in the program at which the processing is stopped. Thus
it is possible to look at the values of variables at specific places within the
program.

Breakpoints can be set in all editors. In the text editors breakpoints are set at
line numbers, in FBD and LD at network numbers, in CFC at POUs and in SFC
at steps. No breakpoints can be set in function block instances.

Single step means:

¢ In IL: Execute the program until the next CAL, LD or JMP command.
e In ST: Execute the next instruction.

e In FBD, LD: Execute the next network.

¢ In SFC: Continue the action until the next step.

By proceeding step by step you can check the logical correctness of your
program.

If Single cycle has been chosen, then the execution is stopped after each cycle.

Change values online

Monitoring

During operations variables can be set once at a certain value (write value) or
also described again with a certain value after each cycle (force value). In
online mode one also can change the variable value by double click on the
value. By that boolean variables change from TRUE to FALSE or the other way
round, for each other types of variables one gets the dialog Write Variable xy,
where the actual value of the variable can be edited.

In Online mode, all displayable variables are read from the controller and
displayed in real time. You will find this display in the declarations and program

907 AC 1131/Stand: 03.99

2-29 We write a little Program m

editor; you can also read out current values of variables in the watch and receipt
manager and in a visualization. If variables from instances of function blocks are
to be monitored, the corresponding instance must first be opened (see in this
connection Chapter 4.4: Create Obijects).

In monitoring VAR _IN_OUT variables, the de-referenced value is output.

In monitoring pointers, both the pointer and the de-referenced value are output
in the declaration portion. In the program portion, only the pointer is output:

+ --pointervar = ‘<‘pointervalue’>’

POINTERSs in the de-referenced value are also displayed accordingly. With a
simple click on the cross or a double-click on the line, the display is either
expanded or truncated.

< PLC_PRG [PRG-5T] I [l 3 |

0001 |PROGRANM PLE_PRG 4 P
D002 AR
0003 ppa POIMTER TO POIMTER TO stype; | gog2 B-ppa® = <01 4d3ef0= —
0004 paPOINTER T atype; ooog| -ppa b
0005 warl:CWIORDY 0004 E-a = =01 4d5efd=
0006 warZDAWORD, ooos
0007 avaratype, ool e
0008 bBOOL 0007| B-pa = <01 4defls
0oog) str1:STRIMNG =&, oo& B-pa*
0010 str: STRING:='nein| 0009 & = =014d8efd=
0011] st STRIMNG; oo i g™ =[]
001 2|EMD_W AR oo e h=0
1 | | o012 warl =0
0013 ward =0
0001 TPE atype : O01E
D002 =TRUCT Tk
000 A POIMTER T IMT; oole
0004 keInT, ool
OO0SERD_STRUCT 0020
OO0E(EMD_TvPE o021l -
1 | | == |
avar.a =ADR(avar b, avar.a = =01 4dﬂef4:;|
pa=A0R avar]; pa = <014d3efl=
ppa =A0R(pa); ppa = =01 4d3eed=
IF b THER :
=tr=str1;
EL=E
=t =atr; str="
OO0S|EMD_IF ll
K1 i KNS W

Image 2.14: Example for Monitoring of Pointers

In the implementations, the value of the pointer is displayed. For de-referencing,
however, the de-referenced value is displayed.

Monitoring of ARRAY components: In addition to array components indexed by
a constant, components are also displayed which are indexed by a variable:

anarray[1] =5
anarray[i] = 1

m We write a little Program

907 AC 1131/Stand: 02/03

2-30

Simulation

Log

If the index consists of an expression (e.g. [i+]] or [i+1]), the component can not
be displayed.

During the simulation the created PLC program is not processed in the PLC, but
rather in the calculator on which 907 AC 1131 is running. All online functions
are available. That allows you to test the logical correctness of your program
without PLC hardware.

The log chronologically records user actions, internal processes, state changes
and exceptions during Online mode processing. It is used for monitoring and for
error tracing (see Chapter 4.6, Online Functions).

2.4 The Standard

The standard IEC 61131-3 is an international standard for programming
languages of Programmable Logic Controllers.

The programming languages offered in 907 AC 1131 conform to the
requirements of the standard.

According to this standard, a program consists of the following elements:

e Structures (see Appendix B: Data Types)
e POUs
¢ Global Variables

The processing of a 907 AC 1131 program starts with the special POU
PLC _PRG. The POU PLC_PRG can call other POUs.

907 AC 1131/Stand: 03.99

2-31 We write a little Program m

We write a little Program 2-32 907 AC 1131/Stand: 02/03

3 We write a little Program

3.1 Controlling a Traffic Signal Unit

Let us now start to write a small example program. It is for a simple traffic signal
unit which is supposed to control two traffic signals at an intersection. The
red/green phases of both traffic signals alternate and, in order to avoid
accidents, we will insert yellow or yellow/red transitional phases. The latter will
be longer than the former. We further imagine the use of a Profibus system and
will do the corresponding configuration.

In this example you will see how time dependent programs can be shown with
the language resources of the IEC1131-3 standard, how one can edit the
different languages of the standard with the help of 907 AC 1131 , and how one
can easily connect them while becoming familiar with the simulation of
907 AC 1131.

Create POU
Starting always is easy: Start 907 AC 1131 and choose 'File' 'New".

In the dialog box which appears, the first POU has already been given the
default name PLC_PRG. Keep this name, and the type of POU should definitely
be a program. Each project needs a program with this name. In this case we
choose as the language of this POU the Continuous Function Chart Editor
(CFC)

Now create three more objects with the command 'Project' 'Object Add' with
the menu bar or with the context menu (press right mouse button in the Object
Organizer). A program in the language Sequential Function Chart (SFC named
SEQUENCE, a function block in the language Function Block Diagram (FBD)
named TRAFFICSIGNAL, along with a POU WAIT, also of the type function
block, which we want to program as an Instruction List (IL.

What does TRAFFICSIGNAL
do?

In the POU TRAFFICSIGNAL we will assign the individual trafficsignal phases
to the lights, i.e. we will make sure that the red light is lit red in the red phase
and in the yellow/red phase, the yellow light in the yellow and yellow/red
phases, etc.

What does WAIT do?

In WAIT we will program a simple timer which as input will receive the length of
the phase in milliseconds, and as output will produce TRUE as soon as the time
period is finished.

What does SEQUENCE do?

In SEQUENCE all is combined so that the right light lights up at the right time
for the desired time period.

907 AC 1131/Stand: 03.99 3-1 We write a little Program m

What does PLC _PRG do?

In PLC_PRG the input start signal is connected to the traffic lights' sequence
and the "color instructions" for each lamp are provided as outputs.

"TRAFFICSIGNAL" declaration

Let us now turn to the POU TRAFFICSIGNAL. In the declaration editor you
declare as input variable (between the keywords VAR _INPUT and END_VAR) a
variable named STATUS of the type INT. STATUS will have four possible
conditions, that is one for the TRAFFICSIGNAL phases green, yellow,
yellow/red andred.

Correspondingly our TRAFFICSIGNAL has three outputs, that is RED,
YELLOW and GREEN. You should declare these three variables. Then the
declaration part of our function block TRAFFICSIGNAL will look like this:

AAFFICSIGNAL [FB-FED) [_ (O] %]

00071 FUMCTION_BLOCK TRAFFICSIGMAL
VAR_IMPLIT
STATLISIMT
EMD_WaR
WAR_CUTPUT
GREEM:BOOL
YELLOWCBOOL
RED:BOOL,
0009 EMD_WaR
WAR

!

=
=
=
b2

=
=
jum}
Lo

(o}
(o}
(o}
=

[}
[}
[}
in

[}
[}
=
(=7

(o}
(o}
=
=

[}
[}
[}
oo

=
=
—
=

L\
B

Image 3.1: Function block TRAFFICSIGNAL, declaration part

"TRAFFICSIGNAL" body

Now we determine the values of the output variables depending on the input
STATUS of the POU. To do this go into the body of the POU. Click on the field
to the left beside the first network (the gray field with the number 1). You have
now selected the first network. Choose the menu item ‘Insert' ‘Box’.

In the first network a box is inserted with the operator AND and two inputs:

AND

Y
e

Click on the text AND so that it appears selected and change the text into EQ.
Select then for each of the two inputs the three question marks and overwrite
them with "STATUS" respectively "1":

m We write a little Program 3-2 907 AC 1131/Stand: 02/03

EQ
STATLISH
14

Click now on a place behind the EQ Box. Now the output of the EQ operation is
selected. Choose 'Insert' 'Assign’. Change the three question marks 7?77 to
GREEN. You now have created a network with the following structure:

EQ
STATLISH —GREEM
14

STATUS is compared with 1, the result is assigned to GREEN. This network
thus switches to GREEN if the preset state value is 1.

For the other TRAFFICSIGNAL colors we need two more networks. To create
the first one execute command ‘'Insert’ 'Network (after)' and insert an EQ-Box
like described above. Then select the output pin of this box and use again
command ‘'Insert’ 'Box’. In the new box replace "AND" by "OR". Now select the
first output pin of the OR-box and use command ‘Insert’ ‘Assign' to assign it to
"GELB". Select the second input of the OR-box by a mouse-click on the
horizontal line next to the three question marks, so that it appears marked by a
dotted rectangle. Now use 'Insert' 'Box' to add a further EQ-box like described
above. Finally the network should look like shown in the following:

|t TRAFFICSIGNAL (FB-FBD) M= &3
Q00 | FUMCTION_BLOCH TRAFFICSIGHAL e
LTS r
0001
Eq
STATUSH —GREEM
1
0ooz
Ea OR
STATUSH ELLOY
=
Eq
STATUSH
4
003
Eq R
STATUZH RED
a4
Eq
STATUZH
4
ona
EQ
STATUS ——oFF
5
Sl &

Image 3.2: Function block TRAFFICSIGNAL, instruction part

907 AC 1131/Stand: 03.99

3-3 We write a little Program m

In order to insert an operator in front of another operator, you must select the
place where the input to which you want to attach the operator feeds into the
box.

Then use the command ‘Insert' 'Box'. Otherwise you can set up these
networks in the same way as the first network.

Now our first POU has been finished. TRAFFICSIGNAL, according to the input
of the value STATUS, controls whichever light color we wish.

Connecting the
IEC_S90 _V41.LIB

For the timer in the POU WAIT we need a POU from the standard library.
Therefore, open the library manager with 'Window' 'Library Manager. Choose
‘Insert’ 'Additional library'. The dialog box appears for opening files. From the
list of the libraries choose IEC_S90 V41.LIB.

"WAIT" declaration

Now let us turn to the POU WAIT. This POU is supposed to become a timer
with which we can determine the length of the time period of each
TRAFFICSIGNAL phase. Our POU receives as input variable a variable TIME
of the type TIME, and as output it produces a Boolean value which we want to
call OK and which should be TRUE when the desired time period is finished.
We set this value with FALSE by inserting at the end of the declaration (before
the semicolon, however) " := FALSE ".

For our purposes we need the POU TP, a clock generator. This has two inputs
(IN, PT) and two outputs (Q, ET). TP does the following:

As long as IN is FALSE, ET is 0 and Q is FALSE. As soon as IN provides the
value TRUE, the time is calculated at the output ET in milliseconds. When ET
reaches the value PT, then ET is no longer counted. Meanwhile Q produces
TRUE as long as ET is smaller than PT. As soon as the value PT has been
reached, then Q produces FALSE again. In addition you will find a short
description of all POUs from the standard library in the appendix.

In order to use the POU TP in the POU WAIT we must create a local instance
from TP. For this we declare a local variable ZAB (for elapsed time) of the type
TP (between the keywords VAR, END_VAR).

The declaration part of WAIT thus looks like this:

m We write a little Program 3-4 907 AC 1131/Stand: 02/03

"WAIT" body

T WAIT [FB-IL)
FLMCTION_BLOCHK WWalT
WAR_IMPLIT
TIME_IM: TIME; o
END_W AR
waR_OUTPUT
OK:BOOL=F ALSE,
EMD_ AR
WAR

]
=]
[
=

I
8]
v 1%

]
=]
]
b

]
=]
o]
L%]

=
(=]
]
=

]
=]
=
o

[
(=]
[
[n)]

[}
=
[}
]

[
=]
[
o0

[
=]
=
o

ZABRTR,
EMD_ AR -

4 |

Image 3.3: Function Block WAIT, Declaration Part

[
=]
=
=

In order to create the desired timer, the body of the POU must be programmed
as follows:

Q001 FUMNCTION_BLOCK WAIT =
o | o

oo LD ZhB.Q =

0003 JMPC mark

0004 -

000 AL ZAB(IM=FALSE)

O00g LD TIME_IM

0007 ST ZABRLPT

0003 AL ZAB(IM=TRLUE)

ooy JMP end

0010

D011 mark:

0012 AL ZhB

0013 end:

0014 LOM ZhB.Q

001 ST QK

0018 ET -

—uf .

