

OPTION FÜR ABB ANTRIEBE, FREQUENZUMRICHTER UND WECHSELRICHTER

FEPL-02 Ethernet POWERLINK-Adaptermodul

Benutzerhandbuch

Liste ergänzender Handbücher

Siehe Abschnitt Ergänzende Handbücher auf Seite 15.

Im Internet finden Sie Handbücher und andere Produkt-Dokumentation im PDF-Format. Siehe Abschnitt Dokumente-Bibliothek im Internet auf der hinteren Einband-Innenseite. Wenn Handbücher nicht in der ABB Bibliothek aller Dokumente verfügbar sind, wenden Sie sich bitte an Ihre ABB Vertretung.

Mit dem QR-Code können Sie eine Online-Liste der Handbücher zu diesem Produkt öffnen.

FEPL-02 Handbuch

Internetseite Feldbuskonnektivität

Benutzerhandbuch

FEPL-02 Ethernet POWERLINK-Adaptermodul

Inhalt	
1. Sicherheitsvorschriften	\triangle
4. Mechanische Installation	1
5. Elektrische Installation	1
6. Inbetriebnahme	(

Inhalt

1. Sicherheitsvorschriften	
Inhalt dieses Kapitels Bedeutung von Warnhinweisen Sicherheit bei der Installation	11
2. Über das Handbuch	
Inhalt dieses Kapitels Zweck dieses Handbuchs Anwendungsbereich Angesprochener Leserkreis Kompatibilität Vor Beginn der Arbeit Ergänzende Handbücher Inhalte der Kapitel In dem Handbuch verwendete Begriffe und Abkürzungen Allgemeine Begriffe und Abkürzungen Ethernet POWERLINK - Begriffe und Abkürzungen Haftungssausschluss für Cyber-Sicherheit	13 13 14 14 15 16 17 17
3. Übersicht - POWERLINK-Netzwerk und FEPL-02 Mod	luk
Inhalt dieses Kapitels Ethernet POWERLINK-Netzwerk Beispiel-Topologie der Ethernet POWERLINK-Verbindung FEPL-02 Ethernet POWERLINK-Adaptermodul Aufbau des FEPL-02 Adaptermoduls	21 22 23
4. Mechanische Installation	
Inhalt dieses Kapitels	25 25

5. Elektrische Installation

Inhalt dieses Kapitels	29
Erforderliche Werkzeuge und Anweisungen	29
Allgemeine Verkabelungsanweisungen	30
Anschließen des Adaptermoduls an das Ethernet	
POWERLINK-Netzwerk	30
6. Inbetriebnahme	
Inhalt dieses Kapitels:	31
Konfiguration des Antriebs	32
Ethernet POWERLINK-Anschlusskonfiguration	
FEPL-02 Konfigurationsparameter – Gruppe A	
(Gruppe 1)	33
FEPL-02 Konfigurationsparameter – Gruppe B	
(Gruppe 2)	38
FEPL-02 Konfigurationsparameter – Gruppe C	
(Gruppe 3)	38
Steuerplätze	39
Inbetriebnahme von ACS355 Frequenzumrichtern	40
Beispiele für Parameter-Einstellungen – ACS355	41
Drehzahlregelung unter Verwendung des CiA 402	
Geschwindigkeitsmodus (vI)	41
Drehzahl- und Drehmomentregelung mit dem	
ABB Drives Kommunikationsprofil	43
Inbetriebnahme von ACSM1 Frequenzumrichtern	46
Beispiele für Parameter-Einstellungen – ACSM1	47
Positionsregelung mit dem Profil CiA 402	
Positionierungsmodus (pp)	47
Inbetriebnahme von ACS850 Frequenzumrichtern	50
Beispiele für Parameter-Einstellungen – ACS850	51
Drehzahlregelung unter Verwendung des CiA 402	
Geschwindigkeitsmodus (vI)	51
Drehzahlregelung mit dem Kommunikationsprofil	
ABB Drives	53
Inbetriebnahme von ACS380, ACS580 und ACS880	
Frequenzumrichtern	55

	Steuerwort-Inhalte		83
	Statuswort-Inhalte		85
	Zustandsmaschine		87
	Sollwerte		88
	Skalierung		88
	Istwerte		89
	Skalierung		89
	8. Kommunikationsprotokoll		
	Inhalt dieses Kapitels		91
	Ethernet POWERLINK Kommunikationszyklus		91
	Ethernet POWERLINK Zustandsmaschine		92
	NMT_GS_INITIALISATION		92
	NMT_GS_COMMUNICATING		93
1	NMT_CS_NOT_ACTIVE		93
	Die Zustände NMT_CS_PREOPERATIONAL		
	NMT_CS_READY_TO_OPERATE		
	NMT_CS_OPERATIONAL		94
	NMT_CS_STOPPED		95
	Spezifikation DS 301 und DS 402		96
	Prozessdatenobjekte		96
	Servicedatenobjekte		97
	SDO-Protokoll		97
	Netzwerk-Managementdienste		98
	NMT State Command Services		98
	NMT Response Services		
	Fehlereintragsspezifikation		99
	9. Diagnose		
	Inhalt dieses Kapitels	1	01
	Stör- und Warnmeldungen		
	LED-Anzeigen		
	10. Technische Daten		
	Inhalt dieses Kapitels	1	05
	FEPL-02		
	Ethernet POWERLINK-Verbindung		

11. Anhang A – CANopen-Objektverzeichnis	
Inhalt dieses Kapitels	109
Struktur des Objektverzeichnisses	109
Kommunikationsprofilobjekte	111
Herstellerspezifische Profilobjekte	
Istwertsignale und Parameter des Antriebs	122
CiA 402 Profilobjekte	123
12. Anhang B – CANopen-Störungscodes	
Inhalt dieses Kapitels	129
Störungscodes	129
13. Anhang C - IdentResponse-Datenrahmen	
Inhalt dieses Kapitels	137
NMT Service Zeitfenster - Struktur von IdentResponse	137
NMT Service Zeitfenster - Datenfelder von IdentResnonse	139

Weitere Informationen

Sicherheitsvorschriften

Inhalt dieses Kapitels

Dieses Kapitel enthält die in diesem Handbuch verwendeten Warnsymbole und die Sicherheitsvorschriften, die bei der Installation und beim Anschluss eines Options- oder Adaptermoduls an einen Antrieb. Frequenzumrichter oder Wechselrichter befolgt werden müssen. Die Nichtbeachtung der Sicherheitsvorschriften kann zu Verletzungen und tödlichen Unfällen führen, oder Schäden an den Geräten verursachen. Lesen Sie dieses Kapitel aufmerksam durch, bevor Sie mit der Installation beginnen.

Bedeutung von Warnhinweisen

Warnungen weisen auf Bedingungen hin, die zu schweren oder tödlichen Verletzungen und/oder zu Schäden an den Geräten führen können. Sie beschreiben auch Möglichkeiten zur Vermeidung der Gefahr. In diesem Handbuch werden die folgenden Warnsymbole verwendet:

Warnung vor gefährlicher Spannung. Dieses Symbol warnt vor hoher Spannung, die zu Verletzungen von Personen oder tödlichen Unfällen und/oder Schäden an

Geräten führen kann.

Allgemeine Warnung. Dieses Symbol warnt vor nichtelektrischen Gefahren, die zu Verletzungen von Personen oder tödlichen Unfällen und/oder Schäden an Geräten führen können.

Sicherheit bei der Installation

Diese Vorschriften gelten für alle Personen, die ein Options- oder Adaptermodul an einen Antrieb. Frequenzumrichter oder Wechselrichter installieren oder anschließen und dafür die vordere Abdeckung abnehmen bzw. die Tür öffnen müssen.

WARNUNG! Befolgen Sie diese Vorschriften. Wenn diese nicht befolgt werden, können Verletzungen, tödliche Unfälle oder Schäden an den Geräten auftreten

- Installation und Wartung des Frequenzumrichters dürfen nur von qualifiziertem Fachpersonal durchgeführt werden.
- Trennen Sie den Antrieb, Frequenzumrichter oder Wechselrichter von allen Spannungsquellen. Warten Sie ach dem Abschalten der Spannungsversorgung und Trennen von allen Spannungsquellen stets 5 Minuten, bis die Zwischenkreiskondensatoren entladen sind, bevor Sie die Arbeiten fortsetzen.
- Trennen Sie alle in der Nähe befindlichen Steuersignalanschlüsse, an denen gefährliche Spannungen anliegen, von den jeweiligen Spannungsquellen. Es ist zum Beispiel möglich, dass 230 V AC von außen an einen Relaisausgang des Antriebs, Frequenzumrichters oder Wechselrichters angeschlossen sind.
- Verwenden Sie immer ein Multimeter, um sicherzustellen, dass an keinen Teilen in Reichweite Spannung anliegt. Die Impedanz des Multimeters muss mindestens 1 MOhm betragen.

Über das Handbuch

Inhalt dieses Kapitels

Dieses Kapitel ist die Einführung in dieses Handbuch.

Zweck dieses Handbuchs

Das Handbuch enthält Informationen über die Installation, Inbetriebnahme und Verwendung eines FEPL-02 Ethernet POWERLINK-Adaptermoduls.

Anwendungsbereich

Dieses Handbuch bezieht sich auf das FEPL-02 Ethernet POWERLINK-Adaptermodul, Softwareversion 1.0 oder höher.

Angesprochener Leserkreis

Dieses Handbuch richtet sich an Personen, die für die Installationsplanung, Installation, Inbetriebnahme, den Betrieb und die Wartung des Adaptermoduls zuständig sind. Lesen Sie dieses Handbuch und das entsprechende Handbuch des Frequenzumrichters, das Informationen zur Hardware und Sicherheitsvorschriften enthält, bevor Sie mit der Arbeit mit dem Modul beginnen.

Es wird vorausgesetzt, dass der Leser die erforderlichen Kenntnisse der Elektrotechnik, der Verdrahtung, der elektrischen Komponenten und der Verwendung von Symbolen in Schaltplänen besitzt.

Dieses Handbuch wird weltweit verwendet. Es werden SI- und amerikanisch/britische Maßeinheiten angegeben.

Kompatibilität

Das FEPL-02 Ethernet POWERLINK-Adaptermodul ist mit den folgenden ABB Frequenzumrichtern kompatibel:

- ACS355
- ACSM1
- ACH580
- ACS580
- ACS850
- ACQ810
- ACS880

Das FEPL-02 Ethernet POWERLINK-Adaptermodul ist mit allen Master-Stationen, die das Ethernet POWERLINK-Protokoll unterstützen, kompatibel.

Hinweis: Das Adaptermodul kann mit mehr Frequenzumrichtern kompatibel sein als hier aufgelistet. Für Details zur Kompatibilität, überprüfen Sie bitte das Firmware-Handbuch des Frequenzumrichters.

Vor Beginn der Arbeit

Es wird vorausgesetzt, dass der Antrieb installiert und betriebsbereit ist, bevor die Installation des Adaptermoduls beginnt.

Zusätzlich zu den üblichen Installationswerkzeugen müssen während der Installation die zu dem Antrieb gehörenden Handbücher griffbereit sein, da sie wichtige Informationen enthalten, die in diesem Handbuch nicht thematisiert sind. Auf die Handbücher der Antriebe wird an verschiedenen Stellen dieses Handbuchs verwiesen.

Ergänzende Handbücher

Antriebs-Benutzerhandbücher	Code (EN)	Code (DE)
ACS355 drives (0.3722 kW, 0.530 hp) user's manual	3AUA0000066143	3AUA0000071755
Frequenzumrichter-Hardware- Handbücher und Anleitungen		
ACSM1 Handbücher	00578051	
ACQ810 Handbücher	00598718	
ACS850-04 manuals	00592009	
ACS850-04 manuals	00592009	
ACH580-01 Handbücher	9AKK10103A0587	
ACH580-04 Handbücher	9AKK106930A9059	
ACH580-07 Handbücher	9AKK106930A5241	
ACS580-01 Handbücher	9AKK105713A8085	
ACS580-04 Handbücher	9AKK106930A9060	
ACS580-07 (75 bis 250 kW) Handbücher	9AKK106930A5239	
ACS580-07 (250 bis 500 kW) Handbücher	9AKK106713A0278	
ACS880-01 Handbücher	9AKK105408A7004	
ACS880-04 Handbücher	9AKK105713A4819	

ACS880-37 (132 to 355 kW) 9AKK106930A3467 ACS880-37 (160 to 3200 kW) 9AKK106354A1500 Handbücher und Anleitungen

ACS880-07 Handbücher

ACS880-07 (560 to 2800 kW)

ACS880-17 (160 to 3200 kW)

ACS880-17 (132 to 355 kW)

zu den Optionen FEPL-02 Ethernet POWERLINK 3AUA0000123527 3AUA0000133138 adapter user's manual

9AKK105408A8149

9AKK105713A6663

9AKK106930A3466

9AKK106354A1499

Inhalte der Kapitel

Dieses Handbuch besteht aus den folgenden Kapiteln:

- Sicherheitsvorschriften enthält die Sicherheitsvorschriften, die bei der Installation eines Feldbus-Adaptermoduls einzuhalten sind.
- Über das Handbuch enthält eine Einleitung zu diesem Handbuch
- Übersicht POWERLINK-Netzwerk und FEPL-02 Modul enthält eine kurze Beschreibung des Ethernet POWERLINK-Netzwerks und des Adaptermoduls.
- Mechanische Installation enthält eine Liste zur Überprüfung der Lieferung sowie Anweisungen zur Installation des Adaptermoduls.
- Elektrische Installation enthält Verkabelungsanweisungen und Anweisungen zum Anschluss des Moduls an das Ethernet POWERLINK-Netzwerk.
- Inbetriebnahme enthält die bei der Inbetriebnahme des Antriebs mit dem Adaptermodul zu unternehmenden Schritte sowie Beispiele für die Konfiguration des Masters.
- Kommunikationsprofile enthält eine Beschreibung der für die Kommunikation zwischen Master, Adaptermodul und Antrieb verwendeten Kommunikationsprofile.
- Kommunikationsprotokoll enthält eine Beschreibung des Ethernet POWERLINK-Protokolls für das Adaptermodul.
- Diagnose erläutert, wie Störungsursachen mit Hilfe der Status-LEDs auf dem Adaptermodul ermittelt werden.
- Technische Daten enthält die technischen Daten des Adaptermoduls und der Ethernet POWERLINK-Verbindung.
- Anhang A CANopen-Objektverzeichnis enthält eine Liste der CANopen-Objekte, die vom Adaptermodul unterstützt werden.
- Anhang B CANopen-Störungscodes enthält eine Liste der Fehlercodes für CANopen.
- Anhang C IdentResponse-Datenrahmen gibt einen Überblick über den Inhalt des IdentResponse-Datenrahmens.

In dem Handbuch verwendete Begriffe und Abkürzungen

Allgemeine Begriffe und Abkürzungen

Begriff/Abkürzung	Beschreibung
Befehlswort	Siehe Steuerwort.
Kommunikationsmodul	Ein Kommunikationsmodul ist ein Gerät (z.B. ein Feldbusadapter), über das der Antrieb an ein externes serielles Kommunikationsnetz (z.B. einen Feldbus) angeschlossen werden kann. Die Kommunikation mit dem Modul wird über einen Antriebsparameter aktiviert.
Steuerwort	16-Bit- oder 32-Bit-Wort vom Master an den Slave mit bitweise kodierten Steuersignalen (manchmal auch als Befehlswort bezeichnet).
FEPL-02 Ethernet POWERLINK Adaptermodul	Ein für ABB-Antriebe verfügbares, optionales Feldbus-Adaptermodul. Mit dem FEPL-02 wird ein ABB-Antrieb an ein Ethernet POWERLINK- Netzwerk angeschlossen.
Parameter	Ein Parameter ist eine Betriebsanweisung für den Antrieb. Parameter können mit dem Bedi- enpanel, dem PC-Tool des Antriebs oder über das Adaptermodul gelesen und programmiert werden.
Profil	An einen bestimmten Anwendungsbereich (z.B. Antriebe) angepasste Protokolle. In diesem Handbuch werden antriebsinterne Profile (zum Beispiel DCU oder FBA) native Profile genannt.
Statuswort	16-Bit- oder 32-Bit-Wort vom Slave an den Master mit bitcodierten Statustelegrammen

Ethernet POWERLINK - Begriffe und Abkürzungen

Begriff/Abkürzung	Beschreibung
CN	Controlled Node; ein Knoten in einem POWER- LINK-Netzwerk, der den SCNM-Mechanismus nicht steuern kann.
Gerätebeschreibungs- datei	Alle gerätespezifischen Daten werden in der Gerätebeschreibungsdatei (XDD) jedes Geräts gespeichert.
MN	Managing Node; ein Knoten, der den SCNM- Mechanismus in einem POWERLINK-Netz- werk steuern kann.
Objektverzeichnis	Ein lokaler Speicher aller Kommunikationsobjekte, die vom Gerät erkannt werden.
OSI	Open Systems Interconnection (Kommunikation offener Systeme)
PDO	Prozessdatenobjekt; wird für die Übertragung von zeitkritischen Daten verwendet, wie zum Beispiel Steuerbefehle, Sollwerte und Istwerte.
PReq	PollRequest (Poll-Anforderung); ein Datenrahmen, der in der isochronen Phase der zyklischen Kommunikation verwendet wird. Anhand eines PollRequest fordert der MN den CN auf, seine Daten zu senden.
PRes	PollResponse (Poll-Antwort); ein Datenrahmen, der in der isochronen Phase der zyklischen Kommunikation verwendet wird. Der CN antwortet mit einem PollResponse-Datenrahmen, wenn er eine PollRequest vom MN erhält.
R	Read-only access (schreibgeschützter Zugriff).
RW	Schreib-/Lesezugriff

Begriff/Abkürzung	Beschreibung
SCNM	Slot Communication Network Management; in einem POWERLINK-Netzwerk weist der MN die Übertragungszeit für Daten von jedem Knoten innerhalb einer garantierten Zykluszeit regelmäßig zu. In jedem Zyklus gibt es Zeitfenster für asynchrone und synchrone Daten für die adhoc-Kommunikation. Der SCNM-Mechanismus stellt sicher, dass es während des physischen Netzwerkzugriffs in den Netzwerkknoten zu keinen Kollisionen kommt. Daher sorgt er für eine deterministische Kommunikation über Legacy Ethernet.
SDO	Servicedatenobjekt; wird für die Übertragung von nicht-zeitkritischen Daten verwendet, wie zum Beispiel Parametern.

Haftungssausschluss für Cyber-Sicherheit

Dieses Produkt wurde für den Anschluss an und die Übertragung von Informationen und Daten über eine Netzwerk-Schnittstelle ausgelegt. Es liegt allein in der Verantwortlichkeit des Kunden, ständig sicherzustellen, dass die Verbindung zwischen diesem Produkt und dem Netzwerk des Kunden oder einem anderen Netzwerk (wie es auch der Fall sein kann) gesichert ist. Der Kunde muss ausreichende Sicherheitsmaßnahmen treffen und auf dem aktuellen Stand halten (wie - und nicht darauf beschränkt - die Installation von Firewalls, Anwendung von Authentifizierungsmaßnahmen, Verschlüsselung von Daten, Installation von Antivirus-Programmen usw.), um das Produkt, das Netzwerk, sein System und die Schnittstellen vor Sicherheitsverletzungen, unerlaubtem Zugriff, Eindringen, Sicherheitslücken und/oder Diebstahl von Daten oder Informationen zu schützen. ABB und seine Konzerngesellschaften sind nicht haftbar für Schäden und/oder Verluste, die als Folge von Sicherheitsverletzungen, unerlaubtem Zugriff, Störungen. Eindringung. Sicherheitslücken und/oder Diebstahl von Daten und Informationen auftreten.

Hinweis: Die Webseiten sind nur für die Konfiguration des Gerätes während der Inbetriebnahme vorgesehen. Aus Sicherheitsgründen wird eine Deaktivierung der Internetseiten nach der Inbetriebnahme empfohlen.

Übersicht - POWERLINK-Netzwerk und FEPL-02 Modul

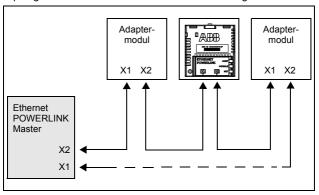
Inhalt dieses Kapitels

Dieses Kapitel enthält eine Kurzbeschreibung des Ethernet POWERLINK-Netzwerks und des EEPL-02 Ethernet POWER-LINK-Adaptermoduls.

