
Software Description Advant Controller 31
Intelligent Decentralized
Automation System

Operating Manual
907 AC 1131

0-1907 AC 1131/Stand: 02/03 Content 10

Content

1 A Brief Introduction to 907 AC 1131...1-1

1.1 What is 907 AC 1131 ...1-1

1.2 Overview of 907 AC 1131 Functions..1-1

2 What is what in 907 AC 1131...2-1

2.1 Project Components ..2-1

2.2 Languages ...2-10
2.2.1 Instruction List (IL) ...2-10
2.2.2 Structured Text (ST) ..2-12
2.2.3 Sequential Function Chart (SFC) ...2-19
2.2.4 Function Block Diagram (FBD) ..2-25
2.2.5 The Continuous Function Chart Editor (CFC) ..2-26
2.2.6 Ladder Diagram (LD) ...2-26

2.3 Debugging, Online Functions...2-29

2.4 The Standard ...2-31

3 We write a little Program...3-1

3.1 Controlling a Traffic Signal Unit..3-1

3.2 Visualizing a Traffic Signal Unit..3-13

4 The Individual Components..4-1

4.1 The Main Window ..4-1

4.2 Options ..4-4

4.3 Managing Projects ...4-24

4.4 Managing Objects in a Project ...4-51

4.5 General Editing Functions..4-67

4.6 General Online Functions ..4-76

4.7 Log...4-93

0-2 907 AC 1131/Stand: 02/03Content10

4.8 Window set up... 4-96

4.9 Help when you need it... 4-97

5 The Editors in 907 AC 1131 .. 5-1

5.1 Declaration Editor.. 5-2

5.2 The Text Editors .. 5-15
5.2.1 The Instruction List Editor.. 5-20
5.2.2 The Editor for Structured Text ... 5-21

5.3 The Graphic Editors .. 5-22
5.3.1 The Function Block Diagram Editor ... 5-24
5.3.2 The Ladder Editor.. 5-32
5.3.3 The Sequential Function Chart Editor.. 5-38
5.3.4 The Continuous Function Chart Editor (CFC).. 5-48

6 The Resources .. 6-1

6.1 Overview ... 6-1

6.2 Global Variables .. 6-1
6.2.1 What are Global Variables... 6-2
6.2.2 Variable Configuration... 6-4
6.2.3 Document Frame... 6-5

6.3 Library Manager .. 6-6

6.4 Log .. 6-8

6.5 PLC Browser ... 6-11

6.6 PLC Configuration ... 6-15
6.6.1 Overview ... 6-15
6.6.2 Working in the PLC Configuration ... 6-15
6.6.3 Doing the PROFIBUS-DP Configuration ... 6-16
6.6.4 PLC Configuration in Online Mode .. 6-30

6.7 Task Configuration .. 6-31
6.7.1 Taskconfiguration in Online Mode ... 6-34

6.8 Sampling Trace ... 6-35

6.9 Watch and Receipt Manager... 6-41

7 Visualization .. 7-1

7.1 Creating a Visualization Object ... 7-2
7.1.1 Inserting Visualization Elements.. 7-2
7.1.2 Positioning Visualization Elements.. 7-5

0-3907 AC 1131/Stand: 02/03 Content 10

7.2 Configuration of a Visualization ...7-9
7.2.1 Configuration of Visualization Elements...7-11
7.2.2 Configuration of Visualization Objects ...7-35

7.3 Visualization in Online Mode..7-40

7.4 Visualizations in libraries..7-42

8 DDE Communication ...8-1

8.1 DDE interface of the 907 AC 1131 programming system8-1

8.2 DDE communcation with the GatewayDDE Server..8-2

9 The 907 AC 1131 ENI Interface ...9-1

9.1 What is ENI..9-1

9.2 Preconditions for Working with an ENI project data base9-2

9.3 Working with the ENI project data base in 907 AC 11319-3

9.4 Object categories concerning the project data base ..9-3

10 Appendix ...10-1

Appendix A: Use of Keyboard ..10-1

Key Combinations..10-1

Appendix B: Data Types..10-7

Standard Data types ..10-7

Defined Data Types ...10-8

Appendix C: IEC Operators and other, norm-extending Functions10-17

Arithmetic Operators..10-17

Bitstring Operators...10-21

Bit-Shift Operators ...10-23

Selection Operators ...10-27

Comparison Operators...10-29

Address Operators...10-32

0-4 907 AC 1131/Stand: 02/03Content10

Calling Operator .. 10-33

Type Conversion Functions... 10-33

Numeric Functions .. 10-39

Appendix D: Standard Library Elements... 10-45

String functions ... 10-45

Bistable Function Blocks ... 10-49

Trigger ... 10-51

Counter ... 10-52

Timer ... 10-55

Appendix E: Operands in 907 AC 1131 ... 10-59

Constants in 907 AC 1131 .. 10-59

Variables ... 10-62

Addresses ... 10-63

Functions... 10-64

Appendix F: Command Line / Command File Commands .. 10-65

Command Line Commands... 10-65

Command File (cmdfile) Commands.. 10-65

Appendix G: Overview Operators and Library Elements... 10-73

Appendix H: Compiler Errors and Warnings .. 10-79

Warnings ... 10-79

Compiler Errors ... 10-81

11 Index.. i

1-1907 AC 1131/Stand: 03.99 We write a little Program 10

1 A Brief Introduction to 907 AC 1131

1.1 What is 907 AC 1131

907 AC 1131 is a complete development environment for your PLC.
(907 AC 1131 stands for Controlled Developement System).

907 AC 1131 puts a simple approach to the powerful IEC language at the
disposal of the PLC programmer. Use of the editors and debugging functions is
based upon the proven development program environments of advanced
programming languages (such as Visual C++).

1.2 Overview of 907 AC 1131 Functions

How is a project structured?

A project is put into a file named after the project. The first POU (Program
Organization Unit) created in a new project will automatically be named
PLC_PRG. The process begins here (in compliance with the main function in a
C program), and other POUs can be accessed from the same point (programs,
function blocks and functions).

Once you have defined a Task Configuration, it is no longer necessary to create
a program named PLC_PRG. You will find more about this in the Task
Configuration chapter.

There are different kinds of objects in a project: POUs, data types, display
elements (visualizations) and resources.

The Object Organizer contains a list of all the objects in your project.

How do I set up my project?

First you should configure your PLC in order to check the accuracy of the
addresses used in the project.

Then you can create the POUs needed to solve your problem.

Now you can program the POUs you need in the desired languages.

Once the programming is complete, you can compile the project and remove
errors should there be any.

How can I test my project?

Once all errors have been removed, activate the simulation, log in to the
simulated PLC and "load" your project in the PLC. Now you are in Online mode.

Now open the window with your PLC Configuration and test your project for
correct sequence. To do this, enter input variables manually and observe
whether outputs are as expected. You can also observe the value sequence of
the local variables in the POUs. In the Watch and Receipt Manager you can
configure data records whose values you wish to examine.

1-2 907 AC 1131/Stand: 02/03We write a little Program10

Note: POUs of external libraries are not processed in simulation mode.

Debugging

In case of a programming error you can set breakpoints. If the process stops at
such a breakpoint, you can examine the values of all project variables at this
point in time. By working through sequentially (single step) you can check the
logical correctness of your program.

Additional Online Functions

Further debugging functions:

You can set program variables and inputs and outputs at certain values.

You can use the flow control to check which program lines have been run.

A Log records operations, user actions and internal processes during an online
session in a chronological order.

The Sampling Trace allows you to trace and display the actual course of
variables over an extended period of time.

Optional a PLC Browser is available to request certain information from the
PLC.

Once the project has been set up and tested, it can be loaded down to the
hardware and tested as well. The same online functions as you used with the
simulation will be available.

Additional 907 AC 1131
Features

The entire project can be documented or exported to a text file at any time.
Also it can be translated into another language.

907 AC 1131 has a symbolic and a DDE interface. A gateway server together
with an OPC server and DDE server are parts of the 907 AC 1131 standard
installation.

ENI: The 'Engineering Interface' can be used to access an external data base
via the independent ENI Server, where 907 AC 1131 POUs resp. compile files
are managed. Those elements then are also available for other clients of the
ENI Server. Thus multi-user-operation on 907 AC 1131 projects is possible as
well as a common data pool for any tools besides 907 AC 1131 and a version
management for 907 AC 1131 projects.

Summary

907 AC 1131 is a complete development tool used to program your PLC which
will save you a measurable amount of time setting up your applications.

2-1907 AC 1131/Stand: 03.99 We write a little Program 10

2 What is what in 907 AC 1131

This chapter contains a list of the most important concepts to make starting
easier.

2.1 Project Components

Project

A project contains all of the objects in a PLC program. A project is saved in a
file named after the project. The following objects are included in a project:

POUs (Program Organization Units), data types, visualizations, resources, and
libraries.

POU (Program Organization
Unit)

Functions, function blocks, and programs are POUs which can be
supplemented by actions.

Each POU consists of a declaration part and a body. The body is written in one
of the IEC programming languages which include IL, ST, SFC, FBD, LD or
CFC.

907 AC 1131 supports all IEC standard POUs. If you want to use these POUs
in your project, you must include the library IEC_S90_V41.LIB in your project.

POUs can call up other POUs. However, recursions are not allowed.

Function

A function is a POU, which yields exactly one value or variable (which can
consist of several elements, such as fields or structures) when it is processed,
and whose call in textual languages can occur as an operator in expressions.

When declaring a function do not forget that the function must receive a type.
This means, after the function name, you must enter a colon followed by a type.

A correct function declaration can look like this example:
FUNCTION Fct: INT

In addition, a result must be assigned to the function. That means that function
name is used as an output variable.

A function declaration begins with the keyword FUNCTION.

Example in IL of a function that takes three input variables and returns the
product of the first two divided by the third:

2-2 907 AC 1131/Stand: 02/03We write a little Program10

Image 2.1: Example of a function in IL

The call of a function in ST can appear as an operand in expressions.

Functions do not have any internal conditions. That means that calling up a
function with the same argument (input parameters) always produces the same
value (output).

Examples for calling up the function described above:

in IL:
LD 7
Fct 2,4
ST Result

in ST:
Result := Fct(7, 2, 4);

in FBD:

In SFC a function call can only take place within a step or a transition.

Note:

If you define a function in your project with the name CheckBounds, you can
use it to check range overflows in your project! The name of the function is
defined and may have only this identifier (see Appendix B: Data types) .

If you define functions in your project with the names CheckDivByte,
CheckDivWord, CheckDivDWord and CheckDivReal, you can use them to
check the value of the divisor if you use the operator DIV, for example to avoid
a division by 0 (see Appendix C: IEC operators).

2-3907 AC 1131/Stand: 03.99 We write a little Program 10

If you define functions with the names CheckRangeSigned and
CheckRangeUnsigned, then range exceeding of variables declared wit
subrange types (see Appendix B: Data types) can be intercepted.

All these check function names are reserved for the described usage.

Function Block

A function block is a POU which provides one or more values during the
procedure. As opposed to a function, a function block provides no return value.

A function block declaration begins with the keyword FUNCTION_BLOCK.

Example in IL of a function block with two input variables and two output
variables. One output is the product of the two inputs, the other a comparison
for equality:

Image 2.2: Function Block

Function Block Instances

Reproductions or instances (copies) of a function block can be created.

Each instance possesses its own identifier (the Instance name), and a data
structure which contains its inputs, outputs, and internal variables. Instances are
declared locally or globally as variables, whereas the name of the function block
is indicated as the type of an identifier.

Example of an instance with the name INSTANCE of the FUB function block:
INSTANCE: FUB;

Function blocks are always called through the instances described above.

Only the input and output parameters can be accessed from outside of an
function block instance, not its internal variables.

2-4 907 AC 1131/Stand: 02/03We write a little Program10

Example for accessing an input variable:

The function block FB has an input variable in1 of the type INT.
PROGRAM prog
VAR

inst1:fb;
END_VAR
LD 17
ST inst1.in1
CAL inst1
END_PROGRAM

The declaration parts of function blocks and programs can contain instance
declarations. Instance declarations are not permitted in functions.

Access to a function block instance is limited to the POU in which it was
declared unless it was declared globally.

The instance name of a function block instance can be used as the input for a
function or a function block.

Note: All values are retained after processing a function block until the next
it is processed. Therefore, function block calls with the same arguments do not
always return the same output values!

Note: If there at least one of the function block variables is a retain variable,
the total instance is stored in the retain area.

Calling a function block

The input and output variables of a function block can be accessed from
another POU by setting up an instance of the function block and specifying the
desired variable using the following syntax:

<Instance name>.<Variable name>

If you would like to set the input parameters when you open the function block,
you can do this in the text languages IL and ST by assigning values to the
parameters after the instance name of the function block in parentheses (this
assignment takes place using ":=" just as with the initialization of variables at
the declaration position).

Please regard, that the InOutVariables (VAR_IN_OUT) of a function block are
handed over as pointers. For this reason in a call of a function block no
constants can be assigned to VAR_IN_OUTs and there is no read or write
access from outside to them.

VAR
inst:fubo;
var:int;

END_VAR

2-5907 AC 1131/Stand: 03.99 We write a little Program 10

var1:=2;
inst(instout1:=var1^);

not allowed in this case: inst(instout1:=2); or inst.inout1:=2;

Please regard when calling a function block in a function that the parameters
are handed over in the "stack" which is limited to 4KB.

Examples for calling function block FUB described above:

The multiplication result is saved in the variable ERG, and the result of the
comparison is saved in QUAD. An instance of FUB with the name INSTANCE is
declared.

In IL the function block is called as shown in the following image:

Image 2.3: Function Block Call in IL

In the example below the call is shown in ST. The declaration part is the same
as with IL:

Image 2.4: Function Block Call in ST

In FBD the instance of a function block is called as shown in the following image
(declaration part the same as with IL):

2-6 907 AC 1131/Stand: 02/03We write a little Program10

Image 2.5: Function Block Call in FBD

In SFC function block calls can only take place in steps.

Program

A program is a POU which returns several values during operation. Programs
are recognized globally throughout the project. All values are retained from the
last time the program was run until the next.

Image 2.6: Example of a program

Programs can be called. A program call in a function is not allowed. There are
also no instances of programs.

If a POU calls a program, and if thereby values of the program are changed,
then these changes are retained the next time the program is called, even if the
program has been called from within another POU.

This is different from calling a function block. There only the values in the given
instance of a function block are changed.

These changes therefore play a role only when the same instance is called.

A program declaration begins with the keyword PROGRAM and ends with
END_PROGRAM.

Examples of calls of the program described above:

2-7907 AC 1131/Stand: 03.99 We write a little Program 10

In IL:
CAL PRGExample
LD PRGexample.PAR
ST ERG
in ST:
PRGExample;
Erg := PRGexample.PAR;

In FBD:

Example for a possible call sequence for PLC_PRG:
LD 0
ST PRGexample.PAR (*Default setting for PAR is 0*)
CAL IL call (*ERG in IL call results in 1*)
CAL ST call (*ERG in ST call results in 2*)
CAL FBD call (*ERG in FBD call results in 3*)

If the variable PAR from the program PRGexample is initialized by a main
program with 0, and then one after the other programs are called with above
named program calls, then the ERG result in the programs will have the values
1, 2, and 3. If one exchanges the sequence of the calls, then the values of the
given result parameters also change in a corresponding fashion.

PLC_PRG

The PLC_PRG is a special predefined POU. Each project must contain this
special program. This POU is called exactly once per control cycle.

The first time the 'Project' 'Object Add' command is used after a new project
has been created, the default entry in the POU dialog box will be a POU named
PLC_PRG of the program type. You should not change this default setting!

If tasks have been defined, then the project may not contain any PLC_PRG,
since in this case the procedure sequence depends upon the task assignment.

 Attention: Do not delete or rename the POU PLC_PRG (assuming
you are not using a Task Configuration, see Chapter 6.7: Resources)!
PLC_PRG is generally the main program in a single task program.

Action

Actions can be defined to function blocks and programmes. (For this purpose
mark the function block or program in the Object Organizer and perform the
command 'Project' 'Add action'. The new action will be inserted below the
corresponding POU in the Object Organizer.) The action represents a further
implementation which can be entirely created in another language as the
”normal” implementation. Each action is given a name.

2-8 907 AC 1131/Stand: 02/03We write a little Program10

An action works with the data from the function block or program which it
belongs to. The action uses the same input/output variables and local variables
as the ”normal” implementation uses.

Image 2.7:Example for an action of a function block

In the example given, calling up the function block Counter increases or
decreases the output variable ”out”, depending on the value of the input variable
”in”. Calling up the action Reset of the function block sets the output variable to
zero. The same variable ”out” is written in both cases.

An action is called up with <Program_name>.<Action_name> or
<Instance_name>.<Action_name>. If it is required to call up the action within its
own block, one just uses the name of the action in the text editors and in the
graphic form the function block call up without instance information.

Examples for calls of the above described action from another POU:

Declaration for all examples:
PROGRAM PLC_PRG
VAR

Inst : Counter;
END_VAR

Call in IL:
CAL Inst.Reset(In := FALSE)
LD Inst.out
ST ERG

Call in ST:
Inst.Reset(In := FALSE);
Erg := Inst.out;

Call in FBD:

2-9907 AC 1131/Stand: 03.99 We write a little Program 10

 Note: Actions play an important role in blocks in sequential function charts,
see Chapter 2.2.3, Sequential Function Chart.

The IEC standard does not recognise actions other than actions of the
sequential function chart.The IEC standard does not recognise actions other
than actions of the sequential function chart.

Resources

You need the resources for configuring and organizing your project and for
tracing variable values:

• Global Variables which can be used throughout the project
• Library manager for adding libraries to the project
• Log for recording the actions during an online session
• PLC-Browser as controller monitor
• PLC Configuration for configuring your hardware
• Task Configuration for guiding your program through tasks
• Sampling Trace for graphic display of variable values
• Watch and Receipt Manager for displaying variable values and setting

default variable values
See Chapter 6, 'The Resources'.

Libraries

You can include in your project a series of libraries whose POUs, data types,
and global variables you can use just like user-defined variables. The library
IEC_S90_V41.LIB is a standard part of the program and are always at your
disposal.

See Chapter 6.3, 'Library Manager'.

Data types

Along with the standard data types the user can define his own data types.
Structures, enumeration types and references can be created.

See Appendix B, Data Types.

Visualization

907 AC 1131 provides visualizations so that you can display your project
variables. You can plot geometric elements off-line with the help of the
visualization. In Online mode, these can then change their form/color/text output
in response to specified variable values. A visualization also can be used as a
pure operating interface for an application program in AC1131HMI.

See Chapter 7, Visualization.

2-10 907 AC 1131/Stand: 02/03We write a little Program10

2.2 Languages

907 AC 1131 supports all languages described by the standard IEC-61131:

Textual Languages:

• Instruction List (IL)
• Structured Text (ST)

Grafic Languages:

• Sequential Function Chart (SFC)
• Function Block Diagram (FBD) and Continuous Function Chart Editor (CFC)
• Ladder Diagram (LD)

2.2.1 Instruction List (IL)

An instruction list (IL) consists of a series of instructions. Each instruction
begins in a new line and contains an operator and, depending on the type of
operation, one or more operands separated by commas.

In front of an instruction there can be an identification mark (label) followed by
a colon (:).

A comment must be the last element in a line. Empty lines can be inserted
between instructions.

Example:

LD 17
ST lint (* comment *)
GE 5
JMPC next
LD idword
EQ istruct.sdword
STN test
next:

Modifiers and operators in IL

In the IL language the following operators and modifiers can be used.

Modifiers:

• C with JMP, CAL, RET: The instruction is only then executed if the result
of the preceding expression is TRUE.

• N with JMPC, CALC, RETC: The instruction is only then executed if the result
of the preceding expression is FALSE.

• N otherwise: Negation of the operand (not of the accumulator)

2-11907 AC 1131/Stand: 03.99 We write a little Program 10

Below you find a table of all operators in IL with their possible modifiers and the
relevant meaning:

Operator Modifiers Meaning
LD N Make current result equal to the operand
ST N Save current result at the position of the operand
S Then put the Boolean operand exactly at TRUE if the

current result is TRUE
R Then put the Boolean operand exactly at FALSE if

the current result is TRUE
AND N,(Bitwise AND
OR N,(Bitwise OR
XOR N,(Bitwise exclusive OR
ADD (Addition
SUB (Subtraction
MUL (Multiplication
DIV (Division
GT (>
GE (>=
EQ (=
NE (<>
LE (<=
LT (<
JMP CN Jump to the label
CAL CN Call programor function block or
RET CN Leave POU and return to caller.
) Evaluate deferred operation

You find a list of all IEC operators in the appendix.

Example of an IL program while using some modifiers:

LD TRUE (*load TRUE in the accumulator*)
ANDN BOOL1 (*execute AND with the negated value of the BOOL1

variable*)
JMPC mark (*if the result was TRUE, then jump to the label "mark"*)

LDN BOOL2 (*save the negated value of *)
ST ERG (*BOOL2 in ERG*)
label:
LD BOOL2 (*save the value of *)
ST ERG *BOOL2 in ERG*)

It is also possible in IL to put parentheses after an operation. The value of the
parenthesis is then considered as an operand.

2-12 907 AC 1131/Stand: 02/03We write a little Program10

For example:

LD 2
MUL 2
ADD 3
ST ERG

Here is the value of Erg 7. However, if one puts parentheses:

LD 2
MUL (2
ADD 3
)
ST ERG

Here the resulting value for Erg is 10, the operation MUL is only then evaluated
if you come to ")"; as operand for MUL 5 is then calculated.

2.2.2 Structured Text (ST)

The Structured Text consists of a series of instructions which, as determined in
high level languages, ("IF..THEN..ELSE) or in loops (WHILE..DO) can be
executed.

Example:
IF value < 7 THEN

WHILE value < 8 DO
value:=value+1;
END_WHILE;

END_IF;

Expressions

An expression is a construction which returns a value after its evaluation.

Expressions are composed of operators and operands. An operand can be a
constant, a variable, a function call, or another expression.

Valuation of expressions

The evaluation of expression takes place by means of processing the operators
according to certain binding rules. The operator with the strongest binding is
processed first, then the operator with the next strongest binding, etc., until all
operators have been processed.

Operators with equal binding strength are processed from left to right.

2-13907 AC 1131/Stand: 03.99 We write a little Program 10

Below you find a table of the ST operators in the order of their binding strength:

Operation Symbol Binding strength

Put in parentheses (expression) Strongest binding
Function call Function name

(parameter list)
Exponentiation EXPT
Negate
Building of complements

-
NOT

Multiply
Divide
Modulo

*
/
MOD

Add
Subtract

+
-

Compare <,>,<=,>=
Equal to
Not equal to

=
<>

Boolean AND AND
Boolean XOR XOR
Boolean OR OR Weakest binding

There are the following instructions in ST, arranged in a table together with
example:

Instruction type Example

Assignment A:=B; CV := CV + 1; C:=SIN(X);
Calling a function block and
use of the FB output

CMD_TMR(IN := %IX5, PT := 300);
A:=CMD_TMR.Q

RETURN RETURN;
IF D:=B*B;

IF D<0.0 THEN
 C:=A;
ELSIF D=0.0 THEN
 C:=B;
ELSE
 C:=D;
END_IF;

CASE CASE INT1 OF
1: BOOL1 := TRUE;
2: BOOL2 := TRUE;
ELSE

BOOL1 := FALSE;
BOOL2 := FALSE;

END_CASE;

2-14 907 AC 1131/Stand: 02/03We write a little Program10

FOR J:=101;
FOR I:=1 TO 100 BY 2 DO
 IF ARR[I] = 70 THEN
 J:=I;
 EXIT;
 END_IF;
END_FOR;

WHILE J:=1;
WHILE J<= 100 AND ARR[J] <> 70 DO
 J:=J+2;
END_WHILE;

REPEAT J:=-1;
REPEAT
 J:=J+2;
UNTIL J= 101 OR ARR[J] = 70
END_REPEAT;

EXIT EXIT;
Empty instruction ;

Instruction in Structured Text

The name already indicates, the Structured Text is designed for structure
programming, i.e. ST offers predetermined structures for certain often used
constructs such as loops for programming.

This offers the advantages of low error probability and increased clarity of the
program.

For example, let us compare two equally significant program sequences in IL
and ST:

A loop for calculating powers of two in IL:

Loop:
LD
JMPC
LD
MUL
ST

Counter
end
Var1
2
Var1

LD
SUB
ST
JMP
End:
LD
ST

Counter
1
Counter
Loop

Var1
ERG

The same loop programmed in ST would produce:

2-15907 AC 1131/Stand: 03.99 We write a little Program 10

WHILE counter<>0 DO
Var1:=Var1*2;
Counter:=counter-1;

END_WHILE
Erg:=Var1;

You can see, the loop in ST is not only faster to program, but is also
significantly easier to read, especially in view of the convoluted loops in larger
constructs.

The different structures in ST have the following significance:

Assignment operator

On the left side of an assignment there is an operand (variable, address) to
which is assigned the value of the expression on the right side with the
assignment operator :=

Example:
Var1 := Var2 * 10;

After completion of this line Var1 has the tenfold value of Var2.

Calling function blocks in ST

A function block is called in ST by writing the name of the instance of the
function block and then assigning the values of the parameters in parentheses.
In the following example a timer is called with assignments for the parameters
IN and PT. Then the result variable Q is assigned to the variable A.

The result variable, as in IL, is addressed with the name of the function block, a
following point, and the name of the variable:

CMD_TMR(IN := %IX5, PT := 300);
A:=CMD_TMR.Q

RETURN instruction

The RETURN instruction can be used to leave a POU, for example depending
on a condition

IF instruction

With the IF instruction you can check a condition and, depending upon this
condition, execute instructions.

Syntax:
IF <Boolean_expression1> THEN
 <IF_instructions>
{ELSIF <Boolean_expression2> THEN
 <ELSIF_instructions1>
.
.
ELSIF <Boolean_expression n> THEN
 <ELSIF_instructions n-1>

2-16 907 AC 1131/Stand: 02/03We write a little Program10

ELSE
 <ELSE_instructions>}
END_IF;

The part in braces {} is optional.

If the <Boolean_expression1> returns TRUE, then only the <IF_Instructions>
are executed and none of the other instructions.

Otherwise the Boolean expressions, beginning with <Boolean_expression2>,
are evaluated one after the other until one of the expressions returns TRUE.
Then only those instructions after this Boolean expression and before the next
ELSE or ELSIF are evaluated.

If none of the Boolean expressions produce TRUE, then only the
<ELSE_instructions> are evaluated.

Example:
IF temp<17
THEN heating_on := TRUE;
ELSE heating_on := FALSE;
END_IF;

Here the heating is turned on when the temperature sinks below 17 degrees.
Otherwise it remains off.

CASE instruction

With the CASE instructions one can combine several conditioned instructions
with the same condition variable in one construct.

Syntax:
CASE <Var1> OF
<Value1>: <Instruction 1>
<Value2>: <Instruction 2>
<Value3, Value4, Value5>: <Instruction 3>
<Value6 .. Value10>: <Instruction 4>
 ...
<Value n>: <Instruction n>
ELSE <ELSE instruction>
END_CASE;

A CASE instruction is processed according to the following model:

• If the variable in <Var1> has the value <Value i>, then the instruction
<Instruction i> is executed.

• If <Var 1> has none of the indicated values, then the <ELSE Instruction>
is executed.

• If the same instruction is to be executed for several values of the
variables, then one can write these values one after the other separated
by commas, and thus condition the common execution.

• If the same instruction is to be executed for a value range of a variable,
one can write the initial value and the end value separated by two dots
one after the other. So you can condition the common condition.

2-17907 AC 1131/Stand: 03.99 We write a little Program 10

Example:
CASE INT1 OF
1, 5: BOOL1 := TRUE;

BOOL3 := FALSE;
2: BOOL2 := FALSE;

BOOL3 := TRUE;
10..20: BOOL1 := TRUE;

BOOL3:= TRUE;
ELSE

BOOL1 := NOT BOOL1;
BOOL2 := BOOL1 OR BOOL2;

END_CASE;

FOR loop

With the FOR loop one can program repeated processes.

Syntax:
INT_Var :INT;

FOR <INT_Var> := <INIT_VALUE> TO <END_VALUE> {BY <Step size>}
DO

 <Instructions>
END_FOR;

The part in braces {} is optional.

The <Instructions> are executed as long as the counter <INT_Var> is not
greater than the <END_VALUE>. This is checked before executing the
<Instructions> so that the <instructions> are never executed if <INIT_VALUE>
is greater than <END_VALUE>.

When <Instructions> are executed, <INT_Var> is always increased by <Step
size>. The step size can have any integer value. If it is missing, then it is set to
1. The loop must also end since <INT_Var> only becomes greater.

Example:
FOR Counter:=1 TO 5 BY 1 DO
Var1:=Var1*2;
END_FOR;
Erg:=Var1;

Let us assume that the default setting for Var1 is the value 1. Then it will have
the value 32 after the FOR loop.

Note: <END_VALUE> must not be equal to the limit value of the counter
<INT_VAR>. For example: If the variable Counter is of type SINT and if
<END_VALUE> is 127, you will get an endless loop.

2-18 907 AC 1131/Stand: 02/03We write a little Program10

WHILE loop

The WHILE loop can be used like the FOR loop with the difference that the
break-off condition can be any Boolean expression. This means you indicate a
condition which, when it is fulfilled, the loop will be executed.

Syntax:
WHILE <Boolean expression>
 <Instructions>
END_WHILE;

The <Instructions> are repeatedly executed as long as the
<Boolean_expression> returns TRUE. If the <Boolean_expression> is already
FALSE at the first evaluation, then the <Instructions> are never executed. If
<Boolean_expression> never assumes the value FALSE, then the
<Instructions> are repeated endlessly which causes a relative time delay.

Note: The programmer must make sure that no endless loop is caused. He
does this by changing the condition in the instruction part of the loop, for
example, by counting up or down one counter.

Example:
WHILE counter<>0 DO

Var1 := Var1*2;
Counter := Counter-1;

END_WHILE
The WHILE and REPEAT loops are, in a certain sense, more powerful than the
FOR loop since one doesn't need to know the number of cycles before
executing the loop. In some cases one will, therefore, only be able to work with
these two loop types. If, however, the number of the loop cycles is clear, then a
FOR loop is preferable since it allows no endless loops.

REPEAT loop

The REPEAT loop is different from the WHILE loop because the break-off
condition is checked only after the loop has been executed. This means that the
loop will run through at least once, regardless of the wording of the break-off
condition.

Syntax:
REPEAT
 <Instructions>
UNTIL <Boolean expression>
END_REPEAT;

The <Instructions> are carried out until the <Boolean expression> returns
TRUE.

If <Boolean expression> is produced already at the first TRUE evaluation, then
<Instructions> are executed only once. If <Boolean_expression> never

2-19907 AC 1131/Stand: 03.99 We write a little Program 10

assumes the value TRUE, then the <Instructions> are repeated endlessly which
causes a relative time delay.

Note: The programmer must make sure that no endless loop is caused. He
does this by changing the condition in the instruction part of the loop, for
example by counting up or down one counter.

Example:
REPEAT

Var1 := Var1*2;
Counter := Counter-1;

UNTIL
Counter=0

END_REPEAT;

EXIT instruction

If the EXIT instruction appears in a FOR, WHILE, or REPEAT loop, then the
innermost loop is ended, regardless of the break-off condition.

2.2.3 Sequential Function Chart (SFC)

The Sequential Function Chart is a graphically oriented language which makes
it possible to describe the chronological order of different actions within a
program. For this the actions are assigned to step elements and the sequence
of processing is controlled by transition elements.

Image 2.8: Network in SFC

2-20 907 AC 1131/Stand: 02/03We write a little Program10

Step

A POU written in a Sequential Function Chart consists of a series of steps
which are connected with each other through directed connections (transitions).

There are two types of steps.

• The simplified type consists of an action and a flag which shows if the step
is active. If the action of a step is implemented, then a small triangle
appears in upper right corner of the step.

• An IEC step consists of a flag and one or more assigned actions or
boolean variables. The associated actions appear to the right of the step.
(see below: IEC Step).

Action

An action can contain a series of instructions in IL or in ST, a lot of networks in
FBD or in LD, or again in Sequential Function Chart (SFC).

With the simplified steps an action is always connected to a step. In order to
edit an action, click twice with the mouse on the step to which the action
belongs. Or select the step and select the menu command 'Extras' 'Zoom
Action/Transition'. In addition, one input or output action per step is possible.

Actions of IEC steps hang in the Object Organizer directly under their SFC-POU
and are loaded with a doubleclick or by pressing <Enter> in their editor. New
actions can be created with 'Project' 'Add Action'. Not more than nine actions
can be assigned to one IEC step.

Entry or exit action

Additional to a step action you can add an entry action and an exit action to a
step. An entry action is executed only once, right after the step has become
active. An exit action is executed only once before the step is deactivated.

A step with entry action is indicated by an "E" in the lower left corner, the exit
action by an "X" in the lower right corner.

The entry and exit action can be implemented in any language. In order to edit
an entry or exit action, doubleclick in the corresponding corner in the step with
the mouse.

Example of a step with entry and exit action:

Transition / Transition condition

Between the steps there are so-called transitions.

A transition condition must have the value TRUE or FALSE. Thus it can consist
of either a boolean variable, a boolean address or a boolean constant. It can
also contain a series of instructions having a boolean result, either in ST syntax
(e.g. (i<= 100) AND b) or in any language desired (see 'Extras' 'Zoom

2-21907 AC 1131/Stand: 03.99 We write a little Program 10

Action/Transition'). But a transition may not contain programs, function blocks or
assignments!

Note: Besides transitions, inching mode can also be used to skip to the next
step; see SFCtip and SFCtipmode.

Active step

After calling the SFC POU, the action (surrounded by a double border)
belonging to the initial stepis executed first. A step, whose action is being
executed, is called active. In Online mode active steps are shown in blue.

In a control cycle all actions are executed which belong to active steps.
Thereafter the respective following steps of the active steps become active if
the transition conditions of the following steps are TRUE. The currently active
steps will be executed in the next cycle.

Note: If the active step contains an output action, this will only be executed
during the next cycle, provided that the transition following is TRUE.

IEC step

Along with the simplified steps the standard IEC steps in SFC are available.

In order to be able to use IEC steps, you must link the special SFC library
lecsfc.lib into your project.

Not more than nine actions can be assigned to an IEC step. IEC actions are not
fixed as input, step or output actions to a certain step as in the simplified steps,
but are stored separately from the steps and can be reused many times within a
POU. For this they must be associated to the single steps with the command
'Extras''Associate action'.

Along with actions, Boolean variables can be assigned to steps.

The activation and deactivation of actions and boolean variables can be
controlled using so-called qualifiers. Time delays are possible. Since an action
can still be active, if the next step has been processed, for example through the
qualifier S (Set), one can achieve concurrent processes.

An associated boolean variable is set or reset with each call of the SFC block.
That means, that with each call the value changes from TRUE or FALSE or
back again.

The actions associated with an IEC step are shown at the right of the step in a
two-part box. The left field contains the qualifier, possibly with time constant,
and the right field contains the action name respectively boolean variable name.

An example for an IEC step with two actions:

2-22 907 AC 1131/Stand: 02/03We write a little Program10

In order to make it easier to follow the processes, all active actions in online
mode are shown in blue like the active steps. After each cycle a check is made
to see which actions are active.

Pay attention here also to the restrictions on the use of time-qualifiers in actions
that are repeatedly re-used within the same cycle (see “Qualifier”) !

Note: If an action has been inactivated, it will be executed once more. That
means, that each action is executed at least twice (also an action with qualifier
P).

In case of a call first the deactivated actions, then the active actions are
executed, in alphabetical order each time.

Whether a newly inserted step is an IEC step depends upon whether the menu
command 'Extras' 'Use IEC-Steps' has been chosen.

In the Object Organizer the actions hang directly underneath their respective
SFC POUs. New actions can be created with 'Project' 'Add Action'.

In order to use IEC steps you must include in your project the special SFC
library IECSFC_S90_V41.LIB .

Image 2.9: SFC POU with actions in the Object Organizer

Qualifier

In order to associate the actions with IEC steps the following qualifiers are
available:

N Non-stored The action is active as long as the step

R overriding Reset The action is deactivated

S Set (Stored) The action is activated and remains active until
a Reset

L time Limited The action is activated for a certain time,
maximum as long as the step is active

D time Delayed The action becomes active after a certain time
if the step is still active and then it remains
active as long as the step is active.

2-23907 AC 1131/Stand: 03.99 We write a little Program 10

P Pulse The action is executed just one time if the step
is active

SD Stored and time
Delayed

The action is activated after a certain time and
remains active until a Reset

DS Delayed and Stored The action is activated after a certain time as
long as the step is still active and remains
active up to a Reset

SL Stored and time limited The action is activated for a certain time

The qualifiers L, D, SD, DS and SL need a time value in the TIME constant
format.

Hinweis: After an action has got deactivated it will be executed once
more. Thus each action will be executed at least twice (even an action with
qualifier P):

Implicit variables in SFC

There are implicitly declared variables in the SFC which can be used.

A flag belongs to each step which stores the state of the step. The step flag
(active or inactive state of the step) is called <StepName>.x for IEC steps or
<StepName> for the simplified steps. This Boolean variable has the value
TRUE when the associated step is active and FALSE when it is inactive. It can
be used in every action and transition of the SFC block.

One can make an enquiry with the variable <ActionName>.x. as to whether an
IEC action is active or not.

For IEC steps the implicit variables <StepName>.t can be used to enquire
about the active time of the steps.

Implicit variables can also be accessed by other programs. Example:
boolvar1:=sfc1.step1.x; Here, step1.x is the implicit boolean variable
representing the state of IEC step step1 in POU sfc1.

SFC Flags

Flags can be used to control the operation of SFC POUs. These flags are
created implicitely. You have to define appropriate global or local input resp.
output variables to get access to the flags. Example: If in a SFC POU a step is
active for a longer time than defined in the step attributes, then a flag will be set,
which is accessible by using a variable "SFCError" (SFCError gets TRUE in this
case).

The following flag variables can be defined:

2-24 907 AC 1131/Stand: 02/03We write a little Program10

SFCEnableLimit: This variable is of the type BOOL. When it has the value
TRUE, the timeouts of the steps will be registered in SFCError. Other timeouts
will be ignored.

SFCInit: When this boolean variable has the value TRUE the sequential
function chart is set back to the Init step. The other SFC flags are reset too
(initialization). The Init step remains active, but is not executed, for as long as
the variable has the value TRUE. It is only when SFCInit is again set to FALSE
that the block can be processed normally.

SFCReset: This variable, of type BOOL, behaves similarly to SFCInit. Unlike
the latter, however, further processing takes place after the initialization of the
Init step. Thus for example the SFCReset flag could be re-set to FALSE in the
Init step.

SFCQuitError: Execution of the SFC diagram is stopped for as long as this
boolean variable has the value TRUE whereby a possible timeout in the
variable SFCError is reset. All previous times in the active steps are reset when
the variable again assumes the value FALSE. It is a pre-condition that the flag
SFCError has been defined also, which registers any timeout in the SFC.

SFCPause: Execution of the SFC diagram is stopped for as long as this
boolean variable has the value TRUE.

SFCError: This Boolean variable is TRUE when a timeout has occurred in a
SFC diagram. If another timeout occurs in a program after the first one, it will
not be registered unless the variable SFCError is reset first. It is a pre-condition
that SFCError is defined, if you want to use the other time-controlling flags
(SFCErrorStep, SFCErrorPOU, SFCQuitError, SFCErrorAnalyzation).

SFCTrans: This boolean variable takes on the value TRUE when a transition is
actuated.

SFCErrorStep: This variable is of the type STRING. If SFCError registers a
timeout, in this variable is stored the name of the step which has caused the
timeout. It is a pre-condition that the flag SFCError has been defined also,
which registers any timeout in the SFC.

SFCErrorPOU: This variable of the type STRING contains the name of the
block in which a timeout has occurred. It is a pre-condition that the flag
SFCError has been defined also, which registers any timeout in the SFC.

SFCCurrentStep: This variable is of the type STRING. The name of the step is
stored in this variable which is active, independently of the time monitoring. In
the case of simultaneous sequences the step is stored in the branch on the
outer right. No further timeout will be registered if a timeout occurs and the
variable SFCError is not reset again.

SFCErrorAnalyzation: This variable, of type STRING, provides the transition
expression as well as every variable in an assembled expression which gives a
FALSE result for the transition and thus produces a timeout in the preceding
step. A requirement for this is declaration of the SFCError flag, which registers
the timeout. SFCErrorAnalyzation refers back to a function called

2-25907 AC 1131/Stand: 03.99 We write a little Program 10

AppedErrorString in the analyzation.lib library. The output string separates
multiple components with the symbol “|”.

SFCTip, SFCTipMode: This variables of type BOOL allow inching mode of the
SFC. When this is switched on by SFCTipMode=TRUE, it is only possible to
skip to the next step if SFCTip is set to TRUE. As long as SFCTipMode is set to
FALSE, it is possible to skip even over transitions.

Alternative branch

Two or more branches in SFC can be defined as alternative branches. Each
alternative branch must begin and end with a transition. Alternative branches
can contain parallel branches and other alternative branches. An alternative
branch begins at a horizontal line (alternative beginning) and ends at a
horizontal line (alternative end) or with a jump.

If the step which precedes the alternative beginning line is active, then the first
transition of each alternative branch is evaluated from left to right. The first
transition from the left whose transition condition has the value TRUE is opened
and the following steps are activated (see 'Active step').

Parallel branch

Two or more branches in SFC can be defined as parallel branches. Each
parallel branch must begin and end with a step. Parallel branches can contain
alternative branches or other parallel branches. A parallel branch begins with a
double line (parallel beginning) and ends with a double line (parallel end) or with
a jump. It can be provided with a jump label.

If the parallel beginning line of the previous step is active and the transition
condition after this step has the value TRUE, then the first steps of all parallel
branches become active (see 'Active step'). These branches are now processed
parallel to one another. The step after the parallel end line becomes active
when all previous steps are active and the transition condition before this step
produces the value TRUE.

Jump

A jump is a connection to the step whose name is indicated under the jump
symbol. Jumps are required because it is not allowed to create connections
which lead upward or cross each other.

2.2.4 Function Block Diagram (FBD)

The Function Block Diagram is a graphically oriented programming language. It
works with a list of networks whereby each network contains a structure which
represents either a logical or arithmetic expression, the call of a function block,
a jump, or a return instruction.

An example of a typical network in the Function Block Diagram as it could
appear in 907 AC 1131 :

2-26 907 AC 1131/Stand: 02/03We write a little Program10

Image 2.10: Network in Function Block Diagram

See also Chapter 5.3.1 for more information and see also the Continuous
Function Chart Editor.

2.2.5 The Continuous Function Chart Editor (CFC)

The continuous function chart editor does not operate like the function block
diagram FBD with networks, but rather with freely placeable elements. This
allows feedback, for example.

An example of a network in the continuous function chart editor, as it would
typically appear in 907 AC 1131:

Image 2.11: A network in the continuous function chart editor

See also Chapter 5.3.4 for more information.

2.2.6 Ladder Diagram (LD)

The Ladder Diagram is also a graphics oriented programming language which
approaches the structure of an electric circuit.

On the one hand, the Ladder Diagram is suitable for constructing logical
switches, on the other hand one can also create networks as in FBD. Therefore
the LD is very useful for controlling the call of other POUs.

The Ladder Diagram consists of a series of networks. A network is limited on
the left and right sides by a left and right vertical current line. In the middle is a
circuit diagram made up of contacts, coils, and connecting lines.

Each network consists on the left side of a series of contacts which pass on
from left to right the condition "ON" or "OFF" which correspond to the Boolean
values TRUE and FALSE. To each contact belongs a Boolean variable. If this
variable is TRUE, then the condition is passed from left to right along the
connecting line. Otherwise the right connection receives the value OFF.

2-27907 AC 1131/Stand: 03.99 We write a little Program 10

Example of a typical network in the Ladder Diagram as it could appear in
907 AC 1131 :

Image 2.12: Network in a Ladder Diagram made up of Contacts and Coils

Contact

Each network in LD consists on the left side of a network of contacts (contacts
are represented by two parallel lines: | |) which from left to right show the
condition "On" or "Off".

These conditions correspond to the Boolean values TRUE and FALSE. A
Boolean variable belongs to each contact. If this variable is TRUE, then the
condition is passed on by the connecting line from left to right, otherwise the
right connection receives the value "Out".

Contacts can be connected in parallel, then one of the parallel branches must
transmit the value "On" so that the parallel branch transmits the value "On"; or
the contacts are connected in series, then contacts must transmit the condition
"On" so that the last contact transmits the "On" condition. This therefore
corresponds to an electric parallel or series circuit.

A contact can also be negated, recognizable by the slash in the contact symbol:
|/|. Then the value of the line is transmitted if the variable is FALSE.

Coil

On the right side of a network in LD there can be any number of so-called coils
which are represented by parentheses:(). They can only be in parallel. A coil
transmits the value of the connections from left to right and copies it in an
appropriate Boolean variable. At the entry line the value ON (corresponds to the
Boolean variable TRUE) or the value OFF (corresponding to FALSE) can be
present.

Contacts and coils can also be negated (in the example the contact SWITCH1
and the coil %QX3.0 is negated). If a coil is negated (recognizable by the slash
in the coil symbol: (/)), then it copies the negated value in the appropriate
Boolean variable. If a contact is negated, then it connects through only if the
appropriate Boolean value is FALSE.

2-28 907 AC 1131/Stand: 02/03We write a little Program10

Function blocks in the Ladder
Diagram

Along with contacts and coils you can also enter function blocks and programs
In the network they must have an input and an output with Boolean values and
can be used at the same places as contacts, that is on the left side of the LD
network

Set/Reset coils

Coils can also be defined as set or reset coils. One can recognize a set coil by
the "S" in the coil symbol: (S)) It never writes over the value TRUE in the
appropriate Boolean variable. That is, if the variable was once set at TRUE,
then it remains so.

One can recognize a reset coil by the "R" in the coil symbol: (R)) It never writes
over the value FALSE in the appropriate Boolean variable: If the variable has
been once set on FALSE, then it remains so.

LD as FBD

When working with LD it is very possible that you will want to use the result of
the contact switch for controlling other POUs. On the one hand you can use the
coils to put the result in a global variable which can then be used in another
place. You can, however, also insert the possible call directly into your LD
network. For this you introduce a POU with EN input.

Such POUs are completely normal operands, functions, programs, or function
blocks which have an additional input which is labeled with EN. The EN input is
always of the BOOL type and its meaning is: The POU with EN input is
evaluated when EN has the value TRUE.

An EN POU is wired parallel to the coils, whereby the EN input is connected to
the connecting line between the contacts and the coils. If the ON information is
transmitted through this line, this POU will be evaluated completely normally.

Starting from such an EN POU, you can create networks similar to FBD.

Image 2.13: Part of a LD Network with an EN POU

2-29907 AC 1131/Stand: 03.99 We write a little Program 10

2.3 Debugging, Online Functions

 Sampling Trace

The Sampling Trace allows you to trace the value sequence of variables,
depending upon the so-called trigger event. This is the rising edge or falling
edge of a previously defined Boolean variable (trigger variable). 907 AC 1131
permits the tracing of up to 20 variables. 500 values can be traced for each
variable.

Debugging

The debugging functions of 907 AC 1131 make it easier for you to find errors.

In order to debug, run the command 'Project' 'Options' and in the dialog box
that pops up under Build options select activate option Debugging.

Breakpoint

A breakpoint is a place in the program at which the processing is stopped. Thus
it is possible to look at the values of variables at specific places within the
program.

Breakpoints can be set in all editors. In the text editors breakpoints are set at
line numbers, in FBD and LD at network numbers, in CFC at POUs and in SFC
at steps. No breakpoints can be set in function block instances.

Single step

Single step means:

• In IL: Execute the program until the next CAL, LD or JMP command.
• In ST: Execute the next instruction.
• In FBD, LD: Execute the next network.
• In SFC: Continue the action until the next step.

By proceeding step by step you can check the logical correctness of your
program.

Single Cycle

If Single cycle has been chosen, then the execution is stopped after each cycle.

Change values online

During operations variables can be set once at a certain value (write value) or
also described again with a certain value after each cycle (force value). In
online mode one also can change the variable value by double click on the
value. By that boolean variables change from TRUE to FALSE or the other way
round, for each other types of variables one gets the dialog Write Variable xy,
where the actual value of the variable can be edited.

Monitoring

In Online mode, all displayable variables are read from the controller and
displayed in real time. You will find this display in the declarations and program

2-30 907 AC 1131/Stand: 02/03We write a little Program10

editor; you can also read out current values of variables in the watch and receipt
manager and in a visualization. If variables from instances of function blocks are
to be monitored, the corresponding instance must first be opened (see in this
connection Chapter 4.4: Create Objects).

In monitoring VAR_IN_OUT variables, the de-referenced value is output.

In monitoring pointers, both the pointer and the de-referenced value are output
in the declaration portion. In the program portion, only the pointer is output:

+ --pointervar = ‘<‘pointervalue‘>‘

POINTERs in the de-referenced value are also displayed accordingly. With a
simple click on the cross or a double-click on the line, the display is either
expanded or truncated.

Image 2.14: Example for Monitoring of Pointers

In the implementations, the value of the pointer is displayed. For de-referencing,
however, the de-referenced value is displayed.

Monitoring of ARRAY components: In addition to array components indexed by
a constant, components are also displayed which are indexed by a variable:

anarray[1] = 5
anarray[i] = 1

2-31907 AC 1131/Stand: 03.99 We write a little Program 10

If the index consists of an expression (e.g. [i+j] or [i+1]), the component can not
be displayed.

Simulation

During the simulation the created PLC program is not processed in the PLC, but
rather in the calculator on which 907 AC 1131 is running. All online functions
are available. That allows you to test the logical correctness of your program
without PLC hardware.

Log

The log chronologically records user actions, internal processes, state changes
and exceptions during Online mode processing. It is used for monitoring and for
error tracing (see Chapter 4.6, Online Functions).

2.4 The Standard

The standard IEC 61131-3 is an international standard for programming
languages of Programmable Logic Controllers.

The programming languages offered in 907 AC 1131 conform to the
requirements of the standard.

According to this standard, a program consists of the following elements:

• Structures (see Appendix B: Data Types)
• POUs
• Global Variables

The processing of a 907 AC 1131 program starts with the special POU
PLC_PRG. The POU PLC_PRG can call other POUs.

2-32 907 AC 1131/Stand: 02/03We write a little Program10

3-1907 AC 1131/Stand: 03.99 We write a little Program 10

3 We write a little Program

3.1 Controlling a Traffic Signal Unit

Let us now start to write a small example program. It is for a simple traffic signal
unit which is supposed to control two traffic signals at an intersection. The
red/green phases of both traffic signals alternate and, in order to avoid
accidents, we will insert yellow or yellow/red transitional phases. The latter will
be longer than the former. We further imagine the use of a Profibus system and
will do the corresponding configuration.

In this example you will see how time dependent programs can be shown with
the language resources of the IEC1131-3 standard, how one can edit the
different languages of the standard with the help of 907 AC 1131 , and how one
can easily connect them while becoming familiar with the simulation of
907 AC 1131 .

Create POU

Starting always is easy: Start 907 AC 1131 and choose 'File' 'New'.

In the dialog box which appears, the first POU has already been given the
default name PLC_PRG. Keep this name, and the type of POU should definitely
be a program. Each project needs a program with this name. In this case we
choose as the language of this POU the Continuous Function Chart Editor
(CFC)

Now create three more objects with the command 'Project' 'Object Add' with
the menu bar or with the context menu (press right mouse button in the Object
Organizer). A program in the language Sequential Function Chart (SFC named
SEQUENCE, a function block in the language Function Block Diagram (FBD)
named TRAFFICSIGNAL, along with a POU WAIT, also of the type function
block, which we want to program as an Instruction List (IL.

What does TRAFFICSIGNAL
do?

In the POU TRAFFICSIGNAL we will assign the individual trafficsignal phases
to the lights, i.e. we will make sure that the red light is lit red in the red phase
and in the yellow/red phase, the yellow light in the yellow and yellow/red
phases, etc.

What does WAIT do?

In WAIT we will program a simple timer which as input will receive the length of
the phase in milliseconds, and as output will produce TRUE as soon as the time
period is finished.

What does SEQUENCE do?

In SEQUENCE all is combined so that the right light lights up at the right time
for the desired time period.

3-2 907 AC 1131/Stand: 02/03We write a little Program10

What does PLC_PRG do?

In PLC_PRG the input start signal is connected to the traffic lights' sequence
and the "color instructions" for each lamp are provided as outputs.

"TRAFFICSIGNAL" declaration

Let us now turn to the POU TRAFFICSIGNAL. In the declaration editor you
declare as input variable (between the keywords VAR_INPUT and END_VAR) a
variable named STATUS of the type INT. STATUS will have four possible
conditions, that is one for the TRAFFICSIGNAL phases green, yellow,
yellow/red andred.

Correspondingly our TRAFFICSIGNAL has three outputs, that is RED,
YELLOW and GREEN. You should declare these three variables. Then the
declaration part of our function block TRAFFICSIGNAL will look like this:

Image 3.1: Function block TRAFFICSIGNAL, declaration part

"TRAFFICSIGNAL" body

Now we determine the values of the output variables depending on the input
STATUS of the POU. To do this go into the body of the POU. Click on the field
to the left beside the first network (the gray field with the number 1). You have
now selected the first network. Choose the menu item 'Insert' 'Box'.

In the first network a box is inserted with the operator AND and two inputs:

Click on the text AND so that it appears selected and change the text into EQ.
Select then for each of the two inputs the three question marks and overwrite
them with "STATUS" respectively "1":

3-3907 AC 1131/Stand: 03.99 We write a little Program 10

Click now on a place behind the EQ Box. Now the output of the EQ operation is
selected. Choose 'Insert' 'Assign'. Change the three question marks ??? to
GREEN. You now have created a network with the following structure:

STATUS is compared with 1, the result is assigned to GREEN. This network
thus switches to GREEN if the preset state value is 1.

For the other TRAFFICSIGNAL colors we need two more networks. To create
the first one execute command 'Insert' 'Network (after)' and insert an EQ-Box
like described above. Then select the output pin of this box and use again
command 'Insert' 'Box'. In the new box replace "AND" by "OR". Now select the
first output pin of the OR-box and use command 'Insert' 'Assign' to assign it to
"GELB". Select the second input of the OR-box by a mouse-click on the
horizontal line next to the three question marks, so that it appears marked by a
dotted rectangle. Now use 'Insert' 'Box' to add a further EQ-box like described
above. Finally the network should look like shown in the following:

Image 3.2: Function block TRAFFICSIGNAL, instruction part

3-4 907 AC 1131/Stand: 02/03We write a little Program10

In order to insert an operator in front of another operator, you must select the
place where the input to which you want to attach the operator feeds into the
box.

Then use the command 'Insert' 'Box'. Otherwise you can set up these
networks in the same way as the first network.

Now our first POU has been finished. TRAFFICSIGNAL, according to the input
of the value STATUS, controls whichever light color we wish.

Connecting the
IEC_S90_V41.LIB

For the timer in the POU WAIT we need a POU from the standard library.
Therefore, open the library manager with 'Window' 'Library Manager. Choose
'Insert' 'Additional library'. The dialog box appears for opening files. From the
list of the libraries choose IEC_S90_V41.LIB.

"WAIT" declaration

Now let us turn to the POU WAIT. This POU is supposed to become a timer
with which we can determine the length of the time period of each
TRAFFICSIGNAL phase. Our POU receives as input variable a variable TIME
of the type TIME, and as output it produces a Boolean value which we want to
call OK and which should be TRUE when the desired time period is finished.
We set this value with FALSE by inserting at the end of the declaration (before
the semicolon, however) " := FALSE ".

For our purposes we need the POU TP, a clock generator. This has two inputs
(IN, PT) and two outputs (Q, ET). TP does the following:

As long as IN is FALSE, ET is 0 and Q is FALSE. As soon as IN provides the
value TRUE, the time is calculated at the output ET in milliseconds. When ET
reaches the value PT, then ET is no longer counted. Meanwhile Q produces
TRUE as long as ET is smaller than PT. As soon as the value PT has been
reached, then Q produces FALSE again. In addition you will find a short
description of all POUs from the standard library in the appendix.

In order to use the POU TP in the POU WAIT we must create a local instance
from TP. For this we declare a local variable ZAB (for elapsed time) of the type
TP (between the keywords VAR, END_VAR).

The declaration part of WAIT thus looks like this:

3-5907 AC 1131/Stand: 03.99 We write a little Program 10

Image 3.3: Function Block WAIT, Declaration Part

"WAIT" body

In order to create the desired timer, the body of the POU must be programmed
as follows:

Image 3.4: Function Block WAIT, Instruction Part

At first it is checked whether Q has already been set at TRUE (as though the
counting had already been executed), in this case we change nothing with the
occupation of ZAB, but we call the function block ZAB without input (in order to
check whether the time period is already over).

Otherwise we set the variable IN in ZAB at FALSE, and therefore at the same
time ET at 0 and Q at FALSE. In this way all variables are set at the desired
initial condition. Now we assign the necessary time from the variable TIME into
the variable PT, and call ZAB with IN:=TRUE. In the function block ZAB the
variable ET is now calculated until it reaches the value TIME, then Q is set at
FALSE.

The negated value of Q is saved in OK after each execution of WAIT. As soon
as Q is FALSE, then OK produces TRUE.

3-6 907 AC 1131/Stand: 02/03We write a little Program10

The timer is finished at this point. Now it is time to combine our two function
blocks WAIT and TRAFFICSIGNAL in the main program PLC_PRG.

"SEQUENCE" first expansion
level

First we declare the variables we need. They are: an input variable START of
the type BOOL, two output variables TRAFFICSIGNAL1 and
TRAFFICSIGNAL2 of the type INT and one of the type WAIT (DELAY as delay).
The program SEQUENCE now looks like shown here:

Image 3.5: Program Sequence, First Expansion Level, Declaration Part

Create a SFC diagram

The beginning diagram of a POU in SFC always consists of an action "Init" of a
following transition "Trans0" and a jump back to Init. We have to expand that.

Before we program the individual action and transitions let us first determine the
structure of the diagrams. We need one step for each TRAFFICSIGNAL phase.
Insert it by marking Trans0 and choosing 'Insert' 'Step transition (after)'.
Repeat this procedure three more times.

If you click directly on the name of a transition or a step, then this is marked and
you can change it. Name the first transition after Init "START", and all other
transitions "DELAY.OK".

The first transition switches through when START is TRUE and all others switch
through when DELAY in OK produces TRUE, i.e. when the set time period is
finished.

3-7907 AC 1131/Stand: 03.99 We write a little Program 10

The steps (from top to bottom) receive the names Switch1, Green2, Switch2,
Green1, whereby Init of course keeps its Name. "Switch" should include a
yellow phase, at Green1 TRAFFICSIGNAL1 will be green, at Green2
TRAFFICSIGNAL2 will be green. Finally change the return address of Init after
Switch1. If you have done everything right, then the diagram should look like in
the following image:

Image 3.6: Program SEQUENCE, First Expansion Level, Instruction Part

Now we have to finish the programming of the individual steps. If you
doubleclick on the field of a step, then you get a dialog for opening a new
action. In our case we will use IL (Instruction List).

3-8 907 AC 1131/Stand: 02/03We write a little Program10

Actions and transition
conditions

In the action of the step Init the variables are initialized, the STATUS of
TRAFFICSIGNAL1 should be 1 (green). The state of TRAFFICSIGNAL2 should
be 3 (red). The action Init then looks like in the following image:

Image 3.7: Action Init

Switch1 changes the sate of TRAFFICSIGNAL1 to 2 (yellow), and that of
TRAFFICSIGNAL2 to 4 (yellow-red). In addition, a time delay of 2000
milliseconds is set. The action is now as follows:

Image 3.8: Action Switch1

With Green2 TRAFFICSIGNAL1 is red (STATUS:=3), TRAFFICSIGNAL2 green
(STATUS:=1), and the delay time is 5000 milliseconds.

Image 3.9: Action Green2

At Switch2 the STATUS of TRAFFICSIGNAL1 changes to 4 (yellow-red), that
of TRAFFICSIGNAL2 to 2 (yellow). A time delay of 2000 milliseconds is now
set.

Image 3.10: Action Switch2

3-9907 AC 1131/Stand: 03.99 We write a little Program 10

With Green1 TRAFFICSIGNAL1 is green (STATUS:=1), TRAFFICSIGNAL2 is
red (STATUS:=3), and the time delay is set to5000 milliseconds.

Image 3.11: Action Green1

The first expansion phase of our program is completed.. Now you can test the
POU ABLAUF in simulation mode. Compile the project: 'Project' 'Build'. In the
message window you should get "0 Errors, 0 Warnings". Now check if option
'Online' 'Simulation' is activated and use command 'Online' 'Login' to get into
simulation mode. Start the program with 'Online' 'Start'. Open POU ABLAUF
by a double-click on "ABLAUF" in the Object Organizer. The program is started
now, but to get it run, variable START must be TRUE. Later this will be set by
PLC_PRG but at the moment we have to set it manually within the POU. To do
that, perform a double-click on the line in the declaration part, where START is
defined (START=FALSE). This will set the option "<:=TRUE>" behind the
variable in turquoise color. Now select command 'Online' 'Write values' to set
this value. Thereupon START will be displayed in blue color in the sequence
diagram and the processing of the steps will be indicated by a blue mark of the
currently active step.

When you have finished this intermediate test use command 'Online' 'Logout'
to leave the simulation mode and to continue programming.

"SEQUENCE" second
expansion level

In order to ensure that our diagram has at least one alternative branch, and so
that we can turn off our traffic light unit at night, we now include in our program
a counter which, after a certain number of TRAFFICSIGNAL cycles, turns the
unit off.

At first we need a new variable COUNTER of the type INT. Declare this as
usual in the declaration part of PLC_PRG, and initialize it in Init with 0.

Image 3.12: Action Init, Second Version

3-10 907 AC 1131/Stand: 02/03We write a little Program10

Now select the transition after Switch1 and insert a step and then a transition.
Select the resulting transition and insert an alternative branch to its left. After
the left transition insert a step and a transition. After the resulting new transition
insert a jump after Switch1.

Name the new parts as follows: the upper of the two new steps should be called
"Count" and the lower "Off". The transitions are called (from top to bottom and
from left to right) EXIT, TRUE and DELAY.OK. The new part should look like
the part marked with the black border in the following image:

Image 3.13: Program SEQUENCE, Second Expansion Level, Instruction Part

Now two new actions and a new transition condition are to be implemented. At
the step Count the variable COUNTER is increased by one:

Image 3.14: Action Count

The EXIT transition checks whether the counter is greater than a certain value,
for example 7:

3-11907 AC 1131/Stand: 03.99 We write a little Program 10

Image 3.15: Transition EXIT

At Off the state of both lights is set at 5(OFF), (or each other number not equal
1,2,3 or 4) the COUNTER is reset to 0, and a time delay of 10 seconds is set:

Image 3.16: Action Off

The result

In our hypothetical situation, night falls after seven TRAFFICSIGNAL cycles, for
ten seconds the TRAFFICSIGNAL turns itself off, then we have daylight again,
the traffic light unit turns itself on again, and the whole process starts again from
the beginning. If you like, do another test of the current version of your program
in simulation mode before we go on to create the POU PLC_PRG.

PLC_PRG

We have defined and correlated the time sequencing of the phases for both
sets of traffic lights in the block SEQUENCE. Since, however, we see the traffic
lights system as a PROFIBUS-DP system, it is necessary for us to make input
and output variables available in the block PLC_PRG. We want to start-up the
traffic lights system over an ON switch (DP slave) and we want to send each of
the six (each traffic light red, green, yellow) lamps (DP slave) the corresponding
”signal command” for each step of the SEQUENCE. We are now declaring
appropriate Boolean variables for these six outputs and one input in the central
proecessing unit (DP master), before we create the program in the editor, and
are allocating them, at the same time, to the corresponding IEC addresses.

The next step is declare the variables Light1 and Light2 of the type Phases in
the declaration editor.

Image 3.17: Declaration LIGHT1 and LIGHT2

3-12 907 AC 1131/Stand: 02/03We write a little Program10

These deliver the Boolean value of each of the six lights to the above
mentioned six outputs for each step of the block SEQUENCE. We are not,
however, declaring the output variables which are foreseen within the
PLC_PRG block but under Resources for Global Variables instead. The
Boolean input variable IN, which is used to set the variable START in the block
SEQUENCE to TRUE, can be set in the same way. ON is also allocated to an
IEC address.

Select the 'Resources' tab and open the list 'Global Variables'.

Make the declaration as follows:

Image 3.18: Declaration of the Input-/Output Variables for a PROFIBUS-Configuration

The name of the variable (e.g. IN) is followed, after AT, by a percent sign which
begins the IEC address. I stands for input, Q for output, X for bit and the
subsequent '1' in this case references the slot for the PROFIBUS coupler and
the last digit indicates the byte offset. We will not be handling the controller
configuration in this example, because it depends on the available configuration
files. Concerning this please see Chapter 6.6, PLC Configuration)

We now want to finish off the block PLC_PRG.

For this we go into the editor window. We have selected the Continuous
Function Chart editor and we consequently obtain, under the menu bar, a CFC
symbol bar with all of the available elements (see Chapter 5.3.4, The
Continuous Function Chart Editor).

Click on the right mouse key in the editor window and select the element Box.
Click on the text AND and write ”SEQUENCE” instead. This brings up the block
SEQUENCE with all of the already defined input and output variables. Insert
two further block elements which you name PHASES. Phases is a function
block and this causes you to obtain three red question marks over the block
which you replace with the already locally declared variables LIGHT1 and
LIGHT2. Now set an element of the type Input, which award the title ON and six
elements of the type Output which you award variable names to, as described,
namely L1_green, L1_yellow, L1_red, L2_green, L2_yellow, L2_red.

All of the elements of the program are now in place and you can connect the
inputs and outputs, by clicking on the short line at the input/output of an element
and dragging this with a constantly depressed mouse key to the input/output of
the desired element.

3-13907 AC 1131/Stand: 03.99 We write a little Program 10

Your program should finally look like the example shown here.

Image 3.19: PLC_PRG, Declaration and presentation with the continuous function
chart editor

TRAFFICSIGNAL simulation

Now test your program in simulation mode. Compile ('Project' 'Build') and load
('Online' 'Login') it. Start the program by 'Online' 'Start', then set variable ON
to TRUE, e.g. by a double-click on the entry "ON" in the input box of the CFC
editor. This will mark the variable as prepared to be set to <TRUE>. Then press
<Strg><F7> or command 'Online' 'Write values', to set the value. Now variable
START in ABLAUF (which we had set to TRUE manually in the first extension
level of the program) gets this value by variable ON, which is used in
PLC_PRG. This will make run the traffic light cycles. PLC_PRG has changed to
a monitoring window. Click twice on the plus sign in the declaration editor, the
variable display drops down, and you can see the values of the individual
variables.

3.2 Visualizing a Traffic Signal Unit

With the visualization of 907 AC 1131 you can quickly and easily bring project
variables to life. You find an complete description of the visualization in chapter
8. We will now plot two traffic signals and an ON-Switch for our traffic light unit
which will illustrate the switching process.

Creating a new visualization

In order to create a visualization you must first select the range of Visualization
in the Object Organizer. First click on the lower edge of the window on the left
side with the POU on the register card with this symbol and the name
Visualization. If you now choose the command 'Project' 'Object Add', then a
dialog box opens.

3-14 907 AC 1131/Stand: 02/03We write a little Program10

Image 3.20: Dialog Box for Opening a New Visualization

Enter here any name. When you confirm the dialog with OK, then a window
opens in which you can set up your new visualization.

Insert element in Visualization

For our TRAFFICSIGNAL visualization you should proceed as follows:

• Give the command 'Insert' 'Ellipse' and try to draw a medium sized circle
(∅2cm). For this click in the editor field and draw with pressed left mouse
button the circle in its length.

• Now doubleclick the circle. The dialog box for editing visualization elements
opens

• Choose the category 'Variables' and in the field 'Change color' enter the
variable name ".L1_red" or "L1_red". That means that the global variable
L1_red will cause the color change as soon as it is set to TRUE. The dot
before the variable name indicates that it is a global variable, but it is not
mandatory.

Image 3.21: Visualization Dialog Box Variables

• Then choose the category Color and click on the button Inside in the area
Color. Choose as neutral a color as possible, such as black.

• Now click on the button within in the area Alarm color and choose the red
which comes closest to that of a red light.

3-15907 AC 1131/Stand: 03.99 We write a little Program 10

Image 3.22: Visualization Configuration Dialog Box (Color category)

The resulting circle will normally be black, and when the variable RED from
TRAFFICSIGNAL1 is TRUE, then its color will change to red. We have
therefore created the first light of the first TRAFFICSIGNAL!

The other traffic lights

Now enter the commands 'Edit' 'Copy' (<Ctrl>+<C>) and then twice 'Edit' 'Paste'
(<Ctrl>+<V>). That gives you two more circles of the exact same size lying on
top of the first one. You can move the circles by clicking on the circle and
dragging it with pressed left mouse button. The desired position should, in our
case, be in a vertical row in the left half of the editor window. Doubleclick on one
of the other two circles in order to open the configuration dialog box again.
Enter in the field Change Color of the corresponding circle the following
variables:

for the middle circle: L1_yellow
for the lowest circle: L1-green

Now choose for the circles in the category Color and in the area Alarm color
the corresponding color (yellow or green).

The TRAFFICSIGNAL case

Now enter the command 'Insert' 'Rectangle', and insert in the same way as the
circle a rectangle which encloses the three circles. Once again choose as
neutral a color as possible for the rectangle and give the command 'Extras'
'Send to back' so that the circles are visible again.

If simulation mode1 is not yet turned on, you can activate it with the command
'Online' 'Simulation'. If you now start the simulation with the commands
'Online' 'Login' and 'Online' 'Run', then you can observe the color change of
the first traffic signal.

1 The simulation mode is active if a check mark (�) appears in front of the menu item
"Simulation" in the 'Online' menu..

3-16 907 AC 1131/Stand: 02/03We write a little Program10

The second traffic signal

The simplest way to create the second traffic signal is to copy all of the
elements of the first traffic signal. For this you select all elements of the first
traffic signal and copy them (as before with the lights of the first traffic signal)
with the commands 'Edit' 'Copy' and 'Edit' 'Paste'. You then only have to
change the text "TRAFFICSIGNAL1" in the respective dialog boxes into
"TRAFFICSIGNAL2", and the visualization of the second traffic signal is
completed.

The ON switch

Insert a rectangle and award it, as described above, a colour for a traffic light of
your choice and enter .ON at Variables for the Change color. Enter ”ON” in the
input field for Content in the category Text.

Image 3.23: Dialog to configure the visualization elements (Category Text)

In order to set the variable ON to TRUE with a mouse click on the switch,
activate option 'Toggle variable' in category 'Input' and enter variable name
".ON" there. 'Tip Variable' means that when a mouse click is made on the
visualization element the variable .ON is set to the value TRUE but is reset to
the value FALSE as soon as the mousekey is released again (we have created
hereby a simple switch-on device for our traffic lights program).

3-17907 AC 1131/Stand: 03.99 We write a little Program 10

Image 3.24: Dialog to configure the visualization elements (Category Input)

Font in the visualization

In order to complete the visualization you should first insert two more rectangles
which you place underneath the traffic signals.

In the visualizations dialog box set white in the category Color for Frame and
write in the category Text in the field Contents "Light1" or "Light2". Now your
visualization looks like this:

Image 3.25: Visualization for the Sample Project Trafficsignal

3-18 907 AC 1131/Stand: 02/03We write a little Program10

4-1907 AC 1131/Stand: 03.99 The Individual Components 10

4 The Individual Components

4.1 The Main Window

Image 4.1: The Main Window

The following elements are found in the main window of 907 AC 1131 (from top
to bottom):

• The menu bar
• The Tool bar (optional); with buttons for faster selection of menu

commands.
• The Object Organizer with register cards for POUs, Data types,

Visualizations, and Resources
• A vertical screen divider between the Object Organizer and the Work

space of 907 AC 1131
• The Work space in which the editor windows are located
• The message window (optional)
• The Status bar (optional); with information about the current status of the

project

Menu bar

The menu bar is located at the upper edge of the main window. It contains all
menu commands.

Image 4.2: Menu Bar

4-2 907 AC 1131/Stand: 02/03The Individual Components10

Tool bar

By clicking with the mouse on a symbol you can select a menu command more
quickly. The choice of the available symbols automatically adapts itself to the
active window.

The command is only carried out when the mouse button is pressed on the
symbol and then released.

If you hold the mouse pointer for a short time on a symbol in the tool bar, then
the name of the symbol is shown in a Tooltip.

In order to see a description of each symbol on the tool bar, select in Help the
editor about which you want information and click on the tool bar symbol in
which you are interested.

The display of the tool bar is optional (see Chapter 4.2, 'Project' 'Options'
category Desktop).

Image 4.3: Tool bar with symbols

Object Organizer

The Object Organizer is always located on the left side of 907 AC 1131. At the
bottom there are four register cards with symbols for the four types of objects
POUs, Data types, Visualizations and Resources. In order to
change between the respective object types click with the mouse on the
corresponding register card or use the left or right arrow key.

You will learn in chapter Managing Objects how to work with the objects in the
Object Organizer.

Image 4.4: Object Organizer

Screen divider

The screen divider is the border between two non-overlapping windows. In
907 AC 1131 there are screen dividers between the Object Organizer and the
Work space of the main window, between the interface (declaration part) and

4-3907 AC 1131/Stand: 03.99 The Individual Components 10

the implementation (instruction part) of POUs and between the Work space and
the message window.

You can move the screen divider with the mouse pointer. You do this by moving
the mouse with the left mouse button pressed.

Make sure the screen divider always remains at its absolute position, even
when the window size has been changed. If it seems that the screen divider is
no longer present, then simply enlarge your window.

Work space

The Work space is located on the right side of the main window in
907 AC 1131. All editors for objects and the library manager are opened in this
area. The current object name appears in the title bar; in the case of POUs an
abbreviation for the POU type and the programming language currently in use
appears in brackets after it.

You find the description of the editors in Chapter 5. '

Under the menu item 'Window' you find all commands for window
management.

Message window

The message window is separated by a screen divider underneath the work
space in the main window.

It contains all messages from the previous compilations, checks or
comparisons. Search results and the cross-reference list can also be output
here.

If you doubleclick with the mouse in the message window on a message or
press <Enter>, the editor opens with the object. The relevant line of the object is
selected. With the commands 'Edit' 'Next error' and 'Edit' 'Previous error' you
can can quickly jump between the error messages.

The display of the message window is optional (see 'Window' 'Messages').

Status bar

The status bar at the bottom of the window frame of the main window in
907 AC 1131 gives you information about the current project and about menu
commands.

If an item is relevant, then the concept appears on the right side of the status
bar in black script, otherwise in gray script.