Image 3.4: Function Block WAIT, Instruction Part

At first it is checked whether Q has already been set at TRUE (as though the
counting had already been executed), in this case we change nothing with the
occupation of ZAB, but we call the function block ZAB without input (in order to
check whether the time period is already over).

Otherwise we set the variable IN in ZAB at FALSE, and therefore at the same
time ET at 0 and Q at FALSE. In this way all variables are set at the desired
initial condition. Now we assign the necessary time from the variable TIME into
the variable PT, and call ZAB with IN:=TRUE. In the function block ZAB the
variable ET is now calculated until it reaches the value TIME, then Q is set at
FALSE.

The negated value of Q is saved in OK after each execution of WAIT. As soon
as Q is FALSE, then OK produces TRUE.

907 AC 1131/Stand: 03.99

3-5 We write a little Program m

The timer is finished at this point. Now it is time to combine our two function
blocks WAIT and TRAFFICSIGNAL in the main program PLC_PRG.

"SEQUENCE" first expansion
level

First we declare the variables we need. They are: an input variable START of
the type BOOL, two output variables TRAFFICSIGNAL1 and
TRAFFICSIGNALZ2 of the type INT and one of the type WAIT (DELAY as delay).
The program SEQUENCE now looks like shown here:

0001|PROGRAM SEQUENCE -
0002|VAR_INPUT

0003 START:BOOL;
D004/ END_vAR
0008|VAR_DUTPUT

0008 TRAFFICSIGNALT:INT,
0007 TRAFFICSIGNALZINT,
D008/ END_vAR

0008]vAR

0010 COUNTER:INT,

no11 DELAYWWAIT,

0012 EMND_WAR

pmm— -

1« [

"Init

Trans0O

[nit

Image 3.5: Program Sequence, First Expansion Level, Declaration Part

Create a SFC diagram

The beginning diagram of a POU in SFC always consists of an action "Init" of a
following transition "Trans0" and a jump back to Init. We have to expand that.

Before we program the individual action and transitions let us first determine the
structure of the diagrams. We need one step for each TRAFFICSIGNAL phase.
Insert it by marking TransO and choosing ‘Insert' 'Step transition (after)".
Repeat this procedure three more times.

If you click directly on the name of a transition or a step, then this is marked and
you can change it. Name the first transition after Init "START", and all other
transitions "DELAY.OK".

The first transition switches through when START is TRUE and all others switch

through when DELAY in OK produces TRUE, i.e. when the set time period is
finished.

m We write a little Program 3-6 907 AC 1131/Stand: 02/03

The steps (from top to bottom) receive the names Switch1, Green2, Switch2,
Green1, whereby Init of course keeps its Name. "Switch" should include a
yellow phase, at Green1 TRAFFICSIGNAL1 will be green, at Green2
TRAFFICSIGNALZ2 will be green. Finally change the return address of Init after
Switch1. If you have done everything right, then the diagram should look like in
the following image:

: SEQUEMCE [PRG-5FC) Hi=] E3
0001 | PROGRAM SEQUENCE =
4 Pl
Hlnit
—TRLUE
Switch
—-DELAY.OK
Green?
—-DELAY. 0K
Switch2
—-DELAY. .0k
Greeand
—-DELAY. 0K
Switch

Image 3.6: Program SEQUENCE, First Expansion Level, Instruction Part

Now we have to finish the programming of the individual steps. If you
doubleclick on the field of a step, then you get a dialog for opening a new
action. In our case we will use IL (Instruction List).

907 AC 1131/Stand: 03.99 3-7 We write a little Program m

Actions and transition
conditions

In the action of the step Init the variables are initialized, the STATUS of
TRAFFICSIGNAL1 should be 1 (green). The state of TRAFFICSIGNALZ2 should
be 3 (red). The action Init then looks like in the following image:

i Action Init [IL] O] =]
poot| Lo 1 -

0oo2 ST TRAFFICSIGNALT (N

noo3 LD 3
noo4 ST TRAFFICSIGMALZ

< Ll

Image 3.7: Action Init

Switch1 changes the sate of TRAFFICSIGNAL1 to 2 (yellow), and that of
TRAFFICSIGNAL2 to 4 (yellow-red). In addition, a time delay of 2000
milliseconds is set. The action is now as follows:

+ Action Switchl =] 3
oo LD 2
ooz 5T TRAFFICSIGHALT

NG

000z Lo 4

0004 ST TRAFFICSIGNAL 2

D005 CAL DELAY(TIME_IN:=t2s) .
i o

Image 3.8: Action Switch1

With Green2 TRAFFICSIGNALA1 is red (STATUS:=3), TRAFFICSIGNALZ2 green
(STATUS:=1), and the delay time is 5000 milliseconds.

» Action Green?2 =] 3
0001 LD 3 =
000z 5T TRAFFICESIGRHALT —_
0003 LD 1
ooo4 5T TRAFFICESIGHALZ
0004, CAalL DELAYITIME_IM=tFa5) -
= Al gy

Image 3.9: Action Green2

At Switch2 the STATUS of TRAFFICSIGNAL1 changes to 4 (yellow-red), that
of TRAFFICSIGNAL2 to 2 (yellow). A time delay of 2000 milliseconds is now

set.

+ Action Switch2 [IL] =] 2
0001 LD 4 =
000z 5T TRAFFICSIGMALT —_
0003 LD 2
ooo4 5T TRAFFICSIGMALZ

n[a]u}s CAaL DELAYCTIME_IM=f#2z) =
Al gp

Image 3.10: Action Switch2

m We write a little Program 3-8 907 AC 1131/Stand: 02/03

With Green1 TRAFFICSIGNAL1 is green (STATUS:=1), TRAFFICSIGNAL2 is
red (STATUS:=3), and the time delay is set to5000 milliseconds.

JAction Greenl [IL] =] 3
0001 LD 1 =
000z 8T TRAFFICSIGMALI —_—
0003 LD 3
o004 8T TRAFFICSIGMNALZ
0005 CaL DELAY(TIME_IM=t¢5s) =
 ad op

Image 3.11: Action Green1

The first expansion phase of our program is completed.. Now you can test the
POU ABLAUF in simulation mode. Compile the project: 'Project’ 'Build'. In the
message window you should get "0 Errors, 0 Warnings". Now check if option
'Online' 'Simulation' is activated and use command 'Online' 'Login' to get into
simulation mode. Start the program with '‘Online' 'Start’. Open POU ABLAUF
by a double-click on "ABLAUF" in the Object Organizer. The program is started
now, but to get it run, variable START must be TRUE. Later this will be set by
PLC_PRG but at the moment we have to set it manually within the POU. To do
that, perform a double-click on the line in the declaration part, where START is
defined (START=FALSE). This will set the option "<:=TRUE>" behind the
variable in turquoise color. Now select command 'Online' "Write values' to set
this value. Thereupon START will be displayed in blue color in the sequence
diagram and the processing of the steps will be indicated by a blue mark of the
currently active step.

When you have finished this intermediate test use command 'Online' ‘Logout’
to leave the simulation mode and to continue programming.

"SEQUENCE" second
expansion level

In order to ensure that our diagram has at least one alternative branch, and so
that we can turn off our traffic light unit at night, we now include in our program
a counter which, after a certain number of TRAFFICSIGNAL cycles, turns the
unit off.

At first we need a new variable COUNTER of the type INT. Declare this as
usual in the declaration part of PLC_PRG, and initialize it in Init with 0.

i ActionInit [IL) Mi=]E
oom| Lo IS
0002 5T TRAFFICSIGMALT |
ooo3 LD 3
0004 5T TRAFFICSIGNALZ
oops Lo o
D006 5T COUNTER -
— Al np

Image 3.12: Action Init, Second Version

907 AC 1131/Stand: 03.99 3-9 We write a little Program m

Now select the transition after Switch1 and insert a step and then a transition.
Select the resulting transition and insert an alternative branch to its left. After
the left transition insert a step and a transition. After the resulting new transition
insert a jump after Switch1.

Name the new parts as follows: the upper of the two new steps should be called
"Count" and the lower "Off". The transitions are called (from top to bottom and
from left to right) EXIT, TRUE and DELAY.OK. The new part should look like
the part marked with the black border in the following image:

i SEQUENCE [PRG-5FC) M=l E3

0001 PROGREAM SEQLIEMNCE

T

o5

St

—DELAY.Q

Zount

—TRLIE

- EXIT

Off

—DELAY.Q

>

Suitch

Green?

-

Image 3.13: Program SEQUENCE, Second Expansion Level, Instruction Part

Now two new actions and a new transition condition are to be implemented. At
the step Count the variable COUNTER is increased by one:

ool LD COUNTER -
0007 ADD 1 —
oon3 ST COUNTER i
4l A%

Image 3.14: Action Count

The EXIT transition checks whether the counter is greater than a certain value,
for example 7:

m We write a little Program 3-10 907 AC 1131/Stand: 02/03

The result

PLC_PRG

! Transition EXIT [IL] M=l E3

oom LD COUNTER =
oon2 GT ! -

— 4| [

Image 3.15: Transition EXIT

At Off the state of both lights is set at 5(OFF), (or each other number not equal
1,2,3 or 4) the COUNTER is reset to 0, and a time delay of 10 seconds is set:

: Action DFF [IL) _[O[x]
o001 LD s I~
0007 ST TRAFFICSIGNALT [
oo0g LD s
0004 ST TRAFFICSIGNALZ
000§ LD o
000§ ST COUNTER
0007] CAL DELAY(TIME_IN:=t10s) .
Y N op

Image 3.16: Action Off

In our hypothetical situation, night falls after seven TRAFFICSIGNAL cycles, for
ten seconds the TRAFFICSIGNAL turns itself off, then we have daylight again,
the traffic light unit turns itself on again, and the whole process starts again from
the beginning. If you like, do another test of the current version of your program
in simulation mode before we go on to create the POU PLC_PRG.

We have defined and correlated the time sequencing of the phases for both
sets of traffic lights in the block SEQUENCE. Since, however, we see the traffic
lights system as a PROFIBUS-DP system, it is necessary for us to make input
and output variables available in the block PLC_PRG. We want to start-up the
traffic lights system over an ON switch (DP slave) and we want to send each of
the six (each traffic light red, green, yellow) lamps (DP slave) the corresponding
"signal command” for each step of the SEQUENCE. We are now declaring
appropriate Boolean variables for these six outputs and one input in the central
proecessing unit (DP master), before we create the program in the editor, and
are allocating them, at the same time, to the corresponding IEC addresses.

The next step is declare the variables Light1 and Light2 of the type Phases in
the declaration editor.

*PLC_PRG [PRG-CFC) =] B3
0ao1 FROGHAM PLC_PRG =
0o02)VAR

00o3 LIGHT1: TRAFFICSIGMNAL,
0004 LIGHTZ: TRAFFICEIGMAL,
0005 EMD_WaR .

— Al o

Image 3.17: Declaration LIGHT1 and LIGHT2

907 AC 1131/Stand: 03.99

3-11 We write a little Program m

These deliver the Boolean value of each of the six lights to the above
mentioned six outputs for each step of the block SEQUENCE. We are not,
however, declaring the output variables which are foreseen within the
PLC _PRG block but under Resources for Global Variables instead. The
Boolean input variable IN, which is used to set the variable START in the block
SEQUENCE to TRUE, can be set in the same way. ON is also allocated to an
IEC address.

Select the 'Resources' tab and open the list 'Global Variables'.

Make the declaration as follows:

i Global Yariables O M=l E3
0007)vAR_GLOBAL
0003 IM AT %l:1.0.0: BOOL,
0003 L1_green AT %01 0.0: BOOL,
0004 L1 _wellow AT %ol 0.1 BOOL,
000 L1_red AT %<1 .02 - BOOL;
000 LZ_ogreen AT %0103 BOOL;
0007 L2_wellow AT %ol 0.4 - BOCL,
_noog L2_red AT %1 .05 BOOL;

| 1

0008 END_VAR .
_ ol

Image 3.18: Declaration of the Input-/Output Variables for a PROFIBUS-Configuration

The name of the variable (e.g. IN) is followed, after AT, by a percent sign which
begins the IEC address. | stands for input, Q for output, X for bit and the
subsequent '1' in this case references the slot for the PROFIBUS coupler and
the last digit indicates the byte offset. We will not be handling the controller
configuration in this example, because it depends on the available configuration
files. Concerning this please see Chapter 6.6, PLC Configuration)

We now want to finish off the block PLC_PRG.

