

INVERSORES DE FREQUÊNCIA PARA ÁGUA

ACQ580-31

Guia rápido de instalação e inicialização

Este guia se aplica às instalações IEC globais e NEC norte-americana.

Documentação em outros idiomas

Informação de ecodesign (UE 2019/1781 e SI 2021 nº 745) Sobre este documento

3AXD50000956951 Rev C PTBR
13/06/2023
© 2023 ABB. Todos os direitos reservados.
Traducão das instrucões originais.

Instruções de segurança

AVISO! Cumpra estas instruções. Se você as ignorar, poderão ocorrer danos ao equipamento, lesões ou morte. Se você não for um eletricista profissional qualificado, não realize serviços de instalação elétrica ou de manutenção.

AVISO! Se você ativar as funções de restauração de falha automática ou de reinício automático do programa de controle do inversor de frequência, certifique-se de que não seja possível ocorrer situações perigosas. Essas funções restauram o inversor de frequência e continuam o funcionamento após uma falha ou interrupção da alimentação. Se essas funções estiverem ativadas, a instalação deverá estar claramente marcada como definida em IEC/EN/UL 61800-5-1, subcláusula 6.5.3, por exemplo, "ESTA MÁQUINA LIGA AUTOMATICAMENTE".

- Não trabalhe no inversor de frequência, no cabo do motor, no motor ou nos cabos de controle quando o inversor de frequência estiver conectado à entrada de alimentação. Antes de iniciar, isole o inversor de frequência de todas as fontes de tensão perigosas e meça para garantir que não haja tensões perigosas. Sempre aguarde 5 minutos após desconectar a entrada de alimentação para permitir a descarga dos capacitores de circuito intermediário.
- Não trabalhe no inversor de frequência quando um motor de ímã permanente em rotação estiver conectado a ele. Um motor de ímã permanente em rotação energiza o inversor de frequência, inclusive seus terminais de entrada e saída.
- Certifique-se de que detritos de perfurações, cortes e esmerilhamento não entrem no inversor de frequência.
- Carcaças R6 e R8: Use os olhais de suspensão do inversor de frequência ao levantá-lo. Não incline o inversor de frequência. Ele é pesado e seu centro de gravidade é alto.

1. Desempacotar o inversor de frequência

Mantenha o inversor de frequência em sua embalagem até que esteja pronto para instalá-lo. Após desembalar, proteja o inversor de frequência contra poeira, detritos e umidade. Estes itens devem estar incluídos: inversor de frequência, modelo de montagem, painel de controle, guia de instalação rápida e partida, adesivos de aviso de tensão residual multilíngues, manuais de hardware e firmware (se pedidos), opcionais em pacotes separados (se pedidos). Garanta que não haja sinais de danos nos itens.

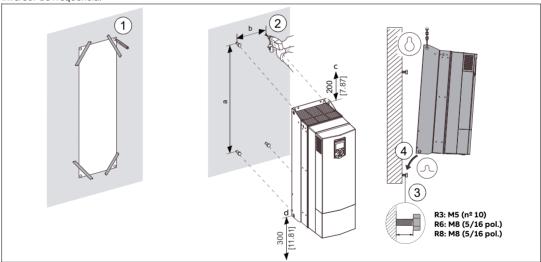
2. Reformar os capacitores

Se o inversor de frequência não tiver sido energizado por um ano ou mais, você deverá reformar os capacitores de ligação CC. Consulte Documentos relacionados ou entre em contato com o suporte técnico da ABB.

3. Selecionar os cabos e os fusíveis

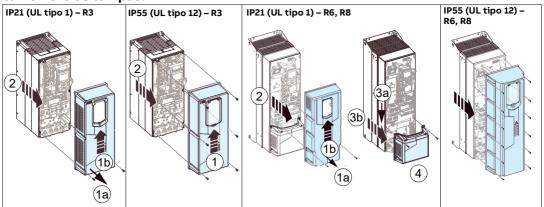
- Selecione os cabos de alimentação. Cumpra os regulamentos locais.
 - Cabo de alimentação de entrada: Use o cabo simétrico blindado (cabo VFD) para obter um melhor desempenho EMC. <u>Instalações NEC:</u> Conduíte com condutividade contínua também é permitido e deve ser aterrado em ambas as extremidades.
 - Cabo do motor: a ABB recomenda um cabo do motor VFD blindado simetricamente para reduzir a corrente do
 mancal e o desgaste e o estresse sobre o isolamento do motor e para proporcionar o melhor desempenho EMC.
 Embora não seja recomendado, os condutores dentro de um conduíte continuamente condutor são permitidos
 em instalações NEC. Conduíte de aterramento em ambas as extremidades.

- Tipos de cabos de potência: Instalações IEC: Use cabos de cobre. Os cabos de alumínio só podem ser usados com tamanhos de carcaça R6 e R8, exceto o R8 maior. Instalações NEC: são permitidos apenas condutores de cobre.
- Classificação de corrente: corrente máxima de carga.
- Classificação de tensão (mínima): Instalações IEC: Cabo 600 Vca é aceito para até 500 Vca. Instalações NEC: 1.000 VCA para motores de 480 VCA. 600 VCA para linha de alimentação de 480 VCA.
- Classificação de temperatura: <u>Instalações IEC</u>: selecione um cabo com regime nominal para temperatura máxima permissível de 70 °C do condutor em uso contínuo. <u>Instalações NEC</u>: Use condutores de no mínimo 75 °C. A temperatura de isolamento pode ser maior, desde que a ampacidade seja baseada em condutores de 75 °C.
- Selecione os cabos de controle.
 - Use o cabo de pares trançados com dupla blindagem para sinais analógicos. Use o cabo blindado simples ou duplo para os sinais digitais, de retransmissão e de I/O. Não execute sinais de 24 V e 115/230 V no mesmo cabo.
- Proteja o inversor de frequência e o cabo da entrada de alimentação com os fusíveis corretos. Consulte Classificações, fusíveis e cabos de alimentação típicos.