When you are working in online mode, the concept Online appears in black
script. If you are working in the offline mode it appears in gray script.

In Online mode you can see from the status bar whether you are in the
simulation (SIM), the program is being processed (RUNS), a breakpoint is set
(BP), or variables are being forced (FORCE). In Online Mode the string REORG

4-4 907 AC 1131/Stand: 02/03The Individual Components10

is displayed black-colored as long as Online Change is active and the string
FLASH is black as long as flashing is active. (The two numbers displayed in the
field before REORG show the length of the monitoring- /status request in
number of bytes and number of variables.)

With text editor the line and column number of the current cursor position is
indicated (e.g. Line:5, Col.:11). In online mode 'OV' is indicated black in the
status bar. Pressing the <Ins> key switches between Overwrite and Insert
mode.

If the mouse point is in a visualization, the current X and Y position of the
cursor in pixels relative to the upper left corner of the screen is given. If the
mouse pointer is on an Element, or if an element is being processed, then its
number is indicated. If you have an element to insert, then it also appears (e.g.
Rectangle).

If you have chosen a menu command but haven't yet confirmed it, then a short
description appears in the status bar.

The display of the statusbar is optional (see Chapter 4.2, 'Project' 'Options'
category Desktop).

Context Menu

Shortcut: <Shift>+<F10>

Instead of using the menu bar for executing a command, you can use the right
mouse button. The menu which then appears contains the most frequently used
commands for a selected object or for the active editor. The choice of the
available commands adapts itself automatically to the active window. The
choice of the available commands adapts itself automatically to the active
window.

4.2 Options

About 907 AC 1131 there can be of course only one viewpoint. In 907 AC 1131,
however, you can configure the view of the main window (and have more than
one viewpoint). In addition you can make other settings. For this you have the
command 'Project' 'Options' at your disposal. The settings you make thereby
are, unless determined otherwise, saved in the file "907 AC 1131.ini" and
restored at the next 907 AC 1131 startup.

'Project' 'Options'

With this command the dialog box for setting options is opened. The options are
divided into different categories. Choose the desired category on the left side of
the dialog box by means of a mouse click or using the arrow keys and change
the options on the right side.

You have at your disposal the following categories:

• Load & Save

4-5907 AC 1131/Stand: 03.99 The Individual Components 10

• User information
• Editor
• Desktop
• Color
• Directories
• Log
• Build
• Passwords
• Sourcedownload
• Symbol configuration
• Project Source Control
• Macros

Load & Save

If you choose this category in the Options dialog box, you will get the following
dialog box:

Image 4.5: Option dialog box of the category Load & Save

When activating an option, a check (�) appears before the option.

Create Backup: 907 AC 1131 creates a backup file at every save with the
extension ".bak". Contrary to the *.asd-file (see below, 'Auto Save') this *.bak-
file is kept after closing the project. So you can restore the version you had
before the last project save.

Auto Save : While you are working your project is consecutively saved to a
temporary file with the extension ".asd" according to a set time interval (Auto
Save Interval). This file is erased at a normal exit from the program. If for any
reason 907 AC 1131 is not shut down "normally" (e.g. due to a power failure),
then the file will not be erased. When you open the file again the following
message appears:

4-6 907 AC 1131/Stand: 02/03The Individual Components10

Image 4.6: There is an auto save backup.

You can now decide whether you want to open the original file or the auto save
file.

Ask for project info: When saving a new project or saving a project under a
new name, the project info is automatically called. You can visualize the project
info with the command 'Project' 'Project info' and also process it.

Auto Load: At the next start of 907 AC 1131 the last open project is
automatically loaded. The loading of a project at the start of 907 AC 1131 can
also take place by entering the project in the command line.

Save before compile: The project will be saved before each compilation. In
doing so a file with the extension ".asd" will be created, which behaves like
described above for the option 'Auto Save'.

Remind of boot project on exit: If the project has been modified and
downloaded without creating a new boot project since the last download of a
boot project, then a dialog will advise the user before leaving the project: "No
boot project created since last download. Exit anyway ?".

Save ENI credentials: User name and Password, as they might be inserted in
the Login dialog for the ENI data base, will be saved with the project.

User information

If you choose this category in the Options dialog box, then you get the dialog
box shown in the image below.

To User information belong the Name of the user, his Initials and the
Company for which he works. Each of the entries can be modified. The settings
will automatically be applied to any new projects which will be created in
907 AC 1131 on the local computer.

4-7907 AC 1131/Stand: 03.99 The Individual Components 10

Image 4.7: Options dialog box of the category User information

Editor

If you choose this category in the Options dialog box, then you get the following
dialog box:

Image 4.8: Options dialog box of the category Editor

When activating an option, a check (�) appears before the option.

You can make the following settings for the Editors:

Autodeclaration: If this option is activted, then after the input of a not-yet-
declared variable a dialog box will appear in all editors with which this variable
can be declared.

Autoformat: If this option is activated, then 907 AC 1131 will execute automatic
formatting in the IL editor and in the declaration editor. When you finish with a
line, the following formatting is made:

4-8 907 AC 1131/Stand: 02/03The Individual Components10

• Operators written in small letters are shown in capitals;
• Tabs are inserted to that the columns are uniformly divided.
List components: If this option is activated, then the Intellisense functionality
will be available to work as an input assistant. This means that if you insert a
dot at a position where a identifier should be inserted, then a selection list will
open, offering all global variables which are found in the project. If you insert the
name of a function block instance, then you will get a selection list of all inputs
and outputs of the instanced function block. The Intellisense function is
available in editors, in the Watch- and Receiptmanager, in visualizations and in
the Sampling Trace.

Declarations as tables: If this option is activated, then you can edit variables in
a table instead of using the usual declaration editor. This table is sorted like a
card box, where you find tabs for input variables, output variables local
variables and in_out variables. For each variable there are edit fields to insert
Name, Address, Type, Initial and Commment.

Tab-Width: In the field Tab-Width in the category Editor of the Options dialog
box you can determine the width of a tab as shown in the editors. The default
setting is four characters, whereby the character width depends upon the font
which is chosen.

Font: By clicking on the button Font in the category Editor of the Options
dialog box you can choose the font in all 907 AC 1131 editors. The font size is
the basic unit for all drawing operations. The choice of a larger font size thus
enlarges the printout, even with each editor of 907 AC 1131. After you have
entered the command, the font dialog box opens for choosing the font, style and
font size.

Image 4.9: Dialog box for setting the font

Mark: When choosing Mark in the Editor category in the Options dialog box
you can choose whether the current selection in your graphic editors should be
represented by a dotted rectangle (Dotted), a rectangle with continuous lines

4-9907 AC 1131/Stand: 03.99 The Individual Components 10

(Line) or by a filled-in rectangle (Filled). In the last case the selection is shown
inverted.

Bitvalues: When choosing Bitvalues in the category Editor of the Options
dialog box you can choose whether binary data (type BYTE, WORD, DWORD)
during monitoring should be shown Decimal, Hexadecimal, or Binary.

Suppress monitoring of complex types (array, ointer, VAR_IN_OUT): If this
option is activated, then complex data types like arrays, pointers or
VAR_IN_OUTs will not be displayed in the monitoring window in online mode.

Show POU symbols: If this option is activated, then symbols will be displayed
in POU boxes, provided that those are available as bitmaps in the library folder.
The name of the bitmap file must be composed of the POU name and the
extension ".bmp". Example: The symbol file for POU TON must be named
TON.bmp:

The selection is activated in front of which a (•) point appears.

Desktop

If you choose this category in the Options dialog box, then you get the following
dialog box:

Image 4.10: Options dialog box of the category Desktop

Tool bar: The tool bar with the buttons for faster selection of menu commands
becomes visible underneath the menu bar.

Status bar: The status bar at the lower edge of the 907 AC 1131 main window
becomes visible.

4-10 907 AC 1131/Stand: 02/03The Individual Components10

Online in Security mode: In Online mode with the commands 'Run', 'Stop',
'Reset' 'Toggle Breakpoint', 'Single cycle', 'Write values', 'Force values'
and 'Release force', a dialog box appears with the confirmation request
whether the command should really be executed. This option is saved with the
project.

Printer borders: In every editor window, the limits of the currently set print
range are marked with red dashed lines. Their size depends on the printer
characteristics (paper size, orientation) and on the size of the “Content” field of
the set print layout (menu: 'File” “Documentation Settings”).

F4 ignores warnings: After compilation, when F4 is pressed in a message
window, the focus jumps only to lines with error messages; warning messages
are ignored.

Language: Define here, in which language the menu and dialog texts should be
displayed.

Note: Please note, that the language choice is only possible under
Windows NT!

When an option is activated, a check appears in front of it.

Colors

If you choose this category in the Options dialog box , then you get the following
dialog box:

Image 4.11: Options dialog box of the category Color

You can edit the default color setting of 907 AC 1131. You can choose whether
you want to change the color settings for Line numbers (default presetting:
light gray), for Breakpoint positions (dark gray), for a Set breakpoint (light
blue), for the Current position (red), for the Reached Positions (green) or for
the Monitoring of Boolean values (blue).

4-11907 AC 1131/Stand: 03.99 The Individual Components 10

If you have chosen one of the indicated buttons, the dialog box for the input of
colors opens.

Image 4.12: Dialog box for setting colors

Directories

If you choose this category in the Options dialog box, then you get the following
dialog box:

Image 4.13: Options dialog box of the category Directories

Directories can be entered in the Project and Common areas for 907 AC 1131
to use in searching for libraries as well as for storing compile and source-
upload files. (Compile files e.g. are map- and list-files, not however e.g.
symbolic files like *.sdb, *.sym ! The latter will be stored in the project directory.)
Wenn If you activate the button (...) behind a field, the directory selection dialog
opens. For library files several paths can be entered for each, separated by
semicolons “;”.

4-12 907 AC 1131/Stand: 02/03The Individual Components10

 Note: Do not use empty spaces and special characters (except for "_") in
the directory pathes .

The information in the Project area is stored with the project; information in the
Common area is written to the ini file of the programming system and thus
apply to all projects.

907 AC 1131 generally first searches in the directories entered in 'Project', then
in those listed under 'Common'. If two files with the same name are found, the
one in the directory that is searched first will be used.

Options for Log

If you choose this category in the Options dialog box, then you get the following
dialog box shown below. In this dialog, you can configure a file that acts as a
project log, recording all user actions and internal processes during Online
mode processing (see in this connection Chapter 4.7, Log).

If an existing project is opened for which no log has yet been generated, a
dialog box opens which calls attention to the fact that a log is now being set up
that will receive its first input after the next login process.

The log is automatically stored as a binary file in the project directory when the
project is saved. If you prefer a different target directory, you can activate the
option Directory for project logs: and enter the appropriate path in the edit
field. Use the button to access the “Select Directory” dialog for this purpose.

Image4.14: Option dialogue for the category Log

The log file is automatically assigned the name of the project with the extension
.log. The maximum number of Online sessions to be recorded is determined
by Maximum project log size. If this number is exceeded while recording, the
oldest entry is deleted to make room for the newest.

The Log function can be switched on or off in the Option field Activate logging.

4-13907 AC 1131/Stand: 03.99 The Individual Components 10

You can select in the Filter area which actions are to be recorded: User actions,
Internal actions, Status changes, Exceptions. Only actions belonging to
categories checked here will appear in the Log window and be written to the
Log file. (For a description of the categories, please see chapter 4.7, Log).

The Log window can be opened with the command 'Window' 'Log' (see also
Chapter 4.7, Log).

Build

If you choose this category in the Options dialog box, you will get the following
dialog box:

Image 4.15: Options dialog box of the category Build

Debugging: Additional debugging code is created, that is the code can become
considerably larger. The debugging code is needed in order to make use of the
debugging functions offered by 907 AC 1131 (e.g. breakpoints). When you
switch off this option, project processing becomes faster and the size of the
code decreases. The option is stored with the project.

Replace constants: The value of each constant is loaded directly, and in
Online mode the constants are displayed in green. Forcing, writing and
monitoring of a constant is then no longer possible. If the option is deactivated,
the value is loaded into a storage location via variable access (this does in fact
allow writing the variable value, but implies longer processing time).

Nested comments: Comments can be placed within other comments.
Example:

(*
a:=inst.out; (* to be checked *)
b:=b+1;
*)

Here, the comment that begins with the first bracket is not closed by the bracket
following “checked,” but only by the last bracket.

4-14 907 AC 1131/Stand: 02/03The Individual Components10

Create binary file of the application: A binary image of the generated code
(boot project) is created in the project directory during compilation. File name:
<project_name>.bin. By comparison, the command 'Online' 'Create Boot
project' sets up the boot project on the controller.

Number of data: Enter here how many data memory segments are to be
reserved for your project data in the controller. This space is required so that an
Online Change can still be carried out when new variables are added. When
compiling the project you might get the message "The global variables require
too much memory". In this case increase the number of segments. Local
program variables will be handled like global variables in this regard, but Retain
variables need a separate segment in any case.

In order to exert control over the compilation process you can set up two
macros: the macro in the Macro before compile field is executed before the
compilation process; the macro in the Macro after compile field afterwards.
The following macro commands can not, however, be used here: file new, file
open, file close, file save as, file quit, online, project compile, project check,
project build, debug, watchlist.

All entries in the Build Options dialog are stored with the project.

When an option is activated, a check appears in front of it.

Passwords

If you choose this category in the Options dialog box, then you get the dialog
box shown below. To protect your files from unauthorized access 907 AC 1131
offers the option of using a password to protect against your files being opened
or changed.

Image 4.16: Options dialog box of the category Passwords

Enter the desired password in the field Password. For each typed character an
asterisk (*) appears in the field. You must repeat the same word in the field
Confirm Password. Close the dialog box with OK. If you get the message:

"The password does not agree with the confirmation",

4-15907 AC 1131/Stand: 03.99 The Individual Components 10

then you made a typing error during one of the two entries. In this case repeat
both entries until the dialog box closes without a message.

If you now save the file and then reopen it, then you get a dialog box in which
you are requested to enter the password. The project can then only be opened
if you enter the correct password. Otherwise 907 AC 1131 reports:

"The password is not correct."
Along with the opening of the file, you can also use a password to protect
against the file being changed. For this you must enter a password in the field
Write Protection Password and confirm this entry in the field underneath.

A write-protected project can be opened without a password. For this simply
press the button Cancel, if 907 AC 1131 tells you to enter the write-protection
password when opening a file. Now you can compile the project, load it into the
PLC, simulate, etc., but you cannot change it.

Of course it is important that you memorize both passwords. However, if you
should ever forget a password, then contact the manufacturer of your PLC.

The passwords are saved with the project.

In order to create differentiated access rights you can define user groups and
"Passwords for user groups").

Sourcedownload

When you select this category, the dialog shown below will be opened

You can choose to which Timing and what Extent the project is loaded into the
controller system. The option Sourcecode only exclusively involves just the
907 AC 1131 file (file extension .pro). The option All files also includes files
such as the associated library files, visualization bitmaps, configuration files,
etc.

Using the option Implicit at load allows the selected file range to be
automatically loaded into the controller system on the command ‘Online‘
‘Download'.

Using the option Notice at load offers a dialog, when the command ‘Online‘
‘Download' is given, with the question ”Do you want to write the source code
into the controller system?”. Pressing Yes will automatically load the selected
range of files into the controller system, or you can alternatively finish with No.

When using the option On demand the selected range of files must be
expressly loaded into the controller system by giving the command ‘Online‘
‘Sourcecode download'.

4-16 907 AC 1131/Stand: 02/03The Individual Components10

Image 4.17: Option dialog for the category Sourcedownload

The project which is stored in the controller system can be retrieved by using
‘File‘ ‘Open' with Open project from PLC. The files will be unpacked in the
process. See Chapter 4.3, 'File' 'Open', for details !

Options for Symbol
Configuration

The dialog presented here is used for configuring the symbol file (text file *.sym
and binary file *.sdb). This will be created as a text file <project name>.sym
resp. a binary file <project name>.sdb (depending on the used gateway version)
in the project directory. The symbol file is needed for data exchange with the
controller via the symbol interface and are used for that purpose e.g. by OPC-
or GatewayDDE-Server.

If the option Create symbol entries is selected, then symbol entries for the
project variables will be automatically created in a symbol file at each
compilation of the project.

If additionally the option Dump XML symbol table is activated, then also an
XML file containing the symbol information will be created in the project
directory. It will be named <project name>.SYM_XML.

Regard the following when configuring the symbol entries:

The symbol entries will be generated in accordance with the settings you make
in the 'Set object attributes' dialog. You get there using the Configure symbol
file button:

4-17907 AC 1131/Stand: 03.99 The Individual Components 10

Image4.18: Set object attributes dialog (in option category Symbol configuration)

Use the tree-structured selection editor to select project POUs and set the
desired options in the lower part of the dialog box by clicking the mouse on the
corresponding small boxes. Activated options are checked. The following
options can be set:

Export variables of object: The variables of the selected object are exported
in the symbol file.

The following options can take effect only if the Export variables of object
option is activated:

Export data entries: Entries for access to the global variables are created for
object’s structures and arrays.

Export structure components: An individual entry is created for each variable
component of object’s structures.

Export array entries: An individual entry is created for each variable
component of object’s arrays.

Write Access: Object’s variables may be changed by the OPC server.

Once the option settings for the currently selected POU are complete, other
POUs can also be selected - without closing the dialog before - and can be
given an option configuration. This can be carried out for any desired number of
POU selections, one after the other. When the dialog box is closed by selecting
OK, all configurations carried out since the dialog box was opened are applied.

Options for 'Project source
control'

This dialog is used to define whether the project should be managed in a project
data base and to configure the ENI interface correspondingly.

4-18 907 AC 1131/Stand: 02/03The Individual Components10

Image4.19: Options dialog box of category Project source control

Use source control (ENI): Activate this option, if you want to access a project
data base via the ENI Server in order to administer all or a selection of POUs of
the project in this data base. Preconditions: ENI Server and data base must be
installed and you must be registered as user of both. See also the separate
documentation for the ENI-Server and see Chapter 9, The 907 AC 1131 ENI.

If the option is activated, then the data base functions (Check in, Get last
version etc.) will be available for handling the project POUs. Then some of the
data base functions will run automatically like defined in the options dialogs, and
in the menu 'Project' 'Data Base Link' you will find the commands for calling the
functions explicitely. Besides that a tab 'Data base-connection' will be added in
the dialog 'Properties', where you can assign a POU to a particular data base
category (see Chapter 9.4, Object Categories ...).

Connect new Objects with the following data base:

Here you set a default: When a new object is inserted in the project ('Project'
'Object' 'Add'), then it gets automatically assigned to that object category which
is defined here. This assignment will be displayed in the object properties dialog
('Project' 'Object' 'Properties') and can be modified there later. The possible
assignments:

Project: The POU will be stored in that data base folder which is defined in
the dialog 'ENI configuration/Project objects' in the field 'Project name'.

Shared Objects: The POU will be stored in that data base folder which is
defined in the dialog 'ENI configuration/Shared objects' (field 'Project
name').

Local: The POU will not be managed in a ENI data base, but only will be
stored locally in the project.

Besides 'Project objects' and 'Shared objects' there is a third data base
category 'Compile files' for such objects which are not created until the project

4-19907 AC 1131/Stand: 03.99 The Individual Components 10

has been compiled. Therefore this category is not relevant for the current
settings.

Ask for type of new objects: If this option is activated, then whenever a new
object is added to the project, the dialog 'Object' 'Properties' will open, where
you can choose to which of the three object categories mentioned above the
POU should be assigned. By doing so the standard setting can be overwritten.

configure ENI: This button opens the first of three ENI configuration dialogs:

Each object of a project, which is determined to get managed in the ENI data
base, can be assigned to one of the following data base categories: 'Project
objects', 'Shared objects' or 'Compile files'. For each of these categories a
separate dialog is available to define in which data base folder it should be
stored and which presettings should be effective for certain data base functions:

• Dialog ENI configuration / Project objects
• Dialog ENI configuration / Shared objects
• Dialog ENI configuration / Compile files

 Note: Each object will be stored also locally (with project) in any case.

The dialog will open one after the other if you are doing a primary configuration.
In this case a Wizard (Button Next) will guide you and the settings entered in
the first dialog will be automatically copied to the other ones, so that you just
have to modify them if you need different parameter values.

If you want to modify an existing configuration, then the three dialogs are
combined in one window (three tabs).

If you have not yet logged in successfully to the data base before, then the
Login dialog will be opened automatically.

Options for project objects and
shared objects regarding the
project data base

These dialogs are part of the configuration of the project data base options
('Project' 'Options' 'Project source control'). Here you define the access
parameters for the data base categories 'Project objects' and 'Shared objects'.
Both dialogs contain the same items. (A third dialog is available for the
configuration of the access to the data base category 'Compile files'.)

ENI-Connection
TCP/IP-Address: Address of the computer where the ENI-Server is running
Port: Default: 80; must be the same as set in the configuration

parameters of the ENI Server
Project name: Name of the data base folderwhere the objects of this category

should be stored. Press button ... to open a folder tree of the
already existing data base projects. If the desired folder
already exists, you can select it in this tree and its name will be

4-20 907 AC 1131/Stand: 02/03The Individual Components10

entered in the 'Project name' edit field. If you had not logged in
to the ENI Server until you try to open the folder tree by button
..., then you will first get the Login dialog where you must enter
'User name' and 'Password' as defined in your ENI user
account to get access to the three data base categories.

Read only If this option is activated, then only read access is possible to
the above defined data base folder.

Image4.20: Dialog 'Project objects' in options category Project source control

Get latest Version

The data base function 'Get latest Version' (Menu 'Project' 'Data Base Link')
copies the latest version of POUs from the above defined data base folder
to the currently opened project, whereby the local version of objects will be
overwritten. This will be done automatically for all objects, for which the
version found in the data base differs from that in the project, as soon as
one of the set timing conditions will meet. Activate the desired time options
by setting a check mark:

At Project Open As soon as the project is opened in 907 AC 1131
Immediately after
Changes in ENI

As soon as a newer version of the POU is checked in
to the data base (e.g. by another user); then the POU
will be updated in the current project immediately and
an appropriate message will pop up.

Before any Compile Before any compile process in 907 AC 1131

4-21907 AC 1131/Stand: 03.99 The Individual Components 10

Check out

The data base function 'Check out' means that the POU will be marked as
'in the works' and will be locked for other users until it will be de-blocked
again by a 'Check in' or 'Undo check out' command.

If the option Immediately at start of editing is activated, then an object will
be checked out automatically as soon as you start to edit it. If the object is
currently already checked out by another user (indicated by a red cross
before the object name in the 907 AC 1131 object organizer), then a
message will pop up.

Check in

The data base function 'Check in' means, that a new version of the object
will be created in the data base. The older versions will be kept anyway.

You can activate one or both of the following options to define the time of
automatic Checking in:

At Project Save as soon as the project is saved
After successfull compile as soon as the project has been compiled

without errors

For each of the options 'Get last version', 'Check out' and 'Check in' additionally
the option with Query can be activated. In this case, before the corresponding
action is carried out, a dialog opens where you still can decide to cancel the
action or otherwise confirm it.

The items of the dialog 'Shared objects' are the same like in the dialog 'Project
objects' described above. The settings apply to all objects which are assigned to
the data base category 'Shared objects'.

If you do a primary configuration, the configuration dialogs will appear one after
the other and you will be guided by a wizard (button Next). The settings made
in the first dialog will automatically be inherited to the other ones. So those just
have to be edited if modificiations are necessary.

Cancel will close the dialog without saving the done modifications in the
currently opened dialog. You return to the main dialog 'Options' 'Project source
control'.

If an already existing configuration has been modified, then the new settings (for
all three dialogs) can be saved by pressing OK. After that the dialog will be
closed and you return to the main dialog 'Options' 'Project source control'.

Options for Compile Files
regarding the project data base

This dialog is part of the option settings for the project data base ('Project'
'Options' 'Project source control'). Here you define how the objects of category
'Compile files' will be handled in the data base. (Besides that two further dialogs
are available to define this for objects of category 'Project objects' and 'Shared
objects'.)

4-22 907 AC 1131/Stand: 02/03The Individual Components10

For the input fields TCP/IP-Address, Port, Project name see the description of
dialog 'Project objects/Shared objects'.

Create ASCII-symbol
information (.sym)

Create binary symbol
information (.sdb)

If this option is activated, then whenever a symbol file
*.sym (text format) resp. *.sdb (binary format) will be
created, this file will be written to the data base
automatically. The entries in the symbol file are created
like defined in the Project options category 'Symbol
configuration'.

Create boot project If this option is activated, then whenever a boot project
will be created, this file will be written to the data base
automatically .

Image4.21: Dialog 'Compile files' in category Project source control

If you are doing a primary configuration, the configuration dialogs will appear
one after the other, guided by a wizard (button Next). The settings made in the
first dialog will automatically be inherited to the other ones. So those just have
to be edited if modificiations are necessary.

Cancel will close the dialog without saving the done modifications in the
currently opened dialog (the settings made in the previous dialogs will be kept
anyway). You return to the main dialog 'Options' 'Project source control'.

If you have modified an already existing configuration, then the new settings (for
all three dialogs) can be saved by pressing OK. After that the dialog will be
closed and you return to the main dialog 'Options' 'Project source control'.

Macros

If you choose this category , the dialog box shown in the image below opens. In
this dialog macros can be defined using the commands of the 907 AC 1131
batch mechanism, which can then be called up in the 'Edit' 'Macros' menu (see
Chapter 4.5, General Editing functions).

4-23907 AC 1131/Stand: 03.99 The Individual Components 10

Image 4.22: Options dialog for the category Macros

Perform the following steps to define a new macro:

• In the input field Name, you enter a name for the macro to be created. After
the New button is pressed, this name is transferred into the Macrolist field
and marked as selected there. The macro list is represented in a tree
structure. The locally defined macros are positioned one below the other. If
macro libraries (see below) are integrated, then the library names will be
listed and by a mouse-click on the plus- resp. minus-signs in front of those
entries you can open or close a list of the library elements.

• The Menu field is used to define the menu entry with which the macro will
appear in the 'Edit' 'Macros' menu. In order to be able to use a single letter
as a short-cut, the letter must be preceded by the symbol '&'. Example: the
name "Ma&cro 1" generates the menu entry "Macro 1". Example: the name
"Ma&cro 1" will create a menu item "Macro 1".

• In the editor field Commands you define and/or edit the commands that are
to constitute the newly created or selected macro. All the commands of the
907 AC 1131 batch mechanism and all keywords which are valid for those
are allowed. You can obtain a list by pressing the Help button. A new
command line is started by pressing <Ctrl><Enter>. The context menu with
the common text editor functions is obtained by pressing the right mouse
button. Command components that belong together can be grouped using
quotation marks.

• If you want to create further macros, perform steps 1-3 again, before you
close the dialog by pressing the OK-button.

If you want to delete a macro, select it in the macro list and press button .

If you want to rename a macro, select it in the macro list, insert a new name in
the edit field 'Name' and then press button Rename.

To edit an existing macro, select it in the macro list and edit the fields 'Menu'
and/or 'Commands'. The modifications will be saved when pressing the OK-
button.

4-24 907 AC 1131/Stand: 02/03The Individual Components10

As soon as the dialog is closed by pressing the OK-button the actual description
of all macros will be saved in the project.

The macro menu entries in the 'Edit' 'Macros' menu are displayed in the order in
which they were defined.

The macros are not tested until a menu selection is made.

Macro libraries:

Macros can be saved in external macro libraries. These libraries can be
included in other projects.

• Creating a macro library containing the macros of the currently opened
project:
Press button Create. You get the dialog Merge project, where all available
macros are listed. Select the desired entries and confirm with OK. The
selection dialog will close and dialog Save Macrolibrary will open. Insert
here a name and path for the new library and press button Save. The library
will be created named as <library name>.mac and the dialog will be closed.

• Including a macro library <library name>.mac in the currently opened
project:
Press button Include. The dialog Open Macrolibrary will open, which
shows files with extension *.mac. Select the desired library and press button
Open. The dialog will be closed and the library will be added to the tree of
the Macrolist.

Hint: The macros of a project also can be exported ('Project' 'Export').

4.3 Managing Projects

The commands which refer to entire project are found under the menu items
'File' and 'Project'. Some of the commands under 'Project' deal with objects and
are therefore described in chapter 4.4, Managing Objects.

'File' 'New'

Symbol:

With this command you create an empty project with the name "Untitled". This
name must be changed when saving.

'File' 'Open'

Symbol:

With this command you open an already existing project. If a project has
already been opened and changed, then 907 AC 1131 asks whether this project
should be saved or not.

4-25907 AC 1131/Stand: 03.99 The Individual Components 10

The dialog box for opening a file appears, and a project file with the extension
"*.pro" or a library file with the extension "*.lib" must be chosen. This file must
already exist. It is not possible to create a project with the command "Open".

To upload a project file from the PLC, press PLC at Open project from PLC.
You will obtain, as next, the dialog Communication parameters (see menu
‘Online‘ ‘Communication parameters‘) for setting the transmission
parameters when no connection exists yet to the PLC. Once an on-line
connection has been created, the system checks whether the same named
project files already exist in the directory on your computer hard disc. When this
is the case you receive the dialogue Load the project from the controller
where you can decide whether the local files should be replaced by those being
used by the controller. (This sequence is the reverse of the sequence of 'Online'
'Load source code', with which the project source file is stored in the controller.
Do not confuse with 'Create Boot project'!)

Note: Please note, that you in any case have to give a new name to a
project, when you load it from the PLC to your local directory, otherwise it is
unnamed.

If there has not yet been loaded a project to the PLC, you get an error message.

(See also 'Project' 'Options' category 'Sourcedownload').

Image 4.23: Standard dialog box for opening a file in 907 AC 1131

The option Open project from Source code manager can be used to open a
project which is stored in a ENI project data base. It is a precondition that you
have access to an ENI Server which serves the data base. Press button ENI... ,
to get a dialog where you can connect to the server concerning the data base
category 'Project objects'.

Insert the appopriate access data (TCP/IP-Address, Port, User name,
Password, Read only) and the data base folder (Project name) from which the
objects should be get and confirm with Next. The dialog will be closed and

4-26 907 AC 1131/Stand: 02/03The Individual Components10

another one will open where you have to insert the access data for the data
base category 'Shared objects'. If you press button Finish the dialog will be
closed and the objects of the defined folders will automatically be retrieved and
displayed in the 907 AC 1131 Object manager. If you want to continue to keep
the project objects under data base control, then open the Project options
dialogs to set the desired parameters.

The most recently opened files are listed under the command 'File' 'Exit'. If you
choose one of them, then this project is opened.

If Passwords or User groups have been defined for the project, then a dialog
box appears for entering the password.

'File' 'Close'

With this command you close the currently-open project. If the project has been
changed, then 907 AC 1131 asks if these changes are to be saved or not.

If the project to be saved carries the name "Untitled", then a name must be
given to it (see 'File' 'Save as').

'File' 'Save'

Symbol: Shortcut: <Ctrl>+<S>

With this command you save any changes in the project. If the project to be
saved is called "Untitled", then you must give it a name (see 'File' 'Save as').

'File' 'Save as'

With this command the current project can be saved in another file or as a
library. This does not change the original project file.

After the command has been chosen the Save dialog box appears. Choose
either an existing File name or enter a new file name and choose the desired
file type.

Image 4.24: Dialog box for Save as

4-27907 AC 1131/Stand: 03.99 The Individual Components 10

If the project is to be saved under a new name, then choose the file type
907 AC 1131 Project (*.pro).

If you choose the file type Project Version 1.5 (*.pro), 2.0 (*.pro), 2.1 (*.pro)
or 2.2 (*.pro), then the current project is saved as if it were created with the
version 1.5, 2.0, 2.1 or 2.2. Specific data of the version 2.2 can thereby be lost!
However, the project can be executed with the version 1.5, 2.0, 2.1 or 2.2.

You can also save the current project as a library in order to use it in other
projects. Choose the file type Internal library (*.lib) if you have programmed
your POUs in 907 AC 1131.

Choose the file type External library (*.lib) if you want to implement and
integrate POUs in other languages (e.g. C). (Concerning this see chapter 6.3,
Library Manager.) This means that another file is also saved which receives the
file name of the library, but with the extension "*.h". This file is constructed as a
C header file with the declarations of all POUs, data types, and global variables.
If external libraries are used, in the simulation mode the implementation, written
for the POUs in 907 AC 1131, will be executed. Working with the real hardware
the implementation written in C will be executed.

After having done all settings, press OK. The current project is saved in the
indicated file. If the new file name already exists, then you are asked if you want
to overwrite this file.

When saving as a library, the entire project is compiled. If an error occurs
thereby, then you are told that a correct project is necessary in order to create a
library. The project is then not saved as a library.

'File' 'Save/Mail Archive'

This command is used to set up and create a project archive file. All files which
are referenced by and used with a 907 AC 1131 project can be packed in a
compressed zip file. The zip file can be stored or can be directly sent in an
email. This is useful if you want to give forward a set of all project relevant files.

When the command is executed, the dialog box 'Save Archive' opens.

Here you can define which file categories should be added to the archive zip
file:

4-28 907 AC 1131/Stand: 02/03The Individual Components10

Image 4.25: Dialog box for Setting up an Archive ZIP

Select or deselect a category by activating/deactivating the corresponding
checkbox. Do this by a single mouseclick in the checkbox or by a doubleclick on
the category name. If a category is marked with , all files of this category will
be added to the zip file, if it is marked with , none of the files will be added. To
select single files of a category press the corresponding button Details.

The dialog 'Details' will open with a list of available files:

Image 4.26: Dialog box for detailled selection of files for the Archive ZIP

4-29907 AC 1131/Stand: 03.99 The Individual Components 10

In this dialog select/deselect the desired files: Use the button Select All or
Select None to affect the complete list. A single file can be selected/deselected
by a mouseclick in the checkbox, also by a doubleclick on the list entry or by
pressing the spacebar when the list entry is marked.

Close the Details dialog with Save to store the new settings.

In the main dialog the checkbox of categories, for which not all files are
selected, will appear with a grey background color .

The following file categories are available, the right column of the table shows
which files can be added to the zip file:

Project File projectname.pro (the 907 AC 1131 project file)

Referenced Libraries *.lib, *.obj, *.hex (libraries and if available the
corresponding object and hex-files)

Symbol Files *.sdb, *.sym (symbolic information)

Compile Information *.ci (compile information),
*.ri (download/reference information)
<temp>.* (temporary compile and download files)
also for simulation

Log *.log (project log file)

INI File 907 AC 1131.ini

Configuration files files used for PLC configuration (configuration files,
device files, icons etc.): e.g. *.cfg, *.con, *.eds, *.dib,
*.ico

Target Files not used

Registry Entries Registry.reg (Entries for Gateway; the following
subtree will be packed:

HKEY_LOCAL_MACHINE\SOFTWARE\.3S..\Gatewa
yServer“

Bitmap Files *.bmp (bitmaps for project POUs and visualizations)

Gateway Files Gateway.exe, GatewayDDE.exe, GClient.dll,
GDrvBase.dll, GDrvStd.dll, GHandle.dll, GSymbol.dll,
GUtil.dll, further DLLs in the gateway directory if
available

To add any other files to the zip, press the button Other Files. The dialog 'Other
files' will open where you can set up a list of desired files.

4-30 907 AC 1131/Stand: 02/03The Individual Components10

Image 4.27: Dialog box for adding other files for the Archive ZIP

Press the button Add to open the standard dialog for opening a file, where you
can browse for a file. Choose one and confirm with Open. The file will be added
to the list in the 'Other files' dialog. Repeat this for each file you want to add. To
delete entries from the list, press the button Remove. When the list of selected
files is ok, close the dialog with OK.

To add a Readme file to the archive zip, press the button Comment. A text
editor will open, where you can enter any text. If you close the dialog with OK,
during creation of the zip file a readme.txt file will be added. Additionally to the
entered comments it will contain information about the build date and version of
907 AC 1131.

If all desired selections have been made, in the main dialog press

• Save... to create and save the archive zip file: The standard dialog for
saving a file will open and you can enter the path, where the zip should be
stored. The zip file per default is named <projectname>.zip. Confirm with
Save to start building it. During creation the current progress status is
displayed and the subsequent steps are listed in the message window.

• Mail… to create a temporary archive zip and to automatically generate an
empty email which contains the zip as an attachment. This feature only
works if the MAPI (Messaging Application Programming Interface) has been
installed correctly on the system, otherwise an error message is generated.
During setup of the email the progressing status is displayed and the steps
of the action are listed in the message window. The temporary zip file will be
removed automatically after the action has been finished.

• Cancel to cancel the action; no zip file will be generated.

'File' 'Print'

Shortcut: <Ctrl>+<P>

With this command the content of the active window is printed.

After the command has been chosen, then the Print dialog box appears.
Choose the desired option or configure the printer and then click OK. The active
window is printed. Color output is available from all editors.

4-31907 AC 1131/Stand: 03.99 The Individual Components 10

Image 4.28: Print dialog box

You can determine the number of the copies and print the version to a file.

With the button Properties you open the dialog box to set up the printer.

You can determine the layout of your printout with the command 'File' 'Printer
Setup'.

During printing the dialog box shows you the number of pages already printed.
When you close this dialog box, then the printing stops after the next page.

In order to document your entire project, use the command 'Project'
'Document'.

If you want to create a for your project, in which you can store comments
regarding all the variables used in the project, then open a global variables list
and use the command 'Extras' 'Make docuframe file' (see Chapter 6.2.3,
Document Frame).

'File' 'Printer setup'

With this command you can determine the layout of the printed pages. The
dialog box shown in the image below will be opened.

In the field File you can enter the name of the file with the extension ".dfr" in
which the page layout should be saved. The default destination for the settings
is the file DEFAULT.DFR. If you would like to change an existing layout, then
browse through the directory tree to find the desired file with the button Browse.

4-32 907 AC 1131/Stand: 02/03The Individual Components10

Image 4.29: Page Layout Dialog Box

You can also choose whether to begin a new page for each object and for
each subobject. Use the Printer Setup button to open the printer
configuration.

If you click on the Edit button, then the frame for setting up the page layout
appears. Here you can determine the page numbers, date, filename and POU
name, and also place graphics on the page and the text area in which the
documentation should be printed.

Image 4.30: Window for pasting the placeholders on the page layout

With the menu item 'Insert' 'Placeholder' and subsequent selection among the
five placeholders (Page, POU name, File name, Date, and Content), insert
into the layout a so-called placeholder by dragging a rectangle1 on the layout
while pressing the left mouse button. In the printout they are replaced as
follows:

1 Drawing a rectangle on the layout by dragging the mouse diagonally while pressing the left
mouse button.

4-33907 AC 1131/Stand: 03.99 The Individual Components 10

Command Placeholder Effect
Page {Page} Here the current page number appears

in the printout.
POU name {POU Name} Here the current name of the POU

appears.
File name {File Name} Here the name of the project appears.
Date {Date} Here the current date appears.
Contents {Contents} Here the contents of the POU appear.

In addition, with 'Insert' 'Bitmap' you can insert a bitmap graphic (e.g. a
company logo) in the page. After selecting the graphic, a rectangle should also
be drawn here on the layout using the mouse. Other visualization elements can
be inserted (see Chapter 7, Visualization).

If the template was changed, then 907 AC 1131 asks when the window is
closed if these changes should be saved or not.

'File' 'Exit'

Shortcut: <Alt>+<F4>

With this command you exit from 907 AC 1131.

If a project is opened, then it is closed as described in 'File' 'Save'.

'Project' 'Build'

Shortcut: <F11>

The project is compiled using 'Project' 'Build'. The compilation process is
basically incremental, that is only changed POUs are recompiled. A non-
incremental compilation can also be obtained if the command 'Project' 'Clear all'
is first executed.

All POUs that will be loaded (Online Change) into the controller on the next
download are marked with a blue arrow in the Object Organizer after
compilation.

The compilation process that is carried out with 'Project' 'Build' occurs
automatically if the controller is logged-in via 'Online' 'Log-in'.

During compilation a message window is opened which shows the progress of
the compilation process and any errors and warnings which may occur during
compilation. Errors and warnings are marked with numbers. Using F1 you get
more information about the currently selected error.

See Appendix H: Errors and Warnings, for a listing of compiler messages.

4-34 907 AC 1131/Stand: 02/03The Individual Components10

Image 4.31: Message window of a project

If the option Save before compilation is selected in the options dialog of the
Load & Save category, the project is stored before compilation.

Note: Cross references are created during compilation and are stored with
the compilation information. In order to be able to use the commands 'Show
Call Tree', 'Show Cross Reference' and the commands 'Unused Variables',
'Concurrent Access', and 'Multiple Write Access on output' in the 'Project'
'Check' menu, the project must be rebuilt after any change.

‘Project’ ’Rebuild all’

With 'Project' 'Rebuild all', unlike the incremental compilation ('Project' 'Build'),
the project is completely recompiled. Downoad-Information is not discarded,
however, as is the case with the command 'Clear All'.

‘Project’ 'Clean all’

With this command, all the information from the last download (Download-
Information) and from the last compilation is deleted.

After the command is selected a dialog box appears, reporting that Online
Change is no longer possible. At this point the command can either be
cancelled or confirmed.

Note: After 'Clear all' a login on the PLC project is only possible if the *.ri
file with the project information from the last download was first explicitly saved
outside the project directory (see 'Load Download-Information') and can now be
reloaded prior to logging-in.

'Project' 'Load Download-
Information'

With this command the Download-Information belonging to the project can get
reloaded, if it was saved to a directory different from that where the project is.
After choosing the command the standard dialogue 'File Open' opens.

The Download-Information is saved automatically at each download to a file,
which is named <project name>_______.ri and which is put to the project
directory. This file is loaded, when the project is opened and at login it is used to
check whether the PLC project is fitting to the currently opened 907 AC 1131
project (Id-check). Furthermore it is used to check, in which POUs the code has

4-35907 AC 1131/Stand: 03.99 The Individual Components 10

been changed. In systems which support the online change functionality, then
only these POUs will be loaded to the PLC during online change procedure.

But: If the *.ri-file in the project directory gets deleted by the command 'Project'
'Clean all', you only can reload the Download-Information, if you had stored the
*.ri-file in another directory too.

‘Project’ 'Translate into another
language‘

This menu item is used for translating the current project file into another
language. This is carried out by reading in a translation file that was generated
from the project and externally enhanced in the desired national language with
the help of a text editor.

Two menu sub-items are present:

• Create translation file
• Translate project

Create translation file

This command in the 'Project' 'Translate into another language' menu leads to
the 'Create translation file' dialog.

Image 4.32: Dialog for creating a translation file

In the Translation file field, enter a path that shows where the file is to be
stored. The default file extension is *.tlt; this is a text file.

If there already exists a translation file which you want to process, give the path
of this file or use the Search button to reach the standard Windows file
selection dialog.

4-36 907 AC 1131/Stand: 02/03The Individual Components10

The following information from the project can optionally be passed to the
translation file that is being modified or created, so that they will be available for
translation: Names (names, e.g. the title 'POUs' in Object Organizer),
Identifiers, Strings, Comments, Visualisation texts. In addition, Position
information for these project elements can be transferred.

If the corresponding options are checked, the information from the current
project will be exported as language symbols into a newly created translation
file or added to an already existing one. If the respective option is not selected,
information belonging to the pertinent category, regardless of which project it
came from, will be deleted from the translation file.

The “Text” and “Tooltip-Text” elements in the visualization elements are
considered here to be visualization texts.

Note: For visualization texts (‚Text' and ‚Text for Tooltip’ in the visualization
elements) it must be noted that they must be bracketed by two “#” symbols in
the configuration dialog of the visualization element (e.g. #text#) in order to be
transferred to the translation file. (See in this connection Chapter 7,
Visualization). These texts are also not translated with the command 'Project'
'Translate into other languages' ! A language change for the visualization can
only occur in Online mode if the corresponding language is entered in the
'Extras' 'Settings' dialog.

Position information: This describes with the specifications file path, POU and
line the position of the language symbol made available for translation. Three
options are available for selection:

None: No position information is generated.

First appearance: The position on which the element first appears is added
to the translation file.

All: All positions on which the corresponding element
appears are specified.

If a translation file created earlier is to be edited which already contains more
position information than that currently selected, it will be correspondingly
truncated or deleted, regardless of which project it was generated from.

Note: A maximum of 64 position specifications will be generated per
element (language symbol), even if the user has selected “All” under “Position
Information” in the ‚Create Translation File' dialog.

Overwrite existing: Existing position information in the translation file, that is
currently being processed, will be overwritten, regardless of which project
generated it.

4-37907 AC 1131/Stand: 03.99 The Individual Components 10

Target languages: This list contains identifiers for all languages which are
contained in the translation file, as well as those to be added upon completion
of the 'Create translation file' dialog.

The Exclude button opens the 'Exclude libraries' dialog. Here, libraries included
to the project can be selected, whose identifier information is not to be
transferred to the translation file. To accomplish this, the corresponding entry in
the table Included libraries on the left is selected with the mouse and placed in
the Excluded libraries table to the right using the Add button. Likewise, entries
already placed there can be removed using the Remove button. OK confirms
the setting and closes the dialog.

Image 4.33: Dialog for excluding library information for the translation file

The Add button opens the 'Add Target Language' dialog:

Image 4.34: Dialog for adding a target language (Project, Translate into Another
Language)

A language identifier must be entered into the editor field; it may not have a
space or an umlaut character (ä, ö, ü) at either the beginning or the end.

OK closes the 'Add Target Language' dialog and the new target language
appears in the target language list.

The Remove button removes a selected entry from the list.

You may also confirm the “Create translation file” dialog via OK, in order to
generate a translation file.

4-38 907 AC 1131/Stand: 02/03The Individual Components10

If a translation file of the same name already exists you will get the following
confirmation message to be answered Yes or No:

" The specified translation file already exists. It will now be altered and a
backup copy of the existing file will be created. Do you want to continue?"

No returns you without action to the 'Create translation file' dialog. If Yes is
selected, a copy of the existing translation file with the filename
“Backup_of_<translation file>.xlt” will be created in the same directory and the
corresponding translation file will be modified in accordance with the options
that have been entered.

The following takes place when a translation file is generated:

For each new target language, a placeholder (”##TODO”) is generated for each
language symbol to be displayed.

If an existing translation file is processed, file entries of languages that appear
in the translation file, but not in the target language list, are deleted, regardless
of the project from which they were generated.

Editing of the translation file

The translation file must be opened and saved as a text file. The signs ## mark
keywords. The ##TODO-placeholders in the file can be replaced by the valid
translation. For each language symbol a paragraph is generated which starts
with a ##NAME_ITEM and ends with a ##END_NAME_ITEM. (For comments
correspondingly ##COMMENT_ITEM etc.).

See in the following an example of a translation file paragraph which handles
the name of one of the POUs of the project. ST_Visu. The source language is
German, the target languages shall be English(USA) and French. In this examle
the position information of the project element which should be translated has
been added:

before translation:

##NAME_ITEM
[D:\907 AC 1131\projects\Bspdt_22.pro::ST_Visualisierung::0]
ST_Visualisierung
##English :: ##TODO
##French :: ##TODO
##END_NAME_ITEM

after translation:

The ##TODOs have been replaced by the English resp. French word for
'Visualisierung':

##NAME_ITEM
[D:\907 AC 1131\projects\Bspdt_22.pro::ST_Visualisierung::0]
ST_Visualisierung
##English :: ST_Visualization
##French :: ST_Visu
##END_NAME_ITEM

Please check that the translated Identifier and Names remain valid concerning
the standard and that strings and comments are in correct brackets. Example:

4-39907 AC 1131/Stand: 03.99 The Individual Components 10

For a comment (##COMMENT_ITEM) which is represented with "(* Kommentar
1)" in the translation file, the "##TODO" behind "##English" must be replaced
by a "(* comment 1 *)". For a string (##STRING_ITEM) represented with
"zeichenfolge1" the "##TODO" must be replaced by "string1".

Hint: The following parts of a translation file should not be modified without
detailed knowledge: Language block, Flag block, Position information, Original
texts.

Translate Project (into another
Language)

This command in the 'Project' 'Translate into Another Language' menu opens
the 'Translate Project into Another Language' dialog.

Image 4.35: Dialog for translating the project into another language

The current project can be translated into another language if an appropriate
translation file is used.

Note: If you want to save the version of the project in the language in which
it was originally created, save a copy of the project prior to translation under a
different name. The translation process cannot be undone.

In the field Translation file, provide the path to the translation file to be used.
By pressing Search you may access the standard Windows file selection
dialog.

The field Target language contains a list of the language identifiers entered in
the translation file, from which you can select the desired target language.

OK starts the translation of the current project into the chosen target language
with the help of the specified translation file. During translation, a progress
dialog is displayed, as well as error messages, if any. After translation, the
dialog box and all open editor windows of the project are closed.

Cancel closes the dialog box without modification to the current project.

4-40 907 AC 1131/Stand: 02/03The Individual Components10

If the translation file contains erroneous entries, an error message is displayed
after OK is pressed, giving the file path and the erroneous line, e.g.:
“[C:\Programs\907 AC 1131\projects\visu.tlt (78)]; Translation text expected”

'Project' 'Document'

This command lets you print the documentation of your entire project. The
elements of a complete documentation are:

• The POUs,
• the contents of the documentation,
• the data types,
• the visualizations
• the resources ,global variables, variables configuration, the Sampling

Trace, the PLC Configuration, the Task Configuration, the Watch and
Receipt Manager)

• the call trees of POUs and data types, as well as
• the cross reference list.

Image 4.36: Dialog box for project documentation

For the last two items the project must have been built without errors.

Only those areas in the dialog box are printed which are highlighted in blue.
If you want to select the entire project, then select the name of your project in
the first line.

4-41907 AC 1131/Stand: 03.99 The Individual Components 10

If, on the other hand, you only want to select a single object, then click on the
corresponding object or move the dotted rectangle onto the desired object with
the arrow key. Objects which have a plus sign in front of their symbols are
organization objects which contain other objects. With a click on a plus sign
organization object is expanded, and with a click on the resulting minus sign it
can be closed up again. When you select an organization object, then all
relevant objets are also selected. By pressing the <Shift> key you can select a
group of objects, and by pressing the <Ctrl> key you can select several
individual objects.

Once you have made your selection, then click on OK. The Print dialog box
appears. You can determine the layout of the pages to be printed with 'File'
'Printer setup'.

'Project' 'Export'

With 907 AC 1131 projects can be exported or imported. That allows you to
exchange programs between different IEC programming systems.

There is a standardized exchange format for POUs in IL, ST, and SFC (the
Common Elements format of IEC 1131-3). For the POUs in LD and FBD and
the other objects 907 AC 1131 has its own filing format since there is no text
format for this in IEC 1131-3.

The selected objects are written to an ASCII file.

POUs, data types, visualizations, and the resources can be exported. In
addition, entries in the library manager, that is the linking information to the
libraries, can be exported (not the libraries themselves!).

Important: Re-importing an exported FBD or LD POU results in an error if
a comment in the graphical editor contains a single quotation mark ('), as this
will be interpreted as the beginning of a string !

Once you have made your selection in the dialog box window (the same way as
with 'Project' 'Document'), you can decide, whether you want to export the
selected parts to one file or to export in separate files, one for each object.
Switch on or off the option One file for each object then click on OK. The
dialog box for saving files appears. Enter a file name with the expansion ".exp"
respectively a directory for the object export files, which then will be saved there
with the file name <objectname.exp>.

'Project' 'Import'

In the resulting dialog box for opening files select the desired export file.

The data is imported into the current project. If an object with the same name
already exists in the same project, then a dialog box appears with the question
"Do you want to replace it?": If you answer Yes, then the object in the project is
replaced by the object from the import file. If you answer No, then the name of
the new objects receives as a supplement an underline and a digit ("_0", "_1",
..). With Yes, all or No, all this is carried out for all objects.

4-42 907 AC 1131/Stand: 02/03The Individual Components10

If the information is imported to link with a library, the library will be loaded and
appended to the end of the list in the library manager. If the library was already
loaded into the project, it will not be reloaded. If, however, the export file that is
being imported shows a different storage time for the library, the library name is
marked with a “*” in the library manager (e.g. IEC_S90_V41.LIB*30.3.99
11:30:14), similar to the loading of a project. If the library can not be found, then
an information dialog appears: “Cannot find library {<path>\}<name> <date>
<time>”, as when a project is loaded.

In the message window the import is registered.

‘Project‘ ‘Compare‘

This command is used to compare two projects or to compare the actual
version of one project with that which was saved last.

Overview:

actual project: Project, which you are currently working on.
reference project: Project, which should be compared with the actual project.
compare mode: in this mode the project will be displayed after the command

'Project' 'Compare' has been executed.
unit: Smallest unit which can be compared. Can be a line (declaration

editor, ST editor, IL editor), a network (FBD editor, LD editor) or
a element/POU (CFC ediotr, SFC editor).

After the command has been executed, the actual project and the reference
project will be presented in 'compare mode' in a bipartited window. The names
of the POUs, for which differences have been found, are marked by color. For
editor POUs also the content of the POUs is displayed in a vis-a-vis way. The
results and the way of presenting in compare mode depend on: 1. what filters
have been activated for the compare run, affecting the consideration of
whitespaces and comments during comparison; 2. whether modification within
lines or networks or elements are evaluated as a completely new inserting of a
POU or not.

The version of the reference project can be accepted for single diffences or for
'all equally marked' differences. To accept means that the version of the
reference project is taken over to the actual project.

Please note: In compare mode (see status bar: COMPARE) the project cannot
get edited !

Execute comparison:

After executing the command 'Project' 'Compare' the dialog 'Project
Comparison' opens:

4-43907 AC 1131/Stand: 03.99 The Individual Components 10

Image 4.37: Dialog for Project Comparison

Insert the path of the reference project at Project to compare. Press button
if you want to use the standard dialog for opening a project. If you insert the
name of the actual project, the current version of the project will be compared
with the version which was saved last.

If the project is under source control in an ENI data base (see Chapter 9), then
the local version can be compared with the actual version found in the data
base. For this activate option Compare with ENI-Project.

The following options concerning the comparison can be activated:

Ignore whitespaces: There will be detected no differences which consist in a
different number of whitespaces.

Ignore comments: There will be detected no differences in comments.

Oppose differences: If a line, a network or an element wihthin a POU has
been modified, in compare mode it will be displayed in the bipartited window
directly opposite to the version of the other project (marked red, see below). If
the option is deactivated, the corresponding line will be displayed in the
reference project as 'deleted' and in the actual project as 'inserted' (blue/green,
see below). This means it will not be displayed directly opposite to the same line
in the other project.

Example: Line 0005 has been modified in actual project (left side).

4-44 907 AC 1131/Stand: 02/03The Individual Components10

When the dialog Project Comparison is closed by pressing OK, the comparison
will be executed according to the settings.

Representation of the result of the comparison:

First the structure tree of the project, titled with "Project Comparison", will be
opened to display the results of the comparison. Here you can select particular
POUs to see the found differences in detail.

1. Project overview in compare mode:

After the project compare has been executed, a bipartited window opens which
shows the project in compare mode. In the title bar you find the project paths:
"Project comparison <path of actual project> - <path of reference project>". The
actual project is represented In the left half of the window, the reference project
in the right one. Each structure tree shows the projects' name at the uppermost
position, apart from that it corresponds to the the object organizer structure.

Image 4.38: Example, Project in Compare mode

POUs which are different, are marked in the structure tree by a shadow, a
specific color and eventually by an additional text :

Red: Unit has been modified; is displayed with red colored letters in both
partitions of the window.

Blue: Unit only available in compare project; a gap will be inserted at the
corresponding place in the structure overview of the actual project.

Grün: Unit only available in actual project; a gap will be inserted at the
corresponding place in the structure overview of the actual project.

Black: Unit for which no differences have been detected.

"(Properties changed)": This text is attached to the POU name in the project
structure tree, if differences in the properties of the POU have been detected.

4-45907 AC 1131/Stand: 03.99 The Individual Components 10

"(Access rights changed)": This text is attached to the POU name in the
project structure tree, if differences in the access rights of the POU have been
detected.

2. POU contents in compare mode:

By a double click on a line in the structure overview, which is marked red
because of a modification, the POU is opened.

If it is a text or graphic editor POU, it will be opened in a bipartited window. The
content of the reference project (right side) is set opposite to that of the actual
project (left side). The smallest unit which will be regarded during comparison,
is a line (declaration editor, ST, IL), a network (FBD, LD) or an element (CFC,
SFC). The same coloring will be used as described above for the project
overview. Example:

Image 4.39: Example, POU in compare mode

If it is not a editor POU, but the task configuration, PLC configuration etc., then
the POU version of the actual and the reference project can be opened in
separate windows by a double click on the respective line in the project
structure. For those project POUs no further details of differences will be
displayed.

Working in the compare mode (Menu 'Extras', Context menu):

If the cursor is placed on a line in the bipartited window, which indicates a
difference, the menu 'Extras' resp. The context menu offers a selection of the
following commands, depending on whether working in the project overview or
in a POU.

4-46 907 AC 1131/Stand: 02/03The Individual Components10

'Next difference': The cursor jumps to the next unit, where a difference
is indicated. (line in project overview,
line/network/element in POU)

'Previous difference': The cursor jumps to the previous unit, where a
difference is indicated . (line in project overview,
line/network/element in POU)

'Accept change': For all coherent (e.g. subsequent lines) units, which
have the same sort of difference marking, the version
of the reference project will be accepted for the actual
project. The corresponding units will be shown (with
the corresponding coloring) in the left side of the
window. If it is an unit, which is marked red (just
modification), then the acceptance will be
recognizable by yellow coloring of the text in the
actual project.

'Accept changed
item':

Only the single unit (line, network, element) where the
cursor is currently placed, will be accepted for the
actual version. The corresponding units will be shown
(with the corresponding coloring) in the left side of the
window. If it is an unit, which is marked red (just
modification), then the acceptance will be
recognizable by yellow coloring of the text in the
actual project.

'Accept properties': The object properties for the POU, where the cursor is
currently placed, will be accepted for the actual project
as they are set in the reference version.

'Accept access
rights' (only in project
overview):

The object access rights for the POU, where the
cursor is currently placed, will be accepted for the
actual project as they are set in the reference version .

‘Project‘ ‘Merge‘

With this command you can merge objects (POUs, data types, visualizations,
and resources) as well as links to libraries from other projects into your project.

When the command has been given, first the standard dialog box for opening
files appears. When you have chosen a file there, a dialog box appears in which
you can choose the desired object. The selection takes place as described with
'Project' 'Document' .

If an object with the same name already exists in the project, then the name of
the new object receives the addition of an underline and a digit ("_1", "_2" ...).

‘Project‘ ‘Project info‘

Under this menu item the information about your project can be saved. When
the command has been given, then the dialog box shown in the image below
opens.

4-47907 AC 1131/Stand: 03.99 The Individual Components 10

The following project information is displayed:

• File name
• Directory path
• The time of the most recent change (Change date)

This information can not be changed.

In addition, you can can add the following information:

• A Title of the project,
• the name of the Author,
• the Version number, and
• a Description of the project.

This information is optional.

Image 4.40: Dialog box for entering project information

When you press the button Statistics you receive statistical information about
the project.

It contains information such as the number of the POUs, data types, and the
local and global variables as they were traced at the last compilation.

Image 4.41: Example of project statistics

4-48 907 AC 1131/Stand: 02/03The Individual Components10

If you activate the option Ask for project info in the category Load & Save in
the Options dialog box, then while saving a new project, or while saving a
project under a new name, the project info dialog is called automatically.

‘Project‘ ‘Global Search‘

With this command you can search for the location of a text in POUs, data
types, or in the objects of the global variables.

When the command is entered, a dialog box opens in which you can choose the
desired object. The selection is made as in the 'Project' 'Document'
description.

If the selection is confirmed with OK, the standard dialog for Search will be
opened. This appears immediately when the command 'Global Search' is

invoked via the symbol in the menu bar; the search is then automatically
carried out in all searchable parts of the project. The most recently entered
search strings can be selected through the combo box of the Search for field. If
a text string is found in an object, the object is loaded into the corresponding
editor or in the library manager and the location where the string was found is
displayed. The display of the text that is found, as well as the search and find
next functions behave similarly to the command 'Edit' 'Search'.

If you select the In message window button, all locations where the series of
symbols searched for appears in the selected object will be listed line by line in
tabular form in the message window. Afterward, the number of locations found
will be displayed.

If the report window was not opened, it will be displayed. For each location that
is found, the following will be displayed:

• Object name
• Location of the find in the Declaration (Decl) or in the Implementation (Impl)

portion of a POU
• Line and network number if any
• The full line in the text editors
• Complete text element in the graphic editors

Image 4.42: Message window with search result display

If you double-click the mouse on a line in the message window or press
<Enter>, the editor opens with the object loaded. The line concerned in the
object is marked. You can jump rapidly between display lines using the function
keys <F4> and <Shift>+<F4>.

4-49907 AC 1131/Stand: 03.99 The Individual Components 10

‘Project‘ ‘Global replace‘

With this command you can search for the location of a text in POUs, data
types, or the objects of the global variables and replace this text by another.
This is executed in the same way as with 'Project' 'Global Search' or 'Edit'
'Replace'. The libraries, however, are not offered for selection and no display in
the message window is possible.

Results are displayed in the message window.

‘Project‘ ‘Check‘

A submenu listing the following commands will open:

• Unused Variables
• Overlapping memory areas
• Access conflict
• Multiple writes to output
Each of these functions tests the state of the most recent compilation. The
project must therefore have been compiled error-free at least once, before the
test can be carried out; if not, the menu items are “greyed out".

Results are displayed in the message window.

Unused Variables: This function searches for variables that have been
declared but not used in the program. They are outputted by POU name and
line, e.g.: PLC_PRG (4) – var1. Variables in libraries are not examined.

Overlapping memory areas: This function tests whether in allocation of
variables via the “AT” declaration overlaps have arisen at specific memory
areas. For example, an overlap occurs when allocating the variables “var1 AT
%QB21: INT” and “var2 AT %QD5: DWORD” because they both use byte 21.
The output then appears as follows:

%QB21 is referenced by the following variables:
PLC_PRG (3): var1 AT %QB21
PLC_PRG (7): var2 AT %QD5

Access conflict: This function in the 'Project' 'Check' menu searches for
memory areas which are referenced in more than one task. No distinction is
made here between read and write access. The output is for example:

%MB28 is referenced in the following tasks :
Task1 – PLC_PRG (6): %MB28 [read-only access]
Task2 – POU1.ACTION (1) %MB28 [write access]

Multiple writes to output: This function of the 'Project' 'Check' menu searches
for memory areas to which a single project gains write access at more than one
place. The output then appears as follows:

4-50 907 AC 1131/Stand: 02/03The Individual Components10

%QB24 is written to at the following locations:
PLC_PRG (3): %QB24
PLC_PRG.POU1 (8): %QB24

User groups

In 907 AC 1131 up to eight user groups with different access rights to the
POUs, data types, visualizations, and resources can be set up. Access rights
for single objects or all of them can be established. Only a member of a certain
user group can open a project. A member of such a user group must identify
himself by means of a password.

The user groups are numbered from 0 to 7, whereby the Group 0 has the
administrator rights, i.e. only members of group 0 may determine passwords
and access rights for all groups and/or objects.

When a new project is launched, then all passwords are initially empty. Until a
password has been set for the 0 group, one enters the project automatically as
a member of the 0 group.

If a password for the user group 0 is existing while the project is loaded, then a
password will be demanded for all groups when the project is opened. For this
the following dialog box appears:

Image 4.43: Dialog box for password entry

In the combobox User group on the left side of the dialog box, enter the group
to which you belong and enter on the right side the relevant password. Press
OK. If the password does not agree with the saved password, then the
message appears:

"The password is not correct."
Only when you have entered the correct password the project can be opened.

With the command 'Passwords for user group' you can assign the passwords,
and with 'Object' 'Access rights' you can define the rights for single objects or
for all of them.

‘Project‘‘Passwords for user
groups‘

With this command you open the dialog box for password assignment for user
groups. This command can only be executed by members of group 0. When the
command has been given, then the following dialog box appears:

4-51907 AC 1131/Stand: 03.99 The Individual Components 10

Image 4.44: Dialog box for password assignment

In the left combobox User group you can select the group. Enter the desired
password for the group in the field Password. For each typed character an
asterisk (*) appears in the field. You must repeat the same password in the field
Confirm password. Close the dialog box after each password entry with OK. If
you get the message:

"The password does not agree with the confirmation",
then you made a typing error during one of the two entries. In this case repeat
both entries until the dialog box closes without a message.

Then, if necessary, assign a password for the next group by calling the
command again.

Important: If passwords are not assigned to all user groups, a
project can be opened by way of a group to which no password was assigned!

Use the command 'Object' 'Access rights' to assign the rights for single
objects or all of them.

4.4 Managing Objects in a Project

Now we shall explain how to work with objects and what help is available to
keep track of a project (Folders, Call tree, Cross reference list,..).

Object

POUs, data types, visualizations and the resources global variables, the
variable configuration, the Sampling Trace, the PLC Configuration, the Task
Configuration, and the Watch and Receipt Manager are all defined as "objects".
The folders inserted for structuring the project are partially involved. All objects
of a project are in the Object Organizer.

If you hold the mouse pointer for a short time on a POU in the Object Organizer,
then the type of the POU (Program, Function or Function block) is shown in a
Tooltip. For the global variables the tooltip shows the keyword (VAR_GLOBAL,
VAR_CONFIG).

4-52 907 AC 1131/Stand: 02/03The Individual Components10

With drag & drop you can shift objects (and also folders, see 'Folder') within an
object type. For this, select the object and shift it to the desired spot by holding
down the left mouse button. If the shift results in a name collision, the newly
introduced element will be uniquely identified by an appended, serial number
(e.g. “Object_1”).

Folder

In order to keep track of larger projects you should group your POUs, data
types, visualizations, and global variables systematically in folders.

You can set up as many levels of folders as you want. If a plus sign is in front of
a closed folder symbol , then this folder contains objects and/or additional
folders. With a click on the plus sign the folder is opened and the subordinated
objects appear. With a click on the minus (which has replaced the plus sign) the
folder can be closed again. In the context menu you find the commands
'Expand nodes' and 'Collapse nodes' with the same functions.

With Drag&Drop you can move the objects as well as the folders within their
object type. For this select the object and drag it with pressed left mouse button
to the desired position.

You can create more folders with the command 'New folder'.

Note: Folders have no influence on the program, but rather serve only to
structure your project clearly.

Image 4.45: Example of folders in the Object Organizer

‘New Folder‘

With this command a new folder is inserted as a structural object. If a folder has
been selected, then the new one is created underneath it. Otherwise it is
created on the same level. If an action is selected, the new folder will be
inserted at the level of the POU to which the action belongs.

The context menu of the Object Organizer which contains this command
appears when an object or the object type has been selected and you have
pressed the right mouse button or <Shift>+<F10>.

4-53907 AC 1131/Stand: 03.99 The Individual Components 10

The newly inserted folder initially has the designation 'New Folder'. Observe the
following naming convention for folders:

• Folders at the same level in the hierarchy must have distinct names.
Folders on different levels can have the same name.

• A folder can not have the same name as an object located on the same
level.

If there is already a folder with the name “New Folder” on the same level, each
additional one with this name automatically receives an appended, serial
number (e.g. “New Folder 1”). Renaming to a name that is already in use is not
possible.

‘Expand nodes‘ ‘Collapse
nodes‘

With the command expand the objects are visibly unfolded which are located in
the selected object. With Collapse the subordinated objects are no longer
shown.

With folders you can open or close them with a double mouse click or by
pressing <Enter>.

The context menu of the Object Organizer which contains this command
appears when an object or the object type has been selected and you have
pressed the right mouse button or <Shift>+<F10>.

‘Project‘ ‘Object Delete‘

Shortcut: <Delete>

With this command the currently selected object (a POU, a data type, a
visualization, or global variables), or a folder with the subordinated objects is
removed from the Object Organizer and is thus deleted from the project

For safety you are asked once more for confirmation.

If the editor window of the object was open, then it is automatically closed.

If you delete with the command 'Edit' 'Cut', then the object is parked on the
clipboard.

‘Project‘ ‘Object Add‘

Shortcut: <Insert>

With this command you create a new object. The type of the object (POU, data
type, visualization, or global variables) depends upon the selected register card
in the Object Organizer. Enter the Name of the new POU in the dialog box
which appears. Remember that the name of the object may not have already
been used.

Take note of the following restrictions:

4-54 907 AC 1131/Stand: 02/03The Individual Components10

• The name of a POU can not include any spaces
• A POU can not have the same name as another POU, or a data type.
• A data type can not receive the same name as another data type or a POU.
• A global variable list can not have the same name as another global variable

list.
• An action can not have the same name as another action in the same POU.
• A visualization can not have the same name as another visualization.
In all other cases, identical naming is allowed. Thus for example actions
belonging to different POUs can have the same name, and a visualization may
have the same as a POU.

In the case of a POU, the POU type (program, function or function block) and
the language in which it is programmed must also be selected. 'Program' is the
default value of Type of the POU, while that of Language of the POU is that of
most recently created POU. If a POU of the function type is created, the desired
data type must be entered in the Return Type text input field. Here all
elementary and defined data types (arrays, structures, enumerations, aliases)
are allowed. Input assistance (e.g. via <F2>) can be used.

Image 4.46: Dialog for creating a new POU

After pressing OK, which is only possible if there is no conflict with the naming
conventions described above, the new object is set up in the Object Organizer
and the appropriate input window appears.

If the command 'Edit' 'Insert' is used, the object currently in the clipboard is
inserted and no dialog appears. If the name of the inserted object conflicts with
the naming conventions (see above), it is made unique by the addition of a
serial number appended with a leading underline character (e.g.
“Rightturnsig_1”).

If the project is under source control in an ENI data base,‘ it may be (depends
on the settings in the Project options dialog for 'Project source control') that you
will be automatically asked in which data base category you want to handle the
new object. In this case the dialog Properties will open where you can assign
the object to one of the data base object categories.

4-55907 AC 1131/Stand: 03.99 The Individual Components 10

‘Project‘ ‘Object Rename‘

Shortcut: <Spacebar>

With this command you give a new name to the currently-selected object or
folder. Remember that the name of the object may not have already been used.

If the editing window of the object is open, then its title is changed automatically
when the name is changed.

Image 4.47: Dialog box for renaming a POU

‘Project‘ ‘Object Convert‘

This command can only be used with POUs. You can convert POUs from the
languages SFC, ST, FBD, LD, and IL into one of the three languages IL, FBD,
and LD.

For this the project must be compiled. Choose the language into which you
want to convert and give the POU a new name. Remember that the name of the
POU may not have already been used. Then press OK, and the new POU is
added to your POU list.

The type of processing that occurs during conversion corresponds to that which
applies to compilation.

Image 4.48: Dialog box for converting a POU

‘Project‘ ‘Object Copy‘

With this command a selected object is copied and saved under a new name.
Enter the name of the new object in the resulting dialog box. Remember that the
name of the object may not have already been used.

If, on the other hand, you used the command 'Edit' 'Copy', then the object is
parked on the clipboard, and no dialog box appears.

4-56 907 AC 1131/Stand: 02/03The Individual Components10

Image 4.49: Dialog box for copying a POU

‘Project‘ ‘Object Open‘

Shortcut: <Enter>

With the command you load a selected object within the Object Organizer into
the respective editor. If a window with this object is already open, then it gets a
focus, is moved into the foreground and can now be edited.

There are two other ways of opening an object:

• Doubleclick with the mouse on the desired object
• type in the Object Organizer the first letter of the object name. Then a dialog

box opens in which all objects of the available object types with this initial
letter are shown. Select the desired object and click on the button Open in
order to load the object in its edit window. This option is supported with the
object type Resources only for global variables.

This last possibility is especially useful in projects with many objects.

Image 4.50: Dialog box for choosing the object to be opened

'Project‘ ‘Object Access rightsC

With this command you open the dialog box for assigning access rights to the
different user groups. The following dialog box appears:

4-57907 AC 1131/Stand: 03.99 The Individual Components 10

Image 4.51: Dialog box for assigning access rights

Members of the user group 0 can now assign individual access rights for each
user group. There are three possible settings:

• No Access: the object may not be opened by a member of the user group.
• Read Access: the object can be opened for reading by a member of the

user group but not changed.
• Full Access: the object may be opened and changed by a member of the

user group.
The settings refer either to the currently-selected object in the Object Organizer
or, if the option Apply to all is chosen, to all POUs, data types, visualizations,
and resources of the project.

The assignment to a user group takes place when opening the project through a
password request if a password was assigned to the user group 0.

‘Project’ ‘Object properties'

This command will open the dialog 'Properties' for that object which is currently
marked in the Object organizer.

On the tab Access rights you find the same dialog as you get when executing
the command 'Project' 'Object Access Rights'.

It depends on the object and the project settings, whether there are additional
tabs available where you can define object properties:

• If a global variable list is currently selected in the Object Organizer, then a
tab 'Global variable list' will be available where the parameters concerning
the actualization of the list are defined. The entries can be modified here.
This dialog also will be opened if you create a new global variable list by
selecting one of the entries in section 'Global Variables' in the Object
Organizer and executing the command 'Add Object'.

• If the project is connected to an ENI data base (see Chapter 4.2, 'Project'
'Options' 'Project source control'), then a tab 'Database-connection' will be
available. Here you can display and modify the current assignment of the
object to one of the data base categories resp. to the category 'Local'. See
for further information in Chapter 9: The 907 AC 1131 ENI'.

4-58 907 AC 1131/Stand: 02/03The Individual Components10

'Project' 'Data Base Link'

This menu item is only available if you have activated the option 'Use source
control (ENI)' in the project options dialog for category 'Project source control. A
submenu is attached where you find commands for handling the object resp.
the project in the currently connected ENI data base:

• Login (The user logs in to the ENI Server)
If an object is marked in the Object Organizer and the command Data Base
Link is executed (from the context menu, right mouse button), then the
following commands will be available for executing the corresponding data base
actions. If the user had not logged in successfully to the ENI Server before,
then the dialog 'Data base Login' will open automatically and the chosen
command will not been executed until the login was successful:

• Define
• Get Latest Version
• Check Out
• Check In
• Undo Check Out
• Show differences
• Show Version History
If the command 'Data Base Link' in the 'Project' menu is activated, then
additional menu items will be available, which concern all objects of the project:

• Multiple Define
• Get All Latest Versions
• Multiple Check Out
• Multiple Check In
• Multiple Undo Check Out
• Project Version History
• Label Version
• Add Shared Objects
• Refresh Status
See in the following how the status of an object resp. its handling in the data
base is displayed in the Object Organizer:

4-59907 AC 1131/Stand: 03.99 The Individual Components 10

Grey shaded icon:
Object is kept in the data base

Green check in front of the object name:
Object is checked out in the local project.

Red cross in front of the object name:
Object is currently checked out by another
user.