For this we go into the editor window. We have selected the Continuous
Function Chart editor and we consequently obtain, under the menu bar, a CFC
symbol bar with all of the available elements (see Chapter 5.3.4, The
Continuous Function Chart Editor).

Click on the right mouse key in the editor window and select the element Box.
Click on the text AND and write "'SEQUENCE” instead. This brings up the block
SEQUENCE with all of the already defined input and output variables. Insert
two further block elements which you name PHASES. Phases is a function
block and this causes you to obtain three red question marks over the block
which you replace with the already locally declared variables LIGHT1 and
LIGHTZ2. Now set an element of the type Input, which award the title ON and six
elements of the type Output which you award variable names to, as described,
namely L1_green, L1_yellow, L1_red, L2_green, L2_yellow, L2_red.

All of the elements of the program are now in place and you can connect the
inputs and outputs, by clicking on the short line at the input/output of an element
and dragging this with a constantly depressed mouse key to the input/output of
the desired element.

m We write a little Program 3-12 907 AC 1131/Stand: 02/03

Your program should finally look like the example shown here.

CeceepRGCD EmE|
FPROGRAM PLC_PRG o
WAR o
LIGHT1: TRAFFICEIGMAL,
LIGHTZ: TRAFFICEIGMAL,
IN:BOOL;
EMD_VAR

=
o
=
=

=
o
=
[n]

=
o
=
[o%]

=
o
=
=

=
o
=
()]

=
o
=
o

!I
ol

LIGHT1

SEQUENCE TRAFFICSIGNAL
START TRAFFICSIGNALT STATUS GREEN L1_green
TRAFFICEIGNAL2 YELLOWY L1_vellow
RED Li_red |

LIGHT2
TRAFFICSIGNAL

STATUS GREEN LZ_green
YELLCW L2 vellow
RED L2_red |

KNI oy

Image 3.19: PLC_PRG, Declaration and presentation with the continuous function
chart editor

TRAFFICSIGNAL simulation

Now test your program in simulation mode. Compile ('Project’ ‘Build’) and load
('Online’ 'Login’) it. Start the program by 'Online' ‘Start’, then set variable ON
to TRUE, e.g. by a double-click on the entry "ON" in the input box of the CFC
editor. This will mark the variable as prepared to be set to <TRUE>. Then press
<Strg><F7> or command 'Online' 'Write values', to set the value. Now variable
START in ABLAUF (which we had set to TRUE manually in the first extension
level of the program) gets this value by variable ON, which is used in
PLC_PRG. This will make run the traffic light cycles. PLC_PRG has changed to
a monitoring window. Click twice on the plus sign in the declaration editor, the
variable display drops down, and you can see the values of the individual
variables.

3.2 Visualizing a Traffic Signal Unit

With the visualization of 907 AC 1131 you can quickly and easily bring project
variables to life. You find an complete description of the visualization in chapter
8. We will now plot two traffic signals and an ON-Switch for our traffic light unit
which will illustrate the switching process.

Creating a new visualization

In order to create a visualization you must first select the range of Visualization
in the Object Organizer. First click on the lower edge of the window on the left
side with the POU on the register card with this symbol and the name
Visualization. If you now choose the command 'Project’ '‘Object Add’, then a
dialog box opens.

907 AC 1131/Stand: 03.99 3-13 We write a little Program m

Mew Yisuahzation

Marne of the new Yisualization: ILightS] I

Cancel

Image 3.20: Dialog Box for Opening a New Visualization

Enter here any name. When you confirm the dialog with OK, then a window
opens in which you can set up your new visualization.

Insert element in Visualization

For our TRAFFICSIGNAL visualization you should proceed as follows:

e Give the command ‘Insert' 'Ellipse' and try to draw a medium sized circle
(D2cm). For this click in the editor field and draw with pressed left mouse
button the circle in its length.

o Now doubleclick the circle. The dialog box for editing visualization elements
opens

o Choose the category 'Variables' and in the field 'Change color' enter the
variable name ".L1_red" or "L1_red". That means that the global variable
L1_red will cause the color change as soon as it is set to TRUE. The dot
before the variable name indicates that it is a global variable, but it is not

mandatory.
Regular Element Configuration [#0] |
Categary:
Shape —Wanables —IEIK
Text
Calor Invisible: |
Mation absolute Cancel |
M ation relative Change color: I.L'I_red

Variables
Input
Test for Toaltip

Textdizplay: I

Image 3.21: Visualization Dialog Box Variables

e Then choose the category Color and click on the button Inside in the area
Color. Choose as neutral a color as possible, such as black.

e Now click on the button within in the area Alarm color and choose the red
which comes closest to that of a red light.

m We write a little Program 3-14 907 AC 1131/Stand: 02/03

Regular Element Configuration [#0]

Category:

]
Shape — Color
(Lalor
=

Text

Inzide | Frame |
Cancel

b ation abzolute
b ation relative
Yanables

Irpuit —Alarm colar

| nzide | Frame |

Image 3.22: Visualization Configuration Dialog Box (Color category)

The resulting circle will normally be black, and when the variable RED from
TRAFFICSIGNAL1 is TRUE, then its color will change to red. We have
therefore created the first light of the first TRAFFICSIGNAL!

The other traffic lights

Now enter the commands 'Edit' 'Copy' (<CtrI>+<C>) and then twice 'Edit' 'Paste’
(<CtrI>+<V>). That gives you two more circles of the exact same size lying on
top of the first one. You can move the circles by clicking on the circle and
dragging it with pressed left mouse button. The desired position should, in our
case, be in a vertical row in the left half of the editor window. Doubleclick on one
of the other two circles in order to open the configuration dialog box again.
Enter in the field Change Color of the corresponding circle the following
variables:

for the middle circle: L1_yellow
for the lowest circle: L1-green

Now choose for the circles in the category Color and in the area Alarm color
the corresponding color (yellow or green).

The TRAFFICSIGNAL case

Now enter the command ‘Insert’ ‘Rectangle’, and insert in the same way as the
circle a rectangle which encloses the three circles. Once again choose as
neutral a color as possible for the rectangle and give the command ‘Extras’
'Send to back' so that the circles are visible again.

If simulation mode” is not yet turned on, you can activate it with the command
'Online' 'Simulation’. If you now start the simulation with the commands
'Online' 'Login' and 'Online' 'Run’, then you can observe the color change of
the first traffic signal.

' The simulation mode is active if a check mark (V') appears in front of the menu item

907 AC 1131/Stand: 03.99

"Simulation” in the 'Online' menu..
3-15 We write a little Program m

The second traffic signal

The simplest way to create the second traffic signal is to copy all of the
elements of the first traffic signal. For this you select all elements of the first
traffic signal and copy them (as before with the lights of the first traffic signal)
with the commands 'Edit' 'Copy' and 'Edit' 'Paste'. You then only have to
change the text "TRAFFICSIGNAL1" in the respective dialog boxes into
"TRAFFICSIGNAL2", and the visualization of the second traffic signal is
completed.

The ON switch

Insert a rectangle and award it, as described above, a colour for a traffic light of
your choice and enter .ON at Variables for the Change color. Enter "ON” in the
input field for Content in the category Text.

Regular Element Configuration [#10] |
LCategaony:

Shape — Tent 0k I

Cilor Content: oM

Muation absolute I Lancel |

Mu:ut_iu:un relative — Harizantal

Yariables & Left & Center " Right

[FipLat

Text for Toaltip —Werhical

" Top & Center " Battom
Fort... Standard-F ant |

Image 3.23: Dialog to configure the visualization elements (Category Text)

In order to set the variable ON to TRUE with a mouse click on the switch,
activate option '"Toggle variable' in category 'Input' and enter variable name
".ON" there. 'Tip Variable' means that when a mouse click is made on the
visualization element the variable .ON is set to the value TRUE but is reset to
the value FALSE as soon as the mousekey is released again (we have created
hereby a simple switch-on device for our traffic lights program).

m We write a little Program 3-16 907 AC 1131/Stand: 02/03

Regular Element Configuration [#0] |

Lategony:

Shape

Text
Testvariables
Lirne width
Colors

— Ihput

™ Toaggle variable

v Tap waniable

—

Cancel

Ok I
[et |

Calorvariables [T TapEALSE
b ation abzolute
b ation relative [T Zoom ta vis.: I
"Yariables =
I nput [E=ecute program: I
Test far Toaltip
Securnty [T Testinput of wariable ‘T extdizplay’
Programability
ITE:-:t j b ir; I Ma:-c:l
Drialogtitle: |

Image 3.24: Dialog to configure the visualization elements (Category Input)

Font in the visualization

In order to complete the visualization you should first insert two more rectangles
which you place underneath the traffic signals.

In the visualizations dialog box set white in the category Color for Frame and
write in the category Text in the field Contents "Light1" or "Light2". Now your
visualization looks like this:

IF= Lights =]

Op

Light1 Light2

Image 3.25: Visualization for the Sample Project Trafficsignal

907 AC 1131/Stand: 03.99 3-17

We write a little Program m

We write a little Program 3-18 907 AC 1131/Stand: 02/03

4 The Individual Components

4.1 The Main Window

Menu bar

% 907 AC 1131 - TIEFGARA_PRO [(O] x|
File Edit Project Insett Extraz Online Window Help

el =R s R R el NS == ey] =

— KortonLeser (MY

i[Z] Auta [FB)

InitStrecke [FRG

artenLeser [FE]
[} PLC_PRG PRG
@ Prozess [PRG)

""" @ Steuerung [PRG

IERE =1

00| FUNCTION_BLOCK Karte «
0002 VAR _STAT

0003 EMD_WAR
0004fVAR_IMPLUT

-

0005 Auto: BOOL,;
000 Zaehler: IMNT; =
Iijll’\ AREY =] _'I_ _—
Y ===
Init I—
N B =
of]
—Auto AND Schi[>
| -
EinAusfahriSetzen
A D PN [

Loading library 'STANDARD.LIB 18.5.98 11:58:23'

4 |

[« B 186

|Element; [Rectangle [ONLINE [REZ

Image 4.1: The Main Window

The following elements are found in the main window of 907 AC 1131 (from top

to bottom):

The menu bar

The Tool bar (optional); with buttons for faster selection of menu
commands.

The Object Organizer with
Visualizations, and Resources

register cards for POUs, Data types,

A vertical screen divider between the Object Organizer and the Work
space of 907 AC 1131

The Work space in which the editor windows are located
The message window (optional)
The Status bar (optional); with information about the current status of the

project

The menu bar is located at the upper edge of the main window. It contains all

menu commands.

File Edit Progct Inzert Egtras

Image 4.2: Menu Bar

Onlire Window Help

907 AC 1131/Stand: 03.99

4-1

The Individual Components m

Tool bar

By clicking with the mouse on a symbol you can select a menu command more
quickly. The choice of the available symbols automatically adapts itself to the
active window.

The command is only carried out when the mouse button is pressed on the
symbol and then released.

If you hold the mouse pointer for a short time on a symbol in the tool bar, then
the name of the symbol is shown in a Tooltip.

In order to see a description of each symbol on the tool bar, select in Help the
editor about which you want information and click on the tool bar symbol in
which you are interested.

The display of the tool bar is optional (see Chapter 4.2, 'Project' 'Options'
category Desktop).

2|=a| B|@ledBlS(Sm »[El@| fox [|99l]

Image 4.3: Tool bar with symbols

Object Organizer

Screen divider

The Object Organizer is always located on the left side of 907 AC 1131. At the
bottom there are four register cards with symbols for the four types of objects g

POUs, "2 Data types, & Visualizations and 3= Resources. In order to
change between the respective object types click with the mouse on the
corresponding register card or use the left or right arrow key.

You will learn in chapter Managing Objects how to work with the objects in the
Object Organizer.

] TRAFFICSIGMAL [FE)
------ =g] WAIT (FB)

ERED ERER

Image 4.4: Object Organizer

The screen divider is the border between two non-overlapping windows. In
907 AC 1131 there are screen dividers between the Object Organizer and the
Work space of the main window, between the interface (declaration part) and

m The Individual Components 4-2 907 AC 1131/Stand: 02/03

Work space

the implementation (instruction part) of POUs and between the Work space and
the message window.