4. Examine o local da instalação

Examine o local da instalação do inversor de frequência. Certifique-se de que:

- O local de instalação seja suficientemente ventilado ou resfriado para remover o calor do inversor de frequência.
- As condições ambientais do inversor de frequência cumprem as especificações. Consulte Condições ambientais.
- A parede atrás do inversor de frequência e o material acima e abaixo da unidade não são inflamáveis.
- A superfície de instalação está o mais vertical possível e é forte o suficiente para suportar o inversor de frequência.
- Há espaço suficiente ao redor do inversor de frequência para resfriamento, manutenção e operação. Para obter os requisitos mínimos de espaço livre, consulte Dimensões, pesos e requisitos de espaço livre.
- Não existem fontes de campos magnéticos fortes, como condutores de núcleo único de alta corrente ou bobinas de contator perto do inversor de frequência. Um campo magnético forte pode causar interferência ou imprecisão na operação do inversor de frequência.


5. Instale o inversor de frequência na parede

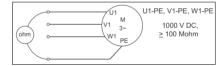
Selecione fixadores de acordo com os requisitos locais aplicáveis para materiais de superfície de parede, peso de inversor de frequência e aplicação. Para os pesos do inversor de frequência, consulte Dimensões, pesos e requisitos de espaço livre. Marque o local dos furos usando o modelo de montagem incluído na embalagem. Não deixe o modelo de montagem sob o inversor de frequência.

	R3		R	6	R8		
	mm	pol.	mm	pol.	mm	pol.	
a	474	18,66	753	29,64	945	37,20	
b	160	6,30	212,5	8,37	262,5	10,33	
		Espaço livre nec	essário acima do i	nversor de frequêr	ncia		
С	200	7,87	200	7,87	200	7,87	
	Espaço livre necessário abaixo do inversor de frequência						
d	300	11,81	300	11,81	300	11,81	

6. Remova as tampas.

7. Certifique-se de que o inversor de frequência seja compatível com o sistema de aterramento

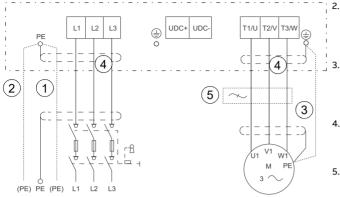
Você pode conectar todos os inversores de frequência a um sistema TN-S aterrado simetricamente (parte central aterrada). Se você instalar o inversor de frequência em um sistema diferente, poderá ser necessário remover o parafuso EMC (desconectar o filtro EMC) e/ou remover o parafuso VAR (desconectar o circuito do varistor).


Carcaça	Sistemas TN-S simetricamente aterrados (parte central aterrada)	Sistemas de centro delta aterrado e ponto médio delta aterrado	Sistemas de TI (sem aterra- mento ou com aterramento de alta resistência)	Sistemas TT ^{1) 2)}
R3	Não remova parafusos EMC ou VAR.	Não remova parafusos EMC ou VAR.	Remova os parafusos EMC e VAR.	Remova os parafusos EMC e VAR.
R6	Não remova parafusos EMC ou VAR.	Remova o parafuso EMC. Não remova parafusos VAR. Veja a Observação 2 abaixo.	Remova os parafusos EMC e VAR.	Remova os parafusos EMC e VAR.
R8	Não remova parafusos EMC CA ou VAR.	Remova os parafusos EMC CC e VAR.	Remova os parafusos EMC CC e VAR.	Remova os parafusos EMC CC e VAR.

¹⁾ Um dispositivo de corrente residual foi instalado no sistema de fornecimento. Em instalações NEC, o dispositivo de corrente residual é necessário apenas a 1.000 ampères ou mais.

8. Meça a resistência de isolamento dos cabos de energia e do motor

Meça a resistência de isolamento do cabo de entrada antes de conectá-lo ao inversor de frequência. Siga os regulamentos locais.


Meça a resistência de isolamento do cabo do motor e do motor quando o cabo estiver desconectado do inversor de frequência. Meça a resistência de isolamento entre cada fase do condutor e o condutor PE. Use uma tensão de medição de 1.000 VCC. A resistência do isolamento de um motor ABB deve exceder 100 Mohm (valor de referência a 25 °C). Para a resistência do isolamento de outros motores, consulte as instruções do fabricante. A umidade dentro do motor diminui a resistência de isolamento. Se houver suspeita de umidade, seque o motor e repita a medição.

²⁾ A ABB não garante a categoria EMC ou a operação do detector de vazamento no solo integrado ao inversor de frequência.

9. Conecte os cabos de força

Diagrama de conexão IEC com cabos blindados


 Dois condutores de aterramento para proteção. A norma de segurança de inversor de frequência IEC/EN 61800-5-1 exige dois condutores PE, se sua área transversal for inferior a 10 mm² Cu ou 16 mm² Al. Por exemplo, é possível usar a blindagem do cabo além do quarto condutor. Use um cabo de aterramento separado ou um cabo com condutor PE separado para o lado da linha se a condutividade do quarto condutor ou blindagem não atender aos requisitos do condutor PE.

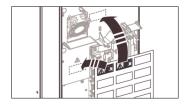
Use um cabo de aterramento separado para o lado do motor se a condutividade da blindagem não for suficiente ou se não houver condutor PE simetricamente construído no cabo.

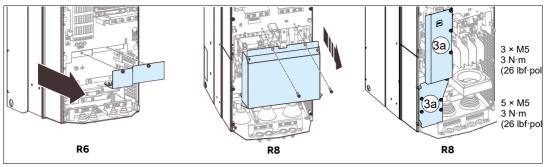
- O aterramento de 360° da blindagem do cabo é obrigatório para os cabos do motor. Isso também é recomendado para o cabo de alimentação de entrada.
- Se necessário, instale um filtro externo (du/dt, modo comum ou filtro de seno).
 Os filtros são disponibilizados pela ABB.