<R> behind object name:
The object can only be read, but not edited.
Please regard: some objects (Task
configuration, Sampling Trace, PLC
Configuration, Watch- and Receipt
Manager) are per default assigned with a
<R> as long as they are not checked out.
This means that you will not automatically
be asked whether the object should be
checked out, as soon as you start to edit
the object; it not necessarily means that
you cannot edit the object. If there is
actually no write access then the command
'Check out' will not be available.

'Define'

Use this command of the menu 'Project' 'Data Base Link' to define whether the
object, which is currently marked in the Object organizer, should be kept in the
data base or just locally in the project. A dialog will open, where you can choose
one of the two data base categories 'Project' or 'Shared objects', or the category
'Local'.

The icons of all objects which are managed in the data base will be displayed
grey-shaded in the Object organizer.

'Get Latest Version'

Use this command of the menu 'Project' 'Data Base Link' to copy the current
version of the object, which is marked in the Object organizer, from the data
base to your project. This will overwrite the local version. In contrast to the
'Check Out' action the object will not be locked for other users in the data base.

'Check Out'

Use this command of the menu 'Project' 'Data Base Link' to check out the
object, which is marked in the Object organizer, from the data base and by that
to lock it for other users.

4-60 907 AC 1131/Stand: 02/03The Individual Components10

When executing the command the user will get a dialog 'Check out object'. A
comment can be added there which will be stored in the version history of the
object in the data base. After the dialog has been closed with OK the checked-
out object will be marked with a green check in the object organizer of the local
project. For other users it will be appear marked with a red cross and will not be
editable by them.

'Check In'

Use this command of the menu 'Project' 'Data Base Link' to check in the object,
which is marked in the Object organizer, to the data base. Thereby a new
version of the object will be created in the data base. The old versions will be
kept anyway.

When executing the command the user will get a dialog 'Check in object'. There
a comment can be added which will be stored in the version history of the object
in the data base. After the dialog has been closed with OK the green check in
front of the object name in the Object organizer will be removed.

'Undo Check Out'

Use this command of the menu 'Project' 'Data Base Link' to cancel the
Checking out of the object which is currently marked in the Object organizer.
Thereby also the modifications of the object which have been made locally, will
be canceled. No dialog will appear. The unchanged last version of the object
will be kept in the data base and it will be accessible again for other users. The
red cross in front of the object name in the Object organizer will disappear.

'Show Differences'

Use this command of the menu 'Project' 'Data Base Link' to display the object,
which is currently opened by the user in 907 AC 1131, in a window which is
divided up in two parts. There the local version, which is currently edited by the
local user, will be opposed to the last (actual) version which is kept in the data
base. The differences of the versions will be marked like described for the
project comparison (see 'Project' 'Compare').

'Show Version History'

Use this command of the menu 'Project' 'Data Base Link' to open a dialog
'Version history of <object name> for the object which is currently marked in the
Object Organizer. There all versions of the object are listed which have been
checked in to the data base or which have been labeled there:

4-61907 AC 1131/Stand: 03.99 The Individual Components 10

Image 4.52: Dialog Version History

The following information is given:

Version: Data base specific numbering of the versions of the object which have
been checked in one after the other. Labeled versions get no version number
but are marked by a label-icon.

User: Name of the user, who has executed the check-in or labeling action

Date: Date and time stamp of the action

Action: Type of the action which has been executed. Possible types: 'created'
(the object has been checked in to the data base for the first time), 'checked in'
(all check-in's of the object excluding the first one) and 'labeled with <label>' (a
label has been assigned to this version of the object)

The buttons:

Close: The dialog will be closed.

Display: The version which is currently marked in the table will be opened in a
window in 907 AC 1131. The title bar shows: "ENI: <name of the project in the
data base>/<object name>

Details: The dialog 'Details of Version History' will open:

File (name of the project and the object in the data base), Version (see
above), Date (see above), User (see above), Comment (Comment which
has been inserted when the object has been checked in resp. has been
labeled). Use the buttons Next resp. Previous to jump to the details
window of the next or previous entry in the table in dialog 'Version history of
..'.

Get latest version: The version which is marked in the table will be loaded in
907 AC 1131 and there will overwrite the local version.

Differences: If in the table only one version of an object is marked, then this
command will cause a comparison of this version with the latest (actual) data
base version. If two versions are marked, then those will be compared. The
differences are displayed in a bipartited window like it is done at the project
comparison.

Reset version: The version which is marked in the table will be set as latest
version. All versions which have been checked in later will be deleted ! This
can be useful to restore an earlier status of an object.

Labels only: If this option is activated, then only those versions of the object
will be displayed in the table, which are marked by a label.

Selection box below the option 'Labels only': Here you find the names of all
users which have executed any data base actions for objects of the current
project. Select 'All' or one of the names if you want to get the version history
concerning all users or just for a certain one.

4-62 907 AC 1131/Stand: 02/03The Individual Components10

'Multiple Define'

Use this command of the menu 'Project' 'Data Base Link' to assign several
objects at a single blow to a certain data base category. The dialog 'Properties'
will open like described for command 'Define'. Choose the desired category and
close the dialog with OK. After that the dialog 'ENI-Selection' will open, listing
all POUs of the project which are considered for the chosen category (Example:
if you choose category 'shared objects' then the selection window will only offer
the POUs of the Resources tab). The POUs are presented in a tree structure
complying to that of the Object Organizer. Select the desired POUs and confirm
with OK.

'Get All Latest Versions'

Use this command of the menu 'Project' 'Data Base Link' to call the latest
version of each object of the currently opened project, which is kept under
source control, from the data base. Consider the following:

• If in the meantime additional objects have been stored to the data base
project folder, then those will now be added to the local project in
907 AC 1131.

• If objects have been deleted in the data base in the meantime, those will not
be deleted in the local project, but they will automatically get assigned to
category 'Local'.

• The latest version of objects of category 'Shared Objects' will only be called,
if these objects are already available in the local project. For further
information see command 'Get latest version'.

'Multiple Check Out'

Use this command of the menu 'Project' 'Data Base Link' to check out several
objects at a single blow. For this the dialog 'ENI-Selection' will open, listing all
POUs of the project. Select those which should be checked out and confirm
with OK. For further information see command 'Check Out'.

'Multiple Check In'

Use this command of the menu 'Project' 'Data Base Link' to check in several
objects at a single blow. For this the dialog 'ENI-Selection' will open, listing all
POUs of the project. Select those which should be checked in and confirm with
OK. For further information see command 'Check In'.

'Multiple Undo Check Out'

Use this command of the menu 'Project' 'Data Base Link' to undo the check out
action for several objects at a single blow. For this the dialog 'ENI-Selection'
will open, listing all POUs of the project. Select those for which you want to
cancel the check out and confirm with OK. For further information see command
'Undo Check Out'.

4-63907 AC 1131/Stand: 03.99 The Individual Components 10

'Project Version History'

Use this command of the menu 'Project' 'Data Base Link' to view the version
history for the currently opened project.But this will only work, if the chosen data
base system supports that functionality.

The dialog 'History of <data base project name>' will open. It shows the actions
(create, check in, label) which have been performed for the particular objects of
the project in a chronological order. The total number of objects is displayed
behind Version history. The dialog can be handled like described for command
'Show Version History', but regard the following:

• The command 'Reset Version' is only available for single objects.
• The command 'Get latest version' will call all objects of the version of the

currently marked entry to the local project ! That means, that the objects in
907 AC 1131 will be overwritten with the older version. But: Local objects,
which were not yet part of the project in that older version, will not be
removed from the local project !

'Label Version'

Use this command of the menu 'Project' 'Data Base Link' to put a "label" on the
actual version of each object of a project, so that exactly this project version can
be recalled later. A dialog 'Label <data base project name>' will open. Insert a
label name (Label) (e.g. "Release Version") and optionally a Comment. When
you confirm with OK, the dialog will close and the label and the action "labeled
with <label name>" will appear in the table of the version history, as well in the
history for a single object as in the history of the project. A labeled version of the
project does not get a version number, but is just marked with a label icon in the
column 'Version'. If the option 'Labels only' is activated in the Version History
dialog, then only labeled versions will be listed.

Image 4.53: Dialog for labeling a project version

Data base command 'Add
Shared Objects'

Use this command of the menu 'Project' 'Data Base Link' if you explicitely want
to add new objects of data base category 'Shared Objects' to the locally opened
project in 907 AC 1131. For objects of category 'Project Objects' this is not
necessary, because the command 'Get (all) latest version(s)' automatically calls

4-64 907 AC 1131/Stand: 02/03The Individual Components10

all objects which are found in the data base project folder, even if there are
some which not yet available in the local project. But for objects of category
'Shared Objects' in this case just those objects will be called which are already
available in the local project.

So execute the command 'Add Shared Objects' to open the dialog 'Browse ENI'.
A list in the right part of the window shows all objects which are available in the
data base folder which is currently selected in the list on the left side. Choose
the desired object and press OK or do a doubleclick on the entry to insert the
object to the currently opened 907 AC 1131 project.

Image 4.54: Dialog 'Browse ENI' for adding 'Shared objects' to the local project

Data base command 'Refresh
Status'

Use this command of the menu 'Project' 'Data Base Link' to update the display
in the Object Organizer, so that you can see the actual status of the objects
concerning the source control of the project.

Database 'Login'
Use this command of the menu 'Project' 'Data Base Link' to open the dialog
'Login' where you can enter the access data for the ENI data base via the ENI
Server. The access data also have to be defined in the ENI Server (ENI Admin,
User Management) and – depending on the currently used data base – also in
the user management of the data base. After the command has been executed,
first the Login dialog for category 'Project objects' will open.

The following items are displayed:

Data base: project objects

Host: address of the computer where the ENI Server is running (must match
with the entry in field 'TCP/IP address' in the project options dialog for 'Project
source control').

Project: Name of the data base project (must match with the entry in field
'Project name' in the project options dialog for 'Project source control'/category
'Project Objects').

4-65907 AC 1131/Stand: 03.99 The Individual Components 10

Credentials: Insert User name and Password.

Image 4.55: ENI Login Dialog

When option Use as default for this project is activated, then the above entered
access data will automatically be used for any further communication between
the actual 907 AC 1131 project and the data base concerning objects of the
actual category.

Press OK to confirm the settings. The dialog will be closed and automatically
the Login dialog for 'Shared objects' will open. Enter the access data in the
same way as described for the 'Project objects' and confirm with OK. Do the
same in the third Login dialog which will be opened for category 'Compile files'.

The Login dialog will always open as soon as you try to access the data base
before having logged in successfully like described above.

 Note: If you want to save the access data with the project, activate option
'Save ENI credentials' in the project options, category 'Load & Save'.

‘Project’ ‘Add Action’

This command is used to generate an action allocated to a selected block in the
Object Organizer. One selects the name of the action in the dialog which
appears and also the language in which the action should be implemented.

The new action is placed under your block in the Object Organiser. A plus sign
appears in front of the block. A simple mouse click on the plus sign causes the
action objects to appear and a minus sign appears in front of the block.
Renewed clicking on the minus sign causes the actions to disappear and the
plus sign appears again. This can also be achieved over the context menu
commands ‘Expand Node’ and ‘Collapse Node’.

4-66 907 AC 1131/Stand: 02/03The Individual Components10

'Project' 'Open Instance'

With this command it is possible to open and display the instance of the function
block which is selected in the Object Organizer. In the same manner, a double
click on the function block in the Object Organizer gives access to a selection
dialog in which the instances of the function block as well as the implementation
are listed. Select here the desired instance or the implementation and confirm
using OK. The desired item is then displayed in a window.

Attention: If you want to view instances, you first have to log in ! (The
project has been compiled with no errors and downloaded to the PLC with
‘Online’ ’Login’).

Image 4.56: Dialog for opening an instance

‘Project‘ ‘Show Call Tree‘

With this command you open a window which shows the call tree of the object
chosen in the Object Organizer. For this the project must be compiled (see
'Rebuild all'). The call tree contains both calls for POUs and references to data
types.

Image 4.57: Example of a call tree

‘Projekt’ ‘Show Cross
Reference‘

With this command you open a dialog box which makes possible the output of
all application points for a variable, address, or a POU. For this the project must
be compiled (see 'Project' 'Build').

4-67907 AC 1131/Stand: 03.99 The Individual Components 10

Choose first the category 'Variable', 'Address', or 'POU' and then enter the
name of the desired element. To obtain all elements of the entered category
enter a “*” in Name.

Image 4.58: Dialog box and example of a cross reference list

By clicking on the button Cross References you get the list of all application
points. Along with the POU and the line or network number, the variable name
and the address binding, if any, are specified. The Domain space shows
whether this is a local or a global variable; the Access column shows whether
the variable is to be accessed for ‚reading’ or ‚writing’ at the current location.

When you select a line of the cross reference list and press the button Go To or
doubleclick on the line, then the POU is shown in its editor at the corresponding
point. In this way you can jump to all application points without a time-
consuming search.

In order to make processing easier, you can use the Send to message
window button to bring the current cross reference list into the message
window and from there change to the respective POU.

4.5 General Editing Functions

You can use the following commands in all editors and some of them in the
Object Organizer. The commands are located under the menu item 'Edit' and in
the context menu that is opened with the right mouse button.

If the IntelliPoint-Software is installed on the computer, 907 AC 1131 supports
all functions of the MS IntelliMouse. In all editors with zoom functionality: To
magnify press the <Strg> key while rolling the wheel of the mouse, to reduce
roll backwards while the <Strg> key is pressed.

4-68 907 AC 1131/Stand: 02/03The Individual Components10

‘Edit‘ ‘Undo‘

Shortcut: <Ctrl>+<Z>

This command undoes the action which was most recently executed in the
currently-open editor window or in the Object Organizer; repeated use undoes
all actions back to the time that the window was opened. This applies to all
actions in the editors for POUs, data types, visualizations and global variables
and in the Object Organizer.

With 'Edit' 'Redo' you can restore an action which you have undone.

Note: The commands Undo and Redo apply to the current window. Each
window carries its own action list. If you want to undo actions in several
windows, then you must activate the corresponding window. When undoing or
redoing in the Object Organizer the focus must lie here.

‘Edit‘ ‘Redo‘

Shortcut: <Ctrl>+<Y>

With the command in the currently-open editor window or in the Object
Organizer you can restore an action you have undone ('Edit' 'Undo').

As often as you have previously executed the command 'Undo' , you can also
carry out the command 'Redo'.

Note: The commands 'Undo' and 'Redo' apply to the current window.
Each window carries its own action list. If you want to undo actions in several
windows, then you must activate the corresponding window. When undoing or
redoing in the Object Manager must lie there.

‘Edit‘ ‘Cut‘

Symbol:

Shortcut: <Ctrl>+<X> or <Shift>+<Delete>

This command transfers the current selection from the editor to the clipboard.
The selection is removed from the editor.

In the Object Organizer this similarly applies to the selected object, whereby not
all objects can be deleted, e.g. the PLC Configuration.

Remember that not all editors support the cut command, and that its use can be
limited in some editors.

The form of the selection depends upon the respective editor:

In the text editors IL, ST, and declarations the selection is a list of characters.

4-69907 AC 1131/Stand: 03.99 The Individual Components 10

In the FBD and LD editors the choice is a number of networks which are
indicated by a dotted rectangle in the network number field or a box with all
preceding lines, boxes, and operands.

In the SFC editor the selection is a part of a series of steps surrounded by a
dotted rectangle.

In order to paste the content of the clipboard you use the command 'Edit'
'Paste'. In the SFC editor you can also use the commands 'Extras' 'Insert
parallel branch (right)' or 'Extras' 'Paste after'.

In order to copy a selection onto the clipboard without deleting it, use the
command 'Edit' 'Copy'.

In order to remove a selected area without changing the clipboard, use the
command 'Edit' 'Delete'.

‘Edit‘ ‘Copy‘

Symbol: Shortcut: <Ctrl>+<C>

This command copies the current selection from the editor to the clipboard. This
does not change the contents of the editor window.

With the Object Organizer this similarly applies to the selected object, whereby
not all objects can be copied, e.g. the PLC Configuration.

Remember that not all editors support copying and that it can be limited with
some editors.

For the type of selection the same rules apply as with 'Edit' 'Cut'.

The form of the selection depends upon the respective editor:

In the text editors (IL, ST, and declarations) the selection is a list of characters.

In the FBD and LD editors the choice is a number of networks which are
indicated by a dotted rectangle in the network number field or a box with all
preceding lines, boxes, and operands.

In the SFC editor the selection is a part of a series of steps surrounded by a
dotted rectangle.

In order to paste the content of the clipboard you use the command 'Edit'
'Paste'. In the SFC editor you can also use the commands 'Extras' 'Insert
parallel branch (right)' or 'Extras' 'Paste after'.

In order to delete a selected area and simultaneously put it on the clipboard,
use the command 'Edit' 'Cut'.

‘Edit‘ ‘Paste‘

Symbol: Shortcut: <Ctrl>+<V>

4-70 907 AC 1131/Stand: 02/03The Individual Components10

Pastes the content of the clipboard onto the current position in the editor
window. In the graphic editors the command can only be executed when a
correct structure results from the insertion.

With the Object Organizer the object is pasted from the clipboard.

Remember that pasting is not supported by all editors and that its use can be
limited in some editors.

The current position can be defined differently according to the type of editor:

With the text editors (IL, ST Declarations) the current position is that of the
blinking cursor (a vertical line) which you place by clicking with the mouse).

In the FBD and LD editors the current position is the first network with a dotted
rectangle in the network number area. The contents of the clipboard are
inserted in front of this network. If a partial structure has been copied, then it is
inserted in front of the selected element.

In the SFC editor the current position is determined the selection which is
surrounded by a dotted rectangle. Depending upon the selection and the
contents of the clipboard, these contents are inserted either in front of the
selection or into a new branch (parallel or alternative) to the left of the selection.

In SFC the commands 'Extras' 'Insert parallel branch (right)' or 'Extras' 'Paste
after' can be used in order to insert the contents of the clipboard.

In order to copy a selection onto the clipboard without deleting it, use the
command 'Edit' 'Copy'.

In order to remove a selected area without changing the clipboard, use the
command 'Edit' 'Delete'.

‘Edit‘ ‘Delete'

Shortcut:

Deletes the selected area from the editor window. This does not change the
contents of the clipboard.

In the Object Organizer this applies likewise to the selected object, whereby not
all objects can be deleted, e.g. the PLC Configuration.

For the type of selection the same rules apply as with 'Edit' 'Cut'.

The form of the selection depends upon the respective editor:

In the text editors (IL, ST, and declarations) the selection is a list of characters.

In the FBD and LD editors the selection is a number of networks which are
highlighted with a dotted rectangle in the network number field.

4-71907 AC 1131/Stand: 03.99 The Individual Components 10

In the SFC editor the selection is a part of a series of steps surrounded by a
dotted rectangle.

In the library manager the selection is the currently selected library name.

In order to delete a selected area and simultaneously put it on the clipboard,
use the command 'Edit' 'Cut'.

'Edit' ‘Find‘

Symbol:

With this command you search for a certain text passage in the current editor
window. The Find dialog box opens. It remains opens until the button Cancel is
pressed.

In the field Find what you can enter the series of characters you are looking for.

In addition, you can decide whether the text you are looking for Match whole
word only or not, or also whether Match case is to be considered, and whether
the search should proceed Up or Down starting from the current cursor
position.

The button Find next starts the search which begins at the selected position
and continues in the chosen search direction. If the text passages is found, then
it is highlighted. If the passage is not found, then a message announces this.
The search can be repeated several times in succession until the beginning or
the end of the contents of the editor window has been reached. In the CFC
editor the geometrical order of the elements will be regarded, the search will run
from the left upper corner of the window to the right upper corner. Please regard
that FBD POUs are processed from the right to the left !

Image 4.59: Find dialog box

‘Edit‘ ‘Find next‘

Symbol: Shortcut: <F3>

With this command you execute a search with the same parameters as with the
most recent action 'Edit' 'Find'. Please regard that FBD POUs are processed
from the right to the left !

4-72 907 AC 1131/Stand: 02/03The Individual Components10

‘Edit‘ ‘Replace‘

With this command you search for a certain passage just as with the command
'Edit' 'Find', and replace it with another. After you have chosen the command
the dialog box for find and replace appears. This dialog box remains open until
the button Cancel or Close is pressed.

In the field behind Find automatically that string will be inserted which you have
marked before in the editor. You also can enter the search string manually.
Pressing button Replace will replace the current selection with the text in the
field Replace with. Use the button Find Next to get to the next passage where
the string is found. Please regard, that FBD POUs are processed from the right
to the left !

The button Replace all replaces every occurrence of the text in the field Find
next after the current position with the text in the field Replace with. At the end
of the procedure a message announces how many replacements were made.

Image 4.60: Dialog box for find and replace

4-73907 AC 1131/Stand: 03.99 The Individual Components 10

‘Edit‘ ‘Input Assistant‘

Shortcut: <F2>

This command provides a dialog box for choosing possible inputs at the current
cursor position in the editor window. In the left column choose the desired input
category, select the desired entry in the right column, and confirm your choice
with OK. This inserts your choice at this position.

The categories offered depend upon the current cursor position in the editor
window, i.e. upon that which can be entered at this point (e.g. variables,
operators, POUs, conversions, etc.).

If the option With arguments is active, then when the selected element is
inserted, the arguments to be transferred are specified with it, for example:
function block fu1 selected, which defines the input variable var_in:
fu1(var_in:=);

Insertion of function func1, which uses var1 and var2 as transfer parameters:
func1(var1,var2)

It is basically possible to switch between structured and unstructured display of
the available elements. This occurs through activation/deactivation of the
Structured Display option.

 Note: For inserting identifiers you also can use the Intellisense functionality.

• Unstructured Display:

Image 4.61: Dialog for unstructured input assistance

The POUs, variables or data types in each category are simply sorted linearly in
alphabetical order.

At various places (e.g. in the Watch List), multi-stage variable names are
required. In that event, the Input Assistant dialog displays a list of all POUs as
well as a single point for the global variables. After each POU name there is a
point. If a POU is selected by doubleclick or by pressing <Enter>, a list of the
variables belonging to it opens. If instances and data types are present, it is

4-74 907 AC 1131/Stand: 02/03The Individual Components10

possible to open further levels in the hierarchy display. OK transfers the most
recently selected variable.

• Structured Display:

Image 4.62: Dialog for structured input assistance

If Structured display is selected, the POUs, variables or data types will be
sorted hierarchically. This is possible for standard programs, standard functions,
standard function blocks, defined programs, defined functions, defined function
blocks, global variables, local variables, defined types, watch variables. The
visual and hierarchical display corresponds to that of the Object Organizer; if
elements in a library are referred to, these are inserted in alphabetical order at
the very top and the pertinent hierarchy is displayed as in the Library Manager.

The in- and output variables of function blocks which are declared as local or
global variables are listed in the category 'Local Variables' or 'Global Variables'
under the instance name (e.g. Inst_TP ET, Inst_TP IN,...). To get there, select
the instance name (e.g. Inst_TP) and confirm with OK.

If the instance of a function block is selected here, the option With
arguments may be selected. In the text languages ST and IL as well as during
task configuration, the instance name and the input parameters of the function
block are then inserted.

For example, if Inst (DeklarationInst: TON;) is selected, the following is inserted:
Inst(IN:= ,PT:=)
If the option is not selected, only the instance name will be inserted. In the graphical
languages or in the Watch window, only the instance name is generally inserted.

Components of structures are displayed in an analog fashion to function block
instances.

For enumerations, the individual enumeration values are listed under the
enumeration type. The order is: enumerations from libraries, enumerations from
data types, local enumerations from POUs.

4-75907 AC 1131/Stand: 03.99 The Individual Components 10

The general rule is that lines containing sub-objects are not selectable (except
instances, see above), but can only have their hierarchy display expanded or
contracted by one level, as for multi-stage variable names.

If Input Assistant is invoked in the Watch and Receipt Manager or in the
selection of trace variables in the trace configuration dialog, it is possible to
make a multiple selection. When the <Shift> key is pressed, you can select a
range of variables; when the <Ctrl> key is pressed you can select many
individual variables. The selected variables are so marked. If, during range
selection lines are selected that do not contain valid variables (e.g. POU
names), these lines will not be included in the selection. When individual
selections are made, such lines can not be marked.

In the watch window and in trace configuration it is possible to transfer
structures, arrays or instances from the Input Assistant dialog. As a double click
with the mouse button is associated with the extension or contraction of the
element’s hierarchy display, selection in these cases can only be confirmed by
OK.

Thereafter, the selected variables are inserted line by line in the watch window,
that is each selected variable is written on a separate line. In the case of trace
variables, each variable is inserted in a separate line of the trace variables list.

If the maximum number of trace variables, 20, is exceeded during insertion of
the selected variables, the error message „A maximum of 20 variables is
allowed“ appears. Further selected variables are then not inserted in the list.

Note: Some entries (e.g. Global Variables) are only updated in the Input
Assistant dialog after compilation.

‘Edit’ ’Declare Variable’

Shortcut: <Shift>+<F2>

This command opens the dialog for the declaration of a variable. This dialog
also opens automatically when the option 'Project' 'Options' 'Editor'
'Autodeclaration' is switched on and when a new undefined variable is used the
declaration editor.

‘Edit‘ ‘Next error'

Shortcut: <F4>

After the incorrect compilation of a project this command can show the next
error. The corresponding editor window is activated and the incorrect place is
selected. At the same time in the message window the corresponding error
message is shown.

4-76 907 AC 1131/Stand: 02/03The Individual Components10

‘Edit‘ ‘Previous error'

Shortcut: <Shift>+<F4>

After the incorrect compilation of a project this command shows the previous
error. The corresponding editor window is activated and the incorrect place is
selected. At the same time in the message window the corresponding error
message is shown.

‘Edit’ ’Macros’

This menu item leads to a list of all macros, which are defined for the project.
(For info on generating macros see 'Project' 'Options' 'Macros'). When an
executable macro is selected the dialog 'Process Macro'. The name of the
macro and the currently active command line are displayed. The button Cancel
can be used to stop the processing of the macro. In that event the processing of
the current command will be finished anyway. Then an appropriate message is
displayed in the message window and in the log during Online operation:
"<Macro>: Execution interrupted by user“.

Macros can be executed offline and online, but in each case only those
commandes are executed which are available in the respective mode.

4.6 General Online Functions

The available online commands are assembled under the menu item 'Online'.
The execution of some of the commands depends upon the active editor.

The online commands become available only after logging in.

Thanks to 'Online Change' functionality you have the possibility of making
changes to programs on the running controller. See in this connection 'Online'
'Log-in'.

'Online' 'Login'

Symbol: Shortcut: <Alt>+<F8>

This command combines the programming system with the PLC (or starts the
simulation program) and changes into the online mode.

If the current project has not been compiled since opening or since the last
modification, then it is compiled now (as with ‘Project‘ ‘Build). If errors occur
during compilation, then 907 AC 1131 does not change into Online mode.

If the current project was changed on the controller since the last download, but
not closed, and if the last download information was not deleted with the
command 'Project' 'Clear all', then after the command 'Login' a dialog opens
with the question: „The program has been changed. Load changes? (Online
Change)“. By answering Yes you confirm that, on log-in, the modified portions
of the project are to be loaded onto the controller. No results in a log-in without
the changes made since the last download being loaded onto the controller.

4-77907 AC 1131/Stand: 03.99 The Individual Components 10

Cancel cancels the command. <Load all> causes the entire project to be
reloaded onto the controller.

Please regard: Online Change is not possible after modifications in the
Task Configuration, in the PLC Configuration, after adding a library or after the
command 'Project' 'Clean all' (see below). At Online Change variables will not
be re-initialized, that means that modifications of the initialization values will not
be regarded ! Retain variables will keep their values if an Online Change is
done, this is not for sure at a re-download of the project. (see below, 'Online'
'Download').

After a successful login all online functions are available (if the corresponding
settings in 'Project' 'Options' category 'Build' have been entered). The current
values are monitored for all visible variable declarations.

Use the 'Online' 'Logout' command to change from online back to offline mode.

If the system reports

Error:
„Communication error. Log-out has occurred“

Check whether the controller is running. Check whether the parameters entered
in 'Online' 'Communications parameters' match those of your controller. In
particular, you should check whether the correct port has been entered and
whether the baud rates in the controller and the programming system match. If
the gateway server is used, check whether the correct channel is set.

Error:
"The program has been modified! Should the new program be loaded?"

The project which is open in the editor is incompatible with the program
currently found in the PLC (or with the Simulation Mode program being run).
Monitoring and debugging is therefore not possible. You can either choose
"No," logout, and open the right project, or use "Yes" to load the current project
in the PLC.

Message:
„The program has been changed. Load changes? (ONLINE CHANGE)“.

The project is running on the controller. The target system supports 'Online
Change' and the project has been altered on the controller with respect to the
most recent download or the most recent Online Change. You may now decide
whether these changes should be loaded with the controller program running or
whether the command should be cancelled. You can also, however, load the
entire compiled code by selecting the Load all button.

4-78 907 AC 1131/Stand: 02/03The Individual Components10

‘Online‘ ‘Logout'

Symbol: Shortcut <Strg>+<F8>

The connection to the PLC is broken, or, the Simulation Mode program is ended
and is shifted to the offline mode.

Use the 'Online' 'Login' command to change to the online mode.

‘Online‘ ‘Download‘

This command loads the compiled project in the PLC. (Do not mix up with the
command 'Online' 'Sourcecode download' !)

Download information is saved in a file called <projectname>0000000ar.ri ,
which is used during Online Change to compare the current program with the
one most recently loaded onto the controller, so that only changed program
components are reloaded. This file is erased by the command 'Project' 'Clear
all'.

 Please regard: The memory address of the retain variables in the PLC
changes during download, that means the order and thus the values of the
variables might change ! This will not happen during Online Change (see
above, 'Online' 'Login').

'Online' 'Run'

Symbol: Shortcut: <F5>

This command starts the program in the PLC or in Simulation Mode.

This command can be executed immediately after the 'Online' 'Download'
command, or after the user program in the PLC has been ended with the
'Online' 'Stop' command, or when the user program is at a break point, or when
the 'Online' 'Single Cycle' command has been executed.

'Online' 'Stop'

Symbol: Shortcut <Shift>+<F8>

Stops the execution of the program in the PLC or in Simulation Mode between
two cycles.

Use the 'Online' 'Run' command to continue the program.

'Online' 'Reset'

This command resets – with exception of the retain variables (VAR RETAIN) -
all variables to that specific value, with which they have got initialized (also
those variables which have been declared as VAR PERSISTENT !). If you have
initialized the variables with a specific value, then this command will reset the
variables to the initialized value. All other variables are set at a standard

4-79907 AC 1131/Stand: 03.99 The Individual Components 10

initialization (for example, integers at 0). As a precautionary measure,
907 AC 1131 asks you to confirm your decision before all of the variables are
overwritten. The situation is that which occurs in the event of a power failure or
by turning the controller off, then on (warm restart) while the program is running.

Use the 'Online' 'Run' command to restart the program.

See also ‘Online’ ‘Reset (original)' and ‘Online’ ‘Reset (cold)'.

‘Online’ ‘Reset (cold)’

This command resets, with exception of the persistent variables (VAR
PERSISTENT) all variables, also retain variables !, back to their initialization
values. The situation is that wich occurs at the start of a program which has
been downloaded just before to the PLC. Only persistent variables retain the
value that they had before the reset.

Use the 'Online' 'Run' command to restart the program.

‘Online’ ‘Reset (original)’

This command resets all variables including the remanent ones (VAR RETAIN
and VAR PERSISTENT) to their initialization values and erases the user
program on the controller. The controller is returned to its original state. See in
this connection also 'Online' 'Reset' and 'Online' 'Cold Reset'

'Online' 'Toggle Breakpoint'

Symbol: Shortcut: <F9>

This command sets a breakpoint in the present position in the active window. If
a breakpoint has already been set in the present position, that breakpoint will be
removed.

The position at which a breakpoint can be set depends on the language in
which the POU in the active window is written.

In the Text Editors (IL, ST), the breakpoint is set at the line where the cursor is
located, if this line is a breakpoint position (recognizable by the dark-gray color
of the line number field). You can also click on the line number field to set or
remove a breakpoint in the text editors.

In FBD and LD, the breakpoint is set at the currently selected network. In order
to set or remove a breakpoint in the FBD or LD Editor, you can also click on the
network number field.

In SFC, the breakpoint is set at the currently selected step. In SFC you can also
use <Shift> with a doubleclick to set or remove a breakpoint.

If a breakpoint has been set, then the line number field or the network number
field or the step will be displayed with a light-blue background color.

If a breakpoint is reached while the program is running, the program will stop,
and the corresponding field will be displayed in a red background color. In order

4-80 907 AC 1131/Stand: 02/03The Individual Components10

to continue the program, use the 'Online' 'Run', 'Online' 'Step in', or 'Online'
'Step Over' commands.

You can also use the Breakpoint dialog box to set or remove breakpoints.

‘Online‘ ‘Breakpoint Dialog Box‘

This command opens a dialog box to edit breakpoints throughout the entire
project. The dialog box also displays all breakpoints presently set.

In order to set a breakpoint, choose a POU in the POU combobox and the line
or the network in the Location combobox where you would like to set the
breakpoint; then press the Add button. The breakpoint will be added to the list.

In order to delete a breakpoint, highlight the breakpoint to be deleted from the
list of the set breakpoints and press the Delete button.

The Delete All button can be used to delete all the breakpoints.

In order to go to the location in the editor where a certain breakpoint was set,
highlight the respective breakpoint from the list of set breakpoints and press the
Go to button.

To set or delete breakpoints, you can also use the 'Online' 'Toggle
Breakpoint' command.

Image 4.63: Breakpoint Editing Dialog Box

‘Online‘ ‘Step over‘

Symbol: Shortcut: <F10>

This command causes a single step to execute. If a POU is called, the program
stops after its execution. In SFC a complete action is executed.

If the present instruction is the call-up of a function or of a function block, then
the function or function block will be executed completely. Use the 'Online'
'Step In' command, in order to move to the first instruction of a called function
or function block.

If the last instruction has been reached, then the program will go on to the next
instruction in the POU.

‘Online‘ ‘Step in‘

Shortcut: <F8>

A single step is executed. The program is stopped before the first instruction of
a called POU.

If necessary, there will be a changeover to an open POU.

4-81907 AC 1131/Stand: 03.99 The Individual Components 10

If the present position is a call-up of a function or of a function block, then the
command will proceed on to the first instruction in the called POU.

In all other situations, the command will function exactly as 'Online' 'Step
Over'.

‘Online‘ ‘Single Cycle‘

Shortcut: <Ctrl>+<F5>

This command executes a single PLC Cycle and stops after this cycle.

This command can be repeated continuously in order to proceed in single
cycles.

The Single Cycle ends when the 'Online' 'Run' command is executed.

‘Online’ ‘Write values’

Shortcut: <Ctrl>+<F7>

With this command, one or more variables are set – one time only! – to user
defined values at the beginning of a cycle. (see 'Online' 'Force values' for
setting permanently)

The values of all single-element variables can be changed, so long as they are
also visible in Monitoring.

Before the command 'Write values' can be executed, a variable value must be
ready to be written:

Define the values for the Writelist:

• For non-boolean variables a double mouse click in performed on the line in
which a variable is declared, or the variable is marked and the <Enter> key
is pressed. The dialog box 'Write variable <x>' then appears, in which the
value to be written to the variable can be entered.

Bild 4.64: Dialog for writing of variables

• For boolean variables, the value is toggled (switched between TRUE and
FALSE, with no other value allowed) by double-clicking on the line in which
the variable is declared; no dialog appears.

The value set for Writing is displayed in brackets and in turquoise colour behind
the former value of the variable. e.g. a=0 <:=34>.

4-82 907 AC 1131/Stand: 02/03The Individual Components10

Hint: Exception: In the FBD and LD Editor the value is shown turquoise
without brackets next to the variable name.

Set the values for as many variables as you like.

The values entered to be written to variables can also be corrected or deleted in
the same manner. This is likewise possible in the 'Online' 'Write/Force dialog'
(see below).

The values to be written that were previously noticed are saved in a writelist
(Watchlist), where they remain until they are actually written, deleted or
transferred to a forcelist by the command 'Force values'.

Write the values:

The command to Write Values can be found at two places::

• Command 'Write Values' in the menu 'Online'.
• Button 'Write Values' in the dialog 'Editing the writelist and the forcelist'.

When the command 'Write values' is executed, all the values contained in the
writelist are written, once only , to the appropriate variables in the controller at
the beginning of the cycle, then deleted from the writelist. (If the command
'Force values' is executed, the variables in question are also deleted from the
writelist, and transferred to the forcelist!)

Note: In the sequential function chart language (SFC), the individual values
from which a transition expression is assembled cannot be changed with 'Write
values'. This is due to the fact that in monitoring the 'Total value' of the
expression, not the values of the individual variables are displayed (e.g. "a AND
b" is only displayed as TRUE if both variables actually have the value TRUE).

In FBD, on the other hand, only the first variable in an expression, used for
example as input to a function block, is monitored. Thus a 'Write values'
command is only possible for this variable.

'Online' 'Force values'

Shortcut: <F7>

With this command, one or more variables are permanently set (see 'Online'
'Write values' for setting only once at the beginning of a cycle) to user-defined
values. The setting occurs in the run-time system, both at the beginning and at
the end of the cycle.

The time sequence in one cycle: 1.Read inputs, 2. Force values 3. Process
code, 4. Force values 5. Write outputs.

The function remains active until it is explicitly suspended by the user
(command 'Online' 'Release force') or the programming system is logged-out.

4-83907 AC 1131/Stand: 03.99 The Individual Components 10

For setting the new values, a writelist is first created, just as described under
'Online' 'Write values'. The variables contained in the writelist are accordingly
marked in Monitoring. The writelist is transferred to a forcelist as soon as the
command 'Online' 'Force values' is executed. It is possible that an active
forcelist already exists, in which case it is updated as required. The writelist is
then emptied and the new values displayed in red as 'forced'. Modifications of
the forcelist will be transferred to the program with the next 'Force values'
command.

Note: The forcelist is created at the first forcing of the variables contained in the
writelist, while the writelist existed prior to the first writing of the variables that it
contains.

The command for forcing a variable, which means that it will be entered into the
forcelist can be found at the following places:

• Command 'Force Values' in the menu ‘Online'.
• Button 'Force Values' in the dialog 'Editing the writelist and the forcelist'.

Note: In the sequential function chart language, the individual values from
which a transition expression is assembled cannot be changed with 'Force
values'. This is due to the fact that in monitoring the 'Total value' of the
expression, not the values of the individual variables are displayed (e.g. "a AND
b" is only displayed as TRUE if both variables actually have the value TRUE).

In FBD, on the other hand, only the first variable in an expression, used for
example as input to a function block, is monitored. Thus a 'Force values'
command is only possible for this variable.

‘Online’ ‘Release force'

Shortcut: <Shift>+<F7>

This command ends the forcing of variable values in the controller. The variable
values change again in the normal way.

Forced variables can be recognized in Monitoring by the red color in which their
values are displayed. You can delete the whole forcelist, but you can also mark
single variables for which the forcing should be released.

To delete the whole forcelist, which means to release force for all variables,
choose one of the following ways:

• Command 'Release Force' in menu 'Online'.
• Button 'Release Force' in dialog 'Editing the writelist and the forcelist'
• Delete the whole forcelist using the command ‘Release Force’ in the dialog

‘Remove Write-/Forcelist’. This dialog opens if you choose the command
‘Release Force’ while also a writelist exists.

To release force only for single variables you have to mark these variable first.
Do this in one ways described in the following. After that the chosen variables
are marked with an turquoise extension <Release Force>:

4-84 907 AC 1131/Stand: 02/03The Individual Components10

• A double mouse click on a line, in which a non boolean variable is declared,
opens the dialog ‘Write variable <x>’. Press button <Release Force for this
variable> .

• Repeat double mouse clicks on a line in which a boolean variable is
declared to toggle to the display <Release Force> at the end of the line.

• In the menu ‘Online’ open the Write/Force-Dialog and delete the value in the
edit field of the column ‘Forced value’.

When for all desired variables the setting “<Release Force>” is shown in the
declaration window, choose the command ‘Force’ to transfer the modifications
of the forcelist to the program.

If the current writelist (see 'Online' 'Write Values') is not empty while you
execute the command ‘Release Force’, the dialog 'Remove Write-/Forcelist’ will
be opened. There the user has to decide whether he just wants to Release
Force or additionally wants to Remove the writelist or if he wants to remove
both lists.

Image 4.65: Dialog for removing Write-/Forcelists

4-85907 AC 1131/Stand: 03.99 The Individual Components 10

‘Online’ ‘Write/Force' Dialog’

Shortcut: <Ctrl>+<Shift>+<F7>

This command leads to a dialog which displays in two registers the current
writelist (Watchlist) and forcelist (Forcelist). Each variable name and the value
to be written to it or forced on it are displayed in a table.

Image 4.66: Dialog for editing the writelist and the forcelist

The variables reach the watchlist via the commands 'Online' 'Write Values' and
are transferred to the forcelist by the command 'Online' 'Force Values'. The
values can be edited here in the „Prepared Value“ or „Forced Value“ columns
by clicking the mouse on an entry to open an editor field. If the entry is not type-
consistent, an error message is displayed. If a value is deleted, it means that
the entry is deleted from the writelist or the variable is noticed for suspension of
forcing as soon as the dialog is closed with any other command than Cancel.

The following commands, corresponding to those in the Online menu, are
available via buttons:

Force Values: All entries in the current writelist are transferred to the forcelist,
that is the values of the variables in the controller are forced. All variables
marked with 'Release Force' are no longer forced. The dialog is then closed.

Write Values: All entries in the current writelist are written once only to the
corresponding variables in the controller. The dialog is then closed.

Release Force: All entries in the forcelist will be deleted or, if a writelist is
present, the dialog “Delete write-/forcelist” comes up, in which the user must
decide whether he only wants to release forcing or discard the writelist, or

4-86 907 AC 1131/Stand: 02/03The Individual Components10

both. The dialog will close at that point, or after the selection dialog is closed as
the case may be.

‘Online‘ ‘Show Call Stack‘

You can run this command when the Simulation Mode stops at a breakpoint.
You will be given a dialog box with a list of the POU Call Stack.

Image 4.67: Example of a Call Stack

The first POU is always PLC_PRG, because this is where the executing begins.

The last POU is always the POU being executed.

After you have selected a POU and have pressed the Go to button, the
selected POU is loaded in its editor, and it will display the line or network being
processed.

'Online' 'Flow Control'"

If you have selected the flow control, then a check(�) will appear in front of the
menu item. Following this, every line or every network will be marked which was
executed in the last PLC Cycle.

The line number field or the network number field of the lines or networks which
just run will be displayed in green. An additional field is added in the IL-Editor in
which the present contents of the accumulator are displayed. In the graphic
editors for the Function Block Diagram and Ladder Diagram, an additional field
will be inserted in all connecting lines not transporting any Boolean values.
When these Out- and Inputs are verified, then the value that is transported over
the connecting line will be shown in this field. Connecting lines that transport
only Boolean values will be shaded blue when they transport TRUE. This
enables constant monitoring of the information flow.

 Note: Active flow control increases the run time of the program ! In time-
cyclical programs with high load this might cause a timeout.

‘Online‘ ‘Simulation‘

If Simulation Mode is chosen, then a check(�) will appear in front of the menu
item.

4-87907 AC 1131/Stand: 03.99 The Individual Components 10

In the simulation mode, the user program runs on the same PC under Windows.
This mode is used to test the project. The communication between the PC and
Simulation Mode uses the Windows Message mechanism.

If the program is not in simulation mode, then the program will run on the PLC.
The communication between the PC and the PLC typically runs over the serial
interface.

The status of this flag is stored with the project.

Please regard: POUs of external libraries are not processed in simulation
mode.

‘Online’ ’Communication
Parameters’

You are offered a special dialog for setting communication parameters when the
communication between the local PC and the run-time system is running over a
gateway server in your system. (If the OPC or DDE server is used, the same
communications parameters must be entered in its configuration).

Before the handling of the dialog will be described, see first the

Principle of a gateway system

Let us examine the principle of the gateway system before explaining the
operation of the dialog:

A gateway server can be used to allow your local PC to communicate with one
or more run-time systems. The setting concerning which run-time systems can
be addressed, which is specifically configured for each gateway server, and the
connection to the desired gateway server, is made on the local PC. Here it is
possible that both the gateway server and the run-time system(s) can run
together on the local PC. If we are dealing with a gateway server which is
running on another PC we must ensure that it has been started there. If you are
selecting a locally installed gateway server, it automatically starts when you log
onto the target run-time system. You can recognise this through the appearance
of a 907 AC 1131 symbol on the bottom right in the task bar. This symbol lights
up as long as you are connected to the run-time system over the gateway. The
menu points Info and Finish are obtained by clicking with the right mousekey
on the symbol. Finish is used to switch off the gateway.

See the scheme shown below presenting a gateway system:

PC_local is your local PC, PC_x is another PC, which gateway addresses.
PC_gateway is the PC on which the gateway server is installed, PC_PLC1
through to PC_PLC4 are PCs on which the run-time systems are running. The
diagram shows the modules as separated but it is fully possible for the Gateway
server and / or run-time systems to be installed together on the local PC.

4-88 907 AC 1131/Stand: 02/03The Individual Components10

Image 4.68: Example of a Gateway server system

 Important: Please note that a connection to gateway is only possible
over TCP/IP so make sure that your PC is configured appropriately!

The connections from gateway to the various run-time computers can, on the
other hand, run over different protocols (TCP/IP, Pipe, etc.).

Let us now return to the

Communications parameters dialog on the local PC:

This dialog is used to select a gateway server for the communicatio with a PLC.
Furtheron there can be set up channels for a gateway server which is installed
on the local PC so that these channels can be used by other computers which
are part of the network.

The current settings can be called up at any time using the button Update.

The dialog will appear as follows if the communications parameters have
already been configured according to the example shown above:

Image 4.69: Dialog for setting the gateway communications parameters, example

4-89907 AC 1131/Stand: 03.99 The Individual Components 10

The heading Channels lists two categories of connections:

On the one hand all of the connections are shown which are installed on the
currently connected gateway server called 'localhost'. Here the address or the
name of this gateway is located on the upper position behind the minus sign,
which in our example is running on the local computer. The appropriate address
'localhost' corresponds in the normal case to the IP address 127.0.0.1 of the
local computer (PC_local). Below, indented to the right, are three addresses of
run-time computers which the gateway channels are set-up to (PC_PLC1 to 3).
They could have been configured both from the local PC or from the other PCs
(PC_x) which are or were connected to the gateway server.

The second category of the channels describes includes all connections to the
gateway which can be set up from your local PC, over this configuration dialog
for example. They create the ”branch” which leads from the minus sign directly
below to PC_PLC1 and PC_PLC4. These channel addresses do not
necessarily have to be known yet at the gateway. For PC_PLC4 in the example
described above, the configuration parameters are stored locally in the project
but they will first be known to the gateway the next time log-in to the run-time
system occurs. This has already occurred for PC_PLC1 since the associated
gateway address has appeared as an additional ”sub-branch” to the ”channel
tree”.

In the central part of the dialog one finds the designation, in each case, of the
left selected channel and the associated parameter under Name, Value and
Comment.

Let us now switch to

Setting up communication parameters:

1. Setting up the desired gateway server and channel

To define the connection to the desired gateway server we open the dialog
'Communication Parameters Gateway' by pressing the button Gateway.

Bild 4.70: Example dialog, definition of the local connection to the gateway

Here you can enter and/or edit the following:

• The type of connection from your computer to the computer on which the
gateway server that you want to use is running. If the gateway server is

4-90 907 AC 1131/Stand: 02/03The Individual Components10

running on the local computer, connection via shared memory („local“) or via
TCP/IP is possible; if connection to a different computer is needed, only
TCP/IP can be used.

• The address of the computer, on which the gateway server that you want to
use is running: IP address or the appropriate symbolic name such as e.g.
localhost. On initial setup, the standard 'localhost' is offered as the computer
name (address), which means that the locally installed gateway would be
accessed. The name 'localhost' is set to be identical to the local IP address
127.0.0.1 in most cases, but you may in some cases have to enter this
directly into the Address field. If you want to access a gateway server on
another computer, you must replace 'localhost' with its name or IP address.

• The password for the selected gateway server, if it is on a remote
computer. If it is incorrectly entered, or not entered at all, an error message
appears.
Note in this connection: you can give the locally installed gateway server a
password with the following procedure: click with the right mouse button on
the gateway symbol in the lower right portion of the toolbar and select
„Change password“. A dialog comes up for changing or entering a
password. If you access the gateway server locally any password that is
entered will not be asked for.

• The computer’s port on which the gateway server that you wish to use is
running, as a rule the correct value for the selected gateway is already
given.

If the dialog is closed with OK, the corresponding entry (computer address)
appears in the Channels field at the top of the 'Communication parameters'
dialog, and below it the channels available on this gateway server.

2. Setting up the desired channel on the selected gateway server:

Now select one of the channels by clicking on an entry with the mouse. The
corresponding parameters will then be shown in the table. If no connection can
be established to the selected gateway address — possibly because it has not
been started or the address is incorrect — the phrase 'not connected' appears
in brackets after the address and a message 'No gateway with these settings
could be found' appears. In this connection, see below for further information
under 'Quick check in the event of unsuccessful connection attempt to gateway'.

Once the desired channel is set up, close the dialog using OK. The settings are
saved with the project.

3. Setting up a new channel for the local gateway server:

You can set up new channels for the currently connected gateway server, which
are then available for establishing further connection from the server, a
connection to a controller for example. The options that you have in this regard
depend on the particular choice of the number of device drivers installed on
your computer.

Press the New button. The dialog 'Communication Parameters: New Channel'
comes up:

4-91907 AC 1131/Stand: 03.99 The Individual Components 10

Bild 4.71:Example dialog, installing a new channel

The input field Name automatically contains the name used for the last inputted
channel. If no channel has yet been defined, the current gateway name will be
offered, followed by an underline character , e.g. 'localhost_'. You can edit the
channel name at this point. The channel name is purely informative, it does not
have to be a unique name but it is recommended to use one.

The device drivers available on the gateway computer are listed in the table
under Device. In the Name column, select by mouse click one of the available
drivers; the corresponding comment, if any, appears in the Info column.

If you close the '...New Channel' dialog with OK, the newly defined channel
appears in the 'Communication Parameters' dialog as a new entry in Channels
at the lowest position under the minus sign. So far, it is only stored locally in the
project (see above). At this point you can edit the Value column (see tips
below). Now confirm the entered parameters with OK, thus leaving the
'Communication Parameters' dialog.

In order for the newly entered gateway channel and its parameters to also be
known to the gateway server xy, and thus also to make it available to other
computers that access this gateway xy, you must log into the run-time system. If
you then re-open the 'Online' 'Communication parameters' dialog, the new
channel appears in the „channel tree“, not only in its previous position but also
indented under the address or name of the gateway server xy. This indicates
that it is known to the network. You can now open the Communication
Parameter dialog on a computer other than the local one, select gateway xy and
use its new channel.

If a communications error occurs when logging in, it is possible that the
interface cannot be opened (e.g. COM1 for a serial connection) possibly
because it is being used by another device. It is also possible that the controller
is not running.

The parameters for a channel already known by the gateway server can no
longer be edited in the configuration dialog. The parameter fields appear grey.
You can, however, delete the connection as long as it is not active.

4-92 907 AC 1131/Stand: 02/03The Individual Components10

 Important: Please not that the deletion of a channel is not reversible.
It occurs at the moment that you press on the button Remove!

Tips for editing the parameters in the communications parameters dialogue:

You can only edit the text fields in the column Value.

Select a text field with the mouse, and get into the editing mode by double
clicking or by pressing the space bar. The text input is finished by pressing the
<Enter> key.

You can use <Tabulator> or <Shift> + <Tabulator> to jump to the next or the
previous switching or editing possibility.

To edit numerical values it is possible with the arrow keys or the Page Up/Down
keys to change the value by one or ten units respectively. A double click with
the mouse also changes the value by increasing by one unit. A typing check is
installed for numerical values: <Ctrl> + <Home> or <Ctrl> + <End> deliver the
lowest or the highest value respectively for the possible input values for the type
of parameter in question.

Quick check in the event of an unsuccessful attempt to set up communication to
the gateway server on another computer (You get the message „not connected“
in the Communication Parameters dialog behind the gateway server address in
the field Channels):

• Has the gateway server been started (the three-color symbol appears in the
bottom right portion of the toolbar) ?

• Is the IP address that you entered in the 'Gateway: Communication
Parameters' dialog really that of the computer on which the gateway is
running ? (use „ping“ to check)

• Is the TCP/IP connection working locally? The error may possibly lie with
TCP/IP.

‘Online’ ‘Sourcecode download’

This command loads the source code for the project into the controller system.
This is not to be confused with the Code that is created when the project is
compiled! You can enter the options that apply to Download (time, size) in the
'Project' 'Options' 'Sourcedownload' dialog.

‘Online’ 'Create bootproject’

With this command, the compiled project is set up on the controller in such a
way that the controller can load it automatically when restarted. Storage of the
boot project is done in the flash.

4-93907 AC 1131/Stand: 03.99 The Individual Components 10

The command 'Online' 'Create bootproject' is also available in offline mode if
the project has been build without errors. In this case the following files are
created in the projects directory: <projektname>.prg for the bootproject code,
and projektname>.chk for the checksum. These files can be renamed as
necessary and then be copied to a PLC.

 Note: If the project option Implicit at create boot project (category
Sourcedownload) is activated, then the selected sources will be loaded
automatically into the controller on the command 'Online' 'Create boot project'.

‘Online’ 'Write file to controller’

This command is used for loading any desired file onto the controller. It opens
the dialog for 'Write file to controller' in which you can select the desired file.

After the dialog is closed using the 'Open' button, the file is loaded into the
controller and stored there under the same name. The loading process is
accompanied by a progress dialog.

With the command 'Online' 'Load file from controller' you can retrieve a file
previously loaded on the controller.

‘Online’ 'Load file from
controller’

With this command, you can retrieve a file previously loaded into the controller
using 'Online' 'Write file to controller'. You receive the 'Load file from controller'
dialog. Under Filename, provide the name of the desired file, and in the
selection window enter the directory on your computer into which it is to be
loaded as soon as the dialog is closed with the „Save“ button.

4.7 Log

The log stores in chronological order actions that occur during an Online
session. For this purpose a binary log file (*.log) is set up. Afterward, the user
can store excerpts from the appropriate project log in an external log.

The log window can be opened in either Offline or Online mode and can thus
serve as a direct monitor online.

'Window' 'Log'

To open, select the menu item 'Window' 'Log'.

In the log window, the filename of the currently displayed log appears after
Log:. If this is the log of the current project, the word "(Internal)" will be
displayed.

Registered entries are displayed in the log window. The newest entry always
appears at the bottom.

4-94 907 AC 1131/Stand: 02/03The Individual Components10

Only actions belonging to categories that have been activated in the 'Filter' field
of the menu 'Project' 'Options' 'Log' will be displayed.

Bild 4.72:Log window

Available information concerning the currently selected entry is displayed below
the log window:

Category: The category to which the particular log entry belongs. The following
four categories are possible:

• User action: The user has carried out an Online action (typically from the
Online menu).

• Internal action: An internal action has been executed in the Online layer
(e.g. Delete Buffers or Init Debugging).

• Status change: The status of the runtime system has changed (e.g. from
Running to Break, if a breakpoint is reached).

• Exception: An exception has occurred, e.g. a communication error.
Description: The type of action. User actions have the same names as their
corresponding menu commands; all other actions are in English and have the
same name as the corresponding OnlineXXX() function.

Info: This field contains a description of an error that may have occurred during
an action. The field is empty if no error has occurred.

4-95907 AC 1131/Stand: 03.99 The Individual Components 10

System time: The system time at which the action began, to the nearest
second.

Relative time: The time measured from the beginning of the Online session, to
the nearest millisecond.

Duration: Duration of the action in milliseconds.

Menu Log

When the log window has the input focus, the menu option Log appears in the
menu bar instead of the items 'Extras' and 'Options'.

The menu includes the following items:

Load… An external log file *.log can be loaded and displayed using
the standard file open dialog.
The log that is present in the project will not be overwritten by
the command. If the log window is closed and later opened
again, or a new Online session is started then the version
that is loaded will again be replaced by the project log.

Save… This menu item can only be selected if the project log is
currently displayed. It allows an excerpt of the project log to
be stored in an external file. For that, the following dialog will
be displayed, in which the Online sessions to be stored can
be selected:

After successful selection, the standard dialog for storing a
file opens ('Save Log').

Display Project
Log

This command can only be selected if an external log is currently
displayed. It switches the display back to the project log.

Storing the project log

Regardless of whether or not the log is stored in an external file (see above),
the project log is automatically stored in a binary file entitled <projectname>.log.
If a different path is not explicitly given in the 'Project' 'Options' 'Log' dialog, the
file is stored in the same directory as that in which the project is stored.

4-96 907 AC 1131/Stand: 02/03The Individual Components10

The maximum number of Online sessions to be stored can be entered in the
'Project' 'Options' 'Log' dialog. If this number is exceeded during recording, the
oldest session is deleted to make room for the newest one.

4.8 Window set up

Under the 'Window' menu item you will find all commands for managing the
windows. There are commands both for the automatic set up of your window as
well as for opening the library manager and for changing between open
windows. At the end of the menu you will find a list of all open windows in the
sequence they were opened. You can switch to the desired window by clicking
the mouse on the relevant entry. A check will appear in front of the active
window.

'Window' 'Tile Horizontal'

With this command you can arrange all the windows horizontally in the work
area so that they do not overlap and will fill the entire work area.

'Window' 'Tile Vertical'

With this command you can arrange all the windows vertically in the work area
so that they do not overlap and will fill the entire work area.

'Window' 'Cascade'

With this command you can arrange all the windows in the work area in a
cascading fashion, one behind another.

'Window' 'Arrange Symbols'

With this command you can arrange all of the minimized windows in the work
area in a row at the lower end of the work area.

'Window' 'Close All'

With this command you can close all open windows in the work area.

'Window' 'Messages'

Shortcut: <Shift>+<Esc>

With this command you can open or close the message window with the
messages from the last compiling, checking, or comparing procedure.

If the messages window is open, then a check (�) will appear in front of the
command.

'Window' 'Library Manager'

With this command you can open or close the library manager (see Chapter
6.3).

4-97907 AC 1131/Stand: 03.99 The Individual Components 10

'Window' 'Log'

With this command you can open or close the Log window, where protocols of
the online sessions can be displayed.

4.9 Help when you need it

An Online Help system is available to you for using 907 AC 1131. There you will
find all the information that is also contained in this handbook.

'Help' 'Contents and Index'

With this command you can open the help topics window.

Under the Contents register card you will find the contents. The books can be
opened and closed using a doubleclick or the corresponding button.
Doubleclicking or activating the Show button on a highlighted topic will display
the topic in the main window of help or in the index window.

Click on the Index register card to look for a specific word, and click on the
Search register card to select a full-text search. Follow the instructions in the
register cards.

Image 4.73: Help Topics Window

Main Help Window

In the main help window topics are displayed with index entries listed below
them.

4-98 907 AC 1131/Stand: 02/03The Individual Components10

The following buttons available:

• Help topics opens the help topics window
• Back shows the help entry that was previously displayed
• Print opens the dialog box for printing
• << shows the help entry that comes prior in sequence to the present entry
• >> shows the help entry that is next in sequence
In addition you can use the following menu commands:

• With 'File' 'Print Topics' you can print out the present help entry.
• If you use the 'Edit' 'Copy' command, the selected text will be copied into

the clipboard. From here you can insert the text into other applications and
use it there.

• If you use the 'Edit' "Annotate" command, a dialog box will be opened.
There is an editing field on the left side of the dialog box in which you can
enter an annotation to the help page.

On the right side there are buttons for storing the text, for canceling the
program, for deleting the notation, for copying a highlighted text on the
clipboard , and for pasting a text from the clipboard.

If you have made an annotation to a help entry, a small green paper clip will
appear in the upper left-hand corner. By clicking the mouse on the paper
clip, you can open the dialog box with the annotation that has been made.

• If you would like to mark a page from help, then you can set a bookmark.
To do so, choose the 'Define' 'Bookmark' command. A dialog box will
appear in which you can enter a new name (The name of the page can
serve as a starter) or can delete an old bookmark. If bookmarks were
defined, then these will be displayed in the 'Bookmark' menu. By
choosing these menu items, you can access the desired page.

• Under 'Options', you can define whether the help window always appears
in the foreground or in the background or in the standard setting.

• With 'Display previous topics' under 'Options', you are furnished with a
selection window with the previously displayed help topics. Doubleclick the
entry you wish to view.

• Under 'Options', you can select the desired 'Font' in small, normal, or
large.

• If 'Options' 'Use System Color' has been chosen, help will not be
displayed in the colors that were set, but in the system colors instead.

4-99907 AC 1131/Stand: 03.99 The Individual Components 10

Image 4.74: Main Help Window

Index Window

The index window contains explanations about the menu commands, terms, or
sequences.

The index window will always remain on the surface by default, unless the help
option is placed in the background in the main window of help.

The following buttons are available:

• Help topics opens the help topics window
• Back shows the help entry that was previously displayed
• Print opens the dialog box for printing
• << shows the help entry directly prior to the present entry
• >> shows the help entry that is next in sequence

Image 4.75: Index Window

4-100 907 AC 1131/Stand: 02/03The Individual Components10

Context Sensitive Help

Shortcut: <F1>

You can use the <F1> key in an active window, in a dialog box, or above a
menu command. When you perform a command from the menu, the help for the
command called up at that time is displayed.

If you click on a warning or error message in the message window, the
corresponding help text will appear.

You can also highlight a text (for example, a key word or a standard function)
and have the help displayed for that item.

5-1907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

5 The Editors in 907 AC 1131

All editors for POUs (Program Organization Units) consist of a declaration part
and a body. These are separated by a screen divider that can be dragged as
required by clicking it with the mouse and moving it up or down. The body can
consist of other a text or a graphic editor; the declaration portion is always a text
editor.

Print margins

The vertical and horizontal margins that apply when the editor contents are
printed, are shown by red dashed lines if the 'Show print range' option in the
project options in the dialog 'Workspace' was selected. The properties of the
printer that was entered apply, as well as the size of the print layout selected in
the 'File' 'Printer Setup' menu. If no printer setup or no print layout is entered,
a default configuration is used (Default.DFR and default printer). The horizontal
margins are drawn as if the options 'New page for each object' or 'New page for
each sub-object' were selected in 'Documentation settings'. The lowest margin
is not displayed.

Note: An exact display of the print margins is only possible when a zoom factor
of 100% is selected.

Comment

User comments must be enclosed in the special symbol sequences „(*“ and „*)“.
Example: (*This is a comment.*)

Comments are allowed in all text editors, at any location desired, that is in all
declarations, the IL and ST languages and in self-defined data types. If the
Project is printed out using a template, the comment that was entered during
variable declaration appears in text-based program components after each
variable.

In the FBD and LD graphic editors, comments can be entered for each network.
To do this, search for the network on which you wish to comment and activate
'Insert' 'Comment'. In the Ladder Editor additionally a comment for each
particular contact and coil can be added, if the corresponding options are
activated in the menu 'Extras' 'Options'. In CFC there are special comment
POUs which can be placed at will.

In SFC, you can enter comments about a step in the dialog for editing step
attributes.

Nested comments are also allowed if the appropriate option in the 'Project'
'Options' 'Build Options' dialog is activated.

In Online mode, if you rest the mouse cursor for a short time on a variable, the
type and if applicable the address and comment of that variable are displayed in
a tooltip.

5-2 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

Zoom to POU

Shortcut: <Alt>+<Enter>

With this command a selected POU is loaded into its editor. The command is
available in the context menu (<F2>) or in the 'Extras' menu, if the cursor is
positioned on the name of a POU in a text editor or if the POU box is selected in
a graphic editor.

If you are dealing with a POU from a library, then the library manager is called
up, and the corresponding POU is displayed.

Open instance

This command corresponds to the command 'Project' 'Open instance'. It is
available in the context menu (<F2>) or in the 'Extras' menu, if the cursor is
positioned on the name of a function block in a text editor or if the function block
box is selected in a graphic editor.

Intellisense Function

If the option 'List components' is activated in the project options dialog for
category 'Editor', then the "Intellisense" functionality will be available in all
editors, in the Watch- and Receiptmanager, in the Visualization and in the
Sampling Trace:

• If you insert a dot "." instead of an identifier, a selection box will appear,
listing all local and global variables of the project. You can choose one of
these elements and press 'Return' to insert it behind the dot. You can also
insert the element by a doubleclick on the list entry.

• If you enter a function block instance or a structure variable followed by a
dot, then a selection box listing all input and output variables of the
corresponding function block resp. listing the structure components will
appear, where you can choose the desired element and enter it by pressing
'Return' or by a doubleclick.

Example:
Insert "struvar." -> the components of structure struct1 will be offered:

5.1 Declaration Editor

The declaration editor is used to declare variables of POUs and global
variables, for data type declarations, and in the Watch and Receipt Manager. It

5-3907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

gives access to the usual Windows functions, and even those of the
IntelliMouse can be used if the corresponding driver is installed.

In Overwrite mode, 'OV' is shown in black on the status bar; switching between
Overwrite and Insert modes can be accomplished with the <Ins> key.

The declaration of variables is supported by syntax coloring.

The most important commands are found in the context menu (right mouse
button or <Ctrl>+<F10>).

Declaration Part

All variables to be used only in this POU are declared in the declaration part of
the POU. These can include: input variables, output variables, input/output
variables, local variables, retain variables, and constants. The declaration
syntax is based on the IEC61131-3 standard. An example of a correct
declaration of variables in 907 AC 1131-Editor:

Image 5.1: Declaration Editor

Input Variable

Between the key words VAR_INPUT and END_VAR, all variables are declared
that serve as input variables for a POU. That means that at the call position, the
value of the variables can be given along with a call.

Example:
VAR_INPUT

in1:INT (* 1. Inputvariable*)
END_VAR

Output Variable

Between the key words VAR_OUTPUT and END_VAR, all variables are
declared that serve as output variables of a POU. That means that these values

5-4 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

are carried back to the POU making the call. There they can be answered and
used further.

Example:
VAR_OUTPUT

out1:INT; (* 1. Outputvariable*)
END_VAR

Input and Output Variables

Between the key words VAR_IN_OUT and END_VAR, all variables are
declared that serve as input and output variables for a POU.

Attention: With this variable, the value of the transferred variable is changed
("transferred as a pointer"). That means that the input value for such variables
cannot be a constant.

Attention: With this variable, the value of the transferred variable is
changed ("transferred as a pointer", Call-by-Reference). That means that the
input value for such variables cannot be a constant. For this reason, even the
VAR_IN_OUT variables of a function block can not be read or written directly
from outside via <functionblockinstance><in/outputvariable>.

Example:
VAR_IN_OUT

inout1:INT; (* 1. Inputoutputvariable *)
END_VAR

Local Variables

Between the keywords VAR and END_VAR, all of the local variables of a POU
are declared. These have no external connection; in other words, they can not
be written from the outside.

Example:
VAR

loc1:INT; (* 1. Local Variable*)
END_VAR

Remanent variables

Remanent variables can retain their value throughout the usual program run
period. These include Retain variables and Persistent variables.

Retain variables are identified by the keyword RETAIN. These variables
maintain their value even after an uncontrolled shutdown of the controller as
well as after a normal switching off and on of the controller (resp. at the
command 'Online' 'Reset'. When the program is run again, the stored values will
be processed further. A concrete example would be an piece-counter in a
production line, that recommences counting after a power failure. Retain-
Variables are reinitialized at a new download of the program unlike persistent
variables.
All other variables are newly initialized, either with their initialized values or with
the standard initializations.

5-5907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

Persistent variables are identified by the keyword PERSISTENT. Unlike
Retain variables, these variables retain their value after a re-Download (resp. at
the command 'Online' 'Reset Original'), but not at switching off and on the
controller (i.e. not at the command 'Online' 'Reset'), because they are not saved
in the "retain area". If persistent variables as well should maintain their values
after a uncontrolled shutdown of the controller, then they have to be declared
additionally as VAR RETAIN variables. A concrete example of "persistent
Retain-Variables" would be a operations timer that recommences timing after a
power failure.

Example:
VAR RETAIN

rem1:INT; (* 1. Retain variable*)
END_VAR

 Attention:

 If a local variable is declared as VAR RETAIN, then exactly that variable will
be saved in the "retain area" (like a global retain variable)

 If a local variable in a function block is declared as VAR RETAIN, then the
complete instance of the function block will be saved in the "retain area" (all
data of the POU), whereby only the declared retain variable will be handled
as a retain.

 If a local variable in a function is declared as VAR RETAIN or
VAR_PERSISTENT, this will be without any effect. If a local variable is
declared as PERSISTENT in a function, then this will be without any effect
also !

Constants, Typed Literals

Constants are identified by the key word CONSTANT. They can be declared
locally or globally.

Syntax:
VAR CONSTANT

<Identifier>:<Type> := <initialization>;
END_VAR

Example:
VAR CONSTANT

con1:INT:=12; (* 1. Constant*)
END_VAR

A listing of possible constants can be found in the Appendix F(Operanden in
907 AC 1131). See there also regarding the possibility of using typed constants
(Typed Literals).

5-6 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

External variables

Global variables which are to be imported into the POU are designated with the
keyword EXTERNAL. They also appear in the Watch window of the declaration
part in Online mode.

If the VAR_EXTERNAL declaration does not match the global declaration in
every respect, the following error message appears: "Declaration of '<var>'
does not match global declaration!"

If the global variable does not exist, the following error message appears:
"Unkown global variable: '<var>'!"

Example:
VAR EXTERNAL

var_ext1:INT:=12; (* 1st external variable *)
END_VAR

Keywords

Keywords are to be written in uppercase letters in all editors. Keywords may not
be used as variables.

Variables declaration

A variables declaration has the following syntax:

<Identifier> {AT<Address>}:<Type> {:=<initialization>};

The parts in the braces {} are optional.

Regarding the identifier, that is the name of a variable, it should be noted that it
may not contain spaces or umlaut characters, it may not be declared in
duplicate and may not be identical to any keyword. Upper/lowercase writing of
variables is ignored, in other words VAR1, Var1 and var1 are not different
variables. Underlines in identifiers are meaningful, e.g. A_BCD and AB_CD are
interpreted as different identifiers. Multiple consecutive underlines at the
beginning of an identifier or within a identifier are not allowed. The length of the
identifier, as well as the meaningful part of it, are unlimited.

All declarations of variables and data type elements can include initialization.
They are brought about by the ":=" operator. For variables of elementary types,
these initializations are constants. The default-initialization is 0 for all
declarations.

Example:
var1:INT:=12; (* Integer variable with initial value of 12*)

If you wish to link a variable directly to a definite address, then you must declare
the variable with the keyword AT.

For faster input of the declarations, use the shortcut mode.

5-7907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

In function blocks you can also specify variables with incomplete address
statements. In order for such a variable to be used in a local instance, there
must be an entry for it in the variable configuration.

Pay attention to the possibility of an automatic declaration

Identifier

An identifier is a sequence of letters, numbers, and underscores that begins
with a letter or an underscore.

The variable identifier may not contain any blank spaces or special characters,
may not be declared more than once and cannot be the same as any of the
keywords. Capitalization is not recognized which means that VAR1, Var1, and
var1 are all the same variable. The underscore character is recognized in
identifiers (e.g., "A_BCD" and "AB_CD" are considered two different identifiers).
An identifier may not have more than one underscore character in a row. The
first 32 characters are significant.

AT Declaration

If you wish to link a variable directly to a definite address, then you must declare
the variable with the keyword AT. The advantage of such a procedure is that
you can assign a meaningful name to an address, and that any necessary
changes of an incoming or outgoing signal will only have to be made in one
place (e.g., in the declaration).

Notice that variables requiring an input cannot be accessed by writing. A further
restriction is that AT declarations can only be made for local and global
variables, and not for input- and output variables from POUs.

Examples:
counter_heat7 AT %QX0.0: BOOL;
lightcabinetimpulse AT %IX7.2: BOOL;
download AT %MX2.2: BOOL;

If boolean variables are assigned to a Byte, Word or DWORD
address, they occupy one byte with TRUE or FALSE, not just the first bit after
the offset!

'Insert' 'Declarations keywords'

You can use this command to open a list of all the keywords that can be used in
the declaration part of a POU. After a keyword has been chosen and the choice
has been confirmed, the word will be inserted at the present cursor position.

You also receive the list, when you open the Input Assistant (<F2>) and choose
the Declarations category.

5-8 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

'Insert' 'Type'

With this command you will receive a selection of the possible types for a
declaration of variables. You also receive the list when you access the Input
Assistant (<F2>).

The types are divided into these categories:

• Standard types BOOL, BYTE, etc.
• Defined types Structures, enumeration types, etc.
• Standard function blocks for instance declarations
• Defined function blocks for instance declarations

907 AC 1131 supports all standard types of IEC1131-3:

Examples for the use of the various types are found in the Appendix F.

Syntax Coloring

In all editors you receive visual support in the implementation and declaration of
variables. Errors are avoided, or discovered more quickly, because the text is
displayed in color.

A comment left unclosed, thus annotating instructions, will be noticed
immediately; keywords will not be accidentally misspelled, etc.

The following color highlighting will be used:

Blue Keywords
Green Comments in the text editors
Pink Special constants (e.g. TRUE/FALSE, T#3s,

%IX0.0)
Red Input error (for example, invalid time constant,

keyword, written in lower case,...)
Black Variables, constants, assignment operators, ...

Shortcut Mode

The declaration editor for 907 AC 1131 allows you to use the shortcut mode.
This mode is activated when you end a line with <Ctrl><Enter>

The following shortcuts are supported:

All identifiers up to the last identifier of a line will become declaration variable
identifiers

The type of declaration is determined by the last identifier of the line. In this
context, the following will apply:

B or BOOL gives the result BOOL
I or INT gives the result INT
R or REAL gives the result REAL
S or string gives the result STRING

5-9907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

If no type has been established through these rules, then the type is BOOL and
the last identifier will not be used as a type (Example 1.).

Every constant, depending on the type of declaration, will turn into an
initialization or a string (Examples 2. and 3.).

An address (as in %MD12) is extended around the AT... attribute(Example 4.).

A text after a semicolon (;) becomes a comment (Example 4.).

All other characters in the line are ignored (e.g., the exclamation point in
Example 5.).

Examples:

Shortcut Declaration
A A: BOOL;
A B I 2 A, B: INT := 2;
ST S 2; A string ST:STRING(2); (* A string *)
X %MD12 R 5 Real Number X AT %MD12: REAL := 5.0;(* Real Number *)
B ! B: BOOL;

Autodeclaration

If the Autodeclaration option has been chosen in the Editor category of the
Options dialog box , then a dialog box will appear in all editors after the input of
a variable that has not yet been declared. With the help of this dialog box, the
variable can now be declared.

Image 5.2: Dialog Box for Declaration of Variables

With the help of the Class combobox, select whether you are dealing with a
local variable (VAR), input variable((VAR_INPUT), output variable
(VAR_OUTPUT), input/output variable (VAR_INOUT), or a global variable
(VAR_GLOBAL).