Ethernet POWERLINK-Netzwerk

Ethernet POWERLINK ist ein Kommunikationsprofil für Echtzeit-Ethernet, Es erweitert die Ethernet-Norm IEEE802.3 mit einem Mechanismus zur deterministischen Übertragung von Daten. Der Mechanismus wird als "Slot Communication Network Management" (SCNM) bezeichnet. SCNM wird von einem im Netzwerk eingebundenen Gerät verwaltet, das die Bezeichnung "Managing Node" (MN) trägt. Alle anderen Knoten sind "Controlled Nodes" (CN).

Im Gegensatz zum standardmäßigen Ethernet gewährleistet SCNM, dass ieweils nur ein Knoten auf das Netzwerk zugreift. Der Ablauf ist in eine isochrone und eine asynchrone Phase unterteilt. In der isochronen Phase werden zeitkritische Daten übertragen. während in der asynchronen Phase Bandbreite für die Übertragung nicht zeitkritischer Daten bereitgestellt wird. Der MN gewährt über dedizierte Poll-Anforderungsmeldungen Zugriff auf das physikalische Medium. Demzufolge hat nur ieweils ein CN Zugriff auf das Netzwerk, so dass sich keine Kollisionen ereignen.


Im Ethernet POWERLINK-Netzwerk kommt die gleiche Protokolltechnologie wie bei CANopen zum Einsatz. Sie definiert Servicedatenobjekte (SDO), Prozessdatenobjekte (PDO) und die Objektverzeichnisstruktur, um die Parameter zu verwalten.

Das Ethernet POWERLINK-Netzwerk kann sternförmig, baumförmig, verkettet oder ringförmig aufgebaut sein. Außerdem kann das Netzwerk auch aus einer Kombination dieser Topologien bestehen. Um Verzögerungen und Signalstörungen zu minimieren, wird empfohlen, Repeater anstelle von Schaltern zu verwenden. Verwenden Sie Repeater der Klasse 2. Das FEPL-02 besitzt einen internen Repeater, weshalb kein externer Repeater erforderlich ist.

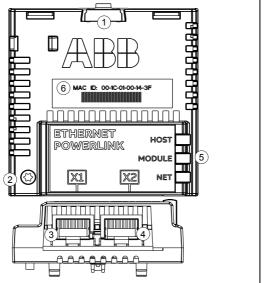
Weitere Informationen erhalten Sie von der Ethernet POWERLINK Standardization Group (<u>www.ethernet-powerlink.org</u>).

Beispiel-Topologie der Ethernet POWERLINK-Verbindung

Die folgende Abbildung enthält ein Beispiel für eine zulässige Topologie einer EtherCAT POWERLINK-Verbindung mit FEPL-02.

FEPL-02 Ethernet POWERLINK-Adaptermodul

Das FEPL-02 Ethernet POWERLINK-Adaptermodul ist ein optionales Gerät für ABB-Antriebe, das den Anschluss des Antriebs an ein Ethernet POWERLINK-Netzwerk ermöglicht. Das Modul wird als vollständiger Ethernet POWERLINK-Slave klassifiziert.


Über das Adaptermodul können Sie:

- Steuerbefehle zum Antrieb übertragen (Start, Stopp. Startfreigabe usw.)
- Sollwerte für Motordrehzahl und/oder -drehmoment an den Antrieb übergeben/vorgeben
- einen Prozess-Istwert oder -Sollwert an den PID-Regler des Antriebs übertragen
- Statusinformationen oder Istwerte aus dem Antrieb auslesen.
- Antriebs-Parameterwerte ändern
- Antriebsstörungen guittieren.

Die vom Adaptermodul unterstützten Ethernet POWERLINK-Befehle und -Dienste werden in Kapitel Kommunikationsprotokoll beschrieben. In der Benutzerdokumentation des Antriebs wird angegeben, welche Befehle vom Antrieb unterstützt werden.

Das Adaptermodul wird auf der Regelungseinheit des Frequenzumrichters in den Steckplatz für Optionsmodule gesteckt. Einbauoptionen für das Modul enthält die Dokumentation des Antriebs[']

Aufbau des FEPL-02 Adaptermoduls

Nr.	Beschreibung	Siehe Kapitel:
1	Verriegelung	Mechanische Installation
2	Montageschraube	Mechanische Installation
3	Anschluss X1 an Ethernet POWERLINK	Elektrische Installation
4	Anschluss X2 an Ethernet POWERLINK	Elektrische Installation
5	Diagnose-LEDs	Diagnose
6	MAC-Adresse	-

Mechanische Installation

Inhalt dieses Kapitels

Dieses Kapitel enthält eine Liste zur Überprüfung der Lieferung sowie Anweisungen zur Installation des Adaptermoduls.

Erforderliche Werkzeuge und Anweisungen

Sie benötigen einen Torx-Schraubendreher TX10, um das FEPL-Adaptermodul am Frequenzumrichter zu befestigen. Siehe hierzu das entsprechende Hardware-Handbuch des Frequenzumrichters.

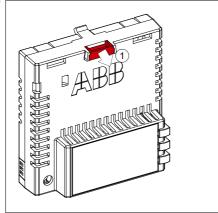
Auspacken und Überprüfen der Lieferung

- 1. Das Optionspaket öffnen.
- Sicherstellen, dass das Paket enthält:
 - Ethernet POWERLINK-Adaptermodul, Typ FEPL-02
 - dieses Handbuch.
- 3. Die Lieferung auf Beschädigungen überprüfen.

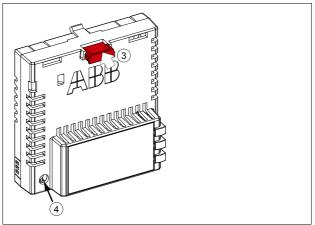
Installation des Adaptermoduls

WARNUNG! Die Sicherheitsanweisungen müssen befolgt werden. Siehe Kapitel *Sicherheitsvorschriften* auf Seite *11*. Die Nichtbeachtung der Sicherheitsvorschriften kann zu

Verletzungen oder tödlichen Unfällen führen.


Das Adaptermodul verfügt über einen spezifischen Steckplatz im Frequenzumrichter. Das Adaptermodul wird mit Plastikstiften, einer Verriegelung und einer Schraube befestigt. Die Schraube stellt auch eine elektrische Verbindung zwischen dem Modul und dem Frequenzumrichtergehäuse für den Kabelschirm-Erdungsanschluss her.

Die Spannungsversorgung und der Anschluss der Signale des Adaptermoduls an den Antrieb erfolgt über einen 20-Pin-Stecker.


Einbau oder Demontage des Adaptermodul von der Regelungseinheit:

Die Verriegelung herausziehen.

- 2. Das Adaptermodul sorgfältig in seinen Steckplatz im Frequenzumrichter einsetzen.
- Die Verriegelung hineinschieben. 3.

4. Die Schraube mit dem Torx- Schraubendreher TX10 und einem Anzugsmoment von 0,8 Nm festziehen.

Hinweise: Bei einem zu hohen Anzugsmoment können die Schrauben abreißen. Es ist erforderlich, die Schraube korrekt festzuziehen, damit die EMV-Anforderungen erfüllt werden und der einwandfreie Betrieb des Moduls sichergestellt ist.

Weitere Anweisungen zur Installation des Adaptermoduls im Frequenzumrichter, siehe entsprechendes Handbuch des Frequenzumrichters.

Elektrische Installation

Inhalt dieses Kapitels

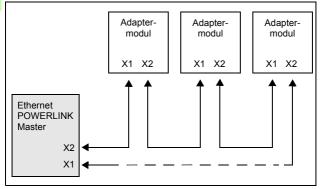
Dieses Kapitel enthält:

- allgemeine Verkabelungsanweisungen
- Anweisungen für den Anschluss des Adaptermoduls an das Ethernet POWERLINK-Netzwerk.

WARNUNG! Befolgen Sie die Sicherheitsvorschriften. Siehe Kapitel Sicherheitsvorschriften auf Seite 11. Die Nichtbeachtung der Sicherheitsvorschriften kann zu Verletzungen oder tödlichen Unfällen führen. Elektrische Arbeiten dürfen nur von Fachpersonal durchgeführt werden.

Erforderliche Werkzeuge und Anweisungen

Siehe das entsprechende Hardware-Handbuch des Antriebs.


Allgemeine Verkabelungsanweisungen

- Verlegen Sie die Buskabel soweit wie möglich von den Motorkabeln entfernt.
- Vermeiden Sie parallele Kabelführungen.
- Verwenden Sie Kabeldurchführungen an den Kabeleingängen.

Anschließen des Adaptermoduls an das Ethernet POWERLINK-Netzwerk

- Schließen Sie die Netzwerkkabel an die zwei RJ45-Buchsen (X1 und X2) am Adaptermodul an.
 - Das Kabel vom Master muss an die linke Buchse (X1) angeschlossen werden.
- Wenn in einer Netzwerktopologie mehrere Slave-Geräte in der selben Netzwerkstruktur vorhanden sind, wird das nächste Slave-Gerät an die rechte Buchse (X2) angeschlossen.
- Wenn es sich um einen redundanten Ring handelt, wird der rechte Anschluss (X2) des letzten Slave-Geräts mit dem zweiten Anschluss des Master verbunden.

Die folgende Abbildung veranschaulicht die Kabelanschlüsse.

Inbetriebnahme

Inhalt dieses Kapitels:

Dieses Kapitel enthält:

- Informationen, wie der Antrieb für den Betrieb mit dem Adaptermodul konfiguriert wird.
- umrichterspezifische Anweisungen und Beispiele zur Inbetriebnahme des Antriebs mit dem Adaptermodul
- Beispiel zur Konfiguration der Masterstation für die Kommunikation mit dem Adaptermodul.

WARNUNG! Befolgen Sie die Sicherheitsvorschriften in diesem Handbuch und in der Antriebsdokumentation.

Konfiguration des Antriebs

Die folgenden Informationen gelten für alle Umrichtertypen, die mit dem Adaptermodul kompatibel sind, sofern nicht ausdrücklich Ausnahmen genannt werden.


Ethernet POWERLINK-Anschlusskonfiguration

Nachdem das Adaptermodul entsprechend den Anweisungen in den Kapiteln Mechanische Installation und Elektrische Installation installiert wurde, muss der Antrieb für die Kommunikation mit dem Modul vorbereitet werden.

Das genaue Verfahren zur Aktivierung des Moduls für die POWERLINK-Kommunikation mit dem Antrieb hängt vom Typ des Antriebs ab. Normalerweise muss zur Aktivierung der Kommunikation ein Parameter entsprechend eingestellt werden. Siehe antriebsspezifische Inbetriebnahmen ab Seite 40.

Wenn die Kommunikation zwischen Antrieb und Adaptermodul hergestellt ist, werden verschiedene Konfigurationsparameter in den Antrieb geladen. Diese in den folgenden Tabellen angegebenen Parameter müssen zuerst geprüft und gegebenenfalls geändert werden.

Beachten Sie, dass nicht alle Umrichter die Namen der Konfigurationsparameter anzeigen. Damit Sie die Parameter der verschiedenen Umrichter erkennen, werden in den Tabellen die angezeigten Namen der Umrichter grau unterlegt dargestellt.

FEPL-02 Konfigurationsparameter – Gruppe A (Gruppe 1)

Hinweis: Die tatsächliche Nummer der Parametergruppe hängt vom Antriebstyp ab. Gruppe A (Gruppe 1) entspricht:

- Parametergruppe 51 bei den Frequenzumrichtern ACS380, ACSM1, ACS580, ACS850 und ACQ810
- Parametergruppe 51 des ACS880, wenn das Adaptermodul als Feldbusadapter A installiert wurde, oder Parametergruppe 54, wenn das Adaptermodul als Feldbusadapter B installiert wurde

Nr.	Name/Wert	Beschreibung	Standard
01	FBA Тур	Read-only. Dieser Parameter zeigt den vom Antrieb identifizierten Feldbusadapter- Typ an. Der Wert kann vom Benutzer nicht eingestellt werden. Ist dieser Parameter 0 = Noch nicht definiert, wurde die Kommunikation zwischen dem Antrieb und dem Modul noch nicht hergestellt.	136 = ETH Pwrlink
02	Profil	Wählt das Kommunikationsprofil für den Netzwerkanschluss aus.	0 = CiA 402
	0 = CiA 402	CANopen-Geräteprofil CiA 402	
	1 = ABB Drives Profile	ABB-Drives-Profil	
	2 = Transparent16	Profil Transparent 16	
	3 = Transparent32	Profil Transparent 32	
03	Node ID	Definiert die Knoten-Nummer des Geräts. Online sind keine zwei Geräte mit gleicher Adresse zulässig.	1
	0239	Knotennummer	

Nr.	Name/Wert	Beschreibung	Standard
04	T16 scale	Dieser Parameter definiert den Sollwert- Multiplikator/Istwert-Divisor für das Adap- termodul. Der Parameter ist nur wirksam, wenn das Profil Transparent 16 gewählt ist UND der Antrieb das native Kommunikati- onsprofil (z.B. DCU oder FBA) und einen 16-Bit Transparent Sollwert 1/Istwert 1 ver- wendet. Bei einem Frequenzumrichter des Typs ACS355 wird der von der SPS vorgege- bene Drehzahl-Sollwert mit dem Wert dieses Parameters plus eins multipliziert. Wenn zum Beispiel der Parameter den Wert 99 hat und der vom Master vorgegebene Sollwert 1000 ist, wird der Sollwert mit 99 + 1 = 100 multipliziert und als 100000 an den Antrieb übertragen. Gemäß dem DCU-Profil wird dieser Wert vom Antrieb als Sollwert von 100 U/min interpretiert. Bei den Frequenzumrichtern ACSM1, ACS850, ACQ810 und ACS880 wird mit der Einstellung dieses Parameters auf 65535 die Annäherung von 1 = 1 U/min erreicht.	99
	065535	Sollwert-Multiplikator/Istwert Divisor	
05	X1 MDI/MDIX	Definiert den Typ des an den Anschluss angeschlossenen Kabels. Die Funktion auto. MDI/MDIX-Erkennung ist standardmäßig aktiviert. Die Funktion auto. MDI/MDIX kann für jeden Anschluss einzeln deaktiviert werden und der Anschluss kann als MDI Port oder MDIX Port verwendet werden. Verbinden Sie den MDI-Anschluss mit dem MDIX-Anschluss über ein direktes verdrilltes Leiterpaar. Die Verbindung MDI-MDI wie auch MDIX-MDIX verwendet ein kreuzweise verdrillt Leiterpaar.	0 = Auto
	0 = Auto	Automatische Erkennung	
	1 = MDI	Bestimmt den Anschluss als MDI-Anschluss.	
	2 = MDIX	Bestimmt den Anschluss als MDIX- Anschluss.	

Nr.	Name/Wert	Beschreibung	Standard
06	X2 MDI/MDIX	Definiert den Typ des an den Anschluss angeschlossenen Kabels. Die Funktion auto. MDI/MDIX-Erkennung ist standardmäßig aktiviert. Die Funktion auto. MDI/MDIX kann für jeden Anschluss einzeln deaktiviert werden und der Anschluss kann als MDI Port oder MDIX Port verwendet werden. Verbinden Sie den MDI-Anschluss mit dem MDIX-Anschluss über ein direktes verdrilltes Leiterpaar. Die Verbindung MDI-MDI wie auch MDIX-MDIX verwendet ein kreuzweise verdrillt Leiterpaar.	0 = Auto
	0 = Auto	Automatische Erkennung	
	1 = MDI	Bestimmt den Anschluss als MDI- Anschluss.	
	2 = MDIX	Bestimmt den Anschluss als MDIX- Anschluss.	
07 25	Reserviert	Diese Parameter werden vom Adaptermo- dul nicht benutzt.	Nicht verfügbar
26	Restore def conf	Setzt das Modul auf die Werkseinstellungen zurück, indem die Standardwerte der CANopen-Objekte und der Konfigurationsparameter wiederhergestellt werden. Die im Festspeicher abgelegten Objektwerte werden ebenfalls gelöscht. Ist dieser Parameter auf 1 = Ja gesetzt, werden die Standardwerte beim nächsten Neustart oder bei der Validierung der Konfigurationsparameter mit Parameter 27 FBA A/B par refresh wiederhergestellt.	0 = Nein
	0 = Nein	Standardeinstellungen nicht wiederherstellen.	
	1 = Ja	Standardeinstellungen wiederherstellen.	
27	FBA A/B par refresh	Übernimmt geänderte Parametereinstellungen der Adaptermodul-Konfiguration. Nach der Aktualisierung geht der Wert automatisch wieder auf 0 = Fertig. Hinweis: Dieser Parameter kann nicht geändert werden, während der Antrieb läuft.	0 = fertig
	0 = fertig	Aktualisierung abgeschlossen	
	1 = aktualisieren / konfigurieren	Aktualisierung läuft	

Nr.	Name/Wert	Beschreibung	Standard
28	FBA A/B par table ver	Read-only. Zeigt die Version der Parametertabelle der Mapping-Datei des Feldbusadaptermoduls an, die im Frequenzumrichter gespeichert ist. Im Format xyz, dabei sind: x = Nummer der Hauptversion y = Nummer der untergeordneten Version z = Korrekturnummer ODER Im Format axyz, dabei sind: a = Nummer der Hauptversion xy = Nummer der untergeordneten Version z = Korrekturnummer	entfällt
		Version der Parametertabelle.	
29	FBA A/B drive type Code	Read-only (Einstellung kann nur gele- sen werden). Anzeige des Frequenzum- richter-Typencode der Feldbusadaptermodul-Mapping-Datei, die im Frequenzumrichter gespeichert ist.	entfällt
		Frequenzumrichter-Typencode der Feldbu- sadaptermodul-Mapping-Datei	
30	FBA A/B mapping file ver	Read-only (Einstellung kann nur gele- sen werden). Zeigt die Version der Map- ping-Datei des Feldbusadaptermoduls an, die im Speicher des Frequenzumrichters im Dezimalformat abgelegt ist.	entfällt
		Version der Mappingdatei.	
31	D2FBA A/B comm status	Read-only. Anzeige des Status der Feld- busadaptermodul-Kommunikation. Hinweis: Die Wertnamen können bei den Frequenzumrichtern abweichen.	0 = Leerlauf ODER 4 = Offline
	0 = Leerlauf	Der Adapter ist nicht konfiguriert.	
	1 = Exec.init	Der Adapter wird initialisiert.	
	2 = Time out	Eine Unterbrechung ist aufgetreten bei der Kommunikation zwischen dem Adapter und dem Frequenzumrichter.	
	3 = Conf.err	Störung der Adapter-Konfiguration: Der über- oder nachgeordnete Versionscode der Programmversion im Feldbusadapter- modul ist nicht die Version, die vom Modul unterstützt wird, oder das Hochladen der Mapping-Datei ist dreimal fehlgeschlagen.	
	4 = Offline	Der Adapter ist offline.	

Nr.	Name/Wert	Beschreibung	Standard
	5 = Online	Der Adapter ist online.	
	6 = Quittieren	Der Adapter führt einen Hardware-Reset aus.	
32	FBA A/B comm SW ver	Read-only. Anzeige der Programmversion des Adaptermoduls im Format axyz, wobei: a = Nummer der Hauptversion xy = Nummer der untergeordneten Version z = Korrekturnummer	entfällt
		Programmversion des Adaptermoduls	
33	FBA A/B appl SW ver	Read-only. Anzeige der Anwendungsprogramm-Version des Adaptermoduls im Format axyz, wobei: a = Nummer der Hauptversion xy = Nummer der untergeordneten Version z = Korrekturnummer	entfällt
		Programmversion des Adaptermoduls	

FEPL-02 Konfigurationsparameter - Gruppe B (Gruppe 2)

Hinweis: Die tatsächliche Nummer der Parametergruppe hängt vom Antriebstyp ab. Gruppe B (Gruppe 2) entspricht:

- Parametergruppe 55 beim ACS355
- Parametergruppe 53 bei den ACSM1, ACS380, ACS580 und ACS850 Frequenzumrichtern.
- Parametergruppe 53 des ACS880, wenn das Adaptermodul als Feldbusadapter A installiert wurde, oder Parametergruppe 56, wenn das Adaptermodul als Feldbusadapter B installiert wurde.

Alle Parameter in dieser Gruppe werden vom Adaptermodul automatisch verwaltet. Die Einstellungen dieser Parameter dürfen nicht geändert werden.