Diagrama de conexão NEC com conduíte ou cabo simetricamente blindado

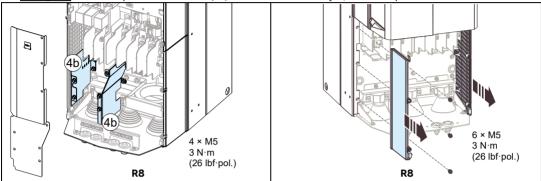
Observação: A instalação NEC pode incluir condutores separados dentro de um conduíte, cabo VFD blindado no conduíte ou cabo VFD blindado sem conduíte. O símbolo tracejado normal (3) neste diagrama representa a blindagem do cabo VFD blindado. O mesmo símbolo sólido (2) representa o conduíte.

- Condutor de aterramento isolado em um conduíte: Aterre ao terminal PE do inversor de frequência e ao barramento de aterramento do painel de distribuição. Para uma instalação do cabo VFD, consulte 4.
- Aterramento do conduíte: Conecte o conduíte à caixa de conduíte do inversor de frequência e ao alojamento do painel de distribuição. Para uma instalação de cabo VFD, consulte 3.

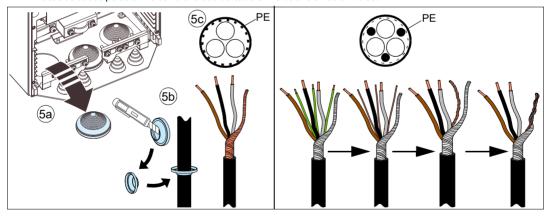

- Blindagem de um cabo blindado VFD:
 Aterre a blindagem 360° sob o grampo
 de aterramento do inversor de frequência,
 então gire os condutores de aterramento e
 conecte-os sob o terminal de aterramento
 do inversor de frequência. Também aterre
 a blindagem 360° na extremidade do motor
 e torça e conecte-a sob o terminal de
 aterramento do motor. Para uma
 instalação de conduíte, consulte 2.
- Condutores de aterramento simetricamente construídos dentro de um cabo blindado VFD: Torça juntos, combine com a blindagem e conecte sob o terminal de aterramento do inversor de frequência e sob o terminal de aterramento do motor. Para uma instalação de conduíte, consulte 1.
- Se necessário, instale um filtro externo (du/dt, modo comum ou filtro de seno).
 Os filtros são disponibilizados pela ABB.

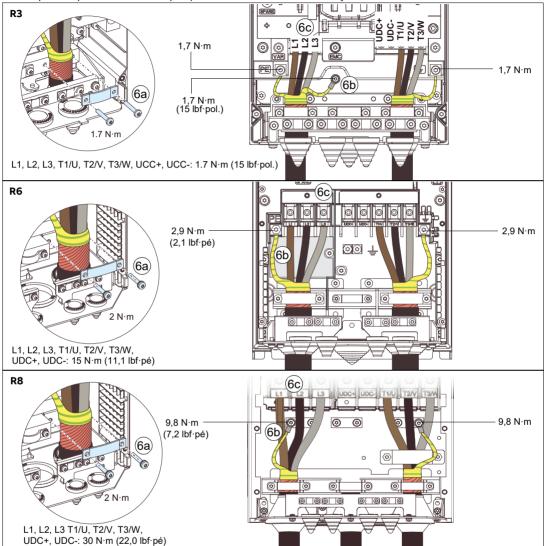

Observação: Todas as aberturas no alojamento do inversor de frequência devem ser fechadas, tendo os dispositivos listados pelo UL a mesma classificação de Tipo que o Tipo de inversor de freguência.

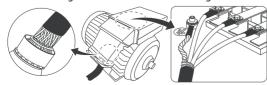
Procedimento de conexão com cabo VFD


Para o procedimento de conexão com conduítes, consulte Procedimento de conexão com o conduíte.

- 1. Cole um adesivo de aviso de tensão residual no idioma local.
- 2. <u>Carcaças R6 e R8:</u> Remova a capa dos terminais do cabo de alimentação.
- Carcaça R6: Se você precisar de mais espaço de trabalho, solte o parafuso e levante a placa EMC para fora. Instale a placa EMC novamente depois de instalar os cabos de alimentação de entrada e o motor.
 Carcaça R8: Remova as placas de cobertura EMC (3a).

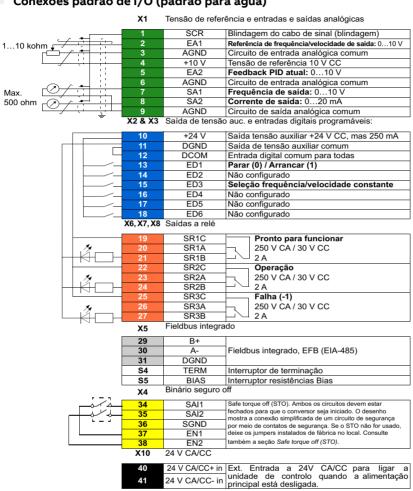



4. Carcaça R8: Remova as placas laterais EMC (4b). Para facilitar a instalação, remova as placas laterais.


- 5. Prepare os cabos de alimentação:
 - Remova os anéis de borracha dos cabos a serem instalados da placa de entrada de cabo. Remova os anéis não usados e reinstale-os com o cone apontando para baixo (5a).
 - Faça um orifício grande o suficiente no anel isolante. Deslize o anel para o cabo (5b) com o cone restante apontando para baixo.
 - Prepare as extremidades do cabo de alimentação de entrada e cabo do motor, como ilustrado na figura (5c) aplicável.
 - Passe os cabos pelos orifícios na entrada de cabo e fixe os anéis nos orifícios.