You can move the screen divider with the mouse pointer. You do this by moving
the mouse with the left mouse button pressed.

Make sure the screen divider always remains at its absolute position, even
when the window size has been changed. If it seems that the screen divider is
no longer present, then simply enlarge your window.

The Work space is located on the right side of the main window in
907 AC 1131. All editors for objects and the library manager are opened in this
area. The current object name appears in the title bar; in the case of POUs an
abbreviation for the POU type and the programming language currently in use
appears in brackets after it.

You find the description of the editors in Chapter 5.

Under the menu item 'Window' you find all commands for window
management.

Message window

Status bar

The message window is separated by a screen divider underneath the work
space in the main window.

It contains all messages from the previous compilations, checks or
comparisons. Search results and the cross-reference list can also be output
here.

If you doubleclick with the mouse in the message window on a message or
press <Enter>, the editor opens with the object. The relevant line of the object is
selected. With the commands 'Edit' ‘Next error' and 'Edit' 'Previous error' you
can can quickly jump between the error messages.

The display of the message window is optional (see 'Window' 'Messages').

The status bar at the bottom of the window frame of the main window in
907 AC 1131 gives you information about the current project and about menu
commands.

If an item is relevant, then the concept appears on the right side of the status
bar in black script, otherwise in gray script.

When you are working in online mode, the concept Online appears in black
script. If you are working in the offline mode it appears in gray script.

In Online mode you can see from the status bar whether you are in the
simulation (SIM), the program is being processed (RUNS), a breakpoint is set
(BP), or variables are being forced (FORCE). In Online Mode the string REORG

907 AC 1131/Stand: 03.99

4-3 The Individual Components m

Context Menu

4.2 Options

is displayed black-colored as long as Online Change is active and the string
FLASH is black as long as flashing is active. (The two numbers displayed in the
field before REORG show the length of the monitoring- /status request in
number of bytes and number of variables.)

With text editor the line and column number of the current cursor position is
indicated (e.g. Line:5, Col.:11). In online mode 'OV' is indicated black in the
status bar. Pressing the <Ins> key switches between Overwrite and Insert
mode.

If the mouse point is in a visualization, the current X and Y position of the
cursor in pixels relative to the upper left corner of the screen is given. If the
mouse pointer is on an Element, or if an element is being processed, then its
number is indicated. If you have an element to insert, then it also appears (e.g.
Rectangle).

If you have chosen a menu command but haven't yet confirmed it, then a short
description appears in the status bar.

The display of the statusbar is optional (see Chapter 4.2, 'Project' 'Options'
category Desktop).

Shortcut: <Shift>+<F10>

Instead of using the menu bar for executing a command, you can use the right
mouse button. The menu which then appears contains the most frequently used
commands for a selected object or for the active editor. The choice of the
available commands adapts itself automatically to the active window. The
choice of the available commands adapts itself automatically to the active
window.

About 907 AC 1131 there can be of course only one viewpoint. In 907 AC 1131,
however, you can configure the view of the main window (and have more than
one viewpoint). In addition you can make other settings. For this you have the
command 'Project' 'Options’ at your disposal. The settings you make thereby
are, unless determined otherwise, saved in the file "907 AC 1131.ini" and
restored at the next 907 AC 1131 startup.

'Project’ 'Options’

With this command the dialog box for setting options is opened. The options are
divided into different categories. Choose the desired category on the left side of
the dialog box by means of a mouse click or using the arrow keys and change
the options on the right side.

You have at your disposal the following categories:

e Load & Save

m The Individual Components 4-4 907 AC 1131/Stand: 02/03

Load & Save

¢ User information

o Editor
o Desktop
e« Color

o Directories

e Log

e Build

o Passwords

e Sourcedownload

e Symbol configuration

e Project Source Control
e Macros

If you choose this category in the Options dialog box, you will get the following
dialog box:

Dptions
LCategony:
oad b Save. oK, I
Uzer Information ¥ Create Backup
Desktop [: _lance
Eplols D
Euectones Auta Save Interval [Min]: I‘I
g
Build
F':Isswords [~ Ask for project info
Sourcedownload
Syrnbal configuration [Autajoad
Project source control
Macroz ¥ Save before compile

™ Remind of boot project on exit

¥ Save ENI credentials

Image 4.5: Option dialog box of the category Load & Save

When activating an option, a check (v') appears before the option.

Create Backup: 907 AC 1131 creates a backup file at every save with the
extension ".bak". Contrary to the *.asd-file (see below, 'Auto Save') this *.bak-
file is kept after closing the project. So you can restore the version you had
before the last project save.

Auto Save : While you are working your project is consecutively saved to a
temporary file with the extension ".asd" according to a set time interval (Auto
Save Interval). This file is erased at a normal exit from the program. If for any
reason 907 AC 1131 is not shut down "normally" (e.g. due to a power failure),
then the file will not be erased. When you open the file again the following

907 AC 1131/Stand: 03.99

message appears:
4-5 The Individual Components m

Auto Save Backup |

IC: “Proiectz'&moel.oro

The project yau want ko open was hot carectly clazed. There iz a auta
zave backup.

D1 ate of the orginal file: 9.1.98 10:25:03
D ate af the backup file: 26698 17:24:
Open auta zave file I Open anginal file Cancel

Image 4.6: There is an auto save backup.

You can now decide whether you want to open the original file or the auto save
file.

Ask for project info: When saving a new project or saving a project under a
new name, the project info is automatically called. You can visualize the project
info with the command 'Project’ 'Project info' and also process it.

Auto Load: At the next start of 907 AC 1131 the last open project is
automatically loaded. The loading of a project at the start of 907 AC 1131 can
also take place by entering the project in the command line.

Save before compile: The project will be saved before each compilation. In
doing so a file with the extension ".asd" will be created, which behaves like
described above for the option 'Auto Save'.

Remind of boot project on exit: If the project has been modified and
downloaded without creating a new boot project since the last download of a
boot project, then a dialog will advise the user before leaving the project: "No
boot project created since last download. Exit anyway ?".

Save ENI credentials: User name and Password, as they might be inserted in
the Login dialog for the ENI data base, will be saved with the project.

User information

If you choose this category in the Options dialog box, then you get the dialog
box shown in the image below.

To User information belong the Name of the user, his Initials and the
Company for which he works. Each of the entries can be modified. The settings
will automatically be applied to any new projects which will be created in
907 AC 1131 on the local computer.

m The Individual Components 4-6 907 AC 1131/Stand: 02/03

Editor

LCategory:

oad & Save

Editor

Deskiop

Colors

Directories

Log

Biuild

Passwords
Sourcedownload
Symbol configuration
Project source cantral
b acros

Uszer Marne: IHugo F eier

Iritials: HH|

Compary: 35 - Smart Software Solutions GmbH

Cancel

oK I
==

Image 4.7: Options dialog box of the category User information

If you choose this category in the Options dialog box, then you get the following

dialog box:
Options

Category:

Load & Save ak. I
Jzer Infarmation vV Autadeclaration Tab idth: |4

Desktop W futoformat ﬂl
Colors Fant... |

Directories Iv List compoments

Lo_g

Build [Declarations as tables

Passwords

Sourcedownload Makk ——— Bitwalues

Symbal configuration & Datted line £ Decimal

Project zource contral = =

Macros " Line ¢~ Binary

" Filled " Hexadecimal

v Suppress monitaring of complex lwpes (anay, pointer, YaR_IM_0OUT)

¥ Show POU symbols

Image 4.8: Options dialog box of the category Editor
When activating an option, a check (v') appears before the option.
You can make the following settings for the Editors:

Autodeclaration: If this option is activted, then after the input of a not-yet-
declared variable a dialog box will appear in all editors with which this variable
can be declared.

Autoformat: If this option is activated, then 907 AC 1131 will execute automatic
formatting in the IL editor and in the declaration editor. When you finish with a
line, the following formatting is made:

907 AC 1131/Stand: 03.99

4-7 The Individual Components m

o Operators written in small letters are shown in capitals;
o Tabs are inserted to that the columns are uniformly divided.

List components: If this option is activated, then the Intellisense functionality
will be available to work as an input assistant. This means that if you insert a
dot at a position where a identifier should be inserted, then a selection list will
open, offering all global variables which are found in the project. If you insert the
name of a function block instance, then you will get a selection list of all inputs
and outputs of the instanced function block. The Intellisense function is
available in editors, in the Watch- and Receiptmanager, in visualizations and in
the Sampling Trace.

Declarations as tables: If this option is activated, then you can edit variables in
a table instead of using the usual declaration editor. This table is sorted like a
card box, where you find tabs for input variables, output variables local
variables and in_out variables. For each variable there are edit fields to insert
Name, Address, Type, Initial and Commment.

Tab-Width: In the field Tab-Width in the category Editor of the Options dialog
box you can determine the width of a tab as shown in the editors. The default
setting is four characters, whereby the character width depends upon the font
which is chosen.

Font: By clicking on the button Font in the category Editor of the Options
dialog box you can choose the font in all 907 AC 1131 editors. The font size is
the basic unit for all drawing operations. The choice of a larger font size thus
enlarges the printout, even with each editor of 907 AC 1131. After you have
entered the command, the font dialog box opens for choosing the font, style and

font size.
5 chriftart |
Schriftart: Schriftzchnitt: Grad:
Im IStandard 0k I
Avrial Black K.Lirsiv Abbrechen |
B Avrial Mamow Fett
H Bookman 01d Style Fett Furgiv
B Comic Sans M5
Courier
T Courier Mew ;I
— Muzter
AaBbYyZz
Schrift:
[westiich =l

Image 4.9: Dialog box for setting the font
Mark: When choosing Mark in the Editor category in the Options dialog box

you can choose whether the current selection in your graphic editors should be
represented by a dotted rectangle (Dotted), a rectangle with continuous lines

m The Individual Components 4-8 907 AC 1131/Stand: 02/03

Desktop

(Line) or by a filled-in rectangle (Filled). In the last case the selection is shown
inverted.

Bitvalues: When choosing Bitvalues in the category Editor of the Options
dialog box you can choose whether binary data (type BYTE, WORD, DWORD)
during monitoring should be shown Decimal, Hexadecimal, or Binary.

Suppress monitoring of complex types (array, ointer, VAR_IN_OUT): If this
option is activated, then complex data types like arrays, pointers or
VAR_IN_OUTs will not be displayed in the monitoring window in online mode.

Show POU symbols: If this option is activated, then symbols will be displayed
in POU boxes, provided that those are available as bitmaps in the library folder.
The name of the bitmap file must be composed of the POU name and the
extension ".bmp". Example: The symbol file for POU TON must be named
TON.bmp:

TOM
3@
—PT ETH—

The selection is activated in front of which a (e) point appears.

If you choose this category in the Options dialog box, then you get the following
dialog box:

Ophions %]

0K I
Cancel |

Categany:

Load % Save
Lzer Information
Editor

¥ Toolbar IV Printer borders

W' Status bar [Fd ignores wamings

Colars

Directories

Lag

Build

Paszwords
Sourcedownload
Syrnbal confiquration
Project source contral
Macras

™ Online in Secuily mode

Language: [Englsh H

Image 4.10: Options dialog box of the category Desktop

Tool bar: The tool bar with the buttons for faster selection of menu commands
becomes visible underneath the menu bar.

Status bar: The status bar at the lower edge of the 907 AC 1131 main window
becomes visible.

907 AC 1131/Stand: 03.99

4-9 The Individual Components m

Online in Security mode: In Online mode with the commands ‘'Run’, 'Stop’,
'Reset' 'Toggle Breakpoint', 'Single cycle', 'Write values', 'Force values'
and 'Release force', a dialog box appears with the confirmation request
whether the command should really be executed. This option is saved with the
project.

Printer borders: In every editor window, the limits of the currently set print
range are marked with red dashed lines. Their size depends on the printer
characteristics (paper size, orientation) and on the size of the “Content” field of

the set print layout (menu: 'File” “Documentation Settings”).

F4 ignores warnings: After compilation, when F4 is pressed in a message
window, the focus jumps only to lines with error messages; warning messages
are ignored.

Language: Define here, in which language the menu and dialog texts should be
displayed.

% Note: Please note, that the language choice is only possible under
Windows NT!

When an option is activated, a check appears in front of it.