With the CONSTANT, RETAIN, PERSISTENT options, you can define whether
you are dealing with a constant or a remanent variable

The variable name you entered in the editor has been entered in the Name
field, BOOL has been placed in the Type field. The button opens the Input
Assistant dialog which allows you to select from all possible data types.

5-10 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

If ARRAY is chosen as the variable type, the dialog for entering array
boundaries appears.

Image 5.3: Dialog for determining array boundaries during automatic declaration

For each of the three possible dimensions (Dim.), array boundaries can be
entered under Start and End by clicking with the mouse on the
corresponding field to open an editing space. The array data type is entered
in the Type field. In doing this, the button can be used to call up an
input assistant dialog.

Upon leaving the array boundaries dialog via the OK button, variable
declarations in IEC format are set up based on the entries in the Type field
in the dialog. Example: ARRAY [1..5, 1..3] OF INT

In the field Initial value, you may enter the initial value of the variable being
declared. If this is an array or a valid structure, you can open a special
initialization dialog via the button or <F2>, or open the input assistant dialog
for other variable types.

In the initialization dialog for an array you are presented a list of array elements;
a mouse click on the space following „:=“opens an editing field for entering the
initial value of an element.

In the initialization dialog for a structure, individual components are displayed in
a tree structure. The type and default initial value appear in brackets after the
variable name; each is followed by „:=“. A mouse click on the field following „:=“
opens an editing field in which you can enter the desired initial value. If the
component is an array, then the display of individual fields in the array can be
expanded by a mouse click on the plus sign before the array name and the
fields can be edited with initial values.

After leaving the initialization dialog with OK, the initialization of the array or the
structure appears in the field Initial value of the declaration dialog in IEC
format.

Example: x:=5,field:=2,3,struct2:=(a:=2,b:=3)

5-11907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

In the Address field, you can bind the variable being declared to an IEC
address (AT declaration).

If applicable, enter a Comment. The comment can be formatted with line
breaks by using the key combination <Ctrl> + <Enter>.

By pressing OK, the declaration dialog is closed and the variable is entered in
the corresponding declaration editor in accordance to the IEC syntax.

Note: The dialog box for variable declaration you also get by the command
'Edit' 'Declare Variable' (see Chapter 4.5, General Editing Functions). If the
cursor is resting on a variable in Online mode, the Autodeclare window can be
opened with <Shift><F2> with the current variable-related settings displayed.

Line Numbers in the
Declaration Editor

In offline mode, a simple click on a special line number will mark the entire text
line.

In the online mode, a single click on a specific line number will open up or close
the variable in this line, in case a structural variable is involved.

Declarations as table

If the Declarations as table option is activated in the Options dialog box in the
category, the declaration editor looks like a table. As in a card-index box, you
can select the register cards of the respective variable types and edit the
variables.

For each variable you are given the following entry fields.

Name: Input the identifier of the variable.
Address: If necessary, input the address of the variable (AT declaration)
Type: Input the type of the variable. (Input the function block when

instantiating a function block)
Initial: Enter a possible initialization of the variable (corresponding to

the ":= " assignment operator).
Comment: Enter a comment here.

Both of the display types of the declaration editor can be changed without
causing any problems. In the online mode, there are no differences for the
display.

In order to edit a new variable, select the 'Insert' 'New Declaration' command.

5-12 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

Image 5.4: Declaration Editor as a Table

'Insert' 'New Declaration'

With this command you bring a new variable into the declaration table of the
declaration editor. If the present cursor position is located in an field of the table,
then the new variable will be pasted in the preceding line; otherwise, the new
variable is pasted at the end of the table. Moreover, you can paste a new
declaration at the end of the table by using the right arrow key or the tab key in
the last field of the table.

You will receive a variable that has "Name" located in the Name field, and
"Bool" located in the Type field, as its default setting. You should change these
values to the desired values. Name and type are all that is necessary for a
complete declaration of variables.

Pragma command

The pragma instruction is used to affect the properties of a variable concerning
the compilation process. It can be used in with supplementary text in a program
line of the declaration editor or in its own line.

The pragma instruction is enclosed in curly brackets, upper- and lower-case are
ignored: { <Instruction text> }

If the compiler cannot meaningfully interpret the instruction text, the entire
pragma is handled as a comment and read over. A warning is issued, however:
„Ignore compiler directive ‚<Instruction text>’!“

Depending on the type and contents of pragma, the pragma either operates on
the line in which it is located or on all subsequent lines until it is ended by an
appropriate pragma, or the same pragma is executed with different parameters,
or the end of the file is reached. By file we mean here: declaration part,
implementation portion, global variable list, type declaration.

The opening bracket may immediately follow a variable name. Opening and
closing brackets must be located on the same line.

The following pragma may currently be used:

{flag [<flags>] [off|on]}

This pragma allows the properties of a variable declaration to be affected.

5-13907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

<flags> can be a combination of the following flags:

noinit The variable will not be initialized.

nowatch The variable can not be monitored.

noread The variable is exported to the symbol file without read
permission.

nowrite The variable is exported to the symbol file without write
permission.

noread,
nowrite

The variable is not exported to the symbol file

With the „on“ modifier, the pragma operates on all subsequent variable
declarations until it is ended by the pragma {flag off}, or until overwritten by
another {flag <flags> on} pragma.

Without the „on“ or „off“ modifier, the pragma operates only on the current
variable declaration (that is the declaration that is closed by the next
semicolon).

Examples: The variable a will not be initialized and will not be monitored. The
variable b will not be initialized:

VAR
a : INT {flag noinit, nowatch};
b : INT {flag noinit };

END_VAR

VAR
{flag noinit, nowatch on}
a : INT;
{flag noinit on}
b : INT;
{flag off}

END_VAR

Neither variable will be initialized:

{flag noinit on}

VAR
a : INT;
b : INT;

END_VAR

{flag off}

VAR
{flag noinit on}
a : INT;

b : INT;

{flag off}

END_VAR

The flags „noread“ and „nowrite“ are used in a POU that has read and/or write
permission to provide selected variables with restricted access rights. The
default for the variable is the same as the setting for the POU in which the
variable is declared. If a variable has neither read nor write permission, it will
not be exported into the symbol file.

5-14 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

Examples: If the POU has read and write permission, then with the
following pragmas variable a can only be exported with write permission,
while variable b can not be exported at all:

VAR
a : INT {flag noread};
b : INT {flag noread, nowrite};

END_VAR

VAR
{ flag noread on}
a : INT;
{ flag noread, nowrite on}
b : INT;
{flag off}

END_VAR

Neither variable a nor b will be exported to the symbol file:

{ flag noread, nowrite on }
VAR

a : INT;
b : INT;

END_VAR
{flag off}

VAR
{ flag noread, nowrite on }
a : INT;
b : INT;
{flag off}

END_VAR

The pragma operates additively on all subsequent variable declarations.

Example: all POUs in use will be exported with read and write permission
a : afb;
...
FUNCTION_BLOCK afB

VAR
b : bfb {flag nowrite};
c : INT;

END_VAR
...
FUNCTION_BLOCK bfB

VAR
d : INT {flag noread};
e : INT {flag nowrite};

END_VAR

„a.b.d“: Will not be exported

„a.b.e“: Will be exported only with read permission

„a.c“: Will be exported with read and write permission.

Declaration Editors in Online
Mode

In online mode , the declaration editor changes into a monitor window. In each
line there is a variable followed by the equal sign (=) and the value of the
variable. If the variable at this point is undefined, three question marks (???) will
appear. For function blocks, values are displayed only for open instances
(command: 'Project' 'Open instance').

5-15907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

In front of every multi-element variable there is a plus sign. By pressing <Enter>
or after doubleclicking on such a variable, the variable is opened up. In the
example, the traffic signal structure would be opened up.

When a variable is open, all of its components are listed after it. A minus sign
appears in front of the variable. If you doubleclick again or press <Enter>, the
variable will be closed, and the plus sign will reappear.

Pressing <Enter> or doubleclicking on a single-element variable will open the
dialog box to write a variable (see Chapter 4.6, General Online Functions). Here
it is possible to change the present value of the variable. In the case of Boolean
variables, no dialog box appears; these variables are toggled.

The new value is displayed after the variable, in pointed brackets and in
turquoise color, and remains unchanged. If the 'Online' 'Write values'
command is given, then all variables are placed in the selected list and are once
again displayed in black.

If the 'Online' 'Force values' command is given, then all variables will be set to
the selected values, until the 'Release force' command is given. In this event,
the color of the force value changes to red

5.2 The Text Editors

The text editors used for the implementation portion (the Instruction List editor
and the Structured Text editor) of 907 AC 1131 provide the usual Windows text
editor functions.

The implementation in the text editors is supported by syntax coloring.

In Overwrite mode the status bar shows a black OV. You can switch between
Overwrite mode and Insert mode by key <Ins>.

The most important commands are found in the context menu (right mouse
button or <Ctrl>+<F10>).

5-16 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

Image 5.5: Text Editors for the Instruction List and Structured Text

The text editors use the following menu commands in special ways:

‘Insert’’Operators’

With this command all of the operators available in the current language are
displayed in a dialog box.

If one of the operators is selected and the list is closed with OK, then the
highlighted operator will be inserted at the present cursor position. (This is
managed here just as it is in the Input Assistant).

‘Insert’ ’Operand’

With this command all variables in a dialog box are displayed. You can select
whether you would like to display a list of the global, the local, or the system
variables.

If one of the operands is chosen, and the dialog box is closed with OK, then the
highlighted operand will be inserted at the present cursor position. (This is
managed here just as it is in the Input Assistant).

‘Insert’ ’Function’

With this command all functions will be displayed in a dialog box. You can
choose whether to have a list displaying user-defined or standard functions.

If one of the functions is selected and the dialog box is closed with OK, then the
highlighted function will be inserted at the current cursor position. (The
management will proceed, as in the input selection.)

5-17907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

If the With arguments option was selected in the dialog box, then the
necessary input and output variables will also be inserted.

‘Insert’ ’Function Block’

With this command all function blocks are displayed in a dialog box. You can
choose whether to have a list displaying user-defined or standard function
blocks.

If one of the function blocks is selected and the dialog box is closed with OK,
then the highlighted function block will be inserted at the current cursor position.
(This is managed here just as it is in the Input Assistant).

If the With arguments option was selected in the dialog box, then the
necessary input variables of the function block will also be inserted.

Calling POUs with output
parameters

The output parameters of a called POU can be directly assigned upon being
called in the text languages IL and ST. Example: Output parameter out1 of
afbinst is assigned variable a.

IL: CAL afbinst(in1:=1, out1=>a)

ST: afbinst(in1:=1, out1=>a);

The text editors in Online mode

The online functions in the editors are set breakpoint and single step processing
(steps). Together with the monitoring, the user thus has the debugging
capability of a modern Windows standard language debugger.

In Online mode, the text editor window is vertically divided in halves. On the left
side of the window you will then find the normal program text; on the right side
you will see a display of the variables whose values were changed in the
respective lines.

The display is the same as in the declaration part. That means that when the
PLC is running, the present values of the respective variables will be displayed.

The following should be noted when monitoring expressions or Bit-addressed
variables: in the case of expressions, the value of the entire expression is
always displayed. Example: a AND b is displayed in blue or with „:=TRUE“ if
both a and b are TRUE. For Bit-addressed variables, the bit value that is
addressed is always monitored (e.g. a.3 is displayed in blue or with „:=TRUE, if
a has the value 4).

If you place the mouse pointer briefly above a variable, then the type, the
address and the comment about the variable will be displayed in a Tooltip.

'Extras' 'Monitoring Options'

With this command you can configure your monitoring window. In the text
editors, the window is divided into two halves during monitoring. The program is

5-18 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

located in the left half. In the right half, all variables that are located in the
corresponding program line are monitored.

You can specify the Monitor Window Width and which Distance two variables
should have in a line. An distance declaration of 1 corresponds, in this case, to
a line height in the selected font.

Image 5.6: Monitoring Options Dialog Box

Breakpoint PositionsSince in 907 AC 1131 several IL lines are internally
combined into a single C-code line, breakpoints can not be set in every line.
Breakpoint positions include all positions in a program at which values of
variables can change or where the program flow branches off. (Exception:
function calls. If necessary, a breakpoint in the function must be set here.) At
the positions lying inbetween, a breakpoint would not even make sense, since
nothing has been able to change in the data since the preceding breakpoint
position.

This results in the following breakpoint positions in the IL:

• At the start of the POU
• At every LD, LDN (or, in case a LD is located at a label, then at the label)
• At every JMP, JMPC, JMPCN
• At every label
• At every CAL, CALC, CALCN
• At every RET, RETC, RETCN
• At the end of the POU
Structured Text accommodates the following breakpoint positions:

• At every assignment
• At every RETURN and EXIT instruction
• in lines where conditions are being evaluated (WHILE, IF, REPEAT)
• At the end of the POU
Breakpoint positions are marked by the display of the line number field in the
color which is set in the project options.

5-19907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

Image 5.7: IL Editor with Possible Breakpoint Positions (darker number fields)

How do you set a breakpoint?

In order to set a breakpoint, click the line number field of the line where you
want to set a breakpoint. If the selected field is a breakpoint position, then the
color of the line numbers field will change from dark gray to light blue, and the
breakpoint will be activated in the PLC.

Deleting Breakpoints

Correspondingly, in order to delete a breakpoint, click on the line number field of
the line with the breakpoint to be deleted.

Setting and deleting of breakpoints can also be selected via the menu ('Online'
'Toggle Breakpoint'), via the function key <F9>, or via the symbol in the tool
bar.

What happens at a breakpoint?

If a breakpoint is reached in the PLC, then the screen will display the break with
the corresponding line. The line number field of the line where the PLC is
positioned will appear in red. The user program is stopped in the PLC.

If the program is at a breakpoint, then the processing can be resumed with
'Online' 'Run'.

In addition, with 'Online' 'Step over' or 'Step in' you can cause the program to
run to the next breakpoint position. If the instruction where you are located is a
CAL command, or, if there is a function call in the lines up to the next breakpoint
position, then you can use 'Step over' to bypass the function call. With 'Step
in', you will branch to the open POU

Line Number of the Text Editor

The line numbers of the text editor give the number of each text line of an
implementation of a POU.

In Off-line mode, a simple click on a special line number will mark the entire
text line.

5-20 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

In Online mode, the background color of the line number indicates the
breakpoint status of every line. The standard settings for the colors are

• dark gray: This line is a possible position for a breakpoint.
• light blue: a breakpoint has been set in this line.
• red: The program has reached this point.

In Online mode, simply clicking the mouse will change the breakpoint status of
this line.

5.2.1 The Instruction List Editor

This is how a POU written in the IL looks under the corresponding 907 AC 1131
editor:

Image 5.8: IL Editor

All editors for POUs consist of a declaration part and a body. These are
separated by a screen divider.

The Instruction List editor is a text editor with the usual capabilities of Windows
text editors. The most important commands are found in the context menu (right
mouse button or <Ctrl>+<F10>).Multiline POU calls are also possible: Example:

CAL CTU_inst(
 CU:=%IX10,
 PV:=(
 LD A
 ADD 5

5-21907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

)
)

For information concerning the language, see Chapter 2.2.1, Instruction List
(IL).

IL in Online mode

With the 'Online' 'Flow control' command (see Chapter 4.6, Online Functions)
an additional field in which the accumulator contents is displayed is inserted in
the IL editor on the left side of every line.

For further information concerning the IL editor in Online mode, see above 'The
Text Editors in Online Mode'.

5.2.2 The Editor for Structured Text

This is how a POU written in ST appears under the corresponding 907 AC 1131
editor:

Image 5.9: Editor for Structured Text

All editors for POUs consist of a declaration part and a body. These are
separated by a screen divider.

The editor for Structured Text is a text editor with the usual capabilities of
Windows text editors. The most important commands are found in the context
menu (right mouse button or <Ctrl>+<F10>).

5-22 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

For information about the ST editor in Online mode, read Text Editors in Online
Mode.

For information about the ST editor in Online mode, read above 'The Text
Editors in Online Mode'.

For information about the language, read the chapter 2.2.2, Structured Text
(ST).

5.3 The Graphic Editors

The editors of the graphically oriented languages, sequential function chart
SFC, ladder diagram LD and function block diagram FBD and of free graphic
function block diagrams have many points in common. In the following
paragraphs these features will be summarized; the specific descriptions of LD,
FBD an CFC, as well as the Sequential Function Chart language SFC follow in
separate sections. The implementation in the graphics editors is supported by
syntax coloring.

Zoom

Objects such as POUs, actions, transitions etc. in the languages SFC, LD, FBD,
CFC and in visualizations can be enlarged or reduced in size with a zoom
function. All elements of the window contents of the implementation part are
affected; the declaration part remains unchanged.

In standard form, every object is displayed with the zoom level 100%. The zoom
level that is set is saved as an object property in the project.

The printing of project documentation always occurs at the 100% display level!

The zoom level can be set through a selection list in the toolbar. Values
between 25% and 400% can be selected; individual values between 10% and
500% can be entered manually.

The selection of a zoom level is only available if the cursor rests on an object
created in a graphical language or a visualization object.

Even with the object zoomed, cursor positions in the editors can be further
selected and even reached with the arrow keys. Text size is governed by the
zoom factor and the font size that is set.

The execution of all editor menu features (e.g. inserting a box) as a function of
cursor position is available at all zoom levels, taking the same into account.

In Online mode, each object is displayed according to the zoom level that has
been set; Online functionality is available without restriction.

When the IntelliMouse is used, an object can be enlarged/reduced by pressing
the <CTRL> key and at the same time turning the wheel forward or backwards.

5-23907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

Network

In the LD and FBD editors, the program is arranged in a list of networks. Each
network is designated on the left side by a serial network number and has a
structure consisting of either a logical or an arithmetic expression, a program,
function or function block call, and a jump or a return instruction.

Label

Each network has a label that can optionally be left empty. This label is edited
by clicking the first line of the network, directly next to the network number. Now
you can enter a label, followed by a colon.

Network Comments, Networks
with Linebreaks, 'Extras'
'Options'

Every network can be supplied with a multi-lined comment. In the dialog
'Function Block and Ladder Diagram Options', which can be opened by
executing the command 'Extras' 'Options', you can do the settings concerning
comments and linebreaks: In the maximum comment size you can enter the
maximum number of lines to be made available for a network comment (The
default value here is 4.) In the field minimum comment size you can enter the
number of lines that generally should be reserved for. If, for example, the
number 2 is entered, then, at the start of each network there will be two empty
lines after the label line. The default value here is 0, which has the advantage of
allowing more networks to fit in the screen area.

If the minimal comment size is greater than 0, then in order to enter a comment
you simply click in the comment line and then enter the comment. Otherwise
you must next select the network to which a comment is to be entered, and use
'Insert' 'Comment' to insert a comment line. In contrast to the program text,
comments are displayed in gray.

In the Ladder editor you can also assign an individual comment to each contact
or coil. For this activate the option Comments per Contact and insert in the
edit field Lines for variable comment the number of lines which should be
reserved and displayed for the comment. If this setting is done, a comment field
will be displayed in the editor above each contact and coil where you can insert
text.

If the option Comments per Contact is activated, then in the Ladder editor also
the number of lines (Lines for variable text :) can be defined which should be
used for the variable name of the contact resp. coil. This is used to display even
long names completely by breaking them into several lines.

In the Ladder editor it is possible to force linebreaks in the networks as soon as
the network length would exceed the given window size and some of the
elements would not be visible. For this activate the option Networks with
Linebreaks.

5-24 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

'Insert' 'Network (after)' or
'Insert' 'Network (before)'

Shortcut: <Shift>+<T> (Network after)

In order to insert a new network in the FBD or the LD editor, select the 'Insert'
'Network (after)' or the 'Insert' 'Network (before)' command, depending on
whether you want to insert the new network before or after the present network.
The present network can be changed by clicking the network number. You will
recognize it in the dotted rectangle under the number. With the <Shift key> and
a mouse click you can select from the entire area of networks, from the present
one to the one clicked.

The network editors in the
online mode

In the FBD and the LD editors you can only set breakpoints for networks. The
network number field of a network for which a breakpoint has been set, is
displayed in blue. The processing then stops in front of the network, where the
breakpoint is located. In this case, the network number field is displayed in red.
With single step processing (steps), you can jump from network to network.

All values are monitored upon entering and exiting network POUs (Program
Organization Units).

The following should be noted when monitoring expressions or Bit-addressed
variables: In expressions, e.g. a AND b, used as transition condition or function
block input, the value of the whole expression is always displayed (a AND b is
shown in blue or as :=TRUE, if a and b are TRUE). For Bit-addressed variables,
the bit value that is addressed is always monitored (e.g. a.3 is displayed in blue
or with „:=TRUE, if a has the value 4)

The flow control is run with the 'Online' 'Flow control' command (see Chapter
4.6, Online Functions). Using the flow control, you can view the present values
that are being carried in the networks over the connecting lines. If the
connecting lines do not carry Boolean values, then the value will be displayed in
a specially inserted field. The monitor fields for variables that are not used (e.g.
in the function SEL) are displayed in a shade of grey. If the lines carry Boolean
values, then they will be shaded blue, in the event that they carry TRUE.
Therefore, you can accompany the flow of information while the PLC is running.

If you place the mouse pointer briefly above a variable, then the type, the
address and the comment about the variable will be displayed in a Tooltip.

5.3.1 The Function Block Diagram Editor

This is how a POU written in the FBD under the corresponding 907 AC 1131
editor looks:

5-25907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

Image 5.10: Editor for the Function Block Diagram

The Function Block Diagram editor is a graphic editor. It works with a list of
networks, in which every network contains a structure that displays,
respectively, a logical or an arithmetical expression, the calling up of a function
block, a function, a program, a jump, or a return instruction.The most important
commands are found in the context menu (right mouse button or
<Ctrl>+<F10>).

Cursor positions in FBD

Every text is a possible cursor position. The selected text is on a blue
background and can now be changed.

You can also recognize the present cursor position by a dotted rectangle. The
following is a list of all possible cursor positions with an example:

1) Every text field (possible cursor positions framed in black):

2) Every input:

5-26 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

3) Every operator, function, or function block:

4) Outputs, if an assignment or a jump comes afterward:

5) The lined cross above an assignment, a jump, or a return instruction:

6) Behind the outermost object on the right of every network ("last cursor
position," the same cursor position that was used to select a network):

7) The lined cross directly in front of an assignment:

How to set the cursor: The cursor can be set at a certain position by clicking the
mouse, or with the help of the keyboard.

Using the arrow keys, you can jump to the nearest cursor position in the
selected direction at any time. All cursor positions, including the text fields, can
be accessed this way. If the last cursor position is selected, then the <up> or
<down> arrow keys can be used to select the last cursor position of the
previous or subsequent network.

An empty network contains only three question marks "???". By clicking behind
these, the last cursor position is selected.

'Insert' 'Assign'

Symbol: Shortcut: <Ctrl>+<A>

This command inserts an assignment.

Depending on the selected position (see above 'Cursor positions in FBD'),
insertion takes place directly in front of the selected input (Cursor Position 2),
directly after the selected output (Cursor Position 4) or at the end of the network
(Cursor Position 6).

5-27907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

For an inserted assignment, a selection can be made accompanying the
entered text "???", and the assignment can be replaced by the variable that is
to be assigned. For this you can also use the Input Assistant.

In order to insert an additional assignment to an existing assignment, use the
'Insert' 'Output' command.

'Insert' 'Jump'

Symbol: Shortcut: <Ctrl>+<L>

This command inserts a jump.

Depending on the selected position (see above 'Cursor positions in FBD'),
insertion takes place directly in front of the selected input (Cursor Position 2),
directly after the selected output (Cursor Position 4) or at the end of the network
(Cursor Position 6).

For an inserted jump, a selection can be made accompanying the entered text
"???", and the jump can be replaced by the label to which it is to be assigned.

'Insert' 'Return'

Symbol: Shortcut: <Ctrl>+<R>

This command inserts a RETURN instruction.

Depending on the selected position (see above 'Cursor positions in FBD'),
insertion takes place directly in front of the selected input (Cursor Position
2),directly after the selected output (Cursor Position 4), directly before the
selected line cross (Cursor Position 5), or at the end of the network (Cursor
Position 6)

'Insert' 'Box'

Symbol: Shortcut: <Ctrl>+

With this command, operators, functions, function blocks and programs can be
inserted. First of all, it is always inserted an “AND” operator. This can be
converted by Selection and Overwrite of the type text („AND“) into every other
operator, into every function, into every function block and every program. You
can select the desired POU by using Input Assistant (<F2>). If the new selected
block has another minimum number of inputs, these will be attached. If the new
block has a smaller highest number of inputs, the last inputs will be deleted.

In functions and function blocks, the formal names of the in- and outputs are
displayed.

In function blocks there exists an editable instance field above the box. If
another function block that is not known is called by changing the type text, an
operator box with two inputs and the given type is displayed. If the instance field
is selected, Input Assistant can be obtained via <F2> with the categories for
variable selection.

5-28 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

The newest POU is inserted at the selected position (see above 'Cursor
positions in FBD'):

• If an input is selected (Cursor Position 2), then the POU is inserted in front
of this input. The first input of this POU is linked to the branch on the left of
the selected input. The output of the new POU is linked to the selected
input.

• If an output is selected (Cursor Position 4), then the POU is inserted after
this output. The first input of the POU is connected with the selected output.
The output of the new POU is linked to the branch with which the selected
output was linked.

• If a POU, a function, or a function block is selected (Cursor Position 3), then
the old element will be replaced by the new POU.

• As far as possible, the branches will be connected the same way as they
were before the replacement. If the old element had more inputs than the
new one, then the unattachable branches will be deleted. The same holds
true for the outputs.

• If a jump or a return is selected, then the POU will be inserted before this
jump or return. The first input of the POU is connected with the branch to the
left of the selected element. The output of the POU is linked to the branch to
the right of the selected element.

• If the last cursor position of a network is selected (Cursor Position 6), then
the POU will be inserted following the last element. The first input of the
POU is linked to the branch to the left of the selected position.

All POU inputs that could not be linked will receive the text "???". This text must
be clicked and changed into the desired constant or variable.

If there is a branch to the right of an inserted POU, then the branch will be
assigned to the first POU output. Otherwise the outputs remane unassigned.

‘Insert’ ‘Input'

Symbol: Shortcut: <Ctrl>+<U>

This command inserts an operator input. With many operators, the number of
inputs may vary. (For example, ADD can have 2 or more inputs.)

In order to extend such an operator by an input, you need to select the input in
front of which you wish to insert an additional input (Cursor Position 1); or you
must select the operator itself (Cursor Position 3), if a lowest input is to be
inserted (see above 'Cursor positions in FBD').

The inserted input is allocated with the text "???". This text must be clicked and
changed into the desired constant or variable. For this you can also use the
Input Assistant.

5-29907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

‘Insert‘ ‘Output‘

Symbol:

This command inserts an additional assignment into an existing assignment.
This capability serves the placement of so-called assignment combs; i.e., the
assignment of the value presently located at the line to several variables.

If you select the lined cross above an assignment (Cursor Position 5) (see
above 'Cursor positions in FBD') or the output directly in front of it (Cursor
Position 4), then there will be another assignment inserted after the ones
already there.

If the line cross directly in front of an assignment is selected (Cursor Position 4),
then another assignment will be inserted in front of this one.

The inserted output is allocated with the text "???". This text must be clicked
and changed into the desired variable. For this you can also use the Input
Assistant.

‘Extras‘ ‘Negation‘

Symbol: Shortcut: <Ctrl>+<N>

With this command you can negate the inputs, outputs, jumps, or RETURN
instructions. The symbol for the negation is a small circle at a connection.

If an input is selected (Cursor Position 2) (see above 'Cursor positions in FBD'),
then this input will be negated.

If an output is selected (Cursor Position 4), then this output will be negated.

If a jump or a return is marked, then the input of this jump or return will be
negated.

A negation can be canceled through renewed negation.

‘Extras‘ ‘Set/Reset‘

Symbol:

With this command you can define outputs as Set or Reset Outputs. A grid with
Set Output is displayed with [S], and a grid with Reset Output is displayed with
[R].

Image 5.11: Set/Reset Outputs in FBD

5-30 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

An Output Set is set to TRUE, if the grid belonging to it returns TRUE. The
output now maintains this value, even if the grid jumps back to FALSE.

An Output Reset is set to FALSE, if the grid belonging to it returns FALSE. The
output maintains its value, even if the grid jumps back to FALSE.

With multiple executions of the command, the output will alternate between set,
reset, and normal output.

Cutting, Copying, Pasting, and
Deleting in FBD

The commands used to 'Cut', 'Copy', 'Paste', and 'Delete' are found under the
'Edit' menu item.

If a line cross is selected (Cursor Position 5) (see above 'Cursor positions in
FBD'), then the assignments, jumps, or RETURNS located below the crossed
line will be cut, deleted, or copied.

If a POU is selected (Cursor Position 3), then the selected object itself, will be
cut, deleted, or copied, along with all of the branches dependent on the inputs,
with the exception of the first (highest position) branch.

Otherwise, the entire branch located in front of the cursor position will be cut,
deleted, or copied.

After copying or cutting, the deleted or copied part is located on the clipboard
and can now be pasted, as desired.

In order to do so, you must first select the pasting point. Valid pasting points
include inputs and outputs.

If a POU has been loaded onto the clipboard (As a reminder: in this case all
connected branches except the first are located together on the clipboard), the
first input is connected with the branch before the pasting point.

Otherwise, the entire branch located in front of the pasting point will be replaced
by the contents of the clipboard.

In each case, the last element pasted is connected to the branch located in front
of the pasting point.

Note: The following problem is solved by cutting and pasting: A new
operator is inserted in the middle of a network. The branch located on the right
of the operator is now connected with the first input, but should be connected
with the second input. You can now select the first input and perform the
command 'Edit' 'Cut'. Following this, you can select the second input and
perform the command 'Edit' 'Paste'. This way, the branch is dependent on the
second input.

5-31907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

The Function Block Diagram in
the Online Mode

In the Function Block Diagram, breakpoints can only be set to networks. If a
breakpoint has been set to a network, then the network numbers field will be
displayed in blue. The processing then stops in front of the network where the
breakpoint is located. In this case, the network numbers field will become red.
Using stepping (single step), you can jump from network to network.

The current value is displayed for each variable. Exception: If the input to a
function block is an expression, only the first variable in the expression is
monitored.

Doubleclicking on a variable opens the dialog box for writing a variable. Here it
is possible to change the present value of the variable. In the case of Boolean
variables, no dialog box appears; these variables are toggled.

The new value will turn red and will remain unchanged. If the 'Online' 'Write
values' command is given, then all variables are placed in the selected list and
are once again displayed in black.

The flow control is started with the 'Online' 'Flow control' command (see
Chapter 4.6, Online Functions). Using the flow control, you can view the present
values that are being carried in the networks over the connecting lines. If the
connecting lines do not carry Boolean values, then the value will be displayed in
a specially inserted field. If the lines carry Boolean values, then they will be
shaded blue in the event that they carry TRUE. By this means, you can
accompany the flow of information while the PLC is running.

If you place the mouse pointer briefly above a variable, then the type, the
address and the comment about the variable will be displayed in a Tooltip.

5-32 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

5.3.2 The Ladder Editor

This is how a POU written in the LD appears in the 907 AC 1131 editor:

Image 5.12: POU in the Ladder Diagram

All editors for POUs consist of a declaration part and a body. These are
separated by a screen divider.

The LD editor is a graphic editor. The most important commands are found in
the context menu (right mouse button or <Ctrl>+<F10>).

For information about the elements, see Chapter 2.2.6 Ladder Diagram (LD).

Cursor Positions in the LD
Editors

The following locations can be cursor positions, in which the function block and
program accessing can be handled as contacts. POUs with EN inputs and other
POUs connected to them are treated the same way as in the Function Block
Diagram. Information about editing this network part can be found in the
Chapter on the FBD Editor.

1. Every text field (possible cursor positions framed in black)

5-33907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

2. Every Contact or Function Block

3. Every Coil

4. The Connecting Line between the Contacts and the Coils.

The Ladder Diagram uses the following menu commands in a special way:

‘Insert’ ’Contact’

Symbol: Shortcut: <Ctrl>+<O>

Use this command in the LD editor in order to insert a contact in front of the
marked location in the network.

If the marked position is a coil (Cursor Position 3) or the connecting line
between the contacts and the coils (Cursor Position 4), then the new contact will
be connected serially to the previous contact connection.

The contact is preset with the text "???". You can click on this text and change it
to the desired variable or the desired constant. For this you can also use the
Input Assistant.

You can activate the options Comments per Contact and Lines for variable
comment in the dialog 'Function Block and Ladder Diagram Options' ('Extras'
'Options') to reserve a certain number of lines for the variable name. This might
be useful, if long variable names are used, to keep the network short.

Also regard the option Networks with linebreaks, which you also can activate
in the Ladder Diagram Options.

Example for the options dialog and the resulting display in a FBD or Ladder
network:

5-34 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

‘Insert‘ ‘Parallel Contact‘

Symbol: Shortcut: <Ctrl>+<R>

Use this command in the LD editor to insert a contact parallel to the marked
position in the network.

If the marked position is a coil (Cursor Position 3) or the connection between
the contacts and the coils (Cursor Position 4), then the new contact will be
connected in parallel to the entire previous contact connection.

The contact is preset with the text "???". You can click on this text and change it
to the desired variable or the desired constant. For this you can also use the
Input Assistant.

It is possible to display the variable name with linebreaks. Also a separate
comment can be inserted for the contact. For a description see 'Insert' 'Contact'.

‘Insert’ ’Function Block ‘

Shortcut: <Ctrl>+

Use this command in order to insert an operator, a function block, a function or
a program as a POU. For this, the connection between the contacts and the
coils (cursor position 4), or a coil (cursor position 3), must be marked. The new
POU at first has the designation AND. If you wish, you can change this

5-35907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

designation to another one. For this you can also use the Input Assistant. Both
standard and self-defined POUs are available.

The first input to the POU is placed on the input connection, the first output on
the output connection; thus these variables must definitely be of type BOOL. All
other in- and outputs of the POU are filled with the text „???“. These prior
entries can be changed into other constants, variables or addresses. For this
you can also use the Input Assistant.

‘Insert’ ’Coil’

Symbol: Shortcut: <Ctrl>+<L>

You can use this command in the LD editor to insert a coil in parallel to the
previous coils.

If the marked position is a connection between the contacts and the coils
(Cursor Position 4), then the new coil will be inserted as the last. If the marked
position is a coil (Cursor Position 3), then the new coil will be inserted directly
above it.

The coil is given the text "???" as a default setting. You can click on this text
and change it to the desired variable. For this you can also use the Input
Assistant.

It is possible to display the variable name with linebreaks. Also a separate
comment can be inserted for the coil. For a description see 'Insert' 'Contact'.

POUs with EN Inputs

If you want to use your LD network as a PLC for calling up other POUs , then
you must merge a POU with an EN input. Such a POU is connected in parallel
to the coils. Beyond such a POU you can develop the network further, as in the
Function Block Diagram. You can find the commands for insertion at an EN
POU under the menu item 'Insert' 'Insert at Blocks'

An operator, a function block, a program or a function with EN input performs
the same way as the corresponding POU in the Function Block Diagram, except
that its execution is controlled on the EN input. This input is annexed at the
connecting line between coils and contacts. If this connection carries the
information "On", then the POU will be evaluated.

If a POU has been created once already with EN input, then this POU can be
used to create a network. This means that data from usual operators, functions,
and function blocks can flow in an EN POU and an EN POU can carry data to
such usual POUs.

If, therefore, you want to program a network in the LD editor, as in FBD, you
only need first to insert an EN operator in a new network. Subsequently, from
this POU, you can continue to construct from your network, as in the FBD
editor. A network thus formed will perform like the corresponding network in
FBD.

5-36 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

‘Insert’ ’Box with EN ’

Use this command to insert a function block, an operator, a function or a
program with EN input into a LD network.

The marked position must be the connection between the contacts and the coils
(Cursor Position 4) or a coil (Cursor Position 3). The new POU is inserted in
parallel to the coils and underneath them; it contains initially the designation
"AND". If you wish, you can change this designation to another one. For this
you can also use the Input Assistant.

’Insert’ ’Function Block with EN’

With this command you can insert a function block with EN input into a LD
network.

The marked position must be the connection between the contacts and the coils
(Cursor Position 4) or a coil (Cursor Position 3). The new function block is
inserted in parallel to the coils, below them. From the Input Assistant dialog box
that appears, you can select whether to insert a user-defined, or a standard
(default) function block.

’Insert’ ’Function with EN’

With this command you can insert a function with EN input into an LD network.

The marked position must be the connection between the contacts and the coils
(Cursor Position 4) or a coil (Cursor Position 3). The new function is inserted in
parallel to the coils, below them. From the Input Assistant dialog box that
appears, you can select whether to insert a user-defined, or a standard function
block.

‘Insert’ ’Insert at blocks

With this command you can insert additional elements into a POU that has
already been inserted (also a POU with EN input). The commands below this
menu item can be executed at the same cursor positions as the corresponding
commands in the Function Block Diagram (See Chapter 5.3.1).

With Input you can add a new input to the POU.

With Output you can add a new output to the POU.

With POU, you insert a new POU. The procedure is similar to that described
under 'Insert' 'POU'.

With Assign you can insert an assignment to a variable. At first, this is shown
by three question marks „???“, which you edit and replace with the desired
variable. Input assistance is available for this purpose.

'Insert' 'Jump'

With this command you can insert a parallel jump in the selected LD editor, in
parallel, at the end of the previous coils. If the incoming line delivers the value
"On", then the jump will be executed to the indicated label.

5-37907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

The marked position must be the connection between the contacts and the
coils(Cursor Position 4) or a coil (Cursor Position 3).

The jump is present with the text "???". You can click on this text and make a
change in the desired label.

'Insert' 'Return'

In the LD editor, you can use this command to insert a Return instruction in
parallel at the end of the previous coils. If the incoming line delivers the value
"On," then the processing of the POU in this network is broken off.

The marked position must be the connection between the contacts and the
coils(Cursor Position 4) or a coil (Cursor Position 3).

‘Extras’ ’Paste after’

Use this command in the LD editor to insert the contents of the clipboard as
serial contact below the marked position. This command is only possible if the
contents of the clipboard and the marked position are networks comprised of
contacts.

'Extras' 'Paste below'

Shortcut: <Ctrl>+<U>

Use this command in the LD editor to insert the contents of the clipboard as
parallel contact below the marked position. This command is only possible if the
contents of the clipboard and the marked position are networks comprised of
contacts.

'Extras' 'Paste above'

Use this command in the LD editor to insert the contents of the clipboard as
parallel contact above the marked position. This command is only possible if the
contents of the clipboard and the marked position are networks comprised of
contacts.

'Extras' 'Negate'

Symbol: Shortcut: <Strg>+<N>

Use this command to negate a contact, a coil, a jump or return instruction, or an
input or output of EN POUs at the present cursor position (Cursor Position 2
and 3).

Between the parentheses of the coil or between the straight lines of the contact,
a slash will appear ((/) or |/|). If there are jumps, returns, or inputs or outputs of
EN POUs, a small circle will appear at the connection, just as in the FBD editor.

The coil now writes the negated value of the input connection in the respective
Boolean variable. Right at this moment, a negated contact switches the status
of the input to the output, if the respective Boolean variable carries the value
FALSE.

5-38 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

If a jump or a return is marked, then the input of this jump or return will be
negated.

A negation can be canceled through renewed negation.

‘Extras’ ‘Set/Reset‘

If you execute this command on a coil, then you will receive a Set Coil. Such a
coil never overwrites the value TRUE in the respective Boolean variable. This
means that once you have set the value of this variable to TRUE, it will always
remain at TRUE. A Set Coil is designated with an "S" in the coil symbol.

If you execute this command once again, then you will be given a Reset Coil.
Such a coil never overwrites the value FALSE in the respective Boolean
variable. This means that once you have set the value of this variable to
FALSE, it will always remain at FALSE. A Reset Coil is designated with an "R"
in the coil symbol.

If you execute this command repeatedly, the coil will alternate between set,
reset and normal coil.

The Ladder Diagram in the
Online Mode

In Online mode, the contacts and coils in the Ladder Diagram that are in the
"On" state are colored blue. Likewise, all lines over which the "On" is carried are
also colored blue. At the inputs and outputs of function blocks, the values of the
corresponding variables are indicated.

Breakpoints can only be set on networks; by using stepping, you can jump from
network to network.

If you place the mouse pointer briefly above a variable, then the type, the
address and the comment about the variable will be displayed in a Tooltip.

5.3.3 The Sequential Function Chart Editor

The Sequential Function Chart editor is a graphic editor. The most important
commands are found in the context menu (right mouse button or <Ctrl><F10>).
Tooltips show in Offline as well as in Online mode and in the zoomed state the
full names or expressions of steps, transitions, jumps, jump labels, qualifiers or
associated actions.

For information about the Sequential Function Chart see also Chapter 2.2.3 .

See Image 5.13 for how a POU written in the SFC appears in the 907 AC 1131
editor:

5-39907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

Image 5.13: Sequential Function Chart Editor with an opened Action

The editor for the Sequential Function Chart must agree with the particulars of
the SFC. In reference to these, the menu items described in the following
chapters will be of service:

Marking Blocks in the SFC

A marked block is a bunch of SFC elements that are enclosed in a dotted
rectangle. You can select an element (a step, a transition, or a jump) by pointing
the mouse on this element and pressing the left mouse button, or you can use
the arrow keys. In order to mark a group of several elements, press <Shift> for
a block already marked, and select the element in the lower left or right corner
of the group. The resulting selection is the smallest cohesive group of elements
that includes both of these elements.

Please regard, that a step can only be deleted together with the preceeding or
the succeeding transition !

Regard also that all commands can only be executed, if they do not contradict
the conventions of the language.

'Insert' 'Step Transition (before)'

Symbol: Shortcut: <Ctrl>+<T>

This command inserts a step in the SFC editor followed by a transition in front
of the marked block.

5-40 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

’Insert’ ’Step Transition (after)’

Symbol: Shortcut: <Ctrl>+<E>

This command inserts a step in the SFC editor followed by a transition after the
first transition in the marked block.

Delete Step and Transition

A step can only be deleted together with the preceeding or the succeeding
transition. For this purpose put a selection frame around step and transition and
choose command 'Edit' 'Delete' or press the key.

’Insert’ ’Alternative Branch
(right)’

Symbol: Shortcut: <Ctrl>+<A>

This command inserts an alternative branch in the SFC editor as a right branch
of the marked block. For this the marked block must both begin and end with a
transition. The new branch is then made up of one transition.

’Insert’ ’Alternative Branch (left)’

Symbol:

This command inserts an alternative branch in the SFC editor as the left branch
of the marked block. For this the marked block must both begin and end with a
transition. The new branch is then made up of one transition.

'Insert' 'Parallel Branch (right)"

Symbol: Shortcut: <Ctrl>+<L>

This command inserts a parallel branch in the SFC editor as the right branch of
the marked block. For this the marked block must both begin and end with a
step. The new branch is then made up of one step. To allow jumps to the
parallel branches that have been created, these must be provided with a jump
label.

’Insert’ ’Parallel Branch (left)’

Symbol:

’This command inserts a parallel branch in the SFC editor as the left branch of
the marked block. For this the marked block must both begin and end with a
step. The new branch is then made up of one step. To allow jumps to the
parallel branches that have been created, these must be provided with a jump
label (see 'Extras' 'Add label to parallel branch').

5-41907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

’Insert’ ’Jump’

’This command inserts a jump in the SFC editor at the end of the branch, to
which the marked block belongs. For this the branch must be an alternative
branch.

The inserted text string 'Step' in the inserted jump can then be selected and
replaced by the step name or the jump label of a parallel branch to be jumped
to.

’Insert’ ’Transition-Jump’

Symbol:

This command inserts a transition in the SFC editor, followed by a jump at the
end of the selected branch. For this the branch must be a parallel branch.

The inserted text string 'Step' in the inserted jump can then be selected and
replaced by the step name or the jump label of a parallel branch to be jumped
to.

’Insert’ ’Add Entry-Action’

With this command you can add an entry-action to a step. An entry-action is
only executed once, right after the step has become active. The entry-action
can be implemented in a language of your choice.

A step with an entry-action is designated by an "E" in the bottom left corner.

’Insert’ ’Add Exit-Action’

With this command you can add an exit-action to a step. An exit-action is only
executed once, before the step is deactivated. The exit-action can be
implemented in a language of your choice.

A step with an exit-action is designated by an "X" in the lower right corner.

'Extras' 'Paste Parallel Branch
(right)'

This command pastes the contents of the clipboard as a right parallel branch of
the marked block. For this the marked block must both begin and end with a
step. The contents of the clipboard must, likewise, be an SFC block that both
begins and ends with a step.

'Extras' 'Add label to parallel
branch'

In order to provide a newly inserted parallel branch with a jump label, the
transition occurring before the parallel branching must be marked and the
command 'Add label to parallel branch' must be executed. At that point, the
parallel branch will be given a standard name consisting of „Parallel“ and an
appended serial number, which can be edited according to the rules for
identifier names. In the following example, "Parallel" was replaced by "Par_1_2"
and the jump to the transition "End" was steered to this jump label.

5-42 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

Delete a label

A jump label can be deleted by deleting the label name.

’Extras‘ ‘Paste after‘

This command pastes the SFC block on the clipboard after the first step or the
first transition of the marked block. (Normal copying pastes it in front of the
marked block.) This will now be executed, if the resulting SFC structure is
correct, according to the language norms.

‘Extras‘ ‘Zoom
Action/Transition‘

Shortcut: <Alt>+<Enter>

The action of the first step of the marked block or the transition body of the first
transition of the market block is loaded into the editor in the respective
language, in which it has been written. If the action or the transition body is
empty, then the language must be selected, in which it has been written.

'Extras' 'Clear Action/Transition'

With this command you can delete the actions of the first step of the marked
block or of the transitions body of the first transition.

If, during a step, you implement either only the action, the entry-action, or the
exit-action, then the same will be deleted by the command. Otherwise a dialog
box appears, and you can select which action or actions are to be deleted.

If the cursor is located in the action of an IEC step, then only this association
will be deleted. If an IEC step with an associated action is selected, then this
association will be deleted. During an IEC step with several actions, a selection
dialog box will appear.

’Extras’ ’Step Attributes’

With this command you can open a dialog box in which you can edit the
attributes for the marked step.

5-43907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

Image 5.14: Dialog Box for Editing Step Attributes

You can take advantage of three different entries in the step attribute dialog
box. Under Minimum Time, you enter the minimum length of time that the
processing of this step should take. Under the Maximum Time, you enter the
maximum length of time that the processing of this step should take. Note that
the entries are of the TIME type, so you use a TIME constant (i.e. T#3s) or a
variable of the TIME type.

Under Comment you can insert a comment to the step. In the 'Sequential
function chart options' dialog which you open under 'Extras' 'Options', you can
then enter whether comments or the time setting is displayed for the steps in
the SFC editor. On the right, next to the step, either the comment or the time
setting will appear.

If the maximum time is exceeded, SFC flags are set which the user can query.

The example shows a step whose execution should last at least two, and at the
most, ten seconds. In Online mode, there is, in addition to these two times, a
display of how long the step has already been active.

’Extras’ ’Time Overview’

With this command you can open a window in which you can edit the time
settings of your SFC steps:

5-44 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

Image 5.15: Time Boundaries Overview for a SFC POU

In the time boundaries overview, all steps of your SFC POU are displayed. If
you have entered a time boundary for a step, then the time boundary is
displayed to the right of the step (first, the lower limit, then the upper limit). You
can also edit the time boundaries. To do so, click on the desired step in the
overview. The name of the step is then shown below in the window. Go to the
Minimum Time or Maximum Time field, and enter the desired time boundary
there. If you close the window with OK, then all of the changes will be stored.

In the example, steps 2 and 6 have a time boundary. Shift1 lasts at least two,
and at most, ten seconds. Shift2 lasts at least seven, and at most, eight
seconds.

’Extras’ ’Options’

With this command you open a dialog box in which you can set different options
for your SFC POU.

Image 5.16: Dialog Box for Sequential Function Chart Options

5-45907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

In the SFC Options dialog box you can undertake five entries. Under Step
Height, you can enter how many lines high an SFC step can be in your SFC
editor. 4 is the standard setting here. Under Step Width, you can enter how
many columns wide a step should be. 6 is the standard setting here. You can
also preset the Display at Step. With this, you have three possibilities: You can
either have Nothing displayed, or the Comment, or the Time Limits. The last
two are shown the way you entered them in 'Extras' 'Step Attributes'.

’Extras’ ’Associate Action’

With this command actions and Boolean variables can be associated with IEC
steps.

To the right of, and next to the IEC step, an additional divided box is attached,
for the association of an action. It is preset in the left field with the qualifier "N"
and the name "Action." Both presets can be changed. For this you can use the
Input Assistant.

Maximum nine actions can be assigned to an IEC step.

New actions for IEC steps are created in the Object Organizer for an SFC POU
with the 'Project' 'Add Action' command.

’Extras’ ’Use IEC-Steps’

Symbol:

If this command is activated (denoted by a check in front of the menu item and
a printed symbol in the Tool bar), then IEC steps will be inserted instead of the
simplified steps upon insertion of step transitions and parallel branches.

If this option is switched on, the Init step is set as an IEC step when you create
a new SFC POU.

This settings are saved in the file "907 AC 1131.ini" and are restored when
907 AC 1131 gets started again.

Sequential Function Chart in
Online Mode

With the Sequential Function Chart editor in Online mode, the currently active
steps will be displayed in blue. If you have set it under 'Extras' 'Options', then
the time management is depicted next to the steps. Under the lower and upper
bounds that you have set, a third time indicator will appear from which you can
read how long the step has already been active.

In the picture above the step depicted has already been active 8 seconds and
410 milliseconds. The step must, however, be active for at least 7 minutes
before the step will be left.

5-46 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

With 'Online' 'Toggle Breakpoint' a breakpoint can be set on a step, or in an
action at the locations allowed by the language in use. Processing then stops
prior to execution of this step or before the location of the action in the program.
Steps or program locations where a breakpoint is set are marked in light blue.

If several steps are active in a parallel branch, then the active step whose action
will be processed next is displayed in red.

If IEC steps have been used, then all active actions in Online mode will be
displayed in blue.

Image 5.17: Sequential Function Chart in the Online Mode with an Active Step (Shift1)
and a Breakpoint (Step10)

With the command 'Online' 'Step over' it is stepped always to the next step
which action is executed. If the current location is:

• a step in the linear processing of a POU or a step in the rightmost parallel
branch of a POU, execution returns from the SFC POU to the caller. If the
POU is the main program, the next cycle begins.

• a step in a parallel branch other than the rightmost, execution jumps to the
active step in the next parallel branch.

• the last breakpoint location within a simple action, execution jumps to the
caller of the SFC.

• the last breakpoint location within an IEC action, execution jumps to the
caller of the SFC.

• the last breakpoint position within an input action or output action, execution
jumps to the next active step.

5-47907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

With 'Online' 'Step in' even actions can be stepped into. If an input, output or
IEC action is to be jumped into, a breakpoint must be set there. Within the
actions, all the debugging functionality of the corresponding editor is available to
the user.

If you rest the mouse cursor for a short time on a variable in the declaration
editor, the type, the address and the comment of the variable will be displayed
in a tooltip.

 Please regard: If you rename a step and perform an Online Change while
this step is active, the program will be stopped in undefined status !

Processing order of elements in a sequence:

1. First, all Action Control Block flags in the IEC actions that are used in this
sequence are reset (not, however, the flags of IEC actions that are called
within actions).

2. All steps are tested in the order which they assume in the sequence (top to
bottom and left to right) to determine whether the requirement for execution
of the output action is provided, and this is executed if that is the case.

3. All steps are tested in the order which they assume in the sequence to
determine whether the requirement for the input action is provided, and this
is executed if that is the case.

4. For all steps , the following is done in the order which they assume in the
sequence:
- If applicable, the elapsed time is copied into the corresponding step
variable.
- If applicable, any timeout is tested and the SFC error flags are serviced as
required.
- For non-IEC steps, the corresponding action is now executed.

5. IEC actions that are used in the sequence are executed in alphabetical
order. This is done in two passes through the list of actions. In the first pass,
all the IEC actions that are deactivated in the current cycle are executed. In
the second pass, all the IEC actions that are active in the current cycle are
executed.

6. Transitions are evaluated: If the step in the current cycle was active and the
following transition returns TRUE (and if applicable the minimum active time
has already elapsed), then the following step is activated.

The following must be noted concerning implementation of actions:

It can come about that an action is carried out several times in one cycle
because it is associated with multiple sequences. (For example, an SFC could

5-48 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

have two IEC actions A and B, which are both implemented in SFC, and which
both call IEC action C; then in IEC actions A and B can both be active in the
same cycle and furthermore in both actions IEC action C can be active; then C
would be called twice).

If the same IEC action is used simultaneously in different levels of an SFC, this
could lead to undesired effects due to the processing sequence described
above. For this reason, an error message is issued in this case. It can possibly
arise during processing of projects created with older versions of 907 AC 1131.

Note: In monitoring expressions (e.g. A AND B) in transitions, only the
„Total value“ of the transition is displayed.

5.3.4 The Continuous Function Chart Editor (CFC)

It looks like a block which has been produced using the continuous function
chart editor (CFC):

Image 5.18: Editor for continuous function charts

No snap grid is used for the continuous function chart editor so the elements
can be placed anywhere. Elements of the sequential processing list include
boxes, input, output, jump, label, return and comments. The inputs and outputs
of these elements can be connected by dragging a connection with the mouse.
The connecting line will be drawn automatically. The shortest possible
connection line is drawn taking into account existing connections. The
connecting lines are automatically adjusted when the elements are moved. If
the case arises where a connecting line cannot be drawn simply because of

5-49907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

lack of space, a red line will be shown between the input and the associated
output instead. This line will be converted into a connecting line just as soon as
space is available.

One advantage of the continuous function chart as opposed to the usual
function block diagram editor FBD is the fact that feedback paths can be
inserted directly.

The most important commands can be found in the context menu

Cursor positions Each text is a possible cursor position. The selected text is
shaded in blue and can be modified.

In all other cases the current cursor position is shown by a rectangle made up of
points. The following is a list of all possible cursor positions with examples:

1. Trunks of the elements box, input, output, jump, label, return and comments.

2. Text fields for the elements box, input, output, jump, label, return and
comments as well as text fields for connection marker

3. Inputs for the elements box, input, output, jump and return

5-50 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

4. Outputs for the elements box and input:

‘Insert’ ‘Box’

Symbol: Shortcut: <Ctrl>+

This command can be used to paste in operators, functions, function blocks and
programs First of all, it is always inserted an “AND” operator. This can be
converted by Selection and Overwrite of the text into every other operator, into
every function, into every function block and every program. The input
assistance serves to select the desired block from the list of supported blocks. If
the new block has another minimum number of inputs, these will be attached. If
the new block has a smaller highest number of inputs, the last inputs will be
deleted.

‚Insert‘ ‚Input

Symbol: Shortcut: <Ctrl> + <E>

This command is used to insert an input. The text offered ”???” can be selected
and replaced by a variable or constant. The input assistance can also be used
here.

‘Insert’ ‘Output’

Symbol: Shortcut: <Ctrl>+<A>

This command is used to insert an output. The text offered ”???” can be
selected and replaced by a variable. The input assistance can also be used
here. The value which is associated with the input of the output is allocated to
this variable.

 ‘Insert’ ‘Jump‘

Symbol: Shortcut: <Ctrl>+<J>

This command is used to insert a jump. The text offered ”???” can be selected
and replaced by the jump label to which the program should jump. The jump
label is inserted using the command ‘Insert ‘Label'

‘Insert’ ‘Label‘

Symbol: Shortcut: <Ctrl>+<L>

This command is used to insert a label. The text offered ”???” can be selected
and replaced by the jump label. In Online mode a RETURN label for marking
the end of POU is automatically inserted. The jump is inserted using the
command ‘Insert ‘Jump'

5-51907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

 ‘Insert’ ‘Return’

Symbol: Shortcut: <Ctrl> + <R>

This command is used to insert a RETURN command. Note that in Online mode
a jump label with the name RETURN is automatically inserted in the first column
and after the last element in the editor; in stepping, it is automatically jumped to
before execution leaves the POU.

‘Insert’ ‘Comment’

Symbol: Shortcut: <Ctrl> + <K>

This command is used to insert a comment.

You obtain a new line within the comment with <Ctrl> + <Enter>.

‘Insert’ ‘Input of box’

Shortcut: <Ctrl> + <U>

This command is used to insert an input at a box. The number of inputs is
variable for many operators (e.g. ADD can have two or more inputs).

To increase the number of inputs for such an operator by one, the box itself
must be selected (Cursor position 1)

Insert’ ‘In-Pin’, ‘Insert’ ‘Out-Pin’

Symbol:

These commands are available as soon as a macro is opened for editing. They
are used for inserting in- or out-pins as in- and outputs of the macro. They differ
from the normal in- and outputs of POUs by the way they are displayed and in
that they have no position index.

‘Extras’ ‘Negate'

Symbol: Shortcut: <Ctrl> + <N>

This command is used to negate inputs, outputs, jumps or RETURN
commands. The symbol for the negation is a small cross on the connection.

The input of the element block, output, jump or return is negated when it is
selected (Cursor position 3).

The output of the element block or input is negated when it is selected (Cursor
position 4).

A negation can be deleted by negating again.

5-52 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

‘Extras’ ‘Set/Reset‘

Symbol: Shortcut: <Ctrl> + <T>

This command can only be used for selected inputs of the element output
(Cursor position 3).

The symbol for Set is S and for Reset is R.

VarOut1 is set to TRUE, if VarIn1 delivers TRUE. VarOut1 retains this value,
even when VarIn1 springs back to FALSE.

VarOut2 is set to FALSE, if VarIn2 delivers TRUE. VarOut2 retains this value,
even when VarIn2 springs back to FALSE.

Multiple activation of this command causes the output to change between Set,
Reset and the normal condition.

‘Extras’ ‘EN/ENO‘

Symbol: Shortcut: <Ctrl> + <0>

This command is used to give a selected block (Cursor position 3) an additional
Boolean enable input EN (Enable In) and a Boolean output ENO (Enable Out).

ADD is only executed in this example when the Boolean variable “Bedingung”
(condition) is TRUE. VarOut is also set to TRUE after ADD has been executed.
ADD will not be executed when the variable “Bedingung” (condition) is FALSE
and VarOut retains its value FALSE.

The example below shows how the value ENO can be used for further blocks.

5-53907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

x should initialised to 1 and y initialised to 0. The numbers in the right corner of
the block indicate the order in which the commands are executed.

x will be increased by one until it reaches the value 10. This causes the output
of the block LT(0) to deliver the value FALSE and SUB(3) and ADD(5) will be
executed. x is set back to the value 1 and y is increased by 1. LT(0) is executed
again as long as x is smaller than 10. y thus count the number of times x
passes though the value range 1 to 10.

‚Extras‘ ‚Properties...‘

Constant input parameters (VAR_INPUT CONSTANT) from functions and
function blocks are not shown directly in the continuous function chart editor.
These can be shown and their value can be changed when one selects the
trunk of the block in question (Cursor position 1) and then selects the command
‚Extras‘ ‚Properties‘ or simply double clicks on the trunk. The „Edit parameters“
dialog opens:

Image 5.19: Properties dialog

The values of the constant input parameter (VAR_INPUT CONSTANT) can be
changed. Here it is necessary to mark the parameter value in the column Value.
Another mouse click or pressing on the space bar allows this to be edited.
Confirmation of the change to the value is made by pressing the <Enter> key or
pressing <Escape> rejects the changes. The button OK stores all of the
changes which were made.

Selecting elements

One clicks on the trunk of the element (Cursor position 1) to select it.

To mark more elements one presses the <Shift> key and clicks in the elements
required, one after the other, or one drags the mouse with the left hand
mousekey depressed over the elements to be marked.

The command ‘Extras’ ‘Select all’ marks all elements at once.

Moving elements

One or more selected elements can be moved with the arrow keys as one is
pressing on the <Shift> key. Another possibility is to move elements using a
depressed left mousekey. These elements are placed by releasing the left
mousekey in as far as they do not cover other elements or exceed the foreseen
size of the editor. The marked element jumps back to its initial position in such
cases and a warning tone sounds.

5-54 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

Copying elements

One or more selected elements can be copied with the command ‘Edit’ ‘Copy’
and inserted with the command ‘Edit’ ‘Paste’.

Creating connections

An input of an element can be precisely connected to the output of another
element. An output of an element can be connected to the inputs of a number of
other elements.

There are a number of possibilities to connect the input of an element E2 with
the output of an element E1.

Place the mouse on the output of element E1 (Cursor position 4), click with the
left mousekey, hold the left mousekey down and drag the mouse cursor onto
the input of element E2 (Cursor position 3) and let the left mousekey go. A
connection is made from the output of element E1 to the mouse cursor during
this dragging operation with the mouse.

Place the mouse on the input of element E2, click with the left mousekey, hold
the left mousekey down and drag the mouse cursor onto the output of element
E1 and let the left mousekey go.

Move one of the elements E1 or E2 (Cursor position 1) and place it in such a
way by letting go of the left mousekey that the output of element E2 and the
input of element E1 touch.

Where element E2 is a block with a free input, a connection can also be made
by dragging the mouse from an output from E1 to the trunk of E2. A connection
with the free input at the highest position on E2 will be created when the
mousekey is released. In the case where block E2 does not have a free input
but is an operator which can have an input added to it, a new input will be
automatically generated.

The output and input of a block can be connected together (feedback path) by
using this method. To establish a connection between two pins, click with the
left mouse button on one pin, hold the button down and thus drag the
connection to the desired pin, where you then release the button. If during the
dragging of the connection extends outside working area of the editor, scrolling
occurs automatically. For simple data types, type testing is carried out during
the connection. If the types of the two pins are not compatible, the cursor
changes to „Forbidden“. For complex data types, no testing takes place.

Deleting connections

There are a number of possibilities for removing the connection between the
output of an element E1 and the input of an element E2:

5-55907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

Select the output of element E1 (Cursor position 4) and press the <Delete> key
or execute the command ‘Edit’ ‘Delete'. Several connections will be removed at
the same if the output of E1 is connected to more than one of inputs.

Select the input of element E2 (Cursor position 4) and press the <Delete> key
or execute the command ‘Edit’ ‘Delete‘.

Select the input of E2 with the mouse, hold the left mousekey depressed and
drag the connection from the input to E2 away. The connection is removed
when the left mousekey is released in a free area of the screen.

Changing connections

A connection between the output of an element E1 and the input of an element
E2 can easily be changed into a connection between the output of element E1
and the input of element E3. The mouse is clicked on the input of E2 (Cursor
position 3), the left mousekey is kept depressed, the mouse cursor is moved to
the input of E3 and then released.

‘Extras’ ‘Connection marker‘

Connections can also be represented by a connector (connection marker)
instead of a connecting line. Here the output and the associated input have a
connector added to them which is given a unique name.

Where a connection already exists between the two elements which should now
be represented by connectors, the output of the connecting line is marked
(Cursor position 3) and the menu point ‚Extras‘ ‚Connection marker‘ is selected.
The following diagram shows a connection before and after the selection of this
menu point.

A unique name is given as standard by the program which begins with M, but
which can be changed The connector name is stored as an output parameter,
but can be edited both at the input and at the output.

It is important to know that the connector name is associated with a property of
the output of a connection and is stored with it.

1. Edit the connector at the output:

If the text in the connector is replaced, the new connector name is adopted by
all associated connectors at the inputs. One cannot, however, select a name
which already belongs to another connection marker since the uniqueness of
the connector name would be violated.

2. Edit the connector at the input:

5-56 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

If the text in a connector is replaced, it will also be replaced in the
corresponding connection marker on the other POU. Connections in connector
representations can be converted to normal connections in that one marks the
output of the connections (Cursor position 4) and again selects the menu point
’Extras‘ ‘Connection marker‘.

Insert inputs/outputs
“on the fly”

If exactly one input or output pin of an element is selected, then the
corresponding input- or output- element can be directly inserted and its editor
field filled with a string by entering the string at the keyboard.

Order of execution

The elements block, output, jump, return and label each possess a number
indicating the order in which they are executed. In this sequential order the
individual elements are evaluated at run time.

When pasting in an element the number is automatically given according to the
topological sequence (from left to right and from above to below). The new
element receives the number of its topological successor if the sequence has
already been changed and all higher numbers are increased by one.

The number of an element remains constant when it is moved.

The sequence influences the result and must be changed in certain cases.

If the sequence is displayed, the corresponding sequential execution number is
shown in the upper right hand corner of the element.

‘Extras‘ ’Order‘ ’Display‘

This command switches the display of the order of execution on and off. The
default setting is to show it (recognised by a tick (�) in front of the menu point).

The relevant order of execution number appears in the upper right hand corner
for the elements block, output, jump, return and label.

‘Extras‘ ’Order‘ ’Order
topologically‘

Elements are ordered in a topological sequence when the execution takes place
from left to right and from above to below, that is the number increases from left
to right and from above to below for topologically arranged elements. The
connections are not relevant, only the location of the elements is important.

All selected elements are topologically arranged when the command ‘Extras‘
‘Order‘ ’Order topologically‘ is executed. All elements in the selection are
taken out of the sequential processing list by this process. The elements are
then entered into the remaining sequential processing list individually from
bottom right through to upper left. Each marked element is entered into the
sequential processing list before its topological successor, i.e. it is inserted
before the element that in a topological sequencing would be executed after it,

5-57907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

when all elements in the editor were sequenced according to a topological
sequencing system. This will be clarified by an example.

Image 5.20: Sequence before the topological ordering of the three elements

The elements with numbers 1, 2 and 3 are selected. If the command ’Order
topologically‘ is selected the elements are first taken out of the sequential
processing list. Var3, the jump and the AND-operator are then inserted again
one after the other. Var3 is placed before the label and receives the number 2.
The jump is then ordered and receives the number 4 at first but this then
becomes 5 after the AND is inserted. The new order of execution which arises
is:

Image 5.21: Sequence after the topological ordering of the three elements

When a newly generated block is introduced it will be placed by default in front
of its topological successor in the sequential processing list.

‘Extras‘ ’Order‘ ’One forwards‘

With this command all selected elements with the exception of the element
which is at the beginning of the sequential processing list are moved one place
forwards in the sequential processing list.

5-58 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

‘Extras‘ ’Order‘ ’One
backwards‘

With this command all selected elements with the exception of the element
which is at the end of the sequential processing list are moved one place
backwards in the sequential processing list.

‘Extras‘ ’Order‘ ’To the
beginning‘

With this command all selected elements will be moved to the front of the
sequential processing list whereby the order within the group of selected
elements is maintained. The order within the group of unselected elements also
remains the same.

‘Extras‘ ’Order‘ ’To the end‘

With this command all selected elements will be moved to the end of the
sequential processing list whereby the order within the group of selected
elements is maintained. The order within the group of unselected elements also
remains the same.

‘Extras‘ ’Order‘ ’Order
everything according to data
flow‘‘

This command effects all elements. The order of execution is determined by
the data flow of the elements and not by their position. The diagram below
shows elements which have been ordered topographically.

Image 5.22: Sequence before the ordering according to data flow

The following arrangement exists after selecting the command:

5-59907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

Image 5.23: Sequence after the ordering according to data flow

When this command is selected the first thing to happen is that the elements
are ordered topographically. A new sequential processing list is then created.
Based on the known values of the inputs, the computer calculates which of the
as yet not numbered elements can be processed next. In the above ”network”
the block AND, for example, could be processed immediately since the values
at its inputs (1 and 2) are known. Block SUB can only then be processed since
the result from ADD must be known first, etc.

Feedback paths are inserted last.

The advantage of the data flow sequencing is that an output box which is
connected to the output of a block comes immediately after it in the data flow
sequencing system which by topological ordering would not always be the case.
The topological ordering can deliver another result in some cases than ordering
by data flow, a point which one can recognise from the above example.

'Extras' 'Create macro'‘

With this command, several POUs that are selected at the same time can be
assembled into a block, which can named as a macro. Macros only can be
reproduced by Copy/Paste, whereby each copy becomes a separate macro
whose name can be chosen independently. Macros are thus not references. All
connections that are cut by the creation of a macro generate in- or out-pins on
the macro. Connections to inputs generate an in-pin. The default name appears
next to the pin in the form In<n>. For connections to outputs, Out<n> appears.
Affected connections which had connection markers prior to the creation of the
macro, retain the connection marker on the PIN of the macro.

At first, a macro has the default name "MACRO". This can be changed in the
Name field of the macro use. If the macro is edited, the name of the macro will
be displayed in the title bar of the editor window appended to the POU name.

Example:

5-60 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

Selection

Macro:

In the editor:

'Extras' 'Edit Macro’

By this command, or by double clicking on the body of the macro, the macro is
opened for editing in the editor window of the associated POU. The name of the
macro is displayed appended to the POU name in the title bar.

The pin boxes generated for the in- and outputs of the macro during creation
can be handled like normal POU in- and outputs. They can also be moved,
deleted, added, etc. They differ only in how they are displayed and have no
position index. Pin boxes have rounded corners. The text in the pin-box
matches the name of the pin in the macro display.

The order of the pins in the macro box follows the order of execution of the
elements of the macro. A lower order index before a higher one, higher pin
before lower.

The processing order within the macro is closed, in other words the macro is
processed as a block, at the position of the macro in the primary POU.

5-61907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

Commands for manipulating the order of execution therefore operate only within
the macro.

'Extras' 'Expand macro’

With this command, the selected macro is re-expanded and the elements
contained in it are inserted in the POU at the macro’s location. The connections
to the pins of the macro are again displayed as connections to the in- or outputs
of the elements. If the expansion of the macro can not occur at the location of
the macro box for lack of space, the macro is displaced to the right and down
until enough space is available.

Note: If the project is saved under project version number 2.1, the macros
will likewise all be expanded. All macros will also be expanded before
conversion into other languages.

'Extras' 'Back one macro level',
'Extras' 'Back all macro level'

Symbols:

These commands are also available in the toolbar, as soon as a macro is
opened for editing. If macros are nested within one another, it is possible to
switch to the next higher or to the highest display level.

Feedback paths

Feedback paths can only be displayed directly in the continuous function chart
editor and not in the usual function block diagram editor. Here it should be
observed that the output of a block always carries an internal intermediate
variable. The data type of the intermediate variable results, for operators, from
the largest data type of the inputs.

The data type of a constant is obtained from the smallest possible data type,
that is the constant ‘1’ adopts the data type SINT. If now an addition with
feedback and the constant ‘1’ is executed, the first input gives the data type
SINT and the second is undefined because of the feedback. Thus the
intermediate variable is also of the type SINT. The value of the intermediate
variable is only then allocated to the output variable.

The diagram below shows an addition with feedback and an addition with a
variable. The variables x and y should be of the type INT here.

There are differences between the two additions:

5-62 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

The variable y can be initialised with a value which is not equal to zero but this
is not the case for intermediate variable for the left addition.

The intermediate variable for the left addition has the data type SINT while that
on the right has the data type INT. The variables x and y have different values
after the 129th call up. The variable x, although it is of the type INT, contains the
value -127 because the intermediate variable has gone into overflow. The
variable y contains the value 129, on the other hand.

CFC in Online mode

Monitoring:

The values for inputs and outputs are displayed within the input or output boxes.
Constants are not monitored. For non-boolean variables, the boxes are
expanded to accommodated the values displayed. For boolean connections, the
variable name as well as the connection are displayed in blue if the value is
TRUE, otherwise they remain black.

Internal boolean connections are also displayed Online in blue in the TRUE
state, otherwise black. The value of internal non-boolean connections is
displayed in a small box with rounded corners on the output pin of the
connection.

PINs in macros are monitored like in- or output boxes.

Non-boolean connections with connection markers display their value within the
connection marker. For boolean connections, the lines as well as the marker
names are displayed in blue if the line is carrying the value TRUE, otherwise
black.

Flow control:

When flow control is switched on, the connections that have been traversed are
marked with the color selected in the project options (see Chapter 4.6, Online
Functions) .

5-63907 AC 1131/Stand: 03.99 The Editors in 907 AC 1131 10

Breakpoints:

Breakpoints can be set on all elements that also have a processing sequence
order index. The processing of the program will be halted prior to execution of
the respective element, that is for POUs and outputs before the assignment of
inputs, for jump labels before execution of the element with the next index. The
processing sequence index of the element is used as the breakpoint position in
the Breakpoint dialog.

The setting of breakpoints on a selected element is accomplished with the F9
key or via the menu item 'Breakpoint on/off' in the 'Online' or 'Extras' menu or in
the editor’s context menu. If a breakpoint is set on an element, then this will be
erased and reversed the next time the command 'Breakpoint on/off' is executed.
In addition, the breakpoint on an element can be toggled by double-clicking on
it.

Breakpoints are displayed in the colors entered in the project options.

RETURN label:

In Online mode, a jump label with the name „RETURN“ is automatically
generated in the first column and after the last element in the editor. This label
marks the end of the POU and is jumped to when stepping just before execution
leaves the POU. No RETURN marks are inserted in macros.

Stepping:

When using 'Step over' the element with the next-higher order index will always
be jumped to. If the current element is a macro or a POU, then its implement
branches when 'Step in' is in effect. If a 'Step over' is executed from there, the
element whose order index follows that of the macro is jumped to.

5-64 907 AC 1131/Stand: 02/03The Editors in 907 AC 113110

6-1907 AC 1131/Stand: 03.99 The Resources 10

6 The Resources

6.1 Overview

In the Resources register card of the Object Organizer, there are objects for
configuring and organizing your project, for keeping track of the values of the
variables and for applicating the project on the target system:

• Global Variables that can be utilized in the entire project; the global
variables of the project as well as the libraries.

• Library Manager for handling all libraries which are included to the project.
• Log for recording the activities during the online sessions.
• PLC Browser for monitoring of information from the PLC
• PLC Configuration for configuring your hardware
• Sampling Trace for graphic logging of variable values
• Task Configuration for controlling your program control via tasks
• Watch and Receipt Manager for indicating and presetting variable values
• Additionally there might be created and loaded a Docuframe file which

offers a set of comments for the project variables (e.g. in a certain
language), which will be printed when documenting the project with 'Project'
'Document'.

Image 6.1: Resources

6.2 Global Variables

Objects in 'Global Variables'

In the Object Organizer, you will find three objects in the Resources register
card in the Global Variables folder (default names of the objects in
parentheses).

• Global Variables List (Global Variables)

6-2 907 AC 1131/Stand: 02/03The Resources10

• Variables Configuration (Variable Configuration)
All variables defined in these objects are recognized throughout the project.

If the global variables folder is not opened up (plus sign in front of the folder),
you can open it with a doubleclick <Enter> in the line.