FEPL-02 Konfigurationsparameter – Gruppe C (Gruppe 3)

Hinweis: Die tatsächliche Nummer der Parametergruppe hängt vom Antriebstyp ab. Gruppe C (Gruppe 3) entspricht:

- Parametergruppe 54 beim ACS355
- Parametergruppe 52 bei den ACSM1, ACS380, ACS580 und ACS850 Frequenzumrichtern.
- Parametergruppe 52 des ACS880, wenn das Adaptermodul als Feldbusadapter A installiert wurde, oder Parametergruppe 55, wenn das Adaptermodul als Feldbusadapter B installiert wurde

Alle Parameter in dieser Gruppe werden vom Adaptermodul automatisch verwaltet. Die Einstellungen dieser Parameter dürfen nicht geändert werden.

Steuerplätze

ABB-Antriebe können Steuerdaten von verschiedenen Quellen empfangen, einschließlich Analog- und Digitaleingängen, dem Antriebs-Bedienpanel und einem Kommunikationsmodul (zum Beispiel dem Adaptermodul). Bei ABB-Antrieben kann der Benutzer die Quelle für jeden Steuerbefehl (Start, Stopp, Drehrichtung, Sollwert. Störungsquittierung usw.) einzeln festlegen.

Um eine vollständige Steuerung des Antriebs durch die Masterstation zu gewährleisten, muss das Kommunikationsmodul als Quelle für diese Daten eingestellt werden. Die folgenden antriebsspezifischen Parametereinstellungsbeispiele enthalten die für die Beispiele erforderlichen Antriebssteuerungsparameter. Die vollständigen Parameterlisten sind in der Dokumentation der Frequenzumrichter enthalten.

Inbetriebnahme von ACS355 Frequenzumrichtern

- 1. Den Frequenzumrichter einschalten.
- Die Kommunikation zwischen dem Adaptermodul und dem Frequenzumrichter durch Einstellung von Parameter 9802 COMM PROT SEL aktivieren
- Die FEPL-Konfigurationsparameter in Parametergruppe 51 einstellen
 - Das Kommunikationsprofil mit Parameter 5102 auswählen.
 - Die Netzwerkeinstellungen mit den Parametern 5103 und 5104 konfigurieren.
- Mit Parameter 3018 KOMM FEHL FUNK wird die Reaktion des Antriebs bei einer Unterbrechung der Feldbuskommunikation eingestellt.
- Mit Parameter 3019 KOMM. FEHLERZEIT wird die Verzögerungszeit zwischen der Kommunikationsunterbrechung und der gewählten Reaktion eingestellt.
- Die Einstellungen in Parametergruppe 51 werden erst durch Parameter 5127 FBA PAR REFRESH wirksam.
- Die relevanten Parameter für die Antriebsregelung entsprechend der Anwendung einstellen. Beispiele geeigneter Werte werden in den folgenden Tabellen aufgeführt.

Beispiele für Parameter-Einstellungen – ACS355

Drehzahlregelung unter Verwendung des CiA 402 Geschwindiakeitsmodus (vI)

Dieses Beispiel veranschaulicht, wie eine Drehzahlregelung konfiguriert wird, die den Geschwindigkeitsmodus (vI) des Profils CiA 402 Verwendet

Bei der Konfigurierung des Master müssen Sie die folgenden Objekte den Sende- und Empfangs-PDOs zuordnen. Beispiel siehe Abschnitt Abbilden von Objekten, die für die Regelung des Frequenzumrichters erforderlich sind auf Seite 66.

CANopen -Objekt	Ausgangsdaten
0x6040	Steuerwort
0x6042	Zielgeschwindigkeit

Antriebsparameter

CANopen -Objekt	Eingangsdaten
0x6041	Statuswort
0x6044	VI-Steuerungsgröße

Beschreibung

In der folgenden Tabelle sind die empfohlenen Einstellungen für die Antriebsparameter aufgelistet.

Einstellung für

	ACS355 Frequenzumrichter	
9802 KOMM PROT AUSW	4 = EXT FBA	Freigabe der Kommunikation zwischen Frequenzumrichter und Feldbus-Adaptermodul.
5101 FELDBUS TYP	136 = ETH Pwrlink ¹⁾	Anzeige des Typs des Feldbus- Adaptermoduls.
5102 FELDBUSPAR 2 (PROFILE)	0 (= CiA 402)	Wählt das CANopen-Geräteprofil CiA 402 aus.
5103 FB PAR 3 (KNOTEN-ID)	3 ²⁾	Legt die Geräteadresse fest.
3018 KOMM FEHL FUNK	1 = STÖRUNG ¹⁾	Aktiviert die Störungsüberwa- chung der Feldbus-Kommunika- tion.
3019 KOMM. FEHLERZEIT	3.0 s ²⁾	Definiert die Verzögerungszeit der Überwachung auf Ausfall der Feldbus-Kommunikation.

42 Inbetriebnahme

Antriebsparameter	Einstellung für ACS355 Frequenzumrichter	Beschreibung
5127 FBA PAR REFRESH	1 = AKTUALISIEREN	Validiert die Einstellungen der FEPL-Konfigurationsparameter.
1001 EXT1 BEFEHLE	10 = COMM	Wählt die Feldbusschnittstelle A als Quelle der Start- und Stoppbefehle für den externen Steuerplatz 1.
1102 EXT1/EXT2 AUSW	0 = EXT1	Aktiviert die Auswahl des externen Steuerplatzes EXT1/2 über den Feldbus.
1103 AUSW.EXT SOLLW 1	8 = COMM	Wählt den Feldbus-Sollwert 1 als Quelle des Drehzahl-Sollwerts.
1601 FREIGABE	7 = COMM	Wählt die Feldbus-Schnittstelle als Quelle für die Steuerung mit dem invertierten Freigabesignal (Freigabe Deaktiviert).
1604 FAULT RESET SEL	8 = COMM	Wählt die Feldbus-Schnittstelle als Quelle für das Störungs-

¹⁾ Nur lesen oder automatische Erkennung/Einstellung

Die Startabfolge für das obige Parameterbeispiel ist nachfolgend angegeben.

Rücksetzungssignal.

Steuerwort:

- Die Feldbus-Kommunikationsstörung zurücksetzen (falls aktiv).
- Geben Sie ein 7Eh (126 dezimal) → SWITCH-ON DISABLED.
- Geben Sie ein 7Fh (127 dezimal) → OPERATION ENABLED.

²⁾ Möglich: Read-Only

Drehzahl- und Drehmomentregelung mit dem ABB Drives Kommunikationsprofil

Dieses Beispiel zeigt, wie eine Drehzahl- und Drehmoment-Regelungsanwendung konfiguriert wird, die das Profil ABB Drives verwendet. Zusätzlich kann die Kommunikation mit applikationsspezifischen Daten ergänzt werden.

Die Start-/Stopp-Befehle und die Sollwerte entsprechen dem ABB Drives Profil Weitere Informationen siehe Zustandsmaschine auf Seite 87

Wenn Sollwert 1 (REF1) verwendet wird, entspricht ein Sollwert von ±20000 (dezimal) dem mit Parameter 1105 REF1 MAX für die Vorwärts- und Rückwärtsrichtung eingestellten Sollwert.

Wenn Sollwert 2 (REF2) verwendet wird, entspricht ein Sollwert von ±10000 (dezimal) dem mit Parameter 1108 REF2 MAX für die Vorwärts- und Rückwärtsrichtung eingestellten Sollwert.

Die Minimal- und Maximal-16-Bit Integerwerte, die über den Feldbus übertragen werden können, sind -32768 und 32767.

Bei der Konfigurierung des Master müssen Sie die folgenden Objekte den Sende- und Empfangs-PDOs zuordnen. Beispiel siehe Abschnitt Abbilden von Objekten, die für die Regelung des Frequenzumrichters erforderlich sind auf Seite 66.

CANopen- Objekt	Ausgangsdaten
0x2101	Steuerwort
0x2102	Drehzahl-Sollwert
0x2103	Drehmoment-Sollwert

CANopen- Objekt	Eingangsdaten
0x2104	Statuswort
0x2105	Drehzahl-Istwert
0x2106	Drehmoment-Istwert

In der folgenden Tabelle sind die empfohlenen Einstellungen für die Antriebsparameter aufgelistet.

Antriebsparameter	Einstellung für ACS355 Frequenz- umrichter	Beschreibung
9802 KOMM PROT AUSW	4 = EXT FBA	Freigabe der Kommunikation zwischen Frequenzumrichter und Feldbus-Adaptermodul.
5101 FELDBUS TYP	136 = ETH Pwrlink ¹⁾	Anzeige des Typs des Feldbus- Adaptermoduls.

44 Inbetriebnahme

Antriebsparameter	Einstellung für ACS355 Frequenz- umrichter	Beschreibung
5102 FELDBUSPAR 2 (PROFILE)	1 (= ABB Drives-Profil)	Wählt das Profil ABB Drives aus.
5103 FB PAR 3 (KNOTEN-ID)	3 ²⁾	Legt die Geräteadresse fest.
3018 KOMM FEHL FUNK	1 = STÖRUNG ¹⁾	Aktiviert die Störungs- überwachung der Feldbus- Kommunikation.
3019 KOMM. FEHLERZEIT	3.0 s ²⁾	Definiert die Verzögerungszeit der Überwachung auf Ausfall der Feldbus-Kommunikation.
5127 FBA PAR REFRESH	1 = AKTUALISIEREN	Validiert die Einstellungen der FEPL-Konfigurationsparameter.
9904 MOTOR REGELMODUS	2 = VEKTOR: DREHMOM	Wählt die Vektorregelung als Motor-Regelmodus aus.
1001 EXT1 BEFEHLE	10 = COMM	Wählt die Feldbusschnittstelle A als Quelle der Start- und Stoppbefehle für den externen Steuerplatz 1.
1002 EXT2 BEFEHLE	10 = COMM	Wählt die Feldbusschnittstelle als Quelle der Start- und Stoppbefehle für den externen Steuerplatz 2.
1102 EXT1/EXT2 AUSW	8 = COMM	Aktiviert die Auswahl des exter- nen Steuerplatzes EXT1/2 über den Feldbus.
1103 AUSW.EXT SOLLW 1	8 = COMM	Wählt den Feldbus-Sollwert 1 als Quelle des Drehzahl-Sollwerts.
1106 AUSW.EXT SOLLW 2	8 = COMM	Wählt den Feldbus-Sollwert 2 als Quelle des Drehmoment- Sollwerts.
1601 FREIGABE	7 = COMM	Wählt die Feldbus-Schnittstelle als Quelle für die Steuerung mit dem invertierten Freigabesignal (Freigabe Deaktiviert).
1604 FAULT RESET SEL	8 = COMM	Wählt die Feldbus-Schnittstelle als Quelle für das Störungs- Rücksetzungssignal.

¹⁾ Nur lesen oder automatische Erkennung/Einstellung
2) Beispiel

Die Startabfolge für das obige Parameterbeispiel ist nachfolgend angegeben.

Steuerwort:

- Setzen Sie die Feldbus-Kommunikationsstörung zurück (falls aktiv).
- Geben Sie 47Eh (1150 dezimal) → READY TO SWITCH ON ein
- Geben Sie 47Fh (1151 dezimal) → OPERATING (Drehzahlmodus) ein oder

C7Fh (3199 dezimal) → OPERATING (Drehmomentmodus).

Inbetriebnahme von ACSM1 Frequenzumrichtern

- 1. Schalten Sie den Frequenzumrichter ein.
- Aktivieren Sie die Kommunikation zwischen dem Adaptermodul und dem Frequenzumrichter mit Parameter 50.01 FBA ENABLE.
- Mit Parameter 50.02 KOMM.VERLUST FKT kann die Reaktion des Antriebs bei einer Unterbrechung der Feldbuskommunikation eingestellt werden.

Hinweis: Diese Funktion überwacht sowohl die Kommunikation zwischen dem Feldbus-Master und dem Adaptermodul als auch die Kommunikation zwischen dem Adaptermodul und dem Frequenzumrichter.

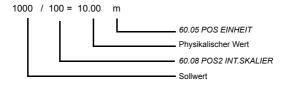
- Mit Parameter 50.03 KOM.VERLUST TOUT wird die Verzögerungszeit zwischen der Kommunikationsunterbrechung und der gewählten Reaktion eingestellt.
- Wählen Sie applikationsspezifische Werte für die Parameter 50.04...50.11 Beispiele geeigneter Werte werden in den folgenden Tabellen aufgeführt.
- Stellen Sie die FEPL-Konfigurationsparameter in Parametergruppe 51 ein.
 - Wählen Sie das Kommunikationsprofil mit Parameter 51.02.
 - Konfigurieren Sie die Netzwerkeinstellungen mit den Parametern 51.03 und 51.04.
- 7. Die Einstellungen in Parametergruppe 51 werden erst durch Parameter *51.27 FBA PAR AKTUALIS* wirksam
- Stellen Sie die relevanten Parameter f
 ür die Antriebsregelung entsprechend der Anwendung ein. Beispiele geeigneter Werte werden in den folgenden Tabellen aufgef
 ührt.

Beispiele für Parameter-Einstellungen – ACSM1

Positionsreaelung mit dem Profil CiA 402 Positionierungsmodus (pp)

Dieses Beispiel veranschaulicht, wie eine Positionierungsapplikation für einen Umrichter ACSM1 mit Motion Control konfiguriert wird. Die Start-/Stopp-Befehle und Sollwerte entsprechen dem Profil Positionierungsmodus (pp) des Profils CiA 402.

Bei der Konfigurierung des Master müssen Sie die folgenden Objekte den Sende- und Empfangs-PDOs zuordnen. Beispiel siehe Abschnitt Abbilden von Objekten, die für die Regelung des Frequenzumrichters erforderlich sind auf Seite 66.


CANopen -Objekt	Ausgangsdaten
0x6040	Steuerwort
0x607A	Zielposition

CANopen -Objekt	Eingangsdaten
0x6041	Statuswort
0x6064	Positions-Istwert

Zielposition und Istwert werden als 32-Bit Integerwerte definiert; beide werden gemäß der Einstellung der Antriebsparameter definiert. Zielposition (Sollwert) und Positions-Istwert werden wie folgt skaliert:

Antriebsparameter	Einstellung
60.05 Pos Einheit (Positionierungseinheit)	m
60.08 POS2 INT.SKALIER	100

In der folgenden Tabelle sind die empfohlenen Einstellungen für die Antriebsparameter aufgelistet.

Antriebsparameter	Einstellung für ACSM1 Frequenz-	Beschreibung
	umrichter	
50.01 FBA FREIGABE	AKTIVIEREN	Aktiviert die Kommunikation zwischen Frequenzumrichter und Feldbusadapter.
50.02 KOMM.VERLUST FKT	Störung ²⁾	Aktiviert die Störungsüberwa- chung der Feldbus-Kommunika- tion.
50.03 KOM.VERLUST TOUT	1.0 s ²⁾	Definiert die Verzögerungszeit der Überwachung auf Ausfall der Feldbus-Kommunikation.
50.04 WAHL FBA SOLLW.1	Position	Wählt die Skalierung des Feldbus-Sollwerts 1.
51.01 FELDBUS TYP	136 = ETH Pwrlink ¹⁾	Zeigt den Typ des Feldbus- Adaptermoduls an.
51.02 FBA PAR 2 (PROFILE)	0 (= CiA 402)	Wählt das CANopen-Geräteprofil CiA 402 aus.
51.03 FBA PAR3 (KNOTEN-ID)	3 ²⁾	Legt die Geräteadresse fest.
51.27 FBA PAR AKTUALIS	AKTUALISIERE	Validiert die Einstellungen der FEPL-Konfigurationsparameter.
10.01 EXT START WAHL	FBA	Wählt die Feldbusschnittstelle als Quelle der Start- und Stoppbefehle für den externen Steuerplatz 1.
34.03 EXT1 BETRIEBSART1	Position	Wählt den Positions-Regelungs- modus für den externem Steuer- platz EXT1.
62.24 POS START MODUS	IMPULS	Die Positionierung beginnt an der ansteigenden Flanke des Impulses.
65.01 POS REFSOURCE	SollwTabelle	Sollwert und andere Positionie- rungsparameter werden aus Soll- wertsatz 1/2 gelesen.
65.04 POS.SOLLW1.AUSW	FBA SOLLW1	Feldbus-Sollwert 1 ist die Quelle für den Positionssollwert, wenn Sollwertsatz 1 verwendet wird.

¹⁾ Nur lesen oder automatische Erkennung/Einstellung

²⁾ Beispiel

Die Startabfolge für das obige Parameterbeispiel ist nachfolgend angegeben.

Steuerwort:

- Die Feldbus-Kommunikationsstörung zurücksetzen (falls aktiv).
- Geben Sie ein 0Eh (14 dezimal) → SWITCH ON DISABLED.
- Geben Sie ein 0Fh (15 dezimal) → OPERATION ENABLED.
- Geben Sie ein 1Fh (31 dezimal) → MOVE TO NEW SETPOINT.

Inbetriebnahme von ACS850 Frequenzumrichtern

- 1. Den Frequenzumrichter einschalten.
- Die Kommunikation zwischen dem Adaptermodul und dem Frequenzumrichter mit Parameter 50.01 FBA ENABLE aktivieren
- Mit Parameter 50.02 Komm.verlust Fkt kann die Reaktion des Antriebs bei einer Unterbrechung der Feldbuskommunikation eingestellt werden.
 - **Hinweise:** Diese Funktion überwacht sowohl die Kommunikation zwischen dem Feldbus-Master und dem Adaptermodul als auch die Kommunikation zwischen dem Adaptermodul und dem Frequenzumrichter.
- Mit Parameter 50.03 Kom.verlust Tout wird die Verzögerungszeit zwischen der Kommunikationsunterbrechung und der gewählten Reaktion eingestellt.
- Wählen Sie applikationsspezifische Werte für die Parameter 50.04...50.11 Beispiele geeigneter Werte werden in den folgenden Tabellen aufgeführt.
- Stellen Sie die FEPL-Konfigurationsparameter in Parametergruppe 51 ein.
 - Wählen Sie das Kommunikationsprofil mit Parameter 51.02 aus.
 - Konfigurieren Sie die Netzwerkeinstellungen mit den Parametern 51.03 und 51.04.
- Die Einstellungen in Parametergruppe 51 werden erst durch Parameter 51.27 FBA par refresh wirksam.
- Stellen Sie die relevanten Parameter f
 ür die Antriebsregelung entsprechend der Anwendung ein. Beispiele geeigneter Werte werden in den folgenden Tabellen aufgef
 ührt.

Beispiele für Parameter-Einstellungen – ACS850

Drehzahlregelung unter Verwendung des CiA 402 Geschwindiakeitsmodus (vI)

Dieses Beispiel veranschaulicht, wie eine Drehzahlregelung konfiguriert wird, die den Geschwindigkeitsmodus (vI) des Profils CiA 402 Verwendet

Bei der Konfigurierung des Master müssen Sie die folgenden Objekte den Sende- und Empfangs-PDOs zuordnen. Beispiel siehe Abschnitt Abbilden von Objekten, die für die Regelung des Frequenzumrichters erforderlich sind auf Seite 66.

CANopen- Objekt	Ausgangsdaten	
0x6040	Steuerwort	
0x6042	Zielgeschwindigkeit	

CANopen- Objekt	Eingangsdaten	
0x6041	Statuswort	
0x6044	VI-Steuerungsgröße	

In der folgenden Tabelle sind die empfohlenen Einstellungen für die Antriebsparameter aufgelistet.

Antriebsparameter	Einstellung für Frequenzumrichter ACS850	Beschreibung
50.01 FBA ENABLE	Aktivieren	Freigabe der Kommunikation zwischen Frequenzumrichter und Feldbus-Adaptermodul.
50.02 KOMM.VERLUST FKT	Störung ²⁾	Aktiviert die Störungsüberwa- chung der Feldbus-Kommunika- tion.
50.03 KOMM.VERLUST TOUT	3.0 s ²⁾	Definiert die Verzögerungszeit der Überwachung auf Ausfall der Feldbus-Kommunikation.
50.04 WAHL FBA soolw.1	Drehzahl	Wählt die Skalierung des Feld- bus-Sollwerts 1.
51.01 FBA type	136 = ETH Pwrlink ¹⁾	Zeigt den Typ des Feldbus-Adaptermoduls an.
51.02 FBA PAR 2 (PROFILE)	0 (= CiA 402)	Wählt das CANopen-Geräteprofil CiA 402 aus.
51.03 FBA PAR3 (NODE-ID)	3 ²⁾	Legt die Geräteadresse fest.