Colors

If you choose this category in the Options dialog box , then you get the following

dialog box:

Options
LCategory:
Load & Save oK I
E;TI Information Line numbersz. .. | Current position... |
Delsirtoi = = Cancel |

Directaries
Log Breakpoint pogition. .. | Beached position... |
Build

Pazzwords
Sourcedownload
symbol configuration Set breakpoint... | Manitaring of BOOL... |
Project source control

Macros

Image 4.11: Options dialog box of the category Color

You can edit the default color setting of 907 AC 1131. You can choose whether
you want to change the color settings for Line numbers (default presetting:
light gray), for Breakpoint positions (dark gray), for a Set breakpoint (light
blue), for the Current position (red), for the Reached Positions (green) or for
the Monitoring of Boolean values (blue).

m The Individual Components 4-10 907 AC 1131/Stand: 02/03

Directories

If you have chosen one of the indicated buttons, the dialog box for the input of
colors opens.

Farben

Grundfarber:

Benutzerdefinierte Farben:

AR
T

Earerdefitienemn & |

0K | Abbrechen |

Image 4.12: Dialog box for setting colors

If you choose this category in the Options dialog box, then you get the following
dialog box:

Dptions
Lategony:
Load & Save — Project ok I
dser Information Uiz [t vsystemii |
: L B Sapstem] i
Egilo:top e Cancel |
Compile files: Id: hapstemh _I
Calors
:Drectones
Log
Build
Passwords - Target
Sourcedownload Libraries:
Symbol configuration
Project source control
b acros
r— Comman
Libraries: |C:'\Programme\.&€‘l131\Library\ |
Compile files: | CNProgrammetaCT 1314 |
Upload files: IC:\Programme\.&C'I131\Library\ I

Image 4.13: Options dialog box of the category Directories

Directories can be entered in the Project and Common areas for 907 AC 1131
to use in searching for libraries as well as for storing compile and source-
upload files. (Compile files e.g. are map- and list-files, not however e.g.
symbolic files like *.sdb, *.sym ! The latter will be stored in the project directory.)
Wenn If you activate the button (...) behind a field, the directory selection dialog
opens. For library files several paths can be entered for each, separated by

semicolons “;”.

907 AC 1131/Stand: 03.99

4-11

The Individual Components m

%% Note: Do not use empty spaces and special characters (except for " ") in
the directory pathes .

The information in the Project area is stored with the project; information in the
Common area is written to the ini file of the programming system and thus
apply to all projects.

907 AC 1131 generally first searches in the directories entered in 'Project’, then
in those listed under 'Common’. If two files with the same name are found, the
one in the directory that is searched first will be used.

Options for Log

If you choose this category in the Options dialog box, then you get the following
dialog box shown below. In this dialog, you can configure a file that acts as a
project log, recording all user actions and internal processes during Online
mode processing (see in this connection Chapter 4.7, Log).

If an existing project is opened for which no log has yet been generated, a
dialog box opens which calls attention to the fact that a log is now being set up
that will receive its first input after the next login process.

The log is automatically stored as a binary file in the project directory when the
project is saved. If you prefer a different target directory, you can activate the
option Directory for project logs: and enter the appropriate path in the edit

field. Use the button to access the “Select Directory” dialog for this purpose.

Options E
LCategory:
Load & Save . . Ok I
User Information ¥ Directory for project logs:
Editar d:hproject]
o ' - oo |
Colors Maximum project log size;
[irectaries - -
[E Onine sessions
Build
Paszwords
Sourcedownload ¥ activate logging

Symbal configuration
Project source control
M acros Filter:

¥ User actions ¥ Statuz changes
V¥ Internal actions ¥ Exceptions

Image4.14: Option dialogue for the category Log

The log file is automatically assigned the name of the project with the extension
Jog. The maximum number of Online sessions to be recorded is determined
by Maximum project log size. If this number is exceeded while recording, the
oldest entry is deleted to make room for the newest.

The Log function can be switched on or off in the Option field Activate logging.

m The Individual Components 4-12 907 AC 1131/Stand: 02/03

Build

You can select in the Filter area which actions are to be recorded: User actions,
Internal actions, Status changes, Exceptions. Only actions belonging to
categories checked here will appear in the Log window and be written to the
Log file. (For a description of the categories, please see chapter 4.7, Log).

The Log window can be opened with the command 'Window' 'Log' (see also
Chapter 4.7, Log).

If you choose this category in the Options dialog box, you will get the following
dialog box:

LCategarny:
Load & Save Ok I
E;gllnfolmatlon [~ Debugging Mumber of data I'I_

o " Beplace constants Cancel
Desktop bepl

Colors
Directories

Loﬁ
Passwords
Sourcedownload
Symbol configuration
Project source contral
tacros

v Mested comments
™ Create binary file of the application

Macro before compile: IDrEComp

Macro after compile: Ipostcomd

Image 4.15: Options dialog box of the category Build

Debugging: Additional debugging code is created, that is the code can become
considerably larger. The debugging code is needed in order to make use of the
debugging functions offered by 907 AC 1131 (e.g. breakpoints). When you
switch off this option, project processing becomes faster and the size of the
code decreases. The option is stored with the project.

Replace constants: The value of each constant is loaded directly, and in
Online mode the constants are displayed in green. Forcing, writing and
monitoring of a constant is then no longer possible. If the option is deactivated,
the value is loaded into a storage location via variable access (this does in fact
allow writing the variable value, but implies longer processing time).

Nested comments: Comments can be placed within other comments.
Example:

(*

a:=inst.out; (* to be checked *)
b:=b+1;

")

Here, the comment that begins with the first bracket is not closed by the bracket

907 AC 1131/Stand: 03.99

following “checked,” but only by the last bracket.
4-13 The Individual Components m

Passwords

Create binary file of the application: A binary image of the generated code
(boot project) is created in the project directory during compilation. File name:
<project_name>.bin. By comparison, the command 'Online' 'Create Boot
project' sets up the boot project on the controller.

Number of data: Enter here how many data memory segments are to be
reserved for your project data in the controller. This space is required so that an
Online Change can still be carried out when new variables are added. When
compiling the project you might get the message "The global variables require
too much memory". In this case increase the number of segments. Local
program variables will be handled like global variables in this regard, but Retain
variables need a separate segment in any case.

In order to exert control over the compilation process you can set up two
macros: the macro in the Macro before compile field is executed before the
compilation process; the macro in the Macro after compile field afterwards.
The following macro commands can not, however, be used here: file new, file
open, file close, file save as, file quit, online, project compile, project check,
project build, debug, watchlist.

All entries in the Build Options dialog are stored with the project.

When an option is activated, a check appears in front of it.

If you choose this category in the Options dialog box, then you get the dialog
box shown below. To protect your files from unauthorized access 907 AC 1131
offers the option of using a password to protect against your files being opened
or changed.

Options

Cateqony:

Load & Save
User Infarmation
Editar I xxxxxxxxxx

Paszword:

Desktop
Colorg

Directones I xxxxxxxxxx

Sourcedawnload I xxxxxxx
Symbol configuration

Project source control
tacros I

xxxxxxx

Image 4.16: Options dialog box of the category Passwords

Enter the desired password in the field Password. For each typed character an
asterisk (*) appears in the field. You must repeat the same word in the field
Confirm Password. Close the dialog box with OK. If you get the message:

"The password does not agree with the confirmation”,

m The Individual Components

4-14 907 AC 1131/Stand: 02/03

then you made a typing error during one of the two entries. In this case repeat
both entries until the dialog box closes without a message.

If you now save the file and then reopen it, then you get a dialog box in which
you are requested to enter the password. The project can then only be opened
if you enter the correct password. Otherwise 907 AC 1131 reports:

"The password is not correct.”

Along with the opening of the file, you can also use a password to protect
against the file being changed. For this you must enter a password in the field
Write Protection Password and confirm this entry in the field underneath.

A write-protected project can be opened without a password. For this simply
press the button Cancel, if 907 AC 1131 tells you to enter the write-protection
password when opening a file. Now you can compile the project, load it into the
PLC, simulate, etc., but you cannot change it.

Of course it is important that you memorize both passwords. However, if you
should ever forget a password, then contact the manufacturer of your PLC.

The passwords are saved with the project.

In order to create differentiated access rights you can define user groups and
"Passwords for user groups").

Sourcedownload

When you select this category, the dialog shown below will be opened

You can choose to which Timing and what Extent the project is loaded into the
controller system. The option Sourcecode only exclusively involves just the
907 AC 1131 file (file extension .pro). The option All files also includes files
such as the associated library files, visualization bitmaps, configuration files,
etc.

Using the option Implicit at load allows the selected file range to be
automatically loaded into the controller system on the command ‘Online’
‘Download’.

Using the option Notice at load offers a dialog, when the command ‘Online‘
‘Download’ is given, with the question "Do you want to write the source code
into the controller system?”. Pressing Yes will automatically load the selected
range of files into the controller system, or you can alternatively finish with No.

When using the option On demand the selected range of files must be
expressly loaded into the controller system by giving the command ‘Online’
‘Sourcecode download'.

907 AC 1131/Stand: 03.99 4-15 The Individual Components m

LCategony:

Load & Save _ 0K
User Infarmation Timing I
Editar " Implicit at load c |
Desklop _ ance| |
Colors " Notice at load

Elljrgectones Implicit at create boot project

Build ' On demand

Passwords

S ourcedownload
Syrbal configuration
Froject sounce control
Macros

Extent

" Sourcecods anly

& Al files

Image 4.17: Option dialog for the category Sourcedownload

The project which is stored in the controller system can be retrieved by using
‘File’ ‘Open’ with Open project from PLC. The files will be unpacked in the
process. See Chapter 4.3, 'File' 'Open’, for details !

Options for Symbol

Configuration

The dialog presented here is used for configuring the symbol file (text file *.sym
and binary file *.sdb). This will be created as a text file <project name>.sym
resp. a binary file <project name>.sdb (depending on the used gateway version)
in the project directory. The symbol file is needed for data exchange with the
controller via the symbol interface and are used for that purpose e.g. by OPC-
or GatewayDDE-Server.

If the option Create symbol entries is selected, then symbol entries for the
project variables will be automatically created in a symbol file at each
compilation of the project.

If additionally the option Dump XML symbol table is activated, then also an
XML file containing the symbol information will be created in the project
directory. It will be named <project name>.SYM_XML.

Regard the following when configuring the symbol entries:

The symbol entries will be generated in accordance with the settings you make
in the 'Set object attributes' dialog. You get there using the Configure symbol
file button:

m The Individual Components

907 AC 1131/Stand: 02/03

Set object attributes

]
= Froject] I

Cancel

-] Global Variables

W E=port waniables of object
¥ Export data entries

v E=port structure compaonents
[T E=port aray entries

W wiite access

Image4.18: Set object attributes dialog (in option category Symbol configuration)

Use the tree-structured selection editor to select project POUs and set the
desired options in the lower part of the dialog box by clicking the mouse on the
corresponding small boxes. Activated options are checked. The following
options can be set:

Export variables of object: The variables of the selected object are exported
in the symbol file.

The following options can take effect only if the Export variables of object
option is activated:

Export data entries: Entries for access to the global variables are created for
object’s structures and arrays.

Export structure components: An individual entry is created for each variable
component of object’s structures.

Export array entries: An individual entry is created for each variable
component of object’s arrays.

Write Access: Object’s variables may be changed by the OPC server.

Once the option settings for the currently selected POU are complete, other
POUs can also be selected - without closing the dialog before - and can be
given an option configuration. This can be carried out for any desired number of
POU selections, one after the other. When the dialog box is closed by selecting
OK, all configurations carried out since the dialog box was opened are applied.

Options for 'Project source
control’

This dialog is used to define whether the project should be managed in a project
data base and to configure the ENI interface correspondingly.

907 AC 1131/Stand: 03.99 4-17 The Individual Components m

Options
LCategory:
Load & Save_ (]9 I
E;ﬁ;{lnfurmatlon v {lse source control [ENTE
Desktop Cancel |
Colors — Connect new Objects with the fallowing data basze:
Directories _
Log " Project
Build
pglssw,:,,ds {” Shared Objects
Sourcedownload & Local
Symbol configuration =oca
Froject source control I~ Ask for type of new obiects
Macras =

configure EMI ..

Image4.19: Options dialog box of category Project source control

Use source control (ENI): Activate this option, if you want to access a project
data base via the ENI Server in order to administer all or a selection of POUs of
the project in this data base. Preconditions: ENI Server and data base must be
installed and you must be registered as user of both. See also the separate
documentation for the ENI-Server and see Chapter 9, The 907 AC 1131 ENI.