- 6. Conecte os cabos de alimentação. Para os torques de aperto, consulte Dados do terminal.
 - Faça o aterramento da blindagem em 360 graus apertando o grampo da prateleira de aterramento do cabo de energia na parte desencapada do cabo (6a).
 - <u>Carcaça R6</u>: Se você precisar de mais espaço de trabalho, abra o parafuso e levante a placa EMC para fora. Lembre-se de colocá-lo de volta depois de instalar os cabos de alimentação de entrada e o motor.
 - Conecte a blindagem torcida das capas do cabo aos terminais de aterramento (6b).
 - Carcaça R8: para instalar o filtro de modo comum, consulte Documentos relacionados.
 - Conecte os condutores de fase do cabo do motor aos terminais T1/U, T2/V e T3/W. Conecte os condutores de fase do cabo de alimentação de entrada aos terminais L1, L2 e L3 (6c).
 - Aperte os parafusos com o torque apresentado no desenho de instalação abaixo.

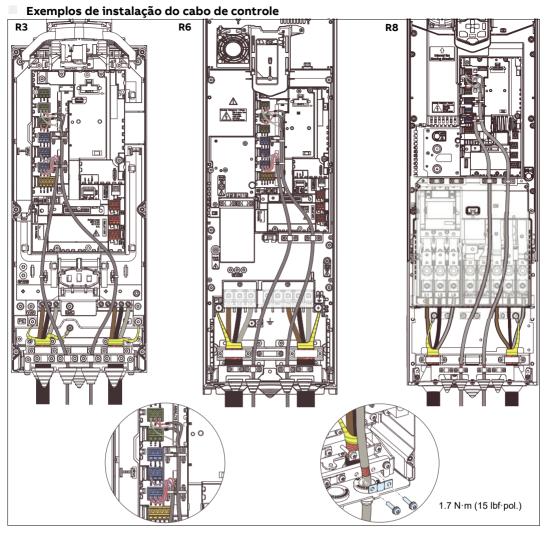
- 7. Carcaça R8: Instale as placas EMC na ordem inversa. Consulte as etapas 3 e 4.
- Carcaça R8: Instale as placas laterais, se removidas na etapa 4.
- 9. Instale a capa nos terminais de conexão do cabo de alimentação.
- 10. Anexe mecanicamente os cabos na parte externa do inversor de frequência.
- 11. Aterre a blindagem do cabo do motor na extremidade do motor. Para minimizar a interferência de radiofrequência, aterre a blindagem do cabo do motor em 360 graus na entrada de cabo da caixa terminal do motor.



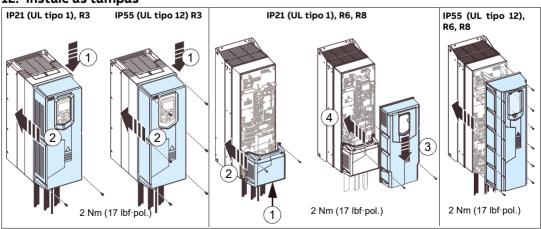
10. Conecte os cabos de controle

Faça as conexões de acordo com a aplicação. Mantenha os pares de fios de sinal o mais próximo possível dos terminais para evitar acoplamento indutivo.

- 1. Corte um orifício no anel de borracha e deslize o anel no cabo com o cone restante apontando para baixo.
- Faca o aterramento da blindagem externa do cabo em 360 graus, abaixo do grampo de aterramento. Mantenha o cabo desencapado o mais próximo possível dos terminais da unidade de controle. Faça também o aterramento das blindagens de cabo par e fio terra no terminal SCR1.
- Amarre todos os cabos de controle no suporte de cabos fornecido.


Conexões padrão de I/O (padrão para água)

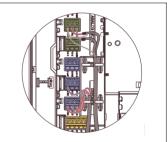
A capacidade total de carga da saída de tensão auxiliar +24 V (X2:10) é 6,0 W (250 mA/24 VCC).


41

Terminais	Tamanho do cabo	Torque de aperto
+24 V, DGND, DCOM, B+, A-, DGND, Ext. 24 V	0,14 a 2,5 mm ² (26 a 14 AWG)	0.5 0.6 N m (0.4 lbf nó)
DI, AI, AO, AGND, RO, OUT, IN, SGND	0,14 a 2,5 mm² (26 a 14 AWG)	0,5 0,6 N·m (0,4 lbf·pé)


11. Instale os módulos opcionais, se estiverem presentes na entrega

12. Instale as tampas




Procedimento de conexão com o conduíte

- 1. Conecte os cabos de alimentação. A ABB recomenda um cabo VFD simetricamente blindado para conectar o motor.
 - Remova as tampas conforme instruído em Remova as tampas. Cole o adesivo de aviso de tensão residual e remova a capa dos terminais do cabo de alimentação conforme instruído em Procedimento de conexão com cabo VFD.
 - Carcaça R8: Remova as placas EMC conforme instruído em Procedimento de conexão com cabo VFD.
 - Remova os anéis de borracha da placa de conduíte para o conduíte ser conectado. Se você remover as prateleiras de cabos, reinstale os guatro plugues de parafuso para evitar troca de umidade pelos orifícios vazios.
 - Prenda o conduíte à placa do conduíte do inversor de frequência e ao motor ou fonte de distribuição de energia.
 Garanta que o conduíte esteja corretamente conectado em ambas as extremidades. Garanta a conectividade do conduíte. Deslize o cabo blindado VFD ou condutores separados pelo conduíte e desencape as extremidades do cabo.
 - Se você usar um cabo VFD blindado simetricamente, torça os fios de aterramento junto com a blindagem do cabo e
 conecte-os aos terminais de aterramento. Faça o aterramento da blindagem em 360 graus no grampo de aterramento.
 Se você usa condutores separados, conecte o condutor de aterramento isolado ao terminal de aterramento.
 - Conecte os condutores de entrada e motor e aperte os terminais de cabo. Para os torques de aperto, consulte Dados do terminal.
 - Carcaça R8: Reinstale as placas EMC.
 - Reinstale a capa nos terminais do cabo de energia.