52 Inbetriebnahme

Antriebsparameter	Einstellung für Frequenzumrichter ACS850	Beschreibung
51.27 FBA PAR AKTUALISIEREN	Aktualisiere	Validiert die Einstellungen der FEPL-Konfigurationsparameter.
10.01 EXT1 START FUNC	FB	Wählt die Feldbusschnittstelle als Quelle der Start- und Stoppbe- fehle für den externen Steuer- platz 1.
12.03 EXT1 BETRIEBSART	Drehzahl	Wählt den Drehzahl-Regelungs- modus für den externem Steuer- platz EXT1.
21.01 WAHL DREHZ.SOLL1	Feldbus A Sollw. 1 (Parameter 02.26)	Wählt den Feldbus A Sollwert 1 als Quelle des Drehzahlsollwerts 1.

¹⁾ Nur lesen oder automatische Erkennung/Einstellung

Die Startabfolge für das obige Parameterbeispiel ist nachfolgend angegeben.

Steuerwort:

- Die Feldbus-Kommunikationsstörung zurücksetzen (falls aktiv).
- Geben Sie ein 7Eh (126 dezimal) → SWITCH-ON DISABLED.
- Geben Sie ein 7Fh (127 dezimal) → OPERATION ENABLED.

²⁾ Beispiel

Drehzahlregelung mit dem Kommunikationsprofil ABB Drives

Dieses Beispiel zeigt, wie eine Drehzahl-Regelungsanwendung konfiguriert wird, die das Profil ABB Drives verwendet.

Die Start-/Stopp-Befehle und die Sollwerte entsprechen dem ABB Drives Profil. Weitere Informationen siehe Zustandsmaschine auf Seite 87

Sollwert 1 (REF1) ±20000 (dezimal) entspricht dem mit Parameter 19.01 (Drehzahlskalierung) für die Vorwärts- und Rückwärtsrichtung eingestellten Sollwert.

Die Minimal- und Maximal-16-Bit Integerwerte, die über den Feldbus übertragen werden können, sind -32768 und 32767.

Bei der Konfigurierung des Master müssen Sie die folgenden Objekte den Sende- und Empfangs-PDOs zuordnen. Beispiel siehe Abschnitt Abbilden von Objekten, die für die Regelung des Frequenzumrichters erforderlich sind auf Seite 66.

CANopen- Objekt	Ausgangsdaten	
0x2101	Steuerwort	
0x2102	Drehzahl-Sollwert	

CANopen- Objekt	Eingangsdaten	
0x2104	Statuswort	
0x2105	Drehzahl-Istwert	

In der folgenden Tabelle sind die empfohlenen Einstellungen für die Antriebsparameter aufgelistet.

Antriebsparameter	Einstellung für Frequenzumrichter ACS850	Beschreibung
50.01 FBA ENABLE	Aktivieren	Freigabe der Kommunikation zwischen Frequenzumrichter und Feldbus-Adaptermodul.
50.02 KOMM.VERLUST FKT	Störung ²⁾	Aktiviert die Störungsüberwa- chung der Feldbus-Kommunika- tion.
50.03 KOMM.VERLUST TOUT	3.0 s ²⁾	Definiert die Verzögerungszeit der Überwachung auf Ausfall der Feldbus-Kommunikation.
50.04 WAHL FBA soolw.1	Drehzahl	Wählt die Skalierung des Feld- bus-Sollwerts 1.
51.01 FBA TYPE	136 = ETH Pwrlink ¹⁾	Zeigt den Typ des Feldbus-Adaptermoduls an.

54 Inbetriebnahme

Antriebsparameter	Einstellung für Frequenzumrichter ACS850	Beschreibung
51.02 FBA PAR 2 (PROFILE)	0 (= CiA 402)	Wählt das CANopen-Geräteprofil CiA 402 aus.
51.03 FBA PAR3 (NODE ID)	3 ²⁾	Legt die Geräteadresse fest.
51.27 FBA PAR AKTUALISIEREN	Aktualisiere	Validiert die Einstellungen der FEPL-Konfigurationsparameter.
10.01 Ext1 start func	FB	Wählt die Feldbusschnittstelle als Quelle der Start- und Stoppbe- fehle für den externen Steuer- platz 1.
12.03 Ext1 BETRIEBSART	Drehzahl	Wählt den Drehzahl- Regelungsmodus für den externem Steuerplatz EXT1.
21.01 WAHL	Feldbus A Sollw. 1	Wählt den Feldbus A Sollwert 1

¹⁾ Nur lesen oder automatische Erkennung/Einstellung

DREHZ.SOLL1

Die Startabfolge für das obige Parameterbeispiel ist nachfolgend angegeben.

1.

als Quelle des Drehzahlsollwerts

(Parameter 02.26)

Steuerwort:

- Die Feldbus-Kommunikationsstörung zurücksetzen (falls aktiv).
- Geben Sie ein 47Eh (1150 dezimal) → READY TO SWITCH ON.
- Geben Sie ein 47Fh (1151 dezimal) → OPERATING (Drehzahlmodus).

²⁾ Beispiel

Inbetriebnahme von ACS380, ACS580 und ACS880 Frequenzumrichtern

- 1. Schalten Sie den Frequenzumrichter ein.
- 2. Aktivieren Sie die Kommunikation zwischen dem Adaptermodul und dem Frequenzumrichter mit Parameter 50.01 FBA A enable. Die Einstellung muss dem Steckplatz entsprechen, in dem das Adaptermodul installiert ist. Wenn das Adaptermodul beispielsweise in Steckplatz 1 installiert ist, muss Steckplatz 1 eingestellt werden.
- 3. Mit Parameter 50.02 Komm.verlust Fkt kann die Reaktion des Antriebs bei einer Unterbrechung der Feldbuskommunikation eingestellt werden.

Hinweis: Diese Funktion überwacht sowohl die Kommunikation zwischen dem Feldbus-Master und dem Adaptermodul als auch die Kommunikation zwischen dem Adaptermodul und dem Frequenzumrichter.

- 4. Mit Parameter 50.03 Kom.verlust Tout wird die Verzögerungszeit zwischen der Kommunikationsunterbrechung und der gewählten Reaktion eingestellt.
- 5. Wählen Sie applikationsspezifische Werte für die Parameter 50.04...50.11 Beispiele geeigneter Werte werden in den folgenden Tabellen aufgeführt.

- Die FEPL-Konfigurationsparameter in Parametergruppe 51 einstellen
 - Das Kommunikationsprofil mit Parameter 51.02 auswählen
 - Die Netzwerkeinstellungen mit den Parametern 51.03 und 51.04 konfigurieren.
- 7. Die gültigen Parameterwerte im Festspeicher mit Parameter 96.07 Parameter save sichern
- 8. Die Einstellungen in Parametergruppe *51* werden erst durch Parameter 51.27 FBA par refresh wirksam.

- Die relevanten Parameter für die Antriebsregelung entsprechend der Anwendung einstellen. Beispiele geeigneter Werte werden in den folgenden Tabellen aufgeführt.
- Beispiele für Parameter-Einstellungen ACS380, ACS580 und ACS880

Drehzahlregelung mit dem Kommunikationsprofil ABB Drives

Dieses Beispiel zeigt, wie eine Drehzahl-Regelungsanwendung konfiguriert wird, die das Kommunikationsprofil ABB Drives verwendet.

Die Start-/Stopp-Befehle und die Sollwerte entsprechen dem ABB Drives-Profil. Weitere Informationen siehe Zustandsmaschine auf Seite 87.

Wenn Sollwert 1 (REF1) verwendet wird, entspricht ein Sollwert von ±20000 (4E20h) dem mit Parameter 46.01 Speed scaling für die Vorwärts- und Rückwärtsrichtung eingestellten Sollwert.

Die Minimal- und Maximal-16-Bit Integerwerte, die über den Feldbus übertragen werden können, sind -32768 und 32767.

Bei der Konfigurierung des Master müssen Sie die folgenden Objekte den Sende- und Empfangs-PDOs zuordnen. Beispiel siehe Abschnitt Abbilden von Objekten, die für die Regelung des Frequenzumrichters erforderlich sind auf Seite 66.

	CANopen- Objekt	Ausgangsdaten
î>	0x2101	Steuerwort
ソ	0x2102	Drehzahl-Sollwert

CANopen- Objekt	Eingangsdaten
0x2104	Statuswort
0x2105	Drehzahl-Istwert

In der folgenden Tabelle sind die empfohlenen Einstellungen für die Antriebsparameter aufgelistet.

Antriebsparameter	Einstellung für Frequenzumrichter ACS880	Beschreibung
50.01 FBA A enable	1 = Enable	Freigabe der Kommunikation zwischen Frequenzumrichter und Feldbus-Adaptermodul.
50.02 FBA A comm loss func	1 = Störung ¹⁾	Aktiviert die Störungsüberwa- chung der Feldbus-Kommunika- tion.

Antriebsparameter	Einstellung für Frequenzumrichter ACS880	Beschreibung
50.03 FBA A Komm-Verl. T-out	3,0 s ²⁾	Definiert die Verzögerungszeit der Überwachung auf Ausfall der Feldbus-Kommunikation.
50.04 FBA A ref1 type	4 = Speed	Wählt Typ und Skalierung für Feldbus A Sollwert 1.
51.01 FBA type	136 = ETH Pwrlink ¹⁾	Zeigt den Typ des Feldbus- Adaptermoduls an.
51.02 Profil	1 = ABB Drives-Profil	Wählt das Profil ABB Drives aus.
51.03 Node ID	3 ²⁾	Legt die Geräteadresse fest.
51.27 FBA Par aktualisieren	1 = konfigurieren	Validiert die Einstellungen der FEPL-Konfigurationsparameter.
20.01 Ext1 befehlsquellen	12 = Feldbus A	Wählt die Feldbusschnittstelle A als Quelle der Start- und Stoppbefehle für den externen Steuerplatz 1.
20.02 Ext1 Start Signalart	1 = Level ²⁾	Definiert das Startsignal für den externen Steuerplatz 1 als pegelabhängig.
22.11 Speed ref1 selection	4 = FB A ref1	Auswahl von Sollwert 1 Feldbus A als Quelle des Drehzahl- Sollwerts 1.

¹⁾ Schreibgeschützt oder automatische Erkennung/Einstellung ²⁾ Beispiel

Die Startabfolge für das obige Parameterbeispiel ist nachfolgend angegeben.

Steuerwort:

- Die Feldbus-Kommunikationsstörung zurücksetzen (falls aktiv).
- Geben Sie ein 47Eh (1150 dezimal) → READY TO SWITCH ON
- Geben Sie ein 47Fh (1151 dezimal) → OPERATING (Drehzahlmodus).

Konfigurierung der Master-Station

Nachdem das Adaptermodul vom Frequenzumrichter initialisiert worden ist, muss die Master-Station für die Kommunikation mit dem Modul konfiguriert werden.

Die im folgenden Beispiel verwendete SPS ist eine B&R X20 CP1485. Die Angaben gelten allerdings grundsätzlich auch für andere SPS. Das Beispiel kann auf alle Antriebstypen angewandt werden, die mit dem Modul kompatibel sind.

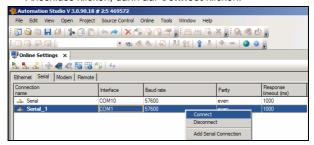
Herunterladen einer XML-Gerätebeschreibungsdatei (XDD)

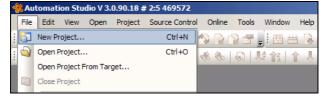
Bei XML-Gerätebeschreibungsdateien (XDD) handelt es sich um XML-Dateien, die die Eigenschaften der Follower-Geräte für den Ethernet POWERLINK-Master festlegen. Die Beschreibungsdateien enthalten Informationen über die unterstützten Kommunikationsobjekte.


Laden Sie die XDD-Datei aus der Document Library (www.abb.com/drives) herunter.


Konfigurieren einer B&R SPS

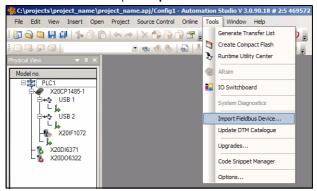
Dieses Beispiel veranschaulicht, wie die SPS mit der PC-Software B&R Automation Studio, Version 3.0.90.18 konfiguriert wird, um sie für die Steuerung des Frequenzumrichters mit dem FEPL-02-Modul verwenden zu können.

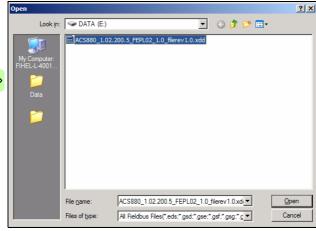

Bevor Sie beginnen ist der Download der XXD-Datei aus der Document Library erforderlich.



3. Die Anschlusseinstellungen entsprechend dem seriellen Anschluss an die SPS festlegen oder ändern. Anschließend auf der Registerkarte Serial mit der rechten Maustaste auf den Anschluss klicken, dann auf Connect klicken.

Im Menü File die Option New Project... anklicken, um ein neues Projekt für die SPS anzulegen, oder auf Open Project... klicken, um ein vorhandenes Projekt zu öffnen.


Weitere Informationen zur Erstellung eines Projekts können der B&R-Dokumentation entnommen werden.

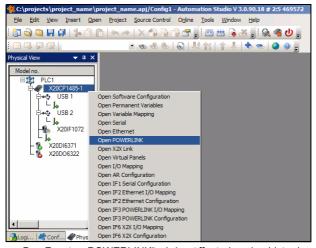


Hinzufügen der .xdd-Datei

1. Im Menü Tools die Option Import Fieldbus Device... anklicken.

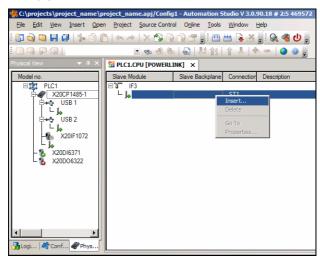
Die passende .xdd-Datei für den Frequenzumrichter auswählen und auf Open klicken.

3. Warten, bis die .xdd-Datei importiert wurde.

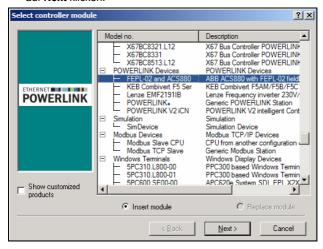

Verknüpfen des Adaptermoduls mit der SPS

Wenn die .xdd-Datei importiert worden ist, das Adaptermodul der Liste der mit der SPS verknüpften POWERLINK-Geräte hinzufügen.

1. Im Fenster "Physical View" mit der rechten Maustaste den Knoten anklicken, der für die CPU steht; anschließend Open POWERLINK anklicken.


Wenn das Fenster "Physical View" nicht sichtbar ist, kann es durch Auswahl von View \rightarrow Project Explorer \rightarrow Physical view angezeigt werden.

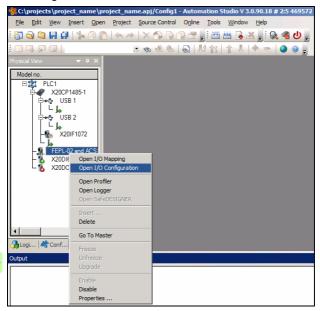
Das Fenster "POWERLINK" wird geöffnet, das eine Liste der mit dem Powerlink-Anschluss (IF3) der SPS verbundenen Geräte enthält.



2. Um das Adaptermodul hinzuzufügen, mit der rechten Maustaste den Listeneintrag IF3 anklicken; anschließend auf Insert... klicken

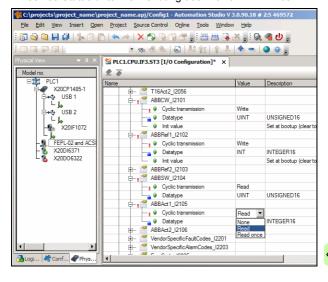
 Im Dialogfeld Select controller module den Eintrag für das Adaptermodul und den Frequenzumrichter auswählen; dann auf Next klicken

4. Im Dialogfeld Module Parameter die Knotennummer des Adaptermoduls eingeben, dann auf Next klicken.



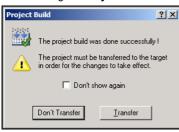
Sowohl im Fenster "POWERLINK" als auch unter "Physical View" wird das Adaptermodul jetzt angezeigt. Das Fenster "POWER-LINK" kann jetzt geschlossen werden.

Abbilden von Objekten, die für die Regelung des Frequenzumrichters erforderlich sind

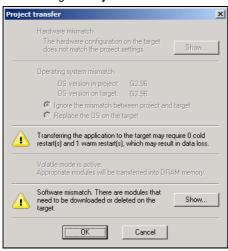

 Im Fenster "Physical View" mit der rechten Maustaste den Eintrag für das Adaptermodul anklicken, dann auf Open I/O Configuration klicken.

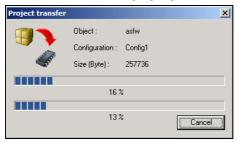
2. Im Fenster "I/O Configuration" die Objekte wählen, die in den PDOs abgebildet werden sollen: hierzu zyklische Übertragungsarten für diese Objekte auswählen.

Die im folgenden Beispiel getroffene Auswahl ermöglicht die Steuerung des Frequenzumrichters und die Überwachung seines Status unter Verwendung des Profils ABB Drives.

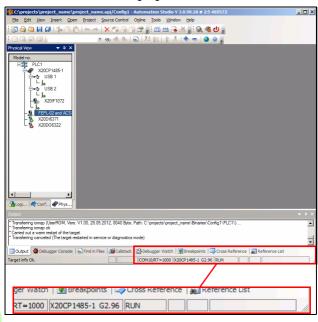


Erstellen eines Projekts und Übertragung zur SPS


1. Im Menü Project auf Build Configuration klicken.

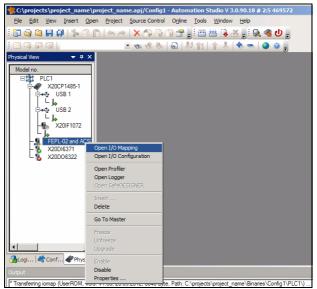

2. Im Dialogfeld Project Build auf Transfer klicken.

Im Dialogfeld Project transfer auf OK klicken. 3.


Warten, bis die Übertragung abgeschlossen ist.

70 Inbetriebnahme

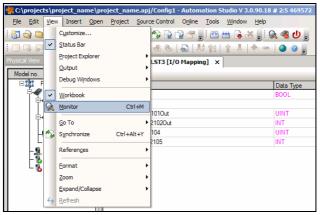
Nach Abschluss der Übertragung startet die SPS im Modus RUN.

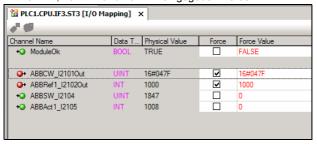


Werte forcieren

Wenn "Automation Studio" auf den Monitormodus eingestellt ist, können Sie das Fenster verwenden, um Werte für Variablen von Steuerworten und Drehzahl-Sollwerten zu forcieren. Auf diese Weise kann die Feldbussteuerung des Umrichters getestet werden, ohne ein vollständiges SPS-Programm schreiben zu müssen

1. Um auf die PDO-Daten manuell zuzugreifen, klicken Sie im Fenster "Physical View" mit der rechten Maustaste auf das Adaptermodul und klicken anschließend auf Open I/O Mapping.




Um auf die Online-Daten zuzugreifen, wechseln Sie in den Monitormodus:

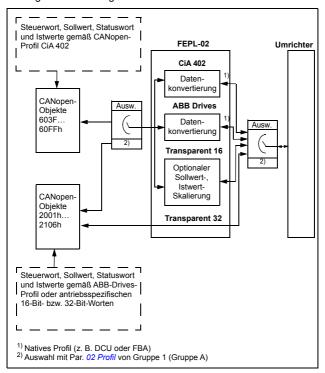
Im Menü View auf Monitor klicken.

Automation Studio ist jetzt auf den Monitormodus eingestellt.

 Um Werte zu forcieren, das jeweilige Kontrollkästchen in der Spalte Force auswählen, den Wert in der Spalte Force Value eingeben und anschließend Enter wählen, um den Wert zu bestätigen.
 Um zum Beispiel den Frequenzumrichter mit dem ABB Drives Steuerwort zu starten, müssen der Reihe nach die Werte 16#4FF, 16#47E und 16#47F eingegeben werden.