Select the corresponding object. The 'Object Open' command opens a window
with the previously defined global variables. The editor for this works the same
way as the declaration editor.

Several Variables Lists

Global variables (VAR_GLOBAL), and variable configurations (VAR_CONFIG)
must be defined in separate objects.

If you have declared a large number of global variables, and you would like to
structure your global variables list better, then you can create further variables
lists.

In the Object Organizer, select the Global Variables folder or one of the
existing objects with global variables. Then execute the 'Project' 'Object
Add' command. Give the object that appears in the dialog box a corresponding
name. With this name an additional object will be created with the key word
VAR_GLOBAL. If you prefer an object a variable configuration, change the
corresponding key word to VAR_CONFIG.

6.2.1 What are Global Variables

„Normal“ variables, constants or remanent variables that are known throughout
the project can be declared as global variables.

Please regard: It is possible to define a local variable which has the same
name like a global variable. Within a POU always the locally defined variable
will be used.

It is not possible to define two global variables with identic names; for example
you will get an compile error if you have defined a variable "xy" in a Global
Variables list as well as in the PLC Configuration.

Create a Global Variable List

To create a Global Variable List, open the register ‘Resources’ in the Object
Organizer and select the entry ‘Global Variables’ or select an already existing
list. Then choose the command ‘Project‘ ‘Object‘ ‘Insert' to open the dialog
Global variable list.

This dialog can also be opened by the command ‘Project‘ ‘Object‘ ‘Properties'
which is available if an existing Global Variable List is marked in the object
organizer. It shows the configuration of this list..

6-3907 AC 1131/Stand: 03.99 The Resources 10

Image 6.2: Dialog to create a new Global Variable List

Editing Global Variable Lists

The editor for global variables works similar to the declaration editor. But note
that you cannot edit in this editor an list, which is an image of an linked external
variable list ! External variable lists only can be edited externally and they will be
read at each opening and compiling of the project.

Syntax:
VAR_GLOBAL

(* Variables declarations *)
END_VAR

Editing the lists for remanent
Global Variables

If they are supported by the runtime system, remanent variables may be
processed. There are two types of remanent global variables:

Retain variables remain unchanged after an uncontrolled shutdown of the
runtime system (off/on) or an 'Online' 'Reset' in 907 AC 1131. Persistent
variables remain unchanged after a controlled shutdown of the runtime system
(stop, start) or an 'Online' 'Cold reset' or a download.

Persistent variables are not automatically also Retain variables !

Remanent variables are additionally assigned the keyword RETAIN or
PERSISTENT.

Syntax:
VAR_GLOBAL RETAIN

(* Variables declarations *)
END_VAR

VAR_GLOBAL PERSISTENT
(* Variables declarations *)

END_VAR

6-4 907 AC 1131/Stand: 02/03The Resources10

Global Constants

Global constants additionally get the keyword CONSTANT.

Syntax:
VAR_GLOBAL CONSTANT

(* Variables declarations *)
END_VAR

6.2.2 Variable Configuration

In function blocks it is possible to specify addresses for inputs and outputs that
are not completely defined, if you put the variable definitions between the key
words VAR and END_VAR. Addresses not completely defined are identified
with an asterisk.

Example:
FUNCTION_BLOCK locio
VAR

loci AT %I*: BOOL := TRUE;
loco AT %Q*: BOOL;

END_VAR
Here two local I/O-variables are defined, a local-In (%I*) and a local-Out (%Q*).

If you want to configure local I/Os for variables configuration in the Object
Organizer in the Resources register card, the object Variable_Configuration
will generally be available. The object then can be renamed and other objects
can be created for the variables configuration.

The editor for variables configuration works like the declaration editor.

Variables for local I/O-configurations must be located between the key words
VAR_CONFIG and END_VAR.

The name of such a variable consists of a complete instance path through
which the individual POUs and instance names are separated from one another
by periods. The declaration must contain an address whose class (input/output)
corresponds to that of the incompletely specified address (%I*, %Q*) in the
function block. Also the data type must agree with the declaration in the function
block.

Configuration variables, whose instance path is invalid because the instance
does not exist, are also denoted as errors. On the other hand, an error is also
reported if no configuration exists for an instance variable. In order to receive a
list of all necessary configuration variables, the 'All Instance Paths' menu item
in the 'Insert' menu can be used.

Example:
Assume that the following definition for a function block is given in a program:

PROGRAM PLC_PRG

6-5907 AC 1131/Stand: 03.99 The Resources 10

VAR
Hugo: locio;
Otto: locio;

END_VAR
Then a corrected variable configuration would look this way:

VAR_CONFIG
PLC_PRG. Hugo.loci AT %IX1.0 : BOOL;
PLC_PRG. Hugo.loco AT %QX0.0 : BOOL;
PLC_PRG. Otto.loci AT %IX1.0 : BOOL;
PLC_PRG.Otto.loco AT %QX0.3 : BOOL;

END_VAR

Note: Be aware not to describe an output, which is used in the variables
configuration, additionally within the project or by a variable (AT declaration).
This would not be noticed.

'Insert' 'All Instance Paths'

With this command a VAR_CONFIG - END_VAR-block is generated that
contains all of the instance paths available in the project. Declarations already
on hand do not need to be reinserted in order to contain addresses already in
existence. This menu item can be found in the window for configuration of
variables if the project is compiled ('Project' 'Rebuild All').

6.2.3 Document Frame

If a project is to receive multiple documentations, perhaps with German and
English comments on the variables, or if you want to document several similar
projects that use the same variable names, then you can save yourself a lot of
work by creating a docuframe with the 'Extras' 'Make Docuframe File'
command.

The created file can be loaded into a desired text editor and can be edited. The
file begins with the DOCUFILE line. Then a listing of the project variables
follows in an arrangement that assigns three lines to each variable: a VAR line
that shows when a new variable comes; next, a line with the name of the
variable; and, finally, an empty line. You can now replace this line by using a
comment to the variable. You can simply delete any variables that you are
unable to document. If you want, you can create several document frames for
your project.

In order to use a document frame, give the 'Extras' 'Link Docu File' command.
Now if you document the entire project, or print parts of your project, then in the
program text, there will be an insertion of the comment produced in the
docuframe into all of the variables. This comment only appears in the printout!

6-6 907 AC 1131/Stand: 02/03The Resources10

Image 6.3: Windows Editor with Document Frame

'Extras' 'Make Docuframe File'

Use this command to create a document frame. The command is at your
disposal, whenever you select an object from the global variables.

A dialog box will open for saving files under a new name. In the field for the
name file, the *.txt extension has already been entered. Select a desired name.
Now a text file has been created in which all the variables of your project are
listed.

'Extras' 'Link Docu File'

With this command you can select a document frame.

The dialog box for opening files is opened. Choose the desired document frame
and press OK. Now if you document the entire project, or print parts of your
project, then in the program text there will be an insertion of the comment
produced in the docuframe into all of the variables. This comment only appears
in the printout!

To create a document frame, use the 'Extras' 'Make Docuframe File'
command.

6.3 Library Manager

The library manager shows all libraries that are connected with the current
project. The POUs, data types, and global variables of the libraries can be used
the same way as user-defined POUs, data types, and global variables.

The library manager is opened with the 'Window' 'Library Manager' command.
Information concerning included libraries is stored with the project and can be
viewed in the dialog 'Informations about external library'. To open this dialog
select the corresponding library name in the library manager and execute the
command 'Extras' 'Properties'.

6-7907 AC 1131/Stand: 03.99 The Resources 10

Image 6.1: Library Manager

Using the Library Manager

The window of the library manager is divided into three or four areas by screen
dividers. The libraries attached to the project are listed in the upper left area.

In the area below that, depending on which register card has been selected,
there is a listing of the POUs , Data types, Visualizations or Global variables
of the library selected in the upper area.

Folders are opened and closed by doubleclicking the line or pressing <Enter>.
There is a plus sign in front of closed folders, and a minus sign in front of
opened folders.

If a POU is selected by clicking the mouse or selecting with the arrow keys then
the declaration of the POU will appear in the upper right area of the library
manager; and in the lower right is the graphic display in the form of a black box
with inputs and outputs.

With data types and global variables, the declaration is displayed in the right
area of the library manager.

Standard Library
IEC_S90_V41.LIB

The library "IEC_S90_V41.LIB" is always available. It contains all the functions
and function blocks which are required from the IEC61131-3 as standard POUs
for an IEC programming system. The difference between a standard function
and an operator is that the operator is implicitly recognized by the programming
system, while the standard POUs must be tied to the project
(IEC_S90_V41.LIB).

The code for these POUs exists as a C-library and is a component of
907 AC 1131.

6-8 907 AC 1131/Stand: 02/03The Resources10

User-defined Libraries

If a project is to be compiled in its entity and without errors, then it can be saved
in a library with the 'Save as' command in the 'File' menu. The project itself will
remain unchanged. An additional file will be generated, which has the default
extension ".lib". This library afterwards can be used and accessed like e.g. the
standard library.

For the purpose to have available the POUs of a project in other projects, save
the project as an Internal Library *.lib. This library afterwards can be inserted
in other projects using the library manager.

If you have implemented POUs in other programming languages, e.g. C, and
want to get them into a library, then save the project using data type External
Library *.lib). You will get the library file but additonally a file with the extension
”*.h”. This file is structured like a C header file and contains the declarations of
all POUs, data types and global variables, which are available with the library. If
an external library is used in a project, then in simulation mode that
implementation of the POUs will be executed, which was written with
907 AC 1131; but on the target the C-written implementation will be processed.

'Insert' 'Additional Library'

With this command you can attach an additional library to your project.

In the dialog box for opening a file, choose the desired library with the "*.lib"
extension. The library is now listed in the library manager, and you can use the
objects in the library as user-defined objects.

Remove Library

With the 'Edit' 'Delete' command you can remove a library from a project and
from the library manager.

'Extras' 'Properties'

This command will open the dialog 'Informations about internal (resp. external)
library'. For internal libraries you will find there all data, which have been
inserted in the Project Info when the library had been created in 907 AC 1131.
For external libraries the library name and library path will be displayed.

6.4 Log

The log stores in chronological order actions that occur during an Online
session. For this purpose a binary log file (*.log) is set up. Afterward, the user
can store excerpts from the appropriate project log in an external log.

The log window can be opened in either Offline or Online mode and can thus
serve as a direct monitor online.

6-9907 AC 1131/Stand: 03.99 The Resources 10

'Window' 'Log'

To open, select the menu item 'Window' 'Log' or select entry 'Log' in the
Resources tab.

In the log window, the filename of the currently displayed log appears after
Log:. If this is the log of the current project, the word "(Internal)" will be
displayed.

Registered entries are displayed in the log window. The newest entry always
appears at the bottom.

Only actions belonging to categories that have been activated in the 'Filter' field
of the menu 'Project' 'Options' 'Log' will be displayed.

Bild 6.2:Log window

Available information concerning the currently selected entry is displayed below
the log window:

Category: The category to which the particular log entry belongs. The following
four categories are possible:

• User action: The user has carried out an Online action (typically from the
Online menu).

6-10 907 AC 1131/Stand: 02/03The Resources10

• Internal action: An internal action has been executed in the Online layer
(e.g. Delete Buffers or Init Debugging).

• Status change: The status of the runtime system has changed (e.g. from
Running to Break, if a breakpoint is reached).

• Exception: An exception has occurred, e.g. a communication error.
Description: The type of action. User actions have the same names as their
corresponding menu commands; all other actions are in English and have the
same name as the corresponding OnlineXXX() function.

Info: This field contains a description of an error that may have occurred during
an action. The field is empty if no error has occurred.

System time: The system time at which the action began, to the nearest
second.

Relative time: The time measured from the beginning of the Online session, to
the nearest millisecond.

Duration: Duration of the action in milliseconds.

Menu Log

When the log window has the input focus, the menu option Log appears in the
menu bar instead of the items 'Extras' and 'Options'.

The menu includes the following items:

Load… An external log file *.log can be loaded and displayed using
the standard file open dialog.

The log that is present in the project will not be overwritten by
the command. If the log window is closed and later opened
again, or a new Online session is started then the version
that is loaded will again be replaced by the project log.

Save… This menu item can only be selected if the project log is
currently displayed. It allows an excerpt of the project log to
be stored in an external file. For that, the following dialog will
be displayed, in which the Online sessions to be stored can
be selected:

After successful selection, the standard dialog for storing a
file opens ('Save Log').

6-11907 AC 1131/Stand: 03.99 The Resources 10

Display Project
Log

This command can only be selected if an external log is currently
displayed. It switches the display back to the project log.

Storing the project log

Regardless of whether or not the log is stored in an external file (see above),
the project log is automatically stored in a binary file entitled <projectname>.log.
If a different path is not explicitly given in the 'Project' 'Options' 'Log' dialog, the
file is stored in the same directory as that in which the project is stored.

The maximum number of Online sessions to be stored can be entered in the
'Project' 'Options' 'Log' dialog. If this number is exceeded during recording, the
oldest session is deleted to make room for the newest one.

6.5 PLC Browser

The PLC Browser is a text-based control monitor (terminal). Commands for the
request of specific information from the controller are entered in an entry line
and sent as string to the controller. The returned response string is displayed in
a result window of the browser. This functionality serves diagnostic- and
debugging purposes.

The commands available are made up of the 907 AC 1131 standard set plus a
possible extension set of the controller manufacturer. They are managed in an
ini-file and implemented accordingly in the runtime system.

General remarks concerning
PLC Browser operation

Select the entry PLC Browser in the Resources tab-control. (availability
depends upon the target-system settings)

6-12 907 AC 1131/Stand: 02/03The Resources10

Image 6.3: The 907 AC 1131 PLC Browser

The browser consists of a command entry line and a result/display window.

In a selection box the input line displays a list of all the commands entered
since the start of the project (input history). They are available for re-selection
until the project is closed. Only commands, which differ from those already
existing, are added to the list.

The entered command is sent to the controller with <Enter>. If there is no
Online connection, the command is displayed in the result window in the same
way as it is sent to the controller, otherwise the response from the controller is
shown there. If a new command is sent to the controller, the content of the
result window is deleted.

Commands can be entered in the form of command strings (see below,
command entry), the use of macros is possible as well (see below, use of
macros):

Command entry in the PLC
Browser

Basically the PLC-Browser makes available the standard commands hard-
coded in the run-time system. It is concerned with functions for direct memory
manipulation and for run-time monitoring. They are described in the browser’s
ini-file, which is an integral part of the Target Support Package. These standard
commands can be further supplemented by specialized ones, e.g. self-
diagnostic functions or other status messages of the control application. The
expansion of the command list must be carried out both in the customer
interface in the run-time system as well as through additional entries in the
Browser ini-file.

When opening the project the command list available in the PLC-Browser is
generated from the entries in the Browser ini-file. It can be accessed as input
help using the ... key in the „Insert standard command“ or using <F2>. The
command can be typed in or selected from the list with a double-click.

6-13907 AC 1131/Stand: 03.99 The Resources 10

The general command syntax is:

<KEYWORD><LEER><KEYWORD-DEPENDEND PARAMETERS>

The keyword is the command. With which parameters it can be expanded is
described in the respective tooltip in the entry help window.

The command, which has been sent, is repeated in the output data window, the
controller’s response appears below it.

Example: Request for the project Id from the controller with the command "pid"

Entry in command line:

pid.....

Output in result window:

pid
Project-ID: 16#0025CFDA

A help text can be supplied for each standard command with
?<BLANK><KEYWORD>. This is similarly defined in the ini-file.

The following commands are firmly integrated in the run-time system and
contained in the ini-file with the corresponding entries for entry help, tooltips and
help.

Command Description

? The run-time system supplies a list of the available commands

mem Memory-dump, Syntax: mem <start-addr> <end-addr>

memc like 'mem', addresses get added to the start address of the code
memory area

memd like 'mem', addresses get added to the start address of the data
memory area

Note: The first word of the command sequence entered is interpreted as
keyword. If „<SPACE>“ follows a keyword (e.g. „mem ?“), the ini-file is searched
for the existence of a help section to this keyword. If one is available, nothing is
sent to the controller, but only the help text is displayed in the output data
window.

If the first word of the command entry (<KEYWORD>) is not recognized by the
controller, the response ‘Keyword not found’ appears in the result window.

6-14 907 AC 1131/Stand: 02/03The Resources10

Use of macros during the
command entry in PLC Browser

If a command associated with a macro is entered in the command line, this is
expanded before it is sent to the controller. Then the response in the result
window appears in a similarly expanded form.

The entry syntax is: <KEYWORD><macro>

<KEYWORD> is the command.

Macros are:

%P<NAME> If NAME is a POU-name, the expression is expanded to
<POU-Index>, otherwise there is no alteration

%V<NAME> If NAME is a variable name, the expression is expanded to
#<INDEX>:<OFFSET>, otherwise there is no alteration (this
notation #<INDEX>:<OFFSET> is interpreted by the
controller as a memory address)

%T<NAME> If NAME is a variable name, the expression is expanded to
<VARIABLENTYP>, otherwise there is no alteration.

<%S><NAME> If NAME is a variable name, the expression is expanded to
<SIZEOF(VAR)>, otherwise there is no alteration.

The % character is ignored if the escape symbol \ (Backslash) is placed in front.
The escape symbol as such is only transmitted if written \\.

Example:
Entry in command line: (memory dump of the variable .testit ?)

mem %V.testit

Output in result window:

mem #4:52
03BAAA24 00 00 00 00 CD CD CD CD ÍÍÍÍ

Further PLC Browser options

In the ‘Extras’ menu or in the PLC-Browser’s toolbar there are the following
commands for handling the command entry or history list:

With History forward and History backward you can scroll backwards
and forwards through the query results already carried out. The history
recording is continued until you leave the project.

With Cancel command you can break off a query which has been initiated.

With Save history list you can save the query results carried out up until
that point in an external text file. The dialogue ‘Save file as’ will appear, in which

6-15907 AC 1131/Stand: 03.99 The Resources 10

you can enter a file name with the extension „.bhl“ (Browser History List). The
command Print last command opens the standard dialogue to print. The
current query plus the output data in the message window can be printed.

6.6 PLC Configuration

6.6.1 Overview

The PLC Configuration is found as an object in the register card Resources
in the Object Organizer. With the PLC Configuration editor, you must describe
the hardware the opened is established for.

The basically displayed hardware configuration is defined by a configuration file
*.cfg which must be available in the sub-directory PLCCONF in the libraries
directory. This file describes the main parameters of the configuration and the
customization possibilities the user has in the configuration editor in
907 AC 1131.

For the program implementation, the number and position of the inputs and
outputs is especially important. With this description 907 AC 1131 verifies
whether the IEC addresses used in the program also actually exist in the
hardware.

For inputs and outputs symbolic names can be assigned. The correct notation
of an IEC address then looks like that: the symbolic name is followed by an AT
and the address where the input/output can be accessed. At least the format of
the input or output variable is given (for example: inputname AT %IW1.0 : INT;).

PROFIBUS-DP

907 AC 1131 supports a hardware configuration corresponding to the
PROFIBUS DP standard. A profibus system consists of masters and appending
slave modules. To qualify them for data exchange they have to be configured.
At system start each master parametrizes the slaves which have been assigned
to it during configuration. During operation the master sends and/or requests
data to or from the respective slaves. The configuration of master and slave
modules in 907 AC 1131 is based on the GSD files. The GSD files are delivered
by the hardware manufacturer and contain a standardized description of the
characteristic properties of a PROFIBUS-DP device. During the PLC
configuration only those GSD files are regarded which are stored in the sub-
directory PLCONF in the lib-directory. For this reason new GSD files have to be
copied to this directory before. Then with the help of dialogues the
corresponiding devices can be inserted in the configuration tree and their
parameters can be edited.

6.6.2 Working in the PLC Configuration

If a new project was created, a minimal PLC Configuration is to be considered.

• Select an element by a mouseclick or use the arrow keys to move the
dotted rectangle onto the desired element.

6-16 907 AC 1131/Stand: 02/03The Resources10

• The words "Hardware Configuration" stand at the heading of the PLC
Configuration. Elements that begin with a plus sign are organization elements
and contain subelements. To open an element, select the element and
doubleclick this plus sign or press <Enter>. You can close opened elements
(minus sign in front of the element) the same way.

• If the cursor is located on an element, you can set an edit control box
around the name by doubleclicking on the entry or by using the <Space bar>.
Then you can change the designation of the input/output.

 In order to set up the In-/Output modules use the command 'Extras'
'Properties'.

• With the 'Insert' 'Insert Element' command, you can paste the selected
element in front of the selected element.

• With the 'Insert' 'Append Subelement' command, the selected element
will be appended to the selected element as the last subelement.

• The most important commands are found in the context menu (right mouse
button or <Ctrl>+<F10>).

Image 6.4: PLC Configuration, Example with DP master and DP Slave

6.6.3 Doing the PROFIBUS-DP Configuration

Inserting PROFIBUS-DP
devices

Select "Hardware-Configuration" which you always find in the first line of the
configuration editor. Then use the command "Insert" "Insert subelement" to
insert a PROFIBUS-DP device directly below. Corresponding to the hardware
you want to describe you can insert a master as well as a slave coupler at this
first level position.

6-17907 AC 1131/Stand: 03.99 The Resources 10

Image 6.5: Select a PROFIBUS-DP Master (resp. Slave)

The insert command opens a dialog Select a ProfibusDP Master or Select a
ProfibusDP Slave. There you find a list of the available devices (Device
Name). This list results from the selection of GSD files which are stored in the
directory PLCCONF within the library directory (In this directory you also have
to put the bitmaps which might be used for the design of the dialogues). Select
a coupler device from the list by mouseclick. Additionally there is an input field
(Card Number) for the slot of the coupler which should be addressed. Max. two
(master or slave) cards are available, referenced by number 1 (07 KT 97
R0120) and 2 (07 KT 97 R0162). This card number is regarded during the
allocation of the IEC addresses for the slave modules which are assigned to this
master. Accordingly an IEC address can look like this: %1.IB0. The '1‘
references the card number.

The following IEC address types can be inserted:

Type Range

Word z.B. %QW1.4 (4 = word offset) %IW1.0 - %IW1.1792
%IW2.0 - %IW2.1792

Byte z.B. %IB2.3 (3 = byte offset) %IB1.0 - %IB1.3583
%IB2.0 - %IB2.3583

Note: Bit addresses only can be used in the SPS program:

Bit z.B. %IX1.0.15 (0 = word number,
15 = bit number)

%IX1.0.0 - %IX1.1792.15
%IX2.0.0 - %IX2.1792.15

The dialog also shows some basic data of the chosen device, which are given
in the GSD file: manufacturer, revision, id number, HW and SW release

6-18 907 AC 1131/Stand: 02/03The Resources10

number, GSD file name. After closing the dialog by OK the module is inserted in
the configuration tree.

Below the master module you can insert one or several slaves. For this purpose
select the master and then use the command "Insert" as described above.

The PLC configuration as described here in the project and the parameters
definition of all PROFIBUS-DP modules will be loaded into the PLC with each
download and it will be stored in the flash of the PLC by "Online" "Create boot
project (Flash User Program)".

Properties of 07 KT 97 as
DP master

The parameters of 07 KT 97 as a master device, described by the GSD file, can
be adapted to the actual demands of your configuration. For this purpose select
the master in the PLC configuration tree. Use the command 'Extras'
'Properties' (or the right mouse key, 'Properties') to open a dialog, titled with
the masters device name. Here, on two registers, you can edit the
Basisparameters and the Busparameters of the module. These parameters
result of the settings given in the GSD file.

Image 6.6: Properties of the DP Master (Basisparameters)

6-19907 AC 1131/Stand: 03.99 The Resources 10

• The Basisparameters of a master module

Info Vendor, Revision, Id, HW and SW Release number, GSD
filename

Modul Name can be edited

Addresses Station Address: the allowed range is 0-126, each module
new inserted automatically gets the next higher address
(please regard: address 126 is the DP slave default address).
Manual input is possible, there is a check for addresses used
twice.

Highest Station Address: number of the highest allocated
station address, you can edit this address number to reduce
the GAP range (i.e. the range of addresses, starting at 0,
which is run through during search for active bus members)

Diagnosis Address: diagnosis data can be called by function
POUs (see chapter 'Inserting PROFIBUS-DP devices' for the
IEC address types allowed for input)

Mode Auto Clear Mode: If this mode is activated, all slaves are
switched into the save state by the master if one slave reports
"not ready for data exchange". Otherwise master and slaves
remain in operating state even if one of the slaves is not ready.

Automatic Start: Currently not supported. PROFIBUS-DP
starts and stops dependent on the RUN/STOP switch

Automatic Address: If this mode is activated, the IEC
addresses of the PROFIBUS I/Os for the subsequently
inserted modules will be awarded automatically in a way that
they are in a row and that overlapping is avoided.

Press the button GSD file to open the module specific GSD file.

The button Groups opens the dialog Group Properties. These properties refer
to the masters slaves. Up to eight groups with different data exchange mode
parameter sets can be established. Define for each group whether it should run
in Freeze Mode and/or in Sync Mode. By assigning the slaves to these groups
(see below, Properties of a DP Slave, Groups) the data exchange may be
synchronized by a global control command of the master. By a freeze command
the modules are caused to 'freeze' their actual input values and to send them
synchronously during the subsequent data exchange. By a sync command the
slaves are caused to transmit the data, which they receive during the
subsequent data exchange from the master, synchronously to the outputs.

To switch on or off the freeze/sync option click on the corresponding position in
the table and place a ‚X‘, where you want to switch on the mode. Alternatively
you can use the right mouse button and choose "activate" or "deactivate" from
the menu. Furtheron you can edit the Group Name.

6-20 907 AC 1131/Stand: 02/03The Resources10

Image 6.7: Properties of a DP Master (Standard Parameters, Group Properties)

• The Bus Parameters of a master module

The parameters defined in this dialog describe the communication timing. The
particular values are calculated automatically dependent on the baud rate and
the settings given in the GSD file. Optionally all parameters can be edited
manually. Please note that this should be done only by experienced PROFIBUS
users, for undefined behaviour of the system could occur in case of faulty
values.

Image 6.8: Properties of a DP Master (Bus Parameters)

6-21907 AC 1131/Stand: 03.99 The Resources 10

Baud Rate a selection list of the settings given in the GSD file; but
you only can feed in a rate, which is supported by all
slaves

Optimize if this option is activated, the parameter values given in
the dialog 'Bus Parameters' get optimized automatically
regarding the settings in the GSD file

Slot Time period of time which the master at least waits for the
first sign of the slaves response telegram

Min. Station Delay min. TSDR: time in Tbit1, min. period of time a bus
participant has to wait before sending an answer (min.
11 TBit)

Max. Station Delay max.TSDR: max. period of time within which a slave
must answer

Quiet Time TQUI (Tbit1): break period which has to be regarded
when NRZ signals have to get converted into other
codes. (shift time for repeaters, depends on the baud
rate)

Target Rotation
Time

TTR (Tbit1): defined period of time for the rotation of the
token in the bus; this period is the sum of the times for
token-holding of all masters in the bus system

Gap Update Factor GAP update factor G: number of rotations, after which
the next newly added active station is searched within
the GAP (address range of the master

Max. Retry LImit max. number of retries of the master to call the slave in
case of not valid answers

Min Slave Interval time period between two bus cycles, within which the
slave can answer on a request from the master (time
base 100 µs); the value entered here has to be
coordinated with that given in the GSD file

Poll Timeout maximum period of time, after which the requestor must
have polled the answer from the requestor (DP master
class 2) in a master-master communication (time base 1
ms)

Data Control Time period of time, within which the master indicates its
state towards its slaves; at the same time the master
checks, whether there has occured at least one data
exchange event during this period and does an update
of the Data_Transfer_List

1 Tbit: time unit for the transmission of a bit over a PROFIBUS; reciprocal value of the
transmission rate; for example: 1 Tbit at 12Mbaud = 1/12.000.000 Bit/sek = 83ns)

6-22 907 AC 1131/Stand: 02/03The Resources10

Watchdog Time interval of watchdog activity; currently not used (fixed on
400 ms)

Properties of a DP slave

To describe a system completely not only the parameters of a DP master but
also the configuration of the assigned slaves has to be done. For this purpose
select the slave device in the configuration tree. Use the command "Extras"
"Properties" (or the right mouse button, "Properties") to open a dialog, titled with
the device name. Here you get four registers to do the settings for the
Basisparameters, the Input/Outputs, the additonal Parameters and the
Groups definitions of the slave.

• The Basisparameters of the slave:

Image 6.9: Properties of a DP Slave (Basisparameters)

Info Vendor, Revision, HW and SW Release Number,
GSD Filename, Slavetype

6-23907 AC 1131/Stand: 03.99 The Resources 10

IEC Addresses Output Address, Input Address: If in the base
parameters of the DP master the option "addresses
automatically" is activated, only the first address
allocated in the bus system can be here; all further
addresses will be allocated subsequently. If this option
is not activated, all addresses can be assigned
manually. Please regard: there is no check for double
allocations !

Diagnosis Address: currently not supported;
diagnosis data can be called by function POUs (see in
Chapter 6.6.3, 'Inserting PROFIBUS-DP devices' for
the IEC address types allowed for input)

Standard Parameter Identnumber: given by the PNO, unique identification
number for the device; definite reference between the
DP slave and the corresponding GSD file

TSDR (Tbit): Time Station Delay Response: period of
time a slave at least has to wait before answering to
the master (min. 11 Tbit)

Lock/Unlock: the slave is locked/unlocked for data
exchange with other masters

0: min. TSDR and slave specific parameters can be
 overwritten
1: slave is unlocked for other masters
2: slave is locked for other masters, all parameters are
taken over
3: slave is unlocked again for other masters

Identification Station Address (see ‚Properties of a Master
Module‘), Station Name (= device name)

Activation slave is activ/not activ in the actual configuration; if "not
activ" is selected, the configuration data of the slaves
are transmitted to the coupler, but there will be no data
exchange over the bus

Watchdog If Watchdog Control is activated, the shown watchdog
time is valid (base time 10 ms); if the slave gets no
message from the master within this period of time, it
changes back to initialization state

Press the button GSD file to show the GSD file of the module.

6-24 907 AC 1131/Stand: 02/03The Resources10

• The Input/Outputs of the slave

The left window in this dialog shows all input, output and input/output modules
available with the slave device. The right window shows the chosen
configuration of inputs and outputs.

If you are configuring a so-called "modular" slave (i.e. a device which can be
configurated with various I/O modules), the selection of inputs and outputs can
be done as follows: Select a module in the left window and copy it to the right
window by a mouse-click on the >>.

Image 6.10: Properties of a DP Slave (Input/Output)

It is not possible to create the modules list in the same way if you have a "non-
modular" slave device. This type of slave first forces a closed list of inputs and
outputs in the right window. But you can correct the list by selecting the
modules you do not want to use and press the button Delete to get them out of
your configuration.

Configuring your PLC you have to regard the maximum allowed data length and
number of modules, which are defined in the GSD file. To make that more

6-25907 AC 1131/Stand: 03.99 The Resources 10

comfortable, these data are shown in the upper part of the dialog. The block on
the left shows the allowed max. values, the right one shows the sums actually
resulting of the configuration as displayed in the right window. If the actual
values exceed the limit, an error message comes up.

Using the button Properties you get the dialog Module Properties for the
module which has been selected last in the left or right window. Here you can
see the modules Name, the Config (code of the module description according
to the PROFIBUS standard) and the length of inputs and outputs (Length Input
(Byte), Length Output (Byte)). In case the GSD file lists additonal parameters
(Parameter) besides the standard set, for those the values (Value) and value
ranges (Allowed Values) are displayed in a table. If the option Symbolic
Names is activated, the symbolic names are used in this table.

Image 6.11: Properties of a DP Slave (Input/Output, Module Properties)

• Manufacturer Specific (User) Parameters of a slave module:

This dialog shows various parameters which may be contained in the GSD file
of the device addtionally to the standard set of parameters. Their values
displayed in the column Value can be edited by doubleclick or by using the right
mouse button. The range of Allowed Values is shown in the right column.

If there are symbolic names defined for the parameters in the GSD file, you can
make them used in this table by activating the option Symbolic names in the
upper right corner of the dialog. Furtheron you get displayed the value of the
Length of user parameters in bytes.

6-26 907 AC 1131/Stand: 02/03The Resources10

Image 6.12: Properties of a DP Slave (Parameters)

• The assignment of the slave module to Groups

In this dialog you can assign the slave to one or several of the eight groups
which can be defined with various settings concerning the Sync. Mode and the
Freeze Mode. These group definitions can be done in the dialog "Global Group
Properties" within the configuration of the master (see chapter 'Properties of
07 KT 97 as DP master', 'Standard Parameters'). The button Global Group
Properties as well leads to this dialog.

If the slave is assigned to a group, a plus sign appears at the left of the group
number in the column Group Membership. To assign or to remove the slave
to/from a group do the follwowing: Select the group number by mouseclick.
Then click once more at the left of the group number or alternatively choose
"Insert slave into group" or "Delete slave from group" by the right mouse button.

6-27907 AC 1131/Stand: 03.99 The Resources 10

Image 6.13: Properties of a DP Slave (Groups)

A slave device only can be assigned to a group, if it supports the properties set
for those. The corresponding properties of the slave (Sync. Mode / Freeze
Mode) are shown above the table. Properties supported by the device are
marked with a check (�).

Properties of 07 KT 97 as a
DP Slave

If 07 KT 97 is used in the slave mode the parameters can be adapted to the
given requirements in the same way as if used in the master mode. For this
purpose in the PLC configuration editor use 'Append Subelement' 'DP-Slave'
(see ‚Inserting PROFIBUS-DP devices'). In the dialog which opens then select
07 KT 97-DPS from the device list (Device Name), put in the required Card
Number (1 for 07 KT 97 R120, 2 for 07 KT 97 R162) and confirm with OK. Mark
the entry in the configuration tree. With the command ''Extras' 'Properties' (or
right mouse button, properties) you get a dialog, titled with the device name.
Here you find two registers where the Basisparameters and the configuration
of the Input/Outputs of the slave can be defined.

6-28 907 AC 1131/Stand: 02/03The Resources10

The Basisparameters of 07 KT 97 as a DP Slave (used in the slave mode):

Info Vendor, Revision, HW and SW Release Number,
GSD Filename, Slavetype

IEC Addresses Output Address, Input Address: Input of the start
addresses for the input and output data, subsequent
addresses are set in ascending order

Diagnosis Address: currently not supported;
diagnosis data can be called by function POUs (see
chapter 'Inserting PROFIBUS-DP devices' for the IEC
address types allowed for input)

Identification Station Address (see ‚Properties of a Master
Module‘), Station Name (= device name)

Press the button GSD file to show the GSD file of the module.

Image 6.14: Properties of 07 KT 97 as DP-Slave (Basisparameters)

6-29907 AC 1131/Stand: 03.99 The Resources 10

• Input/Outputs of 07 KT 97 as DP Slave (used in the slave mode):

The 07 KT 97 is a modular slave in PROFIBUS DP although its inputs and
outputs are not extensible. The modular description is used to reflect the
arrangement of virtual modules. By that the highest possible flexibility in I/O-
configuration is reached. It is not necessary that the data transferred by
PROFIBUS lie directly at the inputs and outputs of the PLC. Each variable used
in the program can be sent or received. The selection of virtual modules is done
as described in the following: Select the desired input resp. output modul from
the list on the left side of the dialog by mouseclick and copy it to the
configuration list on the right side by the button >>. Wrong settings can be
corrected by selecting the entry in the configuration list and pressing the button
Delete.

Image 6.15: Properties of 07 KT 97 as DP Slave (Input/Output)

Configuring your PLC you have to regard the maximum allowed data length and
number of modules, which are defined in the GSD file. To make that more
comfortable, these data are shown in the upper part of the dialog. The block on
the left shows the allowed max. values, the right one shows the sums actually
resulting of the configuration as displayed in the right window. If the actual
values exceed the limit, an error message comes up.

6-30 907 AC 1131/Stand: 02/03The Resources10

Using the button Properties you get the dialog Module Properties for the
module which has been selected last in the left or right window. Here you can
see the modules Name, the Config (code of the module description according
to the PROFIBUS standard) and the length of inputs and outputs (Length Input
(Byte), Length Output (Byte)). In case the GSD file lists additonal parameters
(Parameter) besides the standard set, for those the values (Value) and value
ranges (Allowed Values) are displayed in a table. If the option Symbolic
Names is activated, the symbolic names are used in this table.

Image 6.16: Properties of 07 KT 97 as a DP Slave (Input/Output/Module Properties)

It is not necessary to assign the 07 KT 97, when used as a DP slave, to a group
(see 'Properties of a DP Slave, Groups'). This is done automatically by the
corresponding master during the implementing run of the system.

6.6.4 PLC Configuration in Online Mode

In online mode the PLC configuration displays the stati of the inputs and outputs
of the PLC. If a boolean input or output has the value TRUE, the little box at the
beginning of the entry line in the configuration tree will get blue, non-boolean
values will be added at the end of the entry line (e.g. "=12").

The boolean inputs can be toggled by mouseclicks. At other inputs a dialog
opens, where the value can be modified. The modified value will be set in the
PLC as soon as the dialog is closed with OK.

6-31907 AC 1131/Stand: 03.99 The Resources 10

6.7 Task Configuration

In addition to declaring the special PLC_PRG program, you can also control the
processing of your project using the task management.

A Task is a time unit in the processing of an IEC program. It is defined by a
name, a priority and by the type 'Cyclic' determining that the task is processed
according to a certain cycle interval.

For each task you can now specify a series of programs that will be started by
the task.

The combination of priority and condition will determine in which choronological
order the tasks will be executed.

The Task Configuration is found as an object in the Resources tab the
Object Organizer. The Task editor is opened in a bipartited window.

Image 6.17: Example for a Task Configuration

In the left part of the window the tasks are represented in a configuration tree.
At the topmost position you will always find the entry 'Taskconfiguration'. Below
there are the entry 'System events' (currently no function) and the entries for the
particular tasks, represented by the task name. Below each task entry the
assigned program calls are inserted. Each line is preceeded by an icon.

In the right part of the window a dialog will be displayed which belongs to the
currently marked entry in the configuration tree. Here you can configure the
tasks (Task properties) and program calls (Program call).

 Note: Please do not use the same string function (see IEC_S90_V41.LIB)
in several tasks, because this may cause program faults by overwriting.

Working in the Task
Configuration

• The most important commands you find in the context menu (right mouse
button).

• At the heading of the Task Configuration are the words "Task
Configuration." If a plus sign is located before the words, then the sequence
list is closed. By doubleclicking on the list or pressing <Enter>, you can

6-32 907 AC 1131/Stand: 02/03The Resources10

open the list. A minus sign now appears. By doubleclicking once more, you
can close the list again.

• With the 'Insert' 'Insert Task' command, you can insert a task.
• With the 'Insert' 'Append Task' command, you can insert a task at the end

of the configuration tree.
• With the 'Insert' 'Insert Program Call', a program call will be assigned to

the task which is actually selected in the configuration tree.
• Furtheron for each entry in the configuration tree an appropriate

configuration dialog will appear in the right part of the window. There options
can be activated/deactivated resp. inputs to editor fields can be made.
Depending on which entry is selected in the configuration tree, there will be
the dialog for defining the 'Taskattributes' (see 'Insert Task') or the dialog for
defining a 'Program Call' (see 'Insert Program Call. The settings made in the
dialogs will be taken over to the configuration tree as soon as the focus is
set to the tree again.

• A task name or program name can also get edited in the configuration tree.
For this perform a mouseclick on the name or select the entry and press the
<Space> button to open an edit frame.

• You can use the arrow keys to select the previous or next entry in the
configuration tree.

• By clicking on the task or program name, or by pressing the <Space bar>,
you can set an edit control box around the name. Then you can change the
designation directly in the task editor.

‘Insert‘ ‘Insert Task‘ or ‘Insert‘
‘Append Task‘

With this command you can insert a new task into the Task Configuration. The
entries each consist of a symbol and the task name.

If a task or the entry 'System events' is selected, then the 'Insert Task'
command will be at your disposal. The new task will be inserted in front of the
cursor. If the words Task Configuration are selected, then the 'Append Task' is
available, and the new task will be appended to the end of the existing list.

The dialog box will open for you to set the task attributes.

Insert the desired attributes:

Name: a name for the task; with this name the task is represented in
the configuration tree; the name can be edited there after a
mouseclick on the entry or after pressing the <Space> key
when the entry is selected.

Priority (0-31): (a number between 0 and 31; 0 is the highest priority, 31 is the
lowest),

6-33907 AC 1131/Stand: 03.99 The Resources 10

Image 6.18: Dialog Box for Setting Task Attributes

Type:

Please regard: The types 'freewheeling', 'triggered by event' and 'triggered
by external event' are not supported by the runtime system.

cyclic () : The task will be processed cyclic according to the time
definition given in the field 'Interval' (see below).

Properties:

Interval (for Type 'cyclic'): the period of time, after which the task should be
restarted. If you enter a number, then you can choose the
desired unit in the selection box behind the edit field:
milliseconds [ms] or microseconds [µs]. Inputs in [ms]-format
will be shown in the TIME format (e.g. "t#200ms") as soon as
the window gets repainted; but you also can directly enter the
value in TIME format. Inputs in [ms] will always be displayed
as a pure number (e.g. "300").

If here no entry is found, then an task interval of 1 ms will be used during
processing.

‘Insert‘ ‘Insert Program Call‘ or
‘Insert‘‘Append Program Call‘

With these commands you will open the dialog box for entering a program call
to a task in the Task Configuration. Each entry in the task configuration tree
consists of a symbol () and the program name.

With 'Insert Program Call', the new program call is inserted in front of the
cursor, and with 'Append Program Call', the program call is appended to the
end of the existing list.

6-34 907 AC 1131/Stand: 02/03The Resources10

Image 6.19: Dialog box for Program Call Entry

In the field, specify a valid program name for your project, or open the Input
Assistant with the Select button to select a valid program name. If the selected
program requires input variables, then enter these in their usual form and of the
declared type (for example, prg(invar:=17)).

The number of program calls in the task editor is not limited, but it depends on
the capacity of the system, how many can be processed.

Please regard: You should not use identic string functions (see Appendix
E: Standard Library Elements), because this might cause that values get
overstriked.

Which task is being processed?

For the execution the following rules apply:

• That task is executed, whose condition has been met; i.e., if its specified
time has expired, or after its condition (event) variable exhibits a rising
edge.

• If several tasks have a valid requirement, then the task with the highest
priority will be executed.

• If several tasks have valid conditions and equivalent priorities, then the task
that has had the longest waiting time will be executed first.

• The program calls of a task are executed according to their order (up down)
in the task editor.

6.7.1 Taskconfiguration in Online Mode

‘Extras‘ ‘Set Debug Task‘

With this command a debugging task can be set in Online mode in the Task
Configuration. The text [DEBUG] will appear after the set task.

The debugging capabilities apply, then, only to this task. In other words, the
program only stops at a breakpoint if the program is gone through by the set
task.

6-35907 AC 1131/Stand: 03.99 The Resources 10

'Extras' 'Callstack'‘‘

If the program is stopped at a breakpoint during debugging, then this command
can be used to show the callstack of the corresponding POU. For this purpose
the debug task must be selected in the task configuration tree of. The window
'Callstack of task <task name>' will open. There you get the name of the POU
and the breakpoint position (e.g. "prog_x (2)" for line 2 of POU prog_x) . Below
the complete call stack is shown in backward order. If you press button 'Go To',
the focus will jump to that position in the POU which is currently marked in the
callstack.

6.8 Sampling Trace

Sample tracing means that the progression of values for variables is traced over
a certain time frame. These values are written in a ring buffer (trace buffer). If
the memory is full, then the "oldest" values from the start of the memory will be
overwritten. As a maximum, 20 variables can be traced at the same time. A
maximum of 500 values can be traced per variable.

Since the size of the trace buffer in the PLC has a fixed value, in the event of
very many or very wide variables (DWORD), fewer than 500 values can be
traced.

Example: if 10 WORD variables are traced and if the memory in the PLC is
5000 bytes long, then, for every variable, 250 values can be traced.

In order to be able to perform a trace, open the object for Sampling Trace in
the Resources register card in the Object Organizer. After this, you must enter
the trace variables to be traced. (See 'Extras' 'Trace Configuration'.) After you
have sent the configuration with 'Save Trace' to the PLC and have started the
trace in the PLC ('Start Trace'), then the values of the variables will be traced.
With 'Read Trace', the final traced values will be read out and displayed
graphically as curves.

 Note: If a Task Configuration is used to control the execution of the
program, the trace functionality will refer to the Debug Task.

‘Extras‘ ‘Trace Configuration‘

With this command you will be given the dialog box for entering the variables to
be traced, as well as diverse trace parameters for the Sampling Trace. The
dialog can also be opened by a double click in the grey area of the dialog
Sampling Trace.

The list of the Variables to be traced is initially empty. In order to append a
variable the variable must be entered in the field under the list. Following this,
you can use the Add button or the <Enter> to append the variable to the list.
You can also use the Input Assistant.

6-36 907 AC 1131/Stand: 02/03The Resources10

A variable is deleted from the list when you select the variable and then press
the Delete button.

Image 6.20: Dialog Box for Trace Configuration

A Boolean or analogue variable can be entered into the field Trigger Variable.
The input assistance can also be used here. The trigger variable describes the
termination condition of the trace. In Trigger Level you enter the level of an
analogue trigger variable at which the trigger event occurs. When Trigger edge
positive is selected the trigger event occurs after an ascending edge of the
Boolean trigger variable or when an analogue variable has passed through the
trigger level from below to above. Negative causes triggering after a
descending edge or when an analogue variable went from above to below.
Both causes triggering for both descending and ascending edges or by a
positive or negative pass, whereas none does not initiate a triggering event at
all. Trigger Position is used to set the percentage of the measured value which
will be recorded before the trigger event occurs. If, for example, you enter 25
here then 25 % of the measured values are shown before the triggering event
and 75% afterwards and then the trace is terminated. The field Sample Rate is
used set the time period between two recordings in milliseconds. The default
value ”0” means one scanning procedure per cycle.

Select the mode for recalling the recorded values: With Single the Number of
the defined samples are displayed one time. With Continuous the reading of

6-37907 AC 1131/Stand: 03.99 The Resources 10

the recording of the defined number of measured values is initiated anew each
time. If, for example, you enter the number ‘35’ the first display contains the first
measured values 1 to 35 and the recording of the next 35 measured values (36-
70) will then be automatically read, etc.. Manual selection is used to read the
trace recordings specifically with ’Extras‘ ‘Read trace'.

The recall mode functions independently of whether a trigger variable is set or
not. If no trigger variable is set the trace buffer will be filled with the defined
number of measured values and the buffer contents will be read and displayed
on recall.

The button Save is used to store the trace configuration which has been
created in a file. The standard window ”File save as” is opened for this purpose.

Stored trace configurations can be retrieved using the button Load. The
standard window ”File open” is opened for this purpose.

Note: Please note that Save and Load in the configuration dialog only
relates to the configuration, not to the values of a trace recording (in contrast to
the menu commands ‘Extras’ ‘Save trace’ and ‘Extras’ ‘Load trace’).

If the field Trigger Variable is empty, the trace recording will run endlessly and
can be stopped by 'Extras' 'Stop Trace'.

‘Extra‘ ‘Start Trace‘

Symbol:

With this command the trace configuration is transferred to the PLC and the
trace sampling is started in the PLC.

‘Extra‘ ‘Read Trace‘

Symbol:

With this command the present trace buffer is read from the PLC, and the
values of the selected variables are displayed.

‘Extra‘ ‘Auto Read‘

With this command the present trace buffer is read automatically from the PLC,
and the values are continuously displayed.

If the trace buffer is automatically read, then a check (�) is located before the
menu item.

‘Extra‘ ‘Stop Trace‘

Symbol:

This command stops the Sampling Trace in the PLC.

6-38 907 AC 1131/Stand: 02/03The Resources10

Selection of the Variables to be
Displayed

The comboboxes to the right, next to the window for displaying curves trace
variables defined in the trace configuration. If a variable is selected from the list,
then after the trace buffer has been read the variable will be displayed in the
corresponding color (Var 0 green, etc.). Variables can also be selected if curves
are already displayed.

A maximum of up to eight variables can be observed simultaneously in the trace
window.

Display of the Sampling Trace

If a trace buffer is loaded, then the values of all variables to be displayed will be
read out and displayed. If no scan frequency has been set, then the X axis will
be inscribed with the continuous number of the traced value. The status
indicator of the trace window (first line) indicates whether the trace buffer is full
and when the trace is completed.

If a value for the scan frequency was specified, then the x axis will specify the
time of the traced value. The time is assigned to the "oldest" traced value. In the
example, e.g., the values for the last 25 seconds are indicated.

Image 6.21: Sampling Trace of Different Variables

The Y axis is inscribed with values in the appropriate data type. The scaling is
laid out in a way that allows the lowest and the highest value to fit in the viewing
area. In the example, Var 0 has taken on the lowest value of 6, and the highest
value of 100: hence the setting of the scale at the left edge.

If the trigger requirement is met, then a vertical dotted line is displayed at the
interface between the values before and after the appearance of the trigger
requirement.

A memory that has been read will be preserved until you change the project or
leave the system.

6-39907 AC 1131/Stand: 03.99 The Resources 10

‘Extras‘ ‘Cursor Mode‘

The easiest way to set a cursor in the monitoring area is to click there with the
left mouse button. A cursor appears and can be moved by the mouse. At the
top of the monitoring window the current x-position of the cursor is displayed. In
the fields next to 'Var 0', 'Var 1', ..., 'Var n' the value of the respective variable is
shown.

Another way is the command 'Extras' 'Cursor mode'. With this command two
vertical lines will appear in the Sampling Trace. First they are laying one on the
other. One of the lines can be moved to the right or to the left by the arrow keys.
By pressing <Ctrl>+<left> or <Ctrl>+<right> the speed of the movement can be
increased by factor 10.

If additionally the <Shift> key is pressed, the second line can be moved,
showing the difference to the first one.

‘Extras‘ ‘Multi Channel‘

With this command you can alternate between single-channel and multi-channel
display of the Sampling Trace. In the event of a multi-channel display, there is a
check (�) in front of the menu item.

The multi-channel display has been preset. Here the display window is divided
into as many as eight display curves. For each curve the maximum and the
minimum value are displayed at the edge.

In a single-channel display, all curves are displayed with the same scaling factor
and are superimposed. This can be useful when displaying curve abnormalities.

‘Extras’ ‘Show grid’

With this command you can switch on and off the grid in the graphic window.
When the grid is switched on, a check (�) will appear next to the menu item.

‘Extras‘ ‘Y Scaling‘

With this command you can change the preset Y scaling of a curve in the trace
display. In the dialog box specify the number of the desired curve (Channel)
and the new maximum (maximum y scale) and the new minimum value
(minimum y scale) on the y axis.

By doubleclicking on a curve you will also be given the dialog box. The channel
and the former value are preset.

Image 6.22: Dialog Box for Setting the Y Scale

6-40 907 AC 1131/Stand: 02/03The Resources10

‘Extras‘ ‘Stretch‘

Symbol:

With this command you can stretch (zoom) the values of the Sampling Trace
that are shown. The beginning position is set with the horizontal picture
adjustment bar. With repeated stretches that follow one-after-another, the trace
section displayed in the window will increasingly shrink in size.

This command is the counterpart to 'Extras' 'Compress'.

‘Extras‘ ‘Compress‘

Symbol:

With this command the values shown for the Sampling Trace are compressed;
i.e., after this command you can view the progression of the trace variables
within a larger time frame. A multiple execution of the command is possible.

This command is the counterpart to 'Extras' 'Stretch'.

‘Extras‘ ‘Save Trace‘

With this command you can save a Sampling Trace (values + configuration
data). The dialog box for saving a file is opened. The file name receives the
extension "*.trc".

Be aware, that here you save the traced values as well as the trace
configuration, whereas Save trace in the configuration dialog only concerns the
configuration data.

The saved Sampling Trace can be loaded again with 'Extras' 'Load Trace'.

‘Extras‘ ‘Load Trace‘

With this command a saved Sampling Trace (traced values + configuration
data)can be reloaded. The dialog box for opening a file is opened. Select the
desired file with the "*.trc" extension.

With 'Extras' 'Save Trace' you can save a Sampling Trace.

‘Extras‘ ‘Trace in ASCII-file‘

With this command you can save a Sampling Trace in an ASCII-file. The dialog
box is opened for saving a file. The file name receives the extension "*.txt". The
values are deposited in the file according to the following scheme:

907 AC 1131 Trace
D:\907 AC 1131\PROJECTS\TRAFFICSIGNAL.PRO
Cycle PLC_PRG.COUNTER PLC_PRG.LIGHT1
0 2 1
1 2 1
2 2 1
.....

6-41907 AC 1131/Stand: 03.99 The Resources 10

If no frequency scan was set in the trace configuration, then the cycle is located
in the first column; that means one value per cycle has been recorded at any
given time. In the other respects, the entry here is for the point in time in ms at
which the values of the variables have been saved since the Sampling Trace
has been run.

In the subsequent columns, the corresponding values of the trace variables are
saved. At any given time the values are separated from one another by a blank
space.

The appertaining variable names are displayed next to one another in the third
line, according to the sequence (PLC_PRG.COUNTER, PLC_PRG.LIGHT1).

6.9 Watch and Receipt Manager

Watch and Receipt Manager

With the help of the Watch and Receipt Manager you can view the values of
selected variables. The Watch and Receipt Manager also makes it possible to
preset the variables with definite values and transfer them as a group to the
PLC ('Write Receipt'). In the same way, current PLC values can be read into
and stored in the Watch and Receipt Manager ('Read Receipt'). These
functions are helpful, for example, for setting and entering of control
parameters.

All watch lists created ('Insert' 'New Watch List') are indicated in the left
column of the Watch and Receipt Manager. These lists can be selected with a
mouse click or an arrow key. In the right area of the Watch and Receipt
Manager the variables applicable at any given time are indicated.

In order to work with the Watch and Receipt Manager, open the object for the
Watch and Receipt Manager in the Resources register card in the Object

Organizer.

Watch and Receipt Manager in
the Offline Mode

In Offline Mode, you can create several watch lists in the Watch and Receipt
Manager using the 'Insert' 'New Watch List'.

For inputting the variables to be watched, you can call up a list of all variables
with the Input Assistant, or you can enter the variables with the keyboard,
according to the following notation:

<POUName>.<Variable Name>
With global variables, the POU Name is left out. You begin with a point. The
variable name can, once again, contain multiple levels. Addresses can be
entered directly.

Example of a multiple-level variable:
PLC_PRG.Instance1.Instance2.Structure.Componentname

6-42 907 AC 1131/Stand: 02/03The Resources10

Example of a global variable:
.global1.component1

Image 6.23: Watch and Receipt Manager in the Offline Mode

The variables in the watch list can be preset with constant values. That means
that in Online mode you can use the 'Extras' 'Write Receipt' command to write
these values into the variables. To do to do must use := to assign the constant
value of the variable:

Example:
PLC_PRG.TIMER:=50

In the example, the PLC_PRG.COUNTER variable is preset with the value 6

‘Insert‘ ‘New Watch List‘

With this command a new watch list can be inserted into the Watch and Receipt
Manager. Enter the desired name for the watch list in the dialog box that
appears.

‘Extras‘ ‘Rename Watch List‘

With this command you can change the name of a watch list in the Watch and
Receipt Manager.

In the dialog box that appears, enter the new name of the watch list.

‘Extras‘ ‘Save Watch List‘

With this command you can save a watch list. The dialog box for saving a file is
opened. The file name is preset with the name of the watch list and is given the
extension "*.wtc".

The saved watch list can be loaded again with 'Extras' 'Load Watch List'.

‘Extras‘ ‘Load Watch List‘

With this command you can reload a saved watch list. The dialog box is opened
for opening a file. Select the desired file with the "*.wtc" extension. In the dialog

6-43907 AC 1131/Stand: 03.99 The Resources 10

box that appears, you can give the watch list a new name. The file name is
preset without an extension.

With 'Extras' 'Save Watch List', you can save a watch list.

Watch and Receipt Manager in
the Online Mode

In Online mode, the values of the entered variables are indicated.

Structured values (arrays, structures, or instances of function blocks) are
marked by a plus sign in front of the identifier. By clicking the plus sign with the
mouse or by pressing <Enter>, the variable is opened up or closed.If a function
block variable is marked in the watch list, the associated context menu is
expanded to include the two menu items 'Zoom' and 'Open instance'.

In order to input new variables, you can turn off the display by using the 'Extras'
'Active Monitoring' command. After the variables have been entered, you can
use the same command again to activate the display of the values.

Image 6.24: Watch- and Receipt Manager in the Online Mode

In the Offline Mode you can preset variables with constant values (through
inputting := <value> after the variable). In the Online Mode, these values can
now be written into the variables, using the 'Extras' 'Write Receipt' command.

With the 'Extras' 'Read Receipt' command you can replace the presetting of
the variable with the present value of the variable.

Note: Only those values the watch list are loaded which was selected in the
Watch and Receipt Manager!

‘Extra‘ ‘Monitoring Active‘

With this command at the Watch and Receipt Manager in the Online mode, the
display is turned on or off. If the display is active, a check (�) will appear in front
of the menu item.

6-44 907 AC 1131/Stand: 02/03The Resources10

In order to enter new variables or to preset a value (see 'Offline Mode', the
display must be turned off through the command. After the variables have been
entered, you can use the same command again to activate the display of the
values.

‘Extras‘ ‘Write Receipt‘

With this command in the Online Mode of the Watch and Receipt Manager you
can write the preset values (see 'Offline Mode') into the variables.

Note: Only those values of the watch list are loaded which was selected in
the Watch and Receipt Manager!

‘Extras‘ ‘Read Receipt‘

With the command, in the Online Mode of the Watch and Receipt Manager, you
can replace the presetting of the variables (see 'Offline Mode') with the present
value of the variables.

Example:

PLC_PRG.Counter [:= <present value>] = <present value>

Note: Only the values of that watch list are loaded which was selected in
the Watch and Receipt Manager!

Force values

In the Watch and Receipt Manager you can also 'Force values' and 'Write
values'. If you click on the respective variable value, then a dialog box opens, in
which you can enter the new value of the variable. Changed variables appear in
red in the Watch and Receipt Manager.

7-1907 AC 1131/Stand: 03.99 Visualization 10

7 Visualization

Overview

A visualization is a graphical representation of the project variables which
allows inputs to the PLC program in online mode via mouse and keypad. The
907 AC 1131 visualization editor, which is part of the programming system
provides graphic elements which can be arranged as desired and can be
connected with project variables. Thereupon in online mode the look of the
graphical elements will change depending on the variables values.
Simple example: In order to represent a fill level, which is calculated by the PLC
program, draw a bar and connect it to the corresponding project variable, so
that the length and color of the bar will show the current fill level value. Add a
text field which will display the current value in a text string and a button for
starting and stopping the program.

The properties of a single visualization element as well as those of the whole
visualization object will be defined in appropriate configuration dialogs. There
it is possible to set basic parameters by activating options as well as to define a
dynamic parameterizing by entering project variables.

Additional special possibilities for configuring are given by the programability
of element properties via structure variables.

Using placeholders in the configuration dialogs may save a lot of effort in case
you want to use the same visualization object several times with different
configurations.

The visualization which is created in the programming system will in many
cases be used as the only user interface available for controlling and watching
the associated PLC program in online mode. For this purpose it must be
possible to give inputs to the program solely by activating visualization
elements. To reach this you can use special input possibilities during the
configuration of the visualization and you have the option to define special
hotkeys for each particular visualization. A visualization then can be used with
AC1131HMI, a special runtime system for operating the visualization in full
screen mode on a PLC computer.

7-2 907 AC 1131/Stand: 02/03Visualization10

Image 7.1: Example of a Visualization

7.1 Creating a Visualization Object

A visualization object is a 907 AC 1131 object which is managed in the
'Visualization' register of the Object Organizer. It contains an arrangement of
visualization elements and can get certain object properties. One or several
visualization objects can be created in a AC1131-project and might be linked
with each other.

In order to create a visualization object in the Object Organizer, you must select
the register card for Visualization in the Object OrganizerUsing the 'Project'
'Object Add' command, you can create a new visualization object. Open the
'New visualization' dialog, in which you can enter the name of the new
visualization. Once a valid entry is made, that is not a name that is already in
use and no special characters used, you can close the dialog with OK. A
window opens, in which you can edit the new visualization.

7.1.1 Inserting Visualization Elements

A visualization element is a graphical element, which is used to fill a
visualization object. The available elements are offered in the 907 AC 1131
menu bar. Each element gets a separate configuration.

You can insert four different geometric forms, as well as bitmaps, buttons and
existing visualizations, into your visualization.

Geometric forms at your disposal include: rectangles, rounded rectangles,
ellipses/circles, and polygons.

7-3907 AC 1131/Stand: 03.99 Visualization 10

Go to the 'Insert' menu item and select freely from the following commands:

 'Rectangle', 'Rounded Rectangle', 'Ellipse', 'Polygon', 'Line‘,

 'Curve', 'Bitmap', 'Visualization', 'Button', 'Metafile' (*.wmf).

A check appears in front of the selected command. You can also use the tool

bar. The button for the selected element appears pushed down (e.g.).

If you now go to the editor window with the mouse, you will see that the mouse

pointer is identified with the corresponding symbol (z.B.). Click on the
desired starting point of your element and move the pointer with pressed left
mouse key until the element has the desired dimensions.

If you want to create a polygon or a line, first click with the mouse on the
position of the first corner of the polygon resp. on the starting point of the line,
and then click on the further desired corner points. By doubleclicking on the last
corner point you will close the polygon and it will be completely drawn
respectively the line will be completed. If you want to create a curve (Bezier
curves) determine the initial and two other points with mouse clicks to define the
circumscribing rectangle. An arc is drawn after the third mouse click. You can
then change the position of the end point of the arc by moving the mouse and
can then end the process with a double click or add another arc with additional
mouse clicks.

Furthermore pay attention, to the status bar and the change from select and
insert modes.

‘Insert‘ ‘Rectangle‘

Symbol:

With the command you can insert a rectangle as an element into your present
visualization. (Use, see chapter 7.1.1, 'Inserting Visualization Elements')

‘Insert‘ ‘Rounded Rectangle‘

Symbol:

With the command you can insert a rectangle with rounded corners as an
element in your present visualization. (Use, see chapter 7.1.1, 'Inserting
Visualization Elements')

‘Insert‘ ‘Ellipse‘

Symbol:

With the command you can insert a circle or an ellipse as an element in your
present visualization. (Use, see chapter 7.1.1, 'Inserting Visualization
Elements').

7-4 907 AC 1131/Stand: 02/03Visualization10

‘Insert‘ ‘Polygon‘

Symbol:

With the command you can insert a polygon as an element in your present
visualization. (Use, see chapter 7.1.1, 'Inserting Visualization Elements').

‘Insert‘ ‘Line‘

Symbol:

With the command you can insert a line as an element into your current
visualization. (Use, see chapter 7.1.1, 'Inserting Visualization Elements').

‘Insert’ ‘Curve’

Symbol:

With the command you can insert a Bezier curve as an element into your
current visualization. (Use, see chapter 7.1.1, 'Inserting Visualization
Elements').

‘Insert‘ ‘Bitmap

Symbol:

With the command you can insert a bitmap as an element in your present
visualization. (Use, see Visualization Elements, Insert). Whether just a link to
the bitmap file should be saved or the bitmap should be inserted as an element,
can be defined in the bitmap configuration dialog (see Chapter 7.2.1).

While pressing the left mouse button, bring up an area in the desired size. The
dialog box is opened for opening a file. Once you have selected the desired
bitmap, it will be inserted into the area brought up.

‘Insert‘ ‘Visualization‘

Symbol:

With the command you can insert an existing visualization as an element in
your present visualization. (Use, see Visualization Elements, Insert).

While pressing the left mouse button, bring up an area in the desired size. A
selection list of existing visualizations opens. After you have selected the
desired visualization, it will be inserted in the defined area.

An inserted visualization will also be named as a reference.

7-5907 AC 1131/Stand: 03.99 Visualization 10

‘Insert’ ‘Button’

Symbol:

This command is used to insert a button into your current visualization. (Use,
see Visualization Elements, Insert).

Drag the element to the desired size with the left mouse button held down.

If a toggle variable is configured for the button it displays the state of this
variable by visually displaying whether it is pressed or not pressed. Conversely,
the variable is toggled by „pressing“ the button.

'Insert' 'Metafile'‘‘

Symbol:

This command is used to insert a Windows Metafile. The standard dialog for
opening a file will appear, where you can select a file (extension *.wmf). After
having closed the dialog with OK the file will be inserted as an element in the
visualization. In this case no link to a file will be stored, like it is done with a
bitmap, but the elements of the metafile will be inserted as a group (see
Chapter 7.1.2, Grouping elements).

7.1.2 Positioning Visualization Elements

Selecting Visualization
Elements

In order to select an element, click with the mouse on the element. You can also
select the first element of the elements list by pressing the <Tab> key and jump
to the next by each further keystroke. If you press the <Tab> key while pressing
the <Shift> key, you jump backwards in the order of the elements list.

In order to select elements, which are placed one upon the other, first select the
top level element by a mouseclick. Then do further mouseclicks while the <Ctrl>
button is pressed, to reach the elements in the underlying levels.

In order to mark multiple elements, press and hold the <Shift> key and click the
corresponding elements, one after another; or, while holding down the left
mouse button, pull a window over the elements to be selected.

In order to select all the elements, use the 'Extras' 'Select All' command.

If you are in the element list (called by 'Extras' 'Element list'), you can select
the concerned element in the visualization by selecting a line.

Copying Visual Elements

One or more selected elements can be inserted with the 'Edit' 'Copy'command,
the <Ctrl>+<C> key combination, or the corresponding copy symbol, and with
'Edit' 'Paste'.

7-6 907 AC 1131/Stand: 02/03Visualization10

A further possibility is to select the elements and to again click in one of these
elements with the <Ctrl> key held down. If you now hold the left mouse button
down, you can separate the elements thus copied from the original.

Modifying Visualization
Elements

You can select an element which has already been inserted by a mouse click
on the element or by pressing the <tab> key. A small black square will appear
at each corner of each of the elements, (with ellipses at the corners of the
surrounding rectangle). Except in the case of polygons, lines or curves further
squares appear in the middle of the element edges between the corner points.

With a selected element, the turning point (balance point) is also displayed at
the same time. You can then rotate the element around this point with a set
motion/angle. The turning point is displayed as a small black circle with a white
cross (). You can drag the turning point with a pressed left mouse button.

You can change the size of the element by clicking on one of the black squares
and, while keeping the left mouse button pressed, controlling the new outline.

With the selection of a polygon, you can drag each individual corner using the
same technique. While doing this, if you press the <Ctrl>-key then an additional
corner point will be inserted at the corner point, an additional corner point will be
inserted, which can be dragged by moving the mouse. By pressing the
<Shift>+<Ctrl>-key, you can remove a corner point.

Dragging Visualization
Elements

One or more selected elements can be dragged by pressing the left mouse
button or the arrow key.

Grouping Elements

Elements can be grouped by selecting all desired elements and performing the
command 'Extras' 'Group'. The group will behave like a single element:

• the grouped elements get a collective frame; when dragging the frame all
elements will be stretched or compressed; only the group can be moved to
another position.

• the grouped elements get collective properties: inputs only can effect the
group and not a single element. Thus the elements also get one collective
configuration dialog. The property 'Change color' can not be configured for a
group !

To redefine a single element of a group, the grouping must be redone by the
command 'Extras' 'Break up group'. The configuration of the group will be lost in
this case.

7-7907 AC 1131/Stand: 03.99 Visualization 10

 Note: As soon as you save the project as 907 AC 1131 Version 2.1 or
lower, a group of visualization elements will be resolved automatically; that
means that the elements of the group will be shown as single elements in the
visualization.

‘Extras‘ ‘Send to Front‘

Use this command to bring selected visualization elements to the front.

‘Extras‘ ‘Send to Back‘

Use this command to send selected visualization elements to the back.

‘Extras‘ ‘Align‘

Use this command to align selected visualization elements.

The following alignment options are available:

• Left: the left edge of each of the elements will be aligned to the element
that is furthest to the left

• the same is true for Right / Top / Bottom
• Horizontal Center: each of the elements will be aligned to the average

horizontal center of all elements
• Vertical Center: each of the elements will be aligned to the average

vertical center of all elements

‘Extras‘ ‘Element list‘

This command opens a dialog box containing a list of all visualization elements
including their number, type and position. The position is given according to
the x and y position of the upper left and lower right corner of the element.

When one or more items have been selected, the corresponding elements in
the visualization are marked for visual control and if necessary the display will
scroll to that section of the visualization that contains the elements.

Use the To front button to bring selected visualization elements to the front.
Use the To behind button to move them to the back.

Below the elements list there you find – depending on which element is
currently selected - one of the following combinations of edit fields where you
can modify size and position of the element:

• If a rectangle, rounded rectangle, ellipse, bitmap, visualization, button or a
meta file is currently selected, then next to the text "Rectangle (x1, y1, x2,
y2)" there are four edit fields, where the actual x/y positions are shown and
can be modified.

• If a line, polygon or a curve is currently selected, a table will be available
showing the actual X-Position and Y-Position of each of the black squares
which mark the shape of the element, as soon as it is selected. These
values can be edited here.

7-8 907 AC 1131/Stand: 02/03Visualization10

To set the modified position values in the elements list and in the visualization,
press button Set rectangle (in case 1.) resp. Set polygon (in case 2.).

Use the Delete button to remove selected visualization elements.

Use the Undo and Redo buttons to undo or restore changes that have been
made just as you would do with the commands 'Edit' 'Undo' and 'Edit' 'Redo' . In
the dialog box, you can observe the changes that are being made.

Click on OK to close the dialog box and confirm the changes.

Image 7.2: Element list dialog box

Status Bar in the Visualization

If a visualization has the focus, the current X and Y position of the mouse
cursor in pixels relative to the upper left corner of the image is displayed in the
status bar. If the mouse pointer is located on an Element, or if the element is
being processed, then the number of the element will be displayed. If you have
selected an element to insert, then this element will also appear (for example,
Rectangle).

7-9907 AC 1131/Stand: 03.99 Visualization 10

7.2 Configuration of a Visualization

Overview

When configuring a visualization you have to distinguish between the
configuration a particular graphic element (see Chapter 7.2.1) and the
visualization object (see Chapter 7.2.2) as a whole. Correspondingly a different
selection of configuration dialogs will be available, which can be opened by the
command 'Configure' from Menu 'Extras' resp. from the context menu.

In this dialogs the properties of an element or object are set either by activating
options or dynamically by inserting project variables. Besides that the properties
can be programmed via the components of a structure variable, which can be
defined for each visualization element.

 Regard the order of analysis, which will be followed in online mode:

• The values which are given dynamically, i.e. via project variables, will
overwrite the fix parameters defined for the same property.

• If an element property is defined by a "normal" project variable as well as by
the component of a structure variable, then in online mode primarily the
value of the project variable will be regarded.

Please regard the possibility of using Placeholders as well as the special input
possibilities which are useful if the visualization should be used in 907 AC 1131
HMI resp. as Target- or Web-Visualization, that means if the visualization
serves as the only user interface for a PLC programm (see in the following:
INTERN commands in category 'Input' of the configuration dialogs, Keyboard
usage)

Placeholders

At each location in the configuration dialog at which variables or text are
entered, a placeholder can be set in place of the respective variable or text.
This makes sense if the visualization object is not to be used directly in the
program, but is created to be inserted in other visualization objects as an
"instance". When configuring such an Instance, the placeholders can be
replaced with variable names or with text (see chapter 7.2.1, Visualization).

Any string enclosed in two dollar signs ($) is a valid placeholder (e.g.
$variable1$, variablex). For each placeholder a „value group" can be defined
as an input specification in the 'Placeholder list' dialog (called by 'Extras'
'Placeholder list'). With one of these values you can replace the placeholder
when configuring an instance of the visualization object. A placeholder list will
be available in the instance to do this replacements.

7-10 907 AC 1131/Stand: 02/03Visualization10

‘Extras’ ‘List of Placeholders’

This list is used at two places in 907 AC 1131: to manage placeholders and to
configure them:

• primarily you use the list when configuring a visualization object, which later
should be inserted, which means instanced, in other visualization(s). For this
reason you will use placeholders instead of or additonally to variables and
strings in the configuration dialogs. You can open the dialog 'Placeholders'
by the command 'List of Placeholders' in the 'Extras' menu or in the context
menu. The list shows three columns:

Image 7.3: Placeholder list for input of possible replacements for the placeholders

Column Placeholder will list all placeholders, which are currently used in
the configuration of the visualization object. Column Element number
shows the elements which contain a placeholder. In column Replacements
you can enter one or several strings (text, variable, expression) which you
want to get offered later when you will replace the placeholder during the
configuration of an instance of the visualization object. If you enter more
than one element, separate by commas. If you specifiy no or an impossible
replacement string, then the placeholder can be replaced with any desired
text later during the configuration of the visualization's reference.

• later you use the list of placeholders when configuring an instance of the
above mentioned visualization object, that means after this object has been
inserted (as a 'reference') in another visualization by the command 'Insert'
'Visualization'. For this purpose do the following to open the dialog: Select
the inserted visualization, execute command 'Extras' 'Configure' and press
button 'Placeholders' in Category 'Visualization'. In this case the dialog will
only contain two columns:

7-11907 AC 1131/Stand: 03.99 Visualization 10

Image 7.4: List of placeholders for replacing a placeholder in a visualization instance

Column Placeholder – like described above – shows all placeholders which
have been defined for the primary visualization object. If additionally a
selection of possible replacements had been defined, this list will now be
available in column 'Replacement'. Select one of the entries to replace the
placeholder in the present instance. If no replacements have been pre-
defined then you can manually enter an expression or variable. For this
purpose perform a mouse-click on the field in column Replacement to open
an editor field.

7.2.1 Configuration of Visualization Elements

‘Extras‘ ‘Configure‘

With this command, the 'Configure element' dialog opens for configuring the
selected visualization element (see Chapter 7.1.2, Select visualization element).
You are given the dialog box when you doubleclick on the element.

Select a category in the left area of the dialog box, and fill out the requested
information in the right area. This has to be done by activating options resp. by
inserting the name of valid variables, whose values should define the property
of the element.

 Note: There are also configuration dialogs available for a group of
elements. Regard that the settings will be valid for the "element" group. If you
want to configure the particular elements of the group, you have to resolve the
group.

7-12 907 AC 1131/Stand: 02/03Visualization10

 Note: If you have defined an element property by a "static" setting as well
as dynamically by a variable, then in online mode the variable will overwrite the
static value (Example: "Alarm color Inside" can be defined statically in category
'Color' and additionally dynamically in category 'Colorvariables' by a variable). If
the setting is controlled by a "normal" project variable as well as by a structure
variable, then the value of structure variable also will be overwritten by the
"normal" project variable.