If the option is activated, then the data base functions (Check in, Get last
version etc.) will be available for handling the project POUs. Then some of the
data base functions will run automatically like defined in the options dialogs, and
in the menu 'Project' 'Data Base Link' you will find the commands for calling the
functions explicitely. Besides that a tab 'Data base-connection' will be added in
the dialog 'Properties', where you can assign a POU to a particular data base
category (see Chapter 9.4, Object Categories ...).

Connect new Objects with the following data base:

Here you set a default: When a new object is inserted in the project (‘Project’
'Object' 'Add"), then it gets automatically assigned to that object category which
is defined here. This assignment will be displayed in the object properties dialog
('Project' 'Object' 'Properties') and can be modified there later. The possible
assignments:

Project: The POU will be stored in that data base folder which is defined in
the dialog 'ENI configuration/Project objects’ in the field 'Project name'.

Shared Objects: The POU will be stored in that data base folder which is
defined in the dialog 'ENI configuration/Shared objects' (field 'Project
name').

Local: The POU will not be managed in a ENI data base, but only will be
stored locally in the project.

Besides 'Project objects' and 'Shared objects' there is a third data base
category 'Compile files' for such objects which are not created until the project

m The Individual Components 4-18 907 AC 1131/Stand: 02/03

has been compiled. Therefore this category is not relevant for the current
settings.

Ask for type of new objects: If this option is activated, then whenever a new
object is added to the project, the dialog 'Object' 'Properties' will open, where
you can choose to which of the three object categories mentioned above the
POU should be assigned. By doing so the standard setting can be overwritten.

configure ENI: This button opens the first of three ENI configuration dialogs:

Each object of a project, which is determined to get managed in the ENI data
base, can be assigned to one of the following data base categories: 'Project
objects', 'Shared objects' or 'Compile files'. For each of these categories a
separate dialog is available to define in which data base folder it should be
stored and which presettings should be effective for certain data base functions:

» Dialog ENI configuration / Project objects

o Dialog ENI configuration / Shared objects
» Dialog ENI configuration / Compile files

@ Note: Each object will be stored also locally (with project) in any case.

The dialog will open one after the other if you are doing a primary configuration.
In this case a Wizard (Button Next) will guide you and the settings entered in
the first dialog will be automatically copied to the other ones, so that you just
have to modify them if you need different parameter values.

If you want to modify an existing configuration, then the three dialogs are
combined in one window (three tabs).

If you have not yet logged in successfully to the data base before, then the
Login dialog will be opened automatically.

Options for project objects and
shared objects regarding the
project data base

These dialogs are part of the configuration of the project data base options
('Project’ 'Options' 'Project source control'). Here you define the access
parameters for the data base categories 'Project objects' and 'Shared objects'.
Both dialogs contain the same items. (A third dialog is available for the
configuration of the access to the data base category 'Compile files'.)

ENI-Connection

TCP/IP-Address: Address of the computer where the ENI-Server is running

Port: Default: 80; must be the same as set in the configuration
parameters of the ENI Server
Project name: Name of the data base folderwhere the objects of this category

should be stored. Press button ... to open a folder tree of the
already existing data base projects. If the desired folder
already exists, you can select it in this tree and its name will be

907 AC 1131/Stand: 03.99

4-19 The Individual Components m

entered in the 'Project name' edit field. If you had not logged in
to the ENI Server until you try to open the folder tree by button
..., then you will first get the Login dialog where you must enter
'User name' and 'Password' as defined in your ENI user
account to get access to the three data base categories.

Read only If this option is activated, then only read access is possible to
the above defined data base folder.

Project objects

— EMI-Connection

TCPAP-Address: flocalhast
Port: IBI:I
Froject name: |
[T Bead orly
— Get latest Wersion
v At Project Open v with Qe
[Immediately after Changes in EMI I | with Ewen
[Before any Compils [¥ witt Eery
— Check out
v Immediately at start of editing v with Qe
— Check in
[&t Project Save [¥ witt Eery
[After successfull compile I | ith Ewer

< Black I Mext » I Cancel

Image4.20: Dialog 'Project objects' in options category Project source control

Get latest Version

The data base function 'Get latest Version' (Menu 'Project' 'Data Base Link')
copies the latest version of POUs from the above defined data base folder
to the currently opened project, whereby the local version of objects will be
overwritten. This will be done automatically for all objects, for which the
version found in the data base differs from that in the project, as soon as
one of the set timing conditions will meet. Activate the desired time options
by setting a check mark:

At Project Open As soon as the project is opened in 907 AC 1131
Immediately after As soon as a newer version of the POU is checked in
Changes in ENI to the data base (e.g. by another user); then the POU

will be updated in the current project immediately and
an appropriate message will pop up.

Before any Compile Before any compile process in 907 AC 1131

m The Individual Components 4-20 907 AC 1131/Stand: 02/03

Check out

The data base function 'Check out' means that the POU will be marked as
'in the works' and will be locked for other users until it will be de-blocked
again by a 'Check in' or 'Undo check out' command.

If the option Immediately at start of editing is activated, then an object will
be checked out automatically as soon as you start to edit it. If the object is
currently already checked out by another user (indicated by a red cross
before the object name in the 907 AC 1131 object organizer), then a
message will pop up.

Check in

The data base function 'Check in' means, that a new version of the object
will be created in the data base. The older versions will be kept anyway.

You can activate one or both of the following options to define the time of
automatic Checking in:

At Project Save as soon as the project is saved

After successfull compile as soon as the project has been compiled
without errors

For each of the options 'Get last version', 'Check out' and 'Check in' additionally
the option with Query can be activated. In this case, before the corresponding
action is carried out, a dialog opens where you still can decide to cancel the
action or otherwise confirm it.

The items of the dialog 'Shared objects' are the same like in the dialog 'Project
objects' described above. The settings apply to all objects which are assigned to
the data base category 'Shared objects'.

If you do a primary configuration, the configuration dialogs will appear one after
the other and you will be guided by a wizard (button Next). The settings made
in the first dialog will automatically be inherited to the other ones. So those just
have to be edited if modificiations are necessary.

Cancel will close the dialog without saving the done modifications in the
currently opened dialog. You return to the main dialog 'Options' 'Project source
control'.

If an already existing configuration has been modified, then the new settings (for
all three dialogs) can be saved by pressing OK. After that the dialog will be
closed and you return to the main dialog 'Options' 'Project source control'.

Options for Compile Files
regarding the project data base

This dialog is part of the option settings for the project data base ('Project'
'Options' 'Project source control'). Here you define how the objects of category
'‘Compile files' will be handled in the data base. (Besides that two further dialogs
are available to define this for objects of category 'Project objects' and 'Shared

907 AC 1131/Stand: 03.99

objects'.)
4-21 The Individual Components m

For the input fields TCP/IP-Address, Port, Project name see the description of
dialog 'Project objects/Shared objects'.

Create ASCIl-symbol If this option is activated, then whenever a symbol file

information (.sym) *.sym (text format) resp. *.sdb (binary format) will be
created, this file will be written to the data base
automatically. The entries in the symbol file are created

Create binary symbol ¢ gefined in the Project opti '
) . ject options category 'Symbol
information (.sdb) configuration'.

Create boot project If this option is activated, then whenever a boot project
will be created, this file will be written to the data base
automatically .

Compile files E3

— EMI-Connection
TCPAP-Address: IM
Poit: |8Ij

Project name: I _I

[Create ASCH-symbal information [sym)
[Create binary symbal information [.db)

[Create boot project

< Back I Finizh I Cancel |

Image4.21: Dialog 'Compile files' in category Project source control

If you are doing a primary configuration, the configuration dialogs will appear
one after the other, guided by a wizard (button Next). The settings made in the
first dialog will automatically be inherited to the other ones. So those just have
to be edited if modificiations are necessary.

Cancel will close the dialog without saving the done modifications in the
currently opened dialog (the settings made in the previous dialogs will be kept
anyway). You return to the main dialog 'Options' 'Project source control'.

If you have modified an already existing configuration, then the new settings (for
all three dialogs) can be saved by pressing OK. After that the dialog will be
closed and you return to the main dialog 'Options' 'Project source control'.

Macros

If you choose this category , the dialog box shown in the image below opens. In
this dialog macros can be defined using the commands of the 907 AC 1131
batch mechanism, which can then be called up in the 'Edit' 'Macros' menu (see
Chapter 4.5, General Editing functions).

m The Individual Components 4-22 907 AC 1131/Stand: 02/03

Dptionen

Categor:

Load & Save
User Infarmation
E ditar

Degktop

Colors
Directonies

Log

Build

Pagswords
Sourcedownload
Symbol configuration

Project source control

e |

Eemame |

Menu:

I&e:-:poll

Carmmands:

project expraul < dirs

Ok
Cancel

Help

4.

Image 4.22: Options dialog for the category Macros

Perform the following steps to define a new macro:

In the input field Name, you enter a name for the macro to be created. After
the New button is pressed, this name is transferred into the Macrolist field
and marked as selected there. The macro list is represented in a tree
structure. The locally defined macros are positioned one below the other. If
macro libraries (see below) are integrated, then the library names will be
listed and by a mouse-click on the plus- resp. minus-signs in front of those
entries you can open or close a list of the library elements.

The Menu field is used to define the menu entry with which the macro will
appear in the 'Edit' 'Macros' menu. In order to be able to use a single letter
as a short-cut, the letter must be preceded by the symbol '&'. Example: the
name "Maé&cro 1" generates the menu entry "Macro 1". Example: the name
"Ma&cro 1" will create a menu item "Macro 1".

In the editor field Commands you define and/or edit the commands that are
to constitute the newly created or selected macro. All the commands of the
907 AC 1131 batch mechanism and all keywords which are valid for those
are allowed. You can obtain a list by pressing the Help button. A new
command line is started by pressing <Ctrl><Enter>. The context menu with
the common text editor functions is obtained by pressing the right mouse
button. Command components that belong together can be grouped using
quotation marks.

If you want to create further macros, perform steps 1-3 again, before you
close the dialog by pressing the OK-button.

If you want to delete a macro, select it in the macro list and press button .

If you want to rename a macro, select it in the macro list, insert a new name in
the edit field 'Name' and then press button Rename.

To edit an existing macro, select it in the macro list and edit the fields 'Menu'
and/or 'Commands'. The modifications will be saved when pressing the OK-
button.

907 AC 1131/Stand: 03.99

4-23 The Individual Components m

As soon as the dialog is closed by pressing the OK-button the actual description
of all macros will be saved in the project.

The macro menu entries in the 'Edit' 'Macros' menu are displayed in the order in
which they were defined.

The macros are not tested until a menu selection is made.
Macro libraries:

Macros can be saved in external macro libraries. These libraries can be
included in other projects.

o Creating a macro library containing the macros of the currently opened
project:
Press button Create. You get the dialog Merge project, where all available
macros are listed. Select the desired entries and confirm with OK. The
selection dialog will close and dialog Save Macrolibrary will open. Insert
here a name and path for the new library and press button Save. The library
will be created named as <library name>.mac and the dialog will be closed.

e Including a macro library <library name>.mac in the currently opened
project:
Press button Include. The dialog Open Macrolibrary will open, which
shows files with extension *.mac. Select the desired library and press button
Open. The dialog will be closed and the library will be added to the tree of
the Macrolist.

int: The macros of a project also can be exported ('Project' 'Export").

4.3 Managing Projects

File' 'New'

'File' 'Open’

The commands which refer to entire project are found under the menu items
'File' and 'Project'. Some of the commands under 'Project' deal with objects and
are therefore described in chapter 4.4, Managing Objects.

Symbol: EI

With this command you create an empty project with the name "Untitled". This
name must be changed when saving.

Symbol: |§I

With this command you open an already existing project. If a project has
already been opened and changed, then 907 AC 1131 asks whether this project
should be saved or not.

m The Individual Components 4-24 907 AC 1131/Stand: 02/03

The dialog box for opening a file appears, and a project file with the extension
"*.pro" or a library file with the extension "*.lib" must be chosen. This file must
already exist. It is not possible to create a project with the command "Open™.

To upload a project file from the PLC, press PLC at Open project from PLC.
You will obtain, as next, the dialog Communication parameters (see menu
‘Online‘ ‘Communication parameters‘) for setting the transmission
parameters when no connection exists yet to the PLC. Once an on-line
connection has been created, the system checks whether the same named
project files already exist in the directory on your computer hard disc. When this
is the case you receive the dialogue Load the project from the controller
where you can decide whether the local files should be replaced by those being
used by the controller. (This sequence is the reverse of the sequence of 'Online’
'Load source code', with which the project source file is stored in the controller.
Do not confuse with 'Create Boot project')

% Note: Please note, that you in any case have to give a new name to a
project, when you load it from the PLC to your local directory, otherwise it is
unnamed.