Kommunikationsprofile

Inhalt dieses Kapitels


Dieses Kapitel enthält eine Beschreibung der für die Kommunikation zwischen dem Ethernet POWERLINK-Master, Adaptermodul und Antrieb verwendeten Kommunikationsprofile.

Kommunikationsprofile

Mit Hilfe von Kommunikationsprofilen können Steuerbefehle (Steuerwort, Statuswort, Sollwerte und Istwerte) zwischen der Master-Station und dem Antrieb übertragen werden.

Sie können das Adaptermodul so konfigurieren, dass entweder das CANopen-CiA 402-Profil (Device Profile Drives and Motion Control) oder das ABB-Drives-Profil verwendet wird. Beide werden vom Adaptermodul in das native-Profil (z.B. DCU oder FBA) umgewandelt. Zusätzlich gibt es zwei transparente Profile für 16-Bit-Worte bzw. 32-Bit-Worte. Im Transparent-Modus erfolgt im Modul keine Datenkonvertierung.

Die folgende Abbildung veranschaulicht die Profil-Auswahl.

In den folgenden Abschnitten werden das Steuerwort, das Statuswort, die Sollwerte und Istwerte für das CANopen-Geräteprofil CiA 402 und das ABB-Drives-Kommunikationsprofil beschrieben. Einzelheiten über native Kommunikationsprofile enthält das Handbuch des jeweiligen Antriebs.

CANopen-Geräteprofil CiA 402

Das CiA 402-Profil ist ein standardisiertes Geräteprofil, das für digital gesteuerte Motion-Produkte (zum Beispiel Antriebe) verwendet wird und Teil der CANopen-Spezifikation bildet. Weitere Informationen erhalten Sie auf www.can-cia.org.

Unterstützte Betriebsmodi

Das CiA 402-Profil bietet verschiedene Betriebsarten, Diese Betriebsarten definieren die Funktion des Antriebs Die CiA 402 Betriebsarten werden von den Frequenzumrichtern wie folgt unterstützt:

Betriebsart	ACSM1 Motion	ACSM1 Dreh- zahl	ACS850	ACS355	ACS880
Geschwindigkeits- modus	vl	vI	vI	vl	vl
Profil-Drehmoment- modus	tq	tq	tq	tq	tq
Profil- Geschwindigkeits- modus	pv				
Profil- Positionierungs- modus	pp				
Referenzfahrt	hm				

Hinweise: Die Antriebssynchronisation wird nur vom ACSM1 unterstützt.

In diesem Kapitel werden die Skalierungen der Soll- und Istwerte für iede Betriebsart erläutert. Betriebsartspezifische Obiekte werden im Anhang A - CANopen-Objektverzeichnis definiert. Die aktuelle Betriebsart wird in Objekt 0x6061 angezeigt und kann mit Objekt 0x6060 geändert werden.

Geschwindigkeitsmodus

Der Geschwindigkeitsmodus ist die Basis-Betriebsart, um die Geschwindigkeit des Antriebs mit Grenzwerten und Rampenfunktionen zu regeln.

Der Geschwindigkeitssollwert ist Objekt 0x6042 vl Target velocity (U/min).

Hinweise: Im Geschwindigkeitsmodus erfolgt die Steuerung über einen anderen Satz von Objekten als bei den anderen Betriebsarten, es sind: 0x6046 vl velocity min max Betrag, 0x6048 vl velocity acceleration, 0x6049 vl velocity deceleration, 0x604A vl velocity quick stop and 0x604C vl dimension factor.

Profil-Drehmomentmodus

In der Betriebsart Profil-Drehmoment wird der Drehmoment-Zielwert über einen Kurvengenerator des Adaptermoduls gesteuert, der den Drehmoment-Sollwert als eine lineare Rampe an den Frequenzumrichter sendet.

Der Drehmomentsollwert ist Objekt 0x6071 Target torque (0,1 %). Die Drehmoment-Rampensteigung wird mit Objekt 0x6087 Torque slope (0,1 % / s) eingestellt.

Profil-Geschwindigkeit

In der Betriebsart Profil-Geschwindigkeit benutzt das Modul die Betriebsart Profil-Geschwindigkeit des Frequenzumrichters anstelle der Betriebsart Drehzahl.

Der Geschwindigkeitsollwert ist Objekt 0x60FF Target velocity (inkr./s).

Profil Positionierung

Die Betriebsart Profil-Positionierung ermöglicht die Positionierung mit dem gesteuerten Antrieb. Die Einstellung des Positionssollwerts wird mit dem neuen Sollwert und dem "change sets immediately"-Bit im Steuerwort sowie dem "set-point acknowledge"-Bit im Statuswort gesteuert.

Der Positionssollwert ist Objekt 0x607A Target position (inkr.).

Homing Modus

Der Homing Modus (Referenzierungsmodus) beschreibt verschiedene Verfahren zur Ermittlung einer Referenzposition oder eines Nullpunkts. Die Schalter, die die Referenzposition anzeigen, können sich an den Enden oder in der Mitte des Wegs befinden, den das bewegliche Objekt zurücklegt. Bei den meisten Verfahren wird auch der Index-Impuls (Null-Impuls) eines Schrittgebers verwendet.

Weitere Informationen zur Betriebsart Referenzfahrt und Beschreibungen der verschiedenen Referenzfahrt-Methoden können dem Antriebshandbuch entnommen werden.

Prozessdatenskalierung

Drehmomentdaten

Drehmomentdaten haben die Größe von 0.1 % des Nennmoments, d.h. Wert 10 = 1 % Drehmoment.

Geschwindigkeitsdaten

Geschwindigkeitsdaten werden in Positionsinkrementen pro Sekunde angegeben (inkr./s).

Die Skalierung für die Betriebsart Geschwindigkeit unterscheidet sich von anderen Geschwindigkeitsdaten. Geschwindigkeitsdaten für die Betriebsart Geschwindigkeit werden in Achsen-Umdrehungen pro Minute (U/min) ausgedrückt. Zusätzlich kann ein rationaler Faktor, mit dem die Geschwindigkeitsdaten skaliert werden, mit Objekt 0x604C vl Dimension factor gesetzt werden.

Positionsdaten

Positionsdaten werden in Positionsinkrementen (inkr.) ausgedrückt.

Prozess-Istwerte

Istwerte für Regelungszwecke sind in den folgenden Obiekten verfügbar:

- 0x6077 Drehmoment-Istwert
- 0x6044 vl Geschwindigkeits-Istwert
- 0x606C Geschwindigkeits-Istwert
- 0x6064 Positions-Istwert

Damit die Obiekte für die Regelung benutzt werden können, muss der Antrieb so konfiguriert werden, dass er die entsprechenden Daten zum Adaptermodul überträgt.

Steuerwort und Statuswort

Das Steuerwort ist das wichtigste Instrument zur Steuerung des Antriebs über ein Feldbussystem. Es wird vom Feldbus-Master über das Adaptermodul an den Antrieb übertragen. Der Antrieb ändert seinen Betriebszustand entsprechend den Bit-codierten Anweisungen im Steuerwort und sendet Statusinformationen im Statuswort zurück an den Master.

Start und Stopp des Antriebs sowie verschiedene betriebsartspezifische Befehle werden von der Gerätesteuerungs-Zustandsmaschine durchgeführt. Dies wird in Abbildung Zustandsmaschine auf Seite 82 erläutert.

Steuerwort-Inhalte

Die Funktion des CiA 402 Steuerworts wird in den folgenden Tabellen erläutert. Das in der untenstehenden Tabelle erläuterte Steuerwort findet sich in Objekt 0x6040 (hex.) und das Statuswort in Objekt 0x6041 (hex.) (siehe *Anhang A – CANopen-Objektverzeichnis*).

Bit	Beschreibung			
0	Einschalten			
1	Spannung freigeben			
2	Schnellstopp			
3	Betrieb freigeben			
46	Betriebsartspezifisch			
7	Störungsquittierung			
8	Halt			
9	Betriebsartspezifisch			
10	Reserviert			
11 15	Antriebsspezifisch			

Die betriebsartspezifischen Bits des Steuerworts des CiA 402-Profils sind in der folgenden Tabelle aufgelistet:

Bit	Geschwin- digkeits- modus	Profil- Positionie- rungs- modus	Profil- Geschwin- digkeits- modus	Profil-Dreh- moment- modus	Referenz- fahrtmodus
4	Rampen- funktions- generator freigeben	Neuer Soll- wert	Reserviert	Reserviert	Referenz- fahrt starten
5	Rampen- funktions- generator entriegeln	Sofortige Übernahme der Sollwer- tänderung	Reserviert	Reserviert	Reserviert
6	Rampen- funktions- generator verwendet Sollwert	Absolut / re- lativ	Reserviert	Reserviert	Reserviert

Die CiA 402 Zustandsmaschine wird über Befehle der Steuerwortbits 7, 3...0 gesteuert. Die Befehle sind in der folgenden Tabelle aufgelistet:

	Steuerwort-Bit					
Befehl	Stör Quitt. Bit 7	Betrieb freigeben Bit 3	Schnell Stopp Bit 2	Spann. freig. Bit 1	Schalt. ein Bit 0	Status- übergänge ¹⁾
Abschalten	0	Х	1	1	0	2, 6, 8
Einschalten	0	0	1	1	1	3
Einschalten	0	1	1	1	1	3 (+4) ²⁾
Spannung deaktivie- ren	0	Х	Х	0	Х	7, 9, 10, 12
Schnell- stopp	0	Х	0	1	Х	7, 10, 11
Betrieb de- aktivieren	0	0	1	1	1	5

	Steuerwort-Bit					
Befehl	Stör Quitt. Bit 7	Betrieb freigeben Bit 3	Schnell Stopp Bit 2	Spann. freig. Bit 1	Schalt. ein Bit 0	Status- übergänge ¹⁾
Betrieb aktivieren.	0	1	1	1	1	4
Störungs- quittierung	丕	Х	Х	Х	Х	15

X: Mit X gekennzeichnete Bits sind irrelevant.

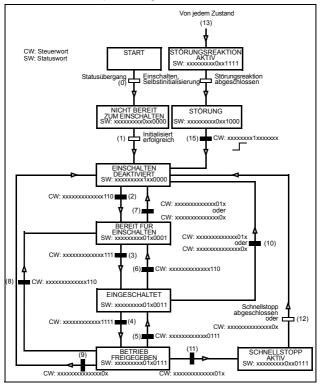
Statuswort-Inhalte

Die folgende Tabelle beschreibt den Aufbau des Statusworts des CiA 402-Profils:

Bit	Name	Wert	Beschreibung
0	Einschaltbereit	0	Nicht einschaltbereit
		1	Einschaltbereit
1	Eingeschaltet	0	Nicht eingeschaltet
		1	Eingeschaltet
2	Betrieb freigegeben	0	Betrieb nicht freigegeben
		1	Betrieb freigegeben
3	Störung	0	Keine Störungsmeldung aktiv
		1	Störung
4	Spannung aktiviert	0	Keine Hochspannung am Antrieb angelegt
		1	Hochspannung am Antrieb angelegt
5	Schnellstopp	0	Schnellstopp ist aktiv
		1	Normalbetrieb

¹⁾ Siehe Zustandsmaschine des Profils CiA 402 auf Seite 82.

²⁾ Wenn Steuerwort-Bit 3 (Betrieb freigeben) = 1, bleibt der Antrieb nicht im Status EINGESCHALTET, sondern wechselt sofort in den Status BETRIEB FREIGEGEBEN.


Bit	Name	Wert	Beschreibung
6	Einschalten	0	Einschalten freigegeben
	deaktiviert	1	Einschalten deaktiviert
7	Warnung	0	Keine Warnungen
		1	Warnung ist aktiv
8	Antriebsspezifisch	0	
		1	
9	Fernsteuerung	0	Steuerwort nicht verarbeitet
		1	Steuerwort verarbeitet
10	Ziel erreicht	0	Setzpunkt nicht erreicht
		1	Setzpunkt erreicht
11	Interner Grenzwert	0	Interner Grenzwert nicht aktiv
	aktiv	1	Interner Grenzwert aktiv
1213	Betriebsartspezifisch		
1415	Antriebsspezifisch	0	
		1	

In der folgenden Tabelle werden die betriebsartspezifischen Bits des Statusworts des CiA 402-Profils erläutert:

Ві	t Ge- schwin- digkeits- modus	Profil- Positionie- rungsmodus	Profil-Ge- schwindig- keitsmodus	Profil- Dreh- moment- modus	Referenz- fahrtmodus
12	Reserviert	Sollwert- Quittierung	Drehzahl	Reserviert	Referenz- fahrt erzielt
13	Reserviert	Folgefehler	Max. Schlupffehler	Reserviert	Referenz- fahrtfehler

Zustandsmaschine

In der folgenden Abbildung wird die Zustandsmaschine des CiA 402-Kommunikationsprofils dargestellt.

Kommunikationsprofil ABB DRIVES

Steuerwort und Statuswort

Das Steuerwort ist das wichtigste Instrument zur Steuerung des Antriebs über ein Feldbussystem. Die Feldbus-Masterstation sendet das Steuerwort über das Adaptermodul an den Frequenzumrichter. Der Antrieb ändert seinen Betriebszustand entsprechend den Bit-codierten Anweisungen im Steuerwort und sendet Statusinformationen im Statuswort zurück an den Master

Die Inhalte von Steuer- und Statuswort sind detailliert in den folgenden Tabellen dargestellt. Die Antriebszustände werden auf Seite 87 dargestellt.

Steuerwort-Inhalte

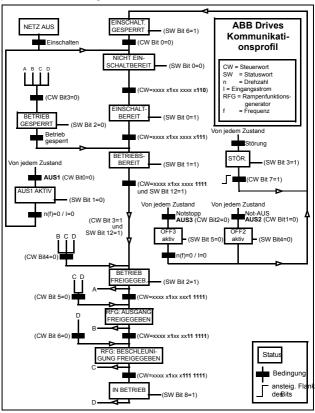
In der folgenden Tabelle werden die Inhalte des Steuerworts für das Kommunikationsprofil ABB Drives beschrieben. Der fettgedruckte Text in Großbuchstaben bezieht sich auf die in dem Diagramm auf Seite 87 dargestellten Zustände.

Bit	Name	Wert	STATUS/Beschreibung
0	AUS	1	Weiter mit BETRIEBSBEREIT.
	1	0	Anhalten entsprechend der aktiven Verzögerungsrampe. Weiter mit AUS1 AKTIV; weiter mit EINSCHALTBEREIT, sofern keine anderen Verriegelungen (OFF2, OFF3) aktiviert sind.
1	1 AUS 1	1	Betrieb fortsetzen (OFF2 nicht aktiv).
		0	Notstopp, Austrudeln bis zum Stillstand. Weiter mit AUS2 AKTIV, weiter mit EIN- SCHALTSPERRE.
2	AUS	1	Betrieb fortsetzen (OFF3 nicht aktiv).
		0	Schnellhalt mit Schnellhalterampe. Weiter mit AUS3 AKTIV, weiter mit EIN-SCHALTSPERRE. Warnung: Sicherstellen, dass Motor und angetriebene Maschine auf diese Weise angehalten werden können.

Bit	Name	Wert	STATUS/Beschreibung
3	INHIBIT_ OPERATION	1	Weiter mit BETRIEB FREIGEGEBEN. Hinweis: Das Freigabesignal muss aktiv sein; siehe Antriebsdokumentation. Wenn der Antrieb auf Empfang des Freigabesignals durch den Feldbus eingestellt ist, wird dieses Bit das Signal aktivieren.
		0	Betrieb sperren. Weiter mit BETRIEB GESPERRT.
4	RAMP_OUT_ ZERO	1	Normalbetrieb. Weiter mit RAMPEN- FUNKTIONSGENERATOR: AUSGANG FREIGEGEBEN.
		0	Ausgang des Rampenfunktionsgenerators auf Null setzen. Der Antrieb stoppt mit Rampe (Strom- und DC-Spannungsgrenzwerte sind aktiv).
5	RAMP_HOLD	1	Rampenfunktion aktivieren. Weiter mit RAMPENFUNKTIONSGENE- RATOR: HOCHLAUFGEBER FREIGE- GEBEN.
		0	Rampe anhalten (Ausgang des Rampenfunktionsgenerators angehalten).
6	RAMP_IN_ ZERO	1	Normalbetrieb. Weiter mit OPERATION. Hinweis: Dieses Bit ist nur wirksam, wenn die Feldbusschnittstelle mit Hilfe der Antriebsparameter als Quelle für dieses Signal eingestellt ist.
		0	Der Eingang des Rampenfunktionsgenerators auf Null setzen.
7	RESET	0 → 1	Störungsquittierung, falls eine aktive Störung vorliegt. Weiter mit EINSCHALTS-PERRE. Hinweis: Dieses Bit ist nur wirksam, wenn die Feldbusschnittstelle mit Hilfe der Antriebsparameter als Quelle für dieses Signal eingestellt ist.
		0	Normalen Betrieb fortsetzen.
89	Reserviert.		

Bit	Name	Wert	STATUS/Beschreibung
10	REMOTE_	1	Feldbus-Steuerung aktiviert.
	CMD	0	Steuerwort und Sollwert werden nicht an den Antrieb übermittelt, mit Ausnahmen für die Steuerwort-Bits OFF1, OFF2 und OFF3.
11	EXT_CTRL_ LOC	1	Externen Steuerplatz EXT2 wählen. Wirksam, wenn der Steuerplatz für die Anwahl durch den Feldbus parametriert ist.
		0	Externen Steuerplatz EXT1 wählen. Wirksam, wenn der Steuerplatz für die Anwahl durch den Feldbus parametriert ist.
12 15	Antriebsspezifisch (Informationen siehe Dokumentation des Antriebs.)		

Statuswort-Inhalte


In der folgenden Tabelle werden die Inhalte des Statusworts für das Kommunikationsprofil ABB Drives beschrieben. Der fettgedruckte Text in Großbuchstaben bezieht sich auf die in dem Diagramm auf Seite 87 dargestellten Zustände.

Bit	Name	Wert	STATUS/Beschreibung
0	RDY_ON	1	EINSCHALTBEREIT
		0	NICHT EINSCHALTBEREIT
1	RDY_RUN	1	BETRIEBSBEREIT
		0	AUS1 AKTIV
2	RDY_REF	1	BETRIEB FREIGEGEBEN
		0	BETRIEB GESPERRT
3	TRIPPED	1	FAULT
		0	Keine Störungsmeldung aktiv
4	OFF_2_STA	1	OFF2 nicht aktiv
		0	AUS2 AKTIV
5	OFF_3_STA	1	OFF3 nicht aktiv
		0	AUS3 AKTIV
6	SWC_ON_	1	EINSCHALTSPERRE
	INHIB	0	_

Bit	Name	Wert	STATUS/Beschreibung		
7	ALARM	1	Warnung		
		0	Keine Warnung		
8	AT_ SETPOINT	1	BETRIEB. Der Istwert entspricht dem Sollwert (= liegt innerhalb der Toleranzgrenzer d. h. bei Drehzahlregelung beträgt die Drelzahlabweichung max. 10 % der Motornenndrehzahl).		
		0	Der Istwert weicht vom Sollwert ab (= liegt außerhalb der Toleranzgrenzen).		
9	REMOTE	1	Umrichter-Steuerplatz: EXTERN (EXT1 oder EXT2)		
		0	Umrichter-Steuerplatz: LOKAL		
10	LIMIT spricht dem (mit dem Antrieb gestellten) Überwachungsgrüberschreitet ihn. Dies gilt fü tungen. 0 Frequenz- oder Drehzahlistw		Der Frequenz- oder Drehzahlistwert ent- spricht dem (mit dem Antriebsparameter ein- gestellten) Überwachungsgrenzwert oder überschreitet ihn. Dies gilt für beide Drehrich- tungen.		
			Frequenz- oder Drehzahlistwert liegt inner- halb der Überwachungsgrenze		
11	EXT_CTRL_ LOC	1	Externer Steuerplatz EXT2 gewählt. Hinweizum Frequenzumrichter ACS880: Dieses Bi ist nur wirksam, wenn die Feldbusschnittstelle mit Antriebsparameter als Quelle für dieses Signal eingestellt ist. Auswahl Anwer der-Bit 0 (06.33).		
		0	Externer Steuerplatz EXT1 gewählt.		
12	EXT_RUN_ ENABLE	0	Externes Betriebs-Freigabesignal empfangen. Hinweis zum Frequenzumrichter ACS880: Dieses Bit ist nur wirksam, wenn die Feldbusschnittstelle mit Antriebsparameter als Quelle für dieses Signal eingestellt ist. Auswahl Anwender-Bit 1 (06.34). Kein externes Freigabesignal empfangen		
13	Antriebsspezifisch (Informationen siehe Dokumentation des				
14	Antriebs.)				
15	15 FBA_ERROR 1 Datenübertragungsfehler durch Fel Adaptermodul erkannt.		Datenübertragungsfehler durch Feldbus- Adaptermodul erkannt.		
		0	Die Kommunikation des Feldbusadapters ist OK.		