- 2. Conecte os cabos de controle
 - Carcaça R3: Puxe o suporte do painel de controle para cima.
 - Prenda os conduítes do cabo à placa de conduíte do inversor de frequência. Garanta que o conduíte esteja corretamente conectado em ambas as extremidades e que a condutividade seja consistente em todo o conduíte. Deslize os cabos de controle pelo conduíte.
 - Corte em um comprimento adequado (observe o comprimento extra dos condutores de aterramento) e desencape os condutores.
 - Faça o aterramento da blindagem externa de todos os cabos de controle 360 graus no grampo de aterramento. Passe o cabo como mostrado nas figuras abaixo.
 - Fixe mecanicamente os cabos dentro do inversor de frequência.
 - Aterre as blindagens do par de cabos e o fio de aterramento no terminal de aterramento (SCR) da unidade de controle.
 - Reinstale as tampas frontais conforme instruído em Instale as tampas.

13. Dê a partida no inversor de frequência

AVISO! Cumpra estas instruções. Se você as ignorar, poderão ocorrer danos ao equipamento, lesões ou morte. Se você não for um eletricista profissional qualificado, não realize serviços de instalação elétrica ou de manutenção.

Use o painel de controle para realizar o procedimento de inicialização. Os dois comandos na parte inferior do visor exibem as funções das duas teclas programáveis e , localizadas abaixo do visor. Os comandos atribuídos às teclas programáveis dependem do contexto. Use as teclas de seta , , , de para mover o cursor ou alterar valores, dependendo da visualização ativa. A tecla 🧃 exibe uma página de ajuda relacionada ao contexto.

Na tela Assistente de primeira partida, Dê partida no inversor de frequência. Na tela Início, pressione (Menu) Certifique-se de que os dados da placa selecione Agora não e pressione 🤇 para acessar o menu Principal. de identificação do motor estejam (Seguinte). disponíveis. Selecione o idioma que deseja usar e pressione (OK). Observação: Depois de selecionar o idioma, ainda levará alguns minutos para que o painel de controle seja ativado. Deslig.� C ACQ580 0.0 Hz C ACQ580 0.0 Hz Deslig.� Nederlands Prim assist partida Frequência saída 0.00 Svenska Configurar conversor agora? Español Iniciar ajuste Corrente motor Türkçe 0.00Sair e não aparecer no arranque Russki Agora não Portugues Torque motor Czech 0K • 15:32 Menu 15:54 Opções Seguinte

Proteção contra sobrecarga do motor

A proteção contra sobrecarga térmica do motor pode usar os sensores de temperatura do motor ou ser estimada usando o modelo de motor definido pelos parâmetros. A proteção contra sobrecarga térmica do motor é definida para a corrente do motor e as curvas de classe do motor como padrão. Para habilitar a proteção usando parâmetros de modelo ou dispositivos de medição, defina o parâmetro 35.11 e parâmetros subsequentes até 35.55. Para ajustar curvas de classe do motor (o padrão é a classe 20), altere os parâmetros 35.56 e 35.57.

Use a chave de informação (()) no painel de controle do inversor de frequência para obter mais informações sobre como definir os parâmetros do grupo 35. Você deve definir os parâmetros de sobrecarga corretamente, ou poderão ocorrer danos ao motor.

Comunicações fieldbus

Para configurar a comunicação fieldbus integrado para Modbus RTU, você deve definir ao menos estes parâmetros:

Parâmetro	Ajuste	Descrição
20.01 Comandos Ext1	Fieldbus integrado	Seleciona o Fieldbus como fonte para os comandos de partida e parada quando EXT1 estiver selecionado como a localização de controle ativa.
22.11 Fonte ref1 de velocidade	BCI Ref1	Seleciona uma referência recebida pela interface de Fieldbus integrado como a referência de velocidade 1.
28.11 Fonte ref1 de frequência	BCI Ref1	Seleciona uma referência recebida pela interface de Fieldbus integrado como a referência de frequência 1.
58.01 Ativar protocolo	Modbus RTU	Inicializa a comunicação com o Fieldbus integrado.
58.03 Endereço de nó	1 (padrão)	Endereço de nó. Não deve haver dois nós com o mesmo endereço de nó on-line.
58.04 Taxa transmissão	19,2 kbps (padrão)	Define a velocidade de comunicação do link. Use o mesmo conjunto que a estação mestre.
58.05 Paridade	8 PAR 1 (por defecto)	Seleciona os ajustes de bit de paridade e de parada. Use o mesmo conjunto que a estação mestre.
58.06 Controle de comunicação	Atualizar ajustes	Valida quaisquer ajustes de configuração EFB alterados. Use após alterar quaisquer parâmetros no grupo 58.

Outros parâmetros relacionados à configuração do fieldbus:

58.14 Perda de comunicação padrão	58.17 Atraso na transmissão	58.28 Tipo act1 EFB	58.34 Ordem das palavras
58.15 Modo de perda de comunicação	58.25 Perfil de controle	58.31 Fonte transparente act1 EFB	58.101 Dados I/O 1
58.16 Tempo de perda de comunicação	58.26 Tipo ref1 EFB	58.33 Modo endereço	58.114 Dados I/O 14