Depending on the visualization element selected, various categories can be
selected:

Shape Rectangle, Rounded Rectangle, Ellipse

Text All

Textvariables All

Color Rectangle, Rounded Rectangle, Ellipse, Polygon,
Line, Curve; just frame color: Bitmap,Visualization

Colorvariables Rectangle, Rounded Rectangle, Ellipse, Polygon,
Line, Curve; just frame color: Bitmap,Visualization

Motion absolute All

Motion relative All, except Polygon, Line, Curve

Variables All

Input All

Tooltip All

Security All

Programability All

 Regard this possibility to configure a
visualization element also by using a structure
variable. In this case the value provided by the
variable will overwrite the value which has been
defined by a analogous setting in the configuration
dialog !

Bitmap Bitmap, Button

Visualization Visualization

At locations in the element configuration where program variables are operative,
the following Entries are possible:

7-13907 AC 1131/Stand: 03.99 Visualization 10

• Variable names, for which input assistant is available
• Expressions which are assembled from component accesses, field

accesses with constant index, variables and direct addresses.
• Operators and constants, which can be combined at will with the

aforementioned expressions.
• Placeholders instead of variable names or text strings
Examples of permissible expressions:

x + y
100*PLC_PRG.a
TRUE
NOT PLC_PRG.b
9*sin(x + 100)+cos(y+100)

Function calls are not possible. Invalid expressions result in an error message
on login („Invalid Watch expression...“). Examples of invalid expressions:
fun(88), a := 9, RETURN.

There are two possible ways to write global variables in the configuration
dialogs: ".globvar" and "globvar“ are equivalent. The style with a dot (which is
used in the Watch- and Receiptmanager) is not possible within an assembled
expression, however.

Shape

In the visualization element configuration dialog box, you can select in the
Shape category from among Rectangle, Rounded Rectangle, and Ellipse
respectively Polygon, Line and Curve. The form will change into the size
already set.

Image 7.5: Dialog Box for Configuring Visualization Elements (Shape Category)

7-14 907 AC 1131/Stand: 02/03Visualization10

Text

In the dialog for configuring visualization elements, you can specify a text for the
element in the Text category. This can be entered directly or/and a variable can
be defined which will determine the text string. The usage of placeholders is
possible. Also the default settings for font and alignment are done here.

Enter the text in the Content field. With the key combination <Crtl>+<Enter>
you can insert line breaks, with <Crtl>+<Tab>, tab stops. Besides the input of a
pure text string you can use the following formatting sequences:

• If you include "%s" into the text, then this location, in Online mode, will be
replaced by the value of the variable from the Text Output field of the
Variables category. You also can use a formatting string, which conforms
with the standard C-library function 'sprintf': e.g. "%d" for integer types, "%f"
for floating types, "%2.5f" for floating types with 2 decimal places before and
5 behind the comma, "%x" for integer types in hexadecimal format. The
value of the variable will be displayed correspondingly in online mode. You
can enter any IEC-conforming format strings, which fit to the type of the
used variable. Attention: It is not checked whether the type which is used in
the formatting string matches with the type of the variable which is defined in
the 'Text Output' field !
Example:
Input in the 'Content' field: Fill level %2.5f mm
Input in the 'Text Output' field e.g.: fvar1 (REAL variable)
-> Output in online mode e.g.: Fill level 32.8999 mm

• If you enter "%t", followed by a certain sequence of special placeholders,
then this location will be replaced in Online mode by the system time. The
placeholders define the display format, see the following table:

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time representation appropriate for locale

%d Day of month as decimal number (01 – 31)

%H Hour in 24-hour format (00 – 23)

%I Hour in 12-hour format (01 – 12)

%j Day of year as decimal number (001 – 366)

%m Month as decimal number (01 – 12)

%M Minute as decimal number (00 – 59)

7-15907 AC 1131/Stand: 03.99 Visualization 10

%p Current locale’s A.M./P.M. indicator for 12-hour clock

%S Second as decimal number (00 – 59)

%U Week of year as decimal number, with Sunday as first day of
week (00 – 53)

%w Weekday as decimal number (0 – 6; Sunday is 0)

%W Week of year as decimal number, with Monday as first day of
week (00 – 53)

%x Date representation for current locale

%X Time representation for current locale

%y Year without century, as decimal number (00 – 99)

%Y Year with century, as decimal number

%z,
%Z

Time-zone name or abbreviation; no characters if time zone is
unknown

%% Percent sign

Examples:

%t%a %b %d.%m.%y %H:%M:%S
-> Display in online mode: Wed Aug 28.08.02 16:32:45

Between the placeholders you can insert any text strings:

%tToday is %d.%m.%y -> Display in online mode: Today is 28.08.02

Note: If a text string is to be transferred into a translation file, which will
then be used in Online mode to enable switching into another national
language, it must be delimited at the beginning and end by #.

Examples: “#Pump 1#” or else even “#Pump# 1"

The second case could be used in the event of multiple occurrences of the
text Pump (Pump 1, Pump 2, etc.) to prevent multiple appearances in the
translation.

The configured text will appear online in the prescribed alignment within the
element: horizontally left, center or right and vertically top, center or
bottom.

7-16 907 AC 1131/Stand: 02/03Visualization10

If you use the Font button, a dialog box for selection of the font will appear.
Select the desired font and confirm the dialog with OK. With the Standard-Font
button you can set the font that is selected in the project options (‘Project’
‘Options’ 'Editor'). If the font is changed there, then this font will be displayed
in all elements except in those elements for which another font has explicitly
been selected by using the Font button.

Image 7.6: Dialog Box for Configuring Visualization Elements (Text Category)

Textvariables

In category Textvariables of the dialog for configuring visualization elements
you can specify a variable which should dynamically set color and font of that
string which is defined in category 'Text'. At best enter the variable name with
the aid of the input assistant (<F2>).

You can also use components of the structure VisualObjectType to set the text
properties. For this see the description of category 'Programability'; there you
will find the possible values of the particular structure components and their
effect.

The parameters of the dialog:

Parameter: Meaning: Example entry of
project variable:

Example Usage of
variable in program:

corresponding
component of
structure
VisualObjectType:

Textcolor: Text color "plc_prg.var_textcolor" var_textcolor=16#FF00F
F→ color pink

dwTextColor

Textflags: Alignment (right,
left,centered...)

"plc_prg.textpos" textpos:=2
→ Text right justified

dwTextFlags

Fontheight: Font height in
Pixel

".fonth" fonth:=16;
→ Font height 16 pt

ntFontHeight

Fontname: Font name "vis1.fontn" fontn:=arial;
→ Arial is used

stFontName

7-17907 AC 1131/Stand: 03.99 Visualization 10

Fontflags: Font display
(bold,underlined,
italic...)

"plc_prg.fontchar" fontchar:=2
→ Text will be displayed
bold

dwFontFlags

Image 7.7: Dialog for configuring visualization elements (Textvariables Category)

Line width

In the dialog for configuring visualization elements, you can choose the line
width for an element. As predefined options you find width settings from 1 to 5
pixel, additionally an other value can be entered manually (Other:), or a project
variable (Variable for line width:) can be inserted. For the latter the input
assistance ((<F2>) can be used.

Image 7.8: Dialog Box for Configuring Visualization Elements (Line width Category)

Colors

In the visualization element configuration dialog box, in the Color category you
can select primary colors and alarm colors for the inside area and for the frame
of your element. Chosing the options no color inside and no frame color you
can create transparent elements.

7-18 907 AC 1131/Stand: 02/03Visualization10

Image 7.9: Dialog Box for Configuring Visualization Elements (Colors Category)

If you now enter a Boolean variable in the Variables category in the Change
Color field, then the element will be displayed in the Color set, as long as the
variable is FALSE. If the variable is TRUE, then the element will be displayed in
its Alarm Color.

Note: The change color function only becomes active, if the PLC is in
Online Mode!

If you want to change the color of the frame, then press the Frame button,
instead of the Inside button. In either case, the dialog box will open for selection
of the color.

Here can to choose the desired hue from the primary colors and the user-
defined colors. By pressing the Define Colors you can change the user-defined
colors.

Colorvariables

Here you can enter project variables (e.g. PLC_PRG.color_inside), which
should determine the particular property in online mode: These property
definitions also or additionally can be programmed with the aid of components
of the structure VisualObjectType. Therefore see the description on the
"Programability" of a visualization element. There you will find a list of the
possible values and their effects.

Note: The variables, entered in the Color Variables dialog, in online mode
will overwrite the static values given in the 'Color' category as well as
corresponding values given by a structure variable.

In case of multiple definition of an element property consider the specific order
of precedence concerning according to which a value might be overwritten in
online mode by another.

7-19907 AC 1131/Stand: 03.99 Visualization 10

Image 7.10: Dialog Box for Configuring Visualization Elements (Colorvariables
Category)

The parameters of the dialog::

Parameter: Description: Example of an entry: Example for using the
variable in the program:

corresponding
component of
structure
VisualObjectType:

Fillcolor: fill color "plc_prg.var_fillcol" var_var_fillcol:=16#FF00FF
→ fill color pink

dwFillColor

Fillcolor
alarm:

fill color if the
'Change color'
variable is
TRUE

"plc_prg.var_fillcol_a" var_fillcol_a:=16#FF00FF
→ alarm fill color pink

dwFillColorAlarm

Framecolor: frame color "plc_prg.var_framecol" var_framecol::=16#FF00FF
→ frame color pink

dwFrameColor

Framecolor
alarm:

frame color if
the 'Change
color' variable
is TRUE

"plc_prg.var_framecol" var_framecol:=16#FF00FF
→ alarm frame color pink

dwFrameColorAl
arm

Fillflags: The current
inside color
configuration
can be
activated
(FALSE) resp.
deactivated
(TRUE)

"plc_prg.var_col_off" var_col_off:=1
→ the color definition for
the fill color will not be
regarded, that for the frame
remains valid

dwFillFlags

Frameflags: Display of the
frame (solid,
dotted etc.)

"plc_prg.var_linetype" var_linetype:=2;
→ frame will be displayed
as dotted line

dwFrameFlags

7-20 907 AC 1131/Stand: 02/03Visualization10

Motion absolute

In the visualization element configuration dialog box, in the Motion absolute
category, X- or Y-Offset fields variables can be entered. These variables can
shift the element in the X or the Y direction, depending on the respective
variable value. A variable in the Scale field changes the size of the element
linear to its current value. This value, which is used as scaling factor, will be
divided by 1000 implicitely, so that it is not necessary to use REAL-variables in
order to get a reduction of the element. The scaling always will refer to the
balance point.

A variable in the Angle field causes the element to turn on its turning point,
depending on the value of the variable. (Positive Value = Mathematic Positive =
Clockwise). The value is evaluated in degrees. With polygons, every point
rotates; in other words, the polygon turns. With all other elements, the element
rotates, in such a way, that the upper edge always remains on top.

The turning point appears after a single click on the element, and is displayed
as a small black circle with a white cross (). You can drag the turning point
with a pressed left mouse button.

Image 7.11: Visualization Element Configuration Dialog Box (Motion Absolute
Category)

Motion relative

In the dialog for configuring visualization elements in the Motion Relative
category, you can assign variables to the individual element edges. Depending
on the values of the variables, the corresponding element edges are then
moved. The easiest way to enter variables into the fields is to use the Input
Assistant (<F2>).

The four entries indicate the four sides of your element. The base position of the
corners is always at zero. A new value in the variables, in the corresponding
column, shifts the boundary in pixels around this value. Therefore, the variables
that are entered ought to be INT variables.

7-21907 AC 1131/Stand: 03.99 Visualization 10

Note: Positive values shift the horizontal edges downward, or, the vertical
edges, to the right!

Image 7.12: Dialog Box for Configuration of Visualization Elements (Motion Relative
Category)

Variables

You can enter the variables that describe the status of the visualization
elements in the Variable category within the dialog box for configuring
visualization elements. The simplest way to enter variables in the fields is to use
the Input Assistant.

You can enter Boolean variables in the Invisible and Change color fields. The
values in the fields determine their actions. If the variable of the Invisible field
contains the value FALSE, the visualization element will be visible. If the
variable contains the value TRUE, the element will be invisible.

Disable input: If the variable entered here is TRUE, all settings of category
'Input' will be ignored.

If the variable at the Change color field contains the value FALSE, the
visualization element will be displayed in its default color. If the variable is
TRUE, the element will be displayed in its alarm color.

Tooltip-display: Enter here a variable of type STRING whose value should be
displayed in a tooltip for the element in online mode.

In the Textdisplay field, you can specify a variable whose value is displayed in
the visualization, as long as you have entered „<name>“ in addition to the text in
the Content field of the Text category. The „<name>“ is replaced in Online
mode by the value of the variable from the Textdisplay field. If you want to edit
the value of the variable in Online mode using the keyboard, you can do this via
the 'Text input of variable' 'Textdisplay' in the Input category.

7-22 907 AC 1131/Stand: 02/03Visualization10

Image 7.13: Visualization Element Configuration Dialog Box (Variables Category)

Input

Selecting the field Toggle variable allows you, in online mode, to toggle the
value of the variables which are located in the input field with every mouse click
on the element. You can obtain input assistance for data entry via <F2>. The
value of the Boolean variable changes with each mouse click from TRUE to
FALSE and then back to TRUE again at the next mouse click, etc.

You can also use input assistance for entry of a variable for the Tap Variable
option. This option allows you, in online mode, to change the value of the
Boolean variable which is located in the input field, between TRUE and FALSE.
Place the mouse cursor on the element, press the mousekey and hold it
depressed. If option Tap FALSE is activated, the value is set to FALSE as soon
as the mouse key is pressed, otherwise it is set to TRUE at this moment. The
variable changes back to its initial value as soon as you release the mouse key.

Selecting the field Zoom to Vis... allows you to enter the name of a
visualization object of the same project into the edit field. You can then switch to
the window showing this visualization in Online mode by clicking on the element
with the mouse. The window of the target visualization will first open, followed
by the closing of that of the current one. While in online mode use a mouse click
to change to the element in the window of the visualization which has been
entered. If a program variable of the type STRING (e.g. PLC_PRG.xxx) has
been entered instead of a visualization object, then this variable can be used to
define the name of the visualization object (e.g. ,visu1’) which the system
should change to when a mouse click occurs (e.g. xxx:= ,visu1).

If a visualization reference that contains placeholders is to be jumped to, these
can be directly replaced by variable names or text when called up. For this
purpose, conform to the following syntax:

<Visuname>(<Placeholder1>:=<Text1>, <Placeholder2>:=<Text2>,...,
<Placeholder n>:=<Textn>)

7-23907 AC 1131/Stand: 03.99 Visualization 10

Example:

Calling the visualization visu1, whereby the placeholders var_ref1 and
var_ref2 used in visu1 are replaced by the variables PLC_PRG.var1 and
PROG.var1 respectively:

visu1(var_ref1:=PLC_PRG.var1, var_ref2:=PROG.var1)

If you issue the command „ZOOMTOCALLER“ in the Zoom to vis. field, a
backward jump into the calling visualization is achieved in Online mode by a
mouse click on the element, if such a constellation was configured.

Selecting the option Execute program allows you to enter any executable
program in the input field and then to execute it in online mode by clicking on
the element with the mouse. Example: notepad C:/help.txt (the Notepad
program is started and the help.txt file is opened).

Note: The configuration field Execute program plays a major role for the
907 AC 1131 operating version, since 907 AC 1131 program actions can be
initiated here over defined commands, which are available as menu commands
in the full version (see 'Special input possibilities for the 907 AC 1131 operating
version').

If you select the Text input of variable 'Textdisplay', then in Online mode you
will get the possibility to enter an value in this visualization element which will
upon pressing <Enter> be written to the variable that appears in the
Textdisplay field of the Variables category.

Image 7.14: Dialog to configure the visualization elements (Input Category)

Select in the scroll box which kind of input should be possible later in online
mode. Text: An edit field will open, where you can enter the value. Numpad
resp. Keypad: A window will open showing an image of the numeric resp.
alphabetic keypad, where you can enter a value by activating the appropriate
key elements. This might be useful if the visualization must be operatable via a

7-24 907 AC 1131/Stand: 02/03Visualization10

touch screen. The range of valid input values can be restricted by defining a
minimum and a maximum value in the edit fields Min: and Max:.

Security

It might be useful that different user groups get different operating possibilities
and display of a visualization. This can be reached by assigning different
access rights concerning particular visualization elements. You can do this for
the eight user groups which are available in 907 AC 1131 (see also 'Project'
'Object' 'Properties' resp. 'Project' 'User Group Passwords'). The access rights
can be assigned by activating the appropriate option in the configuration dialog
'Access rights' for a visualization element:

Image 7.15: Visualization Element Configuration Dialog Box (Security Category)

The access rights for a visualization element and their effect in online mode:

No Access Element will not be visible
Read Access Element will be visible but not operatable (no inputs allowed)
Full Access Element is not visible and not operatable

If you want to assign the access rights also to all other elements of the
visualization object, activate option Apply to all visual elements.

 Note: Please regard, that the access rights which are set for the
visualization object in the 'Project''Object' 'Properties' dialog, are independent
on those of the particular visualization elements !

Programability

The properties of an element can not only be defined by a static setting or by a
"normal" project variable, but also by the components of a structure variable,
which is exclusively used for programming visualization elements.

7-25907 AC 1131/Stand: 03.99 Visualization 10

For this purpose the structure VisualObjectType is available in the library
SysLibVisu.lib. Its components can be used to define most of the element
properties.

 Note: In case of multiple definition of a element property the value of the
"normal" project variables will overwrite that of the structure variable and both
will overwrite a static definition.

In order to configure the element properties by using a structure variable, do the
following:

Open the configuration dialog, category 'Programmability' and enter a new,
unique (!) variable name in the field Object Name:. For this purpose you must
activate the option by a mouse-click in the checkbox. The variable automatically
will be declared with type VisualObjectType, a structure which is contained in
the library SysLibVisu.Lib. The declaration is done implicitely and not visible
for the user. Make sure that the library is included in the library manager.

After the next compile the newly assigned structure variable will be available in
the project. (Hint: Activate the Intellisense functionality 'List components' in the
project options, category Editor, in order to get the structure components in a
selection list as soon as the variable name followed by a dot is entered).

Example: If you have defined a Object Name "visu1_line" for a visualization
element, then you can program the line width of this element by e.g.
"visu1_line.nLIneWidth:=4"

Image 7.16: Dialog for configuration of a visualization element (Programability
Category)

7-26 907 AC 1131/Stand: 02/03Visualization10

The strucure VisualObjectType:

The following table will show you all components of the structure and references
to the corresponding items in the different categories of the configuration dialog:

At the beginning of the component name the data type is integrated:
n INT
dw DWORD
b BOOL
st STRING

Component
(+Data type)

Effect Example

(the Object Name "vis1" has been
defined for the element)

corresponding entries in
configuration dialog:

nXOffset : INT; Shift element in X-
direction

vis1.nXOffset:=val2;
(element is set to position
X=val2)

- Cat. Motion absolute:
 X-Offset

nYOffset : INT; Shift element in Y-
direction

vis1.nYOffset:=22;

(element is set to position
Y=val2)

- Cat. Motion absolute:
 Y-Offset

nScale : INT; Change of the size vis1.nScale:=
plc_prg.scale_var;

(element size changes linear with
change of value of
plc_prg.scale_var)

- Cat. Motion absolute:
 Scaling

nAngle : INT; Rotating element
around its center

vis1.anglevar:=15;

(element rotates clockwise by 15
)

- Cat. Motion absolute:
 angle

bInvisible : BOOL; Element is visible /
invisible

vis1.visible:=TRUE;

(element is invisible)
- Cat. Color: No color
 inside + No frame color
- Cat. Colorvariables:
 Fillcolor + Framecolor

stTextDisplay :
STRING;

Text is displayed in
element

vis1.TextDisplay:=
'ON / OFF';

element is inscribed with this text

- Cat. Text: entry at
 Content'

bToggleColor :
BOOL;

color change when
toggling between
TRUE and FALSE

vis1.bToggleColor:=
alarm_var;

(As soon as alarm_var gets
TRUE, the element gets the color
defined via the components
dwFillColorAlarm,
dwFrameColorAlarm resp. via the
settings in category
'Colorvariables' or 'Color'.

- Cat. Input: Toggle
 variable +
- Cat. Variables: Change
 color

7-27907 AC 1131/Stand: 03.99 Visualization 10

bInputDisabled:
BOOL;

if FALSE: Inputs in
category 'Input' are
ignored

vis1.bInputDisabled:=
FALSE;

(no input is possible for this
elementt)

- Cat. Variables: 'Disable
 Input'

stTooltipDisplay:
STRING;

Text of the tooltip vis1.stTooltipDisplay:='
Switch button for ..';

- Cat. Text for Tooltip:
 Entry in 'Content:'

dwTextFlags:
DWORD;

Text position:

1 left justified
2 right justified:
4 centered
horizontally
8 top
10 bottom
20 centered
vertically

Note: Always set a
horizontal and a
vertical position
(addition of values)!

vis1.dwTextFlags:=24;

(Text will be placed in the center
of the element (4 + 20)

- Cat. Text: Horizontal
 and Vertical options
- Cat. Textvariables:
 Textflags

dwTextColor :
DWORD;

Text color (definition
of colors see
subsequent to this
table)

vis1.dwTextColor :=
16#00FF0000;
(Text is blue-colored)

- Cat. Text: Font | Color
- Cat. Textvariables:
 Textcolor

nFontHeight : INT; Font height in Pixel.
should be in range
10-96

vis1.nFontHeight:=16;
(Text height is 16 pt)

- Cat. Text: Font | Grad'
- Cat. Textvariables:
 Font heigth

dwFontFlags :
DWORD;

Font display.
Available flags:

1 italic
2 fett
4 underlined
8 canceled

+ combinations by
adding values

vis1.dwFontFlags:=10;

(Text is displayed blue and
canceled)

- Cat. Text: Schrift |
 Schriftschnitt
- Cat. Textvariables:
 Fontflags

stFontName :
STRING;

Change font vis1.stFontName:=’Arial’
;
(Arial is used)

- Cat. Text: Schrift |
 Schriftart
- Cat. Textvariables:
 Fontname

nLineWidth : INT; Line width of the
frame (pixels)

vis1.nLWidth:=3;

(Frame width is 3 Pixels)
- Cat. Line width

dwFillColor :
DWORD;

Fill color (definition of
colors see
subsequent to this
table)

vis1.dwFillColor":=
16#00FF0000;

(Element ist im "Normalzustand"
blau)

- Cat. Color: Color |
 Inside
- Cat. Colorvariables:
 Inside

7-28 907 AC 1131/Stand: 02/03Visualization10

dwFillColorAlarm
: DWORD;

Fill color as soon as
bToggleColor gets
TRUE, see above)
(definition of colors
see subsequent to
this table)

vis1.dwFillColorAlarm:=
16#00808080;

(as soon as Variable togglevar
gets TRUE, the element will be
displayed grey-colored)

- Cat. Color: Alarm color
| Inside
- Cat. Colorvariables:
 Inside Alarm

dwFrameColor:
DWORD;

Frame color

(definition of colors
see subsequent to
this table)

vis1.dwFrameColor:=
16#00FF0000; (Frame is blue-
colored)

- Cat. Color: Color |
 Frame
- Cat. Colorvariables:
 Frame

dwFrameColorAla
rm: DWORD;

Fill color as soon as
bFrameColor gets
TRUE, see above
(definition of colors
see subsequent to
this table)

vis1.dwFrameColorAlarm:=
16#00808080; (as soon as
Variable vis1.bToggleColor gets
TRUE, the frame will be
displayed grey-colored)

- Cat. Color: Alarm color|
 Frame
- Cat. Colorvariables:
 Frame Alarm

dwFillFlags:
DWORD;

Color, as defined by
the color variables,
can be displayed or
ignored

0 = show color
>0 = ignore setting

vis1.dwFillFlags:=1;

(element gets invisible)
- Cat. Color: No color
 inside + No frame color
- Cat. Colorvariables:
 Fillflags

dwFrameFlags:
DWORD;

Display of frame:

0 full
1 dashed (---)
2 dotted ()
3 dash-point (_._._)
4 dash-point-point
(_.._)
8 blind out line

vis1.FrameFlags:=1;

(Frame will be displayed as
dashed line)

- Cat. Colorvariables:
 Frameflags

Defining color values:

Example: e1.dwFillColor := 16#00FF00FF;

A color is entered as a hex number which is composed of the Blue/Green/Red
(RGB) components. The first two zeros after "16#" should be set to in each
case, to fill the DWORD size. For each color value 256 (0-255) colors are
available.

FF Blue component
00 Green component
FF Red component

Example for a blinking visualization element:

Define a global variable 'blink1' of type VisualObjectType in the configuration of a
rectangle. In a program of function block the value of a component of the structure can be
modified.

7-29907 AC 1131/Stand: 03.99 Visualization 10

PROGRAM PLC_PRG

VAR
n:INT:=0;
bMod:BOOL:=TRUE;

END_VAR
(* Blinking element *)
n:=n+1;
bMod:= (n MOD 20) > 10;
IF bMod THEN

blinker.nFillColor := 16#00808080; (* Grau *)
ELSE

blinker.nFillColor := 16#00FF0000; (* Blau *)
END_IF

Special input possibilities for
AC1131 HMI

AC1131HMI is a pure operating version, a runtime system for a 907 AC 1131
visualization. There are no menus and status and tool bars available to the user
and no possibility to modify the code. When a visualization is created with
907 AC 1131 the principal control and monitoring functions in a project can be
assigned to visualization elements thus making them accessible via mouse click
or keyboard in Online mode. So the program can be controlled exclusevly by
the visualization running in AC1131HMI.

See in the following some special input possibilities to configure visualization
elements for the purpose of beeing used in AC1131HMI. They are available in
the configuration dialog for a visualization element:

Enter internal commands in the field Execute program in the category Input
according to the following syntax:

INTERN <COMMAND> [PARAMETER]*

The following table shows the available internal commands. Some of them
expect to receive several parameters, which are then entered separated by
spaces. Optional parameters are enclosed in square brackets. For those
commands which require that a Watch list be specified, a placeholder can be
used instead of the direct name.

Command The equivalent
in the full
version of
907 AC 1131

Explanation

LANGUAGE <visualization
settings

The dialog for visualization
settings which includes the
category language gets openend.

LANGUAGE
<language>

<visualization
settings

The desired language file is
chosen without using the dialog for
visualization settings.

7-30 907 AC 1131/Stand: 02/03Visualization10

DEFINERECEIPT
name

<Select watch
lists>

A watch list is selected from the
receipt manager which enters your
name (name) when the command
is given. The variables in this
watch list are registered and
displayed.

WRITERECEIPT
name

‘Write receipts' The name of a watch list of the
receipt manager is expected. The
receipt of this watch list will be
written. A previous execution of
DEFINERECEIPT is not
necessary.

SAVEWATCH ‘Save watch list' The receipt will be read into the
current watch list which will be
stored in a file. Important: call a
previous DEFINERECEIPT to
define the current receipt !

LOADWATCH ‘Load watch list'
+ ‘Write receipt'

The standard window ‚File open‘
appears, from which a previously
stored receipt can be selected.
This receipt will be immediately
written into the controller system.

CHANGEUSERLEVEL - A dialog for setting the user group
level will open. The eight
907 AC 1131 user group levels are
offered for selection.

CHANGEPASSWORD 'Project' 'User
Group
Passwords...'

A dialog for changing the user
group password will appear.

EXITPROGRAM ‚File‘ ‘Close' The program will be exited.

PRINT ‚File‘ ‘Print' The current visualization will be
printed out online.

HELP <name of help
file>

Call of a help file Depending on which language is
set for the visualization, a help file
will be called which is entered for
that language in the
907 AC 1131.ini file. (see 'Extras'
'settings')

TRACE <Open object
trace recording

The window for trace recording will
be opened.
The menu commands Trace Start,
Read, Stop, Save, Load which are
available in the full version of

7-31907 AC 1131/Stand: 03.99 Visualization 10

907 AC 1131 are available in this
window.

Image 7.17: Dialog for the trace recording in the operation version

ToolTip

The dialog Text for Tooltip offers an input field for text which appears in a text
field as soon as the mouse cursor is passed over the object in online mode. The
text can be formatted with line breaks by using the key combination <Ctrl> +
<Enter>.

Bitmap

You can enter the options for a bitmap in the Bitmap category within the
visualization element configuration dialog box.

Enter the bitmap file and its path in the Bitmap field. You can use the ... button
to open the standard Windows Browse dialog box from which you can select the
desired bitmap.

All other entries affect the frame of the bitmap.

By selecting Anisotropic, Isotropic or Fixed you specify how the bitmap
should react to changes in the size of the frame. Anisotropic means that the
bitmap remains the same size as the frame which allows you to change the
height and width of the bitmap independently. Isotropic means that the bitmap
retains the same proportions even if the overall size is changed (i.e., the
relationship between height and width is maintained). If Fixed is selected, the
original size of the bitmap will be maintained regardless of the size of the frame.

If the Clip option is selected together with the Fixed setting, only that portion of
the bitmap that is contained within the frame will be displayed.

If you select the Draw option, the frame will be displayed in the color selected in
the Color and Alarm color buttons in the color dialog boxes. The alarm color

7-32 907 AC 1131/Stand: 02/03Visualization10

will only be used if the variable in the Change Color field in the Variable
category is TRUE.

In the selection list in the lower part of the dialog you can define whether the
bitmap should be inserted in the project (Insert) or whether just a link to an
external bitmap-file (path as entered above in the 'Bitmap' field) should be
created (Link to file). It is reasonable to keep the bitmap file in the project
directory, because then you can enter a relative path. Otherwise you would
enter an absolute path and this might cause problems in case you want to
transfer the project to another working environment.

Image 7.18: Visualization Element Configuration Dialog Box (Bitmap Category)

Visualization

You can enter the options for a visualization as an element in another
visualization in the Visualization category within the visualization element
configuration dialog box. Enter the object name for the visualization in the
Visualization field. Use the ... button to open a dialog box containing the
visualizations available in this project. Any visualization may be used with the
exception of the current one.

All other entries affect the visualization frame.

If you select the Draw option, the frame will be displayed in the color selected in
the Color and Alarm color buttons in the color dialog boxes. The alarm color
will only be used if the variable in the Change Color field in the Variables
category is TRUE.

If Isotropic is selected, the proportions of the visualization will be maintained
even if the size changes (i.e., the relationship between height and width will
remain the same). Otherwise the proportions can be changed.

If the Clip option is selected in Online mode, only the original portion of the
visualization will be displayed. For example, if an object extends beyond the
original display area, it will be clipped and may disappear from view completely
in the visualization.

7-33907 AC 1131/Stand: 03.99 Visualization 10

Image 7.19: Visualization Element Configuration Dialog Box (Visualization Category)

The Placeholder button leads to the 'Replace placeholder' dialog. It lists in the
'Placeholder' column all the placeholders used in the inserted visualization POU
and offers in the 'Replacements' column the possibility of replacing these with a
definite value. Which replacements are possible in a given case depends on
whether a value group was predefined in the 'Extras' 'Placeholder list' dialog. If
this is the case, it will be displayed in a combo box for selection. If nothing was
pre-defined, double clicking on the corresponding field in the Replacements
column opens an editing field which can be filled in as desired.

A further possibility for replacing placeholders in references occurs directly
during the calling of a visualization, by entry into the Zoom to vis. option field in
the 'Input' category of the configuration dialog for a visualization element.

Note: No control of the chronological sequence of replacements is
possible! Therefore no placeholders should be replaced with text that also
contains placeholders!

Note: When using placeholders it is no longer possible to check for invalid
entries in the configuration of the visualization element immediately upon
compilation of the project. Hence the appropriate error messages are first
issued in Online mode (...Invalid Watch expression..).

Example of an application of the placeholder concept:

Instances of a function block can easily be displayed with the help of
references of the same visualization. For example, in configuring the
visualization visu, which visualizes the variables of function block, one
could begin each variable entry with the placeholder FUB (e.g. FUB.a).
If a reference from visu is then used (by inserting visu in another
visualization or by calling via 'Zoom to vis.'), then in the configuration of this

7-34 907 AC 1131/Stand: 02/03Visualization10

reference the placeholder FUB can then be replaced with the name of
the function block instance to be visualized.

This might look like shown in the following:

In the project define a function block containing the following declarations:

FUNCTION_BLOCK fu

VAR_INPUT

changecol : BOOL; (* should cause a color change in the

visualization *`)

END_VAR

In PLC_PRG define two instances of 'fu':

inst1_fu : fu;

inst2_fu : fu;

Create a visualization object 'visu'. Insert an element and open the
configuration dialog, category 'Variables'. Enter in field 'Change color' the
following: "FUB.changecol". Open category 'Input' and enter in field 'Tip
Variable' "FUB.changecol". Open category 'Text' and enter"FUB - change
color ".

Create another visualization object 'visu1'.

Insert visualization 'visu' twice in 'visu1' (two references of 'visu').

Mark the first reference of 'visu' and open the configuration dialog of
category 'Visualization'. Press button 'Placeholder', so that the placeholder
list will be displayed. There replace entry 'FUB' by 'PLC_PRG.inst_1'.

Now mark the second reference of 'visu' and (like described for the first
one) replace 'FUB' by 'PLC_PRG.inst_2'.

Now in online mode the values of the variables which are used to configure
the two instances of 'fu' will be visualized in the corresponding reference of
'visu'.

Of course the placeholder FUB can be used at all places in the
configuration of 'visu' where variables or text strings are entered.

 Attention: Online behaviour of a visualization reference: If you
insert a visualization and then select and configurate this reference, it will be
regarded as a single object and in online mode will react to inputs
correspondingly to its configuration. In contrast: if you do not configurate the
reference, then in online mode its particular visualization elements will react
exactly like those of the original visualization.

7-35907 AC 1131/Stand: 03.99 Visualization 10

7.2.2 Configuration of Visualization Objects

Besides the configuration of the individual visualization elements (see Chapter
7.2.1 also the visualization object ‘on the whole can get configured. This is
possible concerning the settings for frame, language, grid, background etc. as
well as the assignment of special hotkey definitions (keyboard usage), which
should be valid for exactly one visualization object.

‘Extras‘ ‘Settings‘

When this command is used, a dialog box will open in which you can make
certain settings that affect the visualization.

Note: The categories Display, Frame and Language also can be edited in
the online mode.

Image 7.20: Setting dialog for visualizations (Category Display)

Category Display : Enter a zoom factor into the field Zoom of between 10 and
500 % in order to increase or decrease the size of the visualization display.

Category Frame: If Auto-scrolling is selected, the visible portion of the
visualization window will move automatically when you reach the edge while
drawing or moving a visualization element. If Best fit in Online mode is
selected, the entire visualization including all elements will be shown in the
window in Online mode regardless of the size of the window. When Include
Background Bitmap is selected, the background bitmap will be fitted into the
window as well, otherwise only the elements will be considered.

Category Grid: Define here whether the grid points are visible in the offline
mode, whereby the spacing between the visible points is at least 10 even if the
entered size is smaller than that. In this case the grid points only appear with a
spacing which is a multiple of the entered size. Selecting Active causes the
elements to be placed on the snap grid points when they are drawn and moved.
The spacing of the grid points is set in the field Size.

7-36 907 AC 1131/Stand: 02/03Visualization10

Category Language : Here you can specify in which national language the text
that you assigned to an element in the Text and Text for Tooltip options
should be displayed.

Note: The text display changes only in Online mode!

If different languages should be selectable for the display in online mode, either
a *.tlt translation file for the project, or a *.vis language file created especially for
the visualization must exist.

Regarding creating a translation file, please see Chapter 4.3, Managing
projects, or the menu item 'Project' 'Translate into other languages'.

For creating a special *.vis language file for the visualization, see below. This
option is retained for reasons of compatibility with projects created under
Version 2.1.

In order to select a translation or language file, activate the Language file
option in the dialog and enter in the input field next to it the appropriate file path,
or obtain the help of the standard file opening dialog via the button.

In the selection window under Language you can now select among the
options German and English in the example shown here.

Image 7.21: Selection of a language file for a visualization

Creating a *.vis language file:

In order to set up a new *.vis language file for the visualization, proceed as
follows:

Open likewise the Settings Visualization dialog, Language category.

Choose option language file. In the associate input field enter where you want
to store the file. The extension is .vis. You also can use the dialog ‘Open file’ by

7-37907 AC 1131/Stand: 03.99 Visualization 10

pressing the button . If a language file with the extension .vis is already
present, it will be offered to you here.

In the input field next to Language you fill in a keyword for the language which
is currently used in the visualization, i.e.”german” (or “D”). then press the button
Save. A file with the extension .vis will be created, which now can be edited by
a normal text editor. For example you can open the file by NOTEPAD:

Image 7.22: Example of a language file for a visulisation

You get a list of the text variables for the language currently used in the
visualization. It includes a reference to the title of this list, for example
"1=german" as reference to the title [german]. You can extend the list by
copying all lines, then replacing the German by English text and setting a new
title [english]. Beyond the line 1=german you accordingly have to add 2=english.

To view the visualization in one of the prepared languages, open the dialog
Language again. In the option field beyond Language now you can choose
between german and english (for the example described above).

Note: The text display does not change before switching to Online Mode !

Calling up language-dependent Online Help via a visualization element::

The calling of a different Help file with a visualization element can be tied in with
the language currently entered for the visualization. For this purpose, the
command INTERN HELP must be entered for this element in the 'Configure
element' dialog at the location 'Execute program', and a [Visu-Helpfiles] section
must be present in the 907 AC 1131 .ini file. Below this, the corresponding help
files must be assigned to the languages available for selection in the
visualization: e.g.:

[Visu-Helpfiles]
German=C:\PROGRAMME\HELP_D.HLP
English=C:\PROGRAMME\HELP_E.HLP

7-38 907 AC 1131/Stand: 02/03Visualization10

‘Extras‘ ‘Select Background
Bitmap‘

Use this command to open the dialog box for selecting files. Select a file with
the extension "*.bmp". The selected bitmap will then appear as the background
in your visualization.

The bitmap can be removed with the command 'Extras' 'Clear Background
Bitmap'.

‘Extras‘ ‘Clear Background
Bitmap‘

Use this command to remove the bitmap as the background for the current
visualization.

You can use the command 'Extras' 'Select Background Bitmap' to select a
bitmap for the current visualization.

Keyboard usage‘

The use of hotkeys ‘can optimize the pure keyboard operation of a visualization.

In the configuration of a visualization object you can define hotkeys which will
cause actions like visualization elements do. For example you could define that
– if visualization 'xy' is active – in online mode the hotkey <Strg><F2> will stop
the program, which also will happen as soon as element 'z' of visu 'xy' gets an
input (by mouseclick or via touch screen).

Anyway per default the keys <Tabulator> <Space> <Enter> will work in that way
that in online mode each element of a visualization can be selected and
activated.

The dialog 'Keyboard usage: set possible keystrokes' can be called in the menu
'Extras' or in the context menu:

Image 7.23: Dialog 'Keyboard usage: set possible keystrokes'

In column Key a selection list offers the following keys to which an action can
get assigned:

7-39907 AC 1131/Stand: 03.99 Visualization 10

VK_TAB Tab-Key
VK_RETURN Enter-Key
VK_SPACE Space-Key
VK_ESCAPE Esc-Key
VK_INSERT Insert-Key
VK_DELETE Delete-Key
VK_HOME Pos1-Key
VK_END Ende-Key
VK_PRIOR Bild (↑)-Key
VK_NEXT Bild (↓)-Key
VK_LEFT Arrow-Key (←)
VK_RIGHT Arrow-Key (→)
VK_UP Arrow-Key (↑)
VK_DOWN Arrow-Key (↓)
VK_F1-VK_F12 Function keys F1 to F12
0-9 Keys 0 to 9
A-Z Keys A to Z
VK_NUMPAD0 -
VK_NUMPAD9

Keys 0 to 9 of the numeric keypad

VK_MULTIPLY Key* of the numeric keypad
VK_ADD Key+ of the numeric keypad
VK_SUBTRACT Key- of the numeric keypad
VK_DIVIDE Key÷ of the numeric keypad

In the columns Shift and Ctrl you can add the <Shift>- and/or the <Ctrl>-key to
the already chosen key, so that a key combination will result.

In column Action you define what should happen as soon as the key
(combination) will be pressed. Select the desired action from the list and insert
an appropriate expression. See in the following the available actions and valid
expressions, corresponding to those which can be set in the configuration
dialog of category 'Input':

Action Meaning Expression
Toggle Toggle variable Variable, e.g."plc_prg.tvar"
Tap true Tap variable (set to TRUE) Program variable, e.g. "plc_prg.svar"
Tap false Tap variable (set to FALSE) Program variable, e.g. "plc_prg.xvar"
Zoom Zoom to Vis. Name of the visualization object to

which you want to jump, e.g. "Visu1"
Exec Execute program Name of the executable file, e.g.

"notepad C:\help.txt" (Notepad will
start and open the file help.txt)

7-40 907 AC 1131/Stand: 02/03Visualization10

Text Text input of variable 'Text
display'

Number of the element for which the
text input is to be configured, e.g.
"#2" (Display of element numbers
can be switched on in 'Extras'
'Settings'; also see 'Elementlist...')

In column Expresion you must enter – depending on the type of action – either
a variable name, a INTERN command, a visualization name of a text string,
exactly like you would do in the configuration dialog of category 'Input' for the
corresponding visualization element.

Use button Add to add another empty line at the end of the table. Use the
Delete button to remove the line where the cursor is positioned currently. OK
resp. Cancel will save resp. not save the done settings and close the dialog.

The keyboard usage can be configured separately for each visualization object.
Thus the same key (combination) can start different actions in different
visualization.

Example:

The following key configurations have been done for the visualizations
VIS_1 and VIS_2:

VIS_1:

Shift Ctrl Action Key Expression
x Toggle A PLC_PRG.automatic

x Zoom Z VIS_2
VIS_2:

Shift Ctrl Action Key Expression
Exec E INTERN LANGUAGE DEUTSCH

x Zoom Z PLC_VISU
If you now go online and set the focus to VIS_1, then pressing <Shift><A>
will cause that variable PLC_PRG.automatic will be toggled. <Ctrl><Z> will
cause a jump from Visu1 to VIS_2.

If VIS_2 is the active window, pressing key <E> will cause that the
language within the visualizatoin will switch to German. <Ctrl><Z> here will
cause a jump to visualization PLC_VISU.

7.3 Visualization in Online Mode

Regard the following items concerning a visualization in online mode:

• Order of evaluation:
 Dynamically defined – that means by normal project variables or by

structure variables- element properties will overwrite the (fix) base
settings defined by options in the configuration dialogs.

7-41907 AC 1131/Stand: 03.99 Visualization 10

 If an element property is defined by a project variable as well as by the
component of a structure variable , then primarily the value of the project
variable will be regarded.

• A visualization can be configured in that way that in online mode it can be
operated solely by inputs via keyboard. This is an important feature
especially for using the visualization with AC1131HMI, as Target- or as
Web-Visualization.

• The configuration settings for Display, Frame and Language (see Chapter
7.2.1, 'Settings') can also be edited in online mode.

• As long as a visualization reference is not configured explicitely when it is
inserted in another visualization, the particular elements of the reference in
online mode will react on inputs like those of the original visualization
("mother" of the references).

• When you switch the language ('Extras' 'Settings') this will only effect the
display in online mode.A visualization can be printed in online mode.

• A visualization can be printed in online mode.

Operation over the keyboard -
in online mode

In order to get independent from the mouse or a touch screen, it is useful to
configure a visualization in a way that allows pure keyboard operation:

Per default the following key (combinations) will work in online mode anyway
(no special configuration necessary):

Pressing the <Tabulator> key selects the first element in the element list for
which an input is configured. Each subsequent pressing of the key moves one
to the next element in the list. Pressing the key while keeping the <Shift> key
depressed selects the previous element.

The arrow keys can be used to change from a selected element to a
neighbouring one in any direction.

The <Space bar> is used to execute an activity on the selected visualization
element. If the element is one which has a text output variable, a text input field
will be opened which displays the text contents of the variable. Pressing the
<Enter> key writes in this value.

Additional key (combinations) for the online operation can be defined in the
configuration dialog 'Keyboard usage'. There also the keys <Tab>, <Space>
and <Enter> can get assigned another functions than the above described
standards.

The individual elements of references behave in Online mode identically to the
corresponding ones in the visualization that is referenced. They will therefore
react the same way as individual elements to inputs and operation by mouse
and keyboard; the display of tooltips in references is also element-dependent.
When processing the element list, as for instance when jumping from one input
element to the next using the tabulator, the processing of all individual elements

7-42 907 AC 1131/Stand: 02/03Visualization10

of a reference proceeds from the location of the reference in the element list
before jumping to the next element of the list.

Note: Operation over the keyboard in online mode is of greatest
significance for the operation version of 907 AC 1131!

'File‘ 'Print' in online mode

‘File‘ ‘Print is used to print out the contents of the visualization window in online
mode. Visualizations which stretch over the border of the window can lead to
inconsistencies particularly when there are moving elements in the visualization.

7.4 Visualizations in libraries

Visualizations can also be stored in libraries and thus be made available to
projects as library POUs. They can be inserted as references like the
visualizations directly present in the project, or they can be called up via the
command „Zoom to vis.“ in the input configuration of another visualization.

Note: Visualizations used in a project must have unique names. It can be
problematic if for instance a visualization from a library is called or referenced
which has the same name as one present in the project. Because, in processing
references or visualization calls in the program, first the visualizations in the
project, and only thereafter the ones in the loaded libraries will be implemented.

8-1907 AC 1131/Stand: 03.99 DDE Communication 10

8 DDE Communication

DDE Communication with
907 AC 1131

907 AC 1131 has a DDE (dynamic data exchange) interface for reading data.
907 AC 1131 uses this interface to provide other applications that also use a
DDE Interface with the contents of control variables and IEC addresses

If the GatewayDDEServer is used, which works with symbols, 907 AC 1131 is
not needed to read variables values from the PLC and to transfer them to
applications with an DDE interface.

Attention: Direct addresses cannot be read over the DDE server ! For this case
you have to define variables in 907 AC 1131 which are assigned to the desired
addresses (AT).

8.1 DDE interface of the 907 AC 1131 programming system

Activating the DDE Interface

The DDE interface becomes active as soon as the PLC (or the simulation) is
logged in.

General Approach to Data

A DDE inquiry can be divided into three parts:
1. Name of the program (here: AC1131),
2. File name and
3. Variable name to be read.

Name of the program: AC1131

File name: complete project path (c:\example\example.pro).

Variable name: The name of a variable as it appears in the Watch and Receipt
Manager .

Which variables can be read?

All addresses and variables are readable. Variables or addresses should be
entered in the format used in the Watch and Receipt Manager

Examples:

%IX1.4.1 (* Reads the input 1.4.1*)

PLC_PRG.TEST (* Reads the variable TEST from the POU PLC_PRG*)

.GlobVar1 (* Reads the global variable GlobVar1 *)

8-2 907 AC 1131/Stand: 02/03DDE Communication10

Linking variables using WORD

In order to get the current value of the variable TEST from the POU PLC_PRG
through the DDE interface in Microsoft WORD, a field (e.g., the date) must be
inserted in WORD ('Insert' "Field"). Now when you click on the field with the
right mouse button and select the command "Toggle Field Codes" you can
change the field function for the chosen text. In our example, this would look as
follows:

{ DDEAUTO 907 AC 1131"C:\907 AC 1131\PROJECT\IFMBSP.PRO"
"PLC_PRG.TEST" }

Click on the field with the right mouse button again, then click on "Update Field"
and the desired variable content appears in the text.

Linking variables using EXCEL

The following must be entered in Microsoft EXCEL before you can assign a
variable to a cell.

=AC1131|'C:\AC1131\PROJECT\IFMBSP.PRO'!PLC_PRG.TEST'
When you click on 'Edit' then "Links", the result for this link will be:

Type: AC1131
Source file: C:\AC1131\PROJECT\IFMBSP.PRO
Element: PLC_PRG.TEST

Accessing variables with
Intouch

Link with your project a DDE Access Name <AccessName> with the application
name 907 AC 1131 and the DDE topic name
C:\AC1131\PROJECT\IFMBSP.PRO.

Now you can associate DDE type variables with the access name
<AccessName>. Enter the name of the variable as the Item Name (e.g.,
PLC_PRG.TEST).

8.2 DDE communcation with the GatewayDDE Server

Handling of the GatewayDDE
Server

The GatewayDDE Server can use the symbols which are created in
907 AC 1131 for a project to communciate with other clients or the PLC. (see
'Project' 'Options' 'Symbolconfiguration'). It can serve the DDE interfaces of
applications like e.g. Excel. This allows to transmit the variables values of the
PLC to an applications, e.g. for the purpose of monitoring.

At start of the GatewayDDE Server a window opens, where the configuration of
start and communication parameters can be done. A already existing
configuration file can be called or the parameters can be set newly.

8-3907 AC 1131/Stand: 03.99 DDE Communication 10

Image 8.1: :Starting Window of the GatewayDDE Server

Using the command 'File' 'Open' you can call an already existing file which
stores a set of configuration parameters. The standard dialog for selecting a file
will open and available files with the extension “.cfg” will be offered. If a
configuration file is selected, the configuration parameters and the defined
target device are displayed

If the option 'File' 'Autoload' is activated, the GatewayDDE Server
automatically opens with that configuration, which was active before the last
terminating of the server.

If the server is started without any predefined configuration and without the
setting Autoload, then in the configuration window 'Gateway:' and 'Device:' are
displayed. Then you have to set up a new configuration.

The command 'File' 'Settings' opens the dialog 'Server settings', in which the
following parameters can be set:

Image 8.2: Dialog for configuring the GatewayDDE Server

To set up the connection to the Gateway, the dialog 'Communication
Parameters' is opened by the command 'Online' 'Parameters'. It is the same
dialog as you get in 907 AC 1131 with the command 'Online' ''Communication
Parameters'. The settings you do here must be the same as in the
corresponding 907 AC 1131 Project.

8-4 907 AC 1131/Stand: 02/03DDE Communication10

The actual configuraiton of the GatewayDDE Server can be stored in a file by
the command 'File' 'Save'. The standard dialog for saving a file will open,
default for the extension of the file is *.cfg.

To get the gateway in active mode, login by the command 'Online' 'Login'.
(The gateway symbol in the status bar will get lightened then.) At login the
desired connection will be built up and the available symbols can be accessed..
These must have been created before in the AC1131-Project !

To log out use the command 'Online' Logout'.

General Approach to Data

A DDE inquiry can be divided into three parts:
1. Name of the program (here: AC1131),
2. File name and
3. Variable name to be read.

Name of the program: AC1131

File name: complete project path (c:\example\example.pro).

Variable name: The name of a variable as it appears in the Watch and Receipt
Manager .

Which variables can be read?

All addresses and variables are readable. Variables or addresses should be
entered in the format used in the Watch and Receipt Manager

Examples:

%IX1.4.1 (* Reads the input 1.4.1*)

PLC_PRG.TEST (* Reads the variable TEST from the POU PLC_PRG*)

.GlobVar1 (* Reads the global variable GlobVar1 *)

Linking variables using WORD

Start the GatewayDDEServer before activating the inquiry in WORD.

In order to get the current value of the variable TEST from the POU PLC_PRG
through the DDE interface in Microsoft WORD, a field (e.g., the date) must be
inserted in WORD ('Insert' "Field"). Now when you click on the field with the
right mouse button and select the command "Toggle Field Codes" you can
change the field function for the chosen text. In our example, this would look as
follows:

{ DDEAUTO GATEWAYDDESERVER "BSP.PRO" "PLC_PRG.TEST" }
Click on the field with the right mouse button again, then click on "Update Field"
and the desired variable content appears in the text.

8-5907 AC 1131/Stand: 03.99 DDE Communication 10

Linking variables using EXCEL

Start the GatewayDDEServer before activating the inquiry in EXCEL.

The following must be entered in Microsoft EXCEL before you can assign a
variable to a cell.

=GATEWAYDDESERVER|<Dateiname>!<Variablenname>
Beispiel:
=GATEWAYDDESERVER|'bsp.pro'!'PLC_PRG.TEST'

When you click on 'Edit' then "Links", the result for this link will be:
Type: AC1131
Source file: C:\AC1131\PROJECT\IFMBSP.PRO
Element: PLC_PRG.TEST
{ DDEAUTO GATEWAYDDESERVER "BSP.PRO" "PLC_PRG.TEST" }

Command line options for the
GatewayDDEServer

If the GatewayDDE Server is started by a command line, the following options
can be attached:

/n The info dialog does not appear
automatically at starting

/s Display of the dialog window /s=h
/s=i
/s=m
/s=n

No
minimized (icon)
maximized
normal

/c Configuration file to be load
automatically l

/c=<config-file>

/o Go online with the selected
configuration (autoload or defined
by "/c=")

Example:

Command line:

GATEWAYDDE /s=i /c="D:\DDE\conf_1.cfg"

The GatewayDDE Server will be started, the dialog window will appear as an
icon, the configuration which is stored in the file conf_1.cfg will be loaded.

8-6 907 AC 1131/Stand: 02/03DDE Communication10

9-1907 AC 1131/Stand: 03.99 ENI 10

9 The 907 AC 1131 ENI Interface

9.1 What is ENI

The ENI ('Engineering Interface') allows to connect the 907 AC 1131
programming system to an external data base. There the data which are
needed during creation of an automation project can be stored. The usage of an
external data base guarantees the consistency of the data, which then can be
shared by several users, projects and programs. Also it extends the
907 AC 1131 functionality by making possible the following items:

• Revision control for 907 AC 1131 projects and associated resources
(shared objects): If a object has been checked out from the data base,
modified and checked in again, then in the data base a new version of the
object will be created, but the older versions will be kept also and can be
called again on demand. For each object and for a whole project the version
history will be logged. Two versions can be checked for differences.

• Multi-User Operation: The latest version of a sample of objects, e.g. of
POUs of a project, can be made accessible for a group of users. Then the
objects which are currently checked out by one of the users will be marked
as "in the works" and not editable by the other users. Thus several users
can work in parallel on the same project without risking to overwrite versions
mutually.

• Access by external tools: Besides the 907 AC 1131 programming system
also other tools, which have an ENI too, can access the common data base.
These might be e.g. external visualizations, ECAD systems etc., which need
the data created in 907 AC 1131 or which also produce data which are
needed by other programs.

The ENI is composed of a client and a server part. So it is possible to hold the
data base on a remote computer, which is required for multi-user operation. The
907 AC 1131 programming system is a client of the independent ENI Server
Process as well as another application, which needs access to the data base
(Please see the separate documentation on the ENI Server).

Currently the ENI supports the data base systems 'Visual SourceSafe 5.0',
'Visual SourceSafe 6.0', 'MKS Source Intergrity' and a local file system. Objects
can be stored there in different 'folders' (data base categories with different
access properties, see Chapter 9.4). The objects can be checked out for editing
and thereby will get locked for other users. The latest version of an object can
be called from the data base. Furtheron in parallel you can store any objects
just locally in the project as usual for projects without source control.

9-2 907 AC 1131/Stand: 02/03ENI10

9.2 Preconditions for Working with an ENI project data base

If you want to use the ENI in the 907 AC 1131 programming system in order to
manage the project objects in an external data base, the below mentioned
preconditions must be fulfilled:

 Please regard: For a guide concerning installation and usage of the ENI
Server provided by 3S – Smart Software Solutions GmbH please see the
separate server documentation resp. online help. There you will also find a
quickstart guide.
Also consider the possibility of using the ENI Explorer which allows to perform
data base actions independently from the currently used data base system.

• the communication between 907 AC 1131 and the ENI Server requires
TCP/IP, because the ENI Server uses the HTTP-Protokoll.

• an ENI Server (ENI Server Suite)) must be installed and started locally or on
a remote computer. A license is required to run it with the standard
database drivers which are installed with the server. Just the driver for a
local file system can be used with a non-licensed ENI Server version.

• in the ENI Server administration tool (ENI Admin) the following must be
configured:
- the user must be registered and have access rights (User Management)
- the access rights concerning the data base folders must be set correctly
(Access Rights)
- Recommendation: the administrator passwort for the access to ENIaAdmin
and ENI Control should be defined immediately after the installation

• in the ENI Server service control tool (ENI Control) the connection to the
desired data base must be configured correctly (Data base). You will
automatically be asked to do this during installation, but you can modify the
settings later in ENI Control.

• a project data base for which an ENI-supported driver is available, must be
installed. It is reasonable to do this on the same computer, where the ENI
Server is running. Alternatively a local file system can be used, for which a
driver will be provided by default.

• in the data base administration possibly the user (Client) as well as the
ENI Server must be registered as valid users with access rights. Anyway
this is required for the 'Visual SourceSafe', if you use another data base
system, please see the corresponding documentation for information on the
user configuration.

• for the current 907 AC 1131 project the ENI interface must be activated
(to be done in the 907 AC 1131 dialog 'Project' 'Options' 'Project data base').

• for the current 907 AC 1131 project the connection to the data base must
be configured correctly; this is to be done in the 907 AC 1131 dialogs
'Project' 'Options' 'Project data base'.

• in the current project the user must log in to the ENI Server with user name
and password; this is to be done in the Login dialog, which can be opened
explicitely by the command 'Project' 'Data Base Link' 'Login' resp. which will

9-3907 AC 1131/Stand: 03.99 ENI 10

be opened automatically in case you try to access the data base without
having logged in before.

(See also the quickstart guide in the document 'ENI Server – Overview and
Quickstart')

9.3 Working with the ENI project data base in 907 AC 1131

The data base commands (Get Latest Version,Check Out, Check In, Version
History, Label Version etc.) which are used for managing the project objects in
the ENI project data base, will be available in the current 907 AC 1131 project
as soon as the connection to the data base has been activated and configured
correctly. See for this Chapter 9.2, Preconditions for Working with an ENI
project data base. The commands then are disposable in the submenu 'Data
Base Link' of the context menu or of the 'Project' menu and refer to the object
which is currently marked in the Object Organizer.

The current assignment of an object to a data base category is shown in the
Object Properties and can be modified there.

The properties of the data base categories (communication parameters, access
rights, check in/check out behaviour) can be modified in the option dialogs of
the project data base ('Project' 'Options' 'Project Source Control').

9.4 Object categories concerning the project data base

There are four categories of objects of a 907 AC 1131 project concerning the
project source control:

The ENI distinguishes three categories ("ENI object categories") of objects
which are managed in the project data base: Project objects, Shared objects,
Compile files.

If an object should not be stored in the data base, it will be assigned to category
'Local', which means that it will be handled as it is known for projects without
any source control.
Thus in the programming system a 907 AC 1131 object can be assigned to one
of the categories 'Project objects', 'Shared objects' or 'Local'; the 'Compile files'
do not yet exist as objects within the project. Assigning an object to one of the
categories is done automatically when the object is created, because this is
defined in the project options dialog 'Project source control' (see Chapter 4.2,
but it can be modified anytime in the 'Object Properties' dialog.

Each ENI object category will be configured separately in the settings for the
'Project source control' which are part of the project options ('Project' 'Options').
That means that each category gets defined own parameters for the
communication with the data base (directory, port, access right, user access
data etc.) and concerning the behaviour at calling the latest version, checking
out and checking in. These settings then will be valid for all objects belonging to

9-4 907 AC 1131/Stand: 02/03ENI10

the category. As a result you will have to log in to each data base category
separately; this will be done via the 'Login' dialog.

It is advisable to create a separate folder for each object category in the data
base, but it is also possible to store all objects in the same folder. (The
'category' is a property of an object, not of a folder.)

See in the following the three ENI object categories:

Project Objects: Objects which contain project specific source information,
e.g. POUs which are shared in a multi-user operation. The
command 'Get all latest versions' automatically will call all
objects of this category from the data base to the local
project; even those, which have not been there so far.

Shared Objects: Objects which are not project specific, e.g. POU libraries
which normally are used in several projects.
Attention: The command 'Get all Latest Versions' only will
copy those objects of this category from the project folder to
the local project, which are already part of the project !

Compile files: Compile information (e.g. symbol files) which is created by
907 AC 1131 for the current project and which may be
needed by other programs too.
Example: An external visualization may need not only the
project variables, but also the assigned addresses. The
latter will not be known until the project is compiled.

Alternatively any objects of the 907 AC 1131 project can be excluded from the
project source control and can be assigned to category 'Local', which means
that they are just stored with the project as usual for projects without any source
control.

10-1907 AC 1131/Stand: 02/03 Use of Keyboard 10

10 Appendix

Appendix A: Use of Keyboard

If you would like to run 907 AC 1131 using only the keyboard, you will find it
necessary to use a few commands that are not found in the menu.

• The function key <F6> allows you to toggle back and forth within the open
POU between the Declaration and the Instruction parts.

• <Alt>+<F6> allows you to move from an open object to the Object Organizer
and from there to the Message window if it is open. If a Search box is open,
<Alt>+<F6> allows you to switch from Object Organizer to the Search box
and from the there back to the object.

• Press <Tab> to move through the input fields and buttons in the dialog
boxes.

• The arrow keys allow you to move through the register cards and objects
within the Object Organizer and Library Manager.

All other actions can be performed using the menu commands or with the
shortcuts listed after the menu commands. <Shift>+<F10> opens the context
menu which contains the commands most frequently used for the selected
object or for the active editor.

Key Combinations

The following is an overview of all key combinations and function keys:

General Functions

Move between the declaration part and the
instruction part of a POU

<F6>

Move between the Object Organizer, the
object and the message window

<Alt>+<F6>

Context Menu <Shift>+<F10>

Shortcut mode for declarations <Ctrl>+<Enter>

Move from a message in the Message
window back to the original position in the
editor

<Enter>

Open and close multi-layered variables <Enter>

Open and close folders <Enter>

Switch register cards in the Object
Organizer and the Library Manager

<Arrow keys>

10-2 907 AC 1131/Stand: 02/03Use of Keyboard10

Move to the next field within a dialog box <Tab>

Context sensitive Help <F1>

General Commands

‘File’ ‘Save’ <Ctrl>+<S>

‘File’ ‘Print’ <Ctrl>+<P>

‘File’ ‘Exit’ <Alt>+<F4>

‘Project’ ‘Check’ <Strg>+<F11>

‘Project’ ‘Build’ <Umschalt>+<F11>

‘Project’ ‘Rebuild all’ <F11>

‘Project’ ‘Delete Object’

‘Project’ ‘Add Object’ <Ins>

‘Project’ ‘Rename Object’ <Spacebar>

‘Project’ ‘Open Object’ <Enter>

‘Edit’ ‘Undo’ <Ctrl>+<Z>

‘Edit’ ‘Redo’ <Ctrl>+<Y>

‘Edit’ ‘Cut’ <Ctrl>+<X> or <Shift>+

‘Edit’ ‘Copy’ <Ctrl>+<C>

‘Edit’ ‘Paste’ <Ctrl>+<V>

‘Edit’ ‘Delete’

‘Edit’ ‘Find next’ <F3>

‘Edit’ ‘Input Assistant’ <F2>

‘Edit’ ‘Next Error’ <F4>

‘Edit’ ‘Previous Error’ <Shift>+<F4>

‘Online’ ’Log-in’ <Alt><F8>

‘Online’ ’Logout’ <Ctrl>+<F8>

‘Online’ ‘Run’ <F5>

10-3907 AC 1131/Stand: 02/03 Use of Keyboard 10

‘Online’ ‘Toggle Breakpoint’ <F9>

‘Online’ ‘Step over’ <F10>

‘Online’ ‘Step in’ <F8>

‘Online’ ‘Single Cycle’ <Ctrl>+<F5>

‘Online’ ‘Write Values’ <Ctrl>+<F7>

‘Online’ ‘Force Values’ <F7>

‘Online’ ‘Release Force’ <Shift>+<F7>

'Online’ ‘'Write/Force dialog' <Shift>+<F7>

‘Window’ ‘Messages’ <Shift>+<Esc>

FBD Editor Commands

‘Insert’ ‘Network (after)’ <Shift>+<T>

‘Insert’ ‘Assignment’ <Ctrl>+<A>

‘Insert’ ‘Jump’ <Ctrl>+<L>

‘Insert’ ‘Return’ <Ctrl>+<R>

‘Insert’ ‘Operator’ <Ctrl>+<O>

‘Insert’ ‘Function’ <Ctrl>+<F>

‘Insert’ ‘Function Block’ <Ctrl>+

‘Insert’ ‘Input’ <Ctrl>+<U>

‘Extras’ ‘Negate’ <Ctrl>+<N>

‘Extras’ ‘Zoom’ <Alt>+<Enter>

CFC Editor Commands

‘Insert’ ‘POU’ <Ctrl>+

'Insert‘ 'Input‘ <Ctrl>+<E>

‘Insert’ ‘Output’ <Ctrl>+<A>

‘Insert’ ‘Jump‘ <Ctrl>+<G>

‘Insert’ ‘Label‘ <Ctrl>+<L>

10-4 907 AC 1131/Stand: 02/03Use of Keyboard10

‘Insert’ ‘Return’ <Ctrl>+<R>

‘Insert’ ‘Comment’ <Ctrl>+<K>

‘Insert’ ‘POU input’ <Ctrl>+<U>

'Extras' 'Negate' <Ctrl>+<N>

‘Extras’ ‘Set/Reset‘ <Ctrl>+<T>

‘Extras’ ‘Connection’ <Ctrl>+<M>

‘Extras’ ‘EN/ENO‘ <Ctrl>+<O>

'Extras' 'Zoom' <Alt>+<Enter>

LD Editor Commands

‘Insert’ ‘Network (after)’ <Shift>+<T>

‘Insert’ ‘Contact’ <Ctrl>+<O>

‘Insert’ ‘Parallel Contact’ <Ctrl>+<R>

‘Insert’ ‘Function Block’ <Ctrl>+

‘Insert’ ‘Coil’ <Ctrl>+<L>

‘Extras’ ’Paste below’ <Ctrl>+<U>

‘Extras’ ‘Negate’ <Ctrl>+<N>

'Extras' 'Zoom' <Alt>+<Enter>

SFC Editor Commands

‘Insert’ ‘Step-Transition (before)’ <Ctrl>+<T>

‘Insert’ ‘Step-Transition (after)’ <Ctrl>+<E>

‘Insert’ ‘Alternative Branch (right)’ <Ctrl>+<A>

‘Insert’ ‘Parallel Branch (right)’ <Ctrl>+<L>

‘Insert’ ‘Jump’ <Ctrl>+<U>

‘Extras’ ‘Zoom Action/Transition’ <Alt>+<Enter>

Move back to the editor from the SFC
Overview

<Enter>

10-5907 AC 1131/Stand: 02/03 Use of Keyboard 10

Work with the PLC resp. Task
Configuration

Open and close organization elements <Enter>

Place an edit control box around the name <Spacebar>

‘Extras’ ‘Edit Entry’ <Enter>

10-6 907 AC 1131/Stand: 02/03Use of Keyboard10

10-7907 AC 1131/Stand: 02/03 Data types 10

Appendix B: Data Types

Standard Data types

Data types

You can use standard data types and user-defined data types when
programming. Each identifier is assigned to a data type which dictates how
much memory space will be reserved and what type of values it stores.

BOOL

BOOL type variables may be given the values TRUE and FALSE. 8 bits of
memory space will be reserved.

(see also Appendix D: Operands in 907 AC 1131, BOOL constants)

Integer Data Types

BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, and UDINT are all
integer data types

Each of the different number types covers a different range of values. The
following range limitations apply to the integer data types:

Type Lower limit Upper limit Memory
space

BYTE 0 255 8 Bit

WORD 0 65535 16 Bit

DWORD 0 4294967295 32 Bit

SINT: -128 127 8 Bit

USINT: 0 255 8 Bit

INT: -32768 32767 16 Bit

UINT: 0 65535 16 Bit

DINT: -2147483648 2147483647 32 Bit

UDINT: 0 4294967295 32 Bit

As a result when larger types are converted to smaller types, information may
be lost.

see also Appendix D: Operands in 907 AC 1131, Number constants

10-8 907 AC 1131/Stand: 02/03Data types10

REAL / LREAL

REAL and LREAL are so-called floating-point types. They are required to
represent rational numbers. 32 bits of memory space is reserved for REAL and
64 bits for LREAL.

see also Appendix D: Operands in 907 AC 1131, REAL-/LREAL constants

STRING

A STRING type variable can contain any string of characters. The size entry in
the declaration determines how much memory space should be reserved for the
variable. It refers to the number of characters in the string and can be placed in
parentheses or square brackets. If no size specification is given, the default size
of 80 characters will be used.

Example of a String Declaration with 35 characters:
str:STRING(35):='This is a String';

see also Appendix D: Operands in 907 AC 1131, STRING constants

Time Data Types

The data types TIME, TIME_OF_DAY (abb. TOD), DATE and
DATE_AND_TIME (abb. DT) are handled internally like DWORD.

Time is given in milliseconds in TIME and TOD, time in TOD begins at 12:00
A.M.

Time is given in seconds in DATE and DT beginning with January 1, 1970 at
12:00 A.M.

The time data formats used to assign values are described in Appendix D:
Operands in 907 AC 1131, TIME-/DATE-/TIME_OF_DAY/DATE_AND_TIME
constants.

Defined Data Types

ARRAY

One-, two-, and three-dimensional fields (arrays) are supported as elementary
data types. Arrays can be defined both in the declaration part of a POU and in
the global variable lists.

Syntax:
<Field_Name>:ARRAY [<ll1>..<ul1>,<ll2>..<ul2>] OF <elem. Type>.

ll1, ll2, ll3identify the lower limit of the field range; ul1, ul2 and ul3 identify the
upper limit. The range values must be integers.

Example:
Card_game: ARRAY [1..13, 1..4] OF INT;

10-9907 AC 1131/Stand: 02/03 Data types 10

Initializing Arrays:

Example for complete initialization of an array:
arr1 : ARRAY [1..5] OF INT := 1,2,3,4,5;
arr2 : ARRAY [1..2,3..4] OF INT := 1,3(7); (* short for 1,7,7,7 *)
arr3 : ARRAY [1..2,2..3,3..4] OF INT := 2(0),4(4),2,3;

(* short for 0,0,4,4,4,4,2,3 *)
Example of the initialization of an array of a structure:

TYPE STRUCT1
STRUCT
p1:int;
p2:int;
p3:dword;
END_STRUCT

ARRAY[1..3] OF STRUCT1:=
(p1:=1,p2:=10,p3:=4723),(p1:=2,p2:=0,p3:=299),
(p1:=14,p2:=5,p3:=112);

Example of the partial initialization of an Array:
arr1 : ARRAY [1..10] OF INT := 1,2;

Elements to which no value is pre-assigned are initialized with the default initial
value of the basic type. In the example above, the elements anarray[6] to
anarray[10] are therefore initialized with 0.

Array components are accessed in a two-dimensional array using the following
syntax:

<Field_Name>[Index1,Index2]
Example:

Card_game [9,2]

Note: If you define a function in your project with the name CheckBounds,
you can automatically check for out-of-range errors in arrays !

The name of the function is fixed and can only have this designation.

Example for an implementation of the CheckBounds function:

10-10 907 AC 1131/Stand: 02/03Data types10

The sample program shown in the picture below for testing the CheckBounds
function exceeds the bounds of a defined array. The CheckBounds function
allows the value TRUE to be assigned, not to location A[10], but to the still valid
range boundary A[7] above it. With the CheckBounds function, references
outside of array boundaries can thus be corrected.

Pointer

Variable or function block addresses are saved in pointers while a program is
running.

Pointer declarations have the following syntax:
<Identifier>: POINTER TO <Datatype/Functionblock>;

A pointer can point to any data type or function block even to user-defined
types.

The function of the Address Operator ADR is to assign the address of a variable
or function block to the pointer.

A pointer can be dereferenced by adding the content operator "^" after the
pointer identifier.

Example:
pt:POINTER TO INT;
var_int1:INT := 5;
var_int2:INT;

10-11907 AC 1131/Stand: 02/03 Data types 10

pt := ADR(var_int1);
var_int2:= pt^; (* var_int2 is now 5 *)

Enumeration

Enumeration is a user-defined data type that is made up of a number of string
constants. These constants are referred to as enumeration values.

Enumeration values are recognized in all areas of the project even if they were
declared within a POU. It is best to create your enumerations as objects in
the Object Organizer under the register card Data types. They begin with the
keyword TYPE and end with END_TYPE.

Syntax:
TYPE <Identifier>:(<Enum_0> ,<Enum_1>, ...,<Enum_n>);
END_TYPE

A variable of the type <Identifier> can take on one of the enumeration values
and will be initialized with the first one. These values are compatible with whole
numbers which means that you can perform operations with them just as you
would with INT. You can assign a number x to the variable. If the enumeration
values are not initialized, counting will begin with 0. When initializing, make
certain the initial values are increasing. The validity of the number will be
reviewed at the time it is run.

Example:
TYPE TRAFFIC_SIGNAL: (Red, Yellow, Green:=10); (*The initial value for

each of the colors is red 0, yellow 1, green 10 *)
END_TYPE
TRAFFIC_SIGNAL1 : TRAFFIC_SIGNAL;
TRAFFIC_SIGNAL1:=0; (* The value of the traffic signal is red*)
FOR i:= Red TO Green DO

i := i + 1;
END_FOR;

The same enumeration value could not be used twice.

Example:
TRAFFIC_SIGNAL: (red, yellow, green);
COLOR: (blue, white, red);
Error: red may not be used for both TRAFFIC_SIGNAL and COLOR.

Structures

Structures are created as objects in the Object Organizer under the register
card Data types. They begin with the keywords TYPE and STRUCT and end
with END_STRUCT and END_TYPE.

The syntax for structure declarations is as follows:
TYPE <Structurename>:
STRUCT

<Declaration of Variables 1>
.
.

10-12 907 AC 1131/Stand: 02/03Data types10

<Declaration of Variables n>
END_STRUCT
END_TYPE

<Structurename> is a type that is recognized throughout the project and can be
used like a standard data type.

Interlocking structures are allowed. The only restriction is that variables may not
be placed at addresses (the AT declaration is not allowed!).

Example for a structure definition named Polygonline:
TYPE Polygonline:
STRUCT

Start:ARRAY [1..2] OF INT;
Point1:ARRAY [1..2] OF INT;
Point2:ARRAY [1..2] OF INT;
Point3:ARRAY [1..2] OF INT;
Point4:ARRAY [1..2] OF INT;
End:ARRAY [1..2] OF INT;

END_STRUCT
END_TYPE

Example for the initialization of a structure:
Poly_1:polygonline := (Start:=3,3, Point1 =5,2, Point2:=7,3, Point3:=8,5,

Point4:=5,7, End := 3,5);
Initializations with variables are not possible. See an example of the initialization
of an array of a structure under 'Arrays'.

You can gain access to structure components using the following syntax:
<Structure_Name>.<Componentname>

For example, if you have a structure named "Week" that contains a component
named "Monday", you can get to it by doing the following:

Week.Monday

References

You can use the user-defined reference data type to create an alternative name
for a variable, constant or function block.

Create your references as objects in the Object Organizer under the register
card Data types. They begin with the keyword TYPE and end with
END_TYPE.