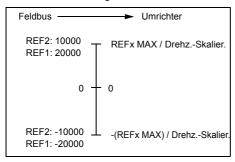
Zustandsmaschine

Im Folgenden ist die Zustandsmaschine für das Kommunikationsprofil ABB Drives abgebildet.

Sollwerte

Sollwerte sind 16-Bit-Worte, die ein Vorzeichen-Bit und einen ganzzahligen 15-Bit-Wert enthalten. Ein negativer Sollwert (der die umgekehrte Drehrichtung anzeigt) wird durch die Berechnung des Komplementärwerts des positiven Sollwerts ermittelt.

ABB-Antriebe können Steuerdaten von verschiedenen Quellen erhalten, einschließlich Analog- und Digitaleingängen, dem Bedienpanel des Antriebs und einem Kommunikationsmodul (z.B. FEPL-02). Damit die Steuerung über den Feldbus erfolgen kann, muss das Modul als Quelle für die Steuerdaten z.B. Sollwerte eingestellt werden.

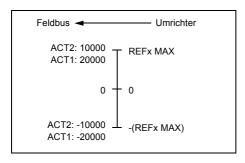

Skalierung

Sollwerte werden, wie folgt, skaliert.

Hinweis: Die Werte von REF1 MAX und REF2 MAX werden mit den Antriebsparametern eingestellt. Weitere Informationen hierzu siehe Antriebshandbücher.

Bei den Frequenzumrichtern ACSM1, ACS850, ACQ810 und ACS880 entspricht der Drehzahlsollwert (REFx) in dezimal (0...20000) dem Drehzahl-Skalierungswert 0...100 % (mit einem Antriebsparameter z. B. Parameter 46.01 Speed scaling beim ACS880 definiert).

Beim ACS355 kann Antriebsparameter REFx MIN den aktuellen Minimum-Sollwert begrenzen.


Istwerte

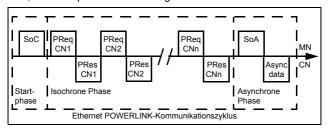
Istwerte sind 16-Bit-Worte, die Betriebsdaten des Antriebs enthalten. Die zu überwachenden Funktionen werden mit Hilfe eines Antriebsparameters ausgewählt.

Skalierung

Istwerte werden, wie folgt, skaliert.

Hinweise: Die Werte von REF1 MAX und REF2 MAX werden mit den Antriebsparametern eingestellt. Weitere Informationen hierzu siehe Antriebshandbücher

Kommunikationsprotokoll

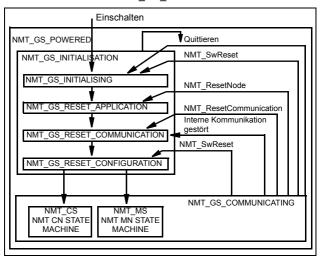

Inhalt dieses Kapitels

Dieses Kapitel beschreibt das Ethernet POWERLINK-Protokoll für das Adaptermodul.

Ethernet POWERLINK Kommunikationszyklus

In einem Ethernet POWERLINK-Netzwerk ist einer der Knoten, zum Beispiel eine SPS, ein Motion Controller oder ein Industrie-PC, als Managing Node (MN) ausgewiesen und hat daher die Funktion der Master-Station im Netzwerk. Alle anderen Geräte arbeiten als Controlled Nodes (CN), auch die Slaves, im Netzwerk. Der MN definiert den Taktimpuls für die Synchronisation aller Geräte und verwaltet den Datenkommunikationszyklus. Im Verlauf eines Taktzyklus, innerhalb dessen alle Knoten adressiert werden, sendet der MN an alle CNs hintereinander Poll-Anfragen (PReg). Diese Antworten unverzüglich mit Poll-Antworten (PRes) auf die Anfragen.

Ein Ethernet POWERLINK-Zyklus besteht aus drei Phasen. Während der Startphase sendet der MN einen Start of Cycle-Datenrahmen (SoC) an alle CNs, um die Geräte zu synchronisieren. In der zweiten Phase, der isochronen Phase, findet der Austausch von Nutzlastdaten statt. Die dritte Phase, die asynchrone Phase, ermöglicht die Übertragung großer Pakete, die nicht zeitkritisch sind, zum Beispiel Parametrierungsdaten.



Ethernet POWERLINK Zustandsmaschine

Beim Ethernet POWERLINK geht ein Slave-Gerät (Controlled Node) durch einen gemeinsamen Initialisierungsprozess in Betrieb. Ist das Gerät eingeschaltet, sind alle Zustände gültig und bilden Teilzustände des Oberzustands NMT GS POWERED.

NMT_GS_INITIALISATION

Nach dem Systemstart wechselt das Gerät automatisch in diesen Zustand und die Netzwerkfunktion beginnt. NMT_GS_INITIALISATION und all seine Teilzustände sind nur interne Zustände des Geräts. Im Teilzustand NMT GS RESET CONFIGURATION wird die Knotenadresse des Geräts erfasst und es erfolgt die Festlegung, ob das Gerät als MN oder CN konfiguriert wird. Das FEPL-02-Modul ist ein CN und daher taucht es in der NMT CN-Zustandsmaschine im Oberzustand NMT GS COMMUNICATING auf.

NMT GS COMMUNICATING

NMT CS NOT ACTIVE

Dies ist ein nicht-dauerhafter Zustand, der es einem startenden Knoten ermöglicht, den aktuellen Netzwerkstatus zu erkennen. Eine Zeitüberschreitung für SoC-, PReg-, PRes- und SoA-Datenrahmen bewirkt, dass das Gerät in den Zustand NTM CS BASIC ETHERNET wechselt.

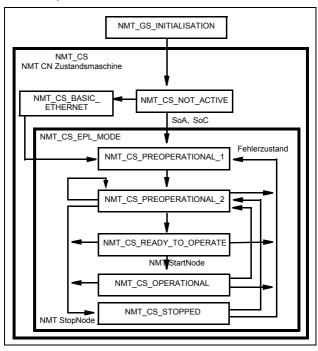
Die Zustände NMT CS PREOPERATIONAL

NMT_CS_PREOPERATIONAL_1 ist einer der Teilzustände des Oberzustands NMT_CS_EPL_MODE. Der Übergang von NMT_CS_NOT_ACTIVE in NMT_CS_PRE_OPERATIONAL_1 wird durch einen eingehenden SoA- oder SoC-Datenrahmen bewirkt. In diesem Zustand kann der CN nur dann einen Datenrahmen senden, wenn der MN dies durch einen SoA-Befehl autorisiert hat. In diesem Zustand findet keine PDO-Kommunikation statt.

Der Empfang des SoC-Telegramms löst die Übertragung von NMT_CS_PREOPERATIONAL_1 an NMT_CS_PREOPERATIONAL_2 aus. In diesem Zustand können PReq- und PRes-Daten ungültig sein, denn die PDO-Abbildungen sind eventuell unterschiedlich.

Im Zustand NMT_CS_EPL_MODE bewirkt die Erkennung eines Fehlers (zum Beispiel Verlust von SoC oder PReq) stets den Übergang in NMT_CS_PREOPERATIONAL_1.

NMT_CS_READY_TO_OPERATE


In diesem Zustand meldet der CN dem MN, dass er betriebsbereit ist. Er antwortet auf die PReq-Anforderung des MN, indem er einen PRes-Datenrahmen sendet.

NMT_CS_OPERATIONAL

Der Befehl NMT StartNode bewirkt den Übergang von NMT_CS_READY_TO_OPERATE in NMT_CS_OPERATIONAL. Dies ist der normale Betriebszustand des CN.

NMT_CS_STOPPED

Dieser Zustand dient der kontrollierten Abschaltung eines ausgewählten CN, während das System weiterhin läuft. In diesem Zustand nimmt der CN nicht am zyklischen Austausch von Datenrahmen teil, beachtet aber weiterhin SoA-Datenrahmen.

Spezifikation DS 301 und DS 402

Das Anwendungsschicht-Kommunikationsprotokoll im FEPL-02-Modul basiert auf dem CANopen-Kommunikationsprofil DS 301 sowie auf dem Geräteprofil DS 402 für Antriebe und Motion Control. Das Protokoll spezifiziert das Objektverzeichnis im Adaptermodul sowie Kommunikationsobjekte für den Austausch von Prozessdaten und azyklischen Meldungen.

Das Adaptermodul verwendet die folgenden Meldungstypen:

- Process Data Object (PDO) (Prozessdatenobjekt)
 Das PDO wird für die zyklische E/A-Kommunikation verwendet, also für Prozessdaten.
- Service Data Object (SDO) (Servicedatenobjekt)
 Das SDO wird f
 ür die azyklische Daten
 übertragung verwendet.
- NMT-Antwortdienste
 NMT-Antwortdienste werden sowohl bei der Inbetriebnahme
 als auch während des Betriebs zur Erkennung und
 Statusübermittlung verwendet.

Das Objektverzeichnis wird in *Anhang A – CANopen-Objektverzeichnis* beschrieben.

Prozessdatenobjekte

Prozessdatenobjekte (PDOs) werden für den Austausch von zeitkritischen Prozessdaten zwischen Master und Slave verwendet. Tx PDOs werden für die Übertragung von Daten vom Slave zum Master verwendet, Rx PDOs werden verwendet, um Daten vom Master zum Slave zu übertragen.

Die PDO-Abbildung definiert, welche Anwendungsobjekte in einem PDO übertragen werden. Zu diesen gehören normalerweise die Steuer- und Statusworte, Soll- und Istwerte, jedoch können die meisten Verzeichnisobjekte und Antriebsparameter für die zyklische Kommunikation abgebildet werden.

Das FEPL-02-Adaptermodul hat ein Empfangs-PDO (Rx PDO) und ein Sende-PDO (Tx PDO). In jedem PDO können 0 bis 16 Anwendungsobjekte abgebildet werden. PDOs werden während der Konfiguration (die Zustände NMT_CS_PRE-OPERATIONAL_1 und NMT_CS_PREOPERATIONAL_2) den Objekten zugeordnet.

Das Tx PDO wird durch Schreiben in das 0x1A00-Objekt abgebildet. Standardmäßig ist kein Parameter dem Tx PDO zugeordnet. Es ist auszuwählen, welche Parameter durch Tx PDO ausgetauscht werden

Das Rx PDO wird durch Schreiben in das 0x1600-Obiekt abgebildet. Standardmäßig ist kein Parameter dem Rx PDO zugeordnet. Es ist auszuwählen, welche Parameter durch Rx PDO ausgetauscht werden

Hinweise: Die maximale Anzahl von E/A-Parametern, die gleichzeitig für die zyklische Kommunikation abgebildet werden können. hängt vom Umrichtertyp und der Anwendung ab. Beispielsweise unterstützt der ACS880 12 Eingänge und 12 Ausgänge.

Servicedatenobjekte

Ein Servicedatenobjekt (SDO) nutzt die asynchrone Datenübertragung und wird verwendet, um auf ein Objekt zuzugreifen, ohne es in einen PDO-Anschluss abzubilden. Bei der SDO-Kommunikation kann auf alle CANopen-Objekte im Adaptermodul zugegriffen werden.

Ethernet POWERI INK stellt verschiedene Arten von SDO-Übertragungsverfahren bereit. Das Adaptermodul unterstützt die SDO-Übertragung über Ethernet POWERLINK ASnd Frames in der asynchronen Phase. Weitere Informationen siehe Ethernet PÓWERLINK Communication Profile Specification Version 1.1.0.

SDO-Protokoll

Das Download-Protokoll (für Schreibbefehle) und das Upload-Protokoll (für Lesebefehle) werden in der Ethernet POWERLINK Communication Profile Specification Version 1.1.0 beschrieben.

Das Adaptermodul unterstützt die folgenden Befehle:

- Schreiben nach Index
- Lesen nach Index

Wird der Befehl zum Schreiben nach Index verwendet, lädt der Client eines SDO (der MN) Daten in das Adaptermodul.

Wird der Befehl zum Lesen nach Index verwendet, fordert der Client eines SDO (der MN) das Adaptermodul auf, Daten zum Client hochzuladen

Zur Adressierung der Objekte werden Indizes und Subindizes verwendet. Ein Index (0...65535) spezifiziert einen Eintrag des Geräteobjekts, ein Subindex (0...254) spezifiziert eine Komponente des Eintrags im Geräteobjektverzeichnis.

Netzwerk-Managementdienste

Ethernet POWERLINK Netzwerk-Management (NMT) ist knotenbasiert und orientiert sich an einer Master/Slave-Beziehung. Das Adaptermodul wird vom Master als ein NMT-Slave verwaltet.

Ethernet POWERLINK definiert fünf Kategorien von NMT-Diensten:

- NMT State Command Services
- NMT Managing Command Services (nicht unterstützt)
- NMT Response Services
- NMT Info Services (nicht unterstützt)
- · NMT Guard Services (nicht unterstützt).

NMT State Command Services

Der MN überwacht den Zustand des CN mithilfe der NMT State Command Services. Weitere Informationen siehe Abschnitt Ethernet POWERLINK Zustandsmaschine auf Seite 92.

NMT Response Services

NMT Response Services werden vom MN benutzt, um NMT-Informationen vom CN abzufragen, wie zum Beispiel aktueller Status, Fehler- und Einrichtungsdaten. Ethernet POWERLINK spezifiziert die folgenden NMT Response Services:

- NMT State Response
- IdentResponse
- StatusResponse.

Anhand des NMT State Response Service teilen die CNs ihren Zustand dem MN mit. Der IdentResponse Service wird vom MN benutzt, um beim Systemstart oder nach einer Kommunikationsunterbrechung konfigurierte, aber nicht erkannte CNs zu ermitteln. Weitere Informationen siehe *Anhang C - IdentResponse-Datenrahmen*.

Der StatusResponse Service wird vom MN benutzt, um den aktuellen Status von CNs abzufragen, die nicht isochron kommunizieren. Er wird während des Betriebs zur Meldung von Störungen verwendet. Wenn ein Fehler auftritt, wird die EN-Kennung (Error New) im PRes-Datenrahmen geschaltet. Dies macht den MN auf das Auftreten eines Fehlers aufmerksam und der MN fordert vom CN eine Statusantwort an, die Fehlerinformationen enthält. Eine Liste aktiver und gespeicherter Fehler kann unter Verwendung des SDO von Obiekt 0x1003 abgerufen werden.

Fehlereintragsspezifikation

Byte	0	1	2	3	4	5	6	7	8	9
	Eintragstyp ¹⁾		Fehlercode ²⁾		Zeitstempel (Nicht verwendet ³⁾)					
Byte	10	11	12	13	14	15	16	17	18	19
	Zeitstempel		Zusätzliche Informationen (Nicht verwendet ³⁾)							

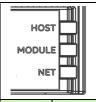
¹⁾ Siehe Ethernet POWERLINK Communication Profile Specification, Version 1.1.0.

²⁾ Siehe Fehlercodetabelle in *Anhang B – CANopen-Störungscodes*.

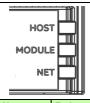
³⁾ Alle Bytes sind auf Null gesetzt.

Diagnose

Inhalt dieses Kapitels


In diesem Kapitel wird erläutert, wie Störungsursachen mit Hilfe der Status-LEDs auf dem Adaptermodul ermittelt werden.

Stör- und Warnmeldungen

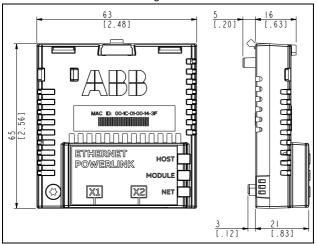

Das Firmware-Handbuch des Antriebs enthält Informationen zu den Stör- und Warnmeldungen des Adaptermoduls.

LED-Anzeigen

Das Adaptermodul ist mit drei zweifarbigen Diagnose-LEDs ausgestattet. Die LEDs werden nachfolgend beschrieben.

Name	Farbe	Funktion/Zustand		
	Grün blinkend	Verbindung zum Host wird aufgebaut		
	Grün	Anschluss an den Host (Frequenzumrichter) ist OK		
HOST	Rot blinkend	Kommunikation mit Host zeitweise unterbrochen		
	Orange blinkend, im Wechsel mit MODULE-LED orange blinkend	Interner Dateisystem-Fehler. Der Fehler kann durch einen Neustart zurückgesetzt werden. Wenn der Fehler weiterhin bestehen bleibt, wenden Sie sich an Ihre ABB-Vertretung.		

Name	Farbe	Funktion/Zustand			
	Grün aus	NMT_GS_OFF, NMT_GS_INITIALISATION, NMT_CS_NOT_ACTIVE			
	Grün, flackernd	NMT_CS_BASIC_ETHERNET			
	Grün, einmaliges Aufleuchten	NMT_CS_PRE_OPERATIONAL_1			
MODULE	Grün, zweimaliges Aufleuchten	NMT_CS_PRE_OPERATIONAL_2			
	Grün, dreimaliges Aufleuchten	NMT_CS_READY_TO_OPERATE			
	Grün	NMT_CS_OPERATIONAL			
	Grün blinkend	NMT_CS_STOPPED			
	Rot	Fehler			
	Orange blinkend, im Wechsel mit HOST-LED orange blinkend	Interner Dateisystem-Fehler. Der Fehler kann durch einen Neustart zurückgesetzt werden. Wenn die Störung weiterhin bestehen bleibt, wenden Sie sich bitte an Ihre ABB-Vertretung.			
	Grün blinkend	TX/RX-Aktivität			
NET	Grün	Verbindung(en) aktiv.			
	Rot	Verbindung(en) inaktiv.			


Technische Daten

Inhalt dieses Kapitels

Dieses Kapitel enthält die technischen Daten des Adaptermoduls und der Ethernet POWERLINK-Verbindung.

FEPL-02

In der folgenden Abbildung ist das Gehäuse des Adaptermoduls von vorne und von der Seite dargestellt.

Installation	In einem Optionssteckplatz auf der Regelungseinheit des Frequenzumrichters
Schutzart	IP20
Umgebungs- bedingungen	Es gelten die im Handbuch des Frequenzumrichters angegebenen Umgebungsbedingungen.
Verpackung	Karton. Kunststoff-Packfolie: antistatische Luftpolsterfolie (PE).
Anzeigen	Drei zweifarbige LEDs (HOST, MODULE, NET)
Anschlüsse	Ein 20-poliger-Stecker zum Frequenzumrichter (X3) Zwei RJ-45-Anschlüsse (X1 und X2)
Spannungs- versorgung	+3,3 V ±+5 % max. 450 mA (vom Antrieb)
Allgemeines	Alle Materialien mit UL/CSA-Zulassung Entspricht der EMV-Norm EN 61800-3:2004. Schutzlack entsprechend dem bei Elektronikkarten verwendeten

Ethernet POWERLINK-Verbindung

Kompatible Geräte	Alle Geräte, die mit Ethernet POWERLINK kompatibel sind	
Kabelart	Netzwerkkabel: CAT 5 UTP, CAT 5 FTP* oder CAT 5 STP* (*empfohlen) Stecker: RJ-45 Leitungsabschluss: Intern Maximale Netzsegment-Länge: 100 m	
Netzwerk-Topologie:	Stern, Baum oder Linie	
Übertragungs- geschwindigkeit	100 MBit/s	
Art der seriellen Datenübertragung	Halbduplex	
Protokoll	Ethernet POWERLINK	

Inhalt dieses Kapitels

Das CANopen-Objektverzeichnis enthält alle Konfigurationsdaten des Adaptermoduls.

Struktur des Objektverzeichnisses

Die Objekte im Objektverzeichnis können mit SDO-Diensten aufgerufen werden und viele der Verzeichnisobjekte können für die zyklische Kommunikation in PDOs abgebildet werden. Jedes Objekt wird anhand eines 16-Bit-Indexes adressiert.

In der folgenden Tabelle ist der Aufbau des Standard-Objektverzeichnisses dargestellt.