Avisos e falhas

Aviso	Falha	Código aux.	Descrição
-	2281	Calibração de corrente	<u>Falha:</u> Falha na medição da corrente da fase de saída.
A2B1	2310	Sobrecorrente	A corrente de saída é maior do que o limite interno. Isso também pode ser causado por uma falha de aterramento ou perda de fase.
A2B3	2330	Fuga à terra	Um desequilíbrio de carga geralmente causado por uma falha de
			aterramento no motor ou no cabo do motor.
A2B4	2340	Curto-circuito	Há um curto-circuito no motor ou no cabo do motor.
3E00	3130	Perda de fase de entrada	A tensão do circuito CC intermediário oscila devido a entrada da fase de linha de alimentação ausente.
-	3181	Fuga de cabeamento ou terra	Entrada e conexão do cabo do motor incorretas.
A3A1	3210	Sobretensão ligação CC	A tensão intermediária do circuito CC é muito alta.
A3A2	3220	Subtensão ligação CC	A tensão intermediária do circuito CC é muito baixa.
-	3381	Perda da fase de saída	As três fases não estão conectadas ao motor.
-	5090	Falha HW STO	O diagnóstico do hardware STO detectou uma falha de hardware.
			Entre em contato com a ABB.
A5A0	5091	Safe torque off	A função Safe torque off (STO) está ativa.
A7CE	6681	Perda de comunicação EFB	Falha na comunicação do fieldbus integrado.
A7C1	7510	Comunicação FBA A	Perda de comunicação entre o inversor de frequência (ou PLC) e o adaptador de fieldbus.
AF80	7580	Perda comun INU-LSU	A comunicação DDCS entre conversores é perdida.
-	7583		A unidade de alimentação (ou outro conversor) conectada à unidade inversora gerou uma falha.
A7AB	-	Falha na configuração I/O da extensão	Os tipos e locais do módulo de extensão I/O especificados por parâmetros não correspondem à configuração detectada.
AFF6	-	Identificação do motor	O ciclo de identificação do motor ocorrerá na próxima partida.
-	FA81	Perda de Safe torque off 1	Falha no circuito da função Safe Torque Off 1.
-	FA82	Perda de Safe torque off 2	Falha no circuito da função Safe Torque Off 2.

Para outros avisos e falhas, consulte o manual do firmware.

Classificações, fusíveis e cabos de alimentação típicos

- 1) Potência do motor típica sem capacidade de sobrecarga (uso nominal). As classificações de quilowatt se aplicam à maioria dos motores quadripolares IEC. As classificações de potência aplicam-se à maioria dos motores quadripolares NEMA.
- 2) <u>Para instalações IEC:</u> a ABB recomenda fusíveis aR. Os fusíveis gG poderão ser usados para a carcaça R3 se operarem com rapidez suficiente (máximo de 0,1 segundo). O tempo de operação depende da impedância da rede de abastecimento, da área transversal e do comprimento do cabo de alimentação. Cumpra os regulamentos locais. Consulte o manual de hardware para diretrizes para selecionar entre fusíveis aR e gG e para mais alternativas de fusíveis.
- 3) Os fusíveis de proteção de derivação recomendados devem ser usados para manter as cerificações IEC/EN/UL 61800-5-1 e CSA C22.2 nº 274. Consulte a nota 6 para proteção de disjuntor.
- 4) <u>IEC 61439-1:</u> o inversor de frequência é adequado para uso em um circuito capaz de fornecer até 65 kA quando protegido pelos fusíveis apresentados nesta tabela.
- 5) <u>UL 61800-5-1, CSA C22.2 nº 274:</u> O inversor de frequência é adequado para uso em um circuito capaz de fornecer um máximo de 100 kA em amperes simétricos (rms) a um máximo de 480 V quando protegido pelos fusíveis recomendados pela ABB.
- 6) Para fusíveis UL alternativos e disjuntores, consulte Documentos relacionados.
- 7) Fusíveis Classe J. CC e CF também são permitidos às mesmas classificações de corrente e tensão nominais.
- 8) Essas perdas são perdas de potência típicas e não são calculadas conforme o padrão de ecodesign IEC 61800-9-2.
- 9) <u>Instalações IEC:</u> o tamanho do cabo é baseado em até nove cabos posicionados em uma escada de cabo de aço lado a lado, três bandejas do tipo escada uma em cima da outra, temperatura ambiente de 30 °C, isolamento PV, temperatura da superfície de 70 °C (EN 60204-1 e IEC 60364-5-52/2001). Para outras condições, o tamanho dos cabos deve estar de acordo com os regulamentos locais de segurança, a tensão de entrada correta e a corrente de carga do inversor de freguência.
- 10) <u>Instalações NEC:</u> O tamanho dos cabos é baseado na Tabela 310-16 NEC para fios de cobre, isolamento de fios de 75 °C (167 °F) em temperatura ambiente de 40 °C (104 °F). No máximo três condutores de corrente em uma pista, cabo ou terra (diretamente enterrados). Para outras condições, o tamanho dos cabos deve estar de acordo com os regulamentos locais de segurança, a tensão de entrada correta e a corrente de carga do inversor de frequência.

						Fusív	eis ³⁾		
ACQ580- -31 Classifica- ções IEC	Tamanho da carcaça	Potências nominais de entrada	Potê nomin saí	ais de da	Potência do motor ¹⁾	Fusível gG ⁴⁾ (DIN 43620)	Fusível aR ²⁾⁴⁾ (DIN 43620)	Cabo de alimentação típico ⁹⁾	Perda de potência típica ⁸⁾
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		/ı A	<u>/2</u> A	/ _{Ld}	P _{Ld} kW	Tipo ABB	Tipo Bussmann	mm ²	W
$U_{\rm n}$ = trifásio	co 400 V	- * *							
09A5-4	R3	8	9,4	8,9	4,0	OFAF000H16	170M1561	3x2,5+2,5	226
12A7-4	R3	10	12,6	12,0	5,5	OFAF000H16	170M1561	3x2,5+2,5	329
018A-4	R3	14	17,0	16,2	7,5	OFAF000H25	170M1563	3x2,5+2,5	395
026A-4	R3	20	25	23,8	11	OFAF000H32	170M1563	3x6+6	579
033A-4	R6	27	32	30	15	-	170M1565	3x10+10	625
039A-4	R6	33	38	36	18,5	-	170M1565	3x10+10	751
046A-4	R6	40	45	43	22	-	170M1566	3x16+16	912
062A-4	R6	51	62	59	30	-	170M1567	3x25+16	1088
073A-4	R6	63	73	69	37	-	170M1568	3x35+16	1502
088A-4	R6	76	88	84	45	-	170M1569	3x50+25	1904
106A-4	R8	94	106	101	55	-	170M1569	3x70+35	1877
145A-4	R8	128	145	138	75	-	170M3817	3x95+50	2963
169A-4	R8	154	169	161	90	-	170M5808	3x120+70	3168
206A-4	R8	188	206	196	110	-	170M5809	3x150+70	3990
$U_{\rm n}$ = trifásio	co de 480 \	/							
09A5-4	R3	7,0	7,6	7,6	4,0	OFAF000H16	170M1561	3x2,5+2,5	219
12A7-4	R3	9,0	12,0	12,0	5,5	OFAF000H16	170M1561	3x2,5+2,5	278
018A-4	R3	12,0	14,0	14,0	7,5	OFAF000H25	170M1563	3x2,5+2,5	321
026A-4	R3	17,0	23,0	23,0	11	OFAF000H32	170M1563	3x6+6	473
033A-4	R6	24	27	27	15	1	170M1565	3x10+10	625
039A-4	R6	29	34	34	18,5	ı	170M1565	3x10+10	711
046A-4	R6	34	44	44	22	ı	170M1566	3x16+16	807
062A-4	R6	44	52	52	30	-	170M1567	3x25+16	960
073A-4	R6	54	65	65	37	-	170M1568	3x35+16	1223
088A-4	R6	66	77	77	45	-	170M1569	3x50+25	1560
106A-4	R8	82	96	96	55	-	170M1569	3x70+35	1678
145A-4	R8	111	124	124	75	-	170M3817	3x95+50	2237
169A-4	R8	134	156	156	90	-	170M5808	3x120+70	2796
206A-4	R8	163	180	180	110	-	170M5809	3x150+70	3356