If there has not yet been loaded a project to the PLC, you get an error message.

(See also 'Project' 'Options' category 'Sourcedownload').

Optionen
LCategory:
Load & Save_ Memies ak I
Iszer Information
E ditcr expart [| FEname |
Desktop Cancel |
C_olols) Menu:
Directories Cewpot Fyp— Help |
Log gateway
Build Carmmarnds:
Pazzwords : :
Sourcedownload project exproul <dir
Syrnbol configuration
Project source control

Image 4.23: Standard dialog box for opening a file in 907 AC 1131

The option Open project from Source code manager can be used to open a
project which is stored in a ENI project data base. It is a precondition that you
have access to an ENI Server which serves the data base. Press button ENIL...
to get a dialog where you can connect to the server concerning the data base
category 'Project objects'.

Insert the appopriate access data (TCP/IP-Address, Port, User name,
Password, Read only) and the data base folder (Project name) from which the
objects should be get and confirm with Next. The dialog will be closed and

907 AC 1131/Stand: 03.99

4-25

The Individual Components m

another one will open where you have to insert the access data for the data
base category 'Shared objects'. If you press button Finish the dialog will be
closed and the objects of the defined folders will automatically be retrieved and
displayed in the 907 AC 1131 Object manager. If you want to continue to keep
the project objects under data base control, then open the Project options
dialogs to set the desired parameters.

The most recently opened files are listed under the command 'File' 'Exit’. If you
choose one of them, then this project is opened.

If Passwords or User groups have been defined for the project, then a dialog
box appears for entering the password.

'File' 'Close’
With this command you close the currently-open project. If the project has been
changed, then 907 AC 1131 asks if these changes are to be saved or not.
If the project to be saved carries the name "Untitled", then a name must be
given to it (see 'File' 'Save as').

'File' 'Save'

Symbol: |E| Shortcut: <Ctrl>+<S>

With this command you save any changes in the project. If the project to be
saved is called "Untitled", then you must give it a name (see 'File' 'Save as').

'File' 'Save as’

With this command the current project can be saved in another file or as a
library. This does not change the original project file.

After the command has been chosen the Save dialog box appears. Choose
either an existing File name or enter a new file name and choose the desired
file type.

Save As

Sawve in: IaPrDiects j 5

% Ampel.pro
% Checker.pro

% date.pro

File name: I Save I
Save as bppe: IF'ru:uiect [*.pro) j Cancel |

Image 4.24: Dialog box for Save as

m The Individual Components 4-26 907 AC 1131/Stand: 02/03

If the project is to be saved under a new name, then choose the file type
907 AC 1131 Project (*.pro).

If you choose the file type Project Version 1.5 (*.pro), 2.0 (*.pro), 2.1 (*.pro)
or 2.2 (*.pro), then the current project is saved as if it were created with the
version 1.5, 2.0, 2.1 or 2.2. Specific data of the version 2.2 can thereby be lost!
However, the project can be executed with the version 1.5, 2.0, 2.1 or 2.2.

You can also save the current project as a library in order to use it in other
projects. Choose the file type Internal library (*.lib) if you have programmed
your POUs in 907 AC 1131.

Choose the file type External library (*.lib) if you want to implement and
integrate POUs in other languages (e.g. C). (Concerning this see chapter 6.3,
Library Manager.) This means that another file is also saved which receives the
file name of the library, but with the extension "*.h". This file is constructed as a
C header file with the declarations of all POUs, data types, and global variables.
If external libraries are used, in the simulation mode the implementation, written
for the POUs in 907 AC 1131, will be executed. Working with the real hardware
the implementation written in C will be executed.

After having done all settings, press OK. The current project is saved in the
indicated file. If the new file name already exists, then you are asked if you want
to overwrite this file.

When saving as a library, the entire project is compiled. If an error occurs
thereby, then you are told that a correct project is necessary in order to create a
library. The project is then not saved as a library.

'File' 'Save/Mail Archive'

This command is used to set up and create a project archive file. All files which
are referenced by and used with a 907 AC 1131 project can be packed in a
compressed zip file. The zip file can be stored or can be directly sent in an
email. This is useful if you want to give forward a set of all project relevant files.

When the command is executed, the dialog box 'Save Archive' opens.

Here you can define which file categories should be added to the archive zip
file:

907 AC 1131/Stand: 03.99 4-27 The Individual Components m

Save Archive |

— Include the following information into the archive:

W Project file

¥ Feferenced Libraries Dretailz. .

¥ Compile Information Details. ..

W IMI File

¥ Begistry Entries

¥ Target Files Details...

[Corfiguration files Dretailz. ..

W Symbal Files Details...

" Log

¢ Eitmap Files Details. .

[Local Gateway Detailz. ..
Other Files... |

Save... | kail... | Cancel |

Image 4.25: Dialog box for Setting up an Archive ZIP

Select or deselect a category by activating/deactivating the corresponding
checkbox. Do this by a single mouseclick in the checkbox or by a doubleclick on
the category name. If a category is marked with ¥ all files of this category will
be added to the zip file, if it is marked with [", none of the files will be added. To
select single files of a category press the corresponding button Details.

The dialog 'Details’ will open with a list of available files:

D etailz: Symbol Files

Include the following entries inko the archive:

D:%AC11 31 sprojectshglobvar. SDB
D340 1 31 Sprojectshglobywar. S'v'kd

Select All I Select Mone I

(0] I Cancel I

Image 4.26: Dialog box for detailled selection of files for the Archive ZIP

m The Individual Components 4-28 907 AC 1131/Stand: 02/03

In this dialog select/deselect the desired files: Use the button Select All or
Select None to affect the complete list. A single file can be selected/deselected
by a mouseclick in the checkbox, also by a doubleclick on the list entry or by
pressing the spacebar when the list entry is marked.

Close the Details dialog with Save to store the new settings.

In the main dialog the checkbox of categories, for which not all files are
selected, will appear with a grey background color ..

The following file categories are available, the right column of the table shows
which files can be added to the zip file:
Project File projectname.pro (the 907 AC 1131 project file)

Referenced Libraries *.lib, *.0obj, *.hex (libraries and if available the
corresponding object and hex-files)

Symbol Files *.sdb, *.sym (symbolic information)

Compile Information *.ci (compile information),
*.ri (download/reference information)
<temp>.* (temporary compile and download files)
also for simulation

Log *.log (project log file)

INI File 907 AC 1131.ini

Configuration files files used for PLC configuration (configuration files,
device files, icons etc.): e.g. *.cfg, *.con, *.eds, *.dib,
*.ico

Target Files not used

Registry Entries Registry.reg (Entries for Gateway; the following

subtree will be packed:

HKEY_LOCAL_MACHINE\SOFTWARE\.3S. \Gatewa

yServer*
Bitmap Files *.bmp (bitmaps for project POUs and visualizations)
Gateway Files Gateway.exe, GatewayDDE.exe, GClient.dll,

GDrvBase.dll, GDrvStd.dll, GHandle.dll, GSymbol.dll,
GUtil.dll, further DLLs in the gateway directory if
available

To add any other files to the zip, press the button Other Files. The dialog 'Other
files' will open where you can set up a list of desired files.

907 AC 1131/Stand: 03.99 4-29 The Individual Components m

Other files |

Incude the following user defined files into the archive:

C:\ProgrammehCanlpenlnitCode. EXP
C:hProgrammehDefault dfr
C:AProgrammehJPCAVIPC 20 pdf

Bemove |

] Cancel |

Image 4.27: Dialog box for adding other files for the Archive ZIP

Press the button Add to open the standard dialog for opening a file, where you
can browse for a file. Choose one and confirm with Open. The file will be added
to the list in the 'Other files' dialog. Repeat this for each file you want to add. To
delete entries from the list, press the button Remove. When the list of selected
files is ok, close the dialog with OK.

To add a Readme file to the archive zip, press the button Comment. A text
editor will open, where you can enter any text. If you close the dialog with OK,
during creation of the zip file a readme.txt file will be added. Additionally to the
entered comments it will contain information about the build date and version of
907 AC 1131.

If all desired selections have been made, in the main dialog press

e Save... to create and save the archive zip file: The standard dialog for
saving a file will open and you can enter the path, where the zip should be
stored. The zip file per default is named <projectname>.zip. Confirm with
Save to start building it. During creation the current progress status is
displayed and the subsequent steps are listed in the message window.

e Mail... to create a temporary archive zip and to automatically generate an
empty email which contains the zip as an attachment. This feature only
works if the MAPI (Messaging Application Programming Interface) has been
installed correctly on the system, otherwise an error message is generated.
During setup of the email the progressing status is displayed and the steps
of the action are listed in the message window. The temporary zip file will be
removed automatically after the action has been finished.

e Cancel to cancel the action; no zip file will be generated.
'File' 'Print’
Shortcut: <Ctrl>+<P>

With this command the content of the active window is printed.

After the command has been chosen, then the Print dialog box appears.
Choose the desired option or configure the printer and then click OK. The active
window is printed. Color output is available from all editors.

m The Individual Components 4-30 907 AC 1131/Stand: 02/03

Print Setup [7]

— Printer
Froperties |

Mame: ST 24HP 4 Grund

Status: Feady
Type: HP Laserlet 4 Plus
‘Where: HP4DERE?

Comment: [Ausgabe in Datei
— Duckbereich E zemplare
Lol Anzahl der Exemplare: I'l 3:
" Seiten gon:l'l I;is:|1
@ I Saotieren
) I arkierung
0K I Cancel

Image 4.28: Print dialog box

You can determine the number of the copies and print the version to a file.
With the button Properties you open the dialog box to set up the printer.

You can determine the layout of your printout with the command 'File' 'Printer
Setup'.

During printing the dialog box shows you the number of pages already printed.
When you close this dialog box, then the printing stops after the next page.

In order to document your entire project, use the command 'Project’
‘Document’.

If you want to create a for your project, in which you can store comments
regarding all the variables used in the project, then open a global variables list
and use the command 'Extras’ 'Make docuframe file' (see Chapter 6.2.3,
Document Frame).

'File' 'Printer setup'

With this command you can determine the layout of the printed pages. The
dialog box shown in the image below will be opened.

In the field File you can enter the name of the file with the extension ".dfr" in
which the page layout should be saved. The default destination for the settings
is the file DEFAULT.DFR. If you would like to change an existing layout, then
browse through the directory tree to find the desired file with the button Browse.

907 AC 1131/Stand: 03.99 4-31 The Individual Components m

Documentation Setup |

— Frame

Bile:|C:\Projects\Project 1\DEFAULT.DF Browse... |

Edi... | Placeholders: {Page} {FileMame} {Date}
{POUM arne} {Content!

[Mew page for each object [T Hew page fon each subohie

Erinter Setup | Cancel

Image 4.29: Page Layout Dialog Box

You can also choose whether to begin a new page for each object and for
each subobject. Use the Printer Setup button to open the printer
configuration.

If you click on the Edit button, then the frame for setting up the page layout
appears. Here you can determine the page numbers, date, filename and POU
name, and also place graphics on the page and the text area in which the
documentation should be printed.

=1 C:\Projects\DEFAULT.DFR =] E3
{POLMame}
{Cantent}
{Datel | :] {FileMame} : {Page}
< | Ay

Image 4.30: Window for pasting the placeholders on the page layout

With the menu item ‘Insert’ 'Placeholder' and subsequent selection among the
five placeholders (Page, POU name, File name, Date, and Content), insert
into the layout a so-called placeholder by dragging a rectangle’ on the layout
while pressing the left mouse button. In the printout they are replaced as
follows:

! Drawing a rectangle on the layout by dragging the mouse diagonally while pressing the left
mouse button.

m The Individual Components 4-32 907 AC 1131/Stand: 02/03

File" 'Exit’

'Project’ 'Build’

Command Placeholder | Effect

Page {Page} Here the current page number appears
in the printout.

POU name {POU Name} |Here the current name of the POU
appears.

File name {File Name} Here the name of the project appears.

Date {Date} Here the current date appears.

Contents {Contents} Here the contents of the POU appear.

In addition, with ‘Insert' 'Bitmap’' you can insert a bitmap graphic (e.g. a
company logo) in the page. After selecting the graphic, a rectangle should also
be drawn here on the layout using the mouse. Other visualization elements can
be inserted (see Chapter 7, Visualization).