Syntax:
TYPE <Identifier>: <Assignment term>;
END_TYPE

Example:
TYPE message:STRING[50];
END_TYPE;

10-13907 AC 1131/Stand: 02/03 Data types 10

Subrange types

A subrange type is a type whose range of values is only a subset of that of the
basic type. The declaration can be carried out in the data types register, but a
variable can also be directly declared with a subrange type:

Syntax for the declaration in the 'Data types' register:

TYPE <Name> : <Inttype> (<ug>..<og>) END_TYPE;

<Name> must be a valid IEC identifier,

<Inttype> is one of the data types SINT, USINT, INT, UINT, DINT, UDINT,
BYTE, WORD, DWORD (LINT, ULINT, LWORD).

<ug> Is a constant which must be compatible with the basic type and
which sets the lower boundary of the range types. The lower
boundary itself is included in this range.

<og> Is a constant that must be compatible with the basic type, and sets
the upper boundary of the range types. The upper boundary itself is
included in this basic type.

Example:
TYPE

SubInt : INT (-4095..4095);
END_TYPE

Direct declaration of a variable with a subrange type:
VAR

i : INT (-4095..4095);
ui : UINT (0..10000);

END_VAR
If a constant is assigned to a subrange type (in the declaration or in the
implementation) that does not fall into this range (e.g. 1:=5000), an error
message is issued.

In order to check for observance of range boundaries at runtime, the functions
CheckRangeSigned or CheckRangeUnsigned must be introduced. In these,
boundary violations can be captured by the appropriate method and means
(e.g. the value can be cut out or an error flag can be set.). They are implicitly
called as soon as a variable is written as belonging to a subrange type
constructed from either a signed or an unsigned type.

Example: In the case of a variable belonging to a signed subrange type (like i,
above), the function CheckRangeSigned is called; it could be programmed as
follows to trim a value to the permissible range:

FUNCTION CheckRangeSigned : DINT
VAR_INPUT

value, lower, upper: DINT;
END_VAR

10-14 907 AC 1131/Stand: 02/03Data types10

IF (value < lower) THEN
CheckRangeSigned := lower;

ELSIF(value > upper) THEN
CheckRangeSigned := upper;

ELSE
CheckRangeSigned := value;

END_IF

In calling up the function automatically, the function name CheckRangeSigned
is obligatory, as is the interface specification: return value and three parameters
of type DINT

When called, the function is parameterized as follows:

- value: the value to be assigned to the range type

- lower: the lower boundary of the range

- upper: the upper boundary of the range

- Return value: this is the value that is actually assigned to the range type

An assignment i:=10*y implicitly produces the following in this example:
i := CheckRangeSigned(10*y, -4095, 4095);

Even if y for example has the value 1000, then i still has only the value 4095
after this assignment.

The same applies to the function CheckRangeUnsigned: function name and
interface must be correct.

FUNCTION CheckRangeUnsigned : UDINT
VAR_INPUT

value, lower, upper: UDINT;
END_VAR

Important: If neither of the functions CheckRangeSigned or
CheckRangeUnsigned is present, no type checking of subrange types occurs
during runtime! The variable i could then take on any value between –32768
and 32767 at any time!

Achtung: If neither of the functions CheckRangeSigned or
CheckRangeUnsigned is present like described above, there can result an
endless loop if a subrange type is used in a FOR loop. This will happen when
the range given for the FOR loop is as big or bigger than the range of the
subrange type !

10-15907 AC 1131/Stand: 02/03 Data types 10

Example:
VAR

ui : UINT (0..10000);
END_VAR

FOR ui:=0 TO 10000 DO
...
END_FOR

The FOR loop will never be finished, because ui cannot get bigger than
10000.
Also take care of the definition of the CheckRange functions when you define

the incremental value of a FOR loop !

10-16 907 AC 1131/Stand: 02/03Data types10

10-17907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

Appendix C: IEC Operators and other, norm-extending Functions

907 AC 1131 supports all IEC operators. In contrast with the standard functions
(see Appendix E: Standard Library Elements), these operators are recognized
implicitly throughout the project.

Besides the IEC operators 907 AC 1131 also supports the following
operators which are not prescribed by the standard: INDEXOF and SIZEOF
(see Arithmetic Operators), ADR (see below, Address Operators).

Operators are used like functions in POUs.

In the following the supported operators will be described. The categories:
arithmetic, bitstring, bit-shift, selection, comparison, address, calling, type and
numeric operators.

Arithmetic Operators

ADD

Addition of variables of the types: BYTE, WORD, DWORD, SINT, USINT, INT,
UINT, DINT, UDINT, REAL and LREAL.

Two TIME variables can also be added together resulting in another time
(e.g., t#45s + t#50s = t#1m35s)

Example in IL:

 LD 7

 ADD 2,4,7

 ST Var 1

Example in ST:
var1 := 7+2+4+7;

Example in FBD:

MUL

Multiplication of variables of the types: BYTE, WORD, DWORD, SINT, USINT,
INT, UINT, DINT, UDINT, REAL and LREAL.

Example in IL:

 LD 7
 MUL 2,4,7
 ST Var 1

10-18 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

Example in ST:
var1 := 7*2*4*7;

Example in FBD:

SUB

Subtraction of one variable from another of the types: BYTE, WORD, DWORD,
SINT, USINT, INT, UINT, DINT, UDINT, REAL and LREAL.

A TIME variable may also be subtracted from another TIME variable resulting in
third TIME type variable. Note that negative TIME values are undefined.

Example in IL:

 LD 7
 SUB 8
 ST Var 1

Example in ST:
var1 := 7-2;

Example in FBD:

DIV

Division of one variable by another of the types: BYTE, WORD, DWORD, SINT,
USINT, INT, UINT, DINT, UDINT, REAL and LREAL.

Example in IL:

 LD 8
 DIV 2
 ST Var 1 (* Result is 4 *)

Example in ST:
var1 := 8/2;

Example in FBD:

Note: If you define functions in your project with the names CheckDivByte,
CheckDivWord, CheckDivDWord and CheckDivReal, you can use them to
check the value of the divisor if you use the operator DIV, for example to avoid
a division by 0. The functions must have the above listed names. See in the
following an example for the implementation of function CheckDivReal:

10-19907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

Operator DIV uses the output of function CheckDivReal as divisor. In a program
like shown in the following example this avoids a division by 0, the divisor (d) is
set from 0 to 1. So the result of the division is 799.

MOD

Modulo Division of one variable by another of the types: BYTE, WORD,
DWORD, SINT, USINT, INT, UINT, DINT, UDINT. The result of this function will
be the remainder of the division. This result will be a whole number.

Example in IL:

 LD 9
 MOD 2
 ST Var 1 (* Result is 1 *)

Example in ST:
var1 := 9 MOD 2;

Example in FBD:

10-20 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

MOVE

Assignment of a variable to another variable of an appropriate type. As MOVE
is available as a box in the graphic editors FBD, LD, CFC, there the (unlocking)
EN/EN0 functionality can also be applied on a variable assignment.

Example in CFC in conjunction with the EN/EN0 function:

Only if en_i is TRUE, var1 will be assigned to var2.

Example in IL:

LD ivar1
MOVE ivar2
ST ivar2 (* result: var2 gets value of var1 *)

(! you get the same result with:

LD ivar1
ST ivar2)

Example in ST:
ivar2 := MOVE(ivar1);
(! you get the same result with: ivar2 := ivar1;)

INDEXOF

This function is not prescribed by the standard IEC61131-3.

Perform this function to find the internal index for a POU.

Example in ST:
var1 := INDEXOF(POU2);

SIZEOF

This function is not prescribed by the standard IEC61131-3.

Perform this function to determine the number of bytes required by the given
data type.

Example in IL:
arr1:ARRAY[0..4] OF INT;
 Var1 INT
 LD arr1
 SIZEOF
 ST Var 1 (* Result is 10 *)

10-21907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

Example in ST:
var1 := SIZEOF(arr1);

Bitstring Operators

AND

Bitwise AND of bit operands. The operands should be of the type BOOL, BYTE,
WORD or DWORD.

Example in IL:

 Var1 BYTE
 LD 2#1001_0011
 AND 2#1000_1010
 ST Var 1 (* Result is 2#1000_0010 *)

Example in ST:
var1 := 2#1001_0011 AND 2#1000_1010

Example in FBD:

Note: If you have a program step in the SFC like the following

and if you use 68xxx- or C-code generators, please note the following: The
allocation of the value of the second input variable at the AND operator module
to variable z will not be executed ! This is due to the optmized processing in the
SFC in case of value FALSE at the input variable.

OR

Bitwise OR of bit operands. The operands should be of the type BOOL, BYTE,
WORD or DWORD.

Example in IL:
var1 :BYTE;
LD 2#1001_0011
OR 2#1000_1010
ST var1 (* Result is 2#1001_1011 *)

Example in ST:
Var1 := 2#1001_0011 OR 2#1000_1010

10-22 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

Example in FBD:

Note: If you have a program step in the SFC like the following

and if you use 68xxx- or C-code generators, please note the following: The
allocation of the value of the second input variable at the AND operator module
to variable z will not be executed ! This is due to the optmized processing in the
SFC in case of value FALSE at the input variable.

XOR

Bitwise XOR of bit operands. The operands should be of the type BOOL, BYTE,
WORD or DWORD.

Note: Regard the behaviour of the XOR function in extended form, that
means if there are more than 2 inputs. The inputs will be checked in pairs and
the particular results will then be compared again in pairs (this complies with the
standard, but may not be expected by the user).

Example in IL:
Var1 :BYTE;
LD 2#1001_0011
XOR 2#1000_1010
ST Var1 (* Result is 2#0001_1001 *)

Example in ST:
Var1 := 2#1001_0011 XOR 2#1000_1010

Example in FBD:

NOT

Bitwise NOT of a bit operand. The operand should be of the type BOOL, BYTE,
WORD or DWORD.

10-23907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

Example in IL:
Var1 :BYTE;
LD 2#1001_0011
NOT
ST Var1 (* Result is 2#0110_1100 *)

Example in ST:
Var1 := NOT 2#1001_0011

Example in FBD:

Bit-Shift Operators

SHL

Bitwise left-shift of an operand : erg:= SHL (in, n)

in will be shifted by n bits to the left. From the right side it will be filled up with
zeros.

Note: Please note, that the amount of bits, which is regarded for the
arithmetic operation, is pretended by the data type of the input variable !. If the
input variable is a constant the smallest possible data type is regarded. The
data type of the output variable has no effect at all on the arithmetic operation.

See in the following example in hexadecimal notation that you get different
results for erg_byte and erg_word depending on the data type of the input
variable (BYTE or WORD), although the values of the input variables in_byte
and in_word are the same.

Example in ST:

10-24 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

Example in FBD:

Example in IL:

 LD 16#45
 SHL 2
 ST erg_byte

SHR

Bitwise right-shift of an operand: erg:= SHR (in, n)

in will be shifted to the right by n bits. If an signed data type is used, then an
arithmetic shift will be done, that means that from the left it will be filled up with
'0' or with '1', depending on which value the uppermost bit of in has. For BYTE,
WORD and DWORD it will be filled up with zeros.

Note: Please note, that the amount of bits, which is regarded for the
arithmetic operation, is pretended by the data type of the input variable !. If the
input variable is a constant the smallest possible data type is regarded. The
data type of the output variable has no effect at all on the arithmetic operation.

See the following example in hexadecimal notation to notice the results of the
arithmetic operation depending on the type of the input variable (BYTE or
WORD).

Example in ST:

10-25907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

Example in FBD:

Example in IL:

 LD 16#45
 SHL 2
 ST erg_byte

ROL

Bitwise rotation of an operand to the left: erg:= ROL (in, n)

erg, in and n should be of the type BYTE, WORD or DWORD. in will be shifted
one bit position to the left n times while the bit that is furthest to the left will be
reinserted from the right.

Note: Please note, that the amount of bits, which is regarded for the
arithmetic operation, is pretended by the data type of the input variable !. If the
input variable is a constant the smallest possible data type is regarded. The
data type of the output variable has no effect at all on the arithmetic operation.

See in the following example in hexadecimal notation that you get different
results for erg_byte and erg_word depending on the data type of the input
variable (BYTE or WORD), although the values of the input variables in_byte
and in_word are the same.

Example in ST:

10-26 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

Example in FBD:

Example in IL:

 LD 16#45
 SHL 2
 ST erg_byte

ROR

Bitwise rotation of an operand to the right: erg = ROR (in, n)

erg, in and n should be of the type BYTE, WORD or DWORD. in will be shifted
one bit position to the right n times while the bit that is furthest to the left will be
reinserted from the left.

Note: Please note, that the amount of bits, which is regarded for the
arithmetic operation, is pretended by the data type of the input variable !. If the
input variable is a constant the smallest possible data type is regarded. The
data type of the output variable has no effect at all on the arithmetic operation.

See in the following example in hexadecimal notation that you get different
results for erg_byte and erg_word depending on the data type of the input
variable (BYTE or WORD), although the values of the input variables in_byte
and in_word are the same.

Example in ST:

Example in FBD:

Example in IL:

10-27907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

 LD 16#45
 SHL 2
 ST erg_byte

Selection Operators

All selection operations can also be performed with variables. For purposes of
clarity we will limit our examples to the following which use constants as
operators.

SEL

Binary Selection.
OUT := SEL(G, IN0, IN1) means:
OUT := IN0 if G=FALSE;
OUT := IN1 if G=TRUE.

IN0, IN1 and OUT can be any type of variable, G must be BOOL. The result of
the selection is IN0 if G is FALSE, IN1 if G is TRUE.

Note: In order to optimize the operating time an expression occurring
ahead of IN0 only will be processed if G is FALSE. An expression occurring
ahead of IN1 only will be processed if G is TRUE.

In contrast in simulation mode all branches will be processed.

Example in IL:

 LD TRUE
 SEL 3,4
 ST Var1 (* Result ist 4 *)

 LD FALSE
 SEL 3,4
 ST Var1 (* Result ist 3 *)

Example in ST:
Var1:=SEL(TRUE,3,4); (* Result is 4 *)

Example in FBD:

MAX

Maximum function. Returns the greater of the two values.
OUT := MAX(IN0, IN1)

IN0, IN1 and OUT can be any type of variable.

10-28 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

Example in IL:

 LD 90
 MAX 30
 MAX 40
 MAX 77
 ST Var1 (* Result is 90 *)

Example in ST:
Var1:=MAX(30,40); (* Result is 40 *)
Var1:=MAX(40,MAX(90,30)); (* Result is 90 *)

Example in FBD:

MIN

Minimum function. Returns the lesser of the two values.
OUT := MIN(IN0, IN1)

IN0, IN1 and OUT can be any type of variable.

Example in IL:

 LD 90
 MIN 30
 MIN 40
 MIN 77
 ST Var 1 (* Result is 30 *)

Example in ST:
Var1:=MIN(90,30); (* Result is 30 *);
Var1:=MIN(MIN(90,30),40); (* Result is 30 *);

Example in FBD:

LIMIT

Limiting
OUT := LIMIT(Min, IN, Max) means:
OUT := MIN (MAX (IN, Min), Max)

Max is the upper and Min the lower limit for the result. Should the value IN
exceed the upper limit Max, LIMIT will return Max. Should IN fall below Min, the
result will be Min.

IN and OUT can be any type of variable.

Example in IL:

10-29907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

 LD 90
 LIMIT 30,80
 ST Var 1 (*Result is 80 *)

Example in ST:
Var1:=LIMIT(30,90,80); (* Result is 80 *);

MUX

Multiplexer
OUT := MUX(K, IN0,...,INn) means:
OUT := INK.

IN0, ...,INn and OUT can be any type of variable. K must be BYTE, WORD,
DWORD, SINT, USINT, INT, UINT, DINT or UDINT. MUX selects the Kth value
from among a group of values.

Note: In order to optimize the operation time, only the expression occuring
ahead of INK will be processed!

In contrast in simulation mode all expressions will be processed.

Example in IL:

 LD 0
 MUX 30,40,50,60,70,80
 ST Var 1 (*Result is 30 *)

Example in ST:
Var1:=MUX(0,30,40,50,60,70,80); (* Result is 30 *);

Note: Note that an expression occurring ahead of an input other than INK
will not be processed to save run time ! Only in simulation mode all expressions
will be executed.

Comparison Operators

GT

Greater than

A Boolean operator which returns the value TRUE when the value of the first
operand is greater than that of the second. The operands can be BOOL, BYTE,
WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL,
TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and STRING.

10-30 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

Example in IL:

 LD 20
 GT 30
 ST Var 1 (* Result is FALSE *)

Example in ST:
VAR1 := 20 > 30 > 40 > 50 > 60 > 70;

Example in FBD:

LT

Less than

A Boolean operator that returns the value TRUE when the value of the first
operand is less than that of the second. The operands can be BOOL, BYTE,
WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL,
TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and STRING.

Example in IL:

 LD 20
 LT 30
 ST Var 1 (* Result is TRUE *)

Example in ST:
VAR1 := 20 < 30;

Example in FBD:

LE

Less than or equal to

A Boolean operator that returns the value TRUE when the value of the first
operand is less than or equal to that of the second. The operands can be
BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and STRING.

Example in IL:

 LD 20
 LE 30
 ST Var 1 (* Result is TRUE *)

10-31907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

Example in ST:
VAR1 := 20 <= 30;

Example in FBD

GE

Greater than or equal to

A Boolean operator that returns the value TRUE when the value of the first
operand is greater than or equal to that of the second. The operands can be
BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and STRING.

Example in IL:

 LD 60
 GE 40
 ST Var 1 (* Result is TRUE *)

Example in ST:
VAR1 := 60 >= 40;

Example in FBD:

EQ

Equal to

A Boolean operator that returns the value TRUE when the operands are equal.
The operands can be BOOL, BYTE, WORD, DWORD, SINT, USINT, INT,
UINT, DINT, UDINT, REAL, LREAL, TIME, DATE, TIME_OF_DAY,
DATE_AND_TIME and STRING.

Example in IL:

 LD 40
 EQ 40
 ST Var 1 (* Result is TRUE *)

Example in ST:
VAR1 := 40 = 40;

Example in FBD:

10-32 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

NE

Not equal to

A Boolean operator that returns that value TRUE when the operands are not
equal. The operands can be BOOL, BYTE, WORD, DWORD, SINT, USINT,
INT, UINT, DINT, UDINT, REAL, LREAL, TIME, DATE, TIME_OF_DAY,
DATE_AND_TIME and STRING.

Example in IL:

 LD 40
 NE 40
 ST Var 1 (* Result is FALSE *)

Example in ST:
VAR1 := 40 <> 40;

Example in FBD:

Address Operators

ADR

Address Function, not prescribed by the standard IEC61131-3.

ADR returns the address of its argument in a DWORD. This address can be
sent to manufacturing functions to be treated as a pointer or it can be assigned
to a pointer within the project.

dwVar:=ADR(bVAR);

Example in IL:

 LD Var 1
 ADR
 ST Var 2
 man_fun1

See also the description of 'System technology of the Central Units'.

Additionally the bit offset within the memory segment can be returned.

Example in ST:

VAR
var1 AT %IX2.3:BOOL;
bitoffset: DWORD;

END_VAR

bitoffset:=BITADR(var1); (* Result if byte addressing=TRUE: 19, if byte
addressing=FALSE: 35 *)

10-33907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

Content Operator

A pointer can be dereferenced by adding the content operator "^" after the
pointer identifier.

Example in ST:
pt:POINTER TO INT;
var_int1:INT;
var_int2:INT;
pt := ADR(var_int1);
var_int2:=pt^;

Calling Operator

CAL

Calling a function block or a program

Use CAL in IL to call up a function block instance. The variables that will serve
as the input variables are placed in parentheses right after the name of the
function block instance.

Example: Calling up the instance Inst from a function block where input
variables Par1 and Par2 are 0 and TRUE respectively.

CAL INST(PAR1 := 0, PAR2 := TRUE)

Type Conversion Functions

Its is forbidden to implicitly convert from a ”larger” type to a ”smaller” type (for
example from INT to BYTE or from DINT to WORD). Special type conversions
are required if one wants to do this. One can basically convert from any
elementary type to any other elementary type.

Syntax:
<elem.Typ1>_TO_<elem.Typ2>

Please regard that at ...TO_STRING conversions the string is generated left-
justified. If it is defined to short, it will be cut from the right side.

BOOL_TO Conversions

Conversion from type BOOL to any other type:

For number types the result is 1, when the operand is TRUE, and 0, when the
operand is FALSE.

For the STRING type the result is ‚TRUE‘ or ‚FALSE‘.

Examples in AWL:

10-34 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

 LD TRUE
BOOL_TO_INT
ST i

 (*Result is 1 *)

 LD TRUE
BOOL_TO_STRING
ST str

 (*Result is 'TRUE' *)

 LD TRUE
BOOL_TO_TIME
ST t

 (*Result is T#1ms *)

 LD TRUE
BOOL_TO_TOD
ST

 (*Result is TOD#00:00:00.001 *)

 LD FALSE
BOOL_TO_DATE
ST dat

 (*Result is D#1970-01-01 *)

 LD TRUE
BOOL_TO_DT
ST dandt

 (*Result is DT#1970-01-01-00:00:01 *)

Examples in St:

 i:=BOOL_TO_INT(TRUE); (* Result is 1 *)
 str:=BOOL_TO_STRING(TRUE); (* Result is "TRUE" *)
 t:=BOOL_TO_TIME(TRUE); (* Result is T#1ms *)
 tof:=BOOL_TO_TOD(TRUE); (* Result is TOD#00:00:00.001 *)
 dat:=BOOL_TO_DATE(FALSE); (* Result is D#1970 *)
 dandt:=BOOL_TO_DT(TRUE); (* Result is

 DT#1970-01-01-00:00:01 *)

Examples in FUP:

 (*Result is 1 *)

 (*Result is 'TRUE' *)

 (*Result is T#1ms *)

 (*Result is TOD#00:00:00.001 *)

 (*Result is D#1970-01-01 *)

 (*Result is
DT#1970-01-01-00:00:01 *)

10-35907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

TO_BOOL Conversions

Conversion from another variable type to BOOL:

The result is TRUE when the operand is not equal to 0. The result is FALSE
when the operand is equal to 0.

The result is true for STRING type variables when the operand is "TRUE",
otherwise the result is FALSE.

Examples in AWL:

 LD 213
BYTE_TO_BOOL
ST b

 (*Result is TRUE *)

 LD 0
INT_TO_BOOL
ST b

 (*Result is FALSE *)

 LD T#5ms
TIME_TO_BOOL
ST b

 (*Result is TRUE *)

 LD 'TRUE'
STRING_TO_BOOL
ST b

 (*Result is TRUE *)

Examples in FUP:

 (*Result is TRUE *)

 (*Result is FALSE *)

 (*Result is TRUE *)

 (*Result is TRUE *)

Examples in St:

 b := BYTE_TO_BOOL(2#11010101); (* Result is TRUE *)
 b := INT_TO_BOOL(0); (* Result is FALSE *)
 b := TIME_TO_BOOL(T#5ms); (* Result is TRUE *)
 b := STRING_TO_BOOL('TRUE'); (* Result is TRUE *)

Conversion between Integral
Number Types

Conversion from an integral number type to another number type:

When you perform a type conversion from a larger to a smaller type, you risk
losing some information. If the number you are converting exceeds the range
limit, the first bytes for the number will be ignored.

10-36 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

Example in ST:
si := INT_TO_SINT(4223); (* Result is 127 *)

If you save the integer 4223 (16#107f represented hexadecimally) as a
SINT variable, it will appear as 127 (16#7f represented hexadecimally).

Example in IL:

 LD 2
 INT_TO_REAL
 MUL 3.5

Example in FBD:

REAL_TO-/ LREAL_TO
Conversions

Converting from the variable type REAL or LREAL to a different type:

The value will be rounded up or down to the nearest whole number and
converted into the new variable type. Exceptions to this are the variable types
STRING, BOOL, REAL and LREAL.

Please regard at a conversion to type STRING that the total number of digits is
limited to 16. If the (L)REAL-number has more digits, then the sixteenth will be
rounded. If the length of the STRING is defined to short, it will be cut beginning
from the right end.

When you perform a type conversion from a larger to a smaller type, you risk
losing some information.

Example in ST:
i := REAL_TO_INT(1.5); (* Result is 2 *)
j := REAL_TO_INT(1.4); (* Result is 1 *)
i := REAL_TO_INT(-1.5); (* result is -2 *)
j := REAL_TO_INT(-1.4); (* result is -1 *)

Example in IL:

 LD 2.7
 REAL_TO_INT
 GE %MW8

Example in FBD:

10-37907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

TIME_TO/TIME_OF_DAY
Conversions

Converting from the variable type TIME or TIME_OF_DAY to a different type:

The time will be stored internally in a DWORD in milliseconds (beginning with
12:00 A.M. for the TIME_OF_DAY variable). This value will then be converted.

When you perform a type conversion from a larger to a smaller type, you risk
losing some information

For the STRING type variable, the result is a time constant.

Examples in IL:

 LD T#12ms
TIME_TO_STRING

ST str

 (*Result is 'T#12ms' *)

 LD T#300000ms
TIME_TO_DWORD
ST dw

 (*Result is 300000 *)

 LD TOD#00:00:00.012
TOD_TO_SINT
ST si

 (*Result is 12 *)

Examples in St:

 str :=TIME_TO_STRING(T#12ms);
 dw:=TIME_TO_DWORD(T#5m);
 si:=TOD_TO_SINT(TOD#00:00:00.012);

Examples in FBD:

DATE_TO/DT_TO
Conversions

Converting from the variable type DATE or DATE_AND_TIME to a different
type:

The date will be stored internally in a DWORD in seconds since Jan. 1, 1970.
This value will then be converted.

10-38 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

When you perform a type conversion from a larger to a smaller type, you risk
losing some information

For STRING type variables, the result is the date constant.

Examples in St:

 b :=DATE_TO_BOOL(D#1970-01-01); (* Result is FALSE *)
 i :=DATE_TO_INT(D#1970-01-15); (* Result is 29952 *)
 byt :=DT_TO_BYTE(DT#1970-01-15-05:05:05); (* Result is 129 *)
 str:=DT_TO_STRING(DT#1998-02-13-14:20); (* Result is 'DT#1998-02-13-14:20' *)

STRING_TO Conversions

Converting from the variable type STRING to a different type:

The operand from the STRING type variable must contain a value that is valid in
the target variable type, otherwise the result will be 0.

Examples in St:

 b :=STRING_TO_BOOL('TRUE'); (* Result is TRUE *)
 w :=STRING_TO_WORD('abc34'); (* Result is 0 *)
 t :=STRING_TO_TIME('T#127ms'); (* Result is T#127ms *)

TRUNC

Converting from REAL to INT. The whole number portion of the value will be
used.

When you perform a type conversion from a larger to a smaller type, you risk
losing some information.

Examples in ST:
i:=TRUNC(1.9); (* Result is 1 *)
i:=TRUNC(-1.4); (* result is -1 *).

Example in IL:

 LD 2.7
 TRUNC
 GE %MW8

10-39907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

Numeric Functions

ABS

Returns the absolute value of a number. ABS(-2) equals 2.

The following type combinations for input and output variables are possible:

 IN OUT
 INT INT, REAL, WORD, DWORD, DINT
 REAL REAL
 BYTE INT, REAL, BYTE, WORD, DWORD, DINT
 WORD INT, REAL, WORD, DWORD, DINT
 DWORD REAL, DWORD, DINT
 SINT REAL
 USINT REAL
 UINT INT, REAL, WORD, DWORD, DINT, UDINT, UINT
 DINT REAL, DWORD, DINT
 UDINT REAL, DWORD, DINT, UDINT

Example in IL:

 LD 2
 ABS
 ST i (*Result is 2 *)

Example in ST:
i:=ABS(-2);

Example in FBD:

SQRT

Returns the square root of a number.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

 LD 16
 SQRT
 ST q (*Result is 4 *)

Example in ST:
q:=SQRT(16);

Example in FBD:

10-40 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

LN

Returns the natural logarithm of a number.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

 LD 45
 LN
 ST q (*Result is 3.80666 *)

Example in ST:
q:=LN(45);

Example in FBD:

LOG

Returns the logarithm of a number in base 10.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

 LD 314.5
 LOG
 ST q (*Result is 2.49762 *)

Example in ST:
q:=LOG(314.5);

Example in FBD:

EXP

Returns the exponential function.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

 LD 2
 EXP
 ST q (* result is 7.389056099 *)

Example in ST:
q:=EXP(2);

10-41907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

Example in FBD:

SIN

Returns the sine of a number.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

 LD 0.5
 SIN
 ST q (*Result is 0.479426 *)

Example in ST:
q:=SIN(0.5);

Example in FBD:

COS

Returns the cosine of number. The value is calculated in arch minutes.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type Typ REAL.

Example in IL:

 LD 0.5
 COS
 ST q (*Result is 0.877583 *)

Example in ST:q:=COS(0.5);

Example in FBD:

TAN

Returns the tangent of a number. The value is calculated in arch minutes. IN
can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

 LD 0.5
 TAN
 ST q (*Result is 0.546302 *)

10-42 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

Example in ST:
q:=TAN(0.5);

Example in FBD:

ASIN

Returns the arc sine (inverse function of sine) of a number.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

 LD 0.5
 ASIN
 ST q (*Result is 0.523599 *)

Example in ST:
q:=ASIN(0.5);

Example in FBD:

ACOS

Returns the arc cosine (inverse function of cosine) of a number. The value is
calculated in arch minutes.

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

 LD 0.5
 ABS
 ST q (*Result is 1.0472 *)

Example in ST:
q:=ACOS(0.5);

Example in FBD:

ATAN

Returns the arc tangent (inverse function of tangent) of a number. The value is
calculated in arch minutes.

10-43907 AC 1131/Stand: 02/03 IEC Operators and norm-
extending Functions 10

IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

Example in IL:

 LD 0.5
 ABS
 ST q (*Result is 0.463648 *)

Example in ST:
q:=ATAN(0.5);

Example in FBD:

EXPT

Exponentiation of a variable with another variable:
OUT = IN1IN2.

IN1 and IN2 can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT,
USINT, UINT, UDINT, OUT must be type REAL.

Example in IL:

 LD 7
 EXPT 2
 ST var1 (*Result is 49 *)

Example in ST:
var1 := EXPT(7,2);

Example in FBD:

10-44 907 AC 1131/Stand: 02/03IEC Operators and norm-
extending Functions10

10-45907 AC 1131/Stand: 02/03 Standard Library Elements 10

Appendix D: Standard Library Elements

String functions Please note:

String functions are not "thread safe": When using tasks, string functions may
only be used in a single task. If the same function is used in different tasks,
there is a danger of overwriting.

LEN

Returns the length of a string. Input STR is of type STRING, the return value of
the function is type INT.

Example in IL:

 LD 'SUSI'
 LEN
 ST VarINT1 (* Result is 4 *)

Example in FBD:

Example in ST:
VarSTRING1 := LEN (‘SUSI’);

LEFT

Left returns the left, initial string for a given string. Input STR is type STRING,
SIZE is of type INT, the return value of the function is type STRING.

LEFT (STR, SIZE) means: Take the first SIZE character from the right in the
string STR.

Example in IL:

 LD 'SUSI'
 LEFT 3
 ST VarSTRING1 (* Result is ‘SUS’ *)

Example in FBD:

Example in ST:
VarSTRING1 := LEFT (‘SUSI’,3);

RIGHT

Right returns the right, initial string for a given string.

10-46 907 AC 1131/Stand: 02/03Standard Library Elements10

RIGHT (STR, SIZE) means: Take the first SIZE character from the right in the
string STR.

Input STR is of type STRING, SIZE is of type INT, the return value of the
function is of type STRING.

Example in IL:

 LD 'SUSI'
 RIGHT 3
 ST VarSTRING1 (* Result is ‘USI’ *)

Example in FBD:

Example in ST:
VarSTRING1 := RIGHT (‘SUSI’,3);

MID

Mid returns a partial string from within a string.

Input STR is type STRING, LEN and POS are type INT, the return value of the
function is type STRING.

MID (STR, LEN, POS) means: Retrieve LEN characters from the STR string
beginning with the character at position POS.

Example in IL:

 LD 'SUSI'
 RIGHT 2,2
 ST VarSTRING1 (* Result is ‘US’ *)

Example in FBD:

Example in ST:
VarSTRING1 := MID (‘SUSI’,2,2);

CONCAT

Concatenation (combination) of two strings.

10-47907 AC 1131/Stand: 02/03 Standard Library Elements 10

The input variables STR1 and STR2 as well as the return value of the function
are type STRING.

Example in IL:

 LD 'SUSI'
 CONCAT ‘WILLI’
 ST VarSTRING1 (* Result is ‘SUSIWILLI’ *)

Example in FBD:

Example in ST:
VarSTRING1 := CONCAT (‘SUSI’,’WILLI’);

Please regard: The CONCAT function can be nested up in maximal five
levels.

INSERT

INSERT inserts a string into another string at a defined point.

The input variables STR1 and STR2 are type STRING, POS is type INT and the
return value of the function is type STRING.

INSERT(STR1, STR2, POS) means: insert STR2 into STR1 after position POS.

Example in IL:

 LD 'SUSI'
 INSERT ‘XY’,2
 ST VarSTRING1 (* Result is ‘SUXYSI’ *)

Example in FBD:

Example in ST:
VarSTRING1 := INSERT (‘SUSI’,’XY’,2);

DELETE

DELETE removes a partial string from a larger string at a defined position.

The input variable STR is type STRING, LEN and POS are type INT, the return
value of the function is type STRING.

10-48 907 AC 1131/Stand: 02/03Standard Library Elements10

DELETE(STR, L, P) means: Delete L characters from STR beginning with the
character in the P position.

Example in IL:

 LD 'SUXYSI'
 DELETE 2,23
 ST Var1 (* Result is ‘SUSI’ *)

Example in FBD:

Example in ST:
Var1 := DELETE (‘SUXYSI’,2,3);

REPLACE

REPLACE replaces a partial string from a larger string with a third string.

The input variable STR1 and STR2 are type STRING, LEN and POS are type
INT, the return value of the function is type STRING.

REPLACE(STR1, STR2, L, P) means: Replace L characters from STR1 with
STR2 beginning with the character in the P position.

Example in IL:

 LD 'SUXYSI'
 REPLACE 'K', 2,2
 ST VarSTRING1 (* Result is ‘SKYSI’ *)

Example in FBD:

Example in ST:
VarSTRING1 := REPLACE (‘SUXYSI’,’K’,2,2);

FIND

FIND searches for a partial string within a string.

The input variable STR1 and STR2 are type STRING, the return value of the
function is type STRING.

FIND(STR1, STR2) means: Find the position of the first character where STR2
appears in STR1 for the first time. If STR2 is not found in STR1, then OUT:=0.

10-49907 AC 1131/Stand: 02/03 Standard Library Elements 10

Example in IL:

 LD 'SUXYSI'
 FIND 'XY'
 ST VarINT1 (* Result is ‘3’ *)

Example in FBD:

Example in ST:
arINT1 := FIND (‘SUXYSI’,’XY’);

Bistable Function Blocks

SR

Making Bistable Function Blocks Dominant:

Q1 = SR (SET1, RESET) means:
Q1 = (NOT RESET AND Q1) OR SET1

The input variables SET1 and RESET as well as the output variable Q1 are
type BOOL.

Declaration example:
SRInst : SR ;

Example in IL:

 CAL SRInst(SET1 := VarBOOL1, RESET := VarBOOL2)
 LD SRInst.Q1
 ST VarBOOL3

Example in FBD:

Example in ST:
SRInst(SET1:= VarBOOL1 , RESET:=VarBOOL2);
VarBOOL3 := SRInst.Q1 ;

RS

Resetting Bistable Function Blocks

Q1 = RS (SET, RESET1) means:

10-50 907 AC 1131/Stand: 02/03Standard Library Elements10

Q1 = NOT RESET1 AND (Q1 OR SET)
The input variables SET and RESET1 as well as the output variable Q1 are
type BOOL.

Declaration example:
RSInst : RS ;

Example in IL:

 CAL RSInst(SET := VarBOOL1, RESET1 := VarBOOL2)
 LD RSInst.Q1
 ST VarBOOL3

Example in FBD:

Example in ST:
RSInst(SET:= VarBOOL1 , RESET1:=VarBOOL2);
VarBOOL3 := RSInst.Q1 ;

SEMA

A Software Semaphore (Interruptible)

BUSY = SEMA(CLAIM, RELEASE) means:
BUSY := X;
IF CLAIM THEN X:=TRUE;
ELSE IF RELEASE THEN BUSY := FALSE; X:= FALSE;
END_IF

X is an internal BOOL variable that is FALSE when it is initialized.
The input variables CLAIM and RELEASE as well as the output variable BUSY
are type BOOL.

If BUSY is TRUE when SEMA is called up, this means that a value has already
been assigned to SEMA (SEMA was called up with CLAIM = TRUE). If BUSY is
FALSE, SEMA has not yet been called up or it has been released (called up
with RELEASE = TRUE).

Declaration example:
SEMAInst : SEMA ;

Example in IL:

 CAL SEMAInst(CLAIM := VarBOOL1, RELEASE := VarBOOL2)
 LD SEMAInst.BUSY
 ST VarBOOL3

Example in FBD:

10-51907 AC 1131/Stand: 02/03 Standard Library Elements 10

Example in ST:
SEMAInst(CLAIM:= VarBOOL1 , RELEASE:=VarBOOL2);
VarBOOL3 := SEMAInst.BUSY;

Trigger

R_TRIG

The function block R_TRIG detects a rising edge.
FUNCTION_BLOCK R_TRIG
VAR_INPUT

CLK : BOOL;
END_VAR
VAR_OUTPUT

Q : BOOL;
END_VAR
VAR

M : BOOL := FALSE;
END_VAR

Q0 := CLK AND NOT M;
M := CLK;

END_FUNCTION_BLOCK
The output Q0 and the help variable M will remain FALSE as long as the input
variable CLK is FALSE. As soon as S1 returns TRUE, Q will first return TRUE,
then M will be set to TRUE. This means each time the function is called up, Q
will return FALSE until CLK has falling edge followed by an rising edge.

Declaration example:
RTRIGInst : R_TRIG ;

Example in IL:

 CAL RTRIGInst(CLK := VarBOOL1)
 LD RTRIGInst.Q
 ST VarBOOL2

Example in FBD:

10-52 907 AC 1131/Stand: 02/03Standard Library Elements10

Example in ST:
RTRIGInst(CLK:= VarBOOL1);
VarBOOL2 := RTRIGInst.Q;

F_TRIG

The function block F_TRIG a falling edge.
FUNCTION_BLOCK F_TRIG
VAR_INPUT

CLK: BOOL;
END_VAR
VAR_OUTPUT

Q: BOOL;
END_VAR
VAR

M: BOOL := FALSE;
END_VAR

Q := NOT CLK AND NOT M;
M := NOT CLK;

END_FUNCTION_BLOCK
The output Q and the help variable M will remain FALSE as long as the input
variable CLK returns TRUE. As soon as CLK returns FALSE, Q will first return
TRUE, then M will be set to TRUE. This means each time the function is called
up, Q will return FALSE until CLK has a rising followed by a falling edge.

Declaration example:
FTRIGInst : F_TRIG ;

Example in IL:

CAL FTRIGInst(CLK := VarBOOL1)
LD FTRIGInst.Q
ST VarBOOL2

Example in FBD:

Example in ST:
FTRIGInst(CLK:= VarBOOL1);
VarBOOL2 := FTRIGInst.Q;

Counter

CTU

The function block Incrementer:

The input variables CU and RESET as well as the output variable Q are type
BOOL, the input variable PV and the output variable CV are type INT.

10-53907 AC 1131/Stand: 02/03 Standard Library Elements 10

The counter variable CV will be initialized with 0 if RESET is TRUE. If CU has a
rising edge from FALSE to TRUE, CV will be raised by 1.Q will return TRUE
when CV is greater than or equal to the upper limit PV.

Declaration example:
CTUInst : CTU ;

Example in IL:

 CAL CTUInst(CU := VarBOOL1, RESET := VarBOOL2, PV := VarINT1)
 LD CTUInst.Q
 ST VarBOOL3
 LD CTUInst.CV
 ST VarINT2

Example in FBD:

Example in ST:
CTUInst(CU:= VarBOOL1, RESET:=VarBOOL2 , PV:= VarINT1);
VarBOOL3 := CTUInst.Q ;
VarINT2 := CTUInst.CV;

CTD

Function Block Decrementer:

The input variables CD and LOAD as well as the output variable Q are type
BOOL, the input variable PV and the output variable CV are type INT.

When LOAD_ is TRUE, the counter variable CV will be initialized with the upper
limit PV. If CD has a rising edge from FALSE to TRUE, CV will be lowered by 1
provided CV is greater than 0 (i.e., it doesn't cause the value to fall below 0).

Q returns TRUE when CVis equal 0.

Declaration example:
CTDInst : CTD ;

Example in IL:

 CAL CTDInst(CD := VarBOOL1, LOAD := VarBOOL2, PV := VarINT1)
 LD CTDInst.Q
 ST VarBOOL3
 LD CTDInst.CV
 ST VarINT2

10-54 907 AC 1131/Stand: 02/03Standard Library Elements10

Example in FBD:

Example in ST:
CTDInst(CD:= VarBOOL1, LOAD:=VarBOOL2 , PV:= VarINT1);
VarBOOL3 := CTDInst.Q ;
VarINT2 := CTDInst.CV;

CTUD

Function Block Incrementer/Decrementer

The input variables CU, CD, RESET, LOAD as well as the output variables QU
and QD are type BOOL, PV and CV are type INT.

If RESET is valid, the counter variable CV will be initialized with 0. If LOAD is
valid, CV will be initialized with PV.

If CU has a rising edge from FALSE to TRUE, CV will be raised by 1. If CD has
a rising edge from FALSE to TRUE, CV will be lowered by 1 provided this does
not cause the value to fall below 0.

QU returns TRUE when CV has become greater than or equal to PV.

QD returns TRUE when CV has become equal to 0.

Declaration example:
CTUDInst : CUTD ;

Example in IL:

 CAL CTUDInst(CU := VarBOOL2, RESET := VarBOOL3, LOAD :=
VarBOOL4, PV := VarINT1)

 LD CTUDInst.QU
 ST VarBOOL5
 LD CTUDInst.QD
 ST VarBOOL6
 LD CTUDInst.CV
 ST VarINT2

Example in FBD:

10-55907 AC 1131/Stand: 02/03 Standard Library Elements 10

Example in ST:
CTUDInst(CU := VarBOOL1, CU:= VarBOOL2, RESET := VarBOOL3,

LOAD:=VarBOOL4 , PV:= VarINT1);
VarBOOL5 := CTUDInst.QU ;
VarBOOL6 := CTUDInst.QD ;
VarINT2 := CTUDInst.CV;

Timer

TP

The function blockTimer is a trigger. TP(IN, PT, Q, ET) means:

IN and PT are input variables of the BOOL and TIME types respectively. Q and
ET are output variables of the BOOL and TIME types respectively. If IN is
FALSE, Q is FALSE and ET is 0.

As soon as IN becomes TRUE, the time will begin to be counted in milliseconds
in ET until its value is equal to PT. It will then remain constant.

Q is TRUE if IN is TRUE and ET is less than or equal to PT. Otherwise it is
FALSE.

Q returns a signal for the time period given in PT.

Graphic Display of the TP Time Sequence

Declaration example:
TPInst : TP ;

Example in IL:

 CAL TPInst(IN := VarBOOL1, PT := T#5s)
 LD TPInst.Q
 ST VarBOOL2

Example in FBD:

10-56 907 AC 1131/Stand: 02/03Standard Library Elements10

Example in ST:
TPInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 :=TPInst.Q;

TON

The function block Timer On Delay implements a turn-on delay..

TON(IN, PT, Q, ET) means:

IN and PT are input variables of the BOOL and TIME types respectively. Q and
ET are output variables of the BOOL and TIME types respectively. If IN is
FALSE, Q is FALSE and ET is 0.

As soon as IN becomes TRUE, the time will begin to be counted in milliseconds
in ET until its value is equal to PT. It will then remain constant.

Q is TRUE when IN is TRUE and ET is equal to PT. Otherwise it is FALSE.

Thus, Q has a rising edge when the time indicated in PT in milliseconds has run
out.

Graphic display of TON behavior over time:

Declaration example:
TONInst : TON ;

Example in IL:

 CAL TONInst(IN := VarBOOL1, PT := T#5s)
 LD TONInst.Q
 ST VarBOOL2

Example in FBD:

Example in ST:

10-57907 AC 1131/Stand: 02/03 Standard Library Elements 10

TONInst(IN := VarBOOL1, PT:= T#5s);

TOF

The function block TOF implements a turn-off delay..

TOF(IN, PT, Q, ET) means:

IN and PT are input variables type BOOL respectively TIME. Q and E are output
variabls type BOOL respectively TIME. If IN is TRUE, the outputs are TRU
respectively 0.

As soon as IN becomes FALSE, in ET the time will begin to be counted in
milliseconds in ET until its value is equal to PT. It will then remain constant.

Q is FALSE when IN is FALSE and ET equal PT. Otherwise it is TRUE.

Thus, Q has a falling edge when the time indicated in PT in milliseconds has
run out.

Graphic display of TOF behavior over time:

Declaration example:
TOFInst : TOF ;

Example in IL:

 CAL TOFInst(IN := VarBOOL1, PT := T#5s)
 LD TOFInst.Q
 ST VarBOOL2

Example in FBD:

Example in ST:
TOFInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 :=TOFInst.Q;

10-58 907 AC 1131/Stand: 02/03Standard Library Elements10

10-59907 AC 1131/Stand: 02/03 Operands in 907 AC 1131 10

Appendix E: Operands in 907 AC 1131

Constants, variables, addresses and possibly function calls can appear as
operands.

Constants in 907 AC 1131

BOOL Constants

BOOL constants are the logical values TRUE and FALSE.

TIME Constants

TIME constants can be declared in 907 AC 1131. These are generally used to
operate the timer in the standard library. A TIME constant is always made up of
an initial "t" or "T" (or "time" or "TIME" spelled out) and a number sign "#".

This is followed by the actual time declaration which can include days (identified
by "d"), hours (identified by "h"), minutes (identified by "m"), seconds (identified
by "s") and milliseconds (identified by "ms"). Please note that the time entries
must be given in this order according to length (d before h before m before s
before m before ms) but you are not required to include all time increments.

Examples of correct TIME constants in a ST assignment:

TIME1 := T#14ms;

TIME1 := T#100S12ms; (*The highest component may be allowed to exceed its
limit*)

TIME1 := t#12h34m15s;

the following would be incorrect:

TIME1 := t#5m68s; (*limit exceeded in a lower component*)

TIME1 := 15ms; (*T# is missing*)

TIME1 := t#4ms13d; (*Incorrect order of entries*)

(see also Appendix B:...Time Data Types)

DATE Constants

These constants can be used to enter dates. A DATE constant is declared
beginning with a "d", "D", "DATE" or "date" followed by "#". You can then enter
any date with format Year-Month-Day.

Examples:
DATE#1996-05-06
d#1972-03-29
(see also Appendix B:...Time Data Types)

TIME_OF_DAY Constants

Use this type of constant to store times of the day. A TIME_OF_DAY
declaration begins with "tod#", "TOD#", "TIME_OF_DAY#" or "time_of_day#"

10-60 907 AC 1131/Stand: 02/03Operands in 907 AC 113110

followed by a time with the format: Hour:Minute:Second. You can enter seconds
as real numbers or you can enter fractions of a second.

Examples:
TIME_OF_DAY#15:36:30.123
tod#00:00:00

(see also Appendix B:...Time Data Types)

DATE_AND_TIME Constants

Date constants and the time of day can also be combined to form so-called
DATE_AND_TIME constants. DATE_AND_TIME constants begin with "dt#",
"DT#", "DATE_AND_TIME#" or "date_and_time#". Place a hyphen after the
date followed by the time.

Examples:
DATE_AND_TIME#1996-05-06-15:36:30
dt#1972-03-29-00:00:00

(see also Appendix B:...Time Data Types)

Number Constants

Number values can appear as binary numbers, octal numbers, decimal
numbers and hexadecimal numbers. If an integer value is not a decimal
number, you must write its base followed by the number sign (#) in front of the
integer constant. The values for the numbers 10-15 in hexadecimal numbers
will be represented as always by the letters A-F.

You may include the underscore character within the number.

Examples:

14 (decimal number)
2#1001_0011 (dual number)
8#67 (octal number)
16#A (hexadecimal number)

These number values can be from the variable types BYTE, WORD, DWORD,
SINT, USINT, INT, UINT, DINT, UDINT, REAL or LREAL.

Implicit conversions from "larger" to "smaller" variable types are not permitted.
This means that a DINT variable cannot simply be used as an INT variable. You
must use the type conversion (see Type Conversions).

REAL/LREAL Constants

REAL and LREAL constants can be given as decimal fractions and represented
exponentially. Use the standard American format with the decimal point to do
this.

Example:
7.4 instead of 7,4

10-61907 AC 1131/Stand: 02/03 Operands in 907 AC 1131 10

1.64e+009 instead of 1,64e+009

STRING Constants

A string is a sequence of characters. STRING constants are preceded and
followed by single quotation marks. You may also enter blank spaces and
special characters (umlauts for instance). They will be treated just like all other
characters.

In character sequences, the combination of the dollar sign ($) followed by two
hexadecimal numbers is interpreted as a hexadecimal representation of the
eight bit character code. In addition, the combination of two characters that
begin with the dollar sign are interpreted as shown below when they appear in a
character sequence:

$$ Dollar signs
$' Single quotation mark
$L or $l Line feed
$N or $n New line
$P or $p Page feed
$R or $r Line break
$T or $t Tab

Examples:

'w1Wüß?'
' Abby and Craig '
':-)'

Typed Literals

Basically, in using IEC constants, the smallest possible data type will be used. If
another data type must be used, this can be achieved with the help of typed
literals without the necessity of explicitly declaring the constants. For this, the
constant will be provided with a prefix which determines the type.

This is written as follows: <Type>#<Literal>

<Type> specifies the desired data type; possible entries are: BOOL, SINT,
USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, REAL, LREAL. The
type must be written in uppercase letters.

<Literal> specifies the constant. The data entered must fit within the data type
specified under <Type>.

Example:

var1:=DINT#34;

If the constant can not be converted to the target type without data loss, an
error message is issued:

10-62 907 AC 1131/Stand: 02/03Operands in 907 AC 113110

Typed literals can be used wherever normal constants can be used.

Variables

Variables can be declared either locally in the declaration part of a POU or in a
global variable list.

Please regard: It is allowed to define a local variable with the same name
like a global variable. Within the POU always the local variable will be used
during processing.

It is not allowed to define two global variables with identic names; a compiler
error will occur if you have defined a variable "var1" in the PLC configuration as
well as in a Global Variables list.

The variable identifier may not contain any blank spaces or special characters,
may not be declared more than once and cannot be the same as any of the
keywords. Capitalization is not recognized which means that VAR1, Var1, and
var1 are all the same variable. The underscore character is recognized in
identifiers (e.g., "A_BCD" and "AB_CD" are considered two different identifiers).
An identifier may not have more than one underscore character in a row. The
length of the identifier, as well as the meaningful part of it, are unlimited.

Variables can be used anywhere the declared type allows for them.

You can access available variables through the Input Assistant.

System Flags

System flags are implicitly declared variables that are different on each specific
PLC. To find out which system flags are available in your system, use the
command 'Insert' 'Operand' An Input Assistant dialog box pops up, select the
category System Variable.

Accessing variables for arrays,
structures and POUs.

Two-dimensional array components can be accessed using the following
syntax:

<Fieldname>[Index1, Index2]
Structure variables can be accessed using the following syntax:

<Structurename>.<Variablenname>
Function block and program variables can be accessed using the following
syntax:

<Functionblockname>.<Variablename>

Addressing bits in variables

In integer variables, individual bits can be accessed. For this, the index of the bit
to be addressed is appended to the variable, separated by a dot. The bit-index
can be given by any constant. Indexing is 0-based. Example:

10-63907 AC 1131/Stand: 02/03 Operands in 907 AC 1131 10

a : INT;
b : BOOL;
...
a.2 := b;

The third bit of the variable a will be set to the value of the variable b.

If the index is greater than the bit width of the variable, the following error
message is issued: Index '<n>' outside the valid range for variable '<var>'!

Bit addressing is possible with the following variable types: SINT, INT, DINT,
USINT, UINT, UDINT, BYTE, WORD, DWORD.

If the variable type does not allow it, the following error message is issued:
„Invalid data type '<type>' for direct indexing“

A bit access must not be assigned to a VAR_IN_OUT variable!

Addresses

Address

The direct display of individual memory locations is done through the use of
special character sequences. These sequences are a concatenation of the
percent sign "%", a range prefix, a prefix for the size and one or more natural
numbers separated by blank spaces.

The following range prefixes are supported:

 I Input
 Q Output
 M Memory location

The following size prefixes are supported:

 X Single bit
 None Single bit
 B Byte (8 Bits)
 W Word (16 Bits)
 D Double word (32 Bits)

Examples:

%QX7.5 and %Q7.5 Output bit 7.5
%IW215 Input word 215
%QB7 Output byte 7
%MD48 Double word in memory position 48 in the memory

location.
%IW2.5.7.1 depending on the PLC Configuration

The current PLC Configuration for the program determines whether or not an
address is valid.

10-64 907 AC 1131/Stand: 02/03Operands in 907 AC 113110

Note: Boolean values will be allocated bytewise, if no explicit single-bit
address is specified. Example: A change in the value of varbool1 AT %QW0
affects the range from QX0.0 to QX0.7.

Memory location

You can use any supported size to access the memory location.

For example, the address %MD48 would address bytes numbers 192, 193, 194,
and 195 in the memory location area (48 * 4 = 192). The number of the first byte
is 0.

You can access words, bytes and even bits in the same way: the address
%MX5.0 allows you to access the first bit in the fifth word (Bits are generally
saved wordwise).

See also the documentation 'System Technology of the Central Units'.

Functions

In ST a function call can also appear as an operand.

Example:

Result := Fct(7) + 3;

TIME()-Funktion

This function returns the time (based on milliseconds) which has been passed
since the system was started.

The data type is TIME.

Example in IL:
TIME
ST systime (* Result e.g.: T#35m11s342ms *)

Example in ST:

systime:=TIME();

Example in FUP:

10-65907 AC 1131/Stand: 02/03 Command Line /
Command File Commands 10

Appendix F: Command Line / Command File Commands

Command Line Commands

When 907 AC 1131 is started, you can add commands in the command line
which will be asserted during execution of the program. These commands start
with a „/“. Capitalization/Use of small letters is not regarded. The commands will
be executed sequentially from the left to the right.

/run After login 907 AC 1131 starts the application program.
Only valid in combination with /online.

/show ...
/show hide

/show icon
/show max
/show normal

Settings for the 907 AC 1131 frame window can be made.
The window will not be displayed, it also will not be represented in
the task menu.
The window will be minimized in display.
The window will be maximized in display.
The window will be displayed in the same status as it was during
the last closing.

/out <outfile> All messages are displayed in the message window and
additionally are written in the file <outfile>.

/cmd
<cmdfile>

After starting the commands of the <cmdfile> get executed.

Syntax for a command line:

"<Path of AC1131-Exe-File>" "<Project Path>" /<Command1> /<Command2>
....

Example for a command line:

"D:\dir1\AC1131" "C:\projects\ampel.pro" /show hide /cmd command.cmd

File ampel.pro will be opened, but the window not displayed. The commands of
the command file command.cmd will be executed.

Command File (cmdfile) Commands

See the following table for a list of commands, which can be used in a
command file (<cmdfile>). The command file you can call by a command line
(see above) aufrufen können. Capitalizing/Use of small letters is not regarded.
The command line will be displayed as a message in the message window and
can be given out in a message file (see below). Additionally to the command a
„@“ is prefixed. All signs after a semicolon (;) will be ignored (comment).
Keywords can be used in the command parameters. A list of the keywords you
find subsequent to the following tables of command descriptions.

Commands for controlling any subsequent commands:

10-66 907 AC 1131/Stand: 02/03Command Line /
Command File Commands10

onerror continue The subsequent commands will be executed even if an
error occurs.

onerror break The subsequent commands will not be executed any
more if an error has been detected.

Commands of the online menu:

online login Login with the loaded project ('Online Login')

online logout Logout ('Online' 'Logout')

online run Start of the application program ('Online' 'Run')

online sim Switch on of simulation mode (�) 'Online' 'Simulation')

online sim off Switch off of simulation mode ('Online' 'Simulation')

Commands of the file menu:

file new A new project is created ('File' 'New')

file open <projectfile> The project <projectfile> will be loaded ('File' 'Open')

file close The current project will be closed ('File' 'Close')

file save The current project will be stored ('File' 'Save')

file saveas <projectfile> The current project will be saved with the file name
<projectfile> ('File' 'Save as')

file quit 907 AC 1131 will be closed ('File' 'Exit')

Commands of the project menu:

project compile or
project build

The project that is loaded will be incrementally
compiled ('Project' 'Build')

project rebuild The project that is loaded will be compiled in full
('Project' 'Rebuild')

project clean Compilation information and Download-Information in
the current project will be deleted ('Project' 'Clean
Project')

project compile The current project will be compiled by "Rebuild all"
('Project' 'Rebuild all')

project import <file1> ...
<fileN>

The files <file1> ... <fileN> get imported into the current
project ('Project' 'Import')

project export <expfile> The current project will be exported in the file <expfile>
('Project' 'Export')

project expmul Each object of the current project will be exported in an
own file, which gets the name of the object.

Commands for the control of the message file:

out open <msgfile> The file <msgfile> opens as message file. New
messages will be appended

10-67907 AC 1131/Stand: 02/03 Command Line /
Command File Commands 10

out close The currently shown message file will be closed.

out clear All messages of the currently opened message file will
be deleted.

Commands for the control of messages:

echo on The command lines will be displayed as messages.

echo off The command lines will not be displayed as messages.

echo <text> <text> will be displayed in the message window.

Commands for the control of replace of objects respectively for the control of
files for import, export, copy:

replace yesall Replace all (any 'query on' command will be ignored;
no dialogs will open)

replace noall Replace none (any 'query on' command will be ignored;
no dialogs will open)

replace query If a 'query on' command is set, then a dialog will open
regarding the replacing of the objects even if there is a
'replace yesall' or 'replace noall' command

Commands for the control of the default parameters of 907 AC 1131 dialogs:

query on Dialogs are displayed and need user input

query off ok All dialogs respond as if the user had clicked on the
'OK' button

query off no All dialogs respond as if the user had clicked on the
'No' button

query off cancel All dialogs respond as if the user had clicked on the
'Cancel' button

Command for calling command files as subprograms:

call <parameter1> ...
<parameter10>

Command files will be called as subprograms. Up to 10
parameters may be passed. In the file that is called, the
parameters can be accessed with $0 - $9.

call <parameter1> ...
<parameter10>

Command files are called as subroutines. Up to ten
parameters can be consigned. In the subroutine called
you can access the parameters using $0 - $9.

Setting of directories used by 907 AC 1131:

dir lib <libdir> Sets <libdir> as the library directory

dir compile <compiledir> Sets <compiledir> as the directory for the compilation
files

Delaying processing of the CMDFILE:

delay 5000 Waits 5 seconds

Controlling the Watch and Receipt Manager:

10-68 907 AC 1131/Stand: 02/03Command Line /
Command File Commands10

watchlist load <file> Loads the Watchlist saved as <file> and opens the
corresponding window ('Extras' 'Load Watchlist')

watchlist save <file> Saves the current Watchlist as <file> ('Extras' 'Save
Watchlist')

watchlist set <text> Gives a previously loaded Watchlist the name <text>
('Extras' 'Rename Watchlist')

watchlist read Updates the values of the Watch variables ('Extras'
'Read receipt')

watchlist write Fills the Watch variables with the values found in the
Watchlist ('Extras' 'Write receipt')

Linking libraries:

library add <library file1>
<library file2> .. <library
fileN>

Attaches the specified library file to the library list of the
currently open project. If the file path is a relative path,
the library directory entered in the project is used as
the root of the path.

library delete [<library1>
<library2> .. <libraryN>]

Deletes the specified library, or (if no library name is
specified) all libraries from the library list of the
currently open project.

Copying objects:

object copy <source
project file> <source
path> <target path>

Copies objects from the specified path of the source
project file to the target path of the already opened
project.

If the source path is the name of an object, this will be
copied. If it is a folder, all objects below this folder will
be copied. In this case, the folder structure below the
source folder will be duplicated.

If the target path does not yet exist, it will be created.

Entering communications parameters (gateway, device):

gateway local Sets the gateway on the local computer as the current
gateway.

gateway tcpip <Address>
<Port>

Sets the gateway in the specified remote computer as
the current gateway.
<Address>: TCP/IP address or hostname of the remote
computer
<Port>: TCP/IP port of the remote gateway

Important: Only gateways that have no password set
can be reached!

device guid <guid> Sets the device with the specified GUID as the current
device.

GUID must have the following format:

{01234567-0123-0123-0123-0123456789ABC}

The curly brackets and the hyphens must appear at the

10-69907 AC 1131/Stand: 02/03 Command Line /
Command File Commands 10

specified positions.

device instance
<Instance name>

Sets the instance name for the current device to the
name specified

device parameter <Id>
<Value>

Assigns the specified value, which will then be
interpreted by the device, to the parameter with the
specified ID.

System call:

system <command> Carries out the specified operating system command.

Commands concerning managing the project in the ENI project data base::

Please regard: The following placeholders are used in the subsequent description of
the particular commands:

<category>: Replace by "project" or "shared" or "compile" depending on
which of the following data base categories is concerned: Project
Objects, Shared Objects, Compile Files

<POUname>: Name of the object, corresponds to the object name which is
used in 907 AC 1131.

<Objecttype>: Replace by the shortcut, which is appended as an extension to
the POU name of the object in the data base, and which reflects
the object type (defined by the list of object types, see ENI
Administration, 'Object Types').

Example: Object "GLOBAL_1.GVL" -> the POU name is
"GLOBAL_1", the object type is "GVL" (global variables list)

<comment>: Replace by a comment text (embraced by single quotation
marks), which will be stored in the version history with the
particular action.

Commands to configurate the project data base link via the ENI Server:

eni on
eni off

The option 'Use source control (ENI)' will be activated
resp. deactivated
(Dialog 'Project' 'Options' 'Project source control')

eni project readonly on
eni project readonly off

The option 'Read only' for the data base category
'Project objects' will be activated resp. deactivated
(Dialog 'Project' 'Options' 'Project objects')

eni shared readonly on
eni shared readonly off

The option 'Read only' for the data base category
'Shard objects' will be activated resp. deactivated
(Dialog 'Project' 'Options' 'Shared objects')

eni set local <POUname> The object will be assigned to category 'Local', i.e. it
will not be stored in the project data base
(Dialog 'Project' 'Object' 'Properties' 'Data base-
connection')

eni set shared <POUname> The object will be assigned to category 'Shared
objects'

10-70 907 AC 1131/Stand: 02/03Command Line /
Command File Commands10

(Dialog 'Project' 'Object' 'Properties' 'Data base-
connection')

eni set project <POUname> The object will be assigned to category 'Project
objects'
(Dialog 'Project' 'Object' 'Properties' 'Data base-
connection')

eni <category> server
<TCP/IP_Address> <Port>
<Projectname>
<Username> <Password>

Configures the connection to the ENI Server for the
category 'Project objects'
(Dialog 'Project' 'Options' 'Project data base');

Example:
eni project server localhost 80
batchtest\project EniBatch Batch

-> TCP/IP-Address = localhost, Port = 80, Project name =
batchtest\project, User name = EniBatch, Password = Batch

eni compile sym on
eni compile sym off

The option 'Create ASCII symbol information (.sym)'
for the objects of category 'Compile files' will be
activated/deactivated
(Dialog 'Project' 'Options' 'Project source control' 'ENI
settings' for 'Compile files')

eni compile sdb on
eni compile sdb off

The option 'Create binary symbol information (.sym)'
for the objects of category 'Compile files' will be
activated/deactivated
(Dialog 'Project' 'Options' 'Project source control' 'ENI
settings' for 'Compile files')

eni compile prg on
eni compile prg off

The option 'Create boot project' for the objects of
category 'Compile files' will be activated/deactivated
(Dialog 'Project' 'Options' 'Project source control' 'ENI
settings' for 'Compile files')

Commands of the menu 'Project' 'Data Base Link' for working with the data
base:

eni set <category> The object gets assigned to the named data base
category ('Define')

eni set <category>set
<Objecttype>:<POUname>
<Objecttype>:<POUname>

The objects which are listed separated by spaces will
be assigned to the named data base category.
('Multiple Define')

Example:
"eni set project pou:as_fub pou:st_prg"

-> the objects (pou) as_fub and st_prg get assigned to category
'Project objects'

eni <category> getall The latest version of all objects of the named
category will be called from the data base ('Get All
Latest Versions')

eni <category>get
<Objecttype>:<POUname>
<Objecttype>:<POUname>

The objects of the named category, which are listed
separated by spaces will be called from the data
base. ('Multiple Define'). ('Abrufen')

Example:
"eni project get pou:as_fub gvl:global_1"

10-71907 AC 1131/Stand: 02/03 Command Line /
Command File Commands 10

-> the POU as_fub.pou and the global variables list global_1.gvl
will be called from the data base

eni <category> checkoutall
"<comment>"

All objects of the named category will be checked out
from the data base. The defined comment will be
stored with the check-out-action in the version history.

eni <category> checkout
"<comment>"
<Objecttype>:<POUname>
<Objecttype>:<POUname>

All objects (Objecttype:POUname) which are listed
separated by spaces will be checked out from the
data base. The defined comment will be stored with
the check-out-action in the version history for each
particular object.

Example:
"eni project checkout "for working on xy"
pou:as_fub gvl:global_1"

-> The POU as_fub and the global variables list global_1 will be
checked out and the comment "for working on xy" will be stored
with this action

eni <category>checkinall
"<comment>"

All objects of the project, which are under source
control in the project data base, will be checked in.
The defined comment will be stored with the check-in-
action.

eni <category> checkin
"<comment>"
<Objecttype>:<POUname>
<Objecttype>:<POUname>

All objects (Objecttype:POUname) which are listed
separated by spaces will be checked in to the data
base. The defined comment will be stored with the
check-in-action in the version history for each
particular object. (see above: check out)

The defined comment will be stored with the check-in-
action in the version history for each particular object.

Keywords for the command parameters:

The following keywords, enclosed in "$", can be used in command parameters:

$PROJECT_NAME$ Name of the current 907 AC 1131 project (file name
without extension ".pro", e.g. "project_2")

$PROJECT_PATH$ Path of the directory, where the current 907 AC 1131
project file is (without indication of the drive and without a
backslash at the end, e.g. "projects\sub1").

$PROJECT_DRIVE$ Drive, where the current 907 AC 1131 project is (without
backslash at the end, e.g. "D:")

$COMPILE_DIR$ Compile directory of the current 907 AC 1131 project
(with indication of the drive and without backslash at the
end, e.g. "D:\AC1131\compile")

EXE_DIR Directory where the AC1131.exe file is (with indication of
the drive and without backslash at the end, e.g.
D:\907 AC 1131)

Example of a command file <command file name>.cmd:

A command file like shown below will open the project file ampel.pro, will then
load a watch list, which was stored as w.wtc, then will start the application

10-72 907 AC 1131/Stand: 02/03Command Line /
Command File Commands10

program and write – after 1 second delay - the values of the variables into the
watch list watch.wtc (which also will be stored in the directory
"C:\projects\AC1131_test") and will finally close the project.

file open C:\work\projects\AC1131_test\ampel.pro
query off ok
watchlist load c:\work\w.wtc
online login
online run
delay 1000
watchlist read
watchlist save c:\work\watch.wtc
online logout
file close

A command file is called in a command line like shown here:

"<Path of AC1131-Exe>" /cmd "<Path of cmd file>"

10-73907 AC 1131/Stand: 02/03 Overview Operators and
Library Elements 10

Appendix G: Overview Operators and Library Elements

The table shown below shows the operators in ST and IL with the available
modifiers in IL.

Take note that for the 'IL operator' column: Only the line in which the operator is
used will be displayed. A prerequisite is that the (first) required operand have
been successfully loaded in the preceding line (e.g. LD in).

The 'Mod. IL' column shows the possible modifiers in IL:

C The command is only executed if the result of the preceding
expression is TRUE.

N for JMPC, CALC, RETC: The command is only executed if the
result of the preceding expression is FALSE.

N otherwise: negation of the operand (not of the accumulator)

(Operator enclosed in brackets: only after the closing bracket is
reached will the operation preceding the brackets be carried
out.

Please obtain a detailed description of usage from the appropriate Appendices.

Operators in 907 AC 1131 (see Appendix C):

in ST in AWL Mod. IL Description

' String delimiters (e.g. 'string1')

..
[]

Size of Array range (e.g. ARRAY[0..3] OF INT)

: Delimiter between Operand and Typ in a
declaration (e.g. var1 : INT;)

; Termination of instruction (e.g. a:=var1;)

^ Dereferenced Pointer (e.g. pointer1^)

LD var1 N Load value of var1 in buffer

:= ST var1 N Store actual result to var1

S boolvar Set boolean operand boolvar exactly then to
TRUE, when the actual result is TRUE

R boolvar Set boolean operand boolvar exactly then to
FALSE, when the actual result is TRUE

JMP label CN Jump to label

<Program name> CAL prog1 CN Call program prog1

10-74 907 AC 1131/Stand: 02/03Overview Operators and
Library Elements10

in ST in AWL Mod. IL Description

<Instance name> CAL inst1 CN Call function block instance inst1

<Fctname>(vx, vy,..) <Fctname> vx, vy CN Call function fctname and transmit variables vx, vy

RETURN RET CN Leave POU and go back to caller

(The value following the bracket is handled as
operand, the operation before the bracket is not
executed before the expression in the brackets.

) Now execute the operation which has been set
back

AND AND N,(Bitwise AND

OR OR N,(Bitwise OR

XOR XOR N,(Bitwise exclusive OR

NOT NOT Bitweise NOT

+ ADD (Addition

- SUB (Subtraction

* MUL (Multiplication

/ DIV (Division

> GT (Greater than

>= GE (Greater or equal

= EQ (Equal

<> NE (Not equal

<= LE (Less or equal

 < LT (Less than

MOD(in) MOD Modulo Division

INDEXOF(in) INDEXOF Internal index of POU in1; [INT]

SIZEOF(in) SIZEOF Number of bytes required for the given data type
of in

SHL(K,in) SHL Bitwise left-shift of operator in by K

SHR(K,in) SHR Bitwise right-shift of operator in by K

ROL(K,in) ROL Bitwise rotation to the left of operator in by K

ROR(K,in) ROR Bitwise rotation to the right of operator in by K

SEL(G,in0,in1) SEL Binary selection between 2 operands in0 (G is
FALSE) and in1 (G is TRUE)

MAX(in0,in1) MAX Returns the greater of 2 values

MIN(in0,in1) MIN Returns the lesser of 2 values in0 and in1

10-75907 AC 1131/Stand: 02/03 Overview Operators and
Library Elements 10

in ST in AWL Mod. IL Description

LIMIT(MIN,in,Max) LIMIT Limits the value range (in is set back to MIN or
MAX in case of exceeding the range)

JMP label CN Jump to label

<Program name> CAL prog1 CN Call program prog1

<Instance name> CAL inst1 CN Call function block instance inst1

<Fctname>(vx, vy,..) <Fctname> vx, vy CN Call function fctname and transmit variables vx,
vy

RETURN RET CN Leave POU and go back to caller

(The value following the bracket is handled as
operand, the operation before the bracket is not
executed before the expression in the brackets.

) Now execute the operation which has been set
back

AND AND N,(Bitwise AND

OR OR N,(Bitwise OR

XOR XOR N,(Bitwise exclusive OR

NOT NOT Bitweise NOT

+ ADD (Addition

- SUB (Subtraction

* MUL (Multiplication

/ DIV (Division

> GT (Greater than

>= GE (Greater or equal

= EQ (Equal

<> NE (Not equal

<= LE (Less or equal

 < LT (Less than

MOD(in) MOD Modulo Division

INDEXOF(in) INDEXOF Internal index of POU in1; [INT]

SIZEOF(in) SIZEOF Number of bytes required for the given data type
of in

SHL(K,in) SHL Bitwise left-shift of operator in by K

SHR(K,in) SHR Bitwise right-shift of operator in by K

ROL(K,in) ROL Bitwise rotation to the left of operator in by K

ROR(K,in) ROR Bitwise rotation to the right of operator in by K

SEL(G,in0,in1) SEL Binary selection between 2 operands in0 (G is
FALSE) and in1 (G is TRUE)

10-76 907 AC 1131/Stand: 02/03Overview Operators and
Library Elements10

in ST in AWL Mod. IL Description

MAX(in0,in1) MAX Returns the greater of 2 values

MIN(in0,in1) MIN Returns the lesser of 2 values in0 and in1

LIMIT(MIN,in,Max) LIMIT Limits the value range (in is set back to MIN or
MAX in case of exceeding the range)

MUX(K,in0,...in_n) MUX Selectsi the Kth value out of a group of values
(in0 to In_n)

ADR(in) ADR Address of the operand in [DWORD]

BOOL_TO_<type>(in) BOOL_TO_<type> Type conversion of the boolean operand

<type>_TO_BOOL(in) <type>_TO_BOOL Type conversion to BOOL

INT_TO_<type>(in) INT_TO_<type> Type conversion of an INT Operand to anotner
elementary type

REAL_TO_<type>(in) REAL_TO_<type> Type conversion of an REAL operand to anotner
elementary type

LREAL_TO_<type>(in) LREAL_TO_<type> Type conversion of a LREAL operand to anotner
elementary type

TIME_TO_<type>(in) TIME_TO_<type> Type conversion of a TIME operand to anotner
elementary type

TOD_TO_<type>(in) TOD_TO__<type> Type conversion of a TOD operand to anotner
elementary type

DATE_TO_<type>(in) DATE_TO_<type> Type conversion of a DATE operand to anotner
elementary type

DT_TO_<type>(in) DT_TO_<type> Type conversion of a DT operand to anotner
elementary type

STRING_TO_<type>(in) STRING_TO_<type
>

Type conversion of a string operand des
Operanden to anotner elementary type, in must
contain valid value of desired type

TRUNC(in) TRUNC Conversion from REAL to INT

ABS(in) ABS Absolut value of operand in

SQRT(in) SQRT Square root of operand in

LN(in) LN Natural logarithm of operand in

LOG(in) LOG Logarithm of operand in, base 10

EXP(in) EXP Exponential function of operand in

SIN(in) SIN Sine of operand in

COS(in) COS Cosine of operand in

TAN(in) TAN Tangent of operand in

ASIN(in) ASIN Arc sine of operand in

ACOS(in) ACOS Arc cosine of operand in

10-77907 AC 1131/Stand: 02/03 Overview Operators and
Library Elements 10

in ST in AWL Mod. IL Description

ATAN(in) ATAN Arc tangent of operand in

EXPT(in,expt) EXPT expt Exponentation of operand in with expt

Elements of the IEC_S90_V41.LIB (see Appendix D):

in ST in AWL Description

LEN(in) LEN String length of operand in

LEFT(str,size) LEFT Left inital string of given size of string str

RIGHT(str,size) RIGHT Right initial string of given size of string str

MID(str,size) MID Partial string of str of given size

CONCAT('str1','str2') CONCAT 'str2' Concatenation of two subsequent strings

INSERT('str1','str2',pos) INSERT 'str2',p Insert string str1 in String str2 at position pos

DELETE('str1',len,pos) DELETE len,pos Delete partial string (length len), start at position
pos of str1

REPLACE('str1','str2',len,pos) REPLACE 'str2',len,pos Replace partial string of lenght len by str2, start at
position pos of str1

FIND('str1','str2') FIND 'str2' Search for partial string str2 in str1

SR SR Bistable FB is set dominant

RS RS Bistable FB is set back

SEMA SEMA FB: Software Semaphor (interruptable)

R_TRIG R_TRIG FB: rising edge is detected

F_TRIG F_TRIG FB: falling edge is detected

CTU CTU FB: Counts upv

CTD CTD FB: Counts down

CTUD CTUD FB: Counts up and down

TP TP FB: trigger

TON TON FB: on-delay timer

TOF TOF FB: falling delay

10-78 907 AC 1131/Stand: 02/03Overview Operators and
Library Elements10

10-79907 AC 1131/Stand: 02/03 Error Messages and Warnings 10

Appendix H: Compiler Errors and Warnings

Warnings

1100
"Unknown function '<name>' in library."
An external library is used. Please check, whether all functions, which are defined in the .hex file, are also defined in the .lib
file.