ACQ580- -31	Tamanho	Potências nominais de	de Potencias nominais Potencias		Potência do motor ¹⁾	Fusíveis ³⁾	Cabo de alimentação típico	Perda de potência
Classifica- cões NEC	da carcaça	entrada			motor	Classe UL T ⁵⁾⁶⁾⁷⁾	Cobre	típica ⁸⁾
ÇOES NEC		4	12	/ _{Ld}	P_{Ld}	Tipo Bussmann	AWG ¹⁰⁾	W
	Α	Α	Α	Α	hp	i ipo bussilialili	AWG	VV
$U_{\rm n}$ = trifásio	o de 208/2:	30 V						
017A-2	R3	14	16,7	16,7	5	JJS-25	10	341
024A-2	R3	20	24,2	24,2	7,5	JJS-35	10	498
031A-2	R6	28	30,8	30,8	10	JJS-40	8	537

ACQ580- -31		Potências nominais de	Potências nominais de saída		Potência do	Fusíveis ³⁾	Cabo de alimentação típico	Perda de potência	
Classifica- cões NEC	da carcaça	entrada	ue s	aiua	motor	Classe UL T ⁵⁾⁶⁾⁷⁾	Cobre	típica ⁸⁾	
ÇOES NEC		4	1/2	/ _{Ld}	P_{Ld}	Tipo Bussmann	AWG ¹⁰⁾	w	
		Α	Α	Α	hp	i ipo bussilialili	AWG	VV	
046A-2	R6	40	46,2	46,2	15	JJS-60	4	781	
059A-2	R6	53	59,4	59,4	20	JJS-80	4	930	
075A-2	R6	66	74,8	74,8	25	JJS-90	2	1282	
088A-2	R6	76	88	88	30	JJS-110	1/0	1624	
114A-2	R8	98	114	114	40	JJS-150	2/0	1601	
143A-2	R8	128	143	143	50	JJS-200	4/0	2524	
169A-2	R8	152	169	169	60	JJS-225	250 MCM	2698	
211A-2	R8	188	211	211	75	JJS-300	300 MCM	3397	
U _n = trifásio	co de 480 V								
07A6-4	R3	7,0	7,6	7,6	5,0	JJS-15	14	219	
012A-4	R3	9,0	12,0	12,0	7,5	JJS-20	14	278	
014A-4	R3	12,0	14,0	14,0	10	JJS-25	14	321	
023A-4	R3	17,0	23,0	23,0	15	JJS-35	10	473	
027A-4	R6	24	27	27	20	JJS-40	8	625	
034A-4	R6	29	34	34	25	JJS-50	8	711	
044A-4	R6	34	44	44	30	JJS-60	6	807	
052A-4	R6	44	52	52	40	JJS-80	4	960	
065A-4	R6	54	65	65	50	JJS-90	2	1223	
077A-4	R6	66	77	77	60	JJS-110	2	1560	
096A-4	R8	82	96	96	75	JJS-150	1/0	1678	
124A-4	R8	111	124	124	100	JJS-200	2/0	2237	
156A-4	R8	134	156	156	125	JJS-225	4/0	2796	
180A-4	R8	163	180	180	150	JJS-300	250 MCM	3356	

Dados do terminal

T	Entradas de cabo		bo	Terminais L1, L2, L3, T1/U, T2/V, T3/W, UCC+ e UCC-					
Tamanho		Diâmetro ma	áx. do cabo [*]	Tamanho	do cabo	Torque d	e aperto		
da carcaça	pçs.	mm	pol.	mm ²	AWG/kcmil	N⋅m	lbf∙pé		
R3	3	23	0,91	0,516,0	206	1,7	1,2		
R6	3	45	1,77	6,070,0	61/0	15	11,1		
R8	3	45	1,77	25150	4300 MCM	30	22,5		

Para os torques de aperto dos terminais de aterramento, consulte a seção Conecte os cabos de força.

Observações:

- O tamanho mínimo do fio especificado não tem necessariamente a capacidade suficiente de transporte de corrente na carga máxima. Certifique-se de que a instalação cumpra as leis e os regulamentos locais.
- Para instalações IEC usando cabo de mm², os terminais não aceitam um condutor que possui um tamanho maior que o tamanho de fio recomendado. Para instalações NEC usando cabo AWG, isso se aplica apenas ao inversor de frequência de 206A com carcaça R8.
- O número máximo de condutores por terminal é 1.