Index (hex.)	Objektverzeichnisbereich
0000 - 0FFF	Datentypbereich
1000 - 1FFF	Kommunikationsprofilbereich
2000 - 5FFF	Herstellerspezifischer Profilbereich
6000 - 9FFF	Geräteprofilbereich
A000 - FFFF	Reservierter Bereich

Erklärungen der Abkürzungen in der Tabelle werden unten angegeben:

Index	Objektindex (hex.)
SI	Subindex (hex.)
Тур	Datentyp U64 = 64-Bit ohne Vorzeichen, ganzzahlig U32 = 32-Bit-Integerwert ohne Vorzeichen (0 2 ³² - 1) I32 = 32-Bit-Integerwert mit Vorzeichen (-2 ³¹ 2 ³¹ - 1) U16 = 16-Bit ohne Vorzeichen, ganzzahlig (065535) I16 = 16-Bit mit Vorzeichen, ganzzahlig (-3276832767) U8 = 8-Bit ohne Vorzeichen, ganzzahlig (0255) I8 = 8-Bit mit Vorzeichen, ganzzahlig (-128127) OSTR = Oktett-String VSTR = Visible String BOOL = Boolesch
Zugriff	SDO Schreib-/Lesezugriff R = Objekt kann vom SDO-Dienst nur gelesen werden RW = Objekt kann vom SDO-Dienst gelesen und geschrieben werden
Std.	Standardwert

Kommunikationsprofilobjekte

Die Objekte des Kommunikationsprofils beschreiben die grundsätzlichen Ethernet POWERLINK-Eigenschaften des Adaptermoduls. Die Objekte werden in der folgenden Tabelle beschrieben

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
1000	0	Device type	U32	R	0x10192	Beschreibt den Gerätetyp. Besteht aus zwei 16-Bit-Fel- dem; das niedrigstwertige Feld beschreibt das Geräteprofil, das höchstwertige Feld ent- hält zusätzliche Informationen. Das Geräteprofil für FEPL-02 ist 0x10192 (hex.), das dem Kommunikationsprofil CiA 402 entspricht; und ein zusätzlicher Wert zu Informationszwecken ist 0x01 (hex.), der für einen Frequenzumrichter steht.
1001	0	Error register	U8	R	0	Störungsregister für das Adaptermodul. Bit-codiert gemäß DS 301/401. Wenn ein Bit gesetzt ist, ist der Fehler aktiv. Bits: 7: Herstellerspezifisch 6: Reserviert (immer 0) 5: Geräteprofilspezifisch 4: Kommunikations 3: Temperatur 2: Spannung 1: Strom 0: Allg. Störung (jede Antriebsstörung).
1003	0	Error history	U8	RW	0	Anzahl der Einträge. 0 = Speicher löschen Bereich: 0254
	1	Error entry 1		R	-	
	254	Error entry 254		R	-	
1006	0	Communica- tion cycle time interval	U32	R	0	Länge des Zykluszeitintervalls in Mikrosekunden, also die Zeit zwischen SoC-SoC

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
1008	0	Device name	VSTR	R		Gerätename. Die konstante Zeichenfolge ist FEPL-02 und <gerätename>.</gerätename>
1009	0	Hardware version	VSTR	R	-	Hardware-Version des Adaptermoduls z.B. A
100A	0	Software version	VSTR	R	-	Software-Version des Adapter- moduls und Versionsnummer
1010	0	Store parameters	U8	R	-	Anzahl der Einträge. Schreibt Wert 0x65766173 in einen relevanten Subindex, um NVS-Objektwerte zu spei- chern. Bereich: 1127
	1	Save all parameters	U32	RW	-	Speichert die Kommunikations- und Geräteprofilbereiche.
	2	Save comm parameters	U32	RW	-	Speichert die Objekte 10001FFF (Kommunikati- onsprofilbereich).
	3	Save appl parameters	U32	RW	-	Speichert die Objekte 60009FFF (Geräteprofilbereich).
	4	Save drive parameters	U32	RW	i	Speichert die Antriebsparameter

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
1011	0	Restore default parameters	U8	R	1	Anzahl der Einträge. Schreibt den Wert 0x64616F6C in einen relevan- ten Subindex um die Standard- werte in Objekte zurückzuspeichern. Bereich: 1127
	1	Restore all defaults	U32	RW	-	Schreibt alle Standardwerte in die Kommunikations- und Geräteprofilbereiche.
	2	Restore comm defaults	U32	RW	-	Wiederherstellen der Kommunikations-Objekte 10001FFF (Kommunikationsprofilbereich).
	3	Restore appl defaults	U32	RW	-	Stellt die Objekte 60009FFF (Geräteprofilbereich) wieder her, die im FBA gespeichert sind.
	4	Restore drive defaults	U32	RW	-	Stellt die Standard-Antriebs- parameter wieder her.
1018	0	Identity	U8	R	4	Anzahl der Einträge Bereich: 14
	1	Vendor ID	U32	R	-	Wert 0xB7 = ABB Drives
	2	Product code	U32	R	-	Produktcode ist vom Frequenzumrichter abhängig. Zum Beispiel Wert 0x1F7 = ACS355, 0x20A = ACSM1 Drehzahl, 0x20B = ACSM1 Motion, 0x21C = ACS850, 0x259 = ACS880.
	3	Revision	U32	R	-	Firmware-Versionsnummer (hex.) des Adaptermoduls, z.B. ist Wert 0x015 = FFEPL015
	4	Serial number	U32	R	-	Seriennummer des Adapter- moduls

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
1020	0	Verify configuration	U8	R	4	Anzahl der Einträge Bereich: 24
	1	Configuration date	U32	RW	0	Wird vom MN verwendet, um zu prüfen, ob das Modul korrekt konfiguriert ist
	2	Configuration time	U32	RW	0	Wird vom MN verwendet, um zu prüfen, ob das Modul korrekt konfiguriert ist
	3	Configuration ID	U32	RW	0	Wird vom MN verwendet, um zu prüfen, ob das Modul korrekt konfiguriert ist
	4	Verify configuration valid	BOOL	RW	WAHR	Wird vom MN verwendet, um zu prüfen, ob das Modul korrekt konfiguriert ist

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
1030	0	Interface Group	U8	R	9	Anzahl der Einträge
	1	Interface Index	U32	R	1	Schnittstellenindex der physi- kalischen Schnittstelle. Immer 1.
	2	Interface Description	VSTR	R	i	Textzeichenkette mit Informationen über die Schnittstelle
	3	Interface Type	U8	R	6	1 = Sonstiges 6 = Ethernet CSMA/CD 7 = iso88023 CSMA/CD Immer 6 (Ethernet CSMA/CD)
	4	Interface MTU	U16	R	-	In Oktetts angegebene Größe des größten Datenpakets, das über die Schnittstelle versen- det/empfangen werden kann
	5	Interface Phys Address	OSTR	R	1	Während der Produktion zugewiesene MAC-Adresse
	6	Interface Name	VSTR	R	i	Immer eth0
	7	Interface Operation Status	U8	R	-	Der aktuelle Betriebszustand der Schnittstelle 0 = Down 1 = Up
	8	Interface Admin State	U8	RW	1	Der aktuelle Administrations- zustand der Schnittstelle 0 = Deaktiviert 1 = Aktiviert
	9	Valid Boolean	BOOL	RW	FALSC H	Gibt an, ob die Daten dieses Objekts gültig sind oder nicht. WAHR = Die Daten sind gültig. FALSCH = Die Daten sind ungültig.
1300	0	SDO sequence timeout	U32	RW	-	Timeout-Wert in Millisekunden für die Verbindungs- Abbrucherkennung der SDO- Sequenzschicht

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
1400	0	Receive PDO Communica- tion	U8	R	2	Anzahl der Einträge
	1	Node ID	U8	RW	0	Knoten-ID des Knotens, der die entsprechende PRes überträgt. Bereich: 0254
	2.	Mapping version	U8	RW	-	
1600	0	Receive PDO Mapping	U8	RW	0	Anzahl der abgebildeten Anwendungsobjekte. Bereich: 016
	1	Mapped object #1	U64	RW	0	
	16	Mapped object #16	U64	RW	0	
1800	0	Transmit PDO Com- munication	U8	R	2	Anzahl der Einträge
	1	Node ID	U8	RW	0	Knoten-ID des PDO-Ziels: CN: nicht verwendet (0) MN: Knoten-ID des PReq-Ziels (CN) Gültige Knoten-IDs werden über NMT_NodeAssignment_AU32 [Node ID] Bits 0 und 8 ausgegeben. Knoten-ID-Eintrag 0 zeigt die per Multicast vom MN übertragenen PRes an. Bereich: 0254
	2.	Mapping version	U8	RW	0	
1A00	0	Transmit PDO Mapping	U8	RW	0	Anzahl der abgebildeten Anwendungsobjekte. Bereich: 016
	1	Mapped object #1	U64	RW	0	
	16	Mapped object #16	U64	RW	0	

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
1C0B	0	Loss of SoC	U8	R	3	Anzahl der Einträge. Bereich: 03
	1	Cumulative count	U32	RW	0	Erhöht sich jedes Mal um den Wert 1, wenn der Verlust eines SoC erkannt wird.
	2	Threshold count	U32	R	0	Erhöht sich jedes Mal um den Wert 8, wenn der Verlust eines SoC erkannt wird; verringert sich bei jedem einwandfreien SoC um den Wert 1.
	3	Threshold	U32	RW	15	Wenn die Schwellenwertzäh- lung diesen Wert erreicht, tritt ein Fehler auf. Durch die Ein- stellung auf 0 wird die Fehler- reaktion deaktiviert.
1C0D	0	Loss of PReq	U8	R	3	Anzahl der Einträge. Bereich: 03
	1	Cumulative count	U32	RW	0	Erhöht sich jedes Mal um den Wert 1, wenn der Verlust einer PReq erkannt wird.
	2	Threshold count	U32	R	0	Erhöht sich jedes Mal um den Wert 8, wenn der Verlust einer PReq erkannt wird; verringert sich bei jeder einwandfreien PReq um den Wert 1.
	3	Threshold	U32	RW	15	Wenn die Schwellenwertzäh- lung diesen Wert erreicht, tritt ein Fehler auf. Durch die Ein- stellung auf 0 wird die Fehler- reaktion deaktiviert.
1C0F	0	CRC-Fehler	U8	R	3	Anzahl der Einträge. Bereich: 13

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
	1	Cumulative count	U32	RW	0	Erhöht sich jedes Mal um den Wert 1, wenn ein CRC-Fehler erkannt wird.
	2	Threshold count	U32	R	0	Erhöht sich jedes Mal um den Wert 8, wenn ein CRC-Fehler erkannt wird; verringert sich bei jedem einwandfreien Zyklus um den Wert 0,1.
	3	Threshold	U32	RW	15	Wenn die Schwellenwertzäh- lung diesen Wert erreicht, tritt ein Fehler auf. Durch die Ein- stellung auf 0 wird die Fehler- reaktion deaktiviert.
1C14	0	Loss of frame tolerance	U32	RW	100000	Toleranzintervall in Nanose- kunden, das von der Fehlerer- kennung des CN in Bezug auf den SoC-Verlust anzuwenden ist
1F82	0	Feature flags	U32	R	-	Immer 0x45
1F83	0	EPL version	U8	R	-	Immer 0x20
1F8C	0	Current NMT state	U8	R	-	
1F93	0	EPL Node ID	U8	R	2	Anzahl der Einträge. Bereich: 23
	1	Node ID	U8	R	1	Derzeit aktive Knoten-ID. Bereich: 1240, 253, 254
	2	Node ID by HW	BOOL	R	-	Immer 1

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
1F98	0	Cycle timing	U8	R	9	Anzahl der Einträge
	1	Isochr Tx Max Payload	U16	R	-	Gerätespezifischer oberer Grenzwert für die in Oktetts angegebene Nutzlastdaten- größe von isochronen Meldun- gen, die vom Gerät übertragen werden. Bereich: 361490
	2.	Isochr Rx Max Payload	U16	R	-	Gerätespezifischer oberer Grenzwert für die in Oktetts angegebene Nutzlastdaten- größe von isochronen Meldun- gen, die vom Gerät empfangen werden. Bereich: 361490
	3	Pres Max Latency	U32	R	-	In Nanosekunden angegebene maximale Zeit, die vom CN benötigt wird, um auf PReq zu antworten
	4	PReq Act Payload Limit	U16	RW	36	In Oktetts angegebene Größe des Zeitfensters für konfigurierte PReq-Nutzlastdaten, die vom CN erwartet werden. Die Größe des Zeitfensters für Nutzlastdaten plus Header ergibt die Größe des PReq-Datenrahmens. Das Datenzeitfenster kann mit PDO-Daten bis zu diesem Grenzwert gefüllt werden. Bereich: 36Subindex 2

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
	5	PReq Act Payload Limit	U16	RW	36	In Oktetts angegebene Größe des Zeitfensters für konfigu- rierte PRes-Nutzlastdaten, die vom CN gesendet werden. Die Zeitfenstergröße der Nutz- lastdaten plus Header ergibt die Größe des PRes-Daten- rahmens. Das Datenzeitfen- ster kann mit PDO-Daten bis zu diesem Grenzwert gefüllt werden. Bereich: 36Subindex 1
	6	ASnd Max Latency	U32	R	-	In Nanosekunden angegebene maximale Zeit, die vom CN benötigt wird, um auf SoA zu antworten
	7	Multiple cycle count	U8	RW	0	Länge des gemultiplexten Zyklus in Mehrfachen des POWERLINK-Zyklus
	8	Async MTU	U16	RW	300	Maximale asynchrone Daten- rahmengröße in Oktetts. Wird beim Reset auf 1500 gesetzt. Bereich: 3001500
	9	Prescaler	U8	RW	2	Schaltrate der SoC PS-Ken- nung. Der Wert steht für die Anzahl der Zyklen, die abge- schlossen werden müssen, damit der MN die Kennung schaltet. Bereich: 01000
1F99	0	Basic Ethernet Timeout	U32	RW	5000000	In Mikrosekunden angege- bene Zeit, die verstreichen muss, bevor der Wechsel von NMT_CS_NOT_ACTIVE in NMT_CS_BASIC_ETHER- NET erfolgt
1F9E	0	Rücksetzbefe hl	U8	RW	NMTIn validS ervice	0xff: NMTInvalidService 0x28: NMTResetNode 0x2a: NMTResetConfiguration 0x29: NMTResetCommunication 0x2b: NMTSwReset

Herstellerspezifische Profilobjekte

Die herstellerspezifischen Profilobjekte enthalten die Steuer- und Statusworte, Sollwerte und Istwerte des ABB Drives-Profils und der Transparent-Profile sowie Diagnosedaten. Die Objekte werden in der folgenden Tabelle beschrieben.

Index	SI	Name	Тур	Zugriff	Informationen
2001	0	T32 CW	U32	RW	32-Bit-Transparent-Profil- Steuerwort
2002	0	T32 Ref1	132	RW	32-Bit-Transparent-Profil-Sollwert 1
2003	0	T32 Ref2	132	RW	32-Bit-Transparent-Profil-Sollwert 2
2004	0	T32 SW	U32	R	32-Bit-Transparent-Profil- Statuswort
2005	0	T32 Act1	132	R	32-Bit-Transparent-Profil-Istwert 1
2006	0	T32 Act2	132	R	32-Bit-Transparent-Profil-Istwert 2
2051	0	T16 CW	U16	RW	16-Bit-Transparent-Profil- Steuerwort
2052	0	T16 Ref1	I16	RW	16-Bit-Transparent-Profil-Sollwert
2053	0	T16 Ref2	I16	RW	16-Bit-Transparent-Profil-Sollwert 2
2054	0	T16 SW	U16	R	16-Bit-Transparent-Profil- Statuswort
2055	0	T16 Act1	I16	R	16-Bit-Transparent-Profil-Istwert 1
2056	0	T16 Act2	I16	R	16-Bit-Transparent-Profil-Istwert 2
2101	0	ABB CW	U16	RW	Steuerwort des ABB Drive Profils
2102	0	ABB Ref1	I16	RW	ABB Drives-Profil-Sollwert 1
2103	0	ABB Ref2	I16	RW	ABB Drives-Profil-Sollwert 2
2104	0	ABB SW	U16	R	ABB Drives-Profil-Statuswort
2105	0	ABB Act1	I16	R	ABB Drives-Profil-Istwert 1
2106	0	ABB Act2	I16	R	ABB Drives-Profil-Istwert 2
2201	0	Herstellerspez. Störungscode	U16	R	
2203	0	Herstellerspez. Störungscode	U16	R	

Istwertsignale und Parameter des Antriebs

Die verfügbaren Istwertsignale und Parameter hängen vom Antriebstyp ab. Auflistung der Signale und Parameter siehe entsprechendes Firmware-Handbuch des Antriebs.

Der Lesedienst wird verwendet, um Istwertsignale und Parameter vom Antrieb auszulesen. Der Schreibdienst wird verwendet, um Parameterwerte in den Antrieb zu schreiben. Sowohl der Lese- als auch der Schreibdienst nutzen dasselbe Parameter-Abbildungssystem. Der Index des Objektverzeichnisses entspricht der Parametergruppe im hexadezimalen Format + 4000 (hex.) und der Sub-Index ist der Parameterindex. Zum Beispiel ist der Index für Antriebsparameter 30.19 gleich 1E(hex.) + 4000(hex.)=401E (hex.) und der Subindex = 19 (dez.) = 13 (hex.). Das Prinzip wird in der folgenden Tabelle erläutert.

Hinweise: Über das Netzwerk geschriebene Antriebsparameterwerte werden nicht automatisch im Festspeicher des Antriebs abgelegt. Die Werte sollten im Antrieb gespeichert werden, um die Änderungen nach einem Aus- und Einschaltvorgang zu sichern.

Sub- index	Name	Тур	Zugriff	Informationen
1	Drive signal 1.01	1)	2)	3)
2	Drive signal 1.02	1)	2)	3)
1	Drive signal 2.01	1)	2)	3)
1	Drive signal 3.01	1)		3)
1	Drive par. 10.01	1)	2)	3)
2	Drive par. 10.02	1)	2)	3)
1	Drive par. 11.01	1)	2)	3)
1	Drive par. 99.01	1)	2)	3)
	1 2 1 1 2 1	Index	Index	Sub-index Name Typ Zugriff 1 Drive signal 1.01 1) 2) 2 Drive signal 1.02 1) 2) 1 Drive signal 2.01 1) 2) 1 Drive signal 3.01 1) 1 Drive par. 10.01 1) 2) 2 Drive par. 10.02 1) 2) 1 Drive par. 11.01 1) 2) 1 Drive par. 99.01 1) 2)

Subindex 0 = Anzahl der abgebildeten Objekte.

¹⁾ U16, INT16, U32 oder INT32.

²⁾ Hängt vom Parametertyp des Antriebs ab.

³⁾ Siehe entsprechendes Firmware-Handbuch des Antriebs.

CiA 402 Profilobjekte

Die CiA 402 Profilobjekte beschreiben Objekte für die Überwachung und Steuerung von Frequenzreglern. Die Objekte werden in der folgenden Tabelle beschrieben.