If the template was changed, then 907 AC 1131
closed if these changes should be saved or not.

asks when the window is

Shortcut: <Alt>+<F4>
With this command you exit from 907 AC 1131.

If a project is opened, then it is closed as described in 'File' 'Save".

Shortcut: <F11>

The project is compiled using 'Project' 'Build'. The compilation process is
basically incremental, that is only changed POUs are recompiled. A non-
incremental compilation can also be obtained if the command 'Project' 'Clear all’
is first executed.

All POUs that will be loaded (Online Change) into the controller on the next
download are marked with a blue arrow in the Object Organizer after
compilation.

The compilation process that is carried out with 'Project’ 'Build' occurs
automatically if the controller is logged-in via 'Online' 'Log-in".

During compilation a message window is opened which shows the progress of
the compilation process and any errors and warnings which may occur during
compilation. Errors and warnings are marked with numbers. Using F1 you get
more information about the currently selected error.

See Appendix H: Errors and Warnings, for a listing of compiler messages.

907 AC 1131/Stand: 03.99

4-33

The Individual Components m

Data allocation

Task Configuration

Implementation of PO 'PLC_PRG!

Wrarning 1302; Mew externally referenced functions inserted. Online Change is therefore no longer possiblel
Hardware-Configuration

0 Errorés), 1 ¥arning(s).

1] | 3

Image 4.31: Message window of a project

If the option Save before compilation is selected in the options dialog of the
Load & Save category, the project is stored before compilation.

@ Note: Cross references are created during compilation and are stored with
the compilation information. In order to be able to use the commands 'Show
Call Tree', 'Show Cross Reference' and the commands ‘Unused Variables’,
'‘Concurrent Access’', and 'Multiple Write Access on output' in the 'Project’
‘Check’ menu, the project must be rebuilt after any change.

‘Project’ ‘Rebuild all’

With 'Project' 'Rebuild all', unlike the incremental compilation ('Project’ 'Build'),
the project is completely recompiled. Downoad-Information is not discarded,
however, as is the case with the command 'Clear All'.

‘Project’ 'Clean all’

With this command, all the information from the last download (Download-
Information) and from the last compilation is deleted.

After the command is selected a dialog box appears, reporting that Online
Change is no longer possible. At this point the command can either be
cancelled or confirmed.

% Note: After 'Clear all' a login on the PLC project is only possible if the *.ri
file with the project information from the last download was first explicitly saved
outside the project directory (see 'Load Download-Information') and can now be
reloaded prior to logging-in.

'Project’ 'Load Download-
Information’

With this command the Download-Information belonging to the project can get
reloaded, if it was saved to a directory different from that where the project is.
After choosing the command the standard dialogue 'File Open' opens.

The Download-Information is saved automatically at each download to a file,
which is named <project name> .ri and which is put to the project
directory. This file is loaded, when the project is opened and at login it is used to
check whether the PLC project is fitting to the currently opened 907 AC 1131
project (Id-check). Furthermore it is used to check, in which POUs the code has

m The Individual Components 4-34 907 AC 1131/Stand: 02/03

been changed. In systems which support the online change functionality, then
only these POUs will be loaded to the PLC during online change procedure.

But: If the *.ri-file in the project directory gets deleted by the command 'Project’
'Clean all', you only can reload the Download-Information, if you had stored the
*.ri-file in another directory too.

‘Project’ 'Translate into another

language’

This menu item is used for translating the current project file into another
language. This is carried out by reading in a translation file that was generated
from the project and externally enhanced in the desired national language with
the help of a text editor.

Two menu sub-items are present:

« Create translation file
« Translate project

Create translation file

This command in the 'Project' 'Translate into another language' menu leads to
the 'Create translation file' dialog.

Create translation file |

Tranzlation file: ID:'\pruiects‘\checkranges.tlt Search... |

— Infarmation o include — T arget languages

¥ Mames
¥ |dentifiers
¥ Shings
¥ Comments

¥ Wisualization t Exclude... |

Positian infarmation:

[=l

¥ Owerwiite existing

(] I Cancel |

Image 4.32: Dialog for creating a translation file

In the Translation file field, enter a path that shows where the file is to be
stored. The default file extension is *.tlt; this is a text file.

If there already exists a translation file which you want to process, give the path
of this file or use the Search button to reach the standard Windows file
selection dialog.

907 AC 1131/Stand: 03.99

4-35 The Individual Components m

The following information from the project can optionally be passed to the
translation file that is being modified or created, so that they will be available for
translation: Names (names, e.g. the title 'POUs' in Object Organizer),
Identifiers, Strings, Comments, Visualisation texts. In addition, Position
information for these project elements can be transferred.

If the corresponding options are checked, the information from the current
project will be exported as language symbols into a newly created translation
file or added to an already existing one. If the respective option is not selected,
information belonging to the pertinent category, regardless of which project it
came from, will be deleted from the translation file.

The “Text” and “Tooltip-Text” elements in the visualization elements are
considered here to be visualization texts.

% Note: For visualization texts (,Text' and ,Text for Tooltip’ in the visualization
elements) it must be noted that they must be bracketed by two “#” symbols in
the configuration dialog of the visualization element (e.g. #text#) in order to be
transferred to the translation file. (See in this connection Chapter 7,
Visualization). These texts are also not translated with the command 'Project’
‘Translate into other languages' ! A language change for the visualization can
only occur in Online mode if the corresponding language is entered in the
'Extras’ 'Settings' dialog.

Position information: This describes with the specifications file path, POU and
line the position of the language symbol made available for translation. Three
options are available for selection:

None: No position information is generated.

First appearance: The position on which the element first appears is added
to the translation file.

All: All positions on which the corresponding element
appears are specified.

If a translation file created earlier is to be edited which already contains more
position information than that currently selected, it will be correspondingly
truncated or deleted, regardless of which project it was generated from.

% Note: A maximum of 64 position specifications will be generated per
element (language symbol), even if the user has selected “All” under “Position
Information” in the ,Create Translation File' dialog.

Overwrite existing: Existing position information in the translation file, that is
currently being processed, will be overwritten, regardless of which project
generated it.

m The Individual Components 4-36 907 AC 1131/Stand: 02/03

Target languages: This list contains identifiers for all languages which are
contained in the translation file, as well as those to be added upon completion
of the 'Create translation file' dialog.

The Exclude button opens the 'Exclude libraries' dialog. Here, libraries included
to the project can be selected, whose identifier information is not to be
transferred to the translation file. To accomplish this, the corresponding entry in
the table Included libraries on the left is selected with the mouse and placed in
the Excluded libraries table to the right using the Add button. Likewise, entries
already placed there can be removed using the Remove button. OK confirms
the setting and closes the dialog.

Exclude libraries |

|dentifiers from excluded libraries will not be included into the translation file.

Inchuded librarnes: Excluded libraries:

[SysLibs b lib

Add x> |
4 HEmmwe |

k. I Cancel |

Image 4.33: Dialog for excluding library information for the translation file
The Add button opens the 'Add Target Language’ dialog:

Add Target Language |

[nput the name of the new target language here:
IFrenu:h

k. I Cancel

Image 4.34: Dialog for adding a target language (Project, Translate into Another
Language)

A language identifier must be entered into the editor field; it may not have a
space or an umlaut character (3, 0, U) at either the beginning or the end.

OK closes the 'Add Target Language' dialog and the new target language
appears in the target language list.

The Remove button removes a selected entry from the list.

You may also confirm the “Create translation file” dialog via OK, in order to
generate a translation file.

907 AC 1131/Stand: 03.99

4-37 The Individual Components m

If a translation file of the same name already exists you will get the following
confirmation message to be answered Yes or No:

" The specified translation file already exists. It will now be altered and a
backup copy of the existing file will be created. Do you want to continue?"

No returns you without action to the 'Create translation file' dialog. If Yes is
selected, a copy of the existing translation file with the filename
“‘Backup_of_<translation file>.xIt” will be created in the same directory and the
corresponding translation file will be modified in accordance with the options
that have been entered.

The following takes place when a translation file is generated:

For each new target language, a placeholder ("##TODQ”) is generated for each
language symbol to be displayed.

If an existing translation file is processed, file entries of languages that appear
in the translation file, but not in the target language list, are deleted, regardless
of the project from which they were generated.

Editing of the translation file

The translation file must be opened and saved as a text file. The signs ## mark
keywords. The ##TODO-placeholders in the file can be replaced by the valid
translation. For each language symbol a paragraph is generated which starts
with a #NAME_ITEM and ends with a #END_NAME_ITEM. (For comments
correspondingly #COMMENT _ITEM etc.).

See in the following an example of a translation file paragraph which handles
the name of one of the POUs of the project. ST_Visu. The source language is
German, the target languages shall be English(USA) and French. In this examle
the position information of the project element which should be translated has
been added:

before translation:

##NAME_TTEM

[D:\907 AC 1131\projects\Bspdt 22.pro::ST Visualisierung: :0]
ST Visualisierung

##English :: ##TODO

##French :: ##TODO

##END NAME ITEM

after translation:

The ##TODOs have been replaced by the English resp. French word for
'Visualisierung':

##NAME_ITEM

[D:\907 AC 1131\projects\Bspdt 22.pro::ST Visualisierung: :0]
ST Visualisierung

##English :: ST Visualization

##French :: ST Visu

##END NAME ITEM

Please check that the translated Identifier and Names remain valid concerning
the standard and that strings and comments are in correct brackets. Example:

m The Individual Components 4-38 907 AC 1131/Stand: 02/03

For a comment (##COMMENT _ITEM) which is represented with "(* Kommentar
1)" in the translation file, the "##TODO" behind "##English" must be replaced
by a "(* comment 1 *)". For a string (##STRING_ITEM) represented with
"zeichenfolge1" the "##TODQO" must be replaced by "string1".

@ Hint: The following parts of a translation file should not be modified without
detailed knowledge: Language block, Flag block, Position information, Original
texts.

Translate Project (into another

Language)

This command in the 'Project' "Translate into Another Language' menu opens
the 'Translate Project into Another Language' dialog.

Tranzlate project into another language |

Translation file: ID:'xpr-:uieu:ts'wisuEE_test.tIt

Target languange; I Englizh j

] Cancel |

Image 4.35: Dialog for translating the project into another language

The current project can be translated into another language if an appropriate
translation file is used.

@ Note: If you want to save the version of the project in the language in which
it was originally created, save a copy of the project prior to translation under a
different name. The translation process cannot be undone.

In the field Translation file, provide the path to the translation file to be used.
By pressing Search you may access the standard Windows file selection
dialog.

The field Target language contains a list of the language identifiers entered in
the translation file, from which you can select the desired target language.

OK starts the translation of the current project into the chosen target language
with the help of the specified translation file. During translation, a progress
dialog is displayed, as well as error messages, if any. After translation, the
dialog box and all open editor windows of the project are closed.

Cancel closes the dialog box without modification to the current project.

907 AC 1131/Stand: 03.99

4-39 The Individual Components m

If the translation file contains erroneous entries, an error message is displayed
after OK is pressed, giving the file path and the erroneous line, e.g.:
“[C:\Programs\907 AC 1131\projects\visu.tlt (78)]; Translation text expected”

'Project’ 'Document’

This command lets you print the documentation of your entire project. The
elements of a complete documentation are:

The POUs,

the contents of the documentation,

the data types,

the visualizations

the resources ,global variables, variables configuration, the Sampling
Trace, the PLC Configuration, the Task Configuration, the Watch and
Receipt Manager)

¢ the call trees of POUs and data types, as well as

¢ the cross reference list.

Document Project |

A EN_WST_121_4F_22_22 pro k.

Cancel

=]

BT [PRG)

LS [PRG]

B3 Data tupes

D BLA_diypes

B[] CANKOM_D_TYPES

[:I EMSchhittztele_dippes

B 52, Resources

A Library SysTime.LIB 16.11.99 16:41:2¢
i Global Variables

""" PLC Configuration <R

""" @ Sampling Trace <R

""" Tazk Configuration <H

""" C& Watch- and Receipt Manager <A

=+1----[+1

Image 4.36: Dialog box for project documentation

For the last two items the project must have been built without errors.

Only those areas in the dialog box are printed which are highlighted in blue.
If you want to select the entire project, then select the name of your project in
the first line.

m The Individual Components 4-40 907 AC 1131/Stand: 02/03

If, on the other hand, you only want to select a single object, then click on the
corresponding object or move the dotted rectangle onto the desired object with
the arrow key. Objects