

QUALITY ASSURANCE & TEST - STANDARDS & PRACTICES

ABB-QA-Key Performance Indicators 9AAD135096

Department	GF-IS ADM Applications Performance & Excellence (APE)	
Approver	Giulio Bitella, Global Department Manager	
Owner	Anna Pietras, Quality Assurance Lead (QA)	

For the latest distributable version of this and other Quality Assurance& Test standards please visit this <u>link</u> to ABB Library.

WHAT IS THIS?

This document describes a way to measure and monitor test activities. It gives insight into test execution progress, productivity, and quality of the testing process and system under test.

TABLE OF CONTENTS

WHAT IS THIS?	2
SOFTWARE TESTING REPORTING	1
TESTING SERVICES – KEY PERFORMANCE INDICATORS	2
REVISION HISTORY	35

SOFTWARE TESTING REPORTING

Test execution reporting should contain below information:

Basic metrics:

- Overall number of test cases (by status)
- Test execution trend
- Number of defects and defect severity distribution
- Defect resolution time
- Defect open vs defect closed (trend)

For more complex projects more sophisticated metrics for reporting might be created.

These metrics should be available to all project stakeholders 24x7 and easily accessible.

TESTING SERVICES – KEY PERFORMANCE INDICATORS

Key performance	Description	Measurement	Allowed	Comments
indicator			Values	
Quality - Percentage	It shows how many defects	Escaped Defects	Critical: 0	
of escaped defects	were moved to stage and pro-	/ SUM of all de-	High:2	
	duction (QA testing missed	fects (including	Medium: 5	
	them)	escaped ones)	Low: 10	
Quality -Percentage	These are defects found in the	SUM of rejected	< 10 %	
of rejected defects	product but not accepted by	defects / SUM		
	the developer or functional an-	of all defects		
	alysts as defects. A large num-			
	ber of rejected defects indi-			
	cates whether the developer			
	and tester are on the same			
	page about the feature's func-			
	tionality and its purpose			
Quality - Percentage	These are defects which were	SUM of Dupli-	<10%	
of duplicate defects	already created and assigned	cate defects /		
	to developers. The lower num-	SUM of all de-		
	ber the better. It shows the	fects		
	communication and focus in-			
	side QA Team			
Quality- Test Effec-	To check which test phase	Number of de-	< 30%	SIT vs UAT
tiveness	'caught' the highest volume of	fects found in		
	defects. The highest percent-	test phase / to-		
	age should point to Internal /	tal number of		
	SIT testing. The lowest to UAT	defects found in		
		all phases		
Quality- Test Case	Shows how many times test	Sum of all test	< 10%	
Related defects	cases had to be corrected dur-	case relevant		
	ing a test phase (ideally it	defects		
	should be 0). This could be	Sum of all test		
	also shown as a percentage. It	case relevant		
	is verifying if test preparation	defects / vol-		
	phase was done correctly.	ume of test		
		cases in a given		
		test phase		
Quality – Criti-	Shows if the distribution of	Sum of all criti-	<20%	
cal/high severity de-	defects severity is as per Pa-	cal/high severity	Threshold	
fects index	reto rule. Too many criti-	defects vs. over-	– to be de-	
	cal/high defects indicates se-	all number	fined	
	vere quality problem with a			
	product.			
Quality – percentage	Shows how much of regres-	Sum of auto-	>50%	
of test automated	sion tests were automated	mated tests vs.		
(regression)	and helping to reduce manual	total regression		
	workload	tests		

Quality – percentage	Shows how often there are	Sum of false	<5%	
			1370	
of false negatives	problems with automated test	negatives vs. all		
(automated tests)	scripts.	automated tests		
		in a single run		
Quality- defect reso-	Shows how quickly defect is	Average time	TBD on	Resolution
lution time	fixed & re-tested. Measures	spent between	project	time should
	the effectiveness of the devel-	defect is raised	level	be compared
	opment & testing process.	and closed		to defect Se-
				verity. Trend
				should be:
				faster resolu-
				tion of more
				severe de-
				fects
Service- Turnaround	Shows how quickly full regres-	Time spent on	TBD on	
time of regression	sion cycle can be executed.	executing full re-	project	
testing	The more deployments to pro-	gression testing	level	
	duction are done the quicker	cycle		
	turnaround time should be.			
Service- Staff attri-	Shows how often employee in	Sum of all em-	<20% on a	
tion	the service is replaced by an-	ployees left/re-	yearly ba-	
	other	placed vs overall	sis	
		no. of employ-		
		ees in a service		

REVISION HISTORY

Rev.	Page	Change Description	Author(s)	Date
Α	all	initial version	Anna Pietras	2018-10-26
Α		Initially approve	Anna Pietras	2019-02-15