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
603F	0	Error code	U16	R	0	CiA 402 Störcode der letzten aufgetretenen Störung des Antriebs. Die Werte entsprechen IEC 61800-7-201. Herstellerspezifische Störcodes sind 0xFF000xFFFF: Generell werden alle Störcodes von 0xFF00 und höher direkt in dieses Objekt übertragen. Zwei Störcodes werden vom Adaptermodul generiert: • 0xFFE1: Fehler beim Lesen des Störcodes vom Antrieb. • 0xFFFF: Unbekannter Störcode - ein entsprechender CiA 402 Störcode existiert nicht. Objekt 2201 und das Handbuch des Antriebs prüfen.
6040	0	Control word	U16	RW	-	CiA 402 Steuerwort
6041	0	Status word	U16	R	-	CiA 402 Statuswort
6042	0	vl target velocity	I16	RW	-	Wirksam im Geschwindigkeits- modus (vI)
6043	0	vi velocity demand	I16	R	-	Funktioniert, wenn der Ausgang des Rampenfunktionsgenerators (Cl61) des Antriebs verfügbar ist. Zyklische Kommunikation mit niedriger Priorität. Hinweise: Nicht vom ACS355 unterstützt.
6044	0	vl velocity actual value	I16	R	-	Funktioniert, wenn vom Antrieb eine Rückführung der Geschwindigkeit verfügbar ist

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
6046	0	vi velocity min max amount	18	R	2	Absolutwert-Einstellungen der Minimum- und Maximum- Geschwindigkeit für den Geschwindigkeitsmodus (vI)
	1	min abs velocity	U32	RW	1	Absolutwert der Minimal- Geschwindigkeit
	2	max abs velocity	U32	RW	-	Absolutwert der Maximal- Geschwindigkeit
6048	0	vl velocity acceleration	18	R	2	Einstellungen der Beschleuni- gungsrampe für den Geschwindigkeitsmodus (vI)
	1	Delta speed	U32	RW	-	Rampen-Delta-Speed (vl Skalierungseinheiten). Hinweise: Beim ACS355 und ACS880 schreibgeschützt.
	2	Delta time	U16	RW	-	Rampen-Delta-Time (s)
6049	0	vl velocity acceleration	18	R	2	Einstellungen der Verzögerungsrampe für den Geschwindigkeitsmodus (vI)
	1	Delta speed	U32	RW	-	Rampen-Delta-Speed (vl Skalierungseinheiten). Hinweise: Beim ACS355 und ACS880 schreibgeschützt.
	2	Delta time	U16	RW	-	Rampen-Delta-Time (s)
604A	0	vl velocity quick stop	18	R	2	Einstellungen der Schnell- stopprampe für den Geschwindigkeitsmodus (vI)
	1	Delta speed	U32	RW	-	Rampen-Delta-Speed (vl Skalierungseinheiten). Hinweise: Beim ACS355 und ACS880 schreibgeschützt.
	2	Delta time	U16	RW	-	Rampen-Delta-Time (s)
604C	0	vl dimension factor	18	R	2	Skalierungsfaktor der Geschwindigkeitsdaten für den Geschwindigkeitsmodus (Vl. Basiseinheit in der Betriebsart vl ist U/min.
	1	numerator	132	RW	-	Standard: 1
	2	denominator	132	RW	-	Standard: 1

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
605B	0	Shutdown option code	I16	RW	0	0 = Stopp mit Austrudeln (Standard) 1 = Stopp mit Rampe
605C	0	Disable operation code	I16	RW	1	0 = Stopp mit Austrudeln 1 = Stopp mit Rampe (Standard)
605D	0	Halt option code	I16	RW	1	Betriebsart vl. 1 = Eingang des Rampenfunktionsgenerators auf Null setzen (Standard) 24 = Ausgang des Rampenfunktionsgenerators auf Null setzen Hinweis: Halt stoppt den Antrieb nicht, sondern er läuft lediglich mit Nulldrehzahl.
6060	0	Modes of operation	18	RW	-	CiA 402 Betriebsart- Anforderung. 0 = Kein Wechsel (Standard) 1 = Profil- Positionierungsmodus (pp) 2 = Geschwindigkeitsmodus (vl) 3 = Profil- Geschwindigkeitsmodus (pv) 4 = Profil-Drehmomentmodus (tq) 6 = Referenzfahrtmodus (hm) Hinwelse: Die unterstützten Betriebsarten hängen vom Umrichter ab.
6061	0	Modes of operation display	18	R	-	Aktuelle Betriebsart
6064	0	Position actual value	132	R	1	Funktioniert, wenn vom Antrieb eine Rückführung der Position verfügbar ist.
6069	0	Velocity sensor actual value	132	R	-	Beschreibt den von einem Geschwindigkeitsgeber gele- senen Wert
606A	0	Sensor selection code	I16	RW	-	

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
606B	0	Velocity demand value	I32	R	,	Funktioniert, wenn der Ausgang des Rampenfunktionsgenerators des Antriebs verfügbar ist. Zyklische Kommunikation mit niedriger Priorität. Hinweis: Nicht vom ACS355 unterstützt.
606C	0	Velocity actual value	132	R	-	Funktioniert, wenn vom Antrieb eine Rückführung der Geschwindigkeit verfügbar ist
6071	0	Target torque	I16	RW	0	Eingangswert für den Drehmo- mentregler im Profil-Drehmo- mentmodus (tq)
6076	0	Motor rated torque	U32	RW	0	Nenndrehmoment des Motors in Nm
6077	0	Torque actual value	l16	R	0	Funktioniert, wenn vom Antrieb eine Rückführung des Drehmoments verfügbar ist
6078	0	Current actual value	I16	R	0	Ausgangsstrom-Istwert
607A	0	Target position	132	RW	-	Die vorgegebene Position, in die der Frequenzumrichter wechseln soll Funktioniert im Profil-Positionierungsmodus (pp).
6081	0	Profile velocity	U32	RW	-	Geschwindigkeit, die normaler- weise am Ende der Beschleu- nigungsrampe nach Durch- laufen des Profils erreicht wird. Zyklische Kommunikation mit niedriger Priorität.
6087	0	Torque slope	U32	RW	-	Wirksam im Drehmomentmo- dus (tq). Einheit: 0,1 % / s.
6088	0	Torque profile type	I16	RW	0	Nur 0 = Lineare Rampe (Tra- pezprofil) wird unterstützt.

Index	SI	Name	Тур	Zu- griff	Std.	Informationen
6098	0	Homing method	18	RW	0	CiA 402 Referenzfahrtmethoden. Weitere Informationen zu den unterstützten Referenzfahrt-Betriebsarten Können den Umrichter-Handbuch entnommen werden. • 1281: Herstellerspezifisch • 0: Keine Referenzfahrt erforderlich • 135: Verfahren 1 bis 35 • 36127: Reserviert
6099	0	Homing speeds	U8	R	2	Drehzahlen während der Referenzfahrt
	1	Speed during search for switch	U32	RW	0	ACSM1 Homing-Drehzahl 1
	2	Speed during search for zero	U32	RW	0	ACSM1 Homing-Drehzahl 2
60FD	0	Digital inputs	U32	R	-	Antriebsspezifisch
60FE	0	Digital outputs	U8	R	-	Anzahl der Einträge
	1	Physical outputs	U32	RW	-	Antriebsspezifisch
	2	Bitmask	U32	RW	-	Antriebsspezifisch
60FF	0	Target velocity	132	RW	Rx	Wirksam im Geschwindigkeitsmodus (pv).

128	Anhang A – CANopen-Objektverzeichnis	

Inhalt dieses Kapitels

Dieses Kapitel enthält eine Liste der Störungscodes für CANopen.

Störungscodes

Störungscodes können von den Objekten 0×2201 und 0×603F (hex.) gelesen werden. Zusätzlich kann der MN den Status des CN anhand des StatusResponse Service abfragen. Siehe Abschnitt Netzwerk-Managementdienste auf Seite 98.

Störungscodes zwischen xx80...xxFF (hex.) und FF00...FFFF (hex.) sind herstellerspezifisch. Erläuterungen dieser Störungscodes finden sich im entsprechenden Firmware-Handbuch des Antriebs und/oder dem Antriebs-Störungscode-Parameter.

Störungscode (hex.)	Bedeutung			
0000	Störungsquittierung oder keine Störung			
1000	Allgemeine Störung			
2000	Strom			
2100	Strom auf der Eingangsseite des Geräts			
2110	Kurzschluss / Erdschluss			
2120	Erdschluss			

Störungscode (hex.)	Bedeutung
2121	Erdschluss, Phase L1
2122	Erdschluss, Phase L2
2123	Erdschluss, Phase L3
2130	Kurzschluss
2131	Kurzschluss, Phasen L1-L2
2132	Kurzschluss, Phasen L2-L3
2133	Kurzschluss, Phasen L3-L1
2200	Int. Stromgrenze
2211	Int. Strom Nr. 1
2212	Int. Strom Nr. 2
2213	Überstrom in der Rampenfunktion
2214	Überstrom in der Sequenz
2220	Permanenter Überstrom
2221	Permanenter Überstrom Nr. 1
2222	Permanenter Überstrom Nr. 2
2230	Kurzschluss / Erdschluss
2240	Erdschluss
2250	Kurzschluss
2300	Strom auf der Ausgangsseite des Geräts
2310	Permanenter Überstrom
2311	Permanenter Überstrom Nr. 1
2312	Permanenter Überstrom Nr. 2
2320	Kurzschluss / Erdschluss
2330	Erdschluss
2331	Erdschluss, Phase U
2332	Erdschluss, Phase V
2333	Erdschluss, Phase W
2340	Kurzschluss
2341	Kurzschluss, Phasen U-V

Störungscode (hex.)	Bedeutung
2342	Kurzschluss, Phasen V-W
2343	Kurzschluss, Phasen W-U
3000	Spannung
3100	Netzspannung
3110	Netz-Überspannung
3111	Netz-Überspannung, Phase L1
3112	Netz-Überspannung, Phase L2
3113	Netz-Überspannung, Phase L3
3120	Netz-Unterspannung
3121	Netz-Unterspannung, Phase L1
3122	Netz-Unterspannung, Phase L2
3123	Netz-Unterspannung, Phase L3
3130	Phasenausfall
3131	Phasenausfall L1
3132	Phasenausfall L2
3133	Phasenausfall L3
3134	Phasenfolge
3140	Netzfrequenz
3141	Netzfrequenz zu hoch
3142	Netzfrequenz zu niedrig
3200	DC-Zwischenkreisspannung
3210	DC-Überspannung
3211	Überspannung Nr. 1
3212	Überspannung Nr. 2
3220	DC-Unterspannung
3221	Unterspannung Nr. 1
3222	Unterspannung Nr. 2
3230	Lastfehler
3300	Ausgangsspannung

Störungscode (hex.)	Bedeutung
3310	Ausgangs-Überspannung
3311	Ausgangs-Überspannung, Phase U
3312	Ausgangs-Überspannung, Phase V
3313	Ausgangs-Überspannung, Phase W
3320	Ankerstromkreis
3321	Ankerstromkreis unterbrochen
3330	Feldstromkreis
3331	Feldstromkreis unterbrochen
4000	Temperatur
4100	Umgebungstemperatur
4110	Zu hohe Umgebungstemperatur
4120	Zu niedrige Umgebungstemperatur
4130	Temperatur, Zuluft
4140	Temperatur, Abluft
4200	Temperatur, Gerät
4210	Zu hohe Temperatur, Gerät
4220	Zu niedrige Temperatur, Gerät
4300	Temperatur, Antrieb
4310	Zu hohe Temperatur, Antrieb
4320	Zu niedrige Temperatur, Antrieb
4400	Temperatur, Einspeisung
4410	Zu hohe Temperatur, Einspeisung
4420	Zu niedrige Temperatur, Einspeisung
5000	Geräte-Hardware
5100	Spannungsversorgung
5110	Einspeisung, niedrige Spannung
5111	U1 = Einspeisung +/-15 V
5112	U2 = Einspeisung +24 V

Störungscode (hex.)	Bedeutung
5113	U3 = Einspeisung +5 V
5114	U4 = herstellerspezifisch
5115	U5 = herstellerspezifisch
5116	U6 = herstellerspezifisch
5117	U7 = herstellerspezifisch
5118	U8 = herstellerspezifisch
5119	U9 = herstellerspezifisch
5120	Einspeisung, Zwischenkreis
5200	Steuerung
5210	Messstromkreis
5220	Rechenstromkreis
5300	Betriebseinheit
5400	Leistungsabschnitt
5410	Ausgangsstufen
5420	Chopper
5430	Eingangsstufen
5440	Schütze
5441	Schütz 1 = herstellerspezifisch
5442	Schütz 2 = herstellerspezifisch
5443	Schütz 3 = herstellerspezifisch
5444	Schütz 4 = herstellerspezifisch
5445	Schütz 5 = herstellerspezifisch
5450	Sicherungen
5451	S1 = L1
5452	S2 = L2
5453	S3 = L3
5454	S4 = herstellerspezifisch
5455	S5 = herstellerspezifisch
5456	S6 = herstellerspezifisch

Störungscode (hex.)	Bedeutung
5457	S7 = herstellerspezifisch
5458	S8 = herstellerspezifisch
5459	S9 = herstellerspezifisch
5500	Datenspeicher
5510	Arbeitsspeicher
5520	Programmspeicher
5530	Nichtflüchtiger Datenspeicher
6000	Gerätesoftware
6010	Software-Reset (Watchdog)
6100	Interne Software
6200	Benutzersoftware
6300	Datenaufzeichnung
6301	Datenaufzeichnung Nr. 1
	entsprechend von 214
630F	Datenaufzeichnung Nr. 15
6310	Verlust von Parametern
6320	Parameter-Fehler
6330	Konfigurationsfehler des Ethernet POWERLINK-Moduls
7000	Zusätzliche Module
7100	Mot-Nennleistung
7110	Bremschopper
7111	Ausfall, Bremschopper
7112	Überstrom, Bremschopper
7113	Schutzstromkreis, Bremschopper
7120	Motor
7121	Motor blockiert
7122	Motorstörung oder Kommuni- kationsstörung

Störungscode (hex.)	Bedeutung
7123	Motor gekippt
7200	Messstromkreis
7300	Sensor
7301	Tachometerstörung
7302	Tachometer mit falscher Polarität
7303	Resolver 1, Störung
7304	Resolver 2, Störung
7305	Inkrementalsensor 1, Störung
7306	Inkrementalsensor 2, Störung
7307	Inkrementalsensor 3, Störung
7310	Drehzahl
7320	Position
7400	Rechenstromkreis
7500	Kommunikation
7510	Serielle Schnittstelle Nr. 1
7520	Serielle Schnittstelle Nr. 2
7600	Datenspeicher
8000	Überwachung
8100	Kommunikation
8300	Drehmoment-Regelung
8311	Zu hohes Drehmoment
8312	Inbetriebnahme schwierig
8313	Stillstandsdrehmoment
8321	Drehmoment zu gering
8331	Drehmomentstörung
8400	Drehzahlregler
8500	Positionsregler
8600	Positionierungsregler
8611	Folgefehler

Störungscode (hex.)	Bedeutung
8612	Sollgrenzwert
8700	Sync-Regler
8800	Wicklungsregler
9000	Externe Störung
F000	Zusätzliche Funktionen
F001	Verzögerung
F002	Untersynchroner Betrieb
F003	Taktbetrieb
F004	Bedientaste
FF00	Herstellerspezifisch
FFFF	Herstellerspezifisch

Anhang C - IdentResponse-Datenrahmen

Inhalt dieses Kapitels

Dieses Kapitel enthält einen Überblick über den Inhalt des IdentResponse-Datenrahmens.

NMT Service Zeitfenster - Struktur von

IdentResponse

Oktett-Versatz	Bit-Versatz							
	7	6	5	4	3	2	1	0
0	res	res	res	res	res	res	res	res
1			PR			RS		
2	NMTS	Status						
3	Reser	viert						
4	EPLV	ersion						
5	Reser	viert						
6 9	Featu	reFlags	3					
1011	MTU							
1213	Pollin	Size						
1415	PollO	utSize						
1619	Respo	nseTin	ne					
2021	Reser	viert						
22 25	Device	DeviceType						
2629	VendorID							
3033	ProductCode							
3437	Revisi	RevisionNumber						
3841	SerialNumber							
4249	VendorSpecificExtension1							
5053	VerifyConfigurationDate							
5457	VerifyConfigurationTime							
5861	ApplicationSwDate							
6265	ApplicationSwTime							
6669	IPAddress							
7073	SubnetMask							
7477	DefaultGateway							
78109	HostName							
110157	Vendo	rSpeci	ficExte	nsion2				

NMT Service Zeitfenster - Datenfelder von IdentResponse

Feld	Abk.	Beschreibung
Priority	PR	Kennungen: Zeigt die Priorität des angeforderten asynchronen Datenrahmens an (siehe 4.2.4.1.2.3)
RequestToSend	RS	Kennungen: Zeigt die Anzahl der noch an den CN zu sendenden Anforderungen an. Der Wert C_DLL_MAX_RS zeigt C_DLL_MAX_RS oder mehr Anforderungen an, 0 zeigt an, dass keine Anforderungen ausstehen. Werte: 0C_DLL_MAX_RS
NMTStatus	stat	Gibt den aktuellen Status der NMT- Zustandsmaschine des CN an.
EPLVersion	eplv	Zeigt die POWERLINK-Version an, der der CN entspricht.
FeatureFlags	feat	Gibt die Funktionskennungen des Geräts an. (NMT_FeatureFlags_U32)
МТИ	mtu	Gibt die Größe des größten IP- Datenrahmens an, der über das Netzwerk gesendet werden kann, einschließlich der Größe des Transport-Headers. Werte: C_DLL_MIN_ASYNC_MTU C_DLL_MAX_ASYNC_MTU
PollInSize	pis	Gibt die tatsächliche CN-Einstellung für die PReq-Datenblockgröße (NMT_CycleTiming_REC.PReqActPa yloadLimit_U16) an.
PollOutSize	pos	Gibt die tatsächliche CN-Einstellung für die PReq-Datenblockgröße (NMT_CycleTiming_REC.PReqActPa yloadLimit_U16) an.

140 Anhang C - IdentResponse-Datenrahmen

Feld	Abk.	Beschreibung		
ResponseTime	rst	Gibt die Zeit an, die vom CN benötigt wird, um auf PReq zu antworten. (NMT_CycleTiming_REC.PResMaxL atency_U32)		
DeviceType	dt	Gibt den Gerätetyp des CN an. (NMT_DeviceType_U32)		
VendorID	vid	Gibt die Hersteller-ID des CN an, Index. (NMT_IdentityObject_REC.Vendorid_ U32)		
ProductCode	prdc	Gibt den Produktcode des CN an, Index. (NMT_IdentityObject_REC.ProductCo de_U32)		
RevisionNumber	mo	Gibt die Versionsnummer des CN an. (NMT_IdentityObject_REC.RevisionN o_U32)		
SerialNumber	sno	Gibt die Seriennummer des CN an. (NMT_IdentityObject_REC.SerialNo_ U32)		
VendorSpecificExtension1	vex1	Kann für herstellerspezifische Zwecke verwendet werden; falls nicht verwendet, sind Nullen einzutragen.		
VerifyConfigurationDate	vcd	Gibt das Konfigurationsdatum des CN (CFM_VerifyConfiguration_REC.Conf Date_U32) an		
VerifyConfigurationTime	vct	Gibt die Konfigurationszeit des CN an. (CFM_VerifyConfiguration_REC.Conf Time_U32)		
ApplicationSWDate	ad	Gibt das Datum der Applikations-SW des CN an. (PDL_LocVerApplSw_REC.ApplSwD ate bei programmierbaren Geräten oder Datumssegment von NMT_ManufactSwVers_VS bei nicht programmierbaren Geräten)		

Feld	Abk.	Beschreibung
ApplicationSWTime	at	Gibt das Datum der Applikations-SW des CN an. (PDL_LocVerApplSw_REC.ApplSwTi me bei programmierbaren Geräten oder Zeitsegment von NMT_ManufactSwVers_VS bei nicht programmierbaren Geräten)
IPAddress	ipa	Gibt den Wert der aktuellen IP- Adresse des CN an. (NWL_lpAddrTable_Xh_REC.Addr_IP AD)
SubnetMask	snm	Gibt den Wert der aktuellen IP- Subnet-Maske des CN an. (NWL_lpAddrTable_Xh_REC.NetMas k_IPAD)
DefaultGateway	gtw	Gibt den Wert des aktuellen IP- Standard-Gateways des CN an. (NWL_lpAddrTable_Xh_REC.DefGat eway_IPAD)
HostName	hn	Gibt den Wert des aktuellen DNS- Hostnamens des CN an. (NMT_HostName_VSTR)
VendorSpecificExtension2	vex2	Kann für herstellerspezifische Zwecke verwendet werden; falls nicht verwendet, sind Nullen einzutragen.

142	Anhang C -	· IdentRespon	se-Datenral	nmen	

Weitere Informationen

Anfragen zum Produkt und zum Service

Wenden Sie sich mit Anfragen zum Produkt unter Angabe des Typenschlüssels und der Seriennummer des Geräts an Ihre ABB-Vertretung. Eine Liste der ABB Verkaufs-, Support- und Service-Adressen finden Sie unter abb.com/searchchannels.

Produktschulung

Informationen zu Produktschulungen von ABB finden Sie auf der Internetseite new.abb.com/service/training.

Feedback zu ABB Handbüchern

Über Kommentare und Hinweise zu unseren Handbüchern freuen wir uns. Ein Formblatt für Mitteilungen finden Sie auf der Internetseite new.abb.com/drives/manuals-feedback-form.

Dokumente-Bibliothek im Internet

Im Internet finden Sie Handbücher und andere Produktdokumentation im PDF-Format unter abb.com/drives/documents.

abb.com/drives abb.com/solar abb.com/windconverters abb.com/drivespartners

3AUAUUUU133138B