1101
"Unresolved symbol '<Symbol>'."
The code generator expects a POU with the name <Symbol>. It is not defined in the project. Define a function/program with
this name.

1102
"Invalid interface for symbol '<Symbol>'."
The code generator expects a function with the name <Symbol> and exactly one scalar input, or a program with the name
<Symbol> and no input or output.

1103
"The constant '<name>' at code address '<address>' overwrites a 16K page boundary!"
A string constant exceeds the 16K page boundary. The system cannot handle this. It depends on the runtime system whether
the problem could be avoided by an entry in the target file. Please contact the PLC manufacturer.

1200
"Task '<name>', call of Access variables in the parameter list are not updated"
Variables, which are only used at a function block call in the task configuration, will not be listed in the cross reference list.

1300
"File not found '<name>'"
The file, to which the global variable object is pointing, does not exist. Please check the path.

1301
"Analyze-Library not found! Code for analyzation will not be generated."
The analyze function is used, but the library analyzation.lib is missing. Add the library in the library manager.

1302
"New externally referenced functions inserted. Online Change is therefore no longer possible!"
Since the last download you have linked a library containing functions which are not yet referenced in the runtime system. For
this reason you have to download the complete project.

1400
"Unknown Pragma '<name>' is ignored!"
This pragma is not supported by the compiler. See keyword ‘pragma’ for supported directives.

1401
"The struct '<name>' does not contain any elements."
The structure does not contain any elements, but variables of this type allocate 1 Byte of memory.

1410
"'RETAIN' and 'PERSISTENT' do not have any effect in functions"
Remanent variables are handled like normal local variables.

1411
"Variable '<name>' in the variable configuration isn't updated in any task"
The top level instance of the variable is not referenced by a call in any task. Thus
it will not be copied from the process image.
Example:

Variable Configuration:

10-80 907 AC 1131/Stand: 02/03Error Messages and Warnings10

VAR_CONFIG
plc_prg.aprg.ainst.in AT %IB0 : INT;

END_VAR

plc_prg:
index := INDEXOF(aprg);

The program aprg is referenced but not called. Thus plc_prg.aprg.ainst.in never will
get the actual value of %IB0.

1500
"Expression contains no assignment. No code was generated."
The result of this expression is not used. For this reason there is no code generated for the whole expression.

1501
"String constant passed as 'VAR_IN_OUT': '<name>' must not be overwritten!"
The constant may not be written within the POU, because there no size check is possible.

1502
"Variable '<name>' has the same name as a POU. The POU will not be called!"
Rename variable or POU.
Beispiel:
PROGRAM a
...
VAR_GLOBAL

a: INT;
END_VAR
...

a; (* Not POU a is called but variable a is loaded. *)

1503
"The POU ‘<name>’ has no outputs. Box result is set to 'TRUE'."
The Output pin of a POU which has no outputs, is connected in FBD or KOP. The assignment automatically gets the value
TRUE.

1504
"’<name>’ (‘<number>’): Statement may not be executed due to the evaluation of the logical expression"
Eventually not all branches of the logic expression will be executed.
Example:
IF a AND funct(TRUE) THEN
If a has is FALSE then funct will not be called.

1505
"Side effect in '<name>'! Branch is probably not executed !"
The first input of the POU is FALSE, for this reason the side branch, which may come in at the second input, will not be
executed.

1506
"Variable '<name>' has the same name as a local action. The action will not be called!"
Rename the variable or the action.

1700
"Input box without assignment."
An input box is used in CFC which has no assignment. For this no code will be generated.

1800
"<name>(element #<element number>): Invalid watchexpression '<name>'"
The visualization element contains an expression which cannot be monitored. Check variable name and placeholder
replacements.

1801
"'<name> (number): No Input on Expression '<name>' possible"
In the configuration of the visualization object at field input a composed expression is used. Replace this by a single variable.

10-81907 AC 1131/Stand: 02/03 Error Messages and Warnings 10

1802
"<Visualization object>(Element number): Bitmap '<name>' was not found"
Make sure, that an external bitmap-file is available in that path which is defined in the visualization configuration dialog.

1900
"POU '<name>' (main routine) is not available in the library"
The Start-POU (z.B. PLC_PRG) will not be available, when the project is used as library.

1901
"Access Variables and Variable Configurations are not saved in a library!"
Access variables and variable configuration are not stored in the library.

1902
"'<name>': is no Library for the current machine type!"
The .obj file of the lib was generated for another device.

1903
"<name>: is no valid Library"
The file does not have the format requested for the actual target.

1904
"The constant '<Name>' hides a constant of the same name in a library"
In your project you have defined a constant which has the same name like one which is defined in a linked library. The library
variable will be overwritten !

Compiler Errors

3100
"Code too large. Maximum size: '<number>' Byte (<number>K)"
The maximum program size is exceeded. Reduce project size.

3101
"Total data too large. Maximum size: '<number>' Byte (<number>K)"
Memory is exceeded. Reduce data usage of the application.

3110
"Error in library file '<name>'."
The .hex file is not in INTEL Hex format.

3111
"Library '<name>' is too large. Maximum size: 64K"
The .hex file exceeds the set maximum size.

3112
"Nonrelocatable instruction in library."
The .hex file contains a nonrelocatable instruction. The library code cannot be linked.

3113
"Library code overwrites function tables."
The ranges for code and function tables are overlapping.

3114
"Library uses more than one segment."
The tables and the code in the .hex file use more than one segment.

3115
"Unable to assign constant to VAR_IN_OUT. Incompatible data types."

10-82 907 AC 1131/Stand: 02/03Error Messages and Warnings10

The internal pointer format for string constants cannot get converted to the internal pointer format of VAR_IN_OUT, because
the data are set "near" but the string constants are set " huge" or "far". If possible change these target settings.

3116
"Function tables overwrite library code or a segment boundary."
Code 166x: The external library cannot be used with the current target settings. These must be adapted resp. the library must be
rebuilt with appropriate settings.

3120
"Current code-segment exceeds 64K."
The currently generated code is bigger than 64K. Eventually to much initializing code is created.

3121
"POU too large."
A POU may not exceed the size of 64K.

3122
"Initialisation too large. Maximum size: 64K"
The initialization code for a function or a structure POU may not exceed 64K.

3123
"Data segment too large: segment '<Number><name>', size <size> bytes (maximum <number> bytes)"
Please contact your manufacturer.

3130
"User-Stack too small: '<number>' DWORD needed, '<number>' DWORD available."
The nesting depth of the POU calls is to big. Enter a higher stack size in the target settings or compile build project without
option ‚Debug’ (can be set in dialog ‘Project’ ‘Options’ ‘Build’).

3131
"User-Stack too small: '<number>' WORD needed, '<number>' WORD available."
Please contact the PLC manufacturer.

3132
"System-Stack too small: '<number>' WORD needed, '<number>' WORD available."
Please contact the PLC manufacturer.

3150
"Parameter <number> of function '<name>': Cannot pass the result of a IEC-function as string parameter to a C-
function."
Use a intermediate variable, to which the result of the IEC function is assigned.

3160
"Can't open library file '<name>'."
A library <name> is included in the library manager for this project, but the library file does not exist at the given path.

3161
"Library '<name>' contains no codesegment"
A .obj file of a library at least must contain one C function. Insert a dummy function in the .obj file, which is not defined in the
.lib file.

3162
"Could not resolve reference in Library '<name>'(Symbol '<name>', Class '<name>', Type '<name>')"
The .obj file contains a not resolvable reference to another symbol. Please check-the settings of the C-Compiler.

3163
"Unknown reference type in Library '<name>' (Symbol '<name>' , Class '<name>' , Type '<name>')"
The .obj file contains a reference type, which is not resolvable by the code generator. Please check-the settings of the C-
Compiler.

10-83907 AC 1131/Stand: 02/03 Error Messages and Warnings 10

3200
"<name> (<name>): Boolean expression to complex"
The temporary memory of the target system is insufficient for the size of the expression. Divide up the expression into several
partial expressions thereby using assignments to intermediate variables.

3202
"Stack overrun with nested string/array/structure function calls"
A nested function call CONCAT(x, f(i)) is used. This can lead to data loss. Divde up the call into two expressions.

3203
"Expression too complex (too many used adress registers)."
Divide up the assignment in several expressions.

3204
"A jump exceeds 32k Bytes"
Jump distances may not be bigger than 32767 bytes.

3205
"Internal Error: Too many constant strings"
In a POU there at the most 3000 string constants may be used.

3206
"Function block data exceeds maximal size"
A function block may produce maximum 32767 Bytes of code.

3207
"Array optimization"
The optimization of the array accesses failed because during index calculation a function has been called.

3208
"Conversion not implemented yet"
A conversion function is used, which is not implemented for the actual code generator.

3209
"Operator not implemented"
A operator is used, which is not implemented for this data type and the actual code generator. MIN(string1,string2).

3210
"Function '<name>' not found"
A function is called, which is not available in the project.

3211
"Max string usage exceeded"
A variable of type string can be used in one expression 10 times at the most.

3212
"Wrong library order at POU <POU name>"
The order of libraries for this POU does not match with that in the cslib.hex file. Correct the order accordingly. (only for 68K
targets, if the checking option is activated in the target file.)

3400
"An error occured during import of Access variables"
The .exp file contains an incorrect access variables section.

3401
"An error occured during import of variable configuration"
The .exp file contains an incorrect configuration variables section.

3402
"An error occured during import of global variables"
The .exp file contains an incorrect global variables section.

10-84 907 AC 1131/Stand: 02/03Error Messages and Warnings10

3403
"Could not import <name>"
The section for object <name> in the .exp file is not correct.

3404
"An error occured during import of task configuration"
The section for the task configuration the .exp file is not correct.

3405
"An error occured during import of PLC configuration"
The section for the PLC configuration in the .exp file is not correct.

3406
"Two steps with the name '<name'. Second step not imported."
The section for the SFC POU in the .exp file contains two steps with equal names. Rename one of the steps in the export file.

3407
"Predecessor step '<name>' not found"
The step <name> is missing in the .exp file.

3408
"Successor step '<name>' not found"
The step <name> is missing in the .exp file.

3409
"No successing transition for step '<´name>' "
In the .exp file a transition is missing, which requires step <name> as preceeding step.

3410
"No successing step for transition '<name>'"
In the .exp file a step is missing which requires the transition <name> as preceeding condition.

3411
"Step '<name>' not reachable from initial step"
In the .exp file the connection between step <name> and the initial step is missing.

3412
"Macro '<name>' not imported"
Check the export file.

3452
"The module '<name>' couldn't be created!"
The device file for module <name> does not fit to the current configuration. Eventually it has been modified since the
configuration has been set up in 907 AC 1131 or it is corrupted.

3453
"The channel '<name>' couldn't be created!"
The device file for channel <name> does not fit to the current configuration. Eventually it has been modified since the
configuration has been set up in 907 AC 1131 or it is corrupted.

3454
"The address '<name>' points to an used memory!"
Option 'Check for overlapping addresses' is activated in the dialog ‚Settings’ of the PLC configuration and an overlap has been
detected. Regard, that the area check is based on the size which results of the data types of the modules, not on the size which
is given by the entry ‚size’ in the configuration file.

3455
"Error during load: GSD-File '<name>' could not be found, but is referenced in hardware configuration!"
Eventually the device file required by the Profibus configuration is not in the correct directory. tting for configuration files in
‚Project' 'Options' 'Directories'.

10-85907 AC 1131/Stand: 02/03 Error Messages and Warnings 10

3456
"The profibus device '<name>' couldn't be created!"
The device file for module <name> does not fit to the current configuration. Eventually it has been modified since the
configuration has been set up in 907 AC 1131 or it is corrupted.

3457
"Error in module description!"
Please check the device file of this module.

3458
"The PLC-Configuration couldn't be created! Check the configuration files."
Check if all required configuration and device files are available in the correct path (see defined compile directory in 'Project'
'Options' /Directories)

3500
"No 'VAR_CONFIG' for '<name>'"
Insert a declaration for this variable in the global variable list which contains the 'Variable_Configuration'.

3501
"No address in 'VAR_CONFIG' for '<name>'."
Assign an address to this variable in the global variable list which contains the 'Variable_Configuration'.

3502
"Wrong data type for '<name>' in 'VAR_CONFIG"
In the global variables list which contains the ‚Variable_Configuration’ the variable is declared with a different data type than
in the POU.

3503
"Wrong data type for '<name>' in 'VAR_CONFIG'"
In the global variables list which contains the ‚Variable_Configuration’ the variable is declared with a different address than in
the POU.

3504
"Initial values are not supported for 'VAR_CONFIG”
A variable of the ‚Variable_Configuration’ is declared with address and initial value. But an initial value can only be defined
for input variables without address assignment.

3505
"’<name>’is no valid instance path"
The Variable_Configuration contains a nonexisting variable.

3506
"Access path expected"
In the global variable list for Access Variables the access path for a variable is not correct. Correct: <Identifier>:'<Access
path>':<Type> <Access mode>

3507
"No address specification for 'VAR_ACCESS'-variables"
The global variable list for Access Variables contains an address assignment for a variable. This is not allowed.
Valid variable definition: <Identifier>:'<Access path>':<Type> <Access mode>

3550
"Duplicate definition of identifier '<name>'"
There are two tasks are defined with an identic same name. Rename one of them.

3551
"The task '<name>' must contain at least one program call"
Insert a program call or delete task.

3554
"Task entry '<name>' must be a program or global function block instance"

10-86 907 AC 1131/Stand: 02/03Error Messages and Warnings10

In the field ‚Program call’ a function or a not defined POU is entered. Enter a valid program name.

3555
"The task entry '<name>' contains invalid parameters"
In the field ‚Append program call’ there are parameters used which do not comply with the declaration of the program POU.

3556
"Tasks are not supported by the currently selected target"
The currently defined task configuration cannot be used for the target system. Modify the task configuration correspondingly.

3557
"Maximum number of Tasks ('<number>') exceeded"
The currently defined number of tasks exceeds the maximum number allowed for the target system. Modify the task
configuration correspondingly. Attention: Do not edit the XML description file of the task configuration !

3558
"Priority of task '<name>' is out of valid range between '<lower limit>' and '<upper limit>'"
The currently defined priority for the task is not valid for for the target system. Modify the task configuration correspondingly.

3559
"Task '<name>': Interval-Tasks are not supported by the current target"
The current task configuration contains an interval task. This is not allowed by the for the target system. Modify the task
configuration correspondingly.

3561
"Task '<name>': event tasks are not supported by the current target"
The current task configuration contains event tasks which are not supported by the for the target system. Modify the task
configuration correspondingly.

3563
"The interval of task '<name>' is out of valid range between '<lower limit>' and '<upper limit>'"
Change the interval value in the configuration dialog for the task.

3566
"Maximum number of interval tasks ('<number>') exceeded"
The currently set target system does not allow as many interval tasks as defined at the moment. Change target or modify the
configuration correspondingly.

3570
"The tasks '<name>' and '<name>' share the same priority"
Modify the task configuration so that each task has a different priority.

3600
“Implicit variables not found!”
Use command ‚Rebuild all’. If nevertheless you get the error message again please contact the PLC manufacturer.

3601
"<name> is a reserved variable name"
The given variable is declared in the project, although it is reserved for the codegenerator. Rename the variable.

3610
" '<name>' not supported"
The given feature is not supported by the current version of the programming system.

3611
"The given compile directory '<name>' is invalid"
There is an invalid directory given in the ‚Project’ ‚Options’ ‚Directories’ for the Compile files.

3612
"Maximum number of POUs (<number>) exceeded! Compile is aborted."

10-87907 AC 1131/Stand: 02/03 Error Messages and Warnings 10

Too many POUs and data types are used in the project. Modify the maximum number of POUs in the Target Settings /
Memory Layout.

3613
"Build canceled"
The compile process was cancelled by the user.

3614
"Project must contain a POU named '<name>' (main routine) or a taskconfiguration"
Create an init POU of type Program (e.g. PLC_PRG) or set up a task configuration.

3615
"<name> (main routine) must be of type program"
A init POU (e.g. PLC_PRG) is used in the project which is not of type Program.

3616
"Programs musn't be implemented in external libraries"
The project which should be saved as an external library contains a program. This will not be available, when the library will
be used.

3617
"Out of memory"
Increase the virtual memory capacity of your computer.

3618
"BitAccess not supported in current code generator!"
The code generator for the currently set target system does not support bit access on variables.

3700
" POU with name ‘<name>' is already in library '<name>'"
A POU name is used in the project, which is already used for a library POU. Rename the POU.

3701
"Name used in interface is not identical with POU Name"
Use command ‘Project’ ‘Rename object’ to rename the POU in the object organizer, or change the name of the POU in the
declaration window. There the POU name has to be placed next to one of the keywords PROGRAM, FUNCTION or
FUNCTIONBLOCK..

3702
"Overflow of identifier list"
Maximum 100 identifiers can be entered in one variable declaration.

3703
"Duplicate definition of identifier '<name>'"
Take care that there is only one identifier with the given name in the declaration part of the POU.

3704
"data recursion: "<POU 0> -> <POU 1> -> .. -> <POU 0>"
A FB instance is called, which is calling itself.

3705
"VAR_IN_OUT' not allowed in top level POU if no task configuration is available"
Set up a task configuration or make sure that no VAR_IN_OUT variables are used in PLC_PRG.

3720
"Address expected after 'AT'"
Add a valid address after the keyword AT or modify the keyword.

3721
"Only 'VAR' and 'VAR_GLOBAL' can be located to addresses"
Put the declaration to a VAR or VAR_GLOBAL declaration area.

10-88 907 AC 1131/Stand: 02/03Error Messages and Warnings10

3722
"Only 'BOOL' variables allowed on bit addresses"
Modify the address or modify the type of the variable to which the address is assigned.

3726
"Constants can not be laid on direct addresses"
Modify the address assignment correspondingly.

3727
"No array declaration allowed on this address"
Modify the address assignment correspondingly.

3728
"Invalid address: '<address>'"
This address is not supported by the PLC configuration. Check PLC configuration resp. modify address.

3729
"Invalid type '<name>' at address: '<name>' "
The type of this variable cannot be placed on the given address. Example: For a target system working with ‘alignment 2’ the
following declaration is not valid: var1 AT %IB1:WORD;

3740
"Invalid type: '<name>' "
An invalid data type is used in a variable declaration.

3741
"Expecting type specification"
A keyword or an operator is used instead of a valid type identifier.

3742
"Enumeration value expected"
In the definition of the enumeration type an identifier is missing after the opening bracket or after a comma between the
brackets.

3743
"Integer number expected"
Enumerations can only be initialized with numbers of type INT.

3744
"Enum constant '<name>' already defined"
Check if you have followed the following rules for the definition of enumeration values:
- Within one enum definition all values have to be unique.
- Within all global enum definitions all values have to be unique.
- Within all local enum definitions all values have to be unique.

3745
"Subranges are only allowed on Integers!”
Subrange types can only be defined resting on integer data types.

3746
"Subrange '<name>' is not compatible with Type '<name>'"
One of the limits set for the range of the subrange type is out of the range which is valid for the base type.

3747
"unknown string length: '<name>'"
There is a not valid constant used for the definition of the string length.

3748
"More than three dimensions are not allowed for arrays"
More than the allowed three dimensions are given in the definition of an array. If applicable use an ARRAY OF ARRAY.

10-89907 AC 1131/Stand: 02/03 Error Messages and Warnings 10

3749
"lower bound '<name>' not defined"
There is a not defined constant used to define the lower limit for a subrange or array type.

3750
"upper bound '<name>' not defined"
There is a not defined constant used to define the upper limit for a subrange or array type.

3751
"Invalid string length '<number of characters>'"
The here defined string length exceeds the maximum value which is defined for the target system.

3760
"Error in inital value"
Use an initial value which corresponds to the type definition. To change the declaration you can use the declaration dialog for
variables (Shift/F2 or 'Edit''Autodeclare').

3761
"'VAR_IN_OUT' variables must not have an inital value."
Remove the initialization at the declaration of the VAR_IN_OUT variable.

3780
"'VAR', 'VAR_INPUT', 'VAR_OUTPUT' or 'VAR_IN_OUT' expected"
The first line following the name of a POU must contain one of these keywords.

3781
"'END_VAR' or identifier expected"
Enter a valid identifier of a END_VAR at the beginning of the given line in the declaration window.

3782
"Unexpected end"
In the declaration editor: Add keyword END_VAR at the end of the declaration part.
In the texteditor of the programming part: Add an instruction which terminates the last instruction sequence (e.g. END_IF).

3783
"END_STRUCT' or identifier expected"
Ensure that the type declaration is terminated correctly.

3784
"The current target doesn't support attribute <attribute name>"
The target system does not support this type of variables (e.g. RETAIN, PERSISTENT)

3800
"The global variables need too much memory. Increase the available memory in the project options."
Open the project options dialog category 'Build' and increase the 'Number of data' segments. If the error message occurs again
nevertheless, please contact your PLC manufacturer.

3801
"The variable '<name>' is too big. (<size> bytes)"
The variable uses a type which is bigger than 1 data segment. Please contact your PLC manufacturer.

3802
"Out of retain memory. Variable '<name>', <number> bytes."
The memory space available for Retain variables is exhausted. Please contact your PLC manfacturer. (Please regard: If retain
variables are used in an function block instance, the complete instance POU will be stored in the retain memory area !)

3803
"Out of global data memory. Variable '<name>', ‚<number>’ bytes."
The memory space available for global variables is exhausted. Please contact your PLC manfacturer.

10-90 907 AC 1131/Stand: 02/03Error Messages and Warnings10

3820
"'VAR_OUTPUT' and 'VAR_IN_OUT' not allowed in functions"
In a function no output or in_output variables may be defined.

3821
"At least one input required for functions"
Add at least on input parameter for the function.

3840
"Unknown global variable '<name>'!"
In the POU a VAR_EXTERNAL variable is used, for which no global variable declared.

3841
"Declaration of '<name>' do not match global declaration!"
The type given in the declaration of the VAR_EXTERNAL variable is not the same as that in the global declaration.

3900
"Multiple underlines in indentifier"
Remove multiple underlines in the identifier name.

3901
"At most 4 numerical fields allowed in addresses"
There is a direct assignment to an address which has more than four levels. (e.g. %QB0.1.1.0.1).

3902
"Keywords must be uppercase"
Use capital letters for the keyword or activate option ‚Autoformat’ in ‚Project’ ‚Options’.

3903
"Invalid duration constant"
The notation of the constant does not comply with the IEC61131-3 format.

3904
"Overflow in duration constant"
The value used for the time constant cannot be represented in the internal format. The maximum value which is representable
is t#49d17h2m47s295ms.

3905
"Invalid date constant"
The notation of the constant does not comply with the IEC61131-3 format.

3906
"Invalid time of day constant"
The notation of the constant does not comply with the IEC61131-3 format.

3907
"Invalid date and time constant"
The notation of the constant does not comply with the IEC61131-3 format.

3908
"Invalid string constant"
The string constant contains an invalid character.

4000
"Identifier expected"
Enter a valid identifier at this position.

4001
"Variable '<name>' not declared"
Declare variable local or global.

10-91907 AC 1131/Stand: 02/03 Error Messages and Warnings 10

4010
"Type mismatch: Cannot convert '<name>' to '<name>'."
Check what data type the operator expects (Browse Online Help for name of operator) and change the type of the variable
which has caused the error, or select another variable.

4011
"Type mismatch in parameter '<name>' of '<name>': Cannot convert '<name>' to '<name>'."
The data type of the actual parameter cannot be automatically converted to that of the formal parameter. Use a type conversion
or use another variable type.

4012
"Type mismatch in parameter '<name>' of '<name>': Cannot convert '<name>' to '<name>'."
A value with the invalid type <Typ2> is assigned to the input variable '<name>'. Replace the variable or constant to one of type
<Typ1> or use a type conversion respectively a constant with type-prefix..

4013
"Type mismatch in output '<name>' of '<name>': Cannot convert '<name>' to '<name>'."
A value with the invalid type <Typ2> is assigned to the output variable '<name>'. Replace the variable or constant to one of
type <Typ1> or use a type conversion respectively a constant with type-prefix..

4014
"Typed literal: Cannot convert '<name>' to '<name>'"
The type of the constant is not compatible with the type of the prefix.
Example: SINT#255

4015
"Data type ‘<name>' illegal for direct bit access"
Direct bit addressing is only allowed for Integer- and Bitstring datatypes. You are using a variable var1 of type Typ
REAL/LREAL or a constant in bit access <var1>.<bit>.

4016
"Bit index '<number>' out of range for variable of type '<name>'"
You are trying to access a bit which is not defined for the data type of the variable.

4017
"'MOD' is not defined for 'REAL'"
The operator MOD can only be used for integer and bitstring data types.

4020
"Variable with write access or direct address required for 'ST', 'STN', 'S', 'R'"
Replace the first operand by a variable with write access.

4021
"No write access to variable '<name>' allowed"
Replace the variable by a variable with write access.

4022
"Operand expected"
Add an operand behind the command.

4023
"Number expected after '+' or '-'"
Enter a digit.

4024
"<operator 0> or <operator 1> or ... expected before '<name>'"
Enter a valid operand at the named position.

4025
"':=' or '=>' expected before '<name>'"
Enter one of the both operators at the named position.

10-92 907 AC 1131/Stand: 02/03Error Messages and Warnings10

4026
"'BITADR' expects a bit address or a variable on a bit address"
Use a valid bit address (e.g. %IX0.1).

4027
"Integer number or symbolic constant expected"
Enter a integer number or the identifier of a valid constant.

4028
"'INI' operator needs function block instance or data unit type instance"
Check the data type of the variable, for which the INI operator is used.

4029
"Nested calls of the same function are not possible."
At not reentrant target systems and in simulation mode a function call may not contain a call of itself as a parameter.
Example: fun1(a,fun1(b,c,d),e);
Use a intermediate table.

4030
"Expressions and constants are not allowed as operands of 'ADR'"
Replace the constant or the expression by a variable or a direct address.

4032
"’<number>’ operands are too few for '<name>'. At least ‘<number>’ are needed"
Check how many operands the named operator requires and add the missing operands.

4033
"’<number>’ operands are too many for '<name>'. At least ‘<number>’ are needed"
Check how many operands the named operator requires and remove the surplus operands.

4034
"Division by 0"
You are using a division by 0 in a constant expression. If you want to provocate a runtime error, use – if applicable - a variable
with the value 0.

4035
"ADR must not be applied on 'VAR CONSTANT' if 'replaced constants' is activated"
An address access on constants for which the direct values are used, is not possible. If applicable, deactivate the option
‚Replace Constants’ in ‚Project’ ‚Options’ ‚Build’.

4040
"Label '<name>' is not defined"
Define a label with the name <LabelName> or change the name <LabelName> to that of a defined label.

4041
"Duplicate definition of label '<name>'"
The label '<name>' is multiple defined in the POU. Rename the label or remove one of the definitions.

4042
"No more than '<number>' labels in sequence are allowed"
The number of jump labels is limited to '<Anzahl>'. Insert a dummy instruction.

4043
"Format of label invalid. A label must be a name optionally followed by a colon."
The label name is not valid or the colon is missing in the definition.

4050
"POU '<name>' is not defined"
Define a POU with the name '<name>' using the command ‘Project’ ‘Add Object’ or change '<name>' to the name of a
defined POU.

10-93907 AC 1131/Stand: 02/03 Error Messages and Warnings 10

4051
"'<name>' is no function"
Use instead of <name> a function name which is defined in the project or in the libraries.

4052
"'<name>' must be a declared instance of FB '<name>'"
Use an instance of data type '<name>' which is defined in the project or change the type of <Instance name> to '<name>' .

4053
"'<name>' is no valid box or operator"
Replace '<name>' by the name of a POU or an operator defined in the project.

4054
"POU name expected as parameter of 'INDEXOF'"
The given paramter is not a valid POU name.

4060
"'VAR_IN_OUT' parameter '<name>' of '<name>' needs variable with write access as input"
To VAR_IN_OUT parameters variables with write access have to be handed over, because a VAR_IN_OUT can be modified
within the POU.

4061
"'VAR_IN_OUT' parameter '<name>' of '<name>' must be used."
A VAR_IN_OUT parameter must get handed over a variable with write access, because a VAR_IN_OUT can be modified
within the POU

4062
"No external access to 'VAR_IN_OUT' parameter '<name>' of '<name>'."
VAR_IN_OUT Parameter only may be written or read within the POU, because they are handed over by reference.

4063
"'VAR_IN_OUT' parameter '<name>' of '<name>' must not be used with bit addresses."
A bit address is not a valid physical address. Hand over a variable or a direct non-bit address.

4064
"'VAR_IN_OUT' must not be overwritten in local action call!"
Delete the parameters set for the VAR_IN_OUT variable in the local action call.

4070
"The POU contains a too complex expression"
Decrease nesting depth by dividing up the expression into several expressions. Use intermediate variables for this purpose.

4071
"Network too complex"
Divide up the network into several networks.

4100
"'^' needs a pointer type"
You are trying to dereference a variable which is not declared as a pointer.

4110
"'[<index>]' needs array variable"
[<index>] is used for a variable which is not declared as an array with ARRAY OF.

4111
"Index expression of an array must be of type 'INT'"
Use an expression of the correct type or a type conversion.

4112
"Too many indexes for array"
Check the number of indices (1, 2, or 3), for which the array is declared and remove the surplus.

10-94 907 AC 1131/Stand: 02/03Error Messages and Warnings10

4113
"Too few indexes for array"
Check the number of indices (1, 2, or 3), for which the array is declared and add the missing ones.

4114
"One of the constant indizes is not within the array range"
Make sure that the used indices are within the bounds of the array.

4120
"'.' needs structure variable""
The identifier on the left hand of the dot must be a variable of type STRUCT or FUNCTION_BLOCK or the name of a
FUNCTION or a PROGRAM.

4121
" '<name>' is not a component of <object name>"
The component '<name>' is not included in the definition of the object <object name>.

4122
"'<name>' is not an input variable of the called function block"
Check the input variables of the called function block and change ‘<name>' to one of these.

4200
"'LD' expected"
Insert at least one LD instruction after the jump label in the IL editor.

4201
"IL Operator expected"
Each IL instruction must start with an operator or a jump label.

4202
"Unexpected end of text in brackets"
Insert a closing bracket after the text.

4203
"<name> in brackets not allowed"
The operator <name> is not valid in a IL bracket expression.
(not valid are: 'JMP', 'RET', 'CAL', 'LDN', 'LD', 'TIME')

4204
"Closing bracket with no corresponding opening bracket"
Insert an opening bracket or remove the closing one.

4205
"No comma allowed after ')'"
Remove comma after closing bracket.

4206
"Label in brackets not allowed"
Shift jump label so that it is outside of the brackets.

4207
"'N' modifier requires operand of type 'BOOL','BYTE','WORD' or 'DWORD'"
The N modifier requires a data type, for which a boolean negation can be executed.

4208
"Conditional Operator requires type 'BOOL'"
Make sure that the expression gives out a boolean result or use a type conversion.

4209
"Function name not allowed here"
Replace the function call by a variable or a constant.

10-95907 AC 1131/Stand: 02/03 Error Messages and Warnings 10

4210
"'CAL', 'CALC' and 'CALN' require a function block instance as operand"
Declare an instance of the function block which you want to call.

4211
"Comments are only allowed at the end of line in IL"
Shift the comment to the end of the line or to an extra line.

4212
"Accumulator is invalid before conditional statement"
The accu is not defined. This happens if an instruction is preceeding which does not submit a result (e.g. 'CAL').

4213
"'S' and 'R' require 'BOOL' operand"
Use a boolean variable at this place.

4250
"Another 'ST' statement or end of POU expected"
The line does not start with a valid ST instruction.

4251
"Too many parameters in function '<name>'"
There are more parameters given than are declared in the definition of the function.

4252
"Too few parameters in function '<name>'"
There are less parameters given than are declared in the definition of the function.

4253
"'IF' or 'ELSIF' require 'BOOL' expression as condition"
Make sure that the condition for IF or ELSIF is a boolean expression.

4254
"'WHILE' requires 'BOOL' expression as condition"
Make sure that the condition following the ‘WHILE’ is a boolean expression.

4255
"'UNTIL' requires 'BOOL' expression as condition"
Make sure that the condition following the ‘UNTIL’ is a boolean expression.

4256
"'NOT' requires 'BOOL' operand"
Make sure that the condition following the ‘NOT’ is a boolean expression.

4257
"Variable of 'FOR' statement must be of type 'INT'"
Make sure that the counter variable is of an integer or bitstring data type (e.g. DINT, DWORD).

4258
"Expression in 'FOR' statement is no variable with write access"
Replace the counter variable by a variable with write access.

4259
"Start value in 'FOR' statement is no variable with write access"
The start value in the ‚FOR' instruction must be compatible to the type of the counter variable.

4260
"End value of 'FOR' statement must be of type 'INT'"
The end value in the ‚FOR' instruction must be compatible to the type of the counter variable.

10-96 907 AC 1131/Stand: 02/03Error Messages and Warnings10

4261
"Increment value of 'FOR' statement must be of type 'INT'"
The incremental value in the ‚FOR' instruction must be compatible to the type of the counter variable.

4262
"'EXIT' outside a loop"
Use 'EXIT' only within 'FOR', 'WHILE' or 'UNTIL' instructions.

4263
"Expecting Number, 'ELSE' or 'END_CASE'"
Within a ‘CASE' expression you only can use a number or a 'ELSE' instruction or the ending instruction 'END_CASE'.

4264
"'CASE' requires selector of an integer type"
Make sure that the selector is of an integer or bitstring data type (e.g. DINT, DWORD).

4265
"Number expected after ','"
In the enumeration of the CASE selectors there must be inserted a further selector after a comma.

4266
"At least one statement is required"
Insert an instruction, at least a semicolon.

4267
"Function block call requires function block instance"
The identifier in the functionblock call is no instance. Declare an instance of the desired functionblock or use the name of an
already defined instance.

4268
"Expression expected"
At this position you must enter an expression.

4269
"'END_CASE' expected after 'ELSE'-branch"
Terminate the 'CASE' instruction after the 'ELSE' part with an 'END_CASE'.

4270
"'CASE' constant '<name>' already used"
A 'CASE' selector may only be used once within a ‘CASE' instruction.

4271
"The lower border of the range is greater than the upper border."
Modify the area bounds for the selectors so that the lower border is not highte than the upper border.

4272
"Exptecting parameter '<name>' at place <name> in call of '<name>'!"
You can edit a function call in that way, that also the parameter names are contained, not only the parameter values. But
nevertheless the position (sequence) of the parameters must be the same as in the function definition.

4273
Parts of the 'CASE'-Range '<range>' already used in Range '<range>'
Make sure that the areas for the selectors which are used in the CASE instruction, don’t overlap.

4274
"Multiple 'ELSE' branch in 'CASE' statement"
A CASE instruction may not contain more than one ‚ELSE' instruction.

4300
"Jump requires 'BOOL' as input type"
Make sure that the input for the jump respectively the RETURN instruction is a boolean expression.

10-97907 AC 1131/Stand: 02/03 Error Messages and Warnings 10

4301
"POU '<name>' need exactly <number> inputs"
The number of inputs does not correspond to the number of VAR_INPUT and VAR_IN_OUT variables which is given in the
POU definition.

4302
"POU '<name>' need exactly <number> outputs"
The number of outputs does not correspond to the number of VAR_OUTPUT variables which is given in the POU definition..

4303
"<name>' is no operator"
Replace '<name>' by a valid operator.

4320
"Non-boolean expression '<name>' used with contact"
The switch signal for a contact must be a boolean expression.

4321
"Non-boolean expression '<name>' used with coil"
The output variable of a coil must be of type BOOL.

4330
"Expression expected at input 'EN' of the box '<name>' "
Assign an input or an expression to the input EN of POU '<name>’.

4331
"Expression expected at input '<number>' of the box '<name>' "
The input <number> of the operator POU is not assigned.

4332
Expression expected at input '<name>' of the box '<name>'"
The input of the POU is of type VAR_IN_OUT and is not assigned.

4333
"Identifier in jump expected"
The given jump mark is not a valid identifier.

4334
"Expression expected at the input of jump"
Assign a boolean expression to the input of the jump. If this is TRUE, the jump will be executed.

4335
"Expression expected at the input of the return"
Assign a boolean expression to the input of the RETURN instruction. If this is TRUE, the jump will be executed.

4336
"Expression expected at the input of the output"
Assign a suitable expression to the output box.

4337
"Identifier for input expected"
Insert a valid expression or identifier in the input box.

4338
"Box '<name>' has no inputs"
To none of the inputs of the operator POU '<name>' a valid expression is assigned.

4339
"Typemismatch at output: Cannot convert '<name>' to '<name>'.
The type of the expression in the output box is not compatible to that of the expression which should be assigned to it.

10-98 907 AC 1131/Stand: 02/03Error Messages and Warnings10

4340
"Jump requires 'BOOL' as input type"
Make sure that the input for the jump is a boolean expression.

4341
"Return requires a boolean input"
Make sure that the input for the RETURN instruction is a boolean expression.

4342
"Expression expected at input 'EN' of the box '<name>'"
Assign a valid boolean expression to the EN input of the box.

4343
"Values of Constants: ‘<name>’"
Input '<name>' of box '<name>' is declared as VAR_INPUT CONSTANT. But to this POU box an expression has been
assigned in the dialog 'Edit Parameters' which is not type compatible.

4344
"'S' and 'R' require 'BOOL' operand"
Insert a valid boolean expression after the Set resp. Reset instruction.

4345
"Invalid Type for parameter '<name>' of '<name>': Cannot convert '<type>' to '<type>'."
An expression is assigned to input '<name>' of POU box '<name>' which is not type compatible.

4346
"Not allowed to use a constant as an output"
You can only assign an output to a variable or a direct address with write access.

4347
"'VAR_IN_OUT' parameter needs variable with write access as input"
To VAR_IN_OUT parameters only variables with write access can be handed over, because these can be modified within the
POU.

4350
"An SFC-Action can not be accessed from outside!"
SFC actions only can be called within the SFC POU in which they are defined.

4351
"Step name is no identifier: '<name>'"
Rename the step or choose a valid identifier as step name.

4352
"Extra characters following valid step name:'<name>'"
Remove the not valid characters in the step name.

4353
"Step name duplicated: '<name>'"
Rename one of the steps.

4354
"Jump to undefined Step: '<name>'"
Choose an existent step name as aim of the jump resp. insert a step with name ‚<name>’.

4355
"A transition must not have any side effects (Assignments, FB-Calls etc.)"
A transition must be a boolean expression.

4356
"Jump without valid Step Name: '<name>' "
Use a valid identifier as aim (mark) of the jump.

10-99907 AC 1131/Stand: 02/03 Error Messages and Warnings 10

4357
"IEC-Library not found"
Check whether the library IECSFC_S90_V41.LIB is inserted in the library manager and whether the library paths defined in
‘Project’ ‘Options’ ‘Paths’are correct.

4358
"Action not declared: '<name>'"
Make sure that in the object organizer the action of the IEC step is inserted below the SFC POU and that in the editor the
action name is inserted in the box on the right hand of the qualifier.

4359
"Invalid Qualifier: '<name>'"
In the box on the left hand of the action name enter a qualifier for the IEC action.

4360
"Time Constant expected after qualifier '<name>'"
Enter next to the box on the left hand of the action name a time constant behind the qualifier.

4361
"'<name>' is not the name of an action"
Enter next to the box on the right hand of the qualifier the name of an action or the name of a variable which is defined in the
project.

4362
"Nonboolean expression used in action: '<name>'"
Insert a boolean variable or a valid action name.

4363
"IEC-Step name already used for variable: '<name>'"
Please rename the step or the variable.

4364
"A transition must be a boolean expression"
The result of the transition expression must be of type BOOL.

4365
"Time Constant expected after qualifier '<name>'"
Open dialog ‚step attributes’ for the step '<name>' and enter a valid time variable or time constant

4366
"The label of the parallel branch is no valid identifier: '<name>'"
Enter a valid identifier next to the triangle which marks the jump label.

4367
"The label '<name>' is already used"
There is already a jump label or a step with this name. Please rename correspondingly.

4368
"Action '<name>' is used in multiple step chains, where one is containing the other!"
The action '<name>' is used in the POU as well as in one or several actions of the POU.

4369
"Exactly one network requried for a transition"
There are used several FBD resp. LD networks for a transition. Please reduce to 1 network.

4370
"Additional lines found after correct IL-transition"
Remove the not needed lines at the end of the transition.

4371
"Invalid characters following valid expression: '<name>"

10-100 907 AC 1131/Stand: 02/03Error Messages and Warnings10

Remove the not needed characters at the end of the transition.

4372
"Step '<name>': Time limit needs type 'TIME'"
Define the time limits of the step in the step attributes by using a variable of type TIME or by a time definition in correct
format (e.g "t#200ms").

4373
"IEC-actions are only allowed with SFC-POUs"
There is an action assigned to a non-SFC-POU (see in the Object Organizer), which is programmed in SFC and which contains
IEC actions. Replace this action by one which contains no IEC actions.

4374
"Step expected instead of transition '<name>'"
The SFC POU is corrupt, possibly due to any export-import actions.

4375
Import / conversion of POU '<name>' contains errors resp. is not complete."
The SFC POU is corrupt, possibly due to any export-import actions.

4376
"Step expected after transition '<name>'
The SFC POU is corrupt, possibly due to any export-import actions.

4377
"Transition expected after step '<name>'"
The SFC POU is corrupt, possibly due to any export-import actions.

4500
"Unrecognized variable or address"
The watch variable is not declared within the project. By pressing <F2> you get the input assistant which lists the declared
variables.

4501
"Extra characters following valid watch expression"
Remove the surplus signs.

4520
"Error in Pragma: Flag expected before '<name>'!"
The pragma is not correct. Check whether ‘<name>' is a valid flag.

4521
"Error in Pragma: Unexpected element '<name>'!"
Check whether pragma is composed correctly.

4522
"flag off' pragma expected!"
The pragma has not been switched off, insert a 'flag off' command.

4900
"Invalid type for conversion"
You are using a type conversion which is not supported by the currently chosen codegenerator.

i907 AC 1131/Stand: 02/03 Index 10

11 Index

9
907 AC 1131 1-1

A
ABS 10-40
Absolute Value 10-40
AC1131 operating version 7-31
Access rights 4-59
ACOS 10-43
Action 2-8, 2-20, 2-21, 3-8, 4-69
Action Init 3-6
Active step 2-22
ADD 10-17
Address Function 10-32
Addresses 10-63
ADR 10-32
ALIAS 10-12
Alternative Branch in SFC 2-26, 5-41, 5-42
AND 10-21
Arc cosine 10-43
Arc sine 10-26 10-43
Arc tangent 10-44
Argument 2-2, 2-4
ARRAY 10-8
ASIN 10-43
Assignment 2-14
Assignment Combs 5-30
Assignment operator 2-16
AT Declaration 5-7
ATAN 10-44
Auto Load 4-6
Auto Save 4-6
Autodeclaration 4-8, 5-9
Autoformat 4-8

B
Backup, automatic 4-6
Batch commands 10-67
Binary file of the application 4-14
binary symbol information 4-23
Binding of ST operators 2-13
Bistable Function Blocks 10-49
Bit addressing 10-63
Bit-addressed variables 5-25
Bitmap 7-4, 7-34
Bitvalues 4-9
Body 5-1, 5-21, 5-22, 5-33
Bookmark in Help 4-106
BOOL 10-7
BOOL Constants 10-59
BOOL_TO Conversions 10-33
Breakpoint 1-2, 2-31, 5-18, 5-19
Breakpoint Dialog Box 4-85
Breakpoint position 4-84

ii 907 AC 1131/Stand: 02/03Index10

Browser ini-file 6-13
Build 4-13, 4-34
BYTE 10-7
BYTE Constants 10-60

C
CAL 10-33
CALC 2-11
Call tree 4-35, 4-69
Calling a function 2-2
Calling a function block 2-4, 2-14
Calling function blocks in ST 2-16
Calling POUs 5-17
Callstack in Taskconfiguration 6-36
CASE 2-15
CASE instruction 2-17
CFC 2-27
Changing connections in CFC 5-58
Check 4-35, 4-51
Check in 4-22
Check In 4-62
Check out 4-21
CheckBounds 2-2
CheckDivByte 2-2
CheckDivDWord 2-2
CheckDivReal 2-2
CheckDivWord 2-2
CheckRangeSigned 2-3, 10-13
CheckRangeUnsigned 2-3, 10-13
Coil 2-29, 5-36
Collapse Node 4-55
Colors 4-10, 7-19
Colorvariables 7-20
Command file 10-67
Command Line 10-67
Comment 5-12, 5-24
Communication

Symbol interface 4-17
Communications Parameters Gateway 4-93
Comparing projects 4-44
Compile File options 4-22
compile files in data base 4-19
Compress 6-42
CONCAT 10-47
Concatenation 10-47
Concurrent Access 4-35
Configure element 7-13
Connection marker in CFC 5-59
CONSTANT 5-6
Constants 5-6
Contact 2-29, 5-34
Content Operator 10-10, 10-33
Context menu 4-4
Context Sensitive Help 4-107
Continuous function chart editor 2-27
Controller 4-81
Conversion of Integral Number Types 10-35
Conversions of types 10-33
Convert object 4-57
Copy 4-72
Copy in Help 4-105

iii907 AC 1131/Stand: 02/03 Index 10

Copying in CFC 5-57
Copying in FBD 5-31
COS 10-42
Cosine 10-42
Counter 10-53
Create Backup 4-6
Create binary symbol information 4-23
Create boot project 4-23
Create bootproject 4-99
Creating connections in CFC 5-57
Cross reference list 4-70
Cross-reference list 4-35
CTD 10-53
CTU 10-53
CTUD 10-54
Cut 4-72
Cutting in FBD 5-31

D
Data base commands 4-60

Add Shared Objects 4-67
Check In 4-62
Check Out 4-62
Define 4-62
Get All Latest Versions 4-65
Get Latest Version 4-62
Label Version 4-66
Login 4-67
Multiple Check In 4-65
Multiple Check Out 4-65
Multiple Define 4-64
Multiple Undo Check Out 4-65
Project Version History 4-66
Refresh Status 4-67
Show Differences 4-63
Show Version History 4-63
Undo Check Out 4-63

Data base functions 4-19
Data Base Link 4-19
data base object category 4-19
Data types 2-9, 4-2, 10-7
database project 4-20
DATE 10-8
DATE Constants 10-59
DATE_AND_TIME 10-8
DATE_AND_TIME Constants 10-60
DATE_TO Conversions 10-38
DDE Interface 8-1
Debugger 5-18
Debugging 2-30, 4-14, 5-25
Declaration 3-4, 5-3

Array 5-10
Field 5-10
flag 5-13

Declaration Editor 5-3
Declaration Part 2-1, 5-1, 5-3, 5-21, 5-22, 5-33
Declarations as tables 4-8, 5-12
Declare Variable 4-79
Declare, automatic 4-8, 5-9
Decrementer 10-53
Defined Data Types 10-8

iv 907 AC 1131/Stand: 02/03Index10

Delete 4-74
DELETE 10-48
Deleting a Transition 5-44
Deleting an Action 5-44
Deleting connections in CFC 5-58
Deleting in FBD 5-31
Dereferencing 10-10, 10-33
Desktop 4-9
DINT 10-7
DINT Constants 10-60
Directory 4-11
DIV 10-18
Document 4-33, 4-41
Document Frame 6-5
Dokumentvorlage 6-6
Download 4-16, 4-83, 4-99
Download-Information 4-36
Drag&Drop 4-54
DT 10-8
DT_TO Conversions 10-38
DWORD 10-7
DWORD Constants 10-60

E
Edit Menu

Copy 4-72
Cut 4-72, 5-32
Declare Variable 4-79
Delete 4-74
Find 4-74
Find next 4-75
Input Assistant 4-77
Makros 4-80
Next error 4-79
Paste 4-73, 5-32
Previous error 4-80
Redo 4-71
Replace 4-75
Undo 4-71

Editing functions 4-71
Editor options 4-7
Editors 5-1, 5-21, 5-22, 5-33
Einfügen in KOP 5-38
EN Input 2-30, 5-36
EN POU 2-30
END_PROGRAM 2-7
END_TYPE 10-11, 10-12
Engineering Interface 9-1
ENI 9-1

Open file from ENI 4-26
ENI Admin 9-2
ENI Control 9-2
ENI object categories 9-3
ENI Server 9-1
ENI Server Suite 9-2
Entering Trace Variables 6-37
Entry action 5-43
Entry action 2-22
Enumeration 10-11
EQ 10-31
EXIT 2-15, 2-20

v907 AC 1131/Stand: 02/03 Index 10

Exit action 5-43
Exit action 2-22
EXP 10-41
Expand Node 4-55
Exponential Function 10-41
Exponentiation 10-44
Export 4-43
Expression 2-12
EXPT 10-44
EXTERNAL 5-6
External library 4-28
External Library 6-8
External variables 5-6
Extras Menu

Accept access rights 4-48
Accept change 4-48
Accept changed item 4-48
Accept properties 4-48
Add label to parallel branch 5-43
Align 7-8
Associate Action 5-47
Auto Read 6-39
Back all macro level 5-65
Back one macro level 5-65
Callstack 6-36
Clear Action/Transition 5-44
Clear Background Bitmap 8-12 7-41
Compress 6-42
Configure 7-13
Connection marker 5-59
Create macro 5-63
Cursor Mode 6-40
Dahinter Einfügen 5-38
Display order 5-60
Edit macro 5-64
Element list 7-8
EN/ENO 5-55
Expand macro 5-65
Insert above 5-38
Insert below 5-38
Keyboard Usage 7-41, 7-45
Link Docuframe File 6-6
List of Placeholders 7-12
Load Trace 6-42
Load Watch List 6-45
Make Docuframe File 6-6
Monitoring Active 6-46
Monitoring Options 5-18
Multi Channel 6-41
Negate 5-30, 5-54
Negation 5-39
Next difference 4-47
Open instance 5-2
Options 5-24, 5-46
Order - One backwards 5-62
Order - One forwards 5-61
Order – To the beginning 5-62
Order – To the end 5-62
Order everything according to data flow 5-62
Order topologically 5-60
Paste after 5-44
Paste Parallel Branch (right) 5-43

vi 907 AC 1131/Stand: 02/03Index10

Previous difference 4-47
Properties 5-56, 6-9
Read Receipt 6-46
Read Trace 6-39
Rename Watch List 6-44
Save Trace 6-42
Save Watch List 6-44
Select All 5-57
Select Background Bitmap 7-41
Send to Back 7-8
Send to Front 7-8
Set Debug Task 6-35
Set/Reset 5-30, 5-39, 5-55
Settings 7-38
Show grid 6-41
Start Trace 6-38
Step Attributes 5-45
Stop Trace 6-39
Stretch 6-41
Time Overview 5-46
Trace Configuration 6-37
Trace in ASCII-file 6-42
Use IEC Steps 5-47
Write Receipt 6-46
Y Scaling 6-41
Zoom 5-2
Zoom Action/Transition 5-44

F
F_TRIG 10-52
F4 4-10
falling edge 10-52
FBD 2-2, 2-6, 2-27, 4-85, 5-25
FBD Editor 5-25
Feedback paths in CFC 5-65
Fields 2-1, 10-8
File 4-25
File Menu

Close 4-27
Exit 4-34
New 4-25
Open 4-25
Print 4-32
Printer Setup 4-33
Save 4-27
Save as 4-27
Save/Mail Archive 4-28

FIND 10-49
Find' 4-74
Flag

noinit 5-13
noread 5-13
nowatch 5-13
nowrite 5-13

Flow control 5-21
Flow Control

FBD 5-32
Folder 4-54, 4-55
Font 4-8
FOR 2-18
FOR loop 2-15, 2-18

vii907 AC 1131/Stand: 02/03 Index 10

Force 4-88
Force values 4-88
Forcing 5-16, 6-46
formatting text in visualization 7-16
Formatting, automatic 4-8
Frame 7-38
Function 2-1, 10-64
FUNCTION 2-1
Function Block 2-3
Function block call 2-4
Function Block Diagram 2-2, 2-6, 4-85, 5-25
Function block in LD 2-29
Function block, instance 2-3
Function call 2-2
Function declaration 2-1
FUNCTION_BLOCK 2-3

G
GatewayDDE Server 8-2
GE 10-31
Get All Latest Versions 4-65
Get latest version 4-21
Global constants 5-6
Global Constants 6-4
Global Variable List 6-2
Global variables 6-2

Persistent variables 6-3
remanent variables 6-3
Retain variables 6-3

Global Variables 6-1
Globale Variablenlisten 6-3
Graphic Editors 5-22
Grid 7-38
GT 10-29

H
Help 4-104
Help Menu

Contents and Index 4-104
Help Topics Window 4-104
Hotkeys in Visualization 7-41

I
Identifier 5-7, 10-62
IEC 61131-3 2-33
IEC Step 2-22, 5-47
IEC steps 2-24
IEC_S90_V41.LIB 6-8
IECSFC_S90_V41.LIB 2-23
IF instruction 2-14, 2-17
IL 2-2, 2-3, 2-5, 2-10, 4-85, 5-20
IL Editor 5-20
IL operator 2-11
Implicit variables in SFC 2-24
Import 4-43
Incrementer 10-53
Incrementer/Decrementer 10-54
Index Window 4-106

viii 907 AC 1131/Stand: 02/03Index10

INDEXOF 10-20
Initialization 5-7
Input and Output Variable 5-4
Input assistant

structured 4-77
unstructured 4-77

Input Assistant 4-77
Input in FBD 5-29
INSERT 10-47
Insert in SFC 5-41
Insert Menu

Add Entry-Action 5-43
Add Exit-Action 5-43
Additional Library 6-8
Alternative Branch (left) 5-42
Alternative Branch (right) 5-41
Append Program Call 6-34
Append Task 6-33
Assignment 5-27
Box 5-52
Button 7-6
Coil 5-36
Comment 5-54
Comment 5-24
Contact 5-34
Curve 7-4
Declarations Keywords 5-8
Ellipse 7-4
Function Block 5-17
Function with EN 5-37
In-Pin 5-54
Input 5-29, 5-53
Input of box 5-54
Insert at Blocks 5-36
Insert at POU 5-37
Insert Program Call 6-34
Insert Task 6-33
Jump 5-28, 5-38, 5-42, 5-53
Label 5-53
Line 7-4
Metafile 7-6
Network (after) 5-24
Network (before) 5-24
New Declaration 5-12
New Watch List 6-44
Out-Pin 5-54
Output 5-30, 5-53
Parallel Branch (left) 5-42
Parallel Branch (right) 5-42
Parallel Contact 5-35
Placeholder 4-34
Polygon 7-4
POU 5-35
POU with EN 5-37
Rectangle 7-3
Return 5-28, 5-38, 5-53
Rounded Rectangle 7-3
Step Transition (after) 5-41
Step Transition (before) 5-29 5-41
Transition-Jump 5-43
Types 5-8
Visualization 7-4

ix907 AC 1131/Stand: 02/03 Index 10

Insert mode 5-16
Insert Network 5-24
Insert visualization elements 7-2
Instance 2-3, 5-2
Instance name 2-3, 2-4
Instruction 2-10, 2-14, 2-15
Instruction List 2-2, 2-3, 2-5, 2-10, 4-85, 5-20
INT 10-7
INT Constants 10-60
Intellisense functionality 5-2
Internal library 4-28
Internal Library 6-8

J
JMPC 2-11
Jump 2-27
Jump in SFC 5-41, 5-42
Jump Label 5-43, 5-44

K
Keyboard Usage in Visualization 7-45
Keywords 5-6, 5-8
Kommentar 5-1
Kommentare ignorieren 4-45

L
Label 5-23, 5-43
Label Version 4-66
Ladder Diagram 2-28, 4-85, 5-33
Language 7-39
LD 2-28, 4-85, 5-33
LD Editor 5-33
LE 10-30
lecsfc.lib 2-23
Leerzeichen ignorieren 4-45
LEFT 10-45
LEN 10-45
Library 2-9, 4-28

Properties 6-9
Library directory 4-11
Library Manager 3-4, 6-7
Library, Define 6-8
Library, Insert 6-8
LIMIT 10-28
Line number field 4-85, 4-92, 5-19
Line Number of the Text Editor 5-20
Line numbers 5-11
Linebreaks in Network Comments 5-24
LN 10-41
Load & Save 4-5
Load file from controller 4-100
Load Trace 6-42
Load trace configuration 6-38
Load Watch List 6-45
local objects 4-19
Local Variable 5-4
Log 4-12, 4-100, 6-9
LOG 10-41

x 907 AC 1131/Stand: 02/03Index10

Log in 4-80
Logarithm 10-41
Login to ENI data base 4-20
Logout 4-83
Loop 2-12, 2-15
LREAL 10-8
LREAL Constants 10-61
LREAL_TO Conversions 10-36
LT 10-30

M
Macro 4-14

Define 4-23
Save as library 4-25

Macro after compile 4-14
Macro before compile 4-14
Macro in CFC 5-63
Macro libraries 4-25
Macro options 4-23
Main Help Window 4-105
Main program 2-7
Makros 4-80
Mark 4-9
Marking in SFC 5-41
MAX 10-27
Memory location 10-64
Menu Bar 4-1
Menu Bit-addressed variables 5-18
Merge 4-48
Message window 4-3, 4-50
Metafile 7-6
MID 10-46
MIN 10-28
MOD 10-19
Modifier 2-11
Modifiers 10-75
Monitoring 2-31, 4-81, 5-15, 5-18, 6-45, 6-46
Moving in CFC 5-57
MUL 10-17
Multi Channel 6-41
Multiple Check In 4-65
Multiple Check Out 4-65
Multiple Define 4-64
Multiple Undo Check Out 4-65
Multiple Write Access 4-35
MUX 10-29

N
NE 10-32
Negation in FBD 5-30
Negation in LD 5-39
Nested comments 4-14
Network 5-23, 5-24, 5-26
Network Comments 5-24
Network in FBD 2-27, 3-2
Network in LD 2-29
Network in SFC 3-6
Network Linebreaks 5-24
Network number 5-23
Network number field 4-85, 4-92

xi907 AC 1131/Stand: 02/03 Index 10

New Folder 4-55
Next error 4-79
NOT 10-22
Note in Help 4-105
Notice at load 4-16
Number Constants 10-60
Number of data 4-14

O
Object 2-1, 4-53
Object add to ENI object category 4-57
object categories in project data base Link 4-19
Object Organizer 4-2
Object properties 4-60
Online 1-2, 5-18, 5-25, 6-45
Online Change 4-80
Online functions 4-80
Online in Security mode 4-10
Online Menu

Breakpoint Dialog Box 4-85
Communications Parameters Gateway 4-93
Create bootproject 4-99
Download 4-83
Force values 4-88
Load file from controller 4-100
Log in 4-80
Logout 4-83
Release force 4-89
Reset 4-84
Run 4-83
Show Call Stack 4-92
Simulation 4-93
Single Cycle 4-86
Sourcecode download 4-99
Step in 4-86
Step over 4-86
Stop 4-83
Toggle Breakpoint 4-84
Write file to controller 4-99
Write values 4-86
Write/Force dialog 4-91

Online Mode 4-80
CFC 5-66
Declaration Editor 5-15
Function Block Diagram Editor 5-32
Ladder Editor 5-39
Network Editor 5-25
S FC 5-48
Text Editor 5-18
Watch- and Receipt Manager 6-45

Open file from ENI 4-26
Open instance 4-69
Open POU 4-69
Open project from PLC 4-26
Operand 2-2, 10-59
Operating version 7-31
Operator in FBD 3-4
Operators 10-17, 10-75

overview 10-75
Oppose differences 4-45
Options 4-4

xii 907 AC 1131/Stand: 02/03Index10

OR 10-21
Order of execution in CFC 5-60
Output in FBD 5-30
Output Variable 5-4
Overwrite mode 5-16

P
Parallel Branch in SFC 2-27, 5-42
Parallel Contacts 2-29, 5-35
Password 4-15
Passwords for user groups 4-53
Pasting 4-73
Pasting in FBD 5-31
Persistent global variables 6-3
Persistent variables 5-5
Placeholder 4-34, 7-36
Placeholders 7-12
Placeholders in Visualization 7-10
PLC Browser 6-12

Commands 6-13
Macros 6-14

PLC_PRG 2-7
Pointer 10-10
POINTER 10-10
POU (Program Organization Unit) 1-1, 2-6, 3-1, 4-2
Pragma 5-13
Presentation 7-38
Previous error 4-80
Print 4-32
Print in Help 4-105
Print margins 5-1
Printer borders 4-10
printf 7-16
Program 2-6
PROGRAM 2-7
Program call 2-6
Project 1-1, 2-1, 2-6, 3-1
Project directory 4-11
project info 4-48
Project info 4-6
Project Menu

Add Action 4-69
Add object 4-56
Build 4-34
Check 4-35, 4-51
Clean all 4-35
Compare 4-44
Convert object 4-57
Copy object 4-58
Data Base Link 4-60
Delete Object 4-55
Document 4-41
Export 4-43
Global Replace 4-51
Global Search 4-50
Import 4-43
Load Download-Information 4-36
Merge 4-48
Open instance 4-69
Open object 4-58
Options 4-4, 4-5

xiii907 AC 1131/Stand: 02/03 Index 10

Passwords for user groups 4-53
Project info 4-48
Properties 4-60
Rebuild all 4-35
Rename object 4-57
Show call tree 4-69
Show cross reference list 4-70
Translate into another language 4-36

project objects in data base 4-19
Project Objects options 4-20
Project source control

Activate 4-18
Options 4-18

Project version 1.5 4-28
Project version 2.0 4-28
Project version 2.1 4-28
Project version 2.2 4-28
Project Version History 4-66

Q
Qualifier 2-23, 2-24

R
R_TRIG 10-51
Read Receipt 6-46
Read trace 6-38
Read Trace 6-39
REAL 10-8
REAL Constants 10-61
REAL_TO Conversions 10-36
Receipt Manager 6-43
Redo 4-71
References 10-12
Refresh Status 4-67
Remanent global variables 6-3
Remanent variables 5-5
REPEAT 2-15
REPEAT loop 2-19
Replace 4-51, 4-75
REPLACE 10-48
Replace constants 4-14
Reset 4-84
Reset Output 5-30, 5-39
Resources 2-9, 4-2, 6-1
Retain 2-4
Retain variables 5-5, 6-4
RETURN 2-14, 2-16
Revision control 9-1
RIGHT 10-46
rising edge 10-51
Rising edge detection 10-51
ROL 10-25
ROR 10-26
Rotation 10-25, 10-26
RS 10-50
Run 4-83

xiv 907 AC 1131/Stand: 02/03Index10

S
Sample Rate 6-38
Sampling Trace 2-30, 6-36
Save 4-27
Save Trace 6-42
Screen divider 4-3
sdb-file 4-23
SEL 10-27
Selecting 4-9
Selecting in CFC 5-57
SEMA 10-50
Sequential Function Chart 2-2, 2-6, 2-20, 3-6, 4-85, 5-40
Sequential Function Chart editor

Tooltip 5-49
Tooltips 5-40

Set Output 5-30, 5-39
Set/Reset coils 2-29
SFC 2-2, 2-6, 2-20, 3-6, 4-85, 5-40

Delete Step and Transition 5-41
SFC Editor 5-40
SFC Flags 2-25
SFC library 2-23
SFCCurrentStep 2-26
SFCEnableLimit 2-25
SFCError 2-26
SFCErrorAnalyzation 2-26
SFCErrorPOU 2-26
SFCErrorStep 2-26
SFCInit 2-25
SFCPause 2-25
SFCQuitError 2-25
SFCReset 2-25
SFCTip 2-26
SFCTipMode 2-26
SFCTrans 2-26
shared objects in data base 4-19
Shared Objects options 4-22
Shift 10-23
SHL 10-23
Shortcut Mode 5-9
Show Call Stack 4-92
Show grid 6-41
Show Version History 4-63
SHR 10-24
Simulation 2-32, 3-13, 4-80, 4-93
SIN 10-42
Sine 10-42
Single Cycle 4-86
Single step 5-49
Single Step 2-31, 4-86
SINT 10-7
SINT Constants 10-60
SIZEOF 10-20
Sourcecode download 4-99
Sourcedownload 4-16
sprintf 7-16
SQRT 10-40
Square Root 10-40
SR 10-49
ST 2-2, 2-5, 2-12, 4-85, 5-22
ST Editor 5-22

xv907 AC 1131/Stand: 02/03 Index 10

ST operand 2-12
ST operator 2-12, 2-14
Standard data types 10-7
Standard Function 6-8
Standard Library 3-4, 6-8
Standard POUs 2-1
Start Trace 6-38
Statistics 4-49
Status bar 4-3, 4-10, 7-10
Step 2-21, 4-85, 5-41

Delete 5-41
Step Attributes 5-45
Step Init 2-22
Stepping 5-18, 5-25
Stop 4-83
Stop Trace 6-39
Stretch 6-41
STRING 10-8
STRING Constants 10-61
String functions 10-45
STRING_TO Conversions 10-38
STRUCT 10-11
Structured Text 2-2, 2-5, 2-12, 4-85, 5-22
Structures 2-1, 10-11
SUB 10-18
Subrange types 10-13
Symbol configuration 4-17
Symbol file 4-17, 5-13
Symbol interface 4-17
sym-file 4-23
Syntax Coloring 5-3, 5-8
System Flag 10-63

T
Tab-width 4-8
TAN 10-42
Tangent 10-42
Task Configuration 6-32
Template 5-1
Text editors 5-16
TIME 10-8
TIME Constants 10-59
Time Management in SFC Editor 5-46
TIME_OF_DAY 10-8
TIME_OF_DAY Constants 10-60
TIME_TO Conversions 10-37
TIME-Function 10-65
Timer 10-55
TO_BOOL Conversions 10-35
TOD 10-8
TOD_TO Conversions 10-37
TOF 10-57
TON 10-56
Tool bar 4-2, 4-10
Tooltip 4-2, 4-54, 5-1, 5-18, 5-25, 5-32, 5-40

Sequential Function Chart editor 5-49
Tooltips

Sequential Function Chart editor 5-40
TP 3-4, 10-55
Trace Buffer 6-36, 6-39
Trace in ASCII-file 6-42

xvi 907 AC 1131/Stand: 02/03Index10

Trace Variable 6-39
Trace, Automatically Read 6-39
Transition 2-22, 5-41

Delete 5-41
Translate into another language 4-36
Translation file 4-36, 4-40

Visualization texts 7-17
Trigger 2-30, 6-37, 10-51, 10-55
Trigger Edge 6-38
Trigger Level 6-38
Trigger Position 6-38
TRUNC 10-38
Turn-off delay 10-57
Turn-on delay 10-56
TYPE 10-11, 10-12
Type Conversions 10-33
Typed Literals 10-62
Types 5-8

U
UDINT 10-7
UDINT Constants 10-60
UINT 10-7
UINT Constants 10-60
Undo 4-71
Undo Check Out 4-63
User group 4-52
User information 4-6
USINT 10-7
USINT Constants 10-60

V
VAR 5-4, 5-10
VAR_CONFIG 6-2, 6-4
VAR_CONSTANT 6-4
VAR_GLOBAL 5-10, 6-2, 6-3
VAR_IN_OUT 5-4
VAR_INOUT 5-10
VAR_INPUT 5-3, 5-10
VAR_INPUT CONSTANT 5-56
VAR_OUTPUT 5-4, 5-10
VAR_RETAIN 6-4
Variable Configuration 6-4
Variable declaration 5-13
Variable name 5-7
Variables 10-62
Variables declaration 5-6
Version History 4-63
Visualisation

Input possibilities for the operating version 7-31
Visualisierung

Line width 7-19
Visualization 2-10, 4-2

Bitmap 7-34
Colors 7-19
Colorvariables 7-20
File - Print 7-45
in Libraries 7-45
Input 7-24
List of Placeholders 7-12

xvii907 AC 1131/Stand: 02/03 Index 10

Motion absolute 7-22
Motion relative 7-23
Online Mode 7-44
Operation in online mode 7-44
Operation over the keyboard 7-44
Placeholder 7-36
Placeholders 7-10
Shape 7-15
Text 7-16
Tooltip 7-34
Variables 7-23

Visualization Elements, Configure 7-13
Visualization Elements, Shift, Move 7-7
Visualization Object

Configuration 7-38

W
Watch and Receipt Manager 6-43
Watch and Receipt Manager Offline 6-43
Watch and Receipt Manager Online 6-45
Watch List 6-43
Watch Variable 5-15, 5-32
WHILE loop 2-15, 2-19
Window' 4-103
Window Menu

Arrange symbols 4-103
Cascade 4-103
Close all 4-103
Library Manager 4-104, 6-7
Log 4-104
Messages 4-103
Tile Horizontal 4-103
Tile Vertical 4-103

WORD 10-7
WORD Constants 10-60
Work space 4-3
Write 4-86
Write file to controller 4-99
Write protection password 4-15
Write Receipt 6-46
Write values 4-86

X
XOR 10-22

Y
Y Scaling 6-41

Z
Zoom 5-2, 5-23
Zoom Action 5-44
Zoom to POU 5-2
Zoom Transition 5-44

ABB STOTZ-KONTAKT GmbH
Eppelheimer Straße 82 Postfach 101680
69123 Heidelberg 69006 Heidelberg
Germany Germany

Telephone +49 6221 701-0
Telefax +49 6221 701-240
E-Mail desst.helpline@de.abb.com
Internet http://www.abb.de/stotz-kontakt

M
an

ua
l N

o.
:

2C
D

C
 1

20
 0

64
 M

 0
20

2

	Return to Overview
	Operating Manual 907 AC 1131 (Title Page)
	Contents
	1 A Brief Introduction to 907 AC 1131
	1.1 What is 907 AC 1131
	1.2 Overview of 907 AC 1131 Functions

	2 What is What in 907 AC 1131
	2.1 Project Components
	2.2 Languages
	2.2.1 Instruction List (IL)
	2.2.2 Structured Text (ST)
	2.2.3 Sequential Function Chart (SFC)
	2.2.4 Function Block Diagram (FBD)
	2.2.5 The Continuous Function Chart Editor (CFC)
	2.2.6 Ladder Diagram (LD)

	2.3 Debugging, Online Functions
	2.4 The Standard

	3 We Write a Little Program
	3.1 Controlling a Traffic Signal Unit
	3.2 Visualizing a Traffic Signal Unit

	4 The Individual Components
	4.1 The Main Window
	4.2 Options
	4.3 Managing Projects
	4.4 Managing Objects in a Project
	4.5 General Editing Functions
	4.6 General Online Functions
	4.7 Log
	4.8 Window set up
	4.9 Help when you need it

	5 The Editors in 907 AC 1131
	5.1 Declaration Editor
	5.2 The Text Editors
	5.2.1 The Instruction List Editor
	5.2.2 The Editor for Structured Text

	5.3 The Graphic Editors
	5.3.1 The Function Block Diagram Editor
	5.3.2 The Ladder Editor
	5.3.3 The Sequential Function Chart Editor
	5.3.4 The Continuous Function Chart Editor (CFC)

	6 The Resources
	6.1 Overview
	6.2 Global Variables
	6.2.1 What are Global Variables
	6.2.2 Variable Configuration
	6.2.3 Document Frame

	6.3 Library Manager
	6.4 Log
	6.5 PLC Browser
	6.6 PLC Configuration
	6.6.1 Overview
	6.6.2 Working in the PLC Configuration
	6.6.3 Doing the PROFIBUS-DP Configuration
	6.6.4 PLC Configuration in Online Mode

	6.7 Task Configuration
	6.7.1 Taskconfiguration in Online Mode

	6.8 Sampling Trace
	6.9 Watch and Receipt Manager

	7 Visualization
	Overview
	7.1 Creating a Visualization Object
	7.1.1 Inserting Visualization Elements
	7.1.2 Positioning Visualization Elements

	7.2 Configuration of a Visualization
	7.2.1 Configuration of Visualization Elements
	7.2.2 Configuration of Visualization Objects

	7.3 Visualization in Online Mode
	7.4 Visualizations in libraries

	8 DDE Communication
	8.1 DDE interface of the 907 AC 1131 programming system
	8.2 DDE communcation with the GatewayDDE Server

	9 The 907 AC 1131 ENI Interface
	9.1 What is ENI
	9.2 Preconditions for Working with an ENI project data base
	9.3 Working with the ENI project data base in 907 AC 1131
	9.4 Object categories concerning the project data base

	10 Appendix
	Appendix A: Use of Keyboard
	Key Combinations

	Appendix B: Data types
	Standard Data types
	Defined Data Types

	Appendix C: IEC Operators and other, norm-extending functions
	Arithmetic Operators
	Bitstring Operators
	Bit-Shift Operators
	Selection Operators
	Comparison Operators
	Address Operators
	Calling Operator
	Type Conversion Functions
	Numeric Functions

	Appendix D: Standard Library Elements
	String Functions
	Bistable Function Blocks
	Trigger
	Counter
	Timer

	Appendix E: Operands in 907 AC 1131
	Constants in 907 AC 1131
	Variables
	Addresses
	Functions

	Appendix F: Command Line/Command File Commands
	Command Line Commands
	Command File (cmdfile) Commands

	Appendix G: Overview Operators and Library Elements
	Appendix H: Compiler Errors and Warnings
	Warnings
	Compiler Errors

	11 Index