Dimensões, pesos e requisitos de espaço livre

Tamanho	Peso	Peso	Altura	Altura	Largura	Largura	Profundidade	Profundidade
da carcaça	kg	lb	mm	pol.	mm	pol.	mm	pol.
IP21 (UL tipo	1)			•				•
R3	21,3	47	495	19,49	205	8,07	354	13,94
R6	61	135	771	30,35	252	9,92	392	15,44
R8	118	260	965	38	300	11,81	438	17,24
IP55 (UL tipe	o 12), opção	+B056						
R3	21,3	47	495	19,49	205	8,07	360	14,17
R6	63	139	771	30,35	252	9,92	448	17,65
R8	124	273	965	38	300	11,81	496	19,53
IP20 (UL tipe	o aberto), o	pção+P940		•				•
R3	18,3	40,34	490	19	203	7,99	349	13,74
R6	59	131	771	30,35	252	9,92	358	14
R8	115	254	965	38	300	11,81	430	16,93

200 mm (7,9 pol.) de espaço livre é necessário no topo do inversor de frequência.

300 mm (11,8 pol.) de espaço livre (quando medido da base do inversor de frequência sem a caixa de cabos) é necessário na base do inversor de frequência.

^{*} Diâmetro máximo aceito para o cabo.

Condições ambientais

Altitude de instalação	0 4.000 m (0 13.123 pés) acima do nível do mar. A corrente de saída deve ter a potência reduzida em altitudes superiores a 1000 m (3281 pés). A redução de potência é de 1% para cada 100 m (328 pés) acima de 1000 m (3281 pés).
Temperatura ambiente	Operação: -15 +50 °C (5 122 °F). Não é permitido gelo. A corrente nominal deve ser reduzida em 1% para cada 1 °C (1,8 °F) acima de 40 °C (104 °F), exceto por IP55 (UL tipo 12). Para o inversor de frequência do tipo -206A-4, consulte o manual do hardware. Armazenamento (na embalagem): -40 a +70 °C (-40 a +158 °F).

Safe torque off (STO)

O inversor de frequência possui uma função Safe torque off (STO) de acordo com IEC/EN 61800-5-2. Ela pode ser usada, por exemplo, como o dispositivo atuador final de circuitos de segurança que param o inversor de frequência em caso de perigo (como um circuito de parada de emergência).

Quando ativada, a função STO desabilita a tensão de controle dos semicondutores de potência do estágio de saída do inversor de frequência. Isso impede que o inversor de frequência gere o torque necessário para rodar o motor. O programa de controle gera uma indicação conforme definido pelo parâmetro 31.22. Se o motor estiver em funcionamento quando Safe torque off for ativada, ele parará por inércia. Fechar o interruptor de ativação desativa o STO. Quaisquer falhas geradas devem ser redefinidas antes do novo início.

A função STO tem uma arquitetura redundante, ou seja, ambos os canais devem ser usados na implantação da função de segurança. Os dados de segurança fornecidos neste manual são calculados para uso redundante e não se aplicam se ambos os canais não forem usados.

AVISO! A função STO não desconecta a tensão dos circuitos principal e auxiliar do inversor de frequência.

Observações:

- Se a parada por inércia não for aceitável, pare o inversor de frequência e o maquinário usando o modo de parada apropriado antes de ativar a STO.
- A função STO substitui todas as outras funções do inversor de frequência.

Fiação

Os contatos de segurança devem abrir/fechar em um intervalo de 200 ms.

Um cabo par trançado com blindagem dupla é recomendado para a conexão. O tamanho máximo do cabeamento entre o interruptor e a unidade de controle do inversor de frequência é de 300 m (1000 pés). Aterrar a blindagem do cabo apenas na unidade de controle.

Validação

Para assegurar a operação segura da função de segurança, é necessário testar a validação. O teste deve ser realizado por uma pessoa competente com especialização e conhecimento adequados da função de segurança. Os procedimentos do teste e o relatório devem ser documentados e assinados por essa pessoa. Instruções de validação da função STO podem ser encontradas no manual do hardware do inversor de frequência.

Dados técnicos

- Tensão mínima em IN1 e IN2 interpretada como "1": 13 VCC
- Tempo de reação de STO (interrupção mais curta detectável): 1 ms
- Tempo de resposta de STO: <u>Carcaças R3 e R6:</u> 2 ms (típico), 10 ms (máximo) <u>Carcaça R8:</u> 2 ms (típico), 15 ms (máximo)
- Tempo de detecção de falha: Canais em diferentes estados por mais de 200 ms
- Tempo de reação de falha: Tempo de detecção de falha + 10 ms
- Atraso de indicação de falha de STO (parâmetro 31.22): < 500 ms
- Atraso de indicação de aviso de STO (parâmetro 31.22): < 1000 ms
- Nível de integridade da segurança (EN 62061): SIL 3
- Nível de desempenho (EN ISO 13849-1): PL e

O inversor de frequência STO é um componente de segurança tipo A conforme definido na IEC 61508--2.

Para obter dados completos de segurança, taxas exatas de falha e modos de falha da função STO, consulte o manual de hardware do inversor de frequência.

Marcações

As marcações aplicáveis são mostradas no tipo de etiqueta de designação do inversor de frequência.

Documentos relacionados

Documento	Código (inglês)	Código (Português)
ACQ580-31 hardware manual	3AXD50000045935	3AXD50000544653
ACQ580 pump control program firmware manual	3AXD50000035867	3AXD50000111848
ACS-AP-I, -S, -W and ACH-AP-H, -W Assistant control panels user's manual	3AUA0000085685	
Drive composer PC tool user's manual	3AUA0000094606	
Converter module capacitor reforming instructions	3BFE64059629	
Common mode filter kit for ACS880-01 frame R7, and for ACS880-11, ACS880-31, ACH580-31 and ACQ580-31 frame R8 installation instructions	3AXD50000015179	
Alternate Fuses, MMPs and Circuit Breakers for ABB Drives	3AXD50000645015	

Declarações de conformidade

Link e código para acessar a ACQ580 Conformidade com a Declaração da China RoHS II (3AXD10001497389 [inglês/chinês])

ACQ580 Conformidade com a Declaração da China RoHS